modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
aloxatel/AVG
03327ae501855a31f95411020c419d12d86daddf
2021-05-20T13:47:24.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/AVG
7
null
transformers
14,000
Entry not found
aloxatel/QHR
1720186d8f621a1e109c2b03dffe094eb7aff2e4
2021-05-20T13:57:08.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/QHR
7
null
transformers
14,001
Entry not found
alvp/autonlp-alberti-stanza-names-34318169
f3173e4593bb824bf042cd791c3e7ad8ebd3b8b2
2021-11-19T13:41:53.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:alvp/autonlp-data-alberti-stanza-names", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
alvp
null
alvp/autonlp-alberti-stanza-names-34318169
7
null
transformers
14,002
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - alvp/autonlp-data-alberti-stanza-names co2_eq_emissions: 8.612473981829835 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 34318169 - CO2 Emissions (in grams): 8.612473981829835 ## Validation Metrics - Loss: 1.3520570993423462 - Accuracy: 0.6083916083916084 - Macro F1: 0.5420169617715481 - Micro F1: 0.6083916083916084 - Weighted F1: 0.5963328136975058 - Macro Precision: 0.5864033493660455 - Micro Precision: 0.6083916083916084 - Weighted Precision: 0.6364793882921277 - Macro Recall: 0.5545405576555766 - Micro Recall: 0.6083916083916084 - Weighted Recall: 0.6083916083916084 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alvp/autonlp-alberti-stanza-names-34318169 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
anantoj/wav2vec2-xls-r-300m-zh-CN
a91c8f050699ba920330eb28dec505805492c4e8
2022-03-23T18:27:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "zh-CN", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "sv", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anantoj
null
anantoj/wav2vec2-xls-r-300m-zh-CN
7
null
transformers
14,003
--- language: - zh-CN license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - sv datasets: - common_voice model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-CN metrics: - name: Test CER type: cer value: 66.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-CN metrics: - name: Test CER type: cer value: 37.51 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.8122 - Wer: 0.8392 - Cer: 0.2059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 69.215 | 0.74 | 500 | 74.9751 | 1.0 | 1.0 | | 8.2109 | 1.48 | 1000 | 7.0617 | 1.0 | 1.0 | | 6.4277 | 2.22 | 1500 | 6.3811 | 1.0 | 1.0 | | 6.3513 | 2.95 | 2000 | 6.3061 | 1.0 | 1.0 | | 6.2522 | 3.69 | 2500 | 6.2147 | 1.0 | 1.0 | | 5.9757 | 4.43 | 3000 | 5.7906 | 1.1004 | 0.9924 | | 5.0642 | 5.17 | 3500 | 4.2984 | 1.7729 | 0.8214 | | 4.6346 | 5.91 | 4000 | 3.7129 | 1.8946 | 0.7728 | | 4.267 | 6.65 | 4500 | 3.2177 | 1.7526 | 0.6922 | | 3.9964 | 7.39 | 5000 | 2.8337 | 1.8055 | 0.6546 | | 3.8035 | 8.12 | 5500 | 2.5726 | 2.1851 | 0.6992 | | 3.6273 | 8.86 | 6000 | 2.3391 | 2.1029 | 0.6511 | | 3.5248 | 9.6 | 6500 | 2.1944 | 2.3617 | 0.6859 | | 3.3683 | 10.34 | 7000 | 1.9827 | 2.1014 | 0.6063 | | 3.2411 | 11.08 | 7500 | 1.8610 | 1.6160 | 0.5135 | | 3.1299 | 11.82 | 8000 | 1.7446 | 1.5948 | 0.4946 | | 3.0574 | 12.56 | 8500 | 1.6454 | 1.1291 | 0.4051 | | 2.985 | 13.29 | 9000 | 1.5919 | 1.0673 | 0.3893 | | 2.9573 | 14.03 | 9500 | 1.4903 | 1.0604 | 0.3766 | | 2.8897 | 14.77 | 10000 | 1.4614 | 1.0059 | 0.3653 | | 2.8169 | 15.51 | 10500 | 1.3997 | 1.0030 | 0.3550 | | 2.8155 | 16.25 | 11000 | 1.3444 | 0.9980 | 0.3441 | | 2.7595 | 16.99 | 11500 | 1.2911 | 0.9703 | 0.3325 | | 2.7107 | 17.72 | 12000 | 1.2462 | 0.9565 | 0.3227 | | 2.6358 | 18.46 | 12500 | 1.2466 | 0.9955 | 0.3333 | | 2.5801 | 19.2 | 13000 | 1.2059 | 1.0010 | 0.3226 | | 2.5554 | 19.94 | 13500 | 1.1919 | 1.0094 | 0.3223 | | 2.5314 | 20.68 | 14000 | 1.1703 | 0.9847 | 0.3156 | | 2.509 | 21.42 | 14500 | 1.1733 | 0.9896 | 0.3177 | | 2.4391 | 22.16 | 15000 | 1.1811 | 0.9723 | 0.3164 | | 2.4631 | 22.89 | 15500 | 1.1382 | 0.9698 | 0.3059 | | 2.4414 | 23.63 | 16000 | 1.0893 | 0.9644 | 0.2972 | | 2.3771 | 24.37 | 16500 | 1.0930 | 0.9505 | 0.2954 | | 2.3658 | 25.11 | 17000 | 1.0756 | 0.9609 | 0.2926 | | 2.3215 | 25.85 | 17500 | 1.0512 | 0.9614 | 0.2890 | | 2.3327 | 26.59 | 18000 | 1.0627 | 1.1984 | 0.3282 | | 2.3055 | 27.33 | 18500 | 1.0582 | 0.9520 | 0.2841 | | 2.299 | 28.06 | 19000 | 1.0356 | 0.9480 | 0.2817 | | 2.2673 | 28.8 | 19500 | 1.0305 | 0.9367 | 0.2771 | | 2.2166 | 29.54 | 20000 | 1.0139 | 0.9223 | 0.2702 | | 2.2378 | 30.28 | 20500 | 1.0095 | 0.9268 | 0.2722 | | 2.2168 | 31.02 | 21000 | 1.0001 | 0.9085 | 0.2691 | | 2.1766 | 31.76 | 21500 | 0.9884 | 0.9050 | 0.2640 | | 2.1715 | 32.5 | 22000 | 0.9730 | 0.9505 | 0.2719 | | 2.1104 | 33.23 | 22500 | 0.9752 | 0.9362 | 0.2656 | | 2.1158 | 33.97 | 23000 | 0.9720 | 0.9263 | 0.2624 | | 2.0718 | 34.71 | 23500 | 0.9573 | 1.0005 | 0.2759 | | 2.0824 | 35.45 | 24000 | 0.9609 | 0.9525 | 0.2643 | | 2.0591 | 36.19 | 24500 | 0.9662 | 0.9570 | 0.2667 | | 2.0768 | 36.93 | 25000 | 0.9528 | 0.9574 | 0.2646 | | 2.0893 | 37.67 | 25500 | 0.9810 | 0.9169 | 0.2612 | | 2.0282 | 38.4 | 26000 | 0.9556 | 0.8877 | 0.2528 | | 1.997 | 39.14 | 26500 | 0.9523 | 0.8723 | 0.2501 | | 2.0209 | 39.88 | 27000 | 0.9542 | 0.8773 | 0.2503 | | 1.987 | 40.62 | 27500 | 0.9427 | 0.8867 | 0.2500 | | 1.9663 | 41.36 | 28000 | 0.9546 | 0.9065 | 0.2546 | | 1.9945 | 42.1 | 28500 | 0.9431 | 0.9119 | 0.2536 | | 1.9604 | 42.84 | 29000 | 0.9367 | 0.9030 | 0.2490 | | 1.933 | 43.57 | 29500 | 0.9071 | 0.8916 | 0.2432 | | 1.9227 | 44.31 | 30000 | 0.9048 | 0.8882 | 0.2428 | | 1.8784 | 45.05 | 30500 | 0.9106 | 0.8991 | 0.2437 | | 1.8844 | 45.79 | 31000 | 0.8996 | 0.8758 | 0.2379 | | 1.8776 | 46.53 | 31500 | 0.9028 | 0.8798 | 0.2395 | | 1.8372 | 47.27 | 32000 | 0.9047 | 0.8778 | 0.2379 | | 1.832 | 48.01 | 32500 | 0.9016 | 0.8941 | 0.2393 | | 1.8154 | 48.74 | 33000 | 0.8915 | 0.8916 | 0.2372 | | 1.8072 | 49.48 | 33500 | 0.8781 | 0.8872 | 0.2365 | | 1.7489 | 50.22 | 34000 | 0.8738 | 0.8956 | 0.2340 | | 1.7928 | 50.96 | 34500 | 0.8684 | 0.8872 | 0.2323 | | 1.7748 | 51.7 | 35000 | 0.8723 | 0.8718 | 0.2321 | | 1.7355 | 52.44 | 35500 | 0.8760 | 0.8842 | 0.2331 | | 1.7167 | 53.18 | 36000 | 0.8746 | 0.8817 | 0.2324 | | 1.7479 | 53.91 | 36500 | 0.8762 | 0.8753 | 0.2281 | | 1.7428 | 54.65 | 37000 | 0.8733 | 0.8699 | 0.2277 | | 1.7058 | 55.39 | 37500 | 0.8816 | 0.8649 | 0.2263 | | 1.7045 | 56.13 | 38000 | 0.8733 | 0.8689 | 0.2297 | | 1.709 | 56.87 | 38500 | 0.8648 | 0.8654 | 0.2232 | | 1.6799 | 57.61 | 39000 | 0.8717 | 0.8580 | 0.2244 | | 1.664 | 58.35 | 39500 | 0.8653 | 0.8723 | 0.2259 | | 1.6488 | 59.08 | 40000 | 0.8637 | 0.8803 | 0.2271 | | 1.6298 | 59.82 | 40500 | 0.8553 | 0.8768 | 0.2253 | | 1.6185 | 60.56 | 41000 | 0.8512 | 0.8718 | 0.2240 | | 1.574 | 61.3 | 41500 | 0.8579 | 0.8773 | 0.2251 | | 1.6192 | 62.04 | 42000 | 0.8499 | 0.8743 | 0.2242 | | 1.6275 | 62.78 | 42500 | 0.8419 | 0.8758 | 0.2216 | | 1.5697 | 63.52 | 43000 | 0.8446 | 0.8699 | 0.2222 | | 1.5384 | 64.25 | 43500 | 0.8462 | 0.8580 | 0.2200 | | 1.5115 | 64.99 | 44000 | 0.8467 | 0.8674 | 0.2214 | | 1.5547 | 65.73 | 44500 | 0.8505 | 0.8669 | 0.2204 | | 1.5597 | 66.47 | 45000 | 0.8421 | 0.8684 | 0.2192 | | 1.505 | 67.21 | 45500 | 0.8485 | 0.8619 | 0.2187 | | 1.5101 | 67.95 | 46000 | 0.8489 | 0.8649 | 0.2204 | | 1.5199 | 68.69 | 46500 | 0.8407 | 0.8619 | 0.2180 | | 1.5207 | 69.42 | 47000 | 0.8379 | 0.8496 | 0.2163 | | 1.478 | 70.16 | 47500 | 0.8357 | 0.8595 | 0.2163 | | 1.4817 | 70.9 | 48000 | 0.8346 | 0.8496 | 0.2151 | | 1.4827 | 71.64 | 48500 | 0.8362 | 0.8624 | 0.2169 | | 1.4513 | 72.38 | 49000 | 0.8355 | 0.8451 | 0.2137 | | 1.4988 | 73.12 | 49500 | 0.8325 | 0.8624 | 0.2161 | | 1.4267 | 73.85 | 50000 | 0.8396 | 0.8481 | 0.2157 | | 1.4421 | 74.59 | 50500 | 0.8355 | 0.8491 | 0.2122 | | 1.4311 | 75.33 | 51000 | 0.8358 | 0.8476 | 0.2118 | | 1.4174 | 76.07 | 51500 | 0.8289 | 0.8451 | 0.2101 | | 1.4349 | 76.81 | 52000 | 0.8372 | 0.8580 | 0.2140 | | 1.3959 | 77.55 | 52500 | 0.8325 | 0.8436 | 0.2116 | | 1.4087 | 78.29 | 53000 | 0.8351 | 0.8446 | 0.2105 | | 1.415 | 79.03 | 53500 | 0.8363 | 0.8476 | 0.2123 | | 1.4122 | 79.76 | 54000 | 0.8310 | 0.8481 | 0.2112 | | 1.3969 | 80.5 | 54500 | 0.8239 | 0.8446 | 0.2095 | | 1.361 | 81.24 | 55000 | 0.8282 | 0.8427 | 0.2091 | | 1.3611 | 81.98 | 55500 | 0.8282 | 0.8407 | 0.2092 | | 1.3677 | 82.72 | 56000 | 0.8235 | 0.8436 | 0.2084 | | 1.3361 | 83.46 | 56500 | 0.8231 | 0.8377 | 0.2069 | | 1.3779 | 84.19 | 57000 | 0.8206 | 0.8436 | 0.2070 | | 1.3727 | 84.93 | 57500 | 0.8204 | 0.8392 | 0.2065 | | 1.3317 | 85.67 | 58000 | 0.8207 | 0.8436 | 0.2065 | | 1.3332 | 86.41 | 58500 | 0.8186 | 0.8357 | 0.2055 | | 1.3299 | 87.15 | 59000 | 0.8193 | 0.8417 | 0.2075 | | 1.3129 | 87.89 | 59500 | 0.8183 | 0.8431 | 0.2065 | | 1.3352 | 88.63 | 60000 | 0.8151 | 0.8471 | 0.2062 | | 1.3026 | 89.36 | 60500 | 0.8125 | 0.8486 | 0.2067 | | 1.3468 | 90.1 | 61000 | 0.8124 | 0.8407 | 0.2058 | | 1.3028 | 90.84 | 61500 | 0.8122 | 0.8461 | 0.2051 | | 1.2884 | 91.58 | 62000 | 0.8086 | 0.8427 | 0.2048 | | 1.3005 | 92.32 | 62500 | 0.8110 | 0.8387 | 0.2055 | | 1.2996 | 93.06 | 63000 | 0.8126 | 0.8328 | 0.2057 | | 1.2707 | 93.8 | 63500 | 0.8098 | 0.8402 | 0.2047 | | 1.3026 | 94.53 | 64000 | 0.8097 | 0.8402 | 0.2050 | | 1.2546 | 95.27 | 64500 | 0.8111 | 0.8402 | 0.2055 | | 1.2426 | 96.01 | 65000 | 0.8088 | 0.8372 | 0.2059 | | 1.2869 | 96.75 | 65500 | 0.8093 | 0.8397 | 0.2048 | | 1.2782 | 97.49 | 66000 | 0.8099 | 0.8412 | 0.2049 | | 1.2457 | 98.23 | 66500 | 0.8134 | 0.8412 | 0.2062 | | 1.2967 | 98.97 | 67000 | 0.8115 | 0.8382 | 0.2055 | | 1.2817 | 99.7 | 67500 | 0.8128 | 0.8392 | 0.2063 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
andrejmiscic/simcls-scorer-billsum
7859d52a26734d388cd5dec05fe6be63637f1e11
2021-10-16T19:31:32.000Z
[ "pytorch", "roberta", "feature-extraction", "en", "dataset:billsum", "arxiv:2106.01890", "arxiv:1910.00523", "transformers", "simcls" ]
feature-extraction
false
andrejmiscic
null
andrejmiscic/simcls-scorer-billsum
7
null
transformers
14,004
--- language: - en tags: - simcls datasets: - billsum --- # SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of BillSum ([paper](https://arxiv.org/abs/1910.00523), [datasets](https://huggingface.co/datasets/billsum)). It should be used in conjunction with [google/pegasus-billsum](https://huggingface.co/google/pegasus-billsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-billsum", scorer_path="andrejmiscic/simcls-scorer-billsum") document = "This is a legal document." summary = summarizer(document) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. We believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score. | System | Rouge-1 | Rouge-2 | Rouge-L\* | |-----------------|----------------------:|----------------------:|----------------------:| | Pegasus | 57.31 | 40.19 | 45.82 | | **Our results** | --- | --- | --- | | Origin | 56.24, [55.74, 56.74] | 37.46, [36.89, 38.03] | 50.71, [50.19, 51.22] | | Min | 44.37, [43.85, 44.89] | 25.75, [25.30, 26.22] | 38.68, [38.18, 39.16] | | Max | 62.88, [62.42, 63.33] | 43.96, [43.39, 44.54] | 57.50, [57.01, 58.00] | | Random | 54.93, [54.43, 55.43] | 35.42, [34.85, 35.97] | 49.19, [48.68, 49.70] | | **SimCLS** | 57.49, [57.01, 58.00] | 38.54, [37.98, 39.10] | 51.91, [51.39, 52.43] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
anirudh21/bert-base-uncased-finetuned-mrpc
620f498599978dd494b057e027fd894824eed3fc
2022-01-27T05:26:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/bert-base-uncased-finetuned-mrpc
7
1
transformers
14,005
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7916666666666666 - name: F1 type: f1 value: 0.8590381426202321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Accuracy: 0.7917 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.5387 | 0.7402 | 0.8349 | | No log | 2.0 | 126 | 0.5770 | 0.7696 | 0.8513 | | No log | 3.0 | 189 | 0.5357 | 0.7574 | 0.8223 | | No log | 4.0 | 252 | 0.6645 | 0.7917 | 0.8590 | | No log | 5.0 | 315 | 0.6977 | 0.7721 | 0.8426 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
anirudh21/distilbert-base-uncased-finetuned-mrpc
3106d5b937946dc70297f2a57718127be3d2b768
2022-01-12T08:30:57.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/distilbert-base-uncased-finetuned-mrpc
7
null
transformers
14,006
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8958677685950412 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Accuracy: 0.8456 - F1: 0.8959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3826 | 0.8186 | 0.8683 | | No log | 2.0 | 460 | 0.3830 | 0.8456 | 0.8959 | | 0.4408 | 3.0 | 690 | 0.3835 | 0.8382 | 0.8866 | | 0.4408 | 4.0 | 920 | 0.5036 | 0.8431 | 0.8919 | | 0.1941 | 5.0 | 1150 | 0.5783 | 0.8431 | 0.8930 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anirudh21/electra-base-discriminator-finetuned-rte
da687125f0dc8320cbc05ee98e6efba0a3dff348
2022-01-25T15:43:18.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/electra-base-discriminator-finetuned-rte
7
null
transformers
14,007
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: electra-base-discriminator-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.8231046931407943 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-rte This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4793 - Accuracy: 0.8231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6076 | 0.6570 | | No log | 2.0 | 312 | 0.4824 | 0.7762 | | No log | 3.0 | 468 | 0.4793 | 0.8231 | | 0.4411 | 4.0 | 624 | 0.7056 | 0.7906 | | 0.4411 | 5.0 | 780 | 0.6849 | 0.8159 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
anjulRajendraSharma/WavLm-base-en
4d7d181e54789a88cc2af322aa58abdf26c4b12f
2022-01-28T16:40:52.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "english_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
anjulRajendraSharma
null
anjulRajendraSharma/WavLm-base-en
7
null
transformers
14,008
--- tags: - automatic-speech-recognition - english_asr - generated_from_trainer model-index: - name: wavlm-base-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-base-english This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the english_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8664 | 0.17 | 300 | 2.8439 | 1.0 | | 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 | | 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 | | 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 | | 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 | | 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 | | 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 | | 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 | | 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 | | 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 | | 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.0 - Tokenizers 0.10.3
anshengli2/DialogGPT-small-Bot
128b91bc1a5dd354e5de3a929a50918486e3a55b
2021-09-13T05:39:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
anshengli2
null
anshengli2/DialogGPT-small-Bot
7
null
transformers
14,009
--- tags: - conversational ---
anton-l/hubert-base-ft-keyword-spotting
9bf54fa186c91561a6f72837b678cb6ecbf3ab1a
2021-10-27T22:34:38.000Z
[ "pytorch", "tensorboard", "hubert", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/hubert-base-ft-keyword-spotting
7
null
transformers
14,010
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: hubert-base-ft-keyword-spotting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Accuracy: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0422 | 1.0 | 399 | 0.8999 | 0.6918 | | 0.3296 | 2.0 | 798 | 0.1505 | 0.9778 | | 0.2088 | 3.0 | 1197 | 0.0901 | 0.9816 | | 0.202 | 4.0 | 1596 | 0.0848 | 0.9813 | | 0.1535 | 5.0 | 1995 | 0.0774 | 0.9819 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
24e0664e4881b928bbae5aa119a43fcb918c29ee
2022-03-23T18:29:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
7
null
transformers
14,011
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
appleternity/bert-base-uncased-finetuned-coda19
25627d0283be4c4decfafaa8937d822cb977c507
2021-05-19T00:00:47.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
appleternity
null
appleternity/bert-base-uncased-finetuned-coda19
7
null
transformers
14,012
Entry not found
aristotletan/scim-distilroberta
6c48e576f628b82fe36addd8f86144ded407a210
2021-05-20T14:14:24.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aristotletan
null
aristotletan/scim-distilroberta
7
null
transformers
14,013
Entry not found
arjunth2001/priv_ftc
74acbe22d2444a3257575c137af4f1cdb1363f71
2021-10-07T16:55:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
arjunth2001
null
arjunth2001/priv_ftc
7
null
transformers
14,014
Entry not found
asapp/sew-d-mid-400k-ft-ls100h
b2ff9fdb3bddc81657cf5f16bc0c510be0a39b3e
2022-05-24T13:09:41.000Z
[ "pytorch", "sew-d", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "audio", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
asapp
null
asapp/sew-d-mid-400k-ft-ls100h
7
1
transformers
14,015
--- language: en datasets: - librispeech_asr tags: - audio - speech - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: sew-d-mid-400k-ft-ls100h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 11.51 --- # SEW-D-mid [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, SEWDForCTC from datasets import load_dataset import soundfile as sf import torch # load the model and preprocessor processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h") model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h") # load the dummy dataset with speech samples ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # preprocess input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **asapp/sew-d-mid-400k-ft-ls100hh** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import SEWDForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h") def map_to_pred(batch): input_values = processor(batch["audio"][0]["array"], sampling_rate=16000, return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | | --- | --- | | 4.94 | 11.51 |
aseifert/byt5-base-jfleg-wi
d5c8b9ed4d137fd88cb203841fb9309db037ce0b
2021-11-19T21:52:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aseifert
null
aseifert/byt5-base-jfleg-wi
7
1
transformers
14,016
Entry not found
austin/adr-ner
f004d373710b62fdbc74bebe8f79e5ceb9f1a642
2021-12-20T06:48:11.000Z
[ "pytorch", "deberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
austin
null
austin/adr-ner
7
null
transformers
14,017
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: adr-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # adr-ner This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 - Precision: 0.7305 - Recall: 0.6934 - F1: 0.7115 - Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 | | No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 | | No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 | | No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 | | 0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 | | 0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 | | 0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 | | 0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 | | 0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 | | 0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 | | 0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 | | 0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 | | 0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 | | 0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 | | 0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
avorozhko/ruDialoGpt3-medium-finetuned-context
083bbcac63050721598fc7470d50fb8ea234f733
2022-03-13T11:41:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
avorozhko
null
avorozhko/ruDialoGpt3-medium-finetuned-context
7
1
transformers
14,018
## Описание модели Этот чатбот - дипломная работа студента Андрея Ворожко в УИИ (Университет Искусственного Интеллекта). Окончание обучения - март 2022 года. Чатбот сделан на основе модели [Kirili4ik/ruDialoGpt3-medium-finetuned-telegram](https://huggingface.co/Kirili4ik/ruDialoGpt3-medium-finetuned-telegram) Теперь модель дообучена на основе 27000 анекдотов (14 эпох, скорость обучения в колабе 2-6 часов на эпоху) и умеет понимать контекст разговора. Однако контекст приходится ограничивать несколькими последними сообщениями потому что чем больше контекста тем медленнее модель работает, а контекст растет как снежный ком в процессе разговора. Инференс находится в [spaces](https://huggingface.co/spaces/avorozhko/funbot): Там с ботом можно поговорить. Контекст ограничен 10 последними сообщениями. Шутки бот выдает, но пока скорее случайно, чем намеренно. Однако разговор поддержать способен и даже немного развлечь. Так как это генерация текста, то на одну и ту же фразу бот всегда будет выдавать разные ответы. Также для определения качества данной модели использовалась кастомная метрика - угловое расстояния между эмбеддингами y_train и предикта. То есть мы взяли первый слой эмбеддинга модели и прогоняли предикты и лейблы, получили вектора слов. Потом вектора слов суммировали и получили общие (суммарные) вектора лейблов и предиктов. Чем меньше угол между ними, тем лучше. При рассчетах ориентировались на косинус этого угла, так как cos 0 = 1, то это очень удобно - чем ближе показатель к 1, тем лучше. Вот такое распределение этих значений получилось по эпохам на ПРОВЕРОЧНОЙ выборке (1406 анекдотов): ``` {1: tensor(0.9357, device='cuda:0', grad_fn=<DivBackward0>), 2: tensor(0.9390, device='cuda:0', grad_fn=<DivBackward0>), 3: tensor(0.9417, device='cuda:0', grad_fn=<DivBackward0>), 4: tensor(0.9439, device='cuda:0', grad_fn=<DivBackward0>), 5: tensor(0.9470, device='cuda:0', grad_fn=<DivBackward0>), 6: tensor(0.9537, device='cuda:0', grad_fn=<DivBackward0>), 7: tensor(0.9568, device='cuda:0', grad_fn=<DivBackward0>), 8: tensor(0.9592, device='cuda:0', grad_fn=<DivBackward0>), 9: tensor(0.9610, device='cuda:0', grad_fn=<DivBackward0>), 10: tensor(0.9622, device='cuda:0', grad_fn=<DivBackward0>), 11: tensor(0.9628, device='cuda:0', grad_fn=<DivBackward0>), 12: tensor(0.9632, device='cuda:0', grad_fn=<DivBackward0>), 13: tensor(0.9630, device='cuda:0', grad_fn=<DivBackward0>), 14: tensor(0.9634, device='cuda:0', grad_fn=<DivBackward0>), 15: tensor(0.9634, device='cuda:0', grad_fn=<DivBackward0>)} ``` Для инференса выбрана 14-я эпоха с точностью 0.9634. Далее, судя по всему идет уже переобучение.
baykenney/bert-large-gpt2detector-topp92
5502f558a3d9dc0bcce996b13d449f807a48dd84
2021-05-19T12:23:59.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-large-gpt2detector-topp92
7
null
transformers
14,019
Entry not found
benjaminbeilharz/bert-base-uncased-sentiment-classifier
798958e8fdb8c94ed00951ec71620a010a7dc0c3
2022-02-03T22:43:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
benjaminbeilharz
null
benjaminbeilharz/bert-base-uncased-sentiment-classifier
7
null
transformers
14,020
Entry not found
benjaminbeilharz/distilbert-base-uncased-empatheticdialogues-sentiment-classifier
bdbdc409ed8535041007c5085ecd08721e56174e
2022-01-26T09:52:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
benjaminbeilharz
null
benjaminbeilharz/distilbert-base-uncased-empatheticdialogues-sentiment-classifier
7
null
transformers
14,021
Entry not found
beomi/beep-KR-Medium-hate
10763e5670878d0e13ae6ee57a8f75c53acb465d
2021-10-24T09:17:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/beep-KR-Medium-hate
7
null
transformers
14,022
Entry not found
berkergurcay/1k-pretrained-bert-model
09804bfebef63e98b026e357ad28b8381972c718
2021-05-23T12:03:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
berkergurcay
null
berkergurcay/1k-pretrained-bert-model
7
null
transformers
14,023
Entry not found
bertin-project/bertin-base-paws-x-es
eb31f791bb745c33156911179c467e99a7b17b1b
2021-09-23T13:41:52.000Z
[ "pytorch", "roberta", "text-classification", "es", "transformers", "spanish", "paws-x", "license:cc-by-4.0" ]
text-classification
false
bertin-project
null
bertin-project/bertin-base-paws-x-es
7
1
transformers
14,024
--- language: es license: cc-by-4.0 tags: - spanish - roberta - paws-x --- This checkpoint has been trained for the PAWS-X task using the CoNLL 2002-es dataset. This checkpoint was created from **Bertin Gaussian 512**, which is a **RoBERTa-base** model trained from scratch in Spanish. Information on this base model may be found at [its own card](https://huggingface.co/bertin-project/bertin-base-gaussian-exp-512seqlen) and at deeper detail on [the main project card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish). The training dataset for the base model is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is biased towards average perplexity values (using a Gaussian function), discarding more often documents with very large values (poor quality) of very small values (short, repetitive texts). This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
bettertextapp/m2m-418m-en-de-seed-words-v2
10cbafb2c0a522d5775bc16608117255767bf231
2022-02-05T22:01:35.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/m2m-418m-en-de-seed-words-v2
7
null
transformers
14,025
Entry not found
birgermoell/wav2vec2-common_voice-tr-demo
865c8fa4c96bc0dd1dd1ca66d44a18ccaa007ef8
2022-01-24T18:52:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/wav2vec2-common_voice-tr-demo
7
null
transformers
14,026
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.5528 - Wer: 0.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.74 | 100 | 3.4444 | 1.0 | | No log | 1.47 | 200 | 2.9421 | 1.0 | | No log | 2.21 | 300 | 2.2802 | 1.0137 | | No log | 2.94 | 400 | 0.9683 | 0.7611 | | 3.7264 | 3.68 | 500 | 0.7941 | 0.6594 | | 3.7264 | 4.41 | 600 | 0.6695 | 0.5751 | | 3.7264 | 5.15 | 700 | 0.6507 | 0.5314 | | 3.7264 | 5.88 | 800 | 0.5731 | 0.4927 | | 3.7264 | 6.62 | 900 | 0.5723 | 0.4580 | | 0.4592 | 7.35 | 1000 | 0.5913 | 0.4479 | | 0.4592 | 8.09 | 1100 | 0.5562 | 0.4423 | | 0.4592 | 8.82 | 1200 | 0.5566 | 0.4292 | | 0.4592 | 9.56 | 1300 | 0.5492 | 0.4303 | | 0.4592 | 10.29 | 1400 | 0.5665 | 0.4331 | | 0.2121 | 11.03 | 1500 | 0.5610 | 0.4084 | | 0.2121 | 11.76 | 1600 | 0.5703 | 0.4014 | | 0.2121 | 12.5 | 1700 | 0.5669 | 0.3898 | | 0.2121 | 13.24 | 1800 | 0.5586 | 0.3962 | | 0.2121 | 13.97 | 1900 | 0.5656 | 0.3897 | | 0.1326 | 14.71 | 2000 | 0.5565 | 0.3813 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
birgermoell/wav2vec2-large-xlsr-hungarian
2d18e8dadcf9fa4c04748fea59ea76a64e6f9c32
2021-07-05T23:16:31.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "hu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/wav2vec2-large-xlsr-hungarian
7
null
transformers
14,027
--- language: hu datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Hugarian by Birger Moell results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hu type: common_voice args: hu metrics: - name: Test WER type: wer value: 46.97 --- # Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-hungarian") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.97 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1c8LS-RP-RMukvXkpqJ9kLXRWmRKFjevs?usp=sharing)
biu-nlp/alephbert-base
0643e83be2ca786f7ea675bd8e3b985e7eac72fc
2021-10-12T10:58:33.000Z
[ "pytorch", "bert", "fill-mask", "he", "dataset:oscar", "dataset:wikipedia", "dataset:twitter", "arxiv:1810.04805", "transformers", "language model", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
biu-nlp
null
biu-nlp/alephbert-base
7
null
transformers
14,028
--- language: - he tags: - language model license: apache-2.0 datasets: - oscar - wikipedia - twitter --- # AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). #### How to use ```python from transformers import BertModel, BertTokenizerFast alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base') alephbert = BertModel.from_pretrained('onlplab/alephbert-base') # if not finetuning - disable dropout alephbert.eval() ``` ## Training data 1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
bob1966/distilbert-base-uncased-finetuned-cola
24ebf2e8d4eb2339526ee643eaab60b57153cbe7
2022-02-01T10:15:52.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
bob1966
null
bob1966/distilbert-base-uncased-finetuned-cola
7
null
transformers
14,029
Entry not found
bochaowei/t5-small-finetuned-cnn-wei0
aa2c5b0b85d419d3d2b6d12f5b30b493c533aaa6
2021-10-20T18:58:40.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
bochaowei
null
bochaowei/t5-small-finetuned-cnn-wei0
7
null
transformers
14,030
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-wei0 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.2324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-wei0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7149 - Rouge1: 24.2324 - Rouge2: 11.7178 - Rougel: 20.0508 - Rougelsum: 22.8698 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9068 | 1.0 | 4786 | 1.7149 | 24.2324 | 11.7178 | 20.0508 | 22.8698 | 19.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
boronbrown48/sentiment_neutral_from_other_v2
99f5b5f4be6246a8dde42c2a0db4ba1c54e2d44b
2021-11-26T08:45:17.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/sentiment_neutral_from_other_v2
7
null
transformers
14,031
Entry not found
boychaboy/MNLI_bert-base-cased_2
c9505b8de7c74a8c639b89c972750bb15d900c5b
2021-05-19T13:12:53.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_bert-base-cased_2
7
null
transformers
14,032
Entry not found
boychaboy/MNLI_bert-large-cased
2548854d69459ebbbd99e0b2ee22822297d58442
2021-05-19T13:19:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_bert-large-cased
7
null
transformers
14,033
Entry not found
boychaboy/SNLI_bert-base-uncased
cbc8a64a2f22b523dd39be600833b4a39ed6d8ce
2021-05-19T13:24:51.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/SNLI_bert-base-uncased
7
null
transformers
14,034
Entry not found
bs-modeling-metadata/website_metadata_exp_1_model_25k_checkpoint
f1f0249fe6a742005d19a24e476df6128a443ff9
2021-11-25T15:47:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
bs-modeling-metadata
null
bs-modeling-metadata/website_metadata_exp_1_model_25k_checkpoint
7
null
transformers
14,035
Entry not found
bshlgrs/autonlp-classification-9522090
4791bdda04edf9b2c915b31a6855e5881e55e141
2021-09-04T20:47:49.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:bshlgrs/autonlp-data-classification", "transformers", "autonlp" ]
text-classification
false
bshlgrs
null
bshlgrs/autonlp-classification-9522090
7
null
transformers
14,036
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-classification --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
bshlgrs/autonlp-old-data-trained-10022181
c30a691fb3793c962d7153d86c511d8a7a3b85b2
2021-09-09T21:46:53.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:bshlgrs/autonlp-data-old-data-trained", "transformers", "autonlp" ]
text-classification
false
bshlgrs
null
bshlgrs/autonlp-old-data-trained-10022181
7
null
transformers
14,037
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-old-data-trained --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 10022181 ## Validation Metrics - Loss: 0.369505375623703 - Accuracy: 0.8706206896551724 - Macro F1: 0.5410226656476808 - Micro F1: 0.8706206896551724 - Weighted F1: 0.8515634683886795 - Macro Precision: 0.5159711665622992 - Micro Precision: 0.8706206896551724 - Weighted Precision: 0.8346991124101657 - Macro Recall: 0.5711653346601209 - Micro Recall: 0.8706206896551724 - Weighted Recall: 0.8706206896551724 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-old-data-trained-10022181 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
cactode/gpt2_urbandict_textgen
2523ac594c246f1337a5836e41fcdeec64720f4c
2021-10-21T06:43:28.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "transformers" ]
text-generation
false
cactode
null
cactode/gpt2_urbandict_textgen
7
null
transformers
14,038
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from [Urban Dictionary Words And Definitions on Kaggle](https://www.kaggle.com/therohk/urban-dictionary-words-dataset). Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
cahya/gpt2-small-indonesian-story
69d41ac315c0d0b545fb827f31eae873c63b89e3
2021-09-03T17:48:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
cahya
null
cahya/gpt2-small-indonesian-story
7
null
transformers
14,039
Entry not found
candra/indo-headline-similarity
f1e9a526126f068144e99bf21522ecfd27208860
2022-02-10T05:48:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
candra
null
candra/indo-headline-similarity
7
null
transformers
14,040
Entry not found
cardiffnlp/bertweet-base-stance-hillary
b3be4664ad1e2172ce877d0de6e19212d93643e0
2021-05-20T14:58:18.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/bertweet-base-stance-hillary
7
null
transformers
14,041
charlecheng/distilbert-base-uncased-finetuned-ner
e1b32616a8ebdf1e735f3c63a2389d863c673269
2021-09-08T03:51:22.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
charlecheng
null
charlecheng/distilbert-base-uncased-finetuned-ner
7
null
transformers
14,042
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276454293628809 - name: Recall type: recall value: 0.9365700861393892 - name: F1 type: f1 value: 0.9320863950122468 - name: Accuracy type: accuracy value: 0.9840500738716699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9276 - Recall: 0.9366 - F1: 0.9321 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.246 | 1.0 | 878 | 0.0696 | 0.9152 | 0.9215 | 0.9183 | 0.9812 | | 0.0518 | 2.0 | 1756 | 0.0606 | 0.9196 | 0.9342 | 0.9269 | 0.9831 | | 0.0309 | 3.0 | 2634 | 0.0607 | 0.9276 | 0.9366 | 0.9321 | 0.9841 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
chenqian/bert_finetuning_test
f4672372b9bf747692d2eb88fdd98aea79a705b0
2021-05-19T14:02:25.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
chenqian
null
chenqian/bert_finetuning_test
7
null
transformers
14,043
Entry not found
chihao/bert_cn_finetuning
61420b4a85731cdd501a8e525b12f04073a97334
2021-05-19T14:04:26.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
chihao
null
chihao/bert_cn_finetuning
7
null
transformers
14,044
Entry not found
chinhon/bart-large-commentaries_hdwriter
38b337e6a824150711dfba57f226ae78e4e6f942
2022-01-17T05:11:56.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/bart-large-commentaries_hdwriter
7
null
transformers
14,045
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-commentaries_hdwriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-commentaries_hdwriter This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1619 - Rouge1: 26.1101 - Rouge2: 9.928 - Rougel: 22.9007 - Rougelsum: 23.117 - Gen Len: 15.9536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6237 | 1.0 | 5072 | 2.5309 | 26.4063 | 9.1795 | 22.6699 | 22.9125 | 17.3103 | | 1.8808 | 2.0 | 10144 | 2.5049 | 25.3706 | 8.7568 | 21.8594 | 22.1233 | 15.8579 | | 1.3084 | 3.0 | 15216 | 2.6680 | 26.6284 | 9.9914 | 23.1477 | 23.3625 | 16.8832 | | 0.9247 | 4.0 | 20288 | 2.8923 | 26.3827 | 9.8217 | 22.9524 | 23.1651 | 15.4529 | | 0.692 | 5.0 | 25360 | 3.1619 | 26.1101 | 9.928 | 22.9007 | 23.117 | 15.9536 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
clem/autonlp-test3-2101779
6633fbda0647b141a98f1df927ee404ff76ae859
2021-06-29T04:15:35.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:clem/autonlp-data-test3", "transformers", "autonlp" ]
text-classification
false
clem
null
clem/autonlp-test3-2101779
7
null
transformers
14,046
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - clem/autonlp-data-test3 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2101779 ## Validation Metrics - Loss: 0.282466858625412 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/clem/autonlp-test3-2101779 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("clem/autonlp-test3-2101779", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("clem/autonlp-test3-2101779", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
climatebert/distilroberta-base-climate-s
81225f2af7148ac7bfd55df37adfdfcdb6718a51
2021-10-26T08:19:19.000Z
[ "pytorch", "roberta", "fill-mask", "en", "arxiv:2110.12010", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
climatebert
null
climatebert/distilroberta-base-climate-s
7
3
transformers
14,047
--- language: en license: apache-2.0 --- Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pretrained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010). ### BibTeX entry and citation info ```bibtex @article{wkbl2021, title={ClimateBERT: A Pretrained Language Model for Climate-Related Text}, author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus}, journal={arXiv preprint arXiv:2110.12010}, year={2021} } ```
comacrae/roberta-paraphrasev3
8a00cb53e7918521b2acc99008d4d30e7249e804
2022-02-22T22:14:11.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
comacrae
null
comacrae/roberta-paraphrasev3
7
null
transformers
14,048
Entry not found
conrizzo/dialogue_summarization_with_BART
92a3b4f35dd0d2bb6a9dcb93dabe5fe5522c013e
2022-02-11T18:21:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
conrizzo
null
conrizzo/dialogue_summarization_with_BART
7
null
transformers
14,049
--- license: mit ---
creat89/NER_FEDA_Ru
cdb7660503106b06d6e4d3c62a71feb041c36fc5
2022-04-13T09:32:54.000Z
[ "pytorch", "bert", "ru", "transformers", "rubert", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Ru
7
null
transformers
14,050
--- license: mit language: - ru tags: - rubert - ner --- This is a Russian NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on RuBERT and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 4. CNE5 (GEOPOLIT, LOC, MEDIA, PER, ORG) 5. FactRuEval (LOC, ORG, PER) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. This models manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
damien-ir/ko-rest-electra-discriminator
23970724273b52fc56ee022148eba57ff1dbbe2e
2020-07-27T18:57:52.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
damien-ir
null
damien-ir/ko-rest-electra-discriminator
7
null
transformers
14,051
Entry not found
damien-ir/ko-rest-electra-generator
690ff11497f8b23832b5f8cd3ba4c0be3b38d5cd
2020-07-27T19:00:02.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
damien-ir
null
damien-ir/ko-rest-electra-generator
7
null
transformers
14,052
Entry not found
damien-ir/kosentelectra-discriminator-v2-small
d167e91ac75b548df01b7f44b4bba08e5cbde4d5
2020-10-16T10:23:45.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
damien-ir
null
damien-ir/kosentelectra-discriminator-v2-small
7
null
transformers
14,053
Entry not found
danurahul/german_gpt_4g
a559310442c4003b680ff42f04f034aafa19a74e
2021-05-21T15:22:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/german_gpt_4g
7
null
transformers
14,054
Entry not found
deeq/dbert-sentiment
c406cd94c4f99e7cee05ebb46b1599b62163b68b
2021-07-01T08:39:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
deeq
null
deeq/dbert-sentiment
7
null
transformers
14,055
``` from transformers import BertForSequenceClassification, BertTokenizer, TextClassificationPipeline model = BertForSequenceClassification.from_pretrained("deeq/dbert-sentiment") tokenizer = BertTokenizer.from_pretrained("deeq/dbert") nlp = TextClassificationPipeline(model=model, tokenizer=tokenizer) print(nlp("좋아요")) print(nlp("글쎄요")) ```
defex/distilgpt2-finetuned-amazon-reviews
6034d221dabc8d098ac4210840278801fce38885
2021-07-21T10:36:15.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer" ]
text-generation
false
defex
null
defex/distilgpt2-finetuned-amazon-reviews
7
null
transformers
14,056
--- tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-amazon-reviews results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-amazon-reviews This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
dingkun/retrievalv2
44a27e6cf4ef07bc531bee29ed8de1491b49fe88
2022-06-13T03:19:02.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dingkun
null
dingkun/retrievalv2
7
null
transformers
14,057
Entry not found
diwank/dyda-deberta-pair
dd61dd9a07072219f74170886a986623d67f84c3
2022-02-02T10:48:52.000Z
[ "pytorch", "tf", "deberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
diwank
null
diwank/dyda-deberta-pair
7
null
transformers
14,058
--- license: mit --- # diwank/dyda-deberta-pair Deberta-based Daily Dialog style dialog-act annotations classification model. It takes two sentences as inputs (one previous and one current of a dialog). The previous sentence can be an empty string if this is the first utterance of a speaker in a dialog. Outputs one of four labels (exactly as in the [daily-dialog dataset](https://huggingface.co/datasets/daily_dialog) ): *__dummy__ (0), inform (1), question (2), directive (3), commissive (4)* ## Usage ```python from simpletransformers.classification import ( ClassificationModel, ClassificationArgs ) model = ClassificationModel("deberta", "diwank/dyda-deberta-pair") convert_to_label = lambda n: ["__dummy__ (0), inform (1), question (2), directive (3), commissive (4)".split(', ')[i] for i in n] predictions, raw_outputs = model.predict([["Say what is the meaning of life?", "I dont know"]]) convert_to_label(predictions) # inform (1) ```
dkleczek/Polish_RoBERTa_large_OPI
7ec9c7103520978489e5f02b68ddb81f5cf23fa6
2021-08-26T22:13:27.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
dkleczek
null
dkleczek/Polish_RoBERTa_large_OPI
7
null
transformers
14,059
Entry not found
echarlaix/bert-base-dynamic-quant-test
321d4a1190df93d5cb4b006502f692c12fc75b83
2021-10-27T09:49:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
echarlaix
null
echarlaix/bert-base-dynamic-quant-test
7
null
transformers
14,060
Entry not found
echarlaix/distilbert-base-uncased-sst2-magnitude-pruning-test
46a71aefd5ed5e54d8c7df8ccf4d60b8a879cf26
2022-01-13T08:55:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
echarlaix
null
echarlaix/distilbert-base-uncased-sst2-magnitude-pruning-test
7
null
transformers
14,061
Entry not found
edwardgowsmith/bert-base-cased-best
305c966f7235ff9ec0de703d0746924c5c47f63a
2021-05-19T16:19:42.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
edwardgowsmith
null
edwardgowsmith/bert-base-cased-best
7
null
transformers
14,062
Entry not found
eli4s/Bert-L12-h240-A12
5ed85ef6ecc873f77e3f48df02e8eb9a1a741675
2021-07-30T10:39:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
eli4s
null
eli4s/Bert-L12-h240-A12
7
2
transformers
14,063
This model was pretrained on the bookcorpus dataset using knowledge distillation. The particularity of this model is that even though it shares the same architecture as BERT, it has a hidden size of 240. Since it has 12 attention heads, the head size (20) is different from the one of the BERT base model (64). The knowledge distillation was performed using multiple loss functions. The weights of the model were initialized from scratch. PS : the tokenizer is the same as the one of the model bert-base-uncased. To load the model \& tokenizer : ````python from transformers import AutoModelForMaskedLM, BertTokenizer model_name = "eli4s/Bert-L12-h240-A12" model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) ```` To use it as a masked language model : ````python import torch sentence = "Let's have a [MASK]." model.eval() inputs = tokenizer([sentence], padding='longest', return_tensors='pt') output = model(inputs['input_ids'], attention_mask=inputs['attention_mask']) mask_index = inputs['input_ids'].tolist()[0].index(103) masked_token = output['logits'][0][mask_index].argmax(axis=-1) predicted_token = tokenizer.decode(masked_token) print(predicted_token) ```` Or we can also predict the n most relevant predictions : ````python top_n = 5 vocab_size = model.config.vocab_size logits = output['logits'][0][mask_index].tolist() top_tokens = sorted(list(range(vocab_size)), key=lambda i:logits[i], reverse=True)[:top_n] tokenizer.decode(top_tokens) ````
emekaboris/autonlp-txc-17923124
b3e145b79a05954a80af29d6b34b6f2b0e18482d
2021-10-14T07:56:17.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:emekaboris/autonlp-data-txc", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
emekaboris
null
emekaboris/autonlp-txc-17923124
7
null
transformers
14,064
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - emekaboris/autonlp-data-txc co2_eq_emissions: 133.57087522185148 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 17923124 - CO2 Emissions (in grams): 133.57087522185148 ## Validation Metrics - Loss: 0.2080804407596588 - Accuracy: 0.9325402190077058 - Macro F1: 0.7283811287183823 - Micro F1: 0.9325402190077058 - Weighted F1: 0.9315711955594153 - Macro Precision: 0.8106599661500661 - Micro Precision: 0.9325402190077058 - Weighted Precision: 0.9324644116921059 - Macro Recall: 0.7020515544343829 - Micro Recall: 0.9325402190077058 - Weighted Recall: 0.9325402190077058 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-txc-17923124 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
emekaboris/autonlp-txc-17923129
86b6fc218cbfbafb542b52e35e746132198e33f4
2021-10-14T12:19:07.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:emekaboris/autonlp-data-txc", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
emekaboris
null
emekaboris/autonlp-txc-17923129
7
null
transformers
14,065
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - emekaboris/autonlp-data-txc co2_eq_emissions: 610.861733873082 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 17923129 - CO2 Emissions (in grams): 610.861733873082 ## Validation Metrics - Loss: 0.2319454699754715 - Accuracy: 0.9264228741381642 - Macro F1: 0.6730537318152493 - Micro F1: 0.9264228741381642 - Weighted F1: 0.9251493598895151 - Macro Precision: 0.7767479491141245 - Micro Precision: 0.9264228741381642 - Weighted Precision: 0.9277971545757154 - Macro Recall: 0.6617262519071917 - Micro Recall: 0.9264228741381642 - Weighted Recall: 0.9264228741381642 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-txc-17923129 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-txc-17923129", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-txc-17923129", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
emfa/danish-roberta-botxo-danish-finetuned-hatespeech
6079fc4717eb5428b173ff7a3730639e8d0ec8b7
2021-12-06T11:14:17.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index" ]
text-classification
false
emfa
null
emfa/danish-roberta-botxo-danish-finetuned-hatespeech
7
null
transformers
14,066
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: danish-roberta-botxo-danish-finetuned-hatespeech results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # danish-roberta-botxo-danish-finetuned-hatespeech This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-) This model is a fine-tuned version of [flax-community/roberta-base-danish](https://huggingface.co/flax-community/roberta-base-danish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 315 | 0.3074 | | 0.3016 | 2.0 | 630 | 0.3152 | | 0.3016 | 3.0 | 945 | 0.2849 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Russian-small
b3c7007a5dcb81403cfef5b192f5abe23424d69c
2022-03-23T18:28:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-Russian-small
7
null
transformers
14,067
--- license: apache-2.0 language: - ru tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Russian-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ru type: common_voice args: ru metrics: - name: Test WER type: wer value: 48.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 58.25 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 56.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-bas-CV8-v2
8005cdaa4dafb4ec51bce274b811b0553ec2ff15
2022-03-24T11:55:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bas", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "common_voice", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-bas-CV8-v2
7
null
transformers
14,068
--- license: apache-2.0 language: bas tags: - automatic-speech-recognition - common_voice - generated_from_trainer - bas - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-bas-CV8-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 56.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bas-CV8-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Wer: 0.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5211 | 16.13 | 500 | 1.2661 | 0.9153 | | 0.7026 | 32.25 | 1000 | 0.6245 | 0.6516 | | 0.3752 | 48.38 | 1500 | 0.6039 | 0.6148 | | 0.2752 | 64.51 | 2000 | 0.6080 | 0.5808 | | 0.2155 | 80.63 | 2500 | 0.6121 | 0.5697 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
enelpi/bert-question-answering-cased-squadv2_tr
f723dbd8467c585ec5a29cce626cc9e3af06e027
2021-05-19T16:27:24.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
enelpi
null
enelpi/bert-question-answering-cased-squadv2_tr
7
1
transformers
14,069
Entry not found
erst/xlm-roberta-base-finetuned-db07
6fffe93b2748bf710f012213832c35548118178e
2021-01-28T11:30:10.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
erst
null
erst/xlm-roberta-base-finetuned-db07
7
null
transformers
14,070
# Classifying Text into DB07 Codes This model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) fine-tuned to classify Danish descriptions of activities into [Dansk Branchekode DB07](https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07) codes. ## Data Approximately 2.5 million business names and descriptions of activities from Norwegian and Danish businesses were used to fine-tune the model. The Norwegian descriptions were translated into Danish and the Norwegian SN 2007 codes were translated into Danish DB07 codes. Activity descriptions and business names were concatenated but separated by the separator token `</s>`. Thus, the model was trained on input texts in the format `f"{description_of_activity}</s>{business_name}"`. ## Quick Start ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("erst/xlm-roberta-base-finetuned-db07") model = AutoModelForSequenceClassification.from_pretrained("erst/xlm-roberta-base-finetuned-db07") pl = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=False, ) pl("Vi sælger sko") pl("We sell clothes</s>Clothing ApS") ```
ewriji/heil-A.412C-negative
bc362f6b41205b1d304834a016d6346939cfb50c
2021-12-17T01:18:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ewriji
null
ewriji/heil-A.412C-negative
7
null
transformers
14,071
Entry not found
ewriji/heil-A.412C-positive
b048e0c45015b14d065167d57ed1ba34bcbd1745
2021-12-17T01:25:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ewriji
null
ewriji/heil-A.412C-positive
7
null
transformers
14,072
Entry not found
facebook/s2t-small-covost2-es-en-st
eb516e712b7e1a603c95b834d7e06ccc512b0bab
2022-02-07T15:23:32.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "es", "en", "dataset:covost2", "arxiv:2010.05171", "arxiv:1912.06670", "arxiv:1904.08779", "transformers", "audio", "speech-translation", "license:mit" ]
automatic-speech-recognition
false
facebook
null
facebook/s2t-small-covost2-es-en-st
7
null
transformers
14,073
--- language: - es - en datasets: - covost2 tags: - audio - speech-translation - automatic-speech-recognition license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # S2T-SMALL-COVOST2-ES-EN-ST `s2t-small-covost2-es-en-st` is a Speech to Text Transformer (S2T) model trained for end-to-end Speech Translation (ST). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is a transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the transcripts/translations autoregressively. ## Intended uses & limitations This model can be used for end-to-end Spanish speech to English text translation. See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset import soundfile as sf model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-covost2-es-en-st") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-covost2-es-en-st") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) ds = ds.map(map_to_array) inputs = processor( ds["speech"][0], sampling_rate=48_000, return_tensors="pt" ) generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) translation = processor.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training data The s2t-small-covost2-es-en-st is trained on Spanish-English subset of [CoVoST2](https://github.com/facebookresearch/covost). CoVoST is a large-scale multilingual ST corpus based on [Common Voice](https://arxiv.org/abs/1912.06670), created to to foster ST research with the largest ever open dataset ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using character based SentencePiece vocab. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. To accelerate model training and for better performance the encoder is pre-trained for English ASR. ## Evaluation results CoVOST2 test results for es-en (BLEU score): 22.31 ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
facebook/s2t-small-mustc-en-nl-st
642280abe21918c82d06527f975fa9f4ad68e857
2022-02-07T15:29:27.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "en", "nl", "dataset:mustc", "arxiv:2010.05171", "arxiv:1904.08779", "transformers", "audio", "speech-translation", "license:mit" ]
automatic-speech-recognition
false
facebook
null
facebook/s2t-small-mustc-en-nl-st
7
null
transformers
14,074
--- language: - en - nl datasets: - mustc tags: - audio - speech-translation - automatic-speech-recognition license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # S2T-SMALL-MUSTC-EN-NL-ST `s2t-small-mustc-en-nl-st` is a Speech to Text Transformer (S2T) model trained for end-to-end Speech Translation (ST). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is a transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the transcripts/translations autoregressively. ## Intended uses & limitations This model can be used for end-to-end English speech to Dutch text translation. See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset import soundfile as sf model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-nl-st") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-nl-st") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) ds = ds.map(map_to_array) inputs = processor( ds["speech"][0], sampling_rate=16_000, return_tensors="pt" ) generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) translation = processor.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training data The s2t-small-mustc-en-nl-st is trained on English-Dutch subset of [MuST-C](https://ict.fbk.eu/must-c/). MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 8,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. To accelerate model training and for better performance the encoder is pre-trained for English ASR. ## Evaluation results MuST-C test results for en-nl (BLEU score): 27.3 ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
facebook/wav2vec2-base-10k-voxpopuli
daedd815b28863b4ab0018641ae8d4cc89b7a437
2021-07-06T01:53:26.000Z
[ "pytorch", "wav2vec2", "pretraining", "multilingual", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli
7
null
transformers
14,075
--- language: multilingual tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10k unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
felixhusen/scientific
60cb1db7330d72b74fce78165736b7c692c9be2c
2021-05-21T16:02:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
felixhusen
null
felixhusen/scientific
7
null
transformers
14,076
Entry not found
figurative-nlp/t5-figurative-generation
57892b4a929284db499b40329e77c1e1a964377a
2022-02-17T09:23:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
figurative-nlp
null
figurative-nlp/t5-figurative-generation
7
1
transformers
14,077
This model can convert the literal expression to figurative/metaphorical expression. Below is the usage of our model: from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/t5-figurative-generation") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/t5-figurative-generation") input_ids = tokenizer( "research is <m> very difficult </m> for me.", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids,beam_search = 5) result = tokenizer.decode(outputs[0], skip_special_tokens=True) #result : research is a tough nut to crack for me. For example (the &lt;m&gt; and &lt;/m&gt; is the mark that inform the model which literal expression we want to convert it as figurative expression): **Input**: as of a cloud that softly &lt;m&gt; covers &lt;/m&gt; the sun. **Output**: as of a cloud that softly drapes over the sun. **Input**: that car coming around the corner &lt;m&gt; surprised me. &lt;/m&gt; **Output**: that car coming around the corner knocked my socks off. Note: the figurative language here includes metaphor, idiom and simile. We don't guarantee that the results generated results are satisfactory to you. We are trying to improve the effect of the model.
flair/ner-danish
5cac0154c3577673ae591cde8098f15740b73ebf
2021-02-26T15:33:02.000Z
[ "pytorch", "da", "dataset:DaNE", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
flair
null
flair/ner-danish
7
null
flair
14,078
--- tags: - flair - token-classification - sequence-tagger-model language: da datasets: - DaNE widget: - text: "Jens Peter Hansen kommer fra Danmark" --- # Danish NER in Flair (default model) This is the standard 4-class NER model for Danish that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **81.78** (DaNER) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on Transformer embeddings and LSTM-CRF. --- # Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-danish") # make example sentence sentence = Sentence("Jens Peter Hansen kommer fra Danmark") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2,3]: "Jens Peter Hansen" [− Labels: PER (0.9961)] Span [6]: "Danmark" [− Labels: LOC (0.9816)] ``` So, the entities "*Jens Peter Hansen*" (labeled as a **person**) and "*Danmark*" (labeled as a **location**) are found in the sentence "*Jens Peter Hansen kommer fra Danmark*". --- ### Training: Script to train this model The model was trained by the [DaNLP project](https://github.com/alexandrainst/danlp) using the [DaNE corpus](https://github.com/alexandrainst/danlp/blob/master/docs/docs/datasets.md#danish-dependency-treebank-dane-dane). Check their repo for more information. The following Flair script may be used to train such a model: ```python from flair.data import Corpus from flair.datasets import DANE from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = DANE() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('da'), # contextual string embeddings, forward FlairEmbeddings('da-forward'), # contextual string embeddings, backward FlairEmbeddings('da-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-danish', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following papers when using this model. ``` @inproceedings{akbik-etal-2019-flair, title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}", author = "Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)", year = "2019", url = "https://www.aclweb.org/anthology/N19-4010", pages = "54--59", } ``` And check the [DaNLP project](https://github.com/alexandrainst/danlp) for more information. --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
flax-community/code-mt5-base
a424f3c2663be1d9f129206e49a749212b2518ab
2021-07-19T05:27:02.000Z
[ "pytorch", "jax", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
flax-community
null
flax-community/code-mt5-base
7
null
transformers
14,079
# Tokenizer We trained our tokenizer using [sentencepiece](https://github.com/google/sentencepiece)'s unigram tokenizer. Then loaded the tokenizer as MT5TokenizerFast. ## Model We used [MT5-base](https://huggingface.co/google/mt5-base) model. ## Datasets We used [Code Search Net](https://huggingface.co/datasets/code_search_net)'s dataset and some scrapped data from internet to train the model. We maintained a list of datasets where each dataset had codes of same language. ## Plots ### Train loss ![train loss](https://i.ibb.co/x53Wm8n/train-loss.png) ### Evaluation loss ![eval loss](https://i.ibb.co/McB2jnf/eval-loss.png) ### Evaluation accuracy ![eval accuracy](https://i.ibb.co/YDGhLdn/eval-accuracy.png) ### Learning rate ![learning rate](https://i.ibb.co/CMStzWv/learning-rate.png) ## Fine tuning (WIP) We fine tuned the model with [CodeXGLUE code-to-code-trans dataset](https://huggingface.co/datasets/code_x_glue_cc_code_to_code_trans), and scrapper data.
flax-community/gpt-neo-1.3B-apps
709c738170ede6f2f33e0755190d6ff155665c69
2021-09-22T08:25:27.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "en", "python", "dataset:apps", "arxiv:2107.03374", "transformers", "code_synthesis", "license:mit" ]
text-generation
false
flax-community
null
flax-community/gpt-neo-1.3B-apps
7
2
transformers
14,080
--- language: - en - python license: mit tags: - gpt_neo - code_synthesis datasets: - apps --- # GPT-Neo-1.3B-APPS > **Please refer to our new [GitHub Wiki](https://github.com/ncoop57/gpt-code-clippy/wiki) which documents our efforts in detail in creating the open source version of GitHub Copilot** ## Model Description GPT-Neo-1.3B-APPS is a GPT-Neo-125M finetuned on APPS dataset. This model is specialized to solve programming tasks. ## Training data The model is trained on the [Automated Programming Progress Standard (APPS) dataset](https://github.com/hendrycks/apps). The dataset consists of 10,000 coding problems in total, with 131,836 test cases for checking solutions and 232,444 ground-truth solutions written by humans. Problems can be complicated, as the average length of a problem is 293.2 words. The data are split evenly into training and test sets, with 5,000 problems each. This model is fine-tuned using most of the APPS dataset including both train and test split to explore the impact of this training task on model performance on other code synthesis evaluation metrics. A model fine-tuned on train set only can be found [here](https://huggingface.co/flax-community/gpt-neo-125M-apps). ## Training procedure The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_apps.py). Training is done for 5 epochs using AdamW optimizer and leaner decay learning rate schedule with 800 warmup steps. To reproduce the training one can use this command with the above script: ```bash python run_clm_apps.py \ --output_dir $HOME/gpt-neo-1.3B-apps \ --model_name_or_path EleutherAI/gpt-neo-1.3B \ --dataset_name $HOME/gpt-code-clippy/data_processing/apps.py \ --dataset_config_name formatted \ --do_train --do_eval \ --block_size="1024" \ --per_device_train_batch_size="3" \ --per_device_eval_batch_size="3" \ --preprocessing_num_workers="16" \ --learning_rate="8e-5" \ --warmup_steps="800" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --weight_decay="0.1" \ --overwrite_output_dir \ --num_train_epochs="5" \ --logging_steps="50" \ --eval_steps="2000" \ --report_to="wandb" \ --dtype="bfloat16" \ --save_strategy epoch \ --gradient_accumulation_steps 1 \ ``` ## Intended Use and Limitations The model is finetuned to solve programming problems given a text description and optional starter code. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-code-clippy-1.3B-apps") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-code-clippy-1.3B-apps") prompt = """ A function to greet user. Given a user name it should say hello def greet(name): ANSWER: """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 5. **Biases:** The model is trained on data containing prompt questions formatted in specific way. The performance of the model can be worse if the prompt formatting is different from that used in APPS dataset. GPT-CC is finetuned GPT-Neo and might have inhereted biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
foundkim/topic_classifier
1af161c15cbdc0f4806045e6be5b6616dd2dc816
2021-09-14T14:51:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
foundkim
null
foundkim/topic_classifier
7
null
transformers
14,081
Entry not found
gagan3012/project-code-py
badb1a88f5a13f9514c7c929b3c89a833e1efa94
2021-05-21T16:08:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
gagan3012
null
gagan3012/project-code-py
7
null
transformers
14,082
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
gagandeepkundi/latam-question-quality
fb6fe35c3bacb2751ab6fdb6ec3314a84fd28596
2021-10-16T16:32:19.000Z
[ "pytorch", "roberta", "text-classification", "es", "dataset:gagandeepkundi/autonlp-data-text-classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
gagandeepkundi
null
gagandeepkundi/latam-question-quality
7
null
transformers
14,083
--- tags: autonlp language: es widget: - text: "I love AutoNLP 🤗" datasets: - gagandeepkundi/autonlp-data-text-classification co2_eq_emissions: 20.790169878009916 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 19984005 - CO2 Emissions (in grams): 20.790169878009916 ## Validation Metrics - Loss: 0.06693269312381744 - Accuracy: 0.9789 - Precision: 0.9843244336569579 - Recall: 0.9733 - AUC: 0.99695552 - F1: 0.9787811745776348 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/gagandeepkundi/autonlp-text-classification-19984005 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
gchhablani/fnet-base-finetuned-qqp
583d54294e01b5da20b1eb15aa93d1ef68ccc4b9
2021-09-20T09:08:34.000Z
[ "pytorch", "tensorboard", "fnet", "text-classification", "en", "dataset:glue", "arxiv:2105.03824", "transformers", "generated_from_trainer", "fnet-bert-base-comparison", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/fnet-base-finetuned-qqp
7
null
transformers
14,084
--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - accuracy - f1 model-index: - name: fnet-base-finetuned-qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8847390551570616 - name: F1 type: f1 value: 0.8466197090382463 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-qqp This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3686 - Accuracy: 0.8847 - F1: 0.8466 - Combined Score: 0.8657 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name qqp \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-qqp \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3484 | 1.0 | 22741 | 0.3014 | 0.8676 | 0.8297 | 0.8487 | | 0.2387 | 2.0 | 45482 | 0.3011 | 0.8801 | 0.8429 | 0.8615 | | 0.1739 | 3.0 | 68223 | 0.3686 | 0.8847 | 0.8466 | 0.8657 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
gchhablani/fnet-base-finetuned-stsb
f1ebdea41f20cae0f57fc80ff81f55c3508a26eb
2021-09-20T09:09:24.000Z
[ "pytorch", "tensorboard", "fnet", "text-classification", "en", "dataset:glue", "arxiv:2105.03824", "transformers", "generated_from_trainer", "fnet-bert-base-comparison", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/fnet-base-finetuned-stsb
7
null
transformers
14,085
--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - spearmanr model-index: - name: fnet-base-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8219397497728022 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-stsb This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.7894 - Pearson: 0.8256 - Spearmanr: 0.8219 - Combined Score: 0.8238 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.5473 | 1.0 | 360 | 0.8120 | 0.7751 | 0.8115 | 0.8125 | | 0.6954 | 2.0 | 720 | 0.8145 | 0.8717 | 0.8160 | 0.8130 | | 0.4828 | 3.0 | 1080 | 0.8238 | 0.7894 | 0.8256 | 0.8219 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
ghadeermobasher/BC2GM-Gene-Modified_BioM-ELECTRA-Base-Discriminator
5beca65f0fb46bb4df37131cad2a9e0896464685
2022-01-23T01:07:52.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC2GM-Gene-Modified_BioM-ELECTRA-Base-Discriminator
7
null
transformers
14,086
Entry not found
ghadeermobasher/BioNLP13CG-Modified-biobert-v1.1_latest
481a6a960d0c52bc169f4f3bfd8863705221c6b1
2022-02-21T20:05:55.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Modified-biobert-v1.1_latest
7
null
transformers
14,087
Entry not found
ghadeermobasher/BioNLP13CG-Modified-bluebert_pubmed_uncased_L-12_H-768_A-12_latest
c0ecc90d13cff2d1a284e2920f4c8593621315d2
2022-02-21T20:24:11.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Modified-bluebert_pubmed_uncased_L-12_H-768_A-12_latest
7
null
transformers
14,088
Entry not found
ghadeermobasher/BioNLP13CG-Original-biobert-v1.1_latest
178122bf74009d5103e8ae750e3913fc896b5e97
2022-02-21T20:14:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Original-biobert-v1.1_latest
7
null
transformers
14,089
Entry not found
ghadeermobasher/BioNLP13CG-Original-scibert_latest
be5b2f2d33ed29451ac8a6cd54a0574183e8df1e
2022-02-21T20:20:26.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Original-scibert_latest
7
null
transformers
14,090
Entry not found
ghadeermobasher/CRAFT-Chem-Modified-BiomedNLP-PubMedBERT-base-uncased-abstract
16e40123d56fed0e178e1a85f260595d9a2d4f10
2022-02-22T04:41:48.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem-Modified-BiomedNLP-PubMedBERT-base-uncased-abstract
7
null
transformers
14,091
Entry not found
ghadeermobasher/CRAFT-Chem-Modified-scibert_scivocab_uncased
fdb6ece1e0e816a634a0f8efcb3807068241acfe
2022-02-22T04:39:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem-Modified-scibert_scivocab_uncased
7
null
transformers
14,092
Entry not found
ghadeermobasher/CRAFT-Chem_Original-biobert-v1.1
c7e32c1e11da654b1bf3f46f065886ea28c3f963
2022-02-23T22:33:29.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem_Original-biobert-v1.1
7
null
transformers
14,093
Entry not found
giacomomiolo/electramed_base_scivocab_1M
8c25d516df3f7e62a92f3bb84409f41085698d8f
2020-10-02T14:13:56.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
giacomomiolo
null
giacomomiolo/electramed_base_scivocab_1M
7
null
transformers
14,094
Entry not found
google/multiberts-seed_4-step_2000k
43e01bb2e3efb5df21e332f6b84705831e125bfa
2021-11-06T03:50:46.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_4", "multiberts-seed_4-step_2000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_4-step_2000k
7
null
transformers
14,095
--- language: en tags: - multiberts - multiberts-seed_4 - multiberts-seed_4-step_2000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 4, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #4, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_4-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_4-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/realm-cc-news-pretrained-openqa
24f245432ffb94f52bc83338c72e1785374edfbf
2022-01-05T17:28:49.000Z
[ "pytorch", "realm", "en", "transformers", "license:apache-2.0" ]
null
false
google
null
google/realm-cc-news-pretrained-openqa
7
null
transformers
14,096
--- language: en license: apache-2.0 --- # realm-cc-news-pretrained-openqa ## Model description The REALM checkpoint pretrained with CC-News as target corpus and Wikipedia as knowledge corpus, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmForOpenQA openqa = RealmForOpenQA.from_pretrained("qqaatw/realm-cc-news-pretrained-openqa") ```
google/t5-11b-ssm-tqao
e0a0648fcef9f79f6ea6d569bac33378d6df7a7b
2020-12-07T08:35:44.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:trivia_qa", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-11b-ssm-tqao
7
null
transformers
14,097
--- language: en datasets: - c4 - wikipedia - trivia_qa license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa). **Note**: The model was fine-tuned on 90% of the train splits of [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Trivia QA - Test Set |Id | link | Exact Match | |---|---|---| |**T5-11b**|**https://huggingface.co/google/t5-large-ssm-tqao**|**51.0**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-tqao|51.9| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-tqao") t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-tqao") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/t5-3b-ssm-nqo
ca5ea4d706797c3ee0333532bd0b142259744432
2020-12-07T08:43:29.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:natural_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-3b-ssm-nqo
7
null
transformers
14,098
--- language: en datasets: - c4 - wikipedia - natural_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Natural Questions - Test Set |Id | link | Exact Match | |---|---|---| |T5-large|https://huggingface.co/google/t5-large-ssm-nqo|29.0| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nqo|35.2| |**T5-3b**|**https://huggingface.co/google/t5-3b-ssm-nqo**|**31.7**| |T5-11b|https://huggingface.co/google/t5-11b-ssm-nqo|34.8| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-3b-ssm-nqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-3b-ssm-nqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/t5-efficient-large-dm2000
794b04779085668b120fde68e4f43fcd5db3b811
2022-02-15T10:49:56.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-dm2000
7
null
transformers
14,099
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-DM2000 (Deep-Narrow version) T5-Efficient-LARGE-DM2000 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dm2000** - is of model type **Large** with the following variations: - **dm** is **2000** It has **1475.39** million parameters and thus requires *ca.* **5901.57 MB** of memory in full precision (*fp32*) or **2950.78 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.