modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ji-xin/roberta_base-QQP-two_stage
1f48ad1677737c7119affc8b0fc358e15d52fa08
2020-07-08T15:07:16.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ji-xin
null
ji-xin/roberta_base-QQP-two_stage
2
null
transformers
24,300
Entry not found
ji-xin/roberta_base-RTE-two_stage
d4b01b4bb75fe84ca175e2ad35090791ce076022
2020-07-08T15:08:42.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ji-xin
null
ji-xin/roberta_base-RTE-two_stage
2
null
transformers
24,301
Entry not found
ji-xin/roberta_large-SST2-two_stage
9a67b2c966ed18e72acda5ee4c835893832d42a3
2020-07-07T20:25:04.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ji-xin
null
ji-xin/roberta_large-SST2-two_stage
2
null
transformers
24,302
Entry not found
jiho0304/curseELECTRA
ee72aa7df1f77b72626d63d5c7f8c8db7c8d2490
2021-12-21T08:51:53.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jiho0304
null
jiho0304/curseELECTRA
2
null
transformers
24,303
ElectraBERT tuned with korean-bad-speeches
jihopark/colloquialV2
7a3b0e98c67e7360e813fcf114ed9f7e30643473
2021-05-23T05:55:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
jihopark
null
jihopark/colloquialV2
2
null
transformers
24,304
Entry not found
jimmyliao/distilbert-base-uncased-finetuned-cola
63074248caaecfdc20bd2e3adc2a93d68c0f5291
2021-12-11T01:27:10.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jimmyliao
null
jimmyliao/distilbert-base-uncased-finetuned-cola
2
null
transformers
24,305
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.541356878970505 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8394 - Matthews Correlation: 0.5414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5259 | 1.0 | 535 | 0.5429 | 0.4064 | | 0.342 | 2.0 | 1070 | 0.5270 | 0.5081 | | 0.234 | 3.0 | 1605 | 0.6115 | 0.5268 | | 0.1703 | 4.0 | 2140 | 0.7344 | 0.5387 | | 0.1283 | 5.0 | 2675 | 0.8394 | 0.5414 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.8.0+cpu - Datasets 1.16.1 - Tokenizers 0.10.3
jimregan/electra-base-irish-cased-discriminator-v1-finetuned-ner
95c2b8636fa429e40ef79aeb203dda03a4231aa6
2021-12-01T20:37:45.000Z
[ "pytorch", "tensorboard", "electra", "token-classification", "ga", "dataset:wikiann", "transformers", "generated_from_trainer", "irish", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jimregan
null
jimregan/electra-base-irish-cased-discriminator-v1-finetuned-ner
2
null
transformers
24,306
--- license: apache-2.0 language: ga tags: - generated_from_trainer - irish datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: electra-base-irish-cased-discriminator-v1-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: ga metrics: - name: Precision type: precision value: 0.5413922859830668 - name: Recall type: recall value: 0.5161434977578475 - name: F1 type: f1 value: 0.5284664830119375 - name: Accuracy type: accuracy value: 0.8419817960026273 widget: - text: "Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-irish-cased-discriminator-v1-finetuned-ner This model is a fine-tuned version of [DCU-NLP/electra-base-irish-cased-generator-v1](https://huggingface.co/DCU-NLP/electra-base-irish-cased-generator-v1) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6654 - Precision: 0.5414 - Recall: 0.5161 - F1: 0.5285 - Accuracy: 0.8420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 63 | 1.3231 | 0.1046 | 0.0417 | 0.0596 | 0.5449 | | No log | 2.0 | 126 | 0.9710 | 0.3879 | 0.3359 | 0.3600 | 0.7486 | | No log | 3.0 | 189 | 0.7723 | 0.4713 | 0.4457 | 0.4582 | 0.8152 | | No log | 4.0 | 252 | 0.6892 | 0.5257 | 0.4910 | 0.5078 | 0.8347 | | No log | 5.0 | 315 | 0.6654 | 0.5414 | 0.5161 | 0.5285 | 0.8420 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
jinbbong/esg-electra-kor-v2
e9de9ca5336fdaeb306dcfcd6f4fcb249fd976d4
2021-08-15T08:57:31.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinbbong
null
jinbbong/esg-electra-kor-v2
2
null
transformers
24,307
Entry not found
jinbbong/kobart-esg-e5-b32-v2
5f75adad5bb5927c30edcc731dd1e3676d0a7601
2021-11-02T05:03:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jinbbong
null
jinbbong/kobart-esg-e5-b32-v2
2
null
transformers
24,308
Entry not found
jinbbong/kobert-esg-e5-b32-v2
5101027ebd11da594f969a9a24e3e7f7dbf66ecb
2021-09-27T03:27:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinbbong
null
jinbbong/kobert-esg-e5-b32-v2
2
null
transformers
24,309
Entry not found
jinmang2/klue-roberta-large-bt-tapt
47c0e721d8069ae6b7011c2e2b7944af21d69b71
2021-07-20T07:38:45.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinmang2
null
jinmang2/klue-roberta-large-bt-tapt
2
null
transformers
24,310
Entry not found
jinmang2/pororo-roberta-base-mrc
1f878a8bafaf3e147005b4747ef3335aeb54db91
2021-10-31T15:47:32.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
jinmang2
null
jinmang2/pororo-roberta-base-mrc
2
null
transformers
24,311
Entry not found
jiobiala24/wav2vec2-base-checkpoint-5
7802124dbda8224f09671367d62cbb8a2d622128
2022-01-16T10:56:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-5
2
null
transformers
24,312
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-5 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-4](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-4) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9849 - Wer: 0.3354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3947 | 1.96 | 1000 | 0.5749 | 0.3597 | | 0.2856 | 3.93 | 2000 | 0.6212 | 0.3479 | | 0.221 | 5.89 | 3000 | 0.6280 | 0.3502 | | 0.1755 | 7.86 | 4000 | 0.6517 | 0.3526 | | 0.1452 | 9.82 | 5000 | 0.7115 | 0.3481 | | 0.1256 | 11.79 | 6000 | 0.7687 | 0.3509 | | 0.1117 | 13.75 | 7000 | 0.7785 | 0.3490 | | 0.0983 | 15.72 | 8000 | 0.8115 | 0.3442 | | 0.0877 | 17.68 | 9000 | 0.8290 | 0.3429 | | 0.0799 | 19.65 | 10000 | 0.8517 | 0.3412 | | 0.0733 | 21.61 | 11000 | 0.9370 | 0.3448 | | 0.066 | 23.58 | 12000 | 0.9157 | 0.3410 | | 0.0623 | 25.54 | 13000 | 0.9673 | 0.3377 | | 0.0583 | 27.5 | 14000 | 0.9804 | 0.3348 | | 0.0544 | 29.47 | 15000 | 0.9849 | 0.3354 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-checkpoint-6
55d3858ec4c3c0bd227715180eafab775eb47b31
2022-01-17T14:22:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-6
2
null
transformers
24,313
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-6 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-5](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-5) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9738 - Wer: 0.3323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3435 | 1.82 | 1000 | 0.5637 | 0.3419 | | 0.2599 | 3.65 | 2000 | 0.5804 | 0.3473 | | 0.2043 | 5.47 | 3000 | 0.6481 | 0.3474 | | 0.1651 | 7.3 | 4000 | 0.6937 | 0.3452 | | 0.1376 | 9.12 | 5000 | 0.7221 | 0.3429 | | 0.118 | 10.95 | 6000 | 0.7634 | 0.3441 | | 0.105 | 12.77 | 7000 | 0.7789 | 0.3444 | | 0.0925 | 14.6 | 8000 | 0.8209 | 0.3444 | | 0.0863 | 16.42 | 9000 | 0.8293 | 0.3440 | | 0.0756 | 18.25 | 10000 | 0.8553 | 0.3412 | | 0.0718 | 20.07 | 11000 | 0.9006 | 0.3430 | | 0.0654 | 21.9 | 12000 | 0.9541 | 0.3458 | | 0.0605 | 23.72 | 13000 | 0.9400 | 0.3350 | | 0.0552 | 25.55 | 14000 | 0.9547 | 0.3363 | | 0.0543 | 27.37 | 15000 | 0.9715 | 0.3348 | | 0.0493 | 29.2 | 16000 | 0.9738 | 0.3323 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-checkpoint-7.1
2237dbe1e9a821284d5dfb8342c1823b41322b73
2022-01-21T15:50:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-7.1
2
null
transformers
24,314
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-7.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-7.1 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-6](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-6) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9369 - Wer: 0.3243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3124 | 1.75 | 1000 | 0.5602 | 0.3403 | | 0.2428 | 3.5 | 2000 | 0.5924 | 0.3431 | | 0.1884 | 5.24 | 3000 | 0.6161 | 0.3423 | | 0.1557 | 6.99 | 4000 | 0.6570 | 0.3415 | | 0.1298 | 8.74 | 5000 | 0.6837 | 0.3446 | | 0.1141 | 10.49 | 6000 | 0.7304 | 0.3396 | | 0.1031 | 12.24 | 7000 | 0.7264 | 0.3410 | | 0.0916 | 13.99 | 8000 | 0.7229 | 0.3387 | | 0.0835 | 15.73 | 9000 | 0.8078 | 0.3458 | | 0.0761 | 17.48 | 10000 | 0.8304 | 0.3408 | | 0.0693 | 19.23 | 11000 | 0.8290 | 0.3387 | | 0.0646 | 20.98 | 12000 | 0.8593 | 0.3372 | | 0.0605 | 22.73 | 13000 | 0.8728 | 0.3345 | | 0.0576 | 24.48 | 14000 | 0.9111 | 0.3297 | | 0.0529 | 26.22 | 15000 | 0.9247 | 0.3273 | | 0.0492 | 27.97 | 16000 | 0.9248 | 0.3250 | | 0.0472 | 29.72 | 17000 | 0.9369 | 0.3243 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jnz/electra-ka-anti-opo
17979d53c450f29573c5df000919e39e5b31fdd8
2021-03-30T14:04:36.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jnz
null
jnz/electra-ka-anti-opo
2
null
transformers
24,315
Entry not found
joaomiguel26/xlm-roberta-6-final
0be2f4d29b869f61f05387241c076fa090497718
2021-12-06T16:19:53.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
joaomiguel26
null
joaomiguel26/xlm-roberta-6-final
2
null
transformers
24,316
Entry not found
joaomiguel26/xlm-roberta-7-final
2b19d3128d86588484537db2d379dca82704a73b
2021-12-06T16:09:34.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
joaomiguel26
null
joaomiguel26/xlm-roberta-7-final
2
null
transformers
24,317
Entry not found
joaomiguel26/xlm-roberta-8-final
c5efd133317cada65ee68780ca6839e5cbc9c6af
2021-12-06T16:22:42.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
joaomiguel26
null
joaomiguel26/xlm-roberta-8-final
2
null
transformers
24,318
Entry not found
joe8zhang/dummy-model3
fc05349ab8e27caaaac71b66f05a6a1fa329bef6
2021-06-24T01:08:51.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
joe8zhang
null
joe8zhang/dummy-model3
2
null
transformers
24,319
Entry not found
jogonba2/bart-JES-cnn_dailymail
0a5f13af42e3e74143891db3925d44c5fd08d485
2021-10-14T02:00:37.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
jogonba2
null
jogonba2/bart-JES-cnn_dailymail
2
null
transformers
24,320
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-JES-cnn_dailymail results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 43.9753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-JES-cnn_dailymail This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1452 - Rouge1: 43.9753 - Rouge2: 19.7191 - Rougel: 33.6236 - Rougelsum: 41.1683 - Gen Len: 80.1767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.2949 | 1.0 | 71779 | 1.2080 | 11.7171 | 3.3284 | 11.3209 | 11.4022 | 20.0 | | 1.191 | 2.0 | 143558 | 1.1615 | 11.8484 | 3.363 | 11.4175 | 11.5037 | 20.0 | | 1.0907 | 3.0 | 215337 | 1.1452 | 12.6221 | 3.773 | 12.1226 | 12.2359 | 20.0 | | 0.9798 | 4.0 | 287116 | 1.1670 | 12.4306 | 3.7329 | 11.9497 | 12.0617 | 20.0 | | 0.9112 | 5.0 | 358895 | 1.1667 | 12.5404 | 3.7842 | 12.0541 | 12.1643 | 20.0 | | 0.8358 | 6.0 | 430674 | 1.1997 | 12.5153 | 3.778 | 12.0382 | 12.1332 | 20.0 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
joheras/Mapi
9010147f20895ebe1da4b834309bd6e8468f5a51
2021-07-01T06:09:46.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
joheras
null
joheras/Mapi
2
null
transformers
24,321
Entry not found
johnpaulbin/gpt2-skript-80
623dad9695dd12173316b2b6dc9873af9fac13ee
2021-07-16T05:43:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
johnpaulbin
null
johnpaulbin/gpt2-skript-80
2
null
transformers
24,322
GPT-2 for the Minecraft Plugin: Skript (80,000 Lines, 3< GB: GPT-2 Large model finetune) Inferencing Colab: https://colab.research.google.com/drive/1uTAPLa1tuNXFpG0qVLSseMro6iU9-xNc
jonatasgrosman/bartuque-bart-base-pretrained-mm-2
2597247e47519901d59f9b6f9c6899e635775113
2021-02-25T23:03:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jonatasgrosman
null
jonatasgrosman/bartuque-bart-base-pretrained-mm-2
2
null
transformers
24,323
Just a test
jonatasgrosman/bartuque-bart-base-pretrained-r-2
6672170c95ca3066c0534792e1aeb4af790c086e
2021-02-04T00:25:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jonatasgrosman
null
jonatasgrosman/bartuque-bart-base-pretrained-r-2
2
null
transformers
24,324
Just a test
jonatasgrosman/bartuque-bart-base-random-r-2
9a3343ebf4ec5cc9bfbefbd5e9ab797fafc26ecf
2021-02-04T00:27:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jonatasgrosman
null
jonatasgrosman/bartuque-bart-base-random-r-2
2
null
transformers
24,325
Just a test
jonfd/electra-small-is-no
191173e9f29ff06dcea78405b884d171faa2b3fd
2022-01-31T23:41:45.000Z
[ "pytorch", "tf", "electra", "pretraining", "is", "no", "dataset:igc", "dataset:ic3", "dataset:jonfd/ICC", "dataset:mc4", "transformers", "license:cc-by-4.0" ]
null
false
jonfd
null
jonfd/electra-small-is-no
2
null
transformers
24,326
--- language: - is - no license: cc-by-4.0 datasets: - igc - ic3 - jonfd/ICC - mc4 --- # Icelandic-Norwegian ELECTRA-Small This model was pretrained on the following corpora: * The [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/) (IGC) * The Icelandic Common Crawl Corpus (IC3) * The [Icelandic Crawled Corpus](https://huggingface.co/datasets/jonfd/ICC) (ICC) * The [Multilingual Colossal Clean Crawled Corpus](https://huggingface.co/datasets/mc4) (mC4) - Icelandic and Norwegian text obtained from .is and .no domains, respectively The total size of the corpus after document-level deduplication and filtering was 7.41B tokens, split equally between the two languages. The model was trained using a WordPiece tokenizer with a vocabulary size of 64,105 for 1.1 million steps, and otherwise with default settings. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
jonfd/electra-small-nordic
fb032b455f0e64897fbe56d1933afe4a5900dc9c
2022-01-31T23:41:26.000Z
[ "pytorch", "tf", "electra", "pretraining", "is", "no", "sv", "da", "dataset:igc", "dataset:ic3", "dataset:jonfd/ICC", "dataset:mc4", "transformers", "license:cc-by-4.0" ]
null
false
jonfd
null
jonfd/electra-small-nordic
2
null
transformers
24,327
--- language: - is - no - sv - da license: cc-by-4.0 datasets: - igc - ic3 - jonfd/ICC - mc4 --- # Nordic ELECTRA-Small This model was pretrained on the following corpora: * The [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/) (IGC) * The Icelandic Common Crawl Corpus (IC3) * The [Icelandic Crawled Corpus](https://huggingface.co/datasets/jonfd/ICC) (ICC) * The [Multilingual Colossal Clean Crawled Corpus](https://huggingface.co/datasets/mc4) (mC4) - Icelandic, Norwegian, Swedish and Danish text obtained from .is, .no, .se and .dk domains, respectively The total size of the corpus after document-level deduplication and filtering was 14.82B tokens, split equally between the four languages. The model was trained using a WordPiece tokenizer with a vocabulary size of 96,105 for one million steps with a batch size of 256, and otherwise with default settings. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
jonx18/DialoGPT-small-Creed-Odyssey
9d1a4f1d1a0159c0fc10a717b91f20947a09a964
2021-05-23T06:02:34.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
jonx18
null
jonx18/DialoGPT-small-Creed-Odyssey
2
null
transformers
24,328
# Summary The app was conceived with the idea of recreating and generate new dialogs for existing games. In order to generate a dataset for training the steps followed were: 1. Download from [Assassins Creed Fandom Wiki](https://assassinscreed.fandom.com/wiki/Special:Export) from the category "Memories relived using the Animus HR-8.5". 2. Keep only text elements from XML. 3. Keep only the dialog section. 4. Parse wikimarkup with [wikitextparser](https://pypi.org/project/wikitextparser/). 5. Clean description of dialog's context. Due to the small size of the dataset obtained, a transfer learning approach was considered based on a pretrained ["Dialog GPT" model](https://huggingface.co/microsoft/DialoGPT-small).
joaoalvarenga/model-sid-voxforge-cetuc-0
ea68a8848b59b93805d42ec171fe05ac632c19d2
2021-07-06T08:34:35.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cetuc-0
2
null
transformers
24,329
Entry not found
joaoalvarenga/model-sid-voxforge-cetuc-1
ed9efe0d5ae67f14976ef10aa2e4ffb4e044e91c
2021-07-06T08:41:07.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cetuc-1
2
null
transformers
24,330
Entry not found
joaoalvarenga/model-sid-voxforge-cv-cetuc-0
c69ca002c640ca087814c51aaa1c06a3ce30609a
2021-07-06T08:50:10.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cv-cetuc-0
2
null
transformers
24,331
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: JoaoAlvarenga XLSR Wav2Vec2 Large 53 Portuguese A results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 15.037146% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 15.037146% ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
joaoalvarenga/model-sid-voxforge-cv-cetuc-1
5044b0cffcc449f46dfda0cf8c960a6c6971c3d7
2021-07-06T08:54:15.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cv-cetuc-1
2
null
transformers
24,332
Entry not found
joaoalvarenga/model-sid-voxforge-cv-cetuc-2
1d07a3a76bed238ea02674f814222c7c50fcb2e4
2021-07-06T09:00:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cv-cetuc-2
2
null
transformers
24,333
Entry not found
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-0
47bd59974ed20e83deec2266a53a308d1c56bf87
2021-07-06T09:04:12.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-0
2
null
transformers
24,334
Entry not found
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-1
e51d5113fc19eae25e86f06dc5f5d121c8c93944
2021-07-05T13:42:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-1
2
null
transformers
24,335
Entry not found
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-2
6953bc0d961afcce9575d06e88eac04fcda69406
2021-07-05T13:27:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-2
2
null
transformers
24,336
Entry not found
joaoalvarenga/wav2vec2-cv-coral-300ep
b95dd48c713752fe4a112e75cf5304105f3550e1
2021-07-12T12:35:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cv-coral-300ep
2
null
transformers
24,337
Entry not found
joaoalvarenga/wav2vec2-cv-coral-30ep
de72d61a3cb4d8aa91d7de4c1326e39be939733c
2021-07-06T09:07:11.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cv-coral-30ep
2
1
transformers
24,338
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: JoaoAlvarenga XLSR Wav2Vec2 Large 53 Portuguese A results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 15.037146% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 15.037146% ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
joaoalvarenga/wav2vec2-large-xlsr-portuguese
b91070a8503b0f6327382210475d6cc214a6e23f
2021-07-06T09:30:27.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-large-xlsr-portuguese
2
null
transformers
24,339
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: JoaoAlvarenga XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 13.766801% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. You need to install Enelvo, an open-source spell correction trained with Twitter user posts `pip install enelvo` ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from enelvo import normaliser import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) norm = normaliser.Normaliser() # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = [norm.normalise(i) for i in processor.batch_decode(pred_ids)] return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 13.766801% ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
josedlhm/new_model
ba7dc235947cb822ae0599b8b9e4f0ac0a917f5f
2021-11-24T09:00:54.000Z
[ "pytorch", "openai-gpt", "text-generation", "transformers" ]
text-generation
false
josedlhm
null
josedlhm/new_model
2
null
transformers
24,340
Entry not found
josephgatto/paint_doctor_description_identification
606ea89f28ad4e6c984fcb0326f99bdcfe4e76ac
2021-11-01T23:51:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
josephgatto
null
josephgatto/paint_doctor_description_identification
2
null
transformers
24,341
Entry not found
joshuacalloway/csc575finalproject
a1ff07feec0852f7f16fcfb289bcb30e2cca0c99
2021-03-16T00:46:04.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
joshuacalloway
null
joshuacalloway/csc575finalproject
2
null
transformers
24,342
jp1924/KoBERT_NSMC_TEST
1ce81ea62b7046ec0d37eb87b356d1a29f0b2a83
2022-02-15T07:12:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jp1924
null
jp1924/KoBERT_NSMC_TEST
2
null
transformers
24,343
Entry not found
jroussin/gpt2-ontapdoc-gen
eb6b6d0a023f800ba5e0dde3ab0fef97ecf0cdf4
2021-11-18T14:36:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jroussin
null
jroussin/gpt2-ontapdoc-gen
2
null
transformers
24,344
Entry not found
jsgao/bert-eli5c-retriever
65f16a6076220e2aab6a6811459d023bec857ec9
2021-12-14T21:09:37.000Z
[ "pytorch", "bert", "feature-extraction", "en", "dataset:eli5_category", "transformers", "license:mit" ]
feature-extraction
false
jsgao
null
jsgao/bert-eli5c-retriever
2
null
transformers
24,345
--- language: en license: MIT datasets: - eli5_category --- Document Retriever model of [ELI5-Category Dataset](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/), need additional projection layer (see GitHub [repo](https://github.com/rexarski/ANLY580-final-project/blob/main/model_deploy/models/eli5c_qa_model.py))
ju-bezdek/slovakbert-conll2003-sk-ner
f287da98afb874101fcc3985c14a4c3cf17b29c5
2022-01-12T20:37:34.000Z
[ "pytorch", "dataset:ju-bezdek/conll2003-SK-NER", "generated_from_trainer", "license:mit", "model-index" ]
null
false
ju-bezdek
null
ju-bezdek/slovakbert-conll2003-sk-ner
2
null
null
24,346
--- license: mit tags: - generated_from_trainer datasets: - ju-bezdek/conll2003-SK-NER metrics: - precision - recall - f1 - accuracy model-index: - name: outputs results: - task: name: Token Classification type: token-classification dataset: name: ju-bezdek/conll2003-SK-NER type: ju-bezdek/conll2003-SK-NER args: conll2003-SK-NER metrics: - name: Precision type: precision value: 0.8189727994593682 - name: Recall type: recall value: 0.8389581169955002 - name: F1 type: f1 value: 0.8288450029922203 - name: Accuracy type: accuracy value: 0.9526157920337243 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the [ju-bezdek/conll2003-SK-NER](https://huggingface.co/datasets/ju-bezdek/conll2003-SK-NER) dataset. It achieves the following results on the evaluation (validation) set: - Loss: 0.1752 - Precision: 0.8190 - Recall: 0.8390 - F1: 0.8288 - Accuracy: 0.9526 ## Model description More information needed ## Code example ```python: from transformers import pipeline, AutoModel, AutoTokenizer from spacy import displacy import os model_path="ju-bezdek/slovakbert-conll2003-sk-ner" aggregation_strategy="max" ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy) input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax" ner_ents = ner_pipeline(input_sentence) print(ner_ents) ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0] options = {"ents":ent_group_labels} dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents] displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True) ``` ### Result: <div> <span class="tex2jax_ignore"><div class="entities" style="line-height: 2.5; direction: ltr"> <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Ruský <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">MISC</span> </mark> premiér <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Viktor Černomyrdin <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> v piatok povedal, že prezident <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Boris Jeľcin, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> , ktorý je na dovolenke mimo <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Moskvy <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> , podporil mierový plán šéfa bezpečnosti <mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Alexandra Lebedu <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span> </mark> pre <mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Čečensko, <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span> </mark> uviedla tlačová agentúra <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Interfax <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span> </mark> </div></span> </div> ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3237 | 1.0 | 878 | 0.2541 | 0.7125 | 0.8059 | 0.7563 | 0.9283 | | 0.1663 | 2.0 | 1756 | 0.2370 | 0.7775 | 0.8090 | 0.7929 | 0.9394 | | 0.1251 | 3.0 | 2634 | 0.2289 | 0.7732 | 0.8029 | 0.7878 | 0.9385 | | 0.0984 | 4.0 | 3512 | 0.2818 | 0.7294 | 0.8189 | 0.7715 | 0.9294 | | 0.0808 | 5.0 | 4390 | 0.3138 | 0.7615 | 0.7900 | 0.7755 | 0.9326 | | 0.0578 | 6.0 | 5268 | 0.3072 | 0.7548 | 0.8222 | 0.7871 | 0.9370 | | 0.0481 | 7.0 | 6146 | 0.2778 | 0.7897 | 0.8156 | 0.8025 | 0.9408 | | 0.0414 | 8.0 | 7024 | 0.3336 | 0.7695 | 0.8201 | 0.7940 | 0.9389 | | 0.0268 | 9.0 | 7902 | 0.3294 | 0.7868 | 0.8140 | 0.8002 | 0.9409 | | 0.0204 | 10.0 | 8780 | 0.3693 | 0.7657 | 0.8239 | 0.7938 | 0.9376 | | 0.016 | 11.0 | 9658 | 0.3816 | 0.7932 | 0.8242 | 0.8084 | 0.9425 | | 0.0108 | 12.0 | 10536 | 0.3607 | 0.7929 | 0.8256 | 0.8089 | 0.9431 | | 0.0078 | 13.0 | 11414 | 0.3980 | 0.7915 | 0.8240 | 0.8074 | 0.9423 | | 0.0062 | 14.0 | 12292 | 0.4096 | 0.7995 | 0.8247 | 0.8119 | 0.9436 | | 0.0035 | 15.0 | 13170 | 0.4177 | 0.8006 | 0.8251 | 0.8127 | 0.9438 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
juanhebert/wav2vec2-indonesia
7438d6018537add750b04b6a28dcddbefa0546be
2022-02-24T12:34:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
juanhebert
null
juanhebert/wav2vec2-indonesia
2
null
transformers
24,347
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-indonesia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-indonesia This model is a fine-tuned version of [juanhebert/wav2vec2-indonesia](https://huggingface.co/juanhebert/wav2vec2-indonesia) on the commonvoice "id" dataset. It achieves the following results on the evaluation set: - Loss: 3.0727 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.8744 | 0.68 | 200 | 3.0301 | 1.0 | | 2.868 | 1.36 | 400 | 3.0727 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
julien-c/policy-distilbert-7d
41a7c98f1285a7e5ef19095dab11f0ac71ac1406
2020-12-26T10:04:20.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
julien-c
null
julien-c/policy-distilbert-7d
2
null
transformers
24,348
Entry not found
juliusco/distilbert-base-uncased-finetuned-squad
48a80e81aef448e5ba67c5df7a10cf26924d2ae8
2022-06-13T13:10:17.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
juliusco
null
juliusco/distilbert-base-uncased-finetuned-squad
2
null
transformers
24,349
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1755 | 1.0 | 11066 | 1.1177 | | 0.9004 | 2.0 | 22132 | 1.1589 | | 0.6592 | 3.0 | 33198 | 1.2326 | | 0.4823 | 4.0 | 44264 | 1.3672 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
junnyu/autobert-small-light
100ecad4a3bd4cc26d74a4002565aac4ccb58599
2021-08-02T13:50:03.000Z
[ "pytorch", "autobert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/autobert-small-light
2
null
transformers
24,350
Entry not found
junnyu/eHealth_pytorch
98f67e85f254c6bd05505f8036561df80b3bda5b
2022-01-13T10:29:01.000Z
[ "pytorch", "bert", "transformers" ]
null
false
junnyu
null
junnyu/eHealth_pytorch
2
null
transformers
24,351
https://github.com/PaddlePaddle/Research/tree/master/KG/eHealth
junzai/bert_test
cdc00fb4bfe0c5c4e4e626f3937a59ef64d482b0
2021-07-21T00:59:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
junzai
null
junzai/bert_test
2
null
transformers
24,352
Entry not found
jx88/xlm-roberta-base-finetuned-marc-en-j-run
d708279913480f4db1f69e5419d1d416ec6824bf
2021-10-23T03:13:16.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jx88
null
jx88/xlm-roberta-base-finetuned-marc-en-j-run
2
null
transformers
24,353
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en-j-run results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en-j-run This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9189 - Mae: 0.4634 ## Model description Trained following the MLT Tokyo Transformers workshop run by huggingface. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2327 | 1.0 | 235 | 1.0526 | 0.6341 | | 0.9943 | 2.0 | 470 | 0.9189 | 0.4634 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
kamalkraj/bioelectra-base-discriminator-pubmed-pmc
1f11d75b84a57ab99b19b74ec2c00d3d33551496
2021-06-10T13:45:44.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
kamalkraj
null
kamalkraj/bioelectra-base-discriminator-pubmed-pmc
2
null
transformers
24,354
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
kangnichaluo/cb
c77eda357c1e977faf767f185c8ad36244e55bfa
2021-05-30T12:29:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/cb
2
null
transformers
24,355
learning rate: 5e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased trained on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-1
19afea85b542d7cf4695f545750d170c648a72eb
2021-05-25T11:36:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/mnli-1
2
null
transformers
24,356
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 42 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-3
5d9e7bb8612df5ff95c485034b0b64aa534acdc7
2021-05-25T11:46:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/mnli-3
2
null
transformers
24,357
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 13 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-4
570e51258bd95747d9588662f232a95034ce7a65
2021-05-25T12:36:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/mnli-4
2
null
transformers
24,358
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 87 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-5
48487c7d1c2bda8826105d459b86127dc4783985
2021-05-25T12:41:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/mnli-5
2
null
transformers
24,359
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 111 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
kangnichaluo/mnli-cb
9329fa10c18614c42c9826f2abf2743eb43d4d00
2021-05-30T12:29:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kangnichaluo
null
kangnichaluo/mnli-cb
2
null
transformers
24,360
learning rate: 3e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased The model is pretrained on MNLI (we use kangnichaluo/mnli-2 directly) and then finetuned on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
kaushikacharya/dummy-model
fd305a2fb53109c4cede2d289f6b51d19c26728a
2021-08-21T15:26:32.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kaushikacharya
null
kaushikacharya/dummy-model
2
null
transformers
24,361
Entry not found
kevinzyz/chinese-bert-wwm-ext-finetuned-cola-e3
250007853fa5abcfd8c2a5a03c6291c2ca2b792a
2021-11-20T04:13:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kevinzyz
null
kevinzyz/chinese-bert-wwm-ext-finetuned-cola-e3
2
null
transformers
24,362
Entry not found
khanhpd2/distilBERT-emotionv2
ccf81702193b2d3f545f93d434eac3b52871bb8c
2021-11-25T13:15:29.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
khanhpd2
null
khanhpd2/distilBERT-emotionv2
2
null
transformers
24,363
Entry not found
khanhpd2/distilbert-emotion
40994a61f4b77cd008daf7d5fb06ff6f49389d59
2021-11-25T11:12:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
khanhpd2
null
khanhpd2/distilbert-emotion
2
null
transformers
24,364
Entry not found
khizon/bert-unreliable-news-eng-title
1eca62fc68aa31083f8ac2d77e705a4b41212858
2022-01-14T01:20:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
khizon
null
khizon/bert-unreliable-news-eng-title
2
null
transformers
24,365
Entry not found
kika2000/wav2vec2-large-xls-r-300m-test_my-colab
c7193efc0a9d288316b2e0d0c435152ab063e3c6
2022-01-31T10:04:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-test_my-colab
2
null
transformers
24,366
Entry not found
kingabzpro/wav2vec2-large-xls-r-300m-Swedish
eccc472603378b0e28ac1503bef6e392de6e5604
2022-03-24T11:58:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-300m-Swedish
2
1
transformers
24,367
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-xls-r-300m-swedish results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice sv-SE args: sv-SE metrics: - type: wer value: 24.73 name: Test WER args: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP - type: cer value: 7.58 name: Test CER args: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Swedish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3641 - Wer: 0.2473 - Cer: 0.0758 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 6.1097 | 5.49 | 500 | 3.1422 | 1.0 | 1.0 | | 2.985 | 10.98 | 1000 | 1.7357 | 0.9876 | 0.4125 | | 1.0363 | 16.48 | 1500 | 0.4773 | 0.3510 | 0.1047 | | 0.6111 | 21.97 | 2000 | 0.3937 | 0.2998 | 0.0910 | | 0.4942 | 27.47 | 2500 | 0.3779 | 0.2776 | 0.0844 | | 0.4421 | 32.96 | 3000 | 0.3745 | 0.2630 | 0.0807 | | 0.4018 | 38.46 | 3500 | 0.3685 | 0.2553 | 0.0781 | | 0.3759 | 43.95 | 4000 | 0.3618 | 0.2488 | 0.0761 | | 0.3646 | 49.45 | 4500 | 0.3641 | 0.2473 | 0.0758 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kingabzpro/wav2vec2-large-xlsr-53-wolof
da78be635d3b398916867ceb704dfac3dd413d76
2021-07-06T09:36:05.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "WOLOF", "dataset:AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF", "transformers", "speech", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xlsr-53-wolof
2
1
transformers
24,368
--- language: WOLOF datasets: - AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF tags: - speech - audio - automatic-speech-recognition license: apache-2.0 metrics: - WER --- ## Evaluation on WOLOF Test [![github](https://img.shields.io/badge/github-ffbf00?logo=github&color=black&style=for-the-badge)](https://github.com/kingabzpro/WOLOF-ASR-Wav2Vec2) ```python import pandas as pd from datasets import load_dataset, load_metric,Dataset from tqdm import tqdm import torch import soundfile as sf import torchaudio from transformers import Wav2Vec2ForCTC from transformers import Wav2Vec2Processor from transformers import Wav2Vec2FeatureExtractor from transformers import Wav2Vec2CTCTokenizer model_name = "kingabzpro/wav2vec2-large-xlsr-53-wolof" device = "cuda" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) val =pd.read_csv("../input/automatic-speech-recognition-in-wolof/Test.csv") val["path"] = "../input/automatic-speech-recognition-in-wolof/Noise Removed/tmp/WOLOF_ASR_dataset/noise_remove/"+val["ID"]+".wav" val.rename(columns = {'transcription':'sentence'}, inplace = True) common_voice_val = Dataset.from_pandas(val) def speech_file_to_array_fn_test(batch): speech_array, sampling_rate = sf.read(batch["path"])#(.wav) 16000 sample rate batch["speech"] = speech_array batch["sampling_rate"] = sampling_rate return batch def prepare_dataset_test(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor(batch["speech"], padding=True,sampling_rate=batch["sampling_rate"][0]).input_values return batch common_voice_val = common_voice_val.remove_columns([ "ID","age", "down_votes", "gender", "up_votes"]) # Remove columns common_voice_val = common_voice_val.map(speech_file_to_array_fn_test, remove_columns=common_voice_val.column_names)# Applying speech_file_to_array function common_voice_val = common_voice_val.map(prepare_dataset_test, remove_columns=common_voice_val.column_names, batch_size=8, num_proc=4, batched=True)# Applying prepare_dataset_test function final_pred = [] for i in tqdm(range(common_voice_val.shape[0])):# Testing model on Wolof Dataset input_dict = processor(common_voice_val[i]["input_values"], return_tensors="pt", padding=True) logits = model(input_dict.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1)[0] prediction = processor.decode(pred_ids) final_pred.append(prediction) ``` You can check my result on [Zindi](https://zindi.africa/competitions/ai4d-baamtu-datamation-automatic-speech-recognition-in-wolof/leaderboard), I got 8th rank in AI4D Baamtu Datamation - Automatic Speech Recognition in WOLOF **Result**: 7.88 %
kipiiler/Rickbot
366ef8e98393ea46d59df511f5c870aee54b34e7
2021-09-15T18:30:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kipiiler
null
kipiiler/Rickbot
2
null
transformers
24,369
--- tags: - conversational --- #RickSanChez
kloon99/KML_Eula_generate_v2
215e1b72b08ee9695033afea18c8626f1c7bc2a2
2022-02-08T07:06:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
kloon99
null
kloon99/KML_Eula_generate_v2
2
null
transformers
24,370
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: trained_model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trained_model2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.1 - Datasets 1.14.0 - Tokenizers 0.10.3
koala/xlm-roberta-large-en
d70b003888d3496cfe379077a090cd8837a357f7
2021-12-06T18:11:52.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-en
2
null
transformers
24,371
Entry not found
koala/xlm-roberta-large-ko
2a3a172d57e74aebfb15d154e96e92e6856e80ab
2021-12-10T08:02:32.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-ko
2
null
transformers
24,372
Entry not found
kongkeaouch/wav2vec2-xls-r-300m-kh
3041875f7e12739d3c5cbdb181fa9e624750e04e
2022-01-21T20:50:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kongkeaouch
null
kongkeaouch/wav2vec2-xls-r-300m-kh
2
null
transformers
24,373
Testing Khmer ASR baseline.
korca/meaning-match-roberta-large
236f6323aa65b96b964d770cf751930048ed2b24
2021-11-18T17:54:44.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/meaning-match-roberta-large
2
null
transformers
24,374
Entry not found
korca/textfooler-roberta-base-mrpc-5
aef073c48c1c23f4046ed33c84510454325f37f5
2022-02-04T18:39:44.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/textfooler-roberta-base-mrpc-5
2
null
transformers
24,375
Entry not found
kornesh/roberta-large-wechsel-hindi
410ddb62cc01660b0577723703230bab40a7050a
2021-11-14T04:38:43.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kornesh
null
kornesh/roberta-large-wechsel-hindi
2
null
transformers
24,376
Entry not found
kornwtp/sup-consert-base
19b23ba17b2fee5785c91a3b6e8a3c7712d30ce8
2021-12-25T05:51:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
kornwtp
null
kornwtp/sup-consert-base
2
null
transformers
24,377
Entry not found
krirk/wav2vec2-large-xls-r-300m-turkish-colab
87b6460f556056d82b434caa747e00a5ca935595
2022-01-26T12:38:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
krirk
null
krirk/wav2vec2-large-xls-r-300m-turkish-colab
2
null
transformers
24,378
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3942 - Wer: 0.3149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9921 | 3.67 | 400 | 0.7820 | 0.7857 | | 0.4496 | 7.34 | 800 | 0.4630 | 0.4977 | | 0.2057 | 11.01 | 1200 | 0.4293 | 0.4627 | | 0.1328 | 14.68 | 1600 | 0.4464 | 0.4068 | | 0.1009 | 18.35 | 2000 | 0.4461 | 0.3742 | | 0.0794 | 22.02 | 2400 | 0.4328 | 0.3467 | | 0.0628 | 25.69 | 2800 | 0.4036 | 0.3263 | | 0.0497 | 29.36 | 3200 | 0.3942 | 0.3149 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
kwang2049/TSDAE-twitterpara2nli_stsb
62f18ce66898810a2fb174544a69ecc0960a3181
2021-10-25T16:14:49.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-twitterpara2nli_stsb
2
null
transformers
24,379
# kwang2049/TSDAE-twitterpara2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain twitterpara. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on twitterpara with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kyo/distilbert-base-uncased-finetuned-imdb
12c46d6473b9b6af159cd3f3c95ee4855ea03d1e
2021-12-09T15:29:34.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
kyo
null
kyo/distilbert-base-uncased-finetuned-imdb
2
null
transformers
24,380
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4883 | | 2.572 | 2.0 | 314 | 2.4240 | | 2.5377 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
lagodw/plotly_gpt_neo_1_3B
4b3ae52a273718abaa9cbe7a6fb8f514a9b6c86e
2021-10-14T22:24:28.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/plotly_gpt_neo_1_3B
2
null
transformers
24,381
Entry not found
lagodw/redditbot_gpt2_short
ecac7a3b8c4e1181925113427dfe7f0d3b9455ed
2021-09-27T13:30:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/redditbot_gpt2_short
2
null
transformers
24,382
Entry not found
laxya007/gpt2_BSA_Leg_ipr_OE
ab0c5c37a0e0f5bc6c992ce6f254bc04f098e7df
2021-06-10T16:10:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
laxya007
null
laxya007/gpt2_BSA_Leg_ipr_OE
2
null
transformers
24,383
Entry not found
laxya007/gpt2_TS_DM_AS_CC_TM
959eceb6b2663d407d380638545f3e81985f7778
2021-05-23T07:14:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
laxya007
null
laxya007/gpt2_TS_DM_AS_CC_TM
2
null
transformers
24,384
Entry not found
leeeki/bigbird-bart-base
d2294a92b8fed9040ff95464ce174914fb375cb2
2021-12-18T19:28:57.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
leeeki
null
leeeki/bigbird-bart-base
2
null
transformers
24,385
Entry not found
lewtun/litmetnet-test-01
dadb1dd5c6884ad2e6050f30cf9cd58da8f6a6ef
2021-09-14T10:04:03.000Z
[ "pytorch", "transformers", "satflow", "forecasting", "timeseries", "remote-sensing", "license:mit" ]
null
false
lewtun
null
lewtun/litmetnet-test-01
2
null
transformers
24,386
--- license: mit tags: - satflow - forecasting - timeseries - remote-sensing --- # LitMetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lewtun/metnet-test-with-config
63623df16f75303a96b5e11fd7b81cfd6e7947e2
2021-09-06T10:23:45.000Z
[ "pytorch", "transformers" ]
null
false
lewtun
null
lewtun/metnet-test-with-config
2
null
transformers
24,387
Entry not found
lewtun/mt5-small-finetuned-mlsum
4340696e79add49c32416ba77762a6e0a68a3341
2021-09-25T09:43:37.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:mlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
lewtun
null
lewtun/mt5-small-finetuned-mlsum
2
null
transformers
24,388
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-small-finetuned-mlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum args: es metrics: - name: Rouge1 type: rouge value: 1.1475 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-mlsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 1.1475 - Rouge2: 0.1284 - Rougel: 1.0634 - Rougelsum: 1.0778 - Gen Len: 3.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | nan | 1.0 | 808 | nan | 1.1475 | 0.1284 | 1.0634 | 1.0778 | 3.7939 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi
bce3e6e954d4dd93ca86dab147a0f3929f0daef3
2021-08-22T18:59:30.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer" ]
text-classification
false
lewtun
null
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi
2
null
transformers
24,389
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi This model was trained from scratch on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.103 | 1.0 | 1250 | 0.2864 | 0.928 | | 0.0407 | 2.0 | 2500 | 0.3595 | 0.9285 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
lf/lf_model_01
039e061eaad41b3cee3771eaf21fc95dfe825ff7
2022-02-11T07:32:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lf
null
lf/lf_model_01
2
null
transformers
24,390
Entry not found
lgris/bp-cetuc100-xlsr
fa60b202685c3603aad251842c1d4cc900a9587f
2021-11-27T21:05:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-cetuc100-xlsr
2
null
transformers
24,391
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # cetuc100-xlsr: Wav2vec 2.0 with CETUC Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz) dataset. This dataset contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | 94h | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | cetuc\_100 (demonstration below)| 0.446 | 0.856 | 0.089 | 0.967 | 1.172 | 0.929 | 0.902 | 0.765 | | cetuc\_100 + 4-gram (demonstration below)|0.339 | 0.734 | 0.076 | 0.961 | 1.188 | 1.227 | 0.801 | 0.760 | ## Demonstration ```python MODEL_NAME = "lgris/cetuc100-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.44677581829220825 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.8561919899139065 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.08955808080808081 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.9670008790979718 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 1.1723738343632861 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.929976436317539 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.9020183982683985 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.3396346663354827 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.7341013242719512 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.07612373737373737 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.960908940243212 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 1.188118540533579 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 1.2271077178339618 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.800196158008658
lgris/distilxlsr_bp_12-16
822ea8ac19791a891ad3c43e17d29e95c3847402
2021-12-30T00:37:12.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "pt", "arxiv:2110.01900", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
lgris
null
lgris/distilxlsr_bp_12-16
2
null
transformers
24,392
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
lgris/wav2vec2-xls-r-300m-gn-cv8-3
67d6fa4c4fbe4425f8271ab0fdd5748b0c2c8f2e
2022-03-24T11:53:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gn", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-300m-gn-cv8-3
2
null
transformers
24,393
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-gn-cv8-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 76.68 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gn-cv8-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9517 - Wer: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 19.9125 | 5.54 | 100 | 5.4279 | 1.0 | | 3.8031 | 11.11 | 200 | 3.3070 | 1.0 | | 3.3783 | 16.65 | 300 | 3.2450 | 1.0 | | 3.3472 | 22.22 | 400 | 3.2424 | 1.0 | | 3.2714 | 27.76 | 500 | 3.1100 | 1.0 | | 3.2367 | 33.32 | 600 | 3.1091 | 1.0 | | 3.1968 | 38.86 | 700 | 3.1013 | 1.0 | | 3.2004 | 44.43 | 800 | 3.1173 | 1.0 | | 3.1656 | 49.97 | 900 | 3.0682 | 1.0 | | 3.1563 | 55.54 | 1000 | 3.0457 | 1.0 | | 3.1356 | 61.11 | 1100 | 3.0139 | 1.0 | | 3.086 | 66.65 | 1200 | 2.8108 | 1.0 | | 2.954 | 72.22 | 1300 | 2.3238 | 1.0 | | 2.6125 | 77.76 | 1400 | 1.6461 | 1.0 | | 2.3296 | 83.32 | 1500 | 1.2834 | 0.9744 | | 2.1345 | 88.86 | 1600 | 1.1091 | 0.9693 | | 2.0346 | 94.43 | 1700 | 1.0273 | 0.9233 | | 1.9611 | 99.97 | 1800 | 0.9642 | 0.9182 | | 1.9066 | 105.54 | 1900 | 0.9590 | 0.9105 | | 1.8178 | 111.11 | 2000 | 0.9679 | 0.9028 | | 1.7799 | 116.65 | 2100 | 0.9007 | 0.8619 | | 1.7726 | 122.22 | 2200 | 0.9689 | 0.8951 | | 1.7389 | 127.76 | 2300 | 0.8876 | 0.8593 | | 1.7151 | 133.32 | 2400 | 0.8716 | 0.8542 | | 1.6842 | 138.86 | 2500 | 0.9536 | 0.8772 | | 1.6449 | 144.43 | 2600 | 0.9296 | 0.8542 | | 1.5978 | 149.97 | 2700 | 0.8895 | 0.8440 | | 1.6515 | 155.54 | 2800 | 0.9162 | 0.8568 | | 1.6586 | 161.11 | 2900 | 0.9039 | 0.8568 | | 1.5966 | 166.65 | 3000 | 0.8627 | 0.8542 | | 1.5695 | 172.22 | 3100 | 0.9549 | 0.8824 | | 1.5699 | 177.76 | 3200 | 0.9332 | 0.8517 | | 1.5297 | 183.32 | 3300 | 0.9163 | 0.8338 | | 1.5367 | 188.86 | 3400 | 0.8822 | 0.8312 | | 1.5586 | 194.43 | 3500 | 0.9217 | 0.8363 | | 1.5429 | 199.97 | 3600 | 0.9564 | 0.8568 | | 1.5273 | 205.54 | 3700 | 0.9508 | 0.8542 | | 1.5043 | 211.11 | 3800 | 0.9374 | 0.8542 | | 1.4724 | 216.65 | 3900 | 0.9622 | 0.8619 | | 1.4794 | 222.22 | 4000 | 0.9550 | 0.8363 | | 1.4843 | 227.76 | 4100 | 0.9577 | 0.8465 | | 1.4781 | 233.32 | 4200 | 0.9543 | 0.8440 | | 1.4507 | 238.86 | 4300 | 0.9553 | 0.8491 | | 1.4997 | 244.43 | 4400 | 0.9728 | 0.8491 | | 1.4371 | 249.97 | 4500 | 0.9543 | 0.8670 | | 1.4825 | 255.54 | 4600 | 0.9636 | 0.8619 | | 1.4187 | 261.11 | 4700 | 0.9609 | 0.8440 | | 1.4363 | 266.65 | 4800 | 0.9567 | 0.8593 | | 1.4463 | 272.22 | 4900 | 0.9581 | 0.8542 | | 1.4117 | 277.76 | 5000 | 0.9517 | 0.8542 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-300m-gn-cv8-4
7c40351e4ce4dfdd360a7c062c359e409338133f
2022-03-24T11:54:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gn", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-300m-gn-cv8-4
2
null
transformers
24,394
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-gn-cv8-4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 68.45 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gn-cv8-4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5805 - Wer: 0.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 13000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 9.2216 | 16.65 | 300 | 3.2771 | 1.0 | | 3.1804 | 33.32 | 600 | 2.2869 | 1.0 | | 1.5856 | 49.97 | 900 | 0.9573 | 0.8772 | | 1.0299 | 66.65 | 1200 | 0.9044 | 0.8082 | | 0.8916 | 83.32 | 1500 | 0.9478 | 0.8056 | | 0.8451 | 99.97 | 1800 | 0.8814 | 0.8107 | | 0.7649 | 116.65 | 2100 | 0.9897 | 0.7826 | | 0.7185 | 133.32 | 2400 | 0.9988 | 0.7621 | | 0.6595 | 149.97 | 2700 | 1.0607 | 0.7749 | | 0.6211 | 166.65 | 3000 | 1.1826 | 0.7877 | | 0.59 | 183.32 | 3300 | 1.1060 | 0.7826 | | 0.5383 | 199.97 | 3600 | 1.1826 | 0.7852 | | 0.5205 | 216.65 | 3900 | 1.2148 | 0.8261 | | 0.4786 | 233.32 | 4200 | 1.2710 | 0.7928 | | 0.4482 | 249.97 | 4500 | 1.1943 | 0.7980 | | 0.4149 | 266.65 | 4800 | 1.2449 | 0.8031 | | 0.3904 | 283.32 | 5100 | 1.3100 | 0.7928 | | 0.3619 | 299.97 | 5400 | 1.3125 | 0.7596 | | 0.3496 | 316.65 | 5700 | 1.3699 | 0.7877 | | 0.3277 | 333.32 | 6000 | 1.4344 | 0.8031 | | 0.2958 | 349.97 | 6300 | 1.4093 | 0.7980 | | 0.2883 | 366.65 | 6600 | 1.3296 | 0.7570 | | 0.2598 | 383.32 | 6900 | 1.4026 | 0.7980 | | 0.2564 | 399.97 | 7200 | 1.4847 | 0.8031 | | 0.2408 | 416.65 | 7500 | 1.4896 | 0.8107 | | 0.2266 | 433.32 | 7800 | 1.4232 | 0.7698 | | 0.224 | 449.97 | 8100 | 1.5560 | 0.7903 | | 0.2038 | 466.65 | 8400 | 1.5355 | 0.7724 | | 0.1948 | 483.32 | 8700 | 1.4624 | 0.7621 | | 0.1995 | 499.97 | 9000 | 1.5808 | 0.7724 | | 0.1864 | 516.65 | 9300 | 1.5653 | 0.7698 | | 0.18 | 533.32 | 9600 | 1.4868 | 0.7494 | | 0.1689 | 549.97 | 9900 | 1.5379 | 0.7749 | | 0.1624 | 566.65 | 10200 | 1.5936 | 0.7749 | | 0.1537 | 583.32 | 10500 | 1.6436 | 0.7801 | | 0.1455 | 599.97 | 10800 | 1.6401 | 0.7673 | | 0.1437 | 616.65 | 11100 | 1.6069 | 0.7673 | | 0.1452 | 633.32 | 11400 | 1.6041 | 0.7519 | | 0.139 | 649.97 | 11700 | 1.5758 | 0.7545 | | 0.1299 | 666.65 | 12000 | 1.5559 | 0.7545 | | 0.127 | 683.32 | 12300 | 1.5776 | 0.7596 | | 0.1264 | 699.97 | 12600 | 1.5790 | 0.7519 | | 0.1209 | 716.65 | 12900 | 1.5805 | 0.7545 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-pt-cv7-from-bp400h
93243ff5c3db076766c6b2ef28130ff81263b9f4
2022-03-23T18:34:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-pt-cv7-from-bp400h
2
null
transformers
24,395
--- language: - pt tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 license: apache-2.0 model-index: - name: wav2vec2-xls-r-pt-cv7-from-bp400h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 12.13 - name: Test CER type: cer value: 3.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 28.23 - name: Test CER type: cer value: 12.58 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 26.58 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 26.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-pt-cv7-from-bp400h This model is a fine-tuned version of [lgris/bp_400h_xlsr2_300M](https://huggingface.co/lgris/bp_400h_xlsr2_300M) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1535 - Wer: 0.1254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4991 | 0.13 | 100 | 0.1774 | 0.1464 | | 0.4655 | 0.26 | 200 | 0.1884 | 0.1568 | | 0.4689 | 0.39 | 300 | 0.2282 | 0.1672 | | 0.4662 | 0.52 | 400 | 0.1997 | 0.1584 | | 0.4592 | 0.65 | 500 | 0.1989 | 0.1663 | | 0.4533 | 0.78 | 600 | 0.2004 | 0.1698 | | 0.4391 | 0.91 | 700 | 0.1888 | 0.1642 | | 0.4655 | 1.04 | 800 | 0.1921 | 0.1624 | | 0.4138 | 1.17 | 900 | 0.1950 | 0.1602 | | 0.374 | 1.3 | 1000 | 0.2077 | 0.1658 | | 0.4064 | 1.43 | 1100 | 0.1945 | 0.1596 | | 0.3922 | 1.56 | 1200 | 0.2069 | 0.1665 | | 0.4226 | 1.69 | 1300 | 0.1962 | 0.1573 | | 0.3974 | 1.82 | 1400 | 0.1919 | 0.1553 | | 0.3631 | 1.95 | 1500 | 0.1854 | 0.1573 | | 0.3797 | 2.08 | 1600 | 0.1902 | 0.1550 | | 0.3287 | 2.21 | 1700 | 0.1926 | 0.1598 | | 0.3568 | 2.34 | 1800 | 0.1888 | 0.1534 | | 0.3415 | 2.47 | 1900 | 0.1834 | 0.1502 | | 0.3545 | 2.6 | 2000 | 0.1906 | 0.1560 | | 0.3344 | 2.73 | 2100 | 0.1804 | 0.1524 | | 0.3308 | 2.86 | 2200 | 0.1741 | 0.1485 | | 0.344 | 2.99 | 2300 | 0.1787 | 0.1455 | | 0.309 | 3.12 | 2400 | 0.1773 | 0.1448 | | 0.312 | 3.25 | 2500 | 0.1738 | 0.1440 | | 0.3066 | 3.38 | 2600 | 0.1727 | 0.1417 | | 0.2999 | 3.51 | 2700 | 0.1692 | 0.1436 | | 0.2985 | 3.64 | 2800 | 0.1732 | 0.1430 | | 0.3058 | 3.77 | 2900 | 0.1754 | 0.1402 | | 0.2943 | 3.9 | 3000 | 0.1691 | 0.1379 | | 0.2813 | 4.03 | 3100 | 0.1754 | 0.1376 | | 0.2733 | 4.16 | 3200 | 0.1639 | 0.1363 | | 0.2592 | 4.29 | 3300 | 0.1675 | 0.1349 | | 0.2697 | 4.42 | 3400 | 0.1618 | 0.1360 | | 0.2538 | 4.55 | 3500 | 0.1658 | 0.1348 | | 0.2746 | 4.67 | 3600 | 0.1674 | 0.1325 | | 0.2655 | 4.8 | 3700 | 0.1655 | 0.1319 | | 0.2745 | 4.93 | 3800 | 0.1665 | 0.1316 | | 0.2617 | 5.06 | 3900 | 0.1600 | 0.1311 | | 0.2674 | 5.19 | 4000 | 0.1623 | 0.1311 | | 0.237 | 5.32 | 4100 | 0.1591 | 0.1315 | | 0.2669 | 5.45 | 4200 | 0.1584 | 0.1295 | | 0.2476 | 5.58 | 4300 | 0.1572 | 0.1285 | | 0.2445 | 5.71 | 4400 | 0.1580 | 0.1271 | | 0.2207 | 5.84 | 4500 | 0.1567 | 0.1269 | | 0.2289 | 5.97 | 4600 | 0.1536 | 0.1260 | | 0.2438 | 6.1 | 4700 | 0.1530 | 0.1260 | | 0.227 | 6.23 | 4800 | 0.1544 | 0.1249 | | 0.2256 | 6.36 | 4900 | 0.1543 | 0.1254 | | 0.2184 | 6.49 | 5000 | 0.1535 | 0.1254 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
liaad/srl-pt_xlmr-large
233f898a561492b01c4f2543b40a383bb6c2dfcd
2021-09-22T08:56:37.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "transformers", "xlm-roberta-large", "semantic role labeling", "finetuned", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/srl-pt_xlmr-large
2
1
transformers
24,396
--- language: - multilingual - pt tags: - xlm-roberta-large - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # XLM-R large fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_xlmr-large") model = AutoModel.from_pretrained("liaad/srl-pt_xlmr-large") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liandarizkia/bert-id-ner
bb8bfe290e8569a87499487bc1738a872c6a4e5f
2021-08-03T12:50:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
liandarizkia
null
liandarizkia/bert-id-ner
2
null
transformers
24,397
Ner dataset sourced from https://huggingface.co/datasets/id_nergrit_corpus This model is built by fine-tuning BERT Transformers with an accuracy gain of 92.61% with an F1-Score value of 74.80%
liangtaiwan/t5-v1_1-lm100k-xl
1fda3ec66968fa3efd008f3a7c3f80df901683a3
2021-10-25T13:33:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
liangtaiwan
null
liangtaiwan/t5-v1_1-lm100k-xl
2
null
transformers
24,398
Entry not found
liangtaiwan/t5-v1_1-lm100k-xxl
912665b3687460549a88dfa275d29c0c7f7bf964
2021-10-25T17:26:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
liangtaiwan
null
liangtaiwan/t5-v1_1-lm100k-xxl
2
null
transformers
24,399
Entry not found