text
stringlengths
17
4.49k
code
stringlengths
49
5.46k
Minimum number operations required to convert n to m | Set | C ++ implementation of the above approach ; Function to find the minimum number of steps ; If n exceeds M ; If N reaches the target ; The minimum of both the states will be the answer ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAXN 10000000 NEW_LINE int minimumSteps ( int n , int m , int a , int b ) { if ( n > m ) return MAXN ; if ( n == m ) return 0 ; return min ( 1 + minimumSteps ( n * a , m , a , b ) , 1 + minimumSteps ( n * b , m , a , b ) ) ; } int main ( ) { int n = 120 , m = 51840 ; int a = 2 , b = 3 ; cout << minimumSteps ( n , m , a , b ) ; return 0 ; }
Minimum number of given operation required to convert n to m | C ++ implementation of the approach ; Function to return the minimum operations required ; Counting all 2 s ; Counting all 3 s ; If q contained only 2 and 3 as the only prime factors then it must be 1 now ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minOperations ( int n , int m ) { if ( m % n != 0 ) return -1 ; int minOperations = 0 ; int q = m / n ; while ( q % 2 == 0 ) { q = q / 2 ; minOperations ++ ; } while ( q % 3 == 0 ) { q = q / 3 ; minOperations ++ ; } if ( q == 1 ) return minOperations ; return -1 ; } int main ( ) { int n = 120 , m = 51840 ; cout << minOperations ( n , m ) ; return 0 ; }
Sum of Fibonacci Numbers in a range | C ++ implementation of the approach ; Function to return the nth Fibonacci number ; Function to return the required sum ; To store the sum ; Calculate the sum ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long int NEW_LINE int fib ( int n ) { double phi = ( 1 + sqrt ( 5 ) ) / 2 ; return round ( pow ( phi , n ) / sqrt ( 5 ) ) ; } ll calculateSum ( int l , int r ) { ll sum = 0 ; for ( int i = l ; i <= r ; i ++ ) sum += fib ( i ) ; return sum ; } int main ( ) { int l = 4 , r = 8 ; cout << calculateSum ( l , r ) ; return 0 ; }
Largest sphere that can be inscribed within a cube which is in turn inscribed within a right circular cone | C ++ Program to find the biggest sphere which is inscribed within a cube which in turn inscribed within a right circular cone ; Function to find the radius of the sphere ; height and radius cannot be negative ; radius of the sphere ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; float sphereSide ( float h , float r ) { if ( h < 0 && r < 0 ) return -1 ; float R = ( ( h * r * sqrt ( 2 ) ) / ( h + sqrt ( 2 ) * r ) ) / 2 ; return R ; } int main ( ) { float h = 5 , r = 6 ; cout << sphereSide ( h , r ) << endl ; return 0 ; }
Find the number of ways to divide number into four parts such that a = c and b = d | C ++ implementation for above approach ; Function to find the number of ways to divide N into four parts such that a = c and b = d ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int possibleways ( int n ) { if ( n % 2 == 1 ) return 0 ; else if ( n % 4 == 0 ) return n / 4 - 1 ; else return n / 4 ; } int main ( ) { int n = 20 ; cout << possibleways ( n ) ; return 0 ; }
Count sub | C ++ implementation of the approach ; Function to count sub - arrays whose product is divisible by K ; Calculate the product of the current sub - array ; If product of the current sub - array is divisible by K ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE int countSubarrays ( const int * arr , int n , int K ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i ; j < n ; j ++ ) { ll product = 1 ; for ( int x = i ; x <= j ; x ++ ) product *= arr [ x ] ; if ( product % K == 0 ) count ++ ; } } return count ; } int main ( ) { int arr [ ] = { 6 , 2 , 8 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int K = 4 ; cout << countSubarrays ( arr , n , K ) ; return 0 ; }
Count sub | C ++ implementation of the approach ; Segment tree implemented as an array ; Function to build the segment tree ; Function to query product of sub - array [ l . . r ] in O ( log n ) time ; Function to count sub - arrays whose product is divisible by K ; Query segment tree to find product % k of the sub - array [ i . . j ] ; Driver code ; Build the segment tree
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE #define MAX 100002 NEW_LINE ll tree [ 4 * MAX ] ; void build ( int node , int start , int end , const int * arr , int k ) { if ( start == end ) { tree [ node ] = ( 1LL * arr [ start ] ) % k ; return ; } int mid = ( start + end ) >> 1 ; build ( 2 * node , start , mid , arr , k ) ; build ( 2 * node + 1 , mid + 1 , end , arr , k ) ; tree [ node ] = ( tree [ 2 * node ] * tree [ 2 * node + 1 ] ) % k ; } ll query ( int node , int start , int end , int l , int r , int k ) { if ( start > end start > r end < l ) { return 1 ; } if ( start >= l && end <= r ) { return tree [ node ] % k ; } int mid = ( start + end ) >> 1 ; ll q1 = query ( 2 * node , start , mid , l , r , k ) ; ll q2 = query ( 2 * node + 1 , mid + 1 , end , l , r , k ) ; return ( q1 * q2 ) % k ; } ll countSubarrays ( const int * arr , int n , int k ) { ll count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i ; j < n ; j ++ ) { ll product_mod_k = query ( 1 , 0 , n - 1 , i , j , k ) ; if ( product_mod_k == 0 ) { count ++ ; } } } return count ; } int main ( ) { int arr [ ] = { 6 , 2 , 8 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 4 ; build ( 1 , 0 , n - 1 , arr , k ) ; cout << countSubarrays ( arr , n , k ) ; return 0 ; }
Find a pair from the given array with maximum nCr value | C ++ implementation of the approach ; Function to print the pair that gives maximum nCr ; This gives the value of N in nCr ; Case 1 : When N is odd ; Case 2 : When N is even ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printMaxValPair ( vector < long long > & v , int n ) { sort ( v . begin ( ) , v . end ( ) ) ; long long N = v [ n - 1 ] ; if ( N % 2 == 1 ) { long long first_maxima = N / 2 ; long long second_maxima = first_maxima + 1 ; long long ans1 = 3e18 , ans2 = 3e18 ; long long from_left = -1 , from_right = -1 ; long long from = -1 ; for ( long long i = 0 ; i < n ; ++ i ) { if ( v [ i ] > first_maxima ) { from = i ; break ; } else { long long diff = first_maxima - v [ i ] ; if ( diff < ans1 ) { ans1 = diff ; from_left = v [ i ] ; } } } from_right = v [ from ] ; long long diff1 = first_maxima - from_left ; long long diff2 = from_right - second_maxima ; if ( diff1 < diff2 ) cout << N << " ▁ " << from_left ; else cout << N << " ▁ " << from_right ; } else { long long maxima = N / 2 ; long long ans1 = 3e18 ; long long R = -1 ; for ( long long i = 0 ; i < n - 1 ; ++ i ) { long long diff = abs ( v [ i ] - maxima ) ; if ( diff < ans1 ) { ans1 = diff ; R = v [ i ] ; } } cout << N << " ▁ " << R ; } } int main ( ) { vector < long long > v = { 1 , 1 , 2 , 3 , 6 , 1 } ; int n = v . size ( ) ; printMaxValPair ( v , n ) ; return 0 ; }
Find the number of good permutations | C ++ implementation of the approach ; Function to return the count of good permutations ; For m = 0 , ans is 1 ; If k is greater than 1 ; If k is greater than 2 ; If k is greater than 3 ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int Permutations ( int n , int k ) { int ans = 1 ; if ( k >= 2 ) ans += ( n ) * ( n - 1 ) / 2 ; if ( k >= 3 ) ans += ( n ) * ( n - 1 ) * ( n - 2 ) * 2 / 6 ; if ( k >= 4 ) ans += ( n ) * ( n - 1 ) * ( n - 2 ) * ( n - 3 ) * 9 / 24 ; return ans ; } int main ( ) { int n = 5 , k = 2 ; cout << Permutations ( n , k ) ; return 0 ; }
Count integers in a range which are divisible by their euler totient value | C ++ implementation of the above approach . ; Function to return a ^ n ; Function to return count of integers that satisfy n % phi ( n ) = 0 ; Driver Code
#include <bits/stdc++.h> NEW_LINE #define ll long long NEW_LINE using namespace std ; ll power ( ll a , ll n ) { if ( n == 0 ) return 1 ; ll p = power ( a , n / 2 ) ; p = p * p ; if ( n & 1 ) p = p * a ; return p ; } int countIntegers ( ll l , ll r ) { ll ans = 0 , i = 1 ; ll v = power ( 2 , i ) ; while ( v <= r ) { while ( v <= r ) { if ( v >= l ) ans ++ ; v = v * 3 ; } i ++ ; v = power ( 2 , i ) ; } if ( l == 1 ) ans ++ ; return ans ; } int main ( ) { ll l = 12 , r = 21 ; cout << countIntegers ( l , r ) ; return 0 ; }
Number of pairs from the first N natural numbers whose sum is divisible by K | C ++ implementation of the approach ; Function to find the number of pairs from the set of natural numbers up to N whose sum is divisible by K ; Declaring a Hash to store count ; Storing the count of integers with a specific remainder in Hash array ; Check if K is even ; Count of pairs when both integers are divisible by K ; Count of pairs when one remainder is R and other remainder is K - R ; Count of pairs when both the remainders are K / 2 ; Count of pairs when both integers are divisible by K ; Count of pairs when one remainder is R and other remainder is K - R ; Driver code ; Print the count of pairs
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findPairCount ( int N , int K ) { int count = 0 ; int rem [ K ] ; rem [ 0 ] = N / K ; for ( int i = 1 ; i < K ; i ++ ) rem [ i ] = ( N - i ) / K + 1 ; if ( K % 2 == 0 ) { count += ( rem [ 0 ] * ( rem [ 0 ] - 1 ) ) / 2 ; for ( int i = 1 ; i < K / 2 ; i ++ ) count += rem [ i ] * rem [ K - i ] ; count += ( rem [ K / 2 ] * ( rem [ K / 2 ] - 1 ) ) / 2 ; } else { count += ( rem [ 0 ] * ( rem [ 0 ] - 1 ) ) / 2 ; for ( int i = 1 ; i <= K / 2 ; i ++ ) count += rem [ i ] * rem [ K - i ] ; } return count ; } int main ( ) { int N = 10 , K = 4 ; cout << findPairCount ( N , K ) ; return 0 ; }
Find the sum of all Truncatable primes below N | C ++ implementation of the approach ; To check if a number is prime or not ; Sieve of Eratosthenes function to find all prime numbers ; Function to return the sum of all truncatable primes below n ; To store the required sum ; Check every number below n ; Check from right to left ; If number is not prime at any stage ; Check from left to right ; If number is not prime at any stage ; If flag is still true ; Return the required sum ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 1000005 NEW_LINE bool prime [ N ] ; void sieve ( ) { memset ( prime , true , sizeof prime ) ; prime [ 1 ] = false ; prime [ 0 ] = false ; for ( int i = 2 ; i < N ; i ++ ) if ( prime [ i ] ) for ( int j = i * 2 ; j < N ; j += i ) prime [ j ] = false ; } int sumTruncatablePrimes ( int n ) { int sum = 0 ; for ( int i = 2 ; i < n ; i ++ ) { int num = i ; bool flag = true ; while ( num ) { if ( ! prime [ num ] ) { flag = false ; break ; } num /= 10 ; } num = i ; int power = 10 ; while ( num / power ) { if ( ! prime [ num % power ] ) { flag = false ; break ; } power *= 10 ; } if ( flag ) sum += i ; } return sum ; } int main ( ) { int n = 25 ; sieve ( ) ; cout << sumTruncatablePrimes ( n ) ; return 0 ; }
Smallest and Largest N | C ++ implementation of the approach ; Function to print the largest and the smallest n - digit perfect squares ; Smallest n - digit perfect square ; Largest n - digit perfect square ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void nDigitPerfectSquares ( int n ) { cout << pow ( ceil ( sqrt ( pow ( 10 , n - 1 ) ) ) , 2 ) << " ▁ " ; cout << pow ( ceil ( sqrt ( pow ( 10 , n ) ) ) - 1 , 2 ) ; } int main ( ) { int n = 4 ; nDigitPerfectSquares ( n ) ; return 0 ; }
Maximum trace possible for any sub | C ++ implementation of the approach ; Function to return the maximum trace possible for a sub - matrix of the given matrix ; Calculate the trace for each of the sub - matrix with top left corner at cell ( r , s ) ; Update the maximum trace ; Return the maximum trace ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 3 NEW_LINE int MaxTraceSub ( int mat [ ] [ N ] ) { int max_trace = 0 ; for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < N ; j ++ ) { int r = i , s = j , trace = 0 ; while ( r < N && s < N ) { trace += mat [ r ] [ s ] ; r ++ ; s ++ ; max_trace = max ( trace , max_trace ) ; } } } return max_trace ; } int main ( ) { int mat [ N ] [ N ] = { { 10 , 2 , 5 } , { 6 , 10 , 4 } , { 2 , 7 , -10 } } ; cout << MaxTraceSub ( mat ) ; return 0 ; }
Check if matrix can be converted to another matrix by transposing square sub | C ++ implementation of the approach ; Function that returns true if matrix1 can be converted to matrix2 with the given operation ; Traverse all the diagonals starting at first column ; Traverse in diagonal ; Store the diagonal elements ; Move up ; Sort the elements ; Check if they are same ; Traverse all the diagonals starting at last row ; Traverse in the diagonal ; Store diagonal elements ; Sort all elements ; Check for same ; If every element matches ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define n 3 NEW_LINE #define m 3 NEW_LINE bool check ( int a [ n ] [ m ] , int b [ n ] [ m ] ) { for ( int i = 0 ; i < n ; i ++ ) { vector < int > v1 , v2 ; int r = i ; int col = 0 ; while ( r >= 0 && col < m ) { v1 . push_back ( a [ r ] [ col ] ) ; v2 . push_back ( b [ r ] [ col ] ) ; r -- ; col ++ ; } sort ( v1 . begin ( ) , v1 . end ( ) ) ; sort ( v2 . begin ( ) , v2 . end ( ) ) ; for ( int i = 0 ; i < v1 . size ( ) ; i ++ ) { if ( v1 [ i ] != v2 [ i ] ) return false ; } } for ( int j = 1 ; j < m ; j ++ ) { vector < int > v1 , v2 ; int r = n - 1 ; int col = j ; while ( r >= 0 && col < m ) { v1 . push_back ( a [ r ] [ col ] ) ; v2 . push_back ( b [ r ] [ col ] ) ; r -- ; col ++ ; } sort ( v1 . begin ( ) , v1 . end ( ) ) ; sort ( v2 . begin ( ) , v2 . end ( ) ) ; for ( int i = 0 ; i < v1 . size ( ) ; i ++ ) { if ( v1 [ i ] != v2 [ i ] ) return false ; } } return true ; } int main ( ) { int a [ n ] [ m ] = { { 1 , 2 , 3 } , { 4 , 5 , 6 } , { 7 , 8 , 9 } } ; int b [ n ] [ m ] = { { 1 , 4 , 7 } , { 2 , 5 , 6 } , { 3 , 8 , 9 } } ; if ( check ( a , b ) ) cout << " Yes " ; else cout << " No " ; return 0 ; }
Last digit of Product of two Large or Small numbers ( a * b ) | C ++ implementation of the above approach ; Fthe unction to print last digit of product a * b ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void lastDigit ( string a , string b ) { int lastDig = ( a [ a . length ( ) - 1 ] - '0' ) * ( b [ b . length ( ) - 1 ] - '0' ) ; cout << lastDig % 10 ; } int main ( ) { string a = "1234567891233" , b = "1234567891233156" ; lastDigit ( a , b ) ; return 0 ; }
Smallest and Largest Palindrome with N Digits | C ++ implementation of the above approach ; Function to print the smallest and largest palindrome with N digits ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void printPalindrome ( int n ) { if ( n == 1 ) { cout << " Smallest ▁ Palindrome : ▁ 0" << endl ; cout << " Largest ▁ Palindrome : ▁ 9" ; } else { cout << " Smallest ▁ Palindrome : ▁ " << pow ( 10 , n - 1 ) + 1 ; cout << " Largest Palindrome : " } } int main ( ) { int n = 4 ; printPalindrome ( n ) ; return 0 ; }
Addition of two numbers without propagating Carry | C ++ implementation of the above approach ; Function to print sum of 2 numbers without propagating carry ; Reverse a ; Reverse b ; Generate sum Since length of both a and b are same , take any one of them . ; Extract digits from a and b and add ; If sum is single digit ; If sum is not single digit reverse sum ; Extract digits from sum and append to result ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int printSum ( int a , int b ) { int res = 0 ; int temp1 = 0 , temp2 = 0 ; while ( a ) { temp1 = temp1 * 10 + ( a % 10 ) ; a /= 10 ; } a = temp1 ; while ( b ) { temp2 = temp2 * 10 + ( b % 10 ) ; b /= 10 ; } b = temp2 ; while ( a ) { int sum = ( a % 10 + b % 10 ) ; if ( sum / 10 == 0 ) res = res * 10 + sum ; else { temp1 = 0 ; while ( sum ) { temp1 = temp1 * 10 + ( sum % 10 ) ; sum /= 10 ; } sum = temp1 ; while ( sum ) { res = res * 10 + ( sum % 10 ) ; sum /= 10 ; } } a /= 10 ; b /= 10 ; } return res ; } int main ( ) { int a = 7752 , b = 8834 ; cout << printSum ( a , b ) ; return 0 ; }
Number of digits before the decimal point in the division of two numbers | C ++ implementation of the approach ; Function to return the number of digits before the decimal in a / b ; Absolute value of a / b ; If result is 0 ; Count number of digits in the result ; Return the required count of digits ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countDigits ( int a , int b ) { int count = 0 ; int p = abs ( a / b ) ; if ( p == 0 ) return 1 ; while ( p > 0 ) { count ++ ; p = p / 10 ; } return count ; } int main ( ) { int a = 100 ; int b = 10 ; cout << countDigits ( a , b ) ; return 0 ; }
Number of digits before the decimal point in the division of two numbers | C ++ implementation of the approach ; Function to return the number of digits before the decimal in a / b ; Return the required count of digits ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countDigits ( int a , int b ) { return floor ( log10 ( abs ( a ) ) - log10 ( abs ( b ) ) ) + 1 ; } int main ( ) { int a = 100 ; int b = 10 ; cout << countDigits ( a , b ) ; return 0 ; }
Smallest odd number with N digits | C ++ implementation of the above approach ; Function to return smallest odd with n digits ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int smallestOdd ( int n ) { if ( n == 1 ) return 1 ; return pow ( 10 , n - 1 ) + 1 ; } int main ( ) { int n = 4 ; cout << smallestOdd ( n ) ; return 0 ; }
Largest Even and Odd N | C ++ implementation of the approach ; Function to print the largest n - digit even and odd numbers ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void findNumbers ( int n ) { int odd = pow ( 10 , n ) - 1 ; int even = odd - 1 ; cout << " Even ▁ = ▁ " << even << endl ; cout << " Odd ▁ = ▁ " << odd ; } int main ( ) { int n = 4 ; findNumbers ( n ) ; return 0 ; }
Longest sub | C ++ implementation of the approach ; Function to return the length of the longest sub - array whose product of elements is 0 ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int longestSubArray ( int arr [ ] , int n ) { bool isZeroPresent = false ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] == 0 ) { isZeroPresent = true ; break ; } } if ( isZeroPresent ) return n ; return 0 ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 0 , 1 , 2 , 0 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << longestSubArray ( arr , n ) ; return 0 ; }
Smallest Even number with N digits | C ++ implementation of the approach ; Function to return smallest even number with n digits ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int smallestEven ( int n ) { if ( n == 1 ) return 0 ; return pow ( 10 , n - 1 ) ; } int main ( ) { int n = 4 ; cout << smallestEven ( n ) ; return 0 ; }
Maximize profit when divisibility by two numbers have associated profits | C ++ implementation of the approach ; Function to return the maximum profit ; min ( x , y ) * n / lcm ( a , b ) ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int maxProfit ( int n , int a , int b , int x , int y ) { int res = x * ( n / a ) ; res += y * ( n / b ) ; res -= min ( x , y ) * ( n / ( ( a * b ) / __gcd ( a , b ) ) ) ; return res ; } int main ( ) { int n = 6 , a = 6 , b = 2 , x = 8 , y = 2 ; cout << maxProfit ( n , a , b , x , y ) ; return 0 ; }
Series summation if T ( n ) is given and n is very large | C ++ implementation of the approach ; Function to return the sum of the given series ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long int NEW_LINE #define MOD 1000000007 NEW_LINE int sumOfSeries ( int n ) { ll ans = ( ll ) pow ( n % MOD , 2 ) ; return ( ans % MOD ) ; } int main ( ) { int n = 10 ; cout << sumOfSeries ( n ) ; return 0 ; }
Kth odd number in an array | C ++ implementation of the approach ; Function to return the kth odd element from the array ; Traverse the array ; If current element is odd ; If kth odd element is found ; Total odd elements in the array are < k ; Driver code
#include <iostream> NEW_LINE using namespace std ; int kthOdd ( int arr [ ] , int n , int k ) { for ( int i = 0 ; i <= n ; i ++ ) { if ( ( arr [ i ] % 2 ) == 1 ) k -- ; if ( k == 0 ) return arr [ i ] ; } return -1 ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 2 ; cout << ( kthOdd ( arr , n , k ) ) ; return 0 ; }
Find last five digits of a given five digit number raised to power five | CPP program to find last five digits of a five digit number raised to power five ; Function to find the last five digits of a five digit number raised to power five ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int lastFiveDigits ( int n ) { n = ( n / 10000 ) * 10000 + ( ( n / 100 ) % 10 ) * 1000 + ( n % 10 ) * 100 + ( ( n / 10 ) % 10 ) * 10 + ( n / 1000 ) % 10 ; int ans = 1 ; for ( int i = 0 ; i < 5 ; i ++ ) { ans *= n ; ans %= 100000 ; } printf ( " % 05d " , ans ) ; } int main ( ) { int n = 12345 ; lastFiveDigits ( n ) ; return 0 ; }
Sum of ( maximum element | C ++ implementation of the above approach ; Function to return a ^ n % mod ; Compute sum of max ( A ) - min ( A ) for all subsets ; Sort the array . ; Maxs = 2 ^ i - 1 ; Mins = 2 ^ ( n - 1 - i ) - 1 ; Driver code
#include <bits/stdc++.h> NEW_LINE #define ll long long NEW_LINE using namespace std ; const int mod = 1000000007 ; ll power ( ll a , ll n ) { if ( n == 0 ) return 1 ; ll p = power ( a , n / 2 ) % mod ; p = ( p * p ) % mod ; if ( n & 1 ) { p = ( p * a ) % mod ; } return p ; } ll computeSum ( int * arr , int n ) { sort ( arr , arr + n ) ; ll sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) { ll maxs = ( power ( 2 , i ) - 1 + mod ) % mod ; maxs = ( maxs * arr [ i ] ) % mod ; ll mins = ( power ( 2 , n - 1 - i ) - 1 + mod ) % mod ; mins = ( mins * arr [ i ] ) % mod ; ll V = ( maxs - mins + mod ) % mod ; sum = ( sum + V ) % mod ; } return sum ; } int main ( ) { int arr [ ] = { 4 , 3 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << computeSum ( arr , n ) ; return 0 ; }
Count of all N digit numbers such that num + Rev ( num ) = 10 ^ N | C ++ implementation of the approach ; Function to return the count of such numbers ; If n is odd ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countNumbers ( int n ) { if ( n % 2 == 1 ) return 0 ; return ( 9 * pow ( 10 , n / 2 - 1 ) ) ; } int main ( ) { int n = 2 ; cout << countNumbers ( n ) ; return 0 ; }
Count of numbers having only 1 set bit in the range [ 0 , n ] | C ++ implementation of the approach ; Function to return the required count ; To store the count of numbers ; Every power of 2 contains only 1 set bit ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int count ( int n ) { int cnt = 0 ; int p = 1 ; while ( p <= n ) { cnt ++ ; p *= 2 ; } return cnt ; } int main ( ) { int n = 7 ; cout << count ( n ) ; return 0 ; }
Find the K | C ++ programme to find the K 'th minimum element from an array concatenated M times ; Function to find the K - th minimum element from an array concatenated M times ; Sort the elements in ascending order ; Return the K 'th Min element present at ( (K-1) / M ) index ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int KthMinValAfterMconcatenate ( int A [ ] , int N , int M , int K ) { sort ( A , A + N ) ; return ( A [ ( ( K - 1 ) / M ) ] ) ; } int main ( ) { int A [ ] = { 3 , 1 , 2 } ; int M = 3 , K = 4 ; int N = sizeof ( A ) / sizeof ( A [ 0 ] ) ; cout << KthMinValAfterMconcatenate ( A , N , M , K ) ; return 0 ; }
Sum of all i such that ( 2 ^ i + 1 ) % 3 = 0 where i is in range [ 1 , n ] | C ++ implementation of the approach ; Function to return the required sum ; Total odd numbers from 1 to n ; Sum of first n odd numbers ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int sumN ( int n ) { n = ( n + 1 ) / 2 ; return ( n * n ) ; } int main ( ) { int n = 3 ; cout << sumN ( n ) ; return 0 ; }
Numbers that are not divisible by any number in the range [ 2 , 10 ] | C ++ implementation of the approach ; Function to return the count of numbers from 1 to N which are not divisible by any number in the range [ 2 , 10 ] ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countNumbers ( int n ) { return n - n / 2 - n / 3 - n / 5 - n / 7 + n / 6 + n / 10 + n / 14 + n / 15 + n / 21 + n / 35 - n / 30 - n / 42 - n / 70 - n / 105 + n / 210 ; } int main ( ) { int n = 20 ; cout << countNumbers ( n ) ; return 0 ; }
Maximum Primes whose sum is equal to given N | C ++ program for above approach ; Function to find max count of primes ; if n is even n / 2 is required answer if n is odd floor ( n / 2 ) = ( int ) ( n / 2 ) is required answer ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int maxPrimes ( int n ) { return n / 2 ; } int main ( ) { int n = 17 ; cout << maxPrimes ( n ) ; return 0 ; }
Sum of the series ( 1 * 2 ) + ( 2 * 3 ) + ( 3 * 4 ) + ... ... upto n terms | C ++ implementation of the approach ; Function to return sum ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int sum ( int n ) { return n * ( n + 1 ) * ( n + 2 ) / 3 ; } int main ( ) { int n = 2 ; cout << sum ( n ) ; }
Find the shortest distance between any pair of two different good nodes | C ++ program to find the shortest pairwise distance between any two different good nodes . ; Function to add edges ; Function to find the shortest distance between any pair of two different good nodes ; Keeps minimum element on top ; To keep required answer ; If it is not good vertex ; Keep all vertices not visited and distance as MAXI ; Distance from ith vertex to ith is zero ; Make queue empty ; Push the ith vertex ; Count the good vertices ; Take the top element ; Remove it ; If it is already visited ; Count good vertices ; If distance from vth vertex is greater than ans ; If two good vertices are found ; Go to all adjacent vertices ; if distance is less ; Return the required answer ; Driver code ; Number of vertices and edges ; Function call to add edges ; Number of good nodes ; To keep good vertices
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 100005 NEW_LINE const int MAXI = 99999999 ; void add_edge ( vector < pair < int , int > > gr [ ] , int x , int y , int weight ) { gr [ x ] . push_back ( { y , weight } ) ; gr [ y ] . push_back ( { x , weight } ) ; } int minDistance ( vector < pair < int , int > > gr [ ] , int n , int dist [ ] , int vis [ ] , int a [ ] , int k ) { priority_queue < pair < int , int > , vector < pair < int , int > > , greater < pair < int , int > > > q ; int ans = MAXI ; for ( int i = 1 ; i <= n ; i ++ ) { if ( ! a [ i ] ) continue ; for ( int j = 1 ; j <= n ; j ++ ) { dist [ j ] = MAXI ; vis [ j ] = 0 ; } dist [ i ] = 0 ; while ( ! q . empty ( ) ) q . pop ( ) ; q . push ( { 0 , i } ) ; int good = 0 ; while ( ! q . empty ( ) ) { int v = q . top ( ) . second ; q . pop ( ) ; if ( vis [ v ] ) continue ; vis [ v ] = 1 ; good += a [ v ] ; if ( dist [ v ] > ans ) break ; if ( good == 2 and a [ v ] ) { ans = min ( ans , dist [ v ] ) ; break ; } for ( int j = 0 ; j < gr [ v ] . size ( ) ; j ++ ) { int to = gr [ v ] [ j ] . first ; int weight = gr [ v ] [ j ] . second ; if ( dist [ v ] + weight < dist [ to ] ) { dist [ to ] = dist [ v ] + weight ; q . push ( { dist [ to ] , to } ) ; } } } } return ans ; } int main ( ) { int n = 5 , m = 5 ; vector < pair < int , int > > gr [ N ] ; add_edge ( gr , 1 , 2 , 3 ) ; add_edge ( gr , 1 , 2 , 3 ) ; add_edge ( gr , 2 , 3 , 4 ) ; add_edge ( gr , 3 , 4 , 1 ) ; add_edge ( gr , 4 , 5 , 8 ) ; int k = 3 ; int a [ N ] , vis [ N ] , dist [ N ] ; a [ 1 ] = a [ 3 ] = a [ 5 ] = 1 ; cout << minDistance ( gr , n , dist , vis , a , k ) ; return 0 ; }
Smallest divisor D of N such that gcd ( D , M ) is greater than 1 | C ++ implementation of the above approach ; Function to find the minimum divisor ; Iterate for all factors of N ; Check for gcd > 1 ; Check for gcd > 1 ; If gcd is m itself ; Drivers code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinimum ( int n , int m ) { int mini = m ; for ( int i = 1 ; i * i <= n ; i ++ ) { if ( n % i == 0 ) { int sec = n / i ; if ( __gcd ( m , i ) > 1 ) { return i ; } else if ( __gcd ( sec , m ) > 1 ) { mini = min ( sec , mini ) ; } } } if ( mini == m ) return -1 ; else return mini ; } int main ( ) { int n = 8 , m = 10 ; cout << findMinimum ( n , m ) ; return 0 ; }
Find Nth term of the series 1 , 5 , 32 , 288 ... | CPP code to generate ' Nth ' terms of this sequence ; Function to generate a fixed \ number ; Finding nth term ; Driver Method
#include <bits/stdc++.h> NEW_LINE using namespace std ; int nthTerm ( int N ) { int nth = 0 , i ; for ( i = N ; i > 0 ; i -- ) { nth += pow ( i , i ) ; } return nth ; } int main ( ) { int N = 3 ; cout << nthTerm ( N ) << endl ; return 0 ; }
Find kth smallest number in range [ 1 , n ] when all the odd numbers are deleted | C ++ implementation of the approach ; Function to return the kth smallest element from the range [ 1 , n ] after removing all the odd elements ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int kthSmallest ( int n , int k ) { return ( 2 * k ) ; } int main ( ) { int n = 8 , k = 4 ; cout << kthSmallest ( n , k ) ; return 0 ; }
Check if a number can be represented as sum of non zero powers of 2 | C ++ implementation of the approach ; Function that return true if n can be represented as the sum of powers of 2 without using 2 ^ 0 ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool isSumOfPowersOfTwo ( int n ) { if ( n % 2 == 1 ) return false ; else return true ; } int main ( ) { int n = 10 ; if ( isSumOfPowersOfTwo ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; }
Minimize sum of adjacent difference with removal of one element from array | C ++ implementation of above approach ; Function to find the element ; Value variable for storing the total value ; Declaring maximum value as zero ; If array contains on element ; Storing the maximum value in temp variable ; Adding the adjacent difference modulus values of removed element . Removing adjacent difference modulus value after removing element ; Returning total value - maximum value ; Drivers code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinRemoval ( int arr [ ] , int n ) { int temp , value = 0 ; int maximum = 0 ; if ( n == 1 ) return 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( i != 0 && i != n - 1 ) { value = value + abs ( arr [ i ] - arr [ i + 1 ] ) ; temp = abs ( arr [ i ] - arr [ i + 1 ] ) + abs ( arr [ i ] - arr [ i - 1 ] ) - abs ( arr [ i - 1 ] - arr [ i + 1 ] ) ; } else if ( i == 0 ) { value = value + abs ( arr [ i ] - arr [ i + 1 ] ) ; temp = abs ( arr [ i ] - arr [ i + 1 ] ) ; } else temp = abs ( arr [ i ] - arr [ i - 1 ] ) ; maximum = max ( maximum , temp ) ; } return ( value - maximum ) ; } int main ( ) { int arr [ ] = { 1 , 5 , 3 , 2 , 10 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << findMinRemoval ( arr , n ) << " STRNEWLINE " ; return 0 ; }
Time until distance gets equal to X between two objects moving in opposite direction | C ++ implementation of the approach ; Function to return the time for which the two policemen can communicate ; time = distance / speed ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; double getTime ( int u , int v , int x ) { double speed = u + v ; double time = x / speed ; return time ; } int main ( ) { double u = 3 , v = 3 , x = 3 ; cout << getTime ( u , v , x ) ; return 0 ; }
Given number of matches played , find number of teams in tournament | C ++ implementation of the approach ; Function to return the number of teams ; To store both roots of the equation ; sqrt ( b ^ 2 - 4 ac ) ; First root ( - b + sqrt ( b ^ 2 - 4 ac ) ) / 2 a ; Second root ( - b - sqrt ( b ^ 2 - 4 ac ) ) / 2 a ; Return the positive root ; Driver code
#include <cmath> NEW_LINE #include <iostream> NEW_LINE using namespace std ; int number_of_teams ( int M ) { int N1 , N2 , sqr ; sqr = sqrt ( 1 + ( 8 * M ) ) ; N1 = ( 1 + sqr ) / 2 ; N2 = ( 1 - sqr ) / 2 ; if ( N1 > 0 ) return N1 ; return N2 ; } int main ( ) { int M = 45 ; cout << number_of_teams ( M ) ; return 0 ; }
Greatest number less than equal to B that can be formed from the digits of A | C ++ implementation of the approach ; Function to return the greatest number not gtreater than B that can be formed with the digits of A ; To store size of A ; To store the required answer ; Traverse from leftmost digit and place a smaller digit for every position . ; Keep all digits in A ; To avoid leading zeros ; For all possible values at ith position from largest value to smallest ; Take largest possible digit ; Keep duplicate of string a ; Remove the taken digit from s2 ; Sort all the remaining digits of s2 ; Add s2 to current s1 ; If s1 is less than B then it can be included in the answer . Note that stoll ( ) converts a string to lomg long int . ; change A to s2 ; Return the required answer ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; string Permute_Digits ( string a , long long b ) { int n = a . size ( ) ; string ans = " " ; for ( int i = 0 ; i < n ; i ++ ) { set < char > temp ( a . begin ( ) , a . end ( ) ) ; if ( i == 0 ) temp . erase ( 0 ) ; for ( auto j = temp . rbegin ( ) ; j != temp . rend ( ) ; ++ j ) { string s1 = ans + * j ; string s2 = a ; s2 . erase ( s2 . find ( * j ) , 1 ) ; sort ( s2 . begin ( ) , s2 . end ( ) ) ; s1 += s2 ; if ( stoll ( s1 ) <= b ) { ans += * j ; a = s2 ; break ; } } } return ans ; } int main ( ) { string a = "123" ; int b = 222 ; cout << Permute_Digits ( a , b ) ; return 0 ; }
Sum of numbers from 1 to N which are in Lucas Sequence | C ++ program to find sum of numbers from 1 to N which are in Lucas Sequence ; Function to return the required sum ; Generate lucas number and keep on adding them ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int LucasSum ( int N ) { int sum = 0 ; int a = 2 , b = 1 , c ; sum += a ; while ( b <= N ) { sum += b ; int c = a + b ; a = b ; b = c ; } return sum ; } int main ( ) { int N = 20 ; cout << LucasSum ( N ) ; return 0 ; }
Count of all even numbers in the range [ L , R ] whose sum of digits is divisible by 3 | C ++ implementation of the approach ; Function to return the count of required numbers ; Count of numbers in range which are divisible by 6 ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countNumbers ( int l , int r ) { return ( ( r / 6 ) - ( l - 1 ) / 6 ) ; } int main ( ) { int l = 1000 , r = 6000 ; cout << countNumbers ( l , r ) ; return 0 ; }
Sum of minimum element of all sub | C ++ implementation of the above approach ; Function to find the sum of minimum of all subsequence ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findMinSum ( int arr [ ] , int n ) { int occ = n - 1 , sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) { sum += arr [ i ] * pow ( 2 , occ ) ; occ -- ; } return sum ; } int main ( ) { int arr [ ] = { 1 , 2 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << findMinSum ( arr , n ) ; return 0 ; }
Number of trailing zeroes in base B representation of N ! | CPP program to find the number of trailing zeroes in base B representation of N ! ; To find the power of a prime p in factorial N ; calculating floor ( n / r ) and adding to the count ; increasing the power of p from 1 to 2 to 3 and so on ; returns all the prime factors of k ; vector to store all the prime factors along with their number of occurrence in factorization of B ; Returns largest power of B that divides N ! ; calculating minimum power of all the prime factors of B ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findPowerOfP ( int N , int p ) { int count = 0 ; int r = p ; while ( r <= N ) { count += ( N / r ) ; r = r * p ; } return count ; } vector < pair < int , int > > primeFactorsofB ( int B ) { vector < pair < int , int > > ans ; for ( int i = 2 ; B != 1 ; i ++ ) { if ( B % i == 0 ) { int count = 0 ; while ( B % i == 0 ) { B = B / i ; count ++ ; } ans . push_back ( make_pair ( i , count ) ) ; } } return ans ; } int largestPowerOfB ( int N , int B ) { vector < pair < int , int > > vec ; vec = primeFactorsofB ( B ) ; int ans = INT_MAX ; for ( int i = 0 ; i < vec . size ( ) ; i ++ ) ans = min ( ans , findPowerOfP ( N , vec [ i ] . first ) / vec [ i ] . second ) ; return ans ; } int main ( ) { cout << largestPowerOfB ( 5 , 2 ) << endl ; cout << largestPowerOfB ( 6 , 9 ) << endl ; return 0 ; }
Count numbers in range 1 to N which are divisible by X but not by Y | C ++ implementation of above approach ; Function to count total numbers divisible by x but not y in range 1 to N ; Check if Number is divisible by x but not Y if yes , Increment count ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countNumbers ( int X , int Y , int N ) { int count = 0 ; for ( int i = 1 ; i <= N ; i ++ ) { if ( ( i % X == 0 ) && ( i % Y != 0 ) ) count ++ ; } return count ; } int main ( ) { int X = 2 , Y = 3 , N = 10 ; cout << countNumbers ( X , Y , N ) ; return 0 ; }
Position of a person diametrically opposite on a circle | C ++ implementation of the approach ; Function to return the required position ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int getPosition ( int n , int m ) { if ( m > ( n / 2 ) ) return ( m - ( n / 2 ) ) ; return ( m + ( n / 2 ) ) ; } int main ( ) { int n = 8 , m = 5 ; cout << getPosition ( n , m ) ; return 0 ; }
Minimum operations required to modify the array such that parity of adjacent elements is different | C ++ implementation of the approach ; Function to return the parity of a number ; Function to return the minimum number of operations required ; Operation needs to be performed ; Parity of previous element ; Parity of next element ; Update parity of current element to be other than the parities of the previous and the next number ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int parity ( int a ) { return a % 3 ; } int solve ( int array [ ] , int size ) { int operations = 0 ; for ( int i = 0 ; i < size - 1 ; i ++ ) { if ( parity ( array [ i ] ) == parity ( array [ i + 1 ] ) ) { operations ++ ; if ( i + 2 < size ) { int pari1 = parity ( array [ i ] ) ; int pari2 = parity ( array [ i + 2 ] ) ; if ( pari1 == pari2 ) { if ( pari1 == 0 ) array [ i + 1 ] = 1 ; else if ( pari1 == 1 ) array [ i + 1 ] = 0 ; else array [ i + 1 ] = 1 ; } else { if ( ( pari1 == 0 && pari2 == 1 ) || ( pari1 == 1 && pari2 == 0 ) ) array [ i + 1 ] = 2 ; if ( ( pari1 == 1 && pari2 == 2 ) || ( pari1 == 2 && pari2 == 1 ) ) array [ i + 1 ] = 0 ; if ( ( pari1 == 2 && pari2 == 0 ) || ( pari1 == 0 && pari2 == 2 ) ) array [ i + 1 ] = 1 ; } } } } return operations ; } int main ( ) { int array [ ] = { 2 , 1 , 3 , 0 } ; int size = sizeof ( array ) / sizeof ( array [ 0 ] ) ; cout << solve ( array , size ) << endl ; return 0 ; }
Number of submatrices with OR value 1 | C ++ program to count number of submatrices with OR value 1 ; Function to find required prefix - count for each row from right to left ; Function to find the count of submatrices with OR value 1 ; Array to store prefix count of zeros from right to left for boolean array ; Variable to store the count of submatrices with OR value 0 ; Loop to evaluate each column of the prefix matrix uniquely . For each index of a column we will try to determine the number of sub - matrices starting from that index and has all 1 s ; First part of pair will be the value of inserted element . Second part will be the count of the number of elements pushed before with a greater value ; Variable to store the number of submatrices with all 0 s ; Return the final answer ; Driver Code
#include <iostream> NEW_LINE #include <stack> NEW_LINE #define n 3 NEW_LINE using namespace std ; void findPrefixCount ( int p_arr [ ] [ n ] , bool arr [ ] [ n ] ) { for ( int i = 0 ; i < n ; i ++ ) for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( arr [ i ] [ j ] ) continue ; if ( j != n - 1 ) p_arr [ i ] [ j ] += p_arr [ i ] [ j + 1 ] ; p_arr [ i ] [ j ] += ( int ) ( ! arr [ i ] [ j ] ) ; } } int matrixOrValueOne ( bool arr [ ] [ n ] ) { int p_arr [ n ] [ n ] = { 0 } ; findPrefixCount ( p_arr , arr ) ; int count_zero_submatrices = 0 ; for ( int j = 0 ; j < n ; j ++ ) { int i = n - 1 ; stack < pair < int , int > > q ; int to_sum = 0 ; while ( i >= 0 ) { int c = 0 ; while ( q . size ( ) != 0 and q . top ( ) . first > p_arr [ i ] [ j ] ) { to_sum -= ( q . top ( ) . second + 1 ) * ( q . top ( ) . first - p_arr [ i ] [ j ] ) ; c += q . top ( ) . second + 1 ; q . pop ( ) ; } to_sum += p_arr [ i ] [ j ] ; count_zero_submatrices += to_sum ; q . push ( { p_arr [ i ] [ j ] , c } ) ; i -- ; } } return ( n * ( n + 1 ) * n * ( n + 1 ) ) / 4 - count_zero_submatrices ; } int main ( ) { bool arr [ ] [ n ] = { { 0 , 0 , 0 } , { 0 , 1 , 0 } , { 0 , 0 , 0 } } ; cout << matrixOrValueOne ( arr ) ; return 0 ; }
XOR of XORs of all sub | C ++ program to find the XOR of XOR 's of all submatrices ; Function to find to required XOR value ; Nested loop to find the number of sub - matrix each index belongs to ; Number of ways to choose from top - left elements ; Number of ways to choose from bottom - right elements ; Driver Code
#include <iostream> NEW_LINE using namespace std ; #define n 3 NEW_LINE int submatrixXor ( int arr [ ] [ n ] ) { int ans = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { int top_left = ( i + 1 ) * ( j + 1 ) ; int bottom_right = ( n - i ) * ( n - j ) ; if ( ( top_left % 2 == 1 ) && ( bottom_right % 2 == 1 ) ) ans = ( ans ^ arr [ i ] [ j ] ) ; } } return ans ; } int main ( ) { int arr [ ] [ n ] = { { 6 , 7 , 13 } , { 8 , 3 , 4 } , { 9 , 7 , 6 } } ; cout << submatrixXor ( arr ) ; return 0 ; }
Find Nth positive number whose digital root is X | C ++ program to find the N - th number whose digital root is X ; Function to find the digital root of a number ; Function to find the Nth number with digital root as X ; Counter variable to keep the count of valid numbers ; Find digital root ; Check if is required answer or not ; Print the answer if you have found it and breakout of the loop ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findDigitalRoot ( int num ) { int sum = INT_MAX , tempNum = num ; while ( sum >= 10 ) { sum = 0 ; while ( tempNum > 0 ) { sum += tempNum % 10 ; tempNum /= 10 ; } tempNum = sum ; } return sum ; } void findAnswer ( int X , int N ) { int counter = 0 ; for ( int i = 1 ; counter < N ; ++ i ) { int digitalRoot = findDigitalRoot ( i ) ; if ( digitalRoot == X ) { ++ counter ; } if ( counter == N ) { cout << i ; break ; } } } int main ( ) { int X = 1 , N = 3 ; findAnswer ( X , N ) ; return 0 ; }
Find Nth positive number whose digital root is X | C ++ program to find the N - th number with digital root as X ; Function to find the N - th number with digital root as X ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findAnswer ( int X , int N ) { return ( N - 1 ) * 9 + X ; } int main ( ) { int X = 7 , N = 43 ; cout << findAnswer ( X , N ) ; return 0 ; }
Sum of the natural numbers ( up to N ) whose modulo with K yield R | C ++ implementation of the approach ; Function to return the sum ; If current number gives R as the remainder on dividing by K ; Update the sum ; Return the sum ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; long long int count ( int N , int K , int R ) { long long int sum = 0 ; for ( int i = 1 ; i <= N ; i ++ ) { if ( i % K == R ) sum += i ; } return sum ; } int main ( ) { int N = 20 , K = 4 , R = 3 ; cout << count ( N , K , R ) ; return 0 ; }
Longest sub | C ++ implementation of the approach ; Function to return the length of the longest required sub - sequence ; Find the maximum element from the array ; Insert all lucas numbers below max to the set a and b are first two elements of the Lucas sequence ; If current element is a Lucas number , increment count ; Return the count ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int LucasSequence ( int arr [ ] , int n ) { int max = * max_element ( arr , arr + n ) ; unordered_set < int > s ; int a = 2 , b = 1 , c ; s . insert ( a ) ; s . insert ( b ) ; while ( b < max ) { int c = a + b ; a = b ; b = c ; s . insert ( b ) ; } int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { auto it = s . find ( arr [ i ] ) ; if ( it != s . end ( ) ) count ++ ; } return count ; } int main ( ) { int arr [ ] = { 7 , 11 , 22 , 4 , 2 , 1 , 8 , 9 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << LucasSequence ( arr , n ) ; return 0 ; }
Find the number of solutions to the given equation | C ++ implementation of the approach ; Function to return the count of valid values of X ; Iterate through all possible sum of digits of X ; Get current value of X for sum of digits i ; Find sum of digits of cr ; If cr is a valid choice for X ; Return the count ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int getCount ( int a , int b , int c ) { int count = 0 ; for ( int i = 1 ; i <= 81 ; i ++ ) { int cr = b * pow ( i , a ) + c ; int tmp = cr ; int sm = 0 ; while ( tmp ) { sm += tmp % 10 ; tmp /= 10 ; } if ( sm == i && cr < 1e9 ) count ++ ; } return count ; } int main ( ) { int a = 3 , b = 2 , c = 8 ; cout << getCount ( a , b , c ) ; return 0 ; }
Check if an array of 1 s and 2 s can be divided into 2 parts with equal sum | C ++ implementation of the above approach : ; Function to check if it is possible to split the array in two parts with equal sum ; Calculate sum of elements and count of 1 's ; If total sum is odd , return False ; If sum of each part is even , return True ; If sum of each part is even but there is atleast one 1 ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool isSpiltPossible ( int n , int a [ ] ) { int sum = 0 , c1 = 0 ; for ( int i = 0 ; i < n ; i ++ ) { sum += a [ i ] ; if ( a [ i ] == 1 ) { c1 ++ ; } } if ( sum % 2 ) return false ; if ( ( sum / 2 ) % 2 == 0 ) return true ; if ( c1 > 0 ) return true ; else return false ; } int main ( ) { int n = 3 ; int a [ ] = { 1 , 1 , 2 } ; if ( isSpiltPossible ( n , a ) ) cout << " YES " ; else cout << " NO " ; return 0 ; }
Make a tree with n vertices , d diameter and at most vertex degree k | C ++ implementation of the approach ; Function to Make a tree with n vertices , d as it 's diameter and degree of each vertex is at most k ; If diameter > n - 1 impossible to build tree ; To store the degree of each vertex ; To store the edge between vertices ; To store maximum distance among all the paths from a vertex ; Make diameter of tree equals to d ; Add an edge between them ; Store maximum distance of each vertex from other vertices ; For next ( n - d - 1 ) edges ; If the vertex already has the degree k ; If not possible ; Increase the degree of vertices ; Add an edge between them ; Store the maximum distance of this vertex from other vertices ; Print all the edges of the built tree ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void Make_tree ( int n , int d , int k ) { if ( d > n - 1 ) { cout << " No " ; return ; } vector < int > deg ( n ) ; vector < pair < int , int > > ans ; set < pair < int , int > > q ; for ( int i = 0 ; i < d ; ++ i ) { ++ deg [ i ] ; ++ deg [ i + 1 ] ; if ( deg [ i ] > k deg [ i + 1 ] > k ) { cout << " NO " << endl ; return ; } ans . push_back ( make_pair ( i , i + 1 ) ) ; } for ( int i = 1 ; i < d ; ++ i ) q . insert ( make_pair ( max ( i , d - i ) , i ) ) ; for ( int i = d + 1 ; i < n ; ++ i ) { while ( ! q . empty ( ) && deg [ q . begin ( ) -> second ] == k ) q . erase ( q . begin ( ) ) ; if ( q . empty ( ) || q . begin ( ) -> first == d ) { cout << " No " ; return ; } ++ deg [ i ] ; ++ deg [ q . begin ( ) -> second ] ; ans . push_back ( make_pair ( i , q . begin ( ) -> second ) ) ; q . insert ( make_pair ( q . begin ( ) -> first + 1 , i ) ) ; } for ( int i = 0 ; i < n - 1 ; ++ i ) cout << ans [ i ] . first + 1 << " ▁ " << ans [ i ] . second + 1 << endl ; } int main ( ) { int n = 6 , d = 3 , k = 4 ; Make_tree ( n , d , k ) ; return 0 ; }
Sum of all Submatrices of a Given Matrix | C ++ program to find the sum of all possible submatrices of a given Matrix ; Function to find the sum of all possible submatrices of a given Matrix ; Variable to store the required sum ; Nested loop to find the number of submatrices , each number belongs to ; Number of ways to choose from top - left elements ; Number of ways to choose from bottom - right elements ; Driver Code
#include <iostream> NEW_LINE #define n 3 NEW_LINE using namespace std ; int matrixSum ( int arr [ ] [ n ] ) { int sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) for ( int j = 0 ; j < n ; j ++ ) { int top_left = ( i + 1 ) * ( j + 1 ) ; int bottom_right = ( n - i ) * ( n - j ) ; sum += ( top_left * bottom_right * arr [ i ] [ j ] ) ; } return sum ; } int main ( ) { int arr [ ] [ n ] = { { 1 , 1 , 1 } , { 1 , 1 , 1 } , { 1 , 1 , 1 } } ; cout << matrixSum ( arr ) ; return 0 ; }
Maximum Bitwise AND pair from given range | C ++ implementation of the approach ; Function to return the maximum bitwise AND possible among all the possible pairs ; Maximum among all ( i , j ) pairs ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int maxAND ( int L , int R ) { int maximum = L & R ; for ( int i = L ; i < R ; i ++ ) for ( int j = i + 1 ; j <= R ; j ++ ) maximum = max ( maximum , ( i & j ) ) ; return maximum ; } int main ( ) { int L = 1 , R = 632 ; cout << maxAND ( L , R ) ; return 0 ; }
Split the array into odd number of segments of odd lengths | CPP to check whether given array is breakable or not ; Function to check ; Check the result by processing the first & last element and size ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool checkArray ( int arr [ ] , int n ) { return ( arr [ 0 ] % 2 ) && ( arr [ n - 1 ] % 2 ) && ( n % 2 ) ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << ( int ) checkArray ( arr , n ) ; return 0 ; }
Minimum removals to make array sum odd | C ++ implementation of the above approach ; Function to find minimum removals ; Count odd numbers ; If the counter is odd return 0 otherwise return 1 ; Driver Code
#include <iostream> NEW_LINE using namespace std ; int findCount ( int arr [ ] , int n ) { int countOdd = 0 ; for ( int i = 0 ; i < n ; i ++ ) if ( arr [ i ] % 2 == 1 ) countOdd ++ ; if ( countOdd % 2 == 0 ) return 1 ; else return 0 ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 5 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << findCount ( arr , n ) ; return 0 ; }
Check whether the number can be made perfect square after adding 1 | C ++ implementation of the approach ; Function that returns true if x is a perfect square ; Find floating point value of square root of x ; If square root is an integer ; Function that returns true if n is a sunny number ; If ( n + 1 ) is a perfect square ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPerfectSquare ( long double x ) { long double sr = sqrt ( x ) ; return ( ( sr - floor ( sr ) ) == 0 ) ; } bool isSunnyNum ( int n ) { if ( isPerfectSquare ( n + 1 ) ) return true ; return false ; } int main ( ) { int n = 3 ; if ( isSunnyNum ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; }
Minimum operations to make counts of remainders same in an array | C ++ implementation of the approach ; Function to return the minimum number of operations required ; To store modulos values ; If it 's size greater than k it needed to be decreased ; If it 's size is less than k it needed to be increased ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int minOperations ( int n , int a [ ] , int m ) { int k = n / m ; vector < vector < int > > val ( m ) ; for ( int i = 0 ; i < n ; ++ i ) { val [ a [ i ] % m ] . push_back ( i ) ; } long long ans = 0 ; vector < pair < int , int > > extra ; for ( int i = 0 ; i < 2 * m ; ++ i ) { int cur = i % m ; while ( int ( val [ cur ] . size ( ) ) > k ) { int elem = val [ cur ] . back ( ) ; val [ cur ] . pop_back ( ) ; extra . push_back ( make_pair ( elem , i ) ) ; } while ( int ( val [ cur ] . size ( ) ) < k && ! extra . empty ( ) ) { int elem = extra . back ( ) . first ; int mmod = extra . back ( ) . second ; extra . pop_back ( ) ; val [ cur ] . push_back ( elem ) ; ans += i - mmod ; } } return ans ; } int main ( ) { int m = 3 ; int a [ ] = { 3 , 2 , 0 , 6 , 10 , 12 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << minOperations ( n , a , m ) ; return 0 ; }
Count primes that can be expressed as sum of two consecutive primes and 1 | C ++ implementation of the approach ; To check if a number is prime or not ; To store possible numbers ; Function to return all prime numbers ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of p greater than or equal to the square of it numbers which are multiple of p and are less than p ^ 2 are already been marked . ; Function to count all possible prime numbers that can be expressed as the sum of two consecutive primes and one ; All possible prime numbers below N ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 100005 NEW_LINE bool isprime [ N ] ; bool can [ N ] ; vector < int > SieveOfEratosthenes ( ) { memset ( isprime , true , sizeof ( isprime ) ) ; for ( int p = 2 ; p * p < N ; p ++ ) { if ( isprime [ p ] == true ) { for ( int i = p * p ; i < N ; i += p ) isprime [ i ] = false ; } } vector < int > primes ; for ( int i = 2 ; i < N ; i ++ ) if ( isprime [ i ] ) primes . push_back ( i ) ; return primes ; } int Prime_Numbers ( int n ) { vector < int > primes = SieveOfEratosthenes ( ) ; for ( int i = 0 ; i < ( int ) ( primes . size ( ) ) - 1 ; i ++ ) if ( primes [ i ] + primes [ i + 1 ] + 1 < N ) can [ primes [ i ] + primes [ i + 1 ] + 1 ] = true ; int ans = 0 ; for ( int i = 2 ; i <= n ; i ++ ) { if ( can [ i ] and isprime [ i ] ) { ans ++ ; } } return ans ; } int main ( ) { int n = 50 ; cout << Prime_Numbers ( n ) ; return 0 ; }
Sum of bitwise AND of all subarrays | CPP program to find sum of bitwise AND of all subarrays ; Function to find the sum of bitwise AND of all subarrays ; variable to store the final sum ; multiplier ; variable to check if counting is on ; variable to store the length of the subarrays ; loop to find the contiguous segments ; updating the multiplier ; returning the sum ; Driver Code
#include <iostream> NEW_LINE #include <vector> NEW_LINE using namespace std ; int findAndSum ( int arr [ ] , int n ) { int sum = 0 ; int mul = 1 ; for ( int i = 0 ; i < 30 ; i ++ ) { bool count_on = 0 ; int l = 0 ; for ( int j = 0 ; j < n ; j ++ ) { if ( ( arr [ j ] & ( 1 << i ) ) > 0 ) if ( count_on ) l ++ ; else { count_on = 1 ; l ++ ; } else if ( count_on ) { sum += ( ( mul * l * ( l + 1 ) ) / 2 ) ; count_on = 0 ; l = 0 ; } } if ( count_on ) { sum += ( ( mul * l * ( l + 1 ) ) / 2 ) ; count_on = 0 ; l = 0 ; } mul *= 2 ; } return sum ; } int main ( ) { int arr [ ] = { 7 , 1 , 1 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << findAndSum ( arr , n ) ; return 0 ; }
Source to destination in 2 | C ++ implementation of the approach ; Function that returns true if it is possible to move from source to the destination with the given moves ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPossible ( int Sx , int Sy , int Dx , int Dy , int x , int y ) { if ( abs ( Sx - Dx ) % x == 0 and abs ( Sy - Dy ) % y == 0 and ( abs ( Sx - Dx ) / x ) % 2 == ( abs ( Sy - Dy ) / y ) % 2 ) return true ; return false ; } int main ( ) { int Sx = 0 , Sy = 0 , Dx = 0 , Dy = 0 ; int x = 3 , y = 4 ; if ( isPossible ( Sx , Sy , Dx , Dy , x , y ) ) cout << " Yes " ; else cout << " No " ; return 0 ; }
Count of pairs ( x , y ) in an array such that x < y | C ++ implementation of the approach ; Function to return the number of pairs ( x , y ) such that x < y ; To store the number of valid pairs ; If a valid pair is found ; Return the count of valid pairs ; Driver code
#include <iostream> NEW_LINE using namespace std ; int getPairs ( int a [ ] , int n ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( a [ i ] < a [ j ] ) count ++ ; } } return count ; } int main ( ) { int a [ ] = { 2 , 4 , 3 , 1 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << getPairs ( a , n ) ; return 0 ; }
Composite numbers with digit sum 1 | C ++ implementation of the above approach ; Function that returns true if number n is a composite number ; Corner cases ; This is checked so that we can skip middle five numbers in below loop ; Function that returns true if the eventual digit sum of number nm is 1 ; Loop till the sum is not single digit number ; Intitialize the sum as zero ; Find the sum of digits ; If sum is eventually 1 ; Function to print the required numbers from the given range ; If i is one of the required numbers ; Driver code
#include <iostream> NEW_LINE using namespace std ; bool isComposite ( int n ) { if ( n <= 1 ) return false ; if ( n <= 3 ) return false ; if ( n % 2 == 0 n % 3 == 0 ) return true ; for ( int i = 5 ; i * i <= n ; i = i + 6 ) if ( n % i == 0 || n % ( i + 2 ) == 0 ) return true ; return false ; } bool isDigitSumOne ( int nm ) { while ( nm > 9 ) { int sum_digit = 0 ; while ( nm > 0 ) { int digit = nm % 10 ; sum_digit = sum_digit + digit ; nm = nm / 10 ; } nm = sum_digit ; } if ( nm == 1 ) return true ; else return false ; } void printValidNums ( int l , int r ) { for ( int i = l ; i <= r ; i ++ ) { if ( isComposite ( i ) && isDigitSumOne ( i ) ) cout << i << " ▁ " ; } } int main ( void ) { int l = 10 , r = 100 ; printValidNums ( l , r ) ; return 0 ; }
Determine the count of Leaf nodes in an N | CPP program to find number of leaf nodes ; Function to calculate leaf nodes in n - ary tree ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int calcNodes ( int N , int I ) { int result = 0 ; result = I * ( N - 1 ) + 1 ; return result ; } int main ( ) { int N = 5 , I = 2 ; cout << " Leaf ▁ nodes ▁ = ▁ " << calcNodes ( N , I ) ; return 0 ; }
An application on Bertrand 's ballot theorem | C ++ implementation of the approach ; Function to calculate factorial of a number mod 1000000007 ; Factorial of i = factorial of ( i - 1 ) * i ; ; Taking mod along with calculation . ; Function for modular exponentiation ; If p is odd ; If p is even ; Function to return the count of required permutations ; Calculating multiplicative modular inverse for x ! and multiplying with ans ; Calculating multiplicative modular inverse for y ! and multiplying with ans ; Driver code ; Pre - compute factorials
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE ll mod = 1000000007 ; ll arr [ 1000001 ] = { 0 } ; void cal_factorial ( ) { arr [ 0 ] = 1 ; for ( int i = 1 ; i <= 1000000 ; i ++ ) { arr [ i ] = ( arr [ i - 1 ] * i ) % mod ; } } ll mod_exponent ( ll num , ll p ) { if ( p == 0 ) return 1 ; if ( p & 1 ) { return ( ( num % mod ) * ( mod_exponent ( ( num * num ) % mod , p / 2 ) ) % mod ) % mod ; } else if ( ! ( p & 1 ) ) return ( mod_exponent ( ( num * num ) % mod , p / 2 ) ) % mod ; } ll getCount ( ll x , ll y ) { ll ans = arr [ x + y - 1 ] ; ans *= mod_exponent ( arr [ x ] , mod - 2 ) ; ans %= mod ; ans *= mod_exponent ( arr [ y ] , mod - 2 ) ; ans %= mod ; ans *= ( x - y ) ; ans %= mod ; return ans ; } int main ( ) { cal_factorial ( ) ; ll x = 3 , y = 1 ; cout << getCount ( x , y ) ; return 0 ; }
Find the values of X and Y in the Given Equations | CPP program to find the values of X and Y using the given equations ; Function to find the values of X and Y ; base condition ; required answer ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void findValues ( int a , int b ) { if ( ( a - b ) % 2 == 1 ) { cout << " - 1" ; return ; } cout << ( a - b ) / 2 << " ▁ " << ( a + b ) / 2 ; } int main ( ) { int a = 12 , b = 8 ; findValues ( a , b ) ; return 0 ; }
Program to implement Inverse Interpolation using Lagrange Formula | C ++ code for solving inverse interpolation ; Consider a structure to keep each pair of x and y together ; Function to calculate the inverse interpolation ; Initialize final x ; Calculate each term of the given formula ; Add term to final result ; Driver Code ; Sample dataset of 4 points Here we find the value of x when y = 4.5 ; Size of dataset ; Sample y value ; Using the Inverse Interpolation function to find the value of x when y = 4.5
#include <bits/stdc++.h> NEW_LINE using namespace std ; struct Data { double x , y ; } ; double inv_interpolate ( Data d [ ] , int n , double y ) { double x = 0 ; int i , j ; for ( i = 0 ; i < n ; i ++ ) { double xi = d [ i ] . x ; for ( j = 0 ; j < n ; j ++ ) { if ( j != i ) { xi = xi * ( y - d [ j ] . y ) / ( d [ i ] . y - d [ j ] . y ) ; } } x += xi ; } return x ; } int main ( ) { Data d [ ] = { { 1.27 , 2.3 } , { 2.25 , 2.95 } , { 2.5 , 3.5 } , { 3.6 , 5.1 } } ; int n = 4 ; double y = 4.5 ; cout << " Value ▁ of ▁ x ▁ at ▁ y ▁ = ▁ 4.5 ▁ : ▁ " << inv_interpolate ( d , n , y ) ; return 0 ; }
Count triplet pairs ( A , B , C ) of points in 2 | C ++ implementation of the approach ; Function to return the count of possible triplets ; Insert all the points in a set ; If the mid point exists in the set ; Return the count of valid triplets ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countTriplets ( int n , vector < pair < int , int > > points ) { set < pair < int , int > > pts ; int ct = 0 ; for ( int i = 0 ; i < n ; i ++ ) pts . insert ( points [ i ] ) ; for ( int i = 0 ; i < n ; i ++ ) for ( int j = i + 1 ; j < n ; j ++ ) { int x = points [ i ] . first + points [ j ] . first ; int y = points [ i ] . second + points [ j ] . second ; if ( x % 2 == 0 && y % 2 == 0 ) if ( pts . find ( make_pair ( x / 2 , y / 2 ) ) != pts . end ( ) ) ct ++ ; } return ct ; } int main ( ) { vector < pair < int , int > > points = { { 1 , 1 } , { 2 , 2 } , { 3 , 3 } } ; int n = points . size ( ) ; cout << countTriplets ( n , points ) ; }
Concentration of juice after mixing n glasses in equal proportion | C ++ implementation of the approach ; Function to return the concentration of the resultant mixture ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; double mixtureConcentration ( int n , int p [ ] ) { double res = 0 ; for ( int i = 0 ; i < n ; i ++ ) res += p [ i ] ; res /= n ; return res ; } int main ( ) { int arr [ ] = { 0 , 20 , 20 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << mixtureConcentration ( n , arr ) ; }
Numbers of Length N having digits A and B and whose sum of digits contain only digits A and B | C ++ implementation of the approach ; Function that returns true if the num contains a and b digits only ; Modular Exponentiation ; Function to return the modular inverse of x modulo MOD ; Function to return the required count of numbers ; Generating factorials of all numbers ; Generating inverse of factorials modulo MOD of all numbers ; Keeping a as largest number ; Iterate over all possible values of s and if it is a valid S then proceed further ; Check for invalid cases in the equation ; Find answer using combinatorics ; Add this result to final answer ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 1e5 + 5 ; const int MOD = 1e9 + 7 ; #define ll long long NEW_LINE int check ( int num , int a , int b ) { while ( num ) { int rem = num % 10 ; num /= 10 ; if ( rem != a && rem != b ) return 0 ; } return 1 ; } ll power ( ll x , ll y ) { ll ans = 1 ; while ( y ) { if ( y & 1 ) ans = ( ans * x ) % MOD ; y >>= 1 ; x = ( x * x ) % MOD ; } return ans % MOD ; } int modInverse ( int x ) { return power ( x , MOD - 2 ) ; } ll countNumbers ( int n , int a , int b ) { ll fact [ MAX ] , inv [ MAX ] ; ll ans = 0 ; fact [ 0 ] = 1 ; for ( int i = 1 ; i < MAX ; i ++ ) { fact [ i ] = ( 1LL * fact [ i - 1 ] * i ) ; fact [ i ] %= MOD ; } inv [ MAX - 1 ] = modInverse ( fact [ MAX - 1 ] ) ; for ( int i = MAX - 2 ; i >= 0 ; i -- ) { inv [ i ] = ( inv [ i + 1 ] * ( i + 1 ) ) ; inv [ i ] %= MOD ; } if ( a < b ) swap ( a , b ) ; for ( int s = n ; s <= 9 * n ; s ++ ) { if ( ! check ( s , a , b ) ) continue ; if ( s < n * b || ( s - n * b ) % ( a - b ) != 0 ) continue ; int numDig = ( s - n * b ) / ( a - b ) ; if ( numDig > n ) continue ; ll curr = fact [ n ] ; curr = ( curr * inv [ numDig ] ) % MOD ; curr = ( curr * inv [ n - numDig ] ) % MOD ; ans = ( ans + curr ) % MOD ; } return ans ; } int main ( ) { int n = 3 , a = 1 , b = 3 ; cout << countNumbers ( n , a , b ) ; return 0 ; }
Number of elements with even factors in the given range | C ++ implementation of the above approach ; Function to count the perfect squares ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countOddSquares ( int n , int m ) { return ( int ) pow ( m , 0.5 ) - ( int ) pow ( n - 1 , 0.5 ) ; } int main ( ) { int n = 5 , m = 100 ; cout << " Count ▁ is ▁ " << ( m - n + 1 ) - countOddSquares ( n , m ) ; return 0 ; }
Total position where king can reach on a chessboard in exactly M moves | C ++ implementation of above approach ; Function to return the number of squares that the king can reach in the given number of moves ; Calculate initial and final coordinates ; Since chessboard is of size 8 X8 so if any coordinate is less than 1 or greater than 8 make it 1 or 8. ; Calculate total positions ; Driver code
#include <iostream> NEW_LINE using namespace std ; int Square ( int row , int column , int moves ) { int a = 0 , b = 0 , c = 0 , d = 0 , total = 0 ; a = row - moves ; b = row + moves ; c = column - moves ; d = column + moves ; if ( a < 1 ) a = 1 ; if ( c < 1 ) c = 1 ; if ( b > 8 ) b = 8 ; if ( d > 8 ) d = 8 ; total = ( b - a + 1 ) * ( d - c + 1 ) - 1 ; return total ; } int main ( ) { int R = 4 , C = 5 , M = 2 ; cout << Square ( R , C , M ) ; return 0 ; }
Find M | C ++ program to Find m - th number whose sum of digits of a number until sum becomes single digit is N ; Function to find the M - th number whosesum till one digit is N ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int findNumber ( int n , int m ) { int num = ( m - 1 ) * 9 + n ; return num ; } int main ( ) { int n = 2 , m = 5 ; cout << findNumber ( n , m ) ; return 0 ; }
Check if a number can be represented as a sum of 2 triangular numbers | C ++ implementation of the above approach ; Function to check if it is possible or not ; Store all triangular numbers up to N in a Set ; Check if a pair exists ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; bool checkTriangularSumRepresentation ( int n ) { unordered_set < int > tri ; int i = 1 ; while ( 1 ) { int x = i * ( i + 1 ) / 2 ; if ( x >= n ) break ; tri . insert ( x ) ; i ++ ; } for ( auto tm : tri ) if ( tri . find ( n - tm ) != tri . end ( ) ) return true ; return false ; } int main ( ) { int n = 24 ; checkTriangularSumRepresentation ( n ) ? cout << " Yes " : cout << " No " ; return 0 ; }
Absolute difference between the first X and last X Digits of N | C ++ implementation of the above approach ; Function to find the number of digits in the integer ; Function to find the absolute difference ; Store the last x digits in last ; Count the no . of digits in N ; Remove the digits except the first x ; Store the first x digits in first ; Return the absolute difference between the first and last ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; long long digitsCount ( long long n ) { int len = 0 ; while ( n > 0 ) { len ++ ; n /= 10 ; } return len ; } long long absoluteFirstLast ( long long n , int x ) { int i = 0 , mod = 1 ; while ( i < x ) { mod *= 10 ; i ++ ; } int last = n % mod ; long long len = digitsCount ( n ) ; while ( len != x ) { n /= 10 ; len -- ; } int first = n ; return abs ( first - last ) ; } int main ( ) { long long n = 21546 , x = 2 ; cout << absoluteFirstLast ( n , x ) ; return 0 ; }
Generate minimum sum sequence of integers with even elements greater | C ++ implementation of above approach ; Function to print the required sequence ; arr [ ] will hold the sequence sum variable will store the sum of the sequence ; If sum of the sequence is odd ; Print the sequence ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void make_sequence ( int N ) { int arr [ N + 1 ] , sum = 0 ; for ( int i = 1 ; i <= N ; i ++ ) { if ( i % 2 == 1 ) arr [ i ] = 1 ; else arr [ i ] = 2 ; sum += arr [ i ] ; } if ( sum % 2 == 1 ) arr [ 2 ] = 3 ; for ( int i = 1 ; i <= N ; i ++ ) cout << arr [ i ] << " ▁ " ; } int main ( ) { int N = 9 ; make_sequence ( N ) ; return 0 ; }
Count Odd and Even numbers in a range from L to R | C ++ implementation of the above approach ; Return the number of odd numbers in the range [ L , R ] ; if either R or L is odd ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int countOdd ( int L , int R ) { int N = ( R - L ) / 2 ; if ( R % 2 != 0 L % 2 != 0 ) N += 1 ; return N ; } int main ( ) { int L = 3 , R = 7 ; int odds = countOdd ( L , R ) ; int evens = ( R - L + 1 ) - odds ; cout << " Count ▁ of ▁ odd ▁ numbers ▁ is ▁ " << odds << endl ; cout << " Count ▁ of ▁ even ▁ numbers ▁ is ▁ " << evens << endl ; return 0 ; }
Cost of painting n * m grid | C ++ implementation of the approach ; Function to return the minimum cost ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int getMinCost ( int n , int m ) { int cost = ( n - 1 ) * m + ( m - 1 ) * n ; return cost ; } int main ( ) { int n = 4 , m = 5 ; cout << getMinCost ( n , m ) ; return 0 ; }
Minimum operations required to make all the array elements equal | C ++ implementation of the above approach ; Function to return the minimum number of given operation required to make all the array elements equal ; Check if all the elements from kth index to last are equal ; Finding the 1 st element which is not equal to the kth element ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void minOperation ( int n , int k , int a [ ] ) { for ( int i = k ; i < n ; i ++ ) { if ( a [ i ] != a [ k - 1 ] ) cout << ( -1 ) << endl ; } for ( int i = k - 2 ; i > -1 ; i -- ) { if ( a [ i ] != a [ k - 1 ] ) cout << ( i + 1 ) << endl ; } } int main ( ) { int n = 5 ; int k = 3 ; int a [ ] = { 2 , 1 , 1 , 1 , 1 } ; minOperation ( n , k , a ) ; }
Number of Simple Graph with N Vertices and M Edges | C ++ implementation of the approach ; Function to return the value of Binomial Coefficient C ( n , k ) ; Since C ( n , k ) = C ( n , n - k ) ; Calculate the value of [ n * ( n - 1 ) * -- - * ( n - k + 1 ) ] / [ k * ( k - 1 ) * ... * 1 ] ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int binomialCoeff ( int n , int k ) { if ( k > n ) return 0 ; int res = 1 ; if ( k > n - k ) k = n - k ; for ( int i = 0 ; i < k ; ++ i ) { res *= ( n - i ) ; res /= ( i + 1 ) ; } return res ; } int main ( ) { int N = 5 , M = 1 ; int P = ( N * ( N - 1 ) ) / 2 ; cout << binomialCoeff ( P , M ) ; return 0 ; }
Increasing sequence with given GCD | C ++ implementation of the approach ; Function to print the required sequence ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; void generateSequence ( int n , int g ) { for ( int i = 1 ; i <= n ; i ++ ) cout << i * g << " ▁ " ; } int main ( ) { int n = 6 , g = 5 ; generateSequence ( n , g ) ; return 0 ; }
Program to find LCM of two Fibonnaci Numbers | C ++ Program to find LCM of Fib ( a ) and Fib ( b ) ; Create an array for memorization ; Function to return the n 'th Fibonacci number using table f[]. ; Base cases ; If fib ( n ) is already computed ; Applying recursive formula Note value n & 1 is 1 if n is odd , else 0. ; Function to return gcd of a and b ; Function to return the LCM of Fib ( a ) and Fib ( a ) ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 1000 ; int f [ MAX ] = { 0 } ; int fib ( int n ) { if ( n == 0 ) return 0 ; if ( n == 1 n == 2 ) return ( f [ n ] = 1 ) ; if ( f [ n ] ) return f [ n ] ; int k = ( n & 1 ) ? ( n + 1 ) / 2 : n / 2 ; f [ n ] = ( n & 1 ) ? ( fib ( k ) * fib ( k ) + fib ( k - 1 ) * fib ( k - 1 ) ) : ( 2 * fib ( k - 1 ) + fib ( k ) ) * fib ( k ) ; return f [ n ] ; } int gcd ( int a , int b ) { if ( a == 0 ) return b ; return gcd ( b % a , a ) ; } int findLCMFibonacci ( int a , int b ) { return ( fib ( a ) * fib ( b ) ) / fib ( gcd ( a , b ) ) ; } int main ( ) { int a = 3 , b = 12 ; cout << findLCMFibonacci ( a , b ) ; return 0 ; }
Check whether XOR of all numbers in a given range is even or odd | C ++ program to check if XOR of all numbers in range [ L , R ] is Even or odd ; Function to check if XOR of all numbers in range [ L , R ] is Even or Odd ; Count odd Numbers in range [ L , R ] ; Check if count of odd Numbers is even or odd ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; string isEvenOrOdd ( int L , int R ) { int oddCount = ( R - L ) / 2 ; if ( R % 2 == 1 L % 2 == 1 ) oddCount ++ ; if ( oddCount % 2 == 0 ) return " Even " ; else return " Odd " ; } int main ( ) { int L = 5 , R = 15 ; cout << isEvenOrOdd ( L , R ) ; return 0 ; }
Count number of trailing zeros in ( 1 ^ 1 ) * ( 2 ^ 2 ) * ( 3 ^ 3 ) * ( 4 ^ 4 ) * . . | C ++ implementation of the approach ; Function to return the number of trailing zeros ; To store the number of 2 s and 5 s ; If we get a factor 2 then we have i number of 2 s because the power of the number is raised to i ; If we get a factor 5 then we have i number of 5 s because the power of the number is raised to i ; Take the minimum of them ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int trailing_zeros ( int N ) { int count_of_two = 0 , count_of_five = 0 ; for ( int i = 1 ; i <= N ; i ++ ) { int val = i ; while ( val % 2 == 0 && val > 0 ) { val /= 2 ; count_of_two += i ; } while ( val % 5 == 0 && val > 0 ) { val /= 5 ; count_of_five += i ; } } int ans = min ( count_of_two , count_of_five ) ; return ans ; } int main ( ) { int N = 12 ; cout << trailing_zeros ( N ) ; return 0 ; }
Print numbers such that no two consecutive numbers are co | C ++ implementation of the approach ; Function to generate Sieve of Eratosthenes ; If prime [ p ] is not changed , then it is a prime ; Add the prime numbers to the array b ; Function to return the gcd of a and b ; Function to print the required sequence of integers ; Including the primes in a series of primes which will be later multiplied ; This is done to mark a product as existing ; Maximum number of primes that we consider ; For different interval ; For different starting index of jump ; For storing the numbers ; Checking for occurrence of a product . Also checking for the same prime occurring consecutively ; Including the primes in a series of primes which will be later multiplied ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; #define limit 1000000000 NEW_LINE #define MAX_PRIME 2000000 NEW_LINE #define MAX 1000000 NEW_LINE #define I_MAX 50000 NEW_LINE map < int , int > mp ; int b [ MAX ] ; int p [ MAX ] ; int j = 0 ; bool prime [ MAX_PRIME + 1 ] ; void SieveOfEratosthenes ( int n ) { memset ( prime , true , sizeof ( prime ) ) ; for ( int p = 2 ; p * p <= n ; p ++ ) { if ( prime [ p ] == true ) { for ( int i = p * p ; i <= n ; i += p ) prime [ i ] = false ; } } for ( int p = 2 ; p <= n ; p ++ ) { if ( prime [ p ] ) { b [ j ++ ] = p ; } } } int gcd ( int a , int b ) { if ( b == 0 ) return a ; return gcd ( b , a % b ) ; } void printSeries ( int n ) { SieveOfEratosthenes ( MAX_PRIME ) ; int i , g , k , l , m , d ; int ar [ I_MAX + 2 ] ; for ( i = 0 ; i < j ; i ++ ) { if ( ( b [ i ] * b [ i + 1 ] ) > limit ) break ; p [ i ] = b [ i ] ; mp [ b [ i ] * b [ i + 1 ] ] = 1 ; } d = 550 ; bool flag = false ; for ( k = 2 ; ( k < d - 1 ) && ! flag ; k ++ ) { for ( m = 2 ; ( m < d ) && ! flag ; m ++ ) { for ( l = m + k ; l < d ; l += k ) { if ( ( ( b [ l ] * b [ l + k ] ) < limit ) && ( l + k ) < d && p [ i - 1 ] != b [ l + k ] && p [ i - 1 ] != b [ l ] && mp [ b [ l ] * b [ l + k ] ] != 1 ) { if ( mp [ p [ i - 1 ] * b [ l ] ] != 1 ) { p [ i ] = b [ l ] ; mp [ p [ i - 1 ] * b [ l ] ] = 1 ; i ++ ; } } if ( i >= I_MAX ) { flag = true ; break ; } } } } for ( i = 0 ; i < n ; i ++ ) ar [ i ] = p [ i ] * p [ i + 1 ] ; for ( i = 0 ; i < n - 1 ; i ++ ) cout << ar [ i ] << " ▁ " ; g = gcd ( ar [ n - 1 ] , ar [ n - 2 ] ) ; cout << g * 2 << endl ; } int main ( ) { int n = 4 ; printSeries ( n ) ; return 0 ; }
Print numbers such that no two consecutive numbers are co | C ++ implementation of the approach ; Function for Sieve of Eratosthenes ; Function to print the required sequence ; Store only the required primes ; Base condition ; First integer in the list ; Second integer in the list ; Third integer in the list ; Generate ( N - 1 ) th term ; Generate Nth term ; Modify first term ; Print the sequence ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; const int MAX = 620000 ; int prime [ MAX ] ; void Sieve ( ) { for ( int i = 2 ; i < MAX ; i ++ ) { if ( prime [ i ] == 0 ) { for ( int j = 2 * i ; j < MAX ; j += i ) { prime [ j ] = 1 ; } } } } void printSequence ( int n ) { Sieve ( ) ; vector < int > v , u ; for ( int i = 13 ; i < MAX ; i ++ ) { if ( prime [ i ] == 0 ) { v . push_back ( i ) ; } } if ( n == 3 ) { cout << 6 << " ▁ " << 10 << " ▁ " << 15 ; return ; } int k ; for ( k = 0 ; k < n - 2 ; k ++ ) { if ( k % 3 == 0 ) { u . push_back ( v [ k ] * 6 ) ; } else if ( k % 3 == 1 ) { u . push_back ( v [ k ] * 15 ) ; } else { u . push_back ( v [ k ] * 10 ) ; } } k -- ; u . push_back ( v [ k ] * 7 ) ; u . push_back ( 7 * 11 ) ; u [ 0 ] = u [ 0 ] * 11 ; for ( int i = 0 ; i < u . size ( ) ; i ++ ) { cout << u [ i ] << " ▁ " ; } } int main ( ) { int n = 4 ; printSequence ( n ) ; return 0 ; }
Midpoint ellipse drawing algorithm | C ++ program for implementing Mid - Point Ellipse Drawing Algorithm ; Initial decision parameter of region 1 ; For region 1 ; Print points based on 4 - way symmetry ; Checking and updating value of decision parameter based on algorithm ; Decision parameter of region 2 ; Plotting points of region 2 ; Print points based on 4 - way symmetry ; Checking and updating parameter value based on algorithm ; Driver code ; To draw a ellipse of major and minor radius 15 , 10 centred at ( 50 , 50 )
#include <bits/stdc++.h> NEW_LINE using namespace std ; void midptellipse ( int rx , int ry , int xc , int yc ) { float dx , dy , d1 , d2 , x , y ; x = 0 ; y = ry ; d1 = ( ry * ry ) - ( rx * rx * ry ) + ( 0.25 * rx * rx ) ; dx = 2 * ry * ry * x ; dy = 2 * rx * rx * y ; while ( dx < dy ) { cout << x + xc << " ▁ , ▁ " << y + yc << endl ; cout << - x + xc << " ▁ , ▁ " << y + yc << endl ; cout << x + xc << " ▁ , ▁ " << - y + yc << endl ; cout << - x + xc << " ▁ , ▁ " << - y + yc << endl ; if ( d1 < 0 ) { x ++ ; dx = dx + ( 2 * ry * ry ) ; d1 = d1 + dx + ( ry * ry ) ; } else { x ++ ; y -- ; dx = dx + ( 2 * ry * ry ) ; dy = dy - ( 2 * rx * rx ) ; d1 = d1 + dx - dy + ( ry * ry ) ; } } d2 = ( ( ry * ry ) * ( ( x + 0.5 ) * ( x + 0.5 ) ) ) + ( ( rx * rx ) * ( ( y - 1 ) * ( y - 1 ) ) ) - ( rx * rx * ry * ry ) ; while ( y >= 0 ) { cout << x + xc << " ▁ , ▁ " << y + yc << endl ; cout << - x + xc << " ▁ , ▁ " << y + yc << endl ; cout << x + xc << " ▁ , ▁ " << - y + yc << endl ; cout << - x + xc << " ▁ , ▁ " << - y + yc << endl ; if ( d2 > 0 ) { y -- ; dy = dy - ( 2 * rx * rx ) ; d2 = d2 + ( rx * rx ) - dy ; } else { y -- ; x ++ ; dx = dx + ( 2 * ry * ry ) ; dy = dy - ( 2 * rx * rx ) ; d2 = d2 + dx - dy + ( rx * rx ) ; } } } int main ( ) { midptellipse ( 10 , 15 , 50 , 50 ) ; return 0 ; }
Program to check if a number is divisible by sum of its digits | C ++ implementation of above approach ; Function to check if the given number is divisible by sum of its digits ; Find sum of digits ; check if sum of digits divides n ; Driver Code
#include <bits/stdc++.h> NEW_LINE using namespace std ; string isDivisible ( long long int n ) { long long int temp = n ; int sum = 0 ; while ( n ) { int k = n % 10 ; sum += k ; n /= 10 ; } if ( temp % sum == 0 ) return " YES " ; return " NO " ; } int main ( ) { long long int n = 123 ; cout << isDivisible ( n ) ; return 0 ; }
Program to check if a number is divisible by sum of its digits | C ++ implementation of above approach ; Converting integer to String ; Initialising sum to 0 ; Traversing through the String ; Converting character to int ; Comparing number and sum ; Driver Code ; Passing this number to get result function
#include <bits/stdc++.h> NEW_LINE using namespace std ; string getResult ( long long int n ) { string st = std :: to_string ( n ) ; int sum = 0 ; for ( char i : st ) { sum = sum + ( int ) i ; } if ( n % sum == 0 ) return " Yes " ; else return " No " ; } int main ( ) { int n = 123 ; cout << getResult ( n ) ; return 0 ; }
Find the final X and Y when they are Altering under given condition | CPP tp implement above approach ; Function to get final value of X and Y ; Following the sequence but by replacing minus with modulo ; Step 1 ; Step 2 ; Step 3 ; Otherwise terminate ; Driver function ; Get the initial X and Y values ; Find the result
#include <iostream> NEW_LINE using namespace std ; void alter ( long long int x , long long int y ) { while ( true ) { if ( x == 0 y == 0 ) break ; if ( x >= 2 * y ) x = x % ( 2 * y ) ; else if ( y >= 2 * x ) y = y % ( 2 * x ) ; else break ; } cout << " X = " << x << " , ▁ " << " Y = " << y ; } int main ( ) { long long int x = 12 , y = 5 ; alter ( x , y ) ; return 0 ; }
Print all multiplicative primes <= N | C ++ implementation of the approach ; Function to return the digit product of n ; Function to print all multiplicative primes <= n ; Create a boolean array " prime [ 0 . . n + 1 ] " . A value in prime [ i ] will finally be false if i is Not a prime , else true . ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of p ; If i is prime and its digit sum is also prime i . e . i is a multiplicative prime ; Driver code
#include <bits/stdc++.h> NEW_LINE using namespace std ; int digitProduct ( int n ) { int prod = 1 ; while ( n ) { prod = prod * ( n % 10 ) ; n = n / 10 ; } return prod ; } void printMultiplicativePrimes ( int n ) { bool prime [ n + 1 ] ; memset ( prime , true , sizeof ( prime ) ) ; prime [ 0 ] = prime [ 1 ] = false ; for ( int p = 2 ; p * p <= n ; p ++ ) { if ( prime [ p ] ) { for ( int i = p * 2 ; i <= n ; i += p ) prime [ i ] = false ; } } for ( int i = 2 ; i <= n ; i ++ ) { if ( prime [ i ] && prime [ digitProduct ( i ) ] ) cout << i << " ▁ " ; } } int main ( ) { int n = 10 ; printMultiplicativePrimes ( n ) ; }