modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
google/t5-efficient-large-kv128
4843f8bd75fc0cbb4e912c032dfb8ec3222f590e
2022-02-15T10:55:13.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-kv128
7
null
transformers
14,100
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-KV128 (Deep-Narrow version) T5-Efficient-LARGE-KV128 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-kv128** - is of model type **Large** with the following variations: - **kv** is **128** It has **1039.71** million parameters and thus requires *ca.* **4158.86 MB** of memory in full precision (*fp32*) or **2079.43 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-nh8-nl32
3bc9149e42053e256eacf4d5587d3753a66ee584
2022-02-15T10:49:28.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-nh8-nl32
7
null
transformers
14,101
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-NH8-NL32 (Deep-Narrow version) T5-Efficient-LARGE-NH8-NL32 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-nh8-nl32** - is of model type **Large** with the following variations: - **nh** is **8** - **nl** is **32** It has **771.34** million parameters and thus requires *ca.* **3085.35 MB** of memory in full precision (*fp32*) or **1542.68 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el16-dl4
622624c8eacaa57b94ba33ebd03cab41a3b616a4
2022-02-15T10:56:59.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el16-dl4
7
null
transformers
14,102
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL16-DL4 (Deep-Narrow version) T5-Efficient-SMALL-EL16-DL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el16-dl4** - is of model type **Small** with the following variations: - **el** is **16** - **dl** is **4** It has **83.6** million parameters and thus requires *ca.* **334.41 MB** of memory in full precision (*fp32*) or **167.21 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el48
b879ae2064dec59d082fbb731161e00344a3f67a
2022-02-15T10:57:34.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el48
7
0
transformers
14,103
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL48 (Deep-Narrow version) T5-Efficient-SMALL-EL48 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el48** - is of model type **Small** with the following variations: - **el** is **48** It has **192.72** million parameters and thus requires *ca.* **770.89 MB** of memory in full precision (*fp32*) or **385.44 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-ff9000
4c81c279bb1202431a0cadd3968a15eba5e9ae2d
2022-02-15T10:50:27.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-ff9000
7
null
transformers
14,104
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-FF9000 (Deep-Narrow version) T5-Efficient-SMALL-FF9000 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-ff9000** - is of model type **Small** with the following variations: - **ff** is **9000** It has **148.6** million parameters and thus requires *ca.* **594.41 MB** of memory in full precision (*fp32*) or **297.2 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-kv32
fdb3a94c9852195ac01dbf12771f476e30d85471
2022-02-15T10:50:37.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-kv32
7
null
transformers
14,105
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-KV32 (Deep-Narrow version) T5-Efficient-SMALL-KV32 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-kv32** - is of model type **Small** with the following variations: - **kv** is **32** It has **51.08** million parameters and thus requires *ca.* **204.34 MB** of memory in full precision (*fp32*) or **102.17 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-tiny-ff9000
7691325582efff3985f0ebdc3d5dfbf877e3addd
2022-02-15T10:54:33.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-tiny-ff9000
7
null
transformers
14,106
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-TINY-FF9000 (Deep-Narrow version) T5-Efficient-TINY-FF9000 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-ff9000** - is of model type **Tiny** with the following variations: - **ff** is **9000** It has **49.13** million parameters and thus requires *ca.* **196.54 MB** of memory in full precision (*fp32*) or **98.27 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-tiny-nl8
8a4dca07e66c09cb83da418273356a414913a2a6
2022-02-15T10:51:50.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-tiny-nl8
7
5
transformers
14,107
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-TINY-NL8 (Deep-Narrow version) T5-Efficient-TINY-NL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-nl8** - is of model type **Tiny** with the following variations: - **nl** is **8** It has **22.93** million parameters and thus requires *ca.* **91.74 MB** of memory in full precision (*fp32*) or **45.87 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-xxl-ssm-tqa
afcb673098d62bbbaf806d17b8f1560aa5131a30
2020-12-07T08:39:06.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:trivia_qa", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-xxl-ssm-tqa
7
null
transformers
14,108
--- language: en datasets: - c4 - wikipedia - trivia_qa license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa). **Note**: The model was fine-tuned on 100% of the train splits of [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa) for 10 steps. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Trivia QA - Test Set |Id | link | Exact Match | |---|---|---| |T5-11b|https://huggingface.co/google/t5-large-ssm-tqa|60.5| |**T5-xxl**|**https://huggingface.co/google/t5-xxl-ssm-tqa**|**61.6**| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-xxl-ssm-tqa") t5_tok = AutoTokenizer.from_pretrained("google/t5-xxl-ssm-tqa") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/tapas-mini-masklm
8e943a3a3e8d25204f316f2aaacc0983b84a5aa8
2021-11-29T14:15:38.000Z
[ "pytorch", "tf", "tapas", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
google
null
google/tapas-mini-masklm
7
null
transformers
14,109
This model corresponds to **tapas_masklm_mini_reset** of the [original repository](https://github.com/google-research/tapas). Here's how you can use it: ```python from transformers import TapasTokenizer, TapasForMaskedLM import pandas as pd import torch tokenizer = TapasTokenizer.from_pretrained("google/tapas-mini-masklm") model = TapasForMaskedLM.from_pretrained("google/tapas-mini-masklm") data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Age': ["56", "45", "59"], 'Number of movies': ["87", "53", "69"] } table = pd.DataFrame.from_dict(data) query = "How many movies has Leonardo [MASK] Caprio played in?" # prepare inputs inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt") # forward pass outputs = model(**inputs) # return top 5 values and predictions masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False) logits = outputs.logits[0, masked_index.item(), :] probs = logits.softmax(dim=0) values, predictions = probs.topk(5) for value, pred in zip(values, predictions): print(f"{tokenizer.decode([pred])} with confidence {value}") ```
hamzab/codebert_code_search
3d9078c581f17bcaecca823fa3b96ae4495493a6
2021-09-30T10:20:44.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
hamzab
null
hamzab/codebert_code_search
7
null
transformers
14,110
Entry not found
haotieu/en-vi-mt-model
97c5817edaf4ae2cdf161632c3897ced4304e273
2021-12-19T10:17:03.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
haotieu
null
haotieu/en-vi-mt-model
7
1
transformers
14,111
# Helsinki-NLP/opus-mt-en-vi - This model is a fine-tune checkpoint of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi). - This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data. # Fine-tuning hyper-parameters - learning_rate = 1e-4 - batch_size = 4 - num_train_epochs = 3.0
harithapliyal/distilbert-base-uncased-finetuned-cola
8d5a07a64338385fe0a732a62ec820495aa6b34e
2022-01-18T18:44:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
harithapliyal
null
harithapliyal/distilbert-base-uncased-finetuned-cola
7
null
transformers
14,112
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5601668097291345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8366 - Matthews Correlation: 0.5602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5257 | 1.0 | 535 | 0.5475 | 0.4039 | | 0.3482 | 2.0 | 1070 | 0.5140 | 0.5004 | | 0.2408 | 3.0 | 1605 | 0.6472 | 0.5264 | | 0.1765 | 4.0 | 2140 | 0.7456 | 0.5403 | | 0.1314 | 5.0 | 2675 | 0.8366 | 0.5602 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
hf-internal-testing/tiny-random-roformer
fdea99c900cd5dea04443df3a60af5ba4381a002
2021-09-17T19:21:29.000Z
[ "pytorch", "tf", "roformer", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-roformer
7
null
transformers
14,113
Entry not found
huggingtweets/discountpicasso-dril-liam_100000
3c8447c01f96b4742dda5a4971ee6eb5b5ec3be0
2021-09-07T00:14:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/discountpicasso-dril-liam_100000
7
null
transformers
14,114
--- language: en thumbnail: https://www.huggingtweets.com/discountpicasso-dril-liam_100000/1630973640579/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426930394297819137/-zzMnfJo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/980964012170121217/U6FjPH4H_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LIAM & wint & Picasso</div> <div style="text-align: center; font-size: 14px;">@discountpicasso-dril-liam_100000</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LIAM & wint & Picasso. | Data | LIAM | wint | Picasso | | --- | --- | --- | --- | | Tweets downloaded | 1962 | 3226 | 3216 | | Retweets | 135 | 472 | 427 | | Short tweets | 435 | 313 | 421 | | Tweets kept | 1392 | 2441 | 2368 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4ekve8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @discountpicasso-dril-liam_100000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/discountpicasso-dril-liam_100000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/emmanuelmacron
f82bb3b3192cf9988417de5379dca9190fb76317
2022-06-12T14:23:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/emmanuelmacron
7
null
transformers
14,115
--- language: en thumbnail: http://www.huggingtweets.com/emmanuelmacron/1655043824718/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1502232882504421380/8brWTaNo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Emmanuel Macron</div> <div style="text-align: center; font-size: 14px;">@emmanuelmacron</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Emmanuel Macron. | Data | Emmanuel Macron | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 230 | | Short tweets | 67 | | Tweets kept | 2953 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28yawqaq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emmanuelmacron's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ut58xfqh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ut58xfqh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emmanuelmacron') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/goatlich-yagisabi
09acba15de71d7c625f74548f27e78c48c9e777d
2021-06-23T19:16:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/goatlich-yagisabi
7
null
transformers
14,116
--- language: en thumbnail: https://www.huggingtweets.com/goatlich-yagisabi/1624475783796/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406546124605898752/YRmbl1wc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389328774085365767/QFuxMWoj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gay Shawn 🏳️‍🌈 & 🔻L O W R Y 🔻</div> <div style="text-align: center; font-size: 14px;">@goatlich-yagisabi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gay Shawn 🏳️‍🌈 & 🔻L O W R Y 🔻. | Data | Gay Shawn 🏳️‍🌈 | 🔻L O W R Y 🔻 | | --- | --- | --- | | Tweets downloaded | 406 | 3156 | | Retweets | 67 | 390 | | Short tweets | 50 | 214 | | Tweets kept | 289 | 2552 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wtnxwy1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goatlich-yagisabi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrbyfgtb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrbyfgtb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/goatlich-yagisabi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/incharmuese-sadsocrates-vvangone
d3fb30e8b76bc90cad9cb2fe4b89346b270a368a
2021-10-29T15:35:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/incharmuese-sadsocrates-vvangone
7
null
transformers
14,117
--- language: en thumbnail: https://www.huggingtweets.com/incharmuese-sadsocrates-vvangone/1635521727120/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/581592941124153346/5nfUJyU2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/561419401145376768/7OIwxUCC_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190256978007904257/TsXH7_nP_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charmeuse & Sad Socrates & Vincent Van Gone</div> <div style="text-align: center; font-size: 14px;">@incharmuese-sadsocrates-vvangone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charmeuse & Sad Socrates & Vincent Van Gone. | Data | Charmeuse | Sad Socrates | Vincent Van Gone | | --- | --- | --- | --- | | Tweets downloaded | 3238 | 3197 | 3233 | | Retweets | 1165 | 40 | 1054 | | Short tweets | 248 | 161 | 266 | | Tweets kept | 1825 | 2996 | 1913 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13ochftk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @incharmuese-sadsocrates-vvangone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/incharmuese-sadsocrates-vvangone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jamescharles-loganpaul-tanamongeau
159be6f4ac4e4c6dbbb767089f4505959216ab47
2021-09-14T05:53:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jamescharles-loganpaul-tanamongeau
7
null
transformers
14,118
--- language: en thumbnail: https://www.huggingtweets.com/jamescharles-loganpaul-tanamongeau/1631598787303/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420806762408464385/10y3M0iO_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1324782032124215296/HMG6-q8g_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401837042934468611/okzqIoMb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CANCELLED & James Charles & Logan Paul</div> <div style="text-align: center; font-size: 14px;">@jamescharles-loganpaul-tanamongeau</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CANCELLED & James Charles & Logan Paul. | Data | CANCELLED | James Charles | Logan Paul | | --- | --- | --- | --- | | Tweets downloaded | 3167 | 3182 | 3246 | | Retweets | 938 | 480 | 98 | | Short tweets | 522 | 496 | 287 | | Tweets kept | 1707 | 2206 | 2861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2avr905u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jamescharles-loganpaul-tanamongeau's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2at101p1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2at101p1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jamescharles-loganpaul-tanamongeau') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/magicjohnson
5633baaf228d4a84b383c377ed4f09894de93160
2021-06-04T20:32:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/magicjohnson
7
null
transformers
14,119
--- language: en thumbnail: https://www.huggingtweets.com/magicjohnson/1622838726917/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1090357359782768640/ITPFaU3F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Earvin Magic Johnson</div> <div style="text-align: center; font-size: 14px;">@magicjohnson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Earvin Magic Johnson. | Data | Earvin Magic Johnson | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 103 | | Short tweets | 94 | | Tweets kept | 3053 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7g3n70f6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magicjohnson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gdznqoo2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gdznqoo2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magicjohnson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/marknorm
31482ba1aff27755809f46cb1166b85026ea1e5f
2021-05-31T19:21:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/marknorm
7
null
transformers
14,120
--- language: en thumbnail: https://www.huggingtweets.com/marknorm/1622488902602/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/903769803768217600/EKtan_aM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mark normand</div> <div style="text-align: center; font-size: 14px;">@marknorm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mark normand. | Data | mark normand | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 136 | | Short tweets | 522 | | Tweets kept | 2591 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25e2ma2z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marknorm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17zjqoal) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17zjqoal/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marknorm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/robber0540
baab29807b1631aae136ce512546cfa32616ffbb
2021-06-13T21:47:44.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/robber0540
7
null
transformers
14,121
--- language: en thumbnail: https://www.huggingtweets.com/robber0540/1623620847015/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/822229503212666880/L4UutyTM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Combat Ballerina</div> <div style="text-align: center; font-size: 14px;">@robber0540</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Combat Ballerina. | Data | Combat Ballerina | | --- | --- | | Tweets downloaded | 668 | | Retweets | 65 | | Short tweets | 303 | | Tweets kept | 300 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2se37abl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @robber0540's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3i4yohh5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3i4yohh5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/robber0540') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hyunwoongko/zhberta-base-zh-xnli
db31bc3c8767c074f1dcb062cc98e8c9020f149d
2021-05-20T16:45:43.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
hyunwoongko
null
hyunwoongko/zhberta-base-zh-xnli
7
null
transformers
14,122
Entry not found
ielab/unicoil-tilde200-msmarco-passage
dcfb821ee06326af2fbec9930a8da1d696154553
2021-10-31T13:50:01.000Z
[ "pytorch", "bert", "transformers" ]
null
false
ielab
null
ielab/unicoil-tilde200-msmarco-passage
7
null
transformers
14,123
uniCOIL trained with passages expand with TILDE (m=200)
inspectorsolaris/gpt2_french_pre_trained
e3dfc872605c180df2a4a396bf27d1ef4a0b4cef
2021-05-27T04:31:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
inspectorsolaris
null
inspectorsolaris/gpt2_french_pre_trained
7
null
transformers
14,124
Entry not found
it5/it5-small-formal-to-informal
9b795e56c1c7ff3dc044b279148586465f49b405
2022-03-09T07:45:14.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-small-formal-to-informal
7
null
transformers
14,125
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: it5-small-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.650 name: "Avg. Test Rouge1" - type: rouge2 value: 0.450 name: "Avg. Test Rouge2" - type: rougeL value: 0.631 name: "Avg. Test RougeL" - type: bertscore value: 0.663 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "8g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # IT5 Small for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [IT5 Small](https://huggingface.co/gsarti/it5-small) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/it5-small-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-small-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-small-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
jambo/marker-associations-snp-binary-base
16ef812cc58058c2438efdd610801ea4cb2c9573
2021-11-02T13:00:57.000Z
[ "pytorch", "bert", "text-classification", "dataset:marker-associations-snp-binary-base", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jambo
null
jambo/marker-associations-snp-binary-base
7
null
transformers
14,126
--- license: mit tags: - generated_from_trainer datasets: - marker-associations-snp-binary-base metrics: - precision - recall - f1 - accuracy model-index: - name: marker-associations-snp-binary-base results: - task: name: Text Classification type: text-classification dataset: name: marker-associations-snp-binary-base type: marker-associations-snp-binary-base metrics: - name: Precision type: precision value: 0.9384057971014492 - name: Recall type: recall value: 0.9055944055944056 - name: F1 type: f1 value: 0.9217081850533808 - name: Accuracy type: accuracy value: 0.9107505070993914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marker-associations-snp-binary-base This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the marker-associations-snp-binary-base dataset. It achieves the following results on the evaluation set: - Loss: 0.4027 - Precision: 0.9384 - Recall: 0.9056 - F1: 0.9217 - Accuracy: 0.9108 - Auc: 0.9578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:| | No log | 1.0 | 153 | 0.2776 | 0.9 | 0.9441 | 0.9215 | 0.9067 | 0.9613 | | No log | 2.0 | 306 | 0.4380 | 0.9126 | 0.9126 | 0.9126 | 0.8986 | 0.9510 | | No log | 3.0 | 459 | 0.4027 | 0.9384 | 0.9056 | 0.9217 | 0.9108 | 0.9578 | | 0.2215 | 4.0 | 612 | 0.3547 | 0.9449 | 0.8986 | 0.9211 | 0.9108 | 0.9642 | | 0.2215 | 5.0 | 765 | 0.4465 | 0.9107 | 0.9266 | 0.9185 | 0.9047 | 0.9636 | | 0.2215 | 6.0 | 918 | 0.5770 | 0.8970 | 0.9441 | 0.9199 | 0.9047 | 0.9666 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Tokenizers 0.10.3
jamescalam/bert-stsb-cross-encoder
6d997398b988f0820a185b8d02eb6cdec177ef0b
2021-12-17T08:54:27.000Z
[ "pytorch", "bert", "text-classification", "sentence-transformers", "sentence-similarity", "transformers", "cross-encoder" ]
sentence-similarity
false
jamescalam
null
jamescalam/bert-stsb-cross-encoder
7
null
sentence-transformers
14,127
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers - cross-encoder --- # Augmented SBERT STSb This is a [sentence-transformers](https://www.SBERT.net) cross encoder model. It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
jamiewjm/CCGwGPT2
a14767871110389b3a51d2d0ff0c4fd7cc8b8c27
2021-11-13T03:46:14.000Z
[ "pytorch", "gpt2", "text-generation", "Chinese", "transformers" ]
text-generation
false
jamiewjm
null
jamiewjm/CCGwGPT2
7
null
transformers
14,128
--- language: Chinese widget: - text: "五言藏头:春天到来|桃花|" --- # 输入格式 > 格式|题目|正文 格式为下列之一: * 五绝 * 五律 * 七绝 * 七律 * 五言排律 * 七言排律 * 五言藏头:藏头字... * 七言藏头:藏头字... * 对联 ----- removed ----- * 诗经 * 乐府 * 楚辞 * 词牌名 (水调歌头、菩萨蛮...) * 古诗 若为空则默认五言绝句。 题目为诗歌的主题,可为空。 正文部分可指定起始字符,可为空
jcblaise/electra-tagalog-small-uncased-generator
67b78e895fd8960a45a484d69583bccb6d5be564
2021-11-11T06:17:14.000Z
[ "pytorch", "electra", "fill-mask", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
jcblaise
null
jcblaise/electra-tagalog-small-uncased-generator
7
null
transformers
14,129
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Small Uncased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jhgan/ko-sroberta-sts
505abda37a6e7c6816285f83d13e1cdc3286d586
2021-12-27T13:09:43.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jhgan
null
jhgan/ko-sroberta-sts
7
null
sentence-transformers
14,130
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ko-sroberta-sts This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."] model = SentenceTransformer('jhgan/ko-sroberta-sts') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-sts') model = AutoModel.from_pretrained('jhgan/ko-sroberta-sts') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> KorSTS 학습 데이터셋으로 학습한 후 KorSTS 평가 데이터셋으로 평가한 결과입니다. - Cosine Pearson: 81.84 - Cosine Spearman: 81.82 - Euclidean Pearson: 81.15 - Euclidean Spearman: 81.25 - Manhattan Pearson: 81.14 - Manhattan Spearman: 81.25 - Dot Pearson: 79.09 - Dot Spearman: 78.54 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 719 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 360, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ji-xin/roberta_base-SST2-two_stage
e5e642a290d0063767cf88134375773c86b5e7e8
2020-07-08T15:09:27.000Z
[ "pytorch", "transformers" ]
null
false
ji-xin
null
ji-xin/roberta_base-SST2-two_stage
7
null
transformers
14,131
Entry not found
joelito/distilbert-based-german-cased-ler
d0c724b564eb53fd4745ee643792e4a67747a662
2020-11-30T12:52:05.000Z
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
joelito
null
joelito/distilbert-based-german-cased-ler
7
null
transformers
14,132
# distilbert-base-german-cased-ler Task: ler Base Model: distilbert-base-german-cased Trained for 3 epochs Batch-size: 12 Seed: 42 Test F1-Score: 0.936
juliamendelsohn/framing_immigration_specific
2dc5de08001a3bcc74bbc6b5b17452af977ce9f1
2021-05-20T17:27:05.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
juliamendelsohn
null
juliamendelsohn/framing_immigration_specific
7
null
transformers
14,133
Entry not found
juliusco/biobert-base-cased-v1.1-squad-finetuned-covbiobert
0ea62665d5989ccbf0164e19430bf27c6a252d7e
2021-12-20T07:58:26.000Z
[ "pytorch", "bert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
juliusco
null
juliusco/biobert-base-cased-v1.1-squad-finetuned-covbiobert
7
null
transformers
14,134
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: biobert-base-cased-v1.1-squad-finetuned-covbiobert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-squad-finetuned-covbiobert This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 486 | 0.3787 | | 0.161 | 2.0 | 972 | 0.3959 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
junnyu/roformer_base_wwm_cluecorpussmall
82af7eac5be744ed4fd8db3db6a1d5763230e3b0
2022-02-10T12:26:39.000Z
[ "pytorch", "roformer", "fill-mask", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "paddlepaddle", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/roformer_base_wwm_cluecorpussmall
7
1
transformers
14,135
--- language: zh tags: - roformer - pytorch - tf2.0 - paddlepaddle widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了`Whole Mask LM` 和 `SOP` 任务 训练逻辑参考了这里。https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/ernie-1.0 ## 训练细节: - paddlepaddle+paddlenlp - V100 x 4 - batch size 256 - max_seq_len 512 - max_lr 0.0001 - min_lr 0.00001 - weight_decay 0.01 - grad_clip 1.0 - 总共训练的句子```128*30w + 256*15w + 256*14.5w + 256*46.5w + 256*17w = 27648w``` - 约等于512 batch size, 100w步条件下的54% 最终loss: ```python [2022-02-05 16:05:59,067] [ INFO] - global step 170100, loss: 2.651634932, lm_loss: 2.603405, sop_loss: 0.048229, speed: 1.06 steps/s, ips: 271.68 seqs/s, learning rate: 6.66465e-05, loss_scaling: 137438.96875, num_good_steps: 356, num_bad_steps: 0 [2022-02-05 16:07:28,227] [ INFO] - global step 170200, loss: 2.822231531, lm_loss: 2.662831, sop_loss: 0.159401, speed: 1.12 steps/s, ips: 287.13 seqs/s, learning rate: 6.66263e-05, loss_scaling: 137438.96875, num_good_steps: 59, num_bad_steps: 0 [2022-02-05 16:08:57,346] [ INFO] - global step 170300, loss: 2.710968971, lm_loss: 2.673646, sop_loss: 0.037323, speed: 1.12 steps/s, ips: 287.26 seqs/s, learning rate: 6.66061e-05, loss_scaling: 137438.96875, num_good_steps: 159, num_bad_steps: 0 [2022-02-05 16:10:26,698] [ INFO] - global step 170400, loss: 2.867662907, lm_loss: 2.619032, sop_loss: 0.248631, speed: 1.12 steps/s, ips: 286.51 seqs/s, learning rate: 6.65859e-05, loss_scaling: 137438.96875, num_good_steps: 259, num_bad_steps: 0 [2022-02-05 16:11:55,714] [ INFO] - global step 170500, loss: 3.158756495, lm_loss: 2.953678, sop_loss: 0.205079, speed: 1.12 steps/s, ips: 287.59 seqs/s, learning rate: 6.65657e-05, loss_scaling: 137438.96875, num_good_steps: 359, num_bad_steps: 0 [2022-02-05 16:13:24,869] [ INFO] - global step 170600, loss: 2.860815048, lm_loss: 2.754750, sop_loss: 0.106064, speed: 1.12 steps/s, ips: 287.14 seqs/s, learning rate: 6.65455e-05, loss_scaling: 137438.96875, num_good_steps: 33, num_bad_steps: 0 ``` ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, BertTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||人||气||阳||雨]很好,我[想||就||要||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kamivao/autonlp-entity_selection-5771228
3d27f324393f5a8260411a61b2a2b37b4a764ed7
2021-07-24T18:59:19.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:kamivao/autonlp-data-entity_selection", "transformers", "autonlp" ]
text-classification
false
kamivao
null
kamivao/autonlp-entity_selection-5771228
7
null
transformers
14,136
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kamivao/autonlp-data-entity_selection --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 5771228 ## Validation Metrics - Loss: 0.17127291858196259 - Accuracy: 0.9206671174216813 - Precision: 0.9588885738588036 - Recall: 0.9423237670660352 - AUC: 0.9720189638675828 - F1: 0.9505340078695896 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-entity_selection-5771228 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
katrin-kc/bert-finetuned-imdb
802918aa5a6939e8f52cce5a8a127b39ce17b354
2022-01-28T07:51:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
katrin-kc
null
katrin-kc/bert-finetuned-imdb
7
null
transformers
14,137
Entry not found
keyonvafa/compatible-gpt2
90be6450674313fd923ded8618d51f08175f911b
2021-09-10T22:16:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
keyonvafa
null
keyonvafa/compatible-gpt2
7
1
transformers
14,138
Entry not found
khizon/distilbert-unreliable-news-eng-4L
8e344f5172b7b26e9bb8a144c25942d891114a48
2022-01-15T07:06:59.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
khizon
null
khizon/distilbert-unreliable-news-eng-4L
7
null
transformers
14,139
# Unreliable News Classifier (English) Trained, validate, and tested using a subset of the NELA-GT-2018 dataset. The dataset is split such that there was no overlap in of news sources between the three sets. This model used the pre-trained weights of `distilbert-base-cased` as starting point (only 4 layers) and was able to achieve 84% accuracy on the test set. It has less than 1% difference in performance compared to the BERT based model while having **2.0x** the speed. For more details: [Github](https://github.com/khizon/CS284_final_project)
kinit/slovakbert-sentiment-twitter
1b3794da24b923e824caf91c19f584d0695d8688
2021-11-30T10:51:00.000Z
[ "pytorch", "roberta", "text-classification", "sk", "arxiv:2109.15254", "transformers", "twitter", "sentiment-analysis", "license:cc" ]
text-classification
false
kinit
null
kinit/slovakbert-sentiment-twitter
7
1
transformers
14,140
--- language: - sk tags: - twitter - sentiment-analysis license: cc metrics: - f1 widget: - text: "Najkrajšia vianočná reklama: Toto milé video vám vykúzli čarovnú atmosféru: Vianoce sa nezadržateľne blížia." - text: "A opäť sa objavili nebezpečné výrobky. Pozrite sa, či ich nemáte doma" --- # Sentiment Analysis model based on SlovakBERT This is a sentiment analysis classifier based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model can distinguish three level of sentiment: - `-1` - Negative sentiment - `0` - Neutral sentiment - `1` - Positive setiment The model was fine-tuned using Slovak part of [Multilingual Twitter Sentiment Analysis Dataset](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155036) [Mozetič et al 2016] containing 50k manually annotated Slovak tweets. As such, it is fine-tuned for tweets and it is not advised to use the model for general-purpose sentiment analysis. ## Results The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.4]. It achieves \\(0.67\\) F1-score on the original dataset and \\(0.58\\) F1-score on general reviews dataset. ## Cite ``` @article{DBLP:journals/corr/abs-2109-15254, author = {Mat{\'{u}}{\v{s}} Pikuliak and {\v{S}}tefan Grivalsk{\'{y}} and Martin Kon{\^{o}}pka and Miroslav Bl{\v{s}}t{\'{a}}k and Martin Tamajka and Viktor Bachrat{\'{y}} and Mari{\'{a}}n {\v{S}}imko and Pavol Bal{\'{a}}{\v{z}}ik and Michal Trnka and Filip Uhl{\'{a}}rik}, title = {SlovakBERT: Slovak Masked Language Model}, journal = {CoRR}, volume = {abs/2109.15254}, year = {2021}, url = {https://arxiv.org/abs/2109.15254}, eprinttype = {arXiv}, eprint = {2109.15254}, } ```
kmfoda/description_generator_new
7595a43d7d5c1012571cf090acc5f2c8b623d447
2021-10-06T14:42:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kmfoda
null
kmfoda/description_generator_new
7
null
transformers
14,141
Entry not found
krevas/finance-koelectra-small-discriminator
df81b5efc4cad7e947f4bf5fbca3391cd5fac223
2020-12-11T21:48:34.000Z
[ "pytorch", "electra", "pretraining", "ko", "transformers" ]
null
false
krevas
null
krevas/finance-koelectra-small-discriminator
7
null
transformers
14,142
--- language: ko --- # 📈 Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-small-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-small-discriminator") sentence = "내일 해당 종목이 대폭 상승할 것이다" fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
leonardvorbeck/wav2vec2-large-robust-LS960
35876357e7a0140432e08779d1beab8534166343
2021-08-26T12:22:00.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:libri_light", "dataset:common_voice", "dataset:switchboard", "dataset:fisher", "arxiv:2104.01027", "transformers", "speech", "CTC", "Attention", "license:apache-2.0" ]
automatic-speech-recognition
false
leonardvorbeck
null
leonardvorbeck/wav2vec2-large-robust-LS960
7
1
transformers
14,143
--- language: en datasets: - libri_light - common_voice - switchboard - fisher tags: - speech - automatic-speech-recognition - CTC - Attention - wav2vec2 license: apache-2.0 --- # Wav2Vec2-Large-Robust - Finetuned on Librispeech (960 hours) ## Note : Model has not been initialized. If you want to use it without further finetuning, do a forward pass first to recalculate the normalized weights of the positional convolutional layer : ```ipython with torch.no_grad(): model(torch.randn((1,300_000))) ``` [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. Speech datasets from multiple domains were used to pretrain the model: - [Libri-Light](https://github.com/facebookresearch/libri-light): open-source audio books from the LibriVox project; clean, read-out audio data - [CommonVoice](https://huggingface.co/datasets/common_voice): crowd-source collected audio data; read-out text snippets - [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62): telephone speech corpus; noisy telephone data - [Fisher](https://catalog.ldc.upenn.edu/LDC2004T19): conversational telephone speech; noisy telephone data When using the model make sure that your speech input is also sampled at 16Khz. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper Robust Wav2Vec2](https://arxiv.org/abs/2104.01027) Authors: Wei-Ning Hsu, Anuroop Sriram, Alexei Baevski, Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Jacob Kahn, Ann Lee, Ronan Collobert, Gabriel Synnaeve, Michael Auli **Abstract** Self-supervised learning of speech representations has been a very active research area but most work is focused on a single domain such as read audio books for which there exist large quantities of labeled and unlabeled data. In this paper, we explore more general setups where the domain of the unlabeled data for pre-training data differs from the domain of the labeled data for fine-tuning, which in turn may differ from the test data domain. Our experiments show that using target domain data during pre-training leads to large performance improvements across a variety of setups. On a large-scale competitive setup, we show that pre-training on unlabeled in-domain data reduces the gap between models trained on in-domain and out-of-domain labeled data by 66%-73%. This has obvious practical implications since it is much easier to obtain unlabeled target domain data than labeled data. Moreover, we find that pre-training on multiple domains improves generalization performance on domains not seen during training. Code and models will be made available at this https URL. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
lewtun/bert-finetuned-ner
71a0699e8ada896c55abde8c399d9e141588be13
2021-11-14T15:34:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
lewtun
null
lewtun/bert-finetuned-ner
7
null
transformers
14,144
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9407949442873773 - name: Recall type: recall value: 0.9520363513968361 - name: F1 type: f1 value: 0.9463822668339608 - name: Accuracy type: accuracy value: 0.9865485371166186 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.9408 - Recall: 0.9520 - F1: 0.9464 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0884 | 1.0 | 1756 | 0.0658 | 0.9145 | 0.9337 | 0.9240 | 0.9827 | | 0.0375 | 2.0 | 3512 | 0.0618 | 0.9366 | 0.9490 | 0.9427 | 0.9864 | | 0.0216 | 3.0 | 5268 | 0.0603 | 0.9408 | 0.9520 | 0.9464 | 0.9865 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv8
30a83cc824f94acab1dca2fa9cb7e793118206c9
2022-02-10T23:23:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv8
7
null
transformers
14,145
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-coraa-portuguese-cv8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-coraa-portuguese-cv8 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - Wer: 0.1365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5614 | 0.1 | 100 | 0.2542 | 0.1986 | | 0.5181 | 0.19 | 200 | 0.2740 | 0.2146 | | 0.5056 | 0.29 | 300 | 0.2472 | 0.2068 | | 0.4747 | 0.39 | 400 | 0.2464 | 0.2166 | | 0.4627 | 0.48 | 500 | 0.2277 | 0.2041 | | 0.4403 | 0.58 | 600 | 0.2245 | 0.1977 | | 0.4413 | 0.68 | 700 | 0.2156 | 0.1968 | | 0.437 | 0.77 | 800 | 0.2102 | 0.1919 | | 0.4305 | 0.87 | 900 | 0.2130 | 0.1864 | | 0.4324 | 0.97 | 1000 | 0.2144 | 0.1902 | | 0.4217 | 1.06 | 1100 | 0.2230 | 0.1891 | | 0.3823 | 1.16 | 1200 | 0.2033 | 0.1774 | | 0.3641 | 1.25 | 1300 | 0.2143 | 0.1830 | | 0.3707 | 1.35 | 1400 | 0.2034 | 0.1793 | | 0.3767 | 1.45 | 1500 | 0.2029 | 0.1823 | | 0.3483 | 1.54 | 1600 | 0.1999 | 0.1740 | | 0.3577 | 1.64 | 1700 | 0.1928 | 0.1728 | | 0.3667 | 1.74 | 1800 | 0.1898 | 0.1726 | | 0.3283 | 1.83 | 1900 | 0.1920 | 0.1688 | | 0.3571 | 1.93 | 2000 | 0.1904 | 0.1649 | | 0.3467 | 2.03 | 2100 | 0.1994 | 0.1648 | | 0.3145 | 2.12 | 2200 | 0.1940 | 0.1682 | | 0.3186 | 2.22 | 2300 | 0.1879 | 0.1571 | | 0.3058 | 2.32 | 2400 | 0.1975 | 0.1678 | | 0.3096 | 2.41 | 2500 | 0.1877 | 0.1589 | | 0.2964 | 2.51 | 2600 | 0.1862 | 0.1568 | | 0.3068 | 2.61 | 2700 | 0.1809 | 0.1588 | | 0.3036 | 2.7 | 2800 | 0.1769 | 0.1573 | | 0.3084 | 2.8 | 2900 | 0.1836 | 0.1524 | | 0.3109 | 2.9 | 3000 | 0.1807 | 0.1519 | | 0.2969 | 2.99 | 3100 | 0.1851 | 0.1516 | | 0.2698 | 3.09 | 3200 | 0.1737 | 0.1490 | | 0.2703 | 3.19 | 3300 | 0.1759 | 0.1457 | | 0.2759 | 3.28 | 3400 | 0.1778 | 0.1471 | | 0.2728 | 3.38 | 3500 | 0.1717 | 0.1462 | | 0.2398 | 3.47 | 3600 | 0.1767 | 0.1451 | | 0.256 | 3.57 | 3700 | 0.1742 | 0.1410 | | 0.2712 | 3.67 | 3800 | 0.1674 | 0.1414 | | 0.2648 | 3.76 | 3900 | 0.1717 | 0.1423 | | 0.2576 | 3.86 | 4000 | 0.1672 | 0.1403 | | 0.2504 | 3.96 | 4100 | 0.1683 | 0.1381 | | 0.2406 | 4.05 | 4200 | 0.1685 | 0.1399 | | 0.2403 | 4.15 | 4300 | 0.1656 | 0.1381 | | 0.2233 | 4.25 | 4400 | 0.1687 | 0.1371 | | 0.2546 | 4.34 | 4500 | 0.1642 | 0.1377 | | 0.2431 | 4.44 | 4600 | 0.1655 | 0.1372 | | 0.2337 | 4.54 | 4700 | 0.1625 | 0.1370 | | 0.2607 | 4.63 | 4800 | 0.1618 | 0.1363 | | 0.2292 | 4.73 | 4900 | 0.1622 | 0.1366 | | 0.2232 | 4.83 | 5000 | 0.1626 | 0.1365 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
lighteternal/SSE-TUC-mt-el-en-lowercase
043dffcf265eb5362f13231e9ea9757def46bda8
2021-03-31T17:26:44.000Z
[ "pytorch", "fsmt", "text2text-generation", "en", "el", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
lighteternal
null
lighteternal/SSE-TUC-mt-el-en-lowercase
7
null
transformers
14,146
--- language: - en - el tags: - translation widget: - text: "Η τύχη βοηθάει τους τολμηρούς." license: apache-2.0 metrics: - bleu --- ## Greek to English NMT (lower-case output) ## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) * source languages: el * target languages: en * licence: apache-2.0 * dataset: Opus, CCmatrix * model: transformer(fairseq) * pre-processing: tokenization + BPE segmentation * metrics: bleu, chrf * output: lowercase only, for mixed-cased model use this: https://huggingface.co/lighteternal/SSE-TUC-mt-el-en-cased ### Model description Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\\ BPE segmentation (10k codes).\\ Lower-case model. ### How to use ``` from transformers import FSMTTokenizer, FSMTForConditionalGeneration mname = " <your_downloaded_model_folderpath_here> " tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) text = "Η τύχη βοηθάει τους τολμηρούς." encoded = tokenizer.encode(text, return_tensors='pt') outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True) for i, output in enumerate(outputs): i += 1 print(f"{i}: {output.tolist()}") decoded = tokenizer.decode(output, skip_special_tokens=True) print(f"{i}: {decoded}") ``` ## Training data Consolidated corpus from Opus and CC-Matrix (~6.6GB in total) ## Eval results Results on Tatoeba testset (EL-EN): | BLEU | chrF | | ------ | ------ | | 79.3 | 0.795 | Results on XNLI parallel (EL-EN): | BLEU | chrF | | ------ | ------ | | 66.2 | 0.623 | ### BibTeX entry and citation info Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)
linkpipi/distilbert-base-uncased-finetuned-sst2
4457d4326ffab739a905aa5be8aceaec8655b68d
2021-11-18T06:33:38.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
linkpipi
null
linkpipi/distilbert-base-uncased-finetuned-sst2
7
null
transformers
14,147
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.908256880733945 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3263 - Accuracy: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.191 | 1.0 | 4210 | 0.3263 | 0.9083 | | 0.1284 | 2.0 | 8420 | 0.3965 | 0.9025 | | 0.0833 | 3.0 | 12630 | 0.4239 | 0.9048 | | 0.0707 | 4.0 | 16840 | 0.4164 | 0.9037 | | 0.0512 | 5.0 | 21050 | 0.5315 | 0.9037 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
liuchenyang33/bert_cn_finetuning
2b76da941a8e61050121d2fe9ed312080f442f3e
2021-05-19T22:02:41.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
liuchenyang33
null
liuchenyang33/bert_cn_finetuning
7
null
transformers
14,148
Entry not found
liyijing024/covid-misinfo
ee3d74bce35cbcd9dc79a96c3881c7c4a7efef48
2021-11-20T19:56:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
liyijing024
null
liyijing024/covid-misinfo
7
null
transformers
14,149
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_10k
ade345bf7b843d2d33cea16cc7d5463fd0bf4647
2021-10-27T12:42:56.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_10k
7
null
transformers
14,150
Entry not found
luke-thorburn/suggest-objections-soft
2b78e635a5ff4f4b76299cc8e194d53c453f2d2f
2022-07-12T09:43:28.000Z
[ "pytorch", "gpt_neo", "text-generation", "en", "transformers", "argumentation", "license:apache-2.0" ]
text-generation
false
luke-thorburn
null
luke-thorburn/suggest-objections-soft
7
null
transformers
14,151
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate objections to a claim This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating the objections to a claim, optionally given some example objections to that claim. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt][original claim] Cons: - [objection 1] - [objection 2] ... - [objection n] - [generated objection] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alberto
2f69d1e9187480e366d9d495e22221f1563b03ad
2020-04-24T16:02:31.000Z
[ "pytorch", "tf", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
m-polignano-uniba
null
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alberto
7
null
transformers
14,152
Entry not found
mackseem/distilbert-base-uncased-finetuned-ner
458d75df5e47971f3d96e586724f93ec4ab5028c
2022-07-13T21:52:51.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
mackseem
null
mackseem/distilbert-base-uncased-finetuned-ner
7
null
transformers
14,153
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9244616234124793 - name: Recall type: recall value: 0.9364582168027744 - name: F1 type: f1 value: 0.9304212515282871 - name: Accuracy type: accuracy value: 0.9833987322668276 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Precision: 0.9245 - Recall: 0.9365 - F1: 0.9304 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2377 | 1.0 | 878 | 0.0711 | 0.9176 | 0.9254 | 0.9215 | 0.9813 | | 0.0514 | 2.0 | 1756 | 0.0637 | 0.9213 | 0.9346 | 0.9279 | 0.9831 | | 0.031 | 3.0 | 2634 | 0.0623 | 0.9245 | 0.9365 | 0.9304 | 0.9834 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
madlag/bert-large-uncased-mnli
e23dadbe76e9249fd70520e845f6609d54447af2
2021-05-19T22:40:43.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
madlag
null
madlag/bert-large-uncased-mnli
7
null
transformers
14,154
## BERT-large finetuned on MNLI. The [reference finetuned model](https://github.com/google-research/bert) has an accuracy of 86.05, we get 86.7: ``` {'eval_loss': 0.3984006643295288, 'eval_accuracy': 0.8667345899133979} ```
malay-huggingface/albert-base-bahasa-cased
10f861bd1e2acc169a3a4a69503be76f3890bd24
2021-09-26T12:35:12.000Z
[ "pytorch", "albert", "fill-mask", "ms", "transformers", "autotrain_compatible" ]
fill-mask
false
malay-huggingface
null
malay-huggingface/albert-base-bahasa-cased
7
null
transformers
14,155
--- language: ms --- # albert-base-bahasa-cased Pretrained ALBERT base language model for Malay. ## Pretraining Corpus `albert-base-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/albert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AlbertTokenizer, AlbertModel model = AlbertModel.from_pretrained('malay-huggingface/albert-base-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-base-bahasa-cased', do_lower_case = False, ) ``` ## Example using AutoModelWithLMHead ```python from transformers import AlbertTokenizer, AlbertForMaskedLM, pipeline model = AlbertForMaskedLM.from_pretrained('malay-huggingface/albert-base-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-base-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .') ``` Output is, ```text [{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.', 'score': 0.09178723394870758, 'token': 1957, 'token_str': 'M a l a y s i a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.', 'score': 0.053524162620306015, 'token': 2134, 'token_str': 'n e g a r a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.', 'score': 0.031137527897953987, 'token': 9383, 'token_str': 'd i k e m u k a k a n'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.', 'score': 0.02826082520186901, 'token': 13838, 'token_str': '1 M D B'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.', 'score': 0.026568090543150902, 'token': 11465, 'token_str': 'd i t o l a k'}] ```
malay-huggingface/t5-super-super-tiny-bahasa-cased
83377fc13c6e65f0175637a6052c2228ebef3304
2021-09-10T13:03:44.000Z
[ "pytorch", "t5", "feature-extraction", "ms", "transformers" ]
feature-extraction
false
malay-huggingface
null
malay-huggingface/t5-super-super-tiny-bahasa-cased
7
null
transformers
14,156
--- language: ms --- # t5-super-super-tiny-bahasa-cased Pretrained T5 super-super-tiny language model for Malay. ## Pretraining Corpus `t5-super-super-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-super-super-tiny-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
malteos/arqmath-bert-base-cased
1dfd56b760877f17fd17167e406f023169b9f601
2021-05-19T22:47:01.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
malteos
null
malteos/arqmath-bert-base-cased
7
null
transformers
14,157
Entry not found
manishiitg/spanbert-recruit-qa
116072c40f930d1c8bc394cfdf4e79bbbff44e03
2021-05-19T22:54:34.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manishiitg
null
manishiitg/spanbert-recruit-qa
7
null
transformers
14,158
Entry not found
manueltonneau/biocovid-bert-large-cased
a0da109fe8ac5eb0eb03f1303c90630d3fdbb233
2020-06-03T07:40:46.000Z
[ "pytorch", "transformers" ]
null
false
manueltonneau
null
manueltonneau/biocovid-bert-large-cased
7
null
transformers
14,159
Entry not found
marcelcastrobr/sagemaker-distilbert-emotion-2
ea1e6ceb8029dcd9a5c60b7200ece01bd651b818
2021-11-19T13:19:22.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
marcelcastrobr
null
marcelcastrobr/sagemaker-distilbert-emotion-2
7
null
transformers
14,160
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion-2 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9315 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1442 - Accuracy: 0.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9316 | 1.0 | 500 | 0.2384 | 0.918 | | 0.1849 | 2.0 | 1000 | 0.1599 | 0.9265 | | 0.1047 | 3.0 | 1500 | 0.1442 | 0.9315 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
marcosgg/bert-base-gl-cased
83354127383fd94a28cc3435d67ca9ca5dfe07bb
2021-09-09T10:34:59.000Z
[ "pytorch", "bert", "fill-mask", "gl", "pt", "arxiv:2106.13553", "transformers", "autotrain_compatible" ]
fill-mask
false
marcosgg
null
marcosgg/bert-base-gl-cased
7
1
transformers
14,161
--- language: - gl - pt widget: - text: "A mesa estaba feita de [MASK]." --- # BERT for Galician (Base) This is a base pre-trained BERT model (12 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021. There is also a small version (6 layers, cased): `marcosgg/bert-small-gl-cased` ## Citation If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553): ``` @inproceedings{garcia-2021-exploring, title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy", author = "Garcia, Marcos", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.281", doi = "10.18653/v1/2021.acl-long.281", pages = "3625--3640" } ```
maroo93/practice01
2f209143acfed203e856f429560fdaf0484a8cdd
2021-05-19T23:06:33.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maroo93
null
maroo93/practice01
7
null
transformers
14,162
Entry not found
masapasa/sagemaker-distilbert-emotion
be07f4d280f8790f500863da22a0fe8ed6673001
2021-11-17T20:24:01.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
masapasa
null
masapasa/sagemaker-distilbert-emotion
7
null
transformers
14,163
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.915 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2590 - Accuracy: 0.915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9292 | 1.0 | 500 | 0.2590 | 0.915 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
matheusntg/character-bert-pt-small
c56cbe8016cc429d96c3ccf9197aa81432f4e35a
2021-06-27T01:12:29.000Z
[ "pytorch", "character_bert", "transformers" ]
null
false
matheusntg
null
matheusntg/character-bert-pt-small
7
null
transformers
14,164
Entry not found
maximedb/autonlp-vaccinchat-22134694
e69a8cf88fb6c6fa1b5c18a43c045b8ec410305c
2021-10-19T12:50:01.000Z
[ "pytorch", "tf", "roberta", "text-classification", "nl", "dataset:maximedb/autonlp-data-vaccinchat", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
maximedb
null
maximedb/autonlp-vaccinchat-22134694
7
null
transformers
14,165
--- tags: autonlp language: nl widget: - text: "I love AutoNLP 🤗" datasets: - maximedb/autonlp-data-vaccinchat co2_eq_emissions: 14.525955245648218 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22134694 - CO2 Emissions (in grams): 14.525955245648218 ## Validation Metrics - Loss: 1.7039562463760376 - Accuracy: 0.6369376479873717 - Macro F1: 0.5363181342408181 - Micro F1: 0.6369376479873717 - Weighted F1: 0.6309793486221543 - Macro Precision: 0.5533353910494714 - Micro Precision: 0.6369376479873717 - Weighted Precision: 0.676981050732216 - Macro Recall: 0.5828723356986293 - Micro Recall: 0.6369376479873717 - Weighted Recall: 0.6369376479873717 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/maximedb/autonlp-vaccinchat-22134694 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("maximedb/autonlp-vaccinchat-22134694", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("maximedb/autonlp-vaccinchat-22134694", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
medA/autonlp-FR_another_test-565016091
c5f7ca051e965d70841fec81085136a8aafb6962
2022-02-11T11:08:02.000Z
[ "pytorch", "camembert", "text-classification", "fr", "dataset:medA/autonlp-data-FR_another_test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
medA
null
medA/autonlp-FR_another_test-565016091
7
null
transformers
14,166
--- tags: autonlp language: fr widget: - text: "I love AutoNLP 🤗" datasets: - medA/autonlp-data-FR_another_test co2_eq_emissions: 70.54639641012226 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 565016091 - CO2 Emissions (in grams): 70.54639641012226 ## Validation Metrics - Loss: 0.5170354247093201 - Accuracy: 0.8545909432074056 - Macro F1: 0.7910662503820883 - Micro F1: 0.8545909432074056 - Weighted F1: 0.8539837213761081 - Macro Precision: 0.8033640381948799 - Micro Precision: 0.8545909432074056 - Weighted Precision: 0.856160322286008 - Macro Recall: 0.7841845637031052 - Micro Recall: 0.8545909432074056 - Weighted Recall: 0.8545909432074056 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/medA/autonlp-FR_another_test-565016091 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("medA/autonlp-FR_another_test-565016091", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("medA/autonlp-FR_another_test-565016091", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
megagonlabs/optimus-yelp
5effa185646ac2111e1b5dbe6daaf2c6081a0490
2021-09-11T00:16:32.000Z
[ "pytorch", "en", "transformers", "summarization", "license:bsd-3-clause" ]
summarization
false
megagonlabs
null
megagonlabs/optimus-yelp
7
null
transformers
14,167
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## Optimus model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
michaelrglass/albert-base-rci-wtq-col
5998a0755b7e0b9589d626bd0105b33cdf9e2459
2021-06-16T16:03:50.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-wtq-col
7
null
transformers
14,168
Entry not found
mmcquade11/autonlp-reuters-summarization-34018133
8be0083aeef0566c8a2d76fa0cf5e4b6e65efd28
2021-11-19T14:45:38.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:mmcquade11/autonlp-data-reuters-summarization", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
mmcquade11
null
mmcquade11/autonlp-reuters-summarization-34018133
7
null
transformers
14,169
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-reuters-summarization co2_eq_emissions: 286.4350821612984 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 34018133 - CO2 Emissions (in grams): 286.4350821612984 ## Validation Metrics - Loss: 1.1805976629257202 - Rouge1: 55.4013 - Rouge2: 30.8004 - RougeL: 52.57 - RougeLsum: 52.6103 - Gen Len: 15.3458 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/mmcquade11/autonlp-reuters-summarization-34018133 ```
morenolq/SumTO_FNS2020
85984f55df8284649b1d3403accf12a005f9cefc
2021-05-20T00:12:45.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
morenolq
null
morenolq/SumTO_FNS2020
7
null
transformers
14,170
This is the *best performing* model used in the paper: "End-to-end Training For Financial Report Summarization" https://www.aclweb.org/anthology/2020.fnp-1.20/
moshew/minylm-L3-aug-sst2-distilled
3838e96a5947e8607e6e3952110b63e0fcd881ff
2022-02-24T09:50:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/minylm-L3-aug-sst2-distilled
7
null
transformers
14,171
{'test_accuracy': 0.911697247706422, 'test_loss': 0.24090610444545746, 'test_runtime': 0.4372, 'test_samples_per_second': 1994.475, 'test_steps_per_second': 16.011}
moyix/csrc_774m
71c51c0c94a3a7be5cfca0182526acdaa4e93853
2021-09-23T16:12:13.000Z
[ "pytorch", "gpt2", "text-generation", "multilingual", "transformers", "programming", "causal-lm", "license:cc0-1.0" ]
text-generation
false
moyix
null
moyix/csrc_774m
7
null
transformers
14,172
--- language: multilingual thumbnail: https://doesnotexist.codes/messlab.png tags: - programming - gpt2 - causal-lm license: cc0-1.0 --- # GPT-CSRC This is a GPT2 774M model trained on the C/C++ code of the top 10,000 most popular packages in Debian, according to the [Debian Popularity Contest](https://popcon.debian.org/). The source files were deduplicated using a process similar to the OpenWebText preprocessing (basically a locality-sensitive hash to detect near-duplicates). The model was originally trained using [NVIDIA's Megatron-LM](https://github.com/nvidia/Megatron-LM) but has been converted to Huggingface. Note that the tokenizer is *not* the standard GPT2 BPE vocab, but one that has been trained for this dataset; the tokenizer is also available from this repository. The processed dataset (in JSON format) can be found here: [csrc\_dataset\_large.json.gz](https://moyix.net/~moyix/csrc_dataset_large.json.gz). This model was used to generate snippets for the web site [This Code Does Not Exist](https://doesnotexist.codes/). # Usage ``` >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("moyix/csrc_774m") >>> device = torch.device("cuda") >>> model.to(device) >>> tokenizer = AutoTokenizer.from_pretrained("moyix/csrc_774m") >>> prompt = tokenizer.encode('// say hello\nvoid hello() {', return_tensors="pt") >>> output = model.generate(input_ids=prompt.to(device), max_length=32, num_return_sequences=1, do_sample=True, num_beams=4) >>> print(tokenizer.decode(output[0].tolist(),clean_up_tokenization_spaces=True)) // say hello void hello() { std::cout << "hello" << std::endl; } int main() { ```
mrm8488/RoBasquERTa
16b2188473688a77c208a1c34de625d23a9b1bc6
2021-05-20T18:05:08.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "eu", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/RoBasquERTa
7
null
transformers
14,173
--- language: eu widget: - text: "Euskara da Euskal Herriko <mask> ofiziala" - text: "Gaur egun, Euskadik Espainia osoko ekonomia <mask> du" --- # RoBasquERTa: RoBERTa-like Language model trained on OSCAR Basque corpus
mrm8488/bert-small-2-finetuned-squadv2
e8b1a7b4639c89d4e88e3f0f6c7e71b20461de69
2021-05-20T00:32:45.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-small-2-finetuned-squadv2
7
null
transformers
14,174
Entry not found
mrm8488/bert-small2bert-small_shared-finetuned-wikisql
f3ee0b019321f067819545b5cf8f8426783494c7
2020-11-12T23:43:15.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/bert-small2bert-small_shared-finetuned-wikisql
7
null
transformers
14,175
Entry not found
mrm8488/bert-tiny-4-finetuned-squadv2
fd13f8f03e48339846a50e76116726150e986963
2021-05-20T00:39:36.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-tiny-4-finetuned-squadv2
7
null
transformers
14,176
Entry not found
mrm8488/wav2vec2-large-xlsr-53-ukrainian
91450763b57cea8b229a605e7e77a2504b74decf
2021-07-06T13:20:13.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "uk", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrm8488
null
mrm8488/wav2vec2-large-xlsr-53-ukrainian
7
null
transformers
14,177
--- language: uk datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Ukrainian Manuel Romero results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice uk type: common_voice args: uk metrics: - name: Test WER type: wer value: 41.82 --- # Wav2Vec2-Large-XLSR-53-ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "uk", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.82 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
msakthiganesh/TabQGen-Small
59ae31fc5fafad22a2ffede5f9959fcad435672b
2021-08-18T14:37:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
msakthiganesh
null
msakthiganesh/TabQGen-Small
7
null
transformers
14,178
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
muhtasham/autonlp-Doctor_DE-24595544
6330780c5cd857927ce56e10384e11d63710c751
2021-10-22T10:51:44.000Z
[ "pytorch", "distilbert", "text-classification", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
muhtasham
null
muhtasham/autonlp-Doctor_DE-24595544
7
null
transformers
14,179
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 92.87363201770962 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595544 - CO2 Emissions (in grams): 92.87363201770962 ## Validation Metrics - Loss: 0.3001164197921753 - MSE: 0.3001164197921753 - MAE: 0.24272102117538452 - R2: 0.8465975006681247 - RMSE: 0.5478288531303406 - Explained Variance: 0.8468209505081177 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595544 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595544", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595544", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mvonwyl/distilbert-base-uncased-finetuned-squad2
916458d4966367cca235fa26977b66106c1ca2f2
2021-11-02T19:29:25.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mvonwyl
null
mvonwyl/distilbert-base-uncased-finetuned-squad2
7
1
transformers
14,180
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2023 | 1.0 | 8157 | 1.2166 | | 0.9409 | 2.0 | 16314 | 1.3350 | | 0.7472 | 3.0 | 24471 | 1.4218 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
mwesner/reformer-clm
0e32b4721caa6f841f945786bec4b2dc78f3855e
2021-09-05T13:44:41.000Z
[ "pytorch", "reformer", "text-generation", "transformers", "model-index" ]
text-generation
false
mwesner
null
mwesner/reformer-clm
7
null
transformers
14,181
--- model-index: - name: reformer-clm --- ## reformer-clm This casual language model was trained from scratch on CNN/Dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.8321 | 1.0 | 18412 | 3.8074 | | 3.4965 | 2.0 | 36824 | 3.4223 | | 3.1927 | 3.0 | 55236 | 3.0815 | | 3.046 | 4.0 | 73648 | 2.9270 | | 2.9781 | 5.0 | 92060 | 2.8515 | | 2.9398 | 6.0 | 110472 | 2.8082 | | 2.9293 | 7.0 | 128884 | 2.7904 | | 2.9212 | 8.0 | 147296 | 2.7817 | | 2.9169 | 9.0 | 165708 | 2.7787 | | 2.9197 | 10.0 | 184120 | 2.7783 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.9.0 - Datasets 1.2.1 - Tokenizers 0.10.3
nielsr/detr-resnet-50
05dcd30831b61ef54f178c9cd63f490dc7e02700
2021-06-08T13:56:54.000Z
[ "pytorch", "detr", "object-detection", "transformers" ]
object-detection
false
nielsr
null
nielsr/detr-resnet-50
7
null
transformers
14,182
Entry not found
norirahul/SMSTransformer
106320210f55e02f24d5c49a00b9c12395766399
2021-11-04T18:19:21.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
norirahul
null
norirahul/SMSTransformer
7
null
transformers
14,183
Entry not found
nouamanetazi/cover-letter-gpt2
04e2676216105d11c8ffa90034820be33d2e829b
2021-11-25T01:18:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nouamanetazi
null
nouamanetazi/cover-letter-gpt2
7
1
transformers
14,184
Entry not found
nurkayevaa/autonlp-bert-covid-407910467
c1db9e60bf8efe1a199aed39b5fa63f3537e3ff6
2021-12-11T05:31:06.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:nurkayevaa/autonlp-data-bert-covid", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
nurkayevaa
null
nurkayevaa/autonlp-bert-covid-407910467
7
null
transformers
14,185
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - nurkayevaa/autonlp-data-bert-covid co2_eq_emissions: 10.719439124704492 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 407910467 - CO2 Emissions (in grams): 10.719439124704492 ## Validation Metrics - Loss: 0.12029844522476196 - Accuracy: 0.9516339869281045 - Precision: 0.9477786438035853 - Recall: 0.9650793650793651 - AUC: 0.9907376734912967 - F1: 0.9563507668108534 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/nurkayevaa/autonlp-bert-covid-407910467 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nurkayevaa/autonlp-bert-covid-407910467", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nurkayevaa/autonlp-bert-covid-407910467", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
obss/mt5-base-3task-highlight-tquad2
03b01259cdf1c87c7824e6c9121992b6332140a3
2021-12-03T23:49:59.000Z
[ "pytorch", "mt5", "text2text-generation", "tr", "dataset:tquad1", "dataset:tquad2", "dataset:xquad", "arxiv:2111.06476", "transformers", "question-generation", "answer-extraction", "question-answering", "text-generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
obss
null
obss/mt5-base-3task-highlight-tquad2
7
null
transformers
14,186
--- language: tr datasets: - tquad1 - tquad2 - xquad tags: - text2text-generation - question-generation - answer-extraction - question-answering - text-generation pipeline_tag: text2text-generation widget: - text: "generate question: Legendary Entertainment, 2016 yılında bilimkurgu romanı Dune'un <hl> film ve TV haklarını <hl> satın aldı. Geliştirme kısa bir süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir uyarlamasını ekledi." example_title: "Question Generation (Movie)" - text: "generate question: Fatih Sultan Mehmet, Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da <hl> bir antlaşma yaparak <hl> Venedik'le 16 yıllık savaşa son verdi." example_title: "Question Generation (History)" - text: "generate question: Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da bir antlaşma yaparak <hl> Venedik'le <hl> 16 yıllık savaşa sona verdi." example_title: "Question Generation (History 2)" - text: "extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>" example_title: "Answer Extraction (History)" - text: "question: Sunulan yöntemle ne yapılabilir? context: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." license: cc-by-4.0 --- # mt5-base for Turkish Question Generation Automated question generation and question answering using text-to-text transformers by OBSS AI. ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-base-3task-highlight-tquad2') ``` ## Citation 📜 ``` @article{akyon2021automated, title={Automated question generation and question answering from Turkish texts using text-to-text transformers}, author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin}, journal={arXiv preprint arXiv:2111.06476}, year={2021} } ``` ## Overview ✔️ **Language model:** mt5-base **Language:** Turkish **Downstream-task:** Extractive QA/QG, Answer Extraction **Training data:** TQuADv2-train **Code:** https://github.com/obss/turkish-question-generation **Paper:** https://arxiv.org/abs/2111.06476 ## Hyperparameters ``` batch_size = 256 n_epochs = 15 base_LM_model = "mt5-base" max_source_length = 512 max_target_length = 64 learning_rate = 1.0e-3 task_lisst = ["qa", "qg", "ans_ext"] qg_format = "highlight" ``` ## Performance Refer to [paper](https://arxiv.org/abs/2111.06476). ## Usage 🔥 ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-base-3task-highlight-tquad2') context = """ Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır. Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir. """ # a) Fully Automated Question Generation generation_api(task='question-generation', context=context) # b) Question Answering question = "Bu model ne işe yarar?" generation_api(task='question-answering', context=context, question=question) # b) Answer Extraction generation_api(task='answer-extraction', context=context) ```
obss/mt5-small-3task-highlight-tquad2
030833b0f378afbb88130ed124ae20a50f932863
2021-12-03T23:48:47.000Z
[ "pytorch", "mt5", "text2text-generation", "tr", "dataset:tquad1", "dataset:tquad2", "dataset:xquad", "arxiv:2111.06476", "transformers", "question-generation", "answer-extraction", "question-answering", "text-generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
obss
null
obss/mt5-small-3task-highlight-tquad2
7
null
transformers
14,187
--- language: tr datasets: - tquad1 - tquad2 - xquad tags: - text2text-generation - question-generation - answer-extraction - question-answering - text-generation pipeline_tag: text2text-generation widget: - text: "generate question: Legendary Entertainment, 2016 yılında bilimkurgu romanı Dune'un <hl> film ve TV haklarını <hl> satın aldı. Geliştirme kısa bir süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir uyarlamasını ekledi." example_title: "Question Generation (Movie)" - text: "generate question: Fatih Sultan Mehmet, Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da <hl> bir antlaşma yaparak Venedik'le 16 yıllık savaşa son verdi." example_title: "Question Generation (History)" - text: "extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>" example_title: "Answer Extraction (History)" - text: "question: Bu model ne ise yarar? context: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." example_title: "Answer Extraction (Open Domain)" license: cc-by-4.0 --- # mt5-small for Turkish Question Generation Automated question generation and question answering using text-to-text transformers by OBSS AI. ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-highlight-tquad2') ``` ## Citation 📜 ``` @article{akyon2021automated, title={Automated question generation and question answering from Turkish texts using text-to-text transformers}, author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin}, journal={arXiv preprint arXiv:2111.06476}, year={2021} } ``` ## Overview ✔️ **Language model:** mt5-small **Language:** Turkish **Downstream-task:** Extractive QA/QG, Answer Extraction **Training data:** TQuADv2-train **Code:** https://github.com/obss/turkish-question-generation **Paper:** https://arxiv.org/abs/2111.06476 ## Hyperparameters ``` batch_size = 256 n_epochs = 15 base_LM_model = "mt5-small" max_source_length = 512 max_target_length = 64 learning_rate = 1.0e-3 task_lisst = ["qa", "qg", "ans_ext"] qg_format = "highlight" ``` ## Performance Refer to [paper](https://arxiv.org/abs/2111.06476). ## Usage 🔥 ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-highlight-tquad2') context = """ Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır. Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir. """ # a) Fully Automated Question Generation generation_api(task='question-generation', context=context) # b) Question Answering question = "Bu model ne işe yarar?" generation_api(task='question-answering', context=context, question=question) # b) Answer Extraction generation_api(task='answer-extraction', context=context) ```
oferweintraub/bert-base-finance-sentiment-noisy-search
570ae1d10cfad341b8c0607097a00b3a4a838f59
2022-03-31T14:13:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "Finance-sentiment-analysis", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
oferweintraub
null
oferweintraub/bert-base-finance-sentiment-noisy-search
7
1
transformers
14,188
--- license: apache-2.0 tags: - Finance-sentiment-analysis - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: bert-base-finance-sentiment-noisy-search results: [] widget: - text: "Third quarter reported revenues were $10.9 billion, up 5 percent compared to prior year and up 8 percent on a currency-neutral basis" example_title: "Positive" - text: "The London-listed website for businesses reported a pretax loss of $26.6 million compared with a loss of $12.9 million the previous year" example_title: "Negative" - text: "Microsoft updates Outlook, Teams, and PowerPoint to be hybrid work ready" example_title: "Neutral" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finance-sentiment-noisy-search This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on Kaggle finance news sentiment analysis with data enhancement using noisy search. The process is explained below: 1. First "bert-base-uncased" was fine-tuned on Kaggle's finance news sentiment analysis https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news dataset achieving accuracy of about 88% 2. We then used a logistic-regression classifier on the same data. Here we looked at coefficients that contributed the most to the "Positive" and "Negative" classes by inspecting only bi-grams. 3. Using the top 25 bi-grams per class (i.e. "Positive" / "Negative") we invoked Bing news search with those bi-grams and retrieved up to 50 news items per bi-gram phrase. 4. We called it "noisy-search" because it is assumed the positive bi-grams (e.g. "profit rose" , "growth net") give rise to positive examples whereas negative bi-grams (e.g. "loss increase", "share loss") result in negative examples but note that we didn't test for the validity of this assumption (hence: noisy-search) 5. For each article we kept the title + excerpt and labeled it according to pre-assumptions on class associations. 6. We then trained the same model on the noisy data and apply it to an held-out test set from the original data set split. 7. Training with couple of thousands noisy "positives" and "negatives" examples yielded a test set accuracy of about 95%. 8. It shows that by automatically collecting noisy examples using search we can boost accuracy performance from about 88% to more than 95%. Accuracy results for Logistic Regression (LR) and BERT (base-cased) are shown in the attached pdf: https://drive.google.com/file/d/1MI9gRdppactVZ_XvhCwvoaOV1aRfprrd/view?usp=sharing ## Model description BERT model trained on noisy data from search results. See PDF for more details. ## Intended uses & limitations Intended for use on finance news sentiment analysis with 3 options: "Positive", "Neutral" and "Negative" To get the best results feed the classifier with the title and either the 1st paragraph or a short news summarization e.g. of up to 64 tokens. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
orzhan/bart-transcription-aggregation
dc194adf5bfd70504bbd0896572e6e348e19098e
2022-06-11T07:22:21.000Z
[ "pytorch", "bart", "text2text-generation", "ru", "transformers", "autotrain_compatible" ]
text2text-generation
false
orzhan
null
orzhan/bart-transcription-aggregation
7
null
transformers
14,189
--- language: ru --- BART model fine-tuned to aggregate crowd-sourced transcriptions. Repository: [GitHub](https://github.com/orzhan/bart-transcription-aggregation)
pablouribe/bertstem-copus-supercategories
54f1db39a917e6cdaaba916f0e1b448c037769fb
2022-02-01T06:00:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/bertstem-copus-supercategories
7
null
transformers
14,190
Entry not found
patrickvonplaten/distilhubert-timit
b4bf85616fe4d219d41ce82f55c92a659a8c7672
2021-10-28T00:32:57.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/distilhubert-timit
7
null
transformers
14,191
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: distilhubert-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-timit This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.3601 - Wer: 0.6776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.4447 | 0.69 | 100 | 4.9546 | 1.0 | | 2.9499 | 1.38 | 200 | 2.9519 | 1.0 | | 2.8989 | 2.07 | 300 | 2.8624 | 1.0 | | 2.2076 | 2.76 | 400 | 2.1089 | 1.0008 | | 1.4186 | 3.45 | 500 | 1.4112 | 0.9165 | | 0.9951 | 4.14 | 600 | 1.1378 | 0.7701 | | 0.9754 | 4.83 | 700 | 1.0152 | 0.7274 | | 0.9364 | 5.52 | 800 | 0.9619 | 0.7011 | | 0.6557 | 6.21 | 900 | 0.9144 | 0.6868 | | 0.5681 | 6.9 | 1000 | 0.8899 | 0.6683 | | 0.66 | 7.59 | 1100 | 0.8992 | 0.6654 | | 0.6144 | 8.28 | 1200 | 0.9299 | 0.6898 | | 0.4099 | 8.97 | 1300 | 0.9510 | 0.6674 | | 0.3384 | 9.66 | 1400 | 0.9598 | 0.6612 | | 0.3163 | 10.34 | 1500 | 0.9954 | 0.6612 | | 0.4204 | 11.03 | 1600 | 1.0164 | 0.6607 | | 0.1932 | 11.72 | 1700 | 1.0637 | 0.6658 | | 0.1449 | 12.41 | 1800 | 1.1190 | 0.6652 | | 0.1803 | 13.1 | 1900 | 1.1260 | 0.6689 | | 0.328 | 13.79 | 2000 | 1.2186 | 0.6751 | | 0.0838 | 14.48 | 2100 | 1.2591 | 0.6909 | | 0.0766 | 15.17 | 2200 | 1.2529 | 0.6780 | | 0.0956 | 15.86 | 2300 | 1.2537 | 0.6668 | | 0.2339 | 16.55 | 2400 | 1.3210 | 0.6797 | | 0.0431 | 17.24 | 2500 | 1.3241 | 0.6781 | | 0.0508 | 17.93 | 2600 | 1.3184 | 0.6683 | | 0.0616 | 18.62 | 2700 | 1.3728 | 0.6889 | | 0.1608 | 19.31 | 2800 | 1.3572 | 0.6771 | | 0.0378 | 20.0 | 2900 | 1.3601 | 0.6776 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-common_voice-tr-demo-dist
45206a11c08415e272b5714542768f23e6903f7a
2021-12-20T12:54:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "speech-recognition", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-common_voice-tr-demo-dist
7
1
transformers
14,192
--- language: - tr license: apache-2.0 tags: - speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - Wer: 0.3581 - Cer: 0.0805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - num_gpus: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7391 | 0.92 | 100 | 3.5760 | 1.0 | | 2.927 | 1.83 | 200 | 3.0796 | 0.9999 | | 0.9009 | 2.75 | 300 | 0.9278 | 0.8226 | | 0.6529 | 3.67 | 400 | 0.5926 | 0.6367 | | 0.3623 | 4.59 | 500 | 0.5372 | 0.5692 | | 0.2888 | 5.5 | 600 | 0.4407 | 0.4838 | | 0.285 | 6.42 | 700 | 0.4341 | 0.4694 | | 0.0842 | 7.34 | 800 | 0.4153 | 0.4302 | | 0.1415 | 8.26 | 900 | 0.4317 | 0.4136 | | 0.1552 | 9.17 | 1000 | 0.4145 | 0.4013 | | 0.1184 | 10.09 | 1100 | 0.4115 | 0.3844 | | 0.0556 | 11.01 | 1200 | 0.4182 | 0.3862 | | 0.0851 | 11.93 | 1300 | 0.3985 | 0.3688 | | 0.0961 | 12.84 | 1400 | 0.4030 | 0.3665 | | 0.0596 | 13.76 | 1500 | 0.3880 | 0.3631 | | 0.0359 | 14.68 | 1600 | 0.3878 | 0.3589 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-sv
54e90f03f604b5231ec29b0a218008c4304e728c
2021-12-10T18:14:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sv", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-sv
7
1
transformers
14,193
--- language: - sv tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-phoneme-300m-sv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2vec2-xls-r-phoneme-300m-sv **Note**: The tokenizer was created from the official Swedish phoneme vocabulary as defined here: https://github.com/microsoft/UniSpeech/blob/main/UniSpeech/examples/unispeech/data/sv/phonesMatches_reduced.json One can simply download the file, rename it to `vocab.json` and load a `Wav2Vec2PhonemeCTCTokenizer.from_pretrained("./directory/with/vocab.json/")`. This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.9707 - PER: 0.2215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results See Tensorboard traces ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.1 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-tr
04b8ab164da2249f6dc1181632dda420ff5a2cdd
2021-12-10T18:10:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-tr
7
1
transformers
14,194
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-phoneme-300m-tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2vec2-xls-r-phoneme-300m-tr This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.6380 - PER: 0.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | PER | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.6687 | 0.92 | 100 | 12.4567 | 1.0 | | 3.4219 | 1.83 | 200 | 3.4704 | 1.0 | | 3.1846 | 2.75 | 300 | 3.2281 | 0.9935 | | 2.0076 | 3.67 | 400 | 1.7415 | 0.5222 | | 1.0244 | 4.59 | 500 | 1.0290 | 0.3323 | | 0.7095 | 5.5 | 600 | 0.8424 | 0.2859 | | 0.619 | 6.42 | 700 | 0.7389 | 0.2232 | | 0.3541 | 7.34 | 800 | 0.7049 | 0.2043 | | 0.2946 | 8.26 | 900 | 0.7065 | 0.2153 | | 0.2868 | 9.17 | 1000 | 0.6840 | 0.2115 | | 0.2245 | 10.09 | 1100 | 0.6714 | 0.1952 | | 0.1394 | 11.01 | 1200 | 0.6864 | 0.1954 | | 0.1288 | 11.93 | 1300 | 0.6696 | 0.2017 | | 0.1568 | 12.84 | 1400 | 0.6468 | 0.1843 | | 0.1269 | 13.76 | 1500 | 0.6736 | 0.1965 | | 0.1101 | 14.68 | 1600 | 0.6689 | 0.1915 | | 0.1388 | 15.6 | 1700 | 0.6690 | 0.1782 | | 0.0739 | 16.51 | 1800 | 0.6364 | 0.1734 | | 0.0897 | 17.43 | 1900 | 0.6480 | 0.1748 | | 0.0795 | 18.35 | 2000 | 0.6356 | 0.1695 | | 0.0823 | 19.27 | 2100 | 0.6382 | 0.1685 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.1 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
pertschuk/albert-base-squad-classifier-ms
663fc9e2bd526913a0148e9cc684c48017e744e5
2020-04-24T16:05:01.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
pertschuk
null
pertschuk/albert-base-squad-classifier-ms
7
null
transformers
14,195
Entry not found
pertschuk/albert-base-squad-classifier
89541a8e1866d241941870bfa2ea1ee514a0a6a0
2020-04-24T16:05:03.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
pertschuk
null
pertschuk/albert-base-squad-classifier
7
null
transformers
14,196
Entry not found
piEsposito/braquad-bert-qna
e246fa43bb8060ee503002c5c3707dac14bb5b71
2021-05-20T02:42:18.000Z
[ "pytorch", "jax", "bert", "question-answering", "pt-br", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
piEsposito
null
piEsposito/braquad-bert-qna
7
1
transformers
14,197
--- language: - pt-br tags: - question-answering license: apache-2.0 pipeline_tag: question-answering metrics: - em - f1 --- # BraQuAD BERT ## Model description This is a question-answering model trained in BraQuAD 2.0, a version of SQuAD 2.0 translated to PT-BR using Google Cloud Translation API. ### Context Edith Ranzini (São Paulo,[1] 1946) é uma engenheira brasileira formada pela USP, professora doutora da Pontifícia Universidade Católica de São Paulo[2] e professora sênior da Escola Politécnica da Universidade de São Paulo (Poli).[3] Ela compôs a equipe responsável pela criação do primeiro computador brasileiro, o Patinho Feio,[1] em 1972, e participou do grupo de instituidores da Fundação para o Desenvolvimento Tecnológico da Engenharia, sendo a única mulher do mesmo.[4][2] Atua nas áreas de inteligência artificial, engenharia de computação, redes neurais e sistemas gráficos. Na sua época de prestar o vestibular, inscreveu-se para física na USP e para engenharia na Poli-USP,[3] sendo aprovada nesta última em 1965, ingressando como uma das 12 mulheres do total de 360 calouros. Em 1969, formou-se como engenheira de eletricidade, permanecendo na universidade para fazer sua pós-graduação. Nessa época entrou para o Laboratório de Sistemas Digitais (LSD),atual Departamento de Engenharia de Computação e Sistemas Digitais, criado pelo professor Antônio Hélio Guerra Vieira.[3] Em 1970, deu início ao seu mestrado em Engenharia de Sistemas pela USP, concluindo o mesmo em 1975.[2] Nesse período, permaneceu no LSD e fez parte do grupo responsável pelo desenvolvimento do primeiro computador brasileiro, o Patinho Feio (1971-1972) e do G10 (1973-1975), primeiro computador brasileiro de médio porte, feito para o Grupo de trabalho Especial (GTE), posteriormente Digibras. ### Examples: 1-Alem do Patinho feio qual outro projeto edith trabalhou? Answer: G10 2-Quantas mulheres entraram na Poli em 1965? Answer: 12 3-Qual grande projeto edith trabalhou? Answer: do primeiro computador brasileiro 4-Qual o primeiro computador brasileiro? Answer: Patinho Feio ## Expected results As for an example, let's show a context and some questions you can ask, as well as the expected responses. This QnA pairs were not part of the training dataset. #### How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer import torch mname = "piEsposito/braquad-bert-qna" model = AutoModelForQuestionAnswering.from_pretrained(mname) tokenizer = AutoTokenizer.from_pretrained(mname) context = """Edith Ranzini (São Paulo,[1] 1946) é uma engenheira brasileira formada pela USP, professora doutora da Pontifícia Universidade Católica de São Paulo[2] e professora sênior da Escola Politécnica da Universidade de São Paulo (Poli).[3] Ela compôs a equipe responsável pela criação do primeiro computador brasileiro, o Patinho Feio,[1] em 1972, e participou do grupo de instituidores da Fundação para o Desenvolvimento Tecnológico da Engenharia, sendo a única mulher do mesmo.[4][2] Atua nas áreas de inteligência artificial, engenharia de computação, redes neurais e sistemas gráficos. Na sua época de prestar o vestibular, inscreveu-se para física na USP e para engenharia na Poli-USP,[3] sendo aprovada nesta última em 1965, ingressando como uma das 12 mulheres do total de 360 calouros.[5] Em 1969, formou-se como engenheira de eletricidade,[2][3] permanecendo na universidade para fazer sua pós-graduação. Nessa época entrou para o Laboratório de Sistemas Digitais (LSD),atual Departamento de Engenharia de Computação e Sistemas Digitais, criado pelo professor Antônio Hélio Guerra Vieira.[3] Em 1970, deu início ao seu mestrado em Engenharia de Sistemas pela USP, concluindo o mesmo em 1975.[2] Nesse período, permaneceu no LSD e fez parte do grupo responsável pelo desenvolvimento do primeiro computador brasileiro, o Patinho Feio (1971-1972) e do G10 (1973-1975), primeiro computador brasileiro de médio porte, feito para o Grupo de trabalho Especial (GTE), posteriormente Digibras.""" # you can try this for all the examples above. question = 'Qual grande projeto edith trabalhou?' string = f"[CLS] {question} [SEP] {context} [SEP]" as_tensor = torch.Tensor(tokenizer.encode(string)).unsqueeze(0) starts, ends = model(as_tensor.long()) s, e = torch.argmax(starts[0]), torch.argmax(ends[0]) print(tokenizer.decode(tokenizer.encode(string)[s:e+1])) # 'do primeiro computador brasileiro' ``` #### Limitations and bias - The model is trained on a dataset translated using Google Cloud API. Due to that, there are some issues with the labels, in some cases, not being identic to the answers. Due to that, the performance cannot reach the level it does with english, handly curated models. Anyway, it is a good progresso towards QnA in PT-BR. ## Training data [BraQuAD dataset](https://github.com/piEsposito/br-quad-2.0). ## Training procedure ## Eval results EM | F1 -------|--------- 0.62 | 0.69 ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={BraQuAD - Dataset para Question Answering em PT-BR}, author={Esposito, Wladimir and Esposito, Piero and Tamais, Ana}, } ```
profoz/mlops-demo
860cee26a30e3d9bb10f515998a6f64c03c45c4c
2022-04-08T13:56:10.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "classification", "sequence-classification", "license:apache-2.0" ]
text-classification
false
profoz
null
profoz/mlops-demo
7
null
transformers
14,198
--- language: - en tags: - classification - sequence-classification license: apache-2.0 --- Github repository [here](https://github.com/sinanuozdemir/oreilly-transformers-nlp)
qarib/bert-base-qarib_far_9920k
d831feb7887c0703f8439d8193a23611362da11e
2021-04-21T13:38:28.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
null
false
qarib
null
qarib/bert-base-qarib_far_9920k
7
null
transformers
14,199
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```