modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Go2Heart/BERT_Mod_3
c4c69c42a030315a7a18a5a63313d3417a8898d5
2022-07-29T09:11:43.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Go2Heart
null
Go2Heart/BERT_Mod_3
6
null
transformers
15,900
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: BERT_Mod_3 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8198675496688742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Mod_3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6760 - Accuracy: 0.8199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5167 | 1.0 | 24544 | 0.4953 | 0.8077 | | 0.414 | 2.0 | 49088 | 0.4802 | 0.8148 | | 0.2933 | 3.0 | 73632 | 0.5783 | 0.8186 | | 0.2236 | 4.0 | 98176 | 0.6760 | 0.8199 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
mrgiraffe/vit-base-beans-demo-v5
19bb62ec74456f2de0a5b61f8c04e5c463a9c66f
2022-07-29T21:56:18.000Z
[ "pytorch", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
mrgiraffe
null
mrgiraffe/vit-base-beans-demo-v5
6
null
transformers
15,901
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans-demo-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1661 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2739 | 0.33 | 100 | 0.2454 | 0.9207 | | 0.2006 | 0.66 | 200 | 0.2202 | 0.9280 | | 0.2224 | 0.98 | 300 | 0.2020 | 0.9373 | | 0.2062 | 1.31 | 400 | 0.1861 | 0.9428 | | 0.0706 | 1.64 | 500 | 0.1796 | 0.9483 | | 0.0591 | 1.97 | 600 | 0.1950 | 0.9410 | | 0.0765 | 2.3 | 700 | 0.2274 | 0.9428 | | 0.078 | 2.62 | 800 | 0.1661 | 0.9576 | | 0.0705 | 2.95 | 900 | 0.1665 | 0.9502 | | 0.0064 | 3.28 | 1000 | 0.1821 | 0.9502 | | 0.0064 | 3.61 | 1100 | 0.1770 | 0.9576 | | 0.0061 | 3.93 | 1200 | 0.1804 | 0.9520 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
09panesara/distilbert-base-uncased-finetuned-cola
f89a85cb8703676115912fffa55842f23eb981ab
2021-12-21T14:03:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
09panesara
null
09panesara/distilbert-base-uncased-finetuned-cola
5
null
transformers
15,902
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5406394412669151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7580 - Matthews Correlation: 0.5406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5307 | 1.0 | 535 | 0.5094 | 0.4152 | | 0.3545 | 2.0 | 1070 | 0.5230 | 0.4940 | | 0.2371 | 3.0 | 1605 | 0.6412 | 0.5087 | | 0.1777 | 4.0 | 2140 | 0.7580 | 0.5406 | | 0.1288 | 5.0 | 2675 | 0.8494 | 0.5396 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
18811449050/bert_finetuning_test
a6ebb204ba37e1c95e3922f6055be813217329f4
2021-05-18T17:05:20.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
18811449050
null
18811449050/bert_finetuning_test
5
null
transformers
15,903
Entry not found
2umm3r/distilbert-base-uncased-finetuned-cola
b075a1f7267831d787bf993c99fcf854e7012e96
2021-10-23T11:46:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
2umm3r
null
2umm3r/distilbert-base-uncased-finetuned-cola
5
null
transformers
15,904
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5155709926752544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 - Matthews Correlation: 0.5156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5291 | 1.0 | 535 | 0.5027 | 0.4092 | | 0.3492 | 2.0 | 1070 | 0.5136 | 0.4939 | | 0.2416 | 3.0 | 1605 | 0.6390 | 0.5056 | | 0.1794 | 4.0 | 2140 | 0.7816 | 0.5156 | | 0.1302 | 5.0 | 2675 | 0.8836 | 0.5156 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
ASCCCCCCCC/PENGMENGJIE-finetuned-emotion
db44886a0596deadd82e6f8f82c87d2123da59fc
2022-02-08T03:32:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/PENGMENGJIE-finetuned-emotion
5
null
transformers
15,905
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: PENGMENGJIE-finetuned-emotion results: - task: name: Text Classification type: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PENGMENGJIE-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
ASCCCCCCCC/distilbert-base-uncased-finetuned-clinc
2689640b989d6fb96b5e64afaad6fc428c76cfc1
2022-02-14T08:54:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/distilbert-base-uncased-finetuned-clinc
5
null
transformers
15,906
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
Ajay191191/autonlp-Test-530014983
9b8f7775d2be4452bb72308398b2a0794a7a185b
2022-01-25T22:28:49.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Ajay191191/autonlp-data-Test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Ajay191191
null
Ajay191191/autonlp-Test-530014983
5
null
transformers
15,907
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Ajay191191/autonlp-data-Test co2_eq_emissions: 55.10196329868386 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 530014983 - CO2 Emissions (in grams): 55.10196329868386 ## Validation Metrics - Loss: 0.23171618580818176 - Accuracy: 0.9298837645294338 - Precision: 0.9314414866901055 - Recall: 0.9279459594696022 - AUC: 0.979447403984557 - F1: 0.9296904373981703 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Ajay191191/autonlp-Test-530014983 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ajay191191/autonlp-Test-530014983", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ajay191191/autonlp-Test-530014983", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Alireza1044/albert-base-v2-rte
42fcb4ff92c3189e5b0193aad2ccd3b62c9e7155
2021-07-26T12:02:09.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-rte
5
null
transformers
15,908
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metric: name: Accuracy type: accuracy value: 0.6859205776173285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7994 - Accuracy: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Anamika/autonlp-Feedback1-479512837
a5bb03ff52dd6e41f84962bfc14b4e1424e7bc40
2022-01-06T10:05:22.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:Anamika/autonlp-data-Feedback1", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Anamika
null
Anamika/autonlp-Feedback1-479512837
5
null
transformers
15,909
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Anamika/autonlp-data-Feedback1 co2_eq_emissions: 123.88023112815048 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 479512837 - CO2 Emissions (in grams): 123.88023112815048 ## Validation Metrics - Loss: 0.6220805048942566 - Accuracy: 0.7961119332705503 - Macro F1: 0.7616345204219084 - Micro F1: 0.7961119332705503 - Weighted F1: 0.795387503907883 - Macro Precision: 0.782839455262034 - Micro Precision: 0.7961119332705503 - Weighted Precision: 0.7992606754484262 - Macro Recall: 0.7451485972167191 - Micro Recall: 0.7961119332705503 - Weighted Recall: 0.7961119332705503 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-Feedback1-479512837 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana
a9850922cbc708d3b9047843e5803ae728d8c81c
2022-03-24T11:56:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AndrewMcDowell
null
AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana
5
null
transformers
15,910
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - ja - hf-asr-leaderboard datasets: - common_voice model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.33 - name: Test CER type: cer value: 22.27 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 100.0 - name: Test CER type: cer value: 30.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test CER type: cer value: 29.63 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 32.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.5500 - Wer: 1.0132 - Cer: 0.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.7019 | 12.65 | 1000 | 1.0510 | 0.9832 | 0.2589 | | 1.6385 | 25.31 | 2000 | 0.6670 | 0.9915 | 0.1851 | | 1.4344 | 37.97 | 3000 | 0.6183 | 1.0213 | 0.1797 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Andrija/SRoBERTa-NLP
3d92ea3db1161f2cd8d590a2cefd9290a5f72d1c
2021-07-08T13:25:21.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/SRoBERTa-NLP
5
null
transformers
15,911
Entry not found
AnonymousSub/EManuals_RoBERTa_wikiqa
6757d2592fec9144739e5455a80151594d885020
2022-01-22T23:10:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/EManuals_RoBERTa_wikiqa
5
null
transformers
15,912
Entry not found
AnonymousSub/consert-emanuals-s10-SR
467e11313fcac69136a6fc5fc3172cac64c575bf
2021-10-17T16:35:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/consert-emanuals-s10-SR
5
null
transformers
15,913
Entry not found
AnonymousSub/roberta-base_wikiqa
102424b0197c7fab300e126221a347012ce66b9c
2022-01-22T22:11:03.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/roberta-base_wikiqa
5
null
transformers
15,914
Entry not found
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_10
dad570c5d76097cb9f94a9784eb7c45e4b37c101
2022-01-04T08:15:56.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_10
5
null
transformers
15,915
Entry not found
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa
b2f3f0a8c725329a05882384024fad6dac2936b2
2022-01-22T22:39:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,916
Entry not found
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_wikiqa
5e78c9a769288e97f303925b889707f639453276
2022-01-23T00:44:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,917
Entry not found
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_wikiqa
954ad78515efa604be06e32217d7937dee394688
2022-01-22T21:40:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_wikiqa
5
null
transformers
15,918
Entry not found
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_wikiqa
968e6e34ce385a290a40876a0e7b7f777d9e8db7
2022-01-23T03:36:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,919
Entry not found
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_squad2.0
7cf90cea424b60f9875d2b40ec07bb4b6f01c99a
2022-01-17T22:27:43.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_squad2.0
5
null
transformers
15,920
Entry not found
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa
33043e5f480079481acdea4c8fe5b60f21cd2758
2022-01-23T02:37:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,921
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_wikiqa
f91f1498619d1f47311e32b7122ff0607762da16
2022-01-23T05:33:52.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,922
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_wikiqa
9ef7aa52db6ed5b97c9d8b886976ebfa6cf4e213
2022-01-23T01:38:40.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_wikiqa
5
null
transformers
15,923
Entry not found
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
fcd63acfdc44e8170d3dc15fdd79e6020a6a6bb6
2022-01-23T09:47:20.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
5
null
transformers
15,924
Entry not found
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_wikiqa
053c6695d0c5df6aa497cb2cefb1d09de7afaf6e
2022-01-23T08:16:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,925
Entry not found
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
5ef0073ffe2b347a87b6dae3d0d14c6c44696e5d
2022-01-23T09:16:59.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
5
null
transformers
15,926
Entry not found
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1_wikiqa
90ce307bf3fcbc2081225b3c2b3d09edbf191d8c
2022-01-23T08:48:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,927
Entry not found
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
bd0c5e28ffada3f5d0ffa1ee6bb8228eeee6d9aa
2022-01-23T09:48:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
5
null
transformers
15,928
Entry not found
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
4656fca846385a48f004130029e0910908f19ecc
2022-01-23T08:18:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
5
null
transformers
15,929
Entry not found
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
d671cb7770fbc0e4039eafcc16d2c4f370e06850
2022-01-23T09:18:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
5
null
transformers
15,930
Entry not found
AnonymousSub/unsup-consert-base_copy_wikiqa
102c9875dbd2f52366f337de1cfcf7e89e0b37c8
2022-01-23T05:49:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/unsup-consert-base_copy_wikiqa
5
null
transformers
15,931
Entry not found
Apisate/Discord-Ai-Bot
6693ee32482f85e012585b84a9b1fbb139ddddbf
2021-12-05T14:19:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Apisate
null
Apisate/Discord-Ai-Bot
5
null
transformers
15,932
Entry not found
AriakimTaiyo/DialoGPT-revised-Kumiko
3f39f76e132e35de76fa8ae1623ee65a1c0f9030
2022-02-03T17:14:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AriakimTaiyo
null
AriakimTaiyo/DialoGPT-revised-Kumiko
5
null
transformers
15,933
--- tags: - conversational --- # Revised Kumiko DialoGPT Model
Ateeb/EmotionDetector
bd319170fe51ec55c5e8f693d08c5f80e0e91481
2021-03-22T18:03:50.000Z
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
false
Ateeb
null
Ateeb/EmotionDetector
5
null
transformers
15,934
Entry not found
Azaghast/GPT2-SCP-Descriptions
7625054cf949be5b486ea9b809bce23fa6cb32ed
2021-08-25T07:59:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Azaghast
null
Azaghast/GPT2-SCP-Descriptions
5
null
transformers
15,935
Entry not found
Azuris/DialoGPT-medium-senorita
3b5bd2937433887a4a5374449c9a84ee7cf1ab03
2021-12-15T10:31:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Azuris
null
Azuris/DialoGPT-medium-senorita
5
null
transformers
15,936
--- tags: - conversational ---
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
cefb076a8a9f39a03b868d994c1554b53577ee83
2021-09-24T13:53:00.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common-voice id 6.1", "transformers", "audio", "speech", "bahasa-indonesia", "license:apache-2.0" ]
automatic-speech-recognition
false
Bagus
null
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
5
1
transformers
15,937
--- language: el datasets: - common-voice id 6.1 tags: - audio - automatic-speech-recognition - speech - bahasa-indonesia license: apache-2.0 --- Dataset used for training: - Name: Common Voice - Language: Indonesian [id] - Version: 6.1 Test WER: 19.3 % Contact: [email protected]
BigSalmon/BlankSlots
088db1be7ae6cf852efa754db1a3349dd04392f7
2021-06-23T02:15:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BigSalmon
null
BigSalmon/BlankSlots
5
null
transformers
15,938
Entry not found
BumBelDumBel/TRUMP
1d85e5d747e6a8ba7865cee35df04361a58e9f68
2021-07-16T19:14:17.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
false
BumBelDumBel
null
BumBelDumBel/TRUMP
5
null
transformers
15,939
--- license: mit tags: - generated_from_trainer model_index: - name: TRUMP results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TRUMP This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
CLTL/icf-levels-adm
1b64331a72511271b7316b65e593cdfebd178fad
2021-11-08T10:10:01.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-adm
5
1
transformers
15,940
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Respiration Functioning Levels (ICF b440) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing respiration functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about respiration functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with respiration, and/or respiratory rate is normal (EWS: 9-20). 3 | Shortness of breath in exercise (saturation &ge;90), and/or respiratory rate is slightly increased (EWS: 21-30). 2 | Shortness of breath in rest (saturation &ge;90), and/or respiratory rate is fairly increased (EWS: 31-35). 1 | Needs oxygen at rest or during exercise (saturation &lt;90), and/or respiratory rate &gt;35. 0 | Mechanical ventilation is needed. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-adm', use_cuda=False, ) example = 'Nu sinds 5-6 dagen progressieve benauwdheidsklachten (bij korte stukken lopen al kortademig), terwijl dit eerder niet zo was.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.26 ``` The raw outputs look like this: ``` [[2.26074648]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.48 | 0.37 mean squared error | 0.55 | 0.34 root mean squared error | 0.74 | 0.58 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-ber
f958f5bb51191d2c5a79e494156e1f0e5e535700
2021-11-08T10:36:00.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-ber
5
1
transformers
15,941
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Work and Employment Functioning Levels (ICF d840-d859) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing work and employment functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about work and employment functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Can work/study fully (like when healthy). 3 | Can work/study almost fully. 2 | Can work/study only for about 50\%, or can only work at home and cannot go to school / office. 1 | Work/study is severely limited. 0 | Cannot work/study. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-ber', use_cuda=False, ) example = 'Fysiek zwaar werk is niet mogelijk, maar administrative taken zou zij wel aan moeten kunnen.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.41 ``` The raw outputs look like this: ``` [[2.40793037]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 1.56 | 1.49 mean squared error | 3.06 | 2.85 root mean squared error | 1.75 | 1.69 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-enr
790b6fcbaccf7d811f8638dc8ec10754d2aa296f
2021-11-08T10:45:45.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-enr
5
1
transformers
15,942
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Energy Levels (ICF b1300) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing energy level. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about energy level in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with the energy level. 3 | Slight fatigue that causes mild limitations. 2 | Moderate fatigue; the patient gets easily tired from light activities or needs a long time to recover after an activity. 1 | Severe fatigue; the patient is capable of very little. 0 | Very severe fatigue; unable to do anything and mostly lays in bed. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-enr', use_cuda=False, ) example = 'Al jaren extreme vermoeidheid overdag, valt overdag in slaap tijdens school- en werkactiviteiten en soms zelfs tijdens een gesprek.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.98 ``` The raw outputs look like this: ``` [[1.97520316]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.48 | 0.43 mean squared error | 0.49 | 0.42 root mean squared error | 0.70 | 0.65 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-etn
6127b30f6c229e77ae7fcf9c9ff068eece494534
2021-11-08T10:56:00.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-etn
5
1
transformers
15,943
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Eating Functioning Levels (ICF d550) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing eating functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about eating functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Can eat independently (in culturally acceptable ways), good intake, eats according to her/his needs. 3 | Can eat independently but with adjustments, and/or somewhat reduced intake (&gt;75% of her/his needs), and/or good intake can be achieved with proper advice. 2 | Reduced intake, and/or stimulus / feeding modules / nutrition drinks are needed (but not tube feeding / TPN). 1 | Intake is severely reduced (&lt;50% of her/his needs), and/or tube feeding / TPN is needed. 0 | Cannot eat, and/or fully dependent on tube feeding / TPN. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-etn', use_cuda=False, ) example = 'Sondevoeding is geïndiceerd' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 0.89 ``` The raw outputs look like this: ``` [[0.8872931]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.59 | 0.50 mean squared error | 0.65 | 0.47 root mean squared error | 0.81 | 0.68 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-ins
c56aea211596c66c0686934fff7cf21a9cbfd36e
2021-11-08T12:13:06.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-ins
5
1
transformers
15,944
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Exercise Tolerance Functioning Levels (ICF b455) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing exercise tolerance functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about exercise tolerance functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 5 | MET&gt;6. Can tolerate jogging, hard exercises, running, climbing stairs fast, sports. 4 | 4&le;MET&le;6. Can tolerate walking / cycling at a brisk pace, considerable effort (e.g. cycling from 16 km/h), heavy housework. 3 | 3&le;MET&lt;4. Can tolerate walking / cycling at a normal pace, gardening, exercises without equipment. 2 | 2&le;MET&lt;3. Can tolerate walking at a slow to moderate pace, grocery shopping, light housework. 1 | 1&le;MET&lt;2. Can tolerate sitting activities. 0 | 0&le;MET&lt;1. Can physically tolerate only recumbent activities. The predictions generated by the model might sometimes be outside of the scale (e.g. 5.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-ins', use_cuda=False, ) example = 'kan nog goed traplopen, maar flink ingeleverd aan conditie na Corona' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 3.13 ``` The raw outputs look like this: ``` [[3.1300993]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.69 | 0.61 mean squared error | 0.80 | 0.64 root mean squared error | 0.89 | 0.80 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
Canadiancaleb/DialoGPT-small-walter
e337c02b9b652ebeeff01a548bb8691b65fd9b6e
2021-09-19T01:29:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Canadiancaleb
null
Canadiancaleb/DialoGPT-small-walter
5
null
transformers
15,945
--- tags: - conversational --- # Walter (Breaking Bad) DialoGPT Model
Capreolus/birch-bert-large-mb
7dc34e4ae449de499ef1f361a20189d6b29e6073
2021-05-18T17:40:31.000Z
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
false
Capreolus
null
Capreolus/birch-bert-large-mb
5
null
transformers
15,946
Entry not found
CenIA/albert-base-spanish-finetuned-xnli
1b6647ea51d36c3863f0f74d655c56c7fcd9130a
2021-12-08T22:09:10.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-base-spanish-finetuned-xnli
5
null
transformers
15,947
Entry not found
CenIA/albert-large-spanish-finetuned-mldoc
c13e1d3fe54ffffa948389662d71db356f853bd1
2022-01-11T04:41:21.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-large-spanish-finetuned-mldoc
5
null
transformers
15,948
Entry not found
CenIA/albert-tiny-spanish-finetuned-mldoc
a9187b8ed6682aebe4101e31f673c21ccbb4c520
2022-01-10T09:54:15.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-tiny-spanish-finetuned-mldoc
5
null
transformers
15,949
Entry not found
CenIA/albert-tiny-spanish-finetuned-xnli
b717b78426ea2ad45d2c9f36e08aa7244a293ada
2021-12-08T21:37:29.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-tiny-spanish-finetuned-xnli
5
null
transformers
15,950
Entry not found
CenIA/albert-xxlarge-spanish-finetuned-xnli
fcaaddc3832ee0800a72a51e8de78b4e1c1a37b3
2021-12-28T17:37:30.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xxlarge-spanish-finetuned-xnli
5
null
transformers
15,951
Entry not found
Chun/DialoGPT-small-dailydialog
14ddd6509c050d7aac10b68afcbe07ca46f1efae
2021-09-01T16:00:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Chun
null
Chun/DialoGPT-small-dailydialog
5
null
transformers
15,952
Entry not found
Chun/w-en2zh-mtm
78fca6f111b49fd8b2731912792feec54f23fac6
2021-08-24T17:32:39.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Chun
null
Chun/w-en2zh-mtm
5
null
transformers
15,953
Entry not found
CleveGreen/JobClassifier_v2_gpt
ce8f12eb4f49b49fe22e013b68d1ec773b9d7313
2022-02-16T19:25:04.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/JobClassifier_v2_gpt
5
null
transformers
15,954
Entry not found
CoffeeAddict93/gpt2-modest-proposal
ce93d49f030597ea3b83846818f9e6fcd9150a23
2021-12-02T03:53:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
CoffeeAddict93
null
CoffeeAddict93/gpt2-modest-proposal
5
null
transformers
15,955
Entry not found
Dandara/bertimbau-socioambiental
c8a338465f890a05bb424eff909680729e061b80
2021-09-22T12:27:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Dandara
null
Dandara/bertimbau-socioambiental
5
null
transformers
15,956
Entry not found
DataikuNLP/paraphrase-MiniLM-L6-v2
134896fc4f79aea0609e9e01433fe91b6093cb38
2021-09-02T08:05:59.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
DataikuNLP
null
DataikuNLP/paraphrase-MiniLM-L6-v2
5
null
sentence-transformers
15,957
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # DataikuNLP/paraphrase-MiniLM-L6-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2/) from sentence-transformers at the specific commit `c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Davlan/mbart50-large-eng-yor-mt
6711a1bfb94345d2148d18a64ddc7c93bf04cc68
2021-09-26T11:57:50.000Z
[ "pytorch", "mbart", "text2text-generation", "yo", "en", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/mbart50-large-eng-yor-mt
5
null
transformers
15,958
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mbart50-large-eng-yor-mt ## Model description **mbart50-large-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned facebook/mbart-large-50 model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mbart-large-50* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). The model was trained using Swahili(sw_KE) as the language since the pre-trained model does not initially support Yorùbá. Thus, you need to use the sw_KE for language code when evaluating the model. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning mbarr50-large achieves **13.39 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/mt5-small-en-pcm
0c7e84bb44636834c94474e446a17fc1b39a9192
2022-01-22T19:48:28.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/mt5-small-en-pcm
5
null
transformers
15,959
Entry not found
Davlan/mt5_base_eng_yor_mt
219e2519924e9fa58ad654940ca4de820a6ef48d
2021-05-21T10:14:10.000Z
[ "pytorch", "mt5", "text2text-generation", "yo", "en", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/mt5_base_eng_yor_mt
5
null
transformers
15,960
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_eng_yor_mt ## Model description **mT5_base_yor_eng_mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned mT5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for MT. ```python from transformers import MT5ForConditionalGeneration, T5Tokenizer model = MT5ForConditionalGeneration.from_pretrained("Davlan/mt5_base_eng_yor_mt") tokenizer = T5Tokenizer.from_pretrained("google/mt5-base") input_string = "Where are you?" inputs = tokenizer.encode(input_string, return_tensors="pt") generated_tokens = model.generate(inputs) results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 9.82 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By David Adelani ``` ```
DeadBeast/korscm-mBERT
8e55fc3bca8bd3371b9efde468b8ef3f5c3d5f6d
2021-08-21T17:40:01.000Z
[ "pytorch", "bert", "text-classification", "korean", "dataset:Korean-Sarcasm", "transformers", "license:apache-2.0" ]
text-classification
false
DeadBeast
null
DeadBeast/korscm-mBERT
5
1
transformers
15,961
--- language: korean license: apache-2.0 datasets: - Korean-Sarcasm --- # **Korean-mBERT** This model is a fine-tune checkpoint of mBERT-base-cased over **Hugging Face Kore_Scm** dataset for Text classification. ### **How to use?** **Task**: binary-classification - LABEL_1: Sarcasm (*Sarcasm means tweets contains sarcasm*) - LABEL_0: Not Sarcasm (*Not Sarcasm means tweets do not contain sarcasm*) Click on **Use in Transformers**!
Declan/CNN_model_v3
b208012dc71b525f7b902ae0954999734b999be1
2021-12-15T11:50:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v3
5
null
transformers
15,962
Entry not found
Declan/CNN_model_v8
2a7d2b67ce226b8476f6be60909a9d15b53356cc
2021-12-19T21:59:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v8
5
null
transformers
15,963
Entry not found
Declan/ChicagoTribune_model_v8
c95c3191ab360a47ddfd77cacddc0b18bda3a353
2021-12-19T21:31:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/ChicagoTribune_model_v8
5
null
transformers
15,964
Entry not found
Declan/Reuters_model_v8
57aaa8926884bc10da1d414bf8f47ed48a8d7c6f
2021-12-20T01:41:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Reuters_model_v8
5
null
transformers
15,965
Entry not found
DeskDown/MarianMixFT_en-ja
9c7057ee060e7178d49041522a17542d434f1bfa
2022-01-14T20:14:52.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-ja
5
null
transformers
15,966
Entry not found
Doogie/wav2vec2-korea-doogie-test-01
6fe25ad6906a1ec0c939ca2c17fabe53f5eb00e4
2021-12-09T03:58:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Doogie
null
Doogie/wav2vec2-korea-doogie-test-01
5
null
transformers
15,967
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-korea-doogie-test-01 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-korea-doogie-test-01 This model is a fine-tuned version of [Doogie/wav2vec2-korea-doogie-test-01](https://huggingface.co/Doogie/wav2vec2-korea-doogie-test-01) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4207 - Wer: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1594 | 2.38 | 500 | 1.2825 | 0.6134 | | 0.1272 | 4.76 | 1000 | 1.3252 | 0.6271 | | 0.1291 | 7.14 | 1500 | 1.3236 | 0.6158 | | 0.1192 | 9.52 | 2000 | 1.3589 | 0.6384 | | 0.0981 | 11.9 | 2500 | 1.3778 | 0.6425 | | 0.0946 | 14.29 | 3000 | 1.4500 | 0.6336 | | 0.0854 | 16.67 | 3500 | 1.4169 | 0.6164 | | 0.0766 | 19.05 | 4000 | 1.3665 | 0.6217 | | 0.0676 | 21.43 | 4500 | 1.4593 | 0.6348 | | 0.0631 | 23.81 | 5000 | 1.5267 | 0.6188 | | 0.0627 | 26.19 | 5500 | 1.4988 | 0.6306 | | 0.059 | 28.57 | 6000 | 1.4986 | 0.6265 | | 0.0502 | 30.95 | 6500 | 1.4268 | 0.6158 | | 0.0496 | 33.33 | 7000 | 1.3859 | 0.5998 | | 0.0418 | 35.71 | 7500 | 1.4154 | 0.6057 | | 0.0376 | 38.1 | 8000 | 1.4077 | 0.6116 | | 0.0374 | 40.48 | 8500 | 1.4164 | 0.6087 | | 0.0301 | 42.86 | 9000 | 1.4634 | 0.6152 | | 0.0289 | 45.24 | 9500 | 1.4360 | 0.6045 | | 0.0283 | 47.62 | 10000 | 1.4213 | 0.5998 | | 0.0228 | 50.0 | 10500 | 1.4207 | 0.5938 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
DrishtiSharma/wav2vec2-xls-r-sl-a1
27990ce12a7f41441665964eded0f1c0ad545383
2022-03-23T18:35:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-sl-a1
5
null
transformers
15,968
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-sl-a1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.20626555409164105 - name: Test CER type: cer value: 0.051648321634392154 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 0.5406156320830592 - name: Test CER type: cer value: 0.22249723590310583 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 55.24 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Duc/distilbert-base-uncased-finetuned-ner
22909a95695c1fd6eeb8f67c431ec29d0ef520c8
2021-11-08T01:35:47.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Duc
null
Duc/distilbert-base-uncased-finetuned-ner
5
null
transformers
15,969
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9261715296198055 - name: Recall type: recall value: 0.9374650408323079 - name: F1 type: f1 value: 0.9317840662700839 - name: Accuracy type: accuracy value: 0.9840659602522758 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9262 - Recall: 0.9375 - F1: 0.9318 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2424 | 1.0 | 878 | 0.0684 | 0.9096 | 0.9206 | 0.9150 | 0.9813 | | 0.0524 | 2.0 | 1756 | 0.0607 | 0.9188 | 0.9349 | 0.9268 | 0.9835 | | 0.0304 | 3.0 | 2634 | 0.0604 | 0.9262 | 0.9375 | 0.9318 | 0.9841 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian
9da689cab0d240d78e4fd69a56a2394905aaba15
2022-07-17T17:37:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "Russian-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian
5
2
transformers
15,970
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - Russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 19.46 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
EhsanAghazadeh/bert-based-uncased-sst2-e2
2dd84b894838919c5f824c131261595ed00d6095
2022-01-02T10:20:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e2
5
null
transformers
15,971
Entry not found
EhsanAghazadeh/bert-based-uncased-sst2-e4
621a2703ff2f772f58a5219f8f6e0c77dd6083af
2022-01-02T12:55:19.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e4
5
null
transformers
15,972
Entry not found
EhsanAghazadeh/bert-based-uncased-sst2-e6
44e58a17a99666613371832ba3afe3c1b7599bf4
2022-01-02T15:29:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e6
5
null
transformers
15,973
Entry not found
EhsanAghazadeh/bert-large-uncased-CoLA_A
b17f9b8a586a3d9d5b668503f90516802e94cbcd
2021-05-18T18:26:14.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-large-uncased-CoLA_A
5
null
transformers
15,974
Entry not found
EhsanAghazadeh/bert-large-uncased-CoLA_B
0ef9683a32cbd466accd223e63b541761ca863ac
2021-05-18T18:29:53.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-large-uncased-CoLA_B
5
null
transformers
15,975
Entry not found
EhsanAghazadeh/xlm-roberta-base-lcc-en-2e-5-42
17a377960858c4144a8426e0a027fbf12794c23e
2021-08-21T18:45:30.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/xlm-roberta-base-lcc-en-2e-5-42
5
null
transformers
15,976
Entry not found
EleutherAI/enformer-preview
771e52f17e36e93b4ee0bb0af9b3d574bfa51843
2022-02-23T12:17:24.000Z
[ "pytorch", "enformer", "transformers", "license:apache-2.0" ]
null
false
EleutherAI
null
EleutherAI/enformer-preview
5
2
transformers
15,977
--- license: apache-2.0 inference: false --- # Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 2 and a half days without augmentations and poisson loss. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
Eyvaz/wav2vec2-base-russian-big-kaggle
646686e1b7e9f0f21036d3ef8a6c49388af1432d
2021-12-05T17:15:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Eyvaz
null
Eyvaz/wav2vec2-base-russian-big-kaggle
5
1
transformers
15,978
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-russian-big-kaggle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-russian-big-kaggle This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
Fan-s/reddit-tc-bert
1ac96d442a0162b9574dea6c692be64b460b446b
2022-02-22T05:25:39.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Fan-s
null
Fan-s/reddit-tc-bert
5
null
transformers
15,979
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-base --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-base This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an Reddit-dialogue dataset. This model can be used for Text Classification: Given two sentences, see if they are related. It achieves the following results on the evaluation set: - Loss: 0.2297 - Accuracy: 0.9267 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 320 - eval_batch_size: 80 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0 ## Usage (HuggingFace Transformers) You can use the model like this: ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # label_list label_list = ['matched', 'unmatched'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("Fan-s/reddit-tc-bert", use_fast=True) model = AutoModelForSequenceClassification.from_pretrained("Fan-s/reddit-tc-bert") # Set the input post = "don't make gravy with asbestos." response = "i'd expect someone with a culinary background to know that. since we're talking about school dinner ladies, they need to learn this pronto." # Predict whether the two sentences are matched def predict(post, response, max_seq_length=128): with torch.no_grad(): args = (post, response) input = tokenizer(*args, padding="max_length", max_length=max_seq_length, truncation=True, return_tensors="pt") output = model(**input) logits = output.logits item = torch.argmax(logits, dim=1) predict_label = label_list[item] return predict_label, logits predict_label, logits = predict(post, response) # Matched print("predict_label:", predict_label) ```
GKLMIP/bert-khmer-base-uncased
e2e16a3778123f74e488a37e308d5c7572062be9
2021-07-31T03:07:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-khmer-base-uncased
5
null
transformers
15,980
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
Gabriel/kb-finetune-atkins
092fb0c64fca6656b864c93f0c8dc3c894ce8eb4
2021-08-20T15:05:53.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Gabriel
null
Gabriel/kb-finetune-atkins
5
0
sentence-transformers
15,981
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1526 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Geotrend/bert-base-en-fr-zh-cased
61dac4f00651117d8928993ebd87c892fdce4037
2021-05-18T19:29:01.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-zh-cased
5
null
transformers
15,982
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-ja-cased
0387eb4ee59eb05e1da822f725ecf0780491dcd8
2021-05-18T19:34:23.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-ja-cased
5
null
transformers
15,983
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-ja-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ja-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-pl-cased
8832624e32e51ff17757c4fc1e40ef59d6f9dbf4
2021-05-18T19:41:44.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-pl-cased
5
null
transformers
15,984
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-pl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-pl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-hi-cased
2d57290ecd272cfafde343e524f370bf42975f61
2021-05-18T19:57:34.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "hi", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-hi-cased
5
null
transformers
15,985
--- language: hi datasets: wikipedia license: apache-2.0 --- # bert-base-hi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-hi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-no-cased
a622c2b94bd8d2e079014a5efb52e4603860ec8d
2021-05-18T20:03:52.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "no", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-no-cased
5
null
transformers
15,986
--- language: no datasets: wikipedia license: apache-2.0 --- # bert-base-no-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-no-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-uk-cased
6b92230968e504e931da3d2ee7bfb57b0773264f
2021-05-18T20:13:29.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "uk", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-uk-cased
5
1
transformers
15,987
--- language: uk datasets: wikipedia license: apache-2.0 --- # bert-base-uk-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-uk-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-uk-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-ro-cased
ab2e629f923115854064ead0384f35c3b4468521
2021-07-29T11:21:02.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-ro-cased
5
null
transformers
15,988
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-ro-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ro-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Ghana-NLP/distilabena-base-asante-twi-uncased
c67fa4f62e8484ade005b933b6588b05b4fdf445
2020-10-22T06:19:21.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghana-NLP
null
Ghana-NLP/distilabena-base-asante-twi-uncased
5
null
transformers
15,989
Entry not found
Hank/distilbert-base-uncased-finetuned-ner
a02bcf29183a2d44540ba7448c67fcb1757c4235
2021-08-02T01:04:09.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Hank
null
Hank/distilbert-base-uncased-finetuned-ner
5
null
transformers
15,990
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9839229828268226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9259 - Recall: 0.9369 - F1: 0.9314 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.243 | 1.0 | 878 | 0.0703 | 0.9134 | 0.9181 | 0.9158 | 0.9806 | | 0.0515 | 2.0 | 1756 | 0.0609 | 0.9214 | 0.9343 | 0.9278 | 0.9832 | | 0.0305 | 3.0 | 2634 | 0.0612 | 0.9259 | 0.9369 | 0.9314 | 0.9839 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Harveenchadha/hindi_base_wav2vec2
c372b40c39a67efbe26dcf01859ad9997e6042c7
2022-03-23T18:28:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:Harveenchadha/indic-voice", "transformers", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/hindi_base_wav2vec2
5
null
transformers
15,991
--- license: apache-2.0 language: - hi tags: - automatic-speech-recognition - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: hi metrics: - name: Test WER type: wer value: 22.62 - name: Test CER type: cer value: 7.42 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 19.47 - name: Test CER type: cer value: 8.05 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 20.87 - name: Test CER type: cer value: 9.47 --- # hindi_base_wav2vec2
Harveenchadha/vakyansh-wav2vec2-maithili-maim-50
873b2a797d115520cc2367d740de1c7aecba58bb
2021-12-17T17:49:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-maithili-maim-50
5
null
transformers
15,992
Entry not found
Hax/filipino-text-version1
25064575d84d2e77e729da0a91b574dc36e04f53
2021-07-07T07:31:03.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
Hax
null
Hax/filipino-text-version1
5
null
transformers
15,993
Entry not found
Helsinki-NLP/opus-mt-af-eo
08bdf46889e392c83c202a7215161f11fe6eab33
2021-01-18T07:46:08.000Z
[ "pytorch", "marian", "text2text-generation", "af", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-af-eo
5
null
transformers
15,994
--- language: - af - eo tags: - translation license: apache-2.0 --- ### afr-epo * source group: Afrikaans * target group: Esperanto * OPUS readme: [afr-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-epo/README.md) * model: transformer-align * source language(s): afr * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.afr.epo | 18.3 | 0.411 | ### System Info: - hf_name: afr-epo - source_languages: afr - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['af', 'eo'] - src_constituents: {'afr'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-epo/opus-2020-06-16.test.txt - src_alpha3: afr - tgt_alpha3: epo - short_pair: af-eo - chrF2_score: 0.41100000000000003 - bleu: 18.3 - brevity_penalty: 0.995 - ref_len: 7517.0 - src_name: Afrikaans - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: af - tgt_alpha2: eo - prefer_old: False - long_pair: afr-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-af-sv
0e5d0db55e8abbd9ab57eb5d5113aef4e3dce5cb
2021-09-09T21:26:08.000Z
[ "pytorch", "marian", "text2text-generation", "af", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-af-sv
5
null
transformers
15,995
--- tags: - translation license: apache-2.0 --- ### opus-mt-af-sv * source languages: af * target languages: sv * OPUS readme: [af-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.af.sv | 40.4 | 0.599 |
Helsinki-NLP/opus-mt-ase-fr
92f2a406e52e16af2eb7fb4c6afd0f30de66c252
2021-09-09T21:26:33.000Z
[ "pytorch", "marian", "text2text-generation", "ase", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ase-fr
5
null
transformers
15,996
--- tags: - translation license: apache-2.0 --- ### opus-mt-ase-fr * source languages: ase * target languages: fr * OPUS readme: [ase-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ase-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ase-fr/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-fr/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-fr/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ase.fr | 37.8 | 0.553 |
Helsinki-NLP/opus-mt-az-es
0288d68759d9ff06174d2e74e57638eb6a27d2b9
2021-01-18T07:48:37.000Z
[ "pytorch", "marian", "text2text-generation", "az", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-az-es
5
null
transformers
15,997
--- language: - az - es tags: - translation license: apache-2.0 --- ### aze-spa * source group: Azerbaijani * target group: Spanish * OPUS readme: [aze-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aze-spa/README.md) * model: transformer-align * source language(s): aze_Latn * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-spa/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-spa/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aze-spa/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.aze.spa | 11.8 | 0.346 | ### System Info: - hf_name: aze-spa - source_languages: aze - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aze-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['az', 'es'] - src_constituents: {'aze_Latn'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/aze-spa/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/aze-spa/opus-2020-06-16.test.txt - src_alpha3: aze - tgt_alpha3: spa - short_pair: az-es - chrF2_score: 0.34600000000000003 - bleu: 11.8 - brevity_penalty: 1.0 - ref_len: 1144.0 - src_name: Azerbaijani - tgt_name: Spanish - train_date: 2020-06-16 - src_alpha2: az - tgt_alpha2: es - prefer_old: False - long_pair: aze-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-bcl-sv
ca48856af4b9fc6cfb5bab6115f05be2657fc301
2021-09-09T21:26:59.000Z
[ "pytorch", "marian", "text2text-generation", "bcl", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bcl-sv
5
null
transformers
15,998
--- tags: - translation license: apache-2.0 --- ### opus-mt-bcl-sv * source languages: bcl * target languages: sv * OPUS readme: [bcl-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bcl-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bcl-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bcl.sv | 38.0 | 0.565 |
Helsinki-NLP/opus-mt-ber-es
b0a3cfed0ac0f2820c9f04d561d8e21e8f8a1f16
2021-09-09T21:27:25.000Z
[ "pytorch", "marian", "text2text-generation", "ber", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ber-es
5
null
transformers
15,999
--- tags: - translation license: apache-2.0 --- ### opus-mt-ber-es * source languages: ber * target languages: es * OPUS readme: [ber-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ber.es | 33.8 | 0.487 |