text
stringlengths 17
4.49k
| code
stringlengths 49
5.46k
|
---|---|
Find a number containing N | C ++ implementation of the approach ; Function to return the string generated by appending "10" n - 1 times ; Initialising string as empty ; Function to return the decimal equivalent of the given binary string ; Initializing base value to 1 i . e 2 ^ 0 ; Function that calls the constructString and binarytodecimal and returns the answer ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long int NEW_LINE string constructString ( ll n ) { string s = " " ; for ( ll i = 0 ; i < n ; i ++ ) { s += "10" ; } return s ; } ll binaryToDecimal ( string n ) { string num = n ; ll dec_value = 0 ; ll base = 1 ; ll len = num . length ( ) ; for ( ll i = len - 1 ; i >= 0 ; i -- ) { if ( num [ i ] == '1' ) dec_value += base ; base = base * 2 ; } return dec_value ; } ll findNumber ( ll n ) { string s = constructString ( n - 1 ) ; ll num = binaryToDecimal ( s ) ; return num ; } int main ( ) { ll n = 4 ; cout << findNumber ( n ) ; return 0 ; } |
Bitonic point in the given linked list | C ++ implementation of the approach ; Node for linked list ; Function to insert a node at the head of the linked list ; Function to return the bitonic of the given linked list ; If list is empty ; If list contains only a single node ; Invalid bitonic sequence ; If current node is the bitonic point ; Get to the next node in the list ; Nodes must be in descending starting from here ; Out of order node ; Get to the next node in the list ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; class Node { public : int data ; Node * next ; } ; Node * push ( Node * * head_ref , int data ) { Node * new_node = new Node ; new_node -> data = data ; new_node -> next = ( * head_ref ) ; ( * head_ref ) = new_node ; } int bitonic_point ( Node * node ) { if ( node == NULL ) return -1 ; if ( node -> next == NULL ) return -1 ; if ( node -> data > node -> next -> data ) return -1 ; while ( node -> next != NULL ) { if ( node -> data > node -> next -> data ) break ; node = node -> next ; } int bitonicPoint = node -> data ; while ( node -> next != NULL ) { if ( node -> data < node -> next -> data ) return -1 ; node = node -> next ; } return bitonicPoint ; } int main ( ) { Node * head = NULL ; push ( & head , 100 ) ; push ( & head , 201 ) ; push ( & head , 399 ) ; push ( & head , 490 ) ; push ( & head , 377 ) ; push ( & head , 291 ) ; push ( & head , 100 ) ; cout << bitonic_point ( head ) ; return 0 ; } |
Find the minimum number of elements that should be removed to make an array good | C ++ program to remove minimum elements to make the given array good ; Function to remove minimum elements to make the given array good ; To store count of each subsequence ; Increase the count of subsequence [ 0 ] ; If Previous element subsequence count is greater than zero then increment subsequence count of current element and decrement subsequence count of the previous element . ; Return the required answer ; Driver code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int MinRemove ( int a [ ] , int n , int k ) { vector < int > cnt ( k , 0 ) ; for ( int i = 0 ; i < n ; i ++ ) { if ( a [ i ] == 0 ) cnt [ 0 ] ++ ; else if ( cnt [ a [ i ] - 1 ] > 0 ) { cnt [ a [ i ] - 1 ] -- ; cnt [ a [ i ] ] ++ ; } } return n - ( k * cnt [ k - 1 ] ) ; } int main ( ) { int a [ ] = { 0 , 1 , 2 , 3 , 4 , 0 , 1 , 0 , 1 , 2 , 3 , 4 } , k = 5 ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << MinRemove ( a , n , k ) ; return 0 ; } |
Print first N Mosaic numbers | C ++ implementation of the approach ; Function to return the nth mosaic number ; Iterate from 2 to the number ; If i is the factor of n ; Find the count where i ^ count is a factor of n ; Divide the number by i ; Increase the count ; Multiply the answer with count and i ; Return the answer ; Function to print first N Mosaic numbers ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int mosaic ( int n ) { int i , ans = 1 ; for ( i = 2 ; i <= n ; i ++ ) { if ( n % i == 0 && n > 0 ) { int count = 0 ; while ( n % i == 0 ) { n /= i ; count ++ ; } ans *= count * i ; } } return ans ; } void nMosaicNumbers ( int n ) { for ( int i = 1 ; i <= n ; i ++ ) cout << mosaic ( i ) << " β " ; } int main ( ) { int n = 10 ; nMosaicNumbers ( n ) ; return 0 ; } |
Count of nodes which are at a distance X from root and leaves | C ++ implementation of the approach ; Function to find the count of the required nodes ; Height of the complete binary tree with n nodes ; If X > height then no node can be present at that level ; Corner case ; Maximum total nodes that are possible in complete binary tree with height h ; Nodes at the last level ; To store the count of nodes x dist away from root ; To store the count of nodes x dist away from leaf ; If X = h then print nodes at last level else nodes at Xth level ; 2 ^ X ; Number of left leaf nodes at ( h - 1 ) th level observe that if nodes are not present at last level then there are a / 2 leaf nodes at ( h - 1 ) th level ; If X = h then print leaf nodes at the last h level + leaf nodes at ( h - 1 ) th level ; First calculate nodes for leaves present at height h ; Then calculate nodes for leaves present at height h - 1 ; Add both the resuls ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void countNodes ( int N , int X ) { int height = floor ( log2 ( N ) ) ; if ( X > height ) { cout << "0 STRNEWLINE 0" ; return ; } if ( N == 1 ) { cout << "1 STRNEWLINE 1" ; return ; } int max_total_nodes = ( 1 << ( height + 1 ) ) - 1 ; int nodes_last_level = ( 1 << height ) - ( max_total_nodes - N ) ; int from_root ; int from_leaf ; if ( X == height ) from_root = nodes_last_level ; else from_root = 1 << X ; int left_leaf_nodes = ( ( 1 << height ) - nodes_last_level ) / 2 ; if ( X == 0 ) { from_leaf = nodes_last_level + left_leaf_nodes ; } else { int i = X ; while ( nodes_last_level > 1 && i > 0 ) { nodes_last_level = ceil ( ( float ) nodes_last_level / ( float ) 2 ) ; i -- ; } from_leaf = nodes_last_level ; i = X ; while ( left_leaf_nodes > 1 && i > 0 ) { left_leaf_nodes = ceil ( ( float ) left_leaf_nodes / ( float ) 2 ) ; i -- ; } from_leaf += left_leaf_nodes ; } cout << from_root << endl << from_leaf ; } int main ( ) { int N = 38 , X = 3 ; countNodes ( N , X ) ; return 0 ; } |
Number of ways of writing N as a sum of 4 squares | C ++ implementation of above approach ; Number of ways of writing n as a sum of 4 squares ; sum of odd and even factor ; iterate from 1 to the number ; if i is the factor of n ; if factor is even ; if factor is odd ; n / i is also a factor ; if factor is even ; if factor is odd ; if n is odd ; if n is even ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int sum_of_4_squares ( int n ) { int i , odd = 0 , even = 0 ; for ( i = 1 ; i <= sqrt ( n ) ; i ++ ) { if ( n % i == 0 ) { if ( i % 2 == 0 ) even += i ; else odd += i ; if ( ( n / i ) != i ) { if ( ( n / i ) % 2 == 0 ) even += ( n / i ) ; else odd += ( n / i ) ; } } } if ( n % 2 == 1 ) return 8 * ( odd + even ) ; else return 24 * ( odd ) ; } int main ( ) { int n = 4 ; cout << sum_of_4_squares ( n ) ; return 0 ; } |
Find the Nth Mosaic number | C ++ implementation of the approach ; Function to return the nth mosaic number ; Iterate from 2 to the number ; If i is the factor of n ; Find the count where i ^ count is a factor of n ; Divide the number by i ; Increase the count ; Multiply the answer with count and i ; Return the answer ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int mosaic ( int n ) { int i , ans = 1 ; for ( i = 2 ; i <= n ; i ++ ) { if ( n % i == 0 && n > 0 ) { int count = 0 ; while ( n % i == 0 ) { n /= i ; count ++ ; } ans *= count * i ; } } return ans ; } int main ( ) { int n = 36 ; cout << mosaic ( n ) ; return 0 ; } |
Seating arrangement of N boys sitting around a round table such that two particular boys sit together | C ++ implementation of the approach ; Function to return the total count of ways ; Find ( n - 1 ) factorial ; Return ( n - 1 ) ! * 2 ! ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int Total_Ways ( int n ) { int fac = 1 ; for ( int i = 2 ; i <= n - 1 ; i ++ ) { fac = fac * i ; } return ( fac * 2 ) ; } int main ( ) { int n = 5 ; cout << Total_Ways ( n ) ; return 0 ; } |
Find the maximum number of elements divisible by 3 | C ++ program to find the maximum number of elements divisible by 3 ; Function to find the maximum number of elements divisible by 3 ; To store frequency of each number ; Store modulo value ; Store frequency ; Add numbers with zero modulo to answer ; Find minimum of elements with modulo frequency one and zero ; Add k to the answer ; Remove them from frequency ; Add numbers possible with remaining frequency ; Return the required answer ; Driver code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; int MaxNumbers ( int a [ ] , int n ) { int fre [ 3 ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) { a [ i ] %= 3 ; fre [ a [ i ] ] ++ ; } int ans = fre [ 0 ] ; int k = min ( fre [ 1 ] , fre [ 2 ] ) ; ans += k ; fre [ 1 ] -= k ; fre [ 2 ] -= k ; ans += fre [ 1 ] / 3 + fre [ 2 ] / 3 ; return ans ; } int main ( ) { int a [ ] = { 1 , 4 , 10 , 7 , 11 , 2 , 8 , 5 , 9 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << MaxNumbers ( a , n ) ; return 0 ; } |
Count pairs with set bits sum equal to K | C ++ implementation of the approach ; Function to return the count of set bits in n ; Function to return the count of required pairs ; To store the count ; Sum of set bits in both the integers ; If current pair satisfies the given condition ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; unsigned int countSetBits ( int n ) { unsigned int count = 0 ; while ( n ) { n &= ( n - 1 ) ; count ++ ; } return count ; } int pairs ( int arr [ ] , int n , int k ) { int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { for ( int j = i + 1 ; j < n ; j ++ ) { int sum = countSetBits ( arr [ i ] ) + countSetBits ( arr [ j ] ) ; if ( sum == k ) count ++ ; } } return count ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 4 ; cout << pairs ( arr , n , k ) ; return 0 ; } |
Count pairs with set bits sum equal to K | C ++ implementation of the approach ; Function to return the count of set bits in n ; Function to return the count of required pairs ; To store the count ; Frequency array ; If current pair satisfies the given condition ; ( arr [ i ] , arr [ i ] ) cannot be a valid pair ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 32 NEW_LINE unsigned int countSetBits ( int n ) { unsigned int count = 0 ; while ( n ) { n &= ( n - 1 ) ; count ++ ; } return count ; } int pairs ( int arr [ ] , int n , int k ) { int count = 0 ; int f [ MAX + 1 ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) f [ countSetBits ( arr [ i ] ) ] ++ ; for ( int i = 0 ; i <= MAX ; i ++ ) { for ( int j = i ; j <= MAX ; j ++ ) { if ( i + j == k ) { if ( i == j ) count += ( ( f [ i ] * ( f [ i ] - 1 ) ) / 2 ) ; else count += ( f [ i ] * f [ j ] ) ; } } } return count ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 4 ; cout << pairs ( arr , n , k ) ; return 0 ; } |
Print Lower Hessenberg matrix of order N | C ++ implementation of the approach ; Function to print the Lower Hessenberg matrix of order n ; If element is above super - diagonal then print 0 ; Print a random digit for every non - zero element ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void LowerHessenbergMatrix ( int n ) { for ( int i = 1 ; i <= n ; i ++ ) { for ( int j = 1 ; j <= n ; j ++ ) { if ( j > i + 1 ) cout << '0' << " β " ; else cout << rand ( ) % 10 << " β " ; } cout << " STRNEWLINE " ; } } int main ( ) { int n = 4 ; LowerHessenbergMatrix ( n ) ; return 0 ; } |
Print Upper Hessenberg matrix of order N | C ++ implementation of the approach ; Function to print the Upper Hessenberg matrix of order n ; If element is below sub - diagonal then print 0 ; Print a random digit for every non - zero element ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void UpperHessenbergMatrix ( int n ) { for ( int i = 1 ; i <= n ; i ++ ) { for ( int j = 1 ; j <= n ; j ++ ) { if ( i > j + 1 ) cout << '0' << " β " ; else cout << rand ( ) % 10 << " β " ; } cout << " STRNEWLINE " ; } } int main ( ) { int n = 4 ; UpperHessenbergMatrix ( n ) ; return 0 ; } |
Find the total number of composite factor for a given number | C ++ implementation of the approach ; Function to return the count of prime factors of n ; Initialise array with 0 ; Stored i value into an array ; Every non - zero value at a [ i ] denotes that i is a factor of n ; Find if i is prime ; If i is a factor of n and i is not prime ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int composite_factors ( int n ) { int count = 0 ; int i , j ; int a [ n + 1 ] = { 0 } ; for ( i = 1 ; i <= n ; ++ i ) { if ( n % i == 0 ) { a [ i ] = i ; } } for ( i = 2 ; i <= n ; i ++ ) { j = 2 ; int p = 1 ; while ( j < a [ i ] ) { if ( a [ i ] % j == 0 ) { p = 0 ; break ; } j ++ ; } if ( p == 0 && a [ i ] != 0 ) { count ++ ; } } return count ; } int main ( ) { int n = 100 ; cout << composite_factors ( n ) ; return 0 ; } |
Sum of all mersenne numbers present in an array | C ++ implementation of the approach ; Function that returns true if n is a Mersenne number ; Function to return the sum of all the Mersenne numbers from the given array ; To store the required sum ; If current element is a Mersenne number ; Driver code | #include <iostream> NEW_LINE using namespace std ; int isMersenne ( int n ) { while ( n != 0 ) { int r = n % 2 ; if ( r == 0 ) return false ; n /= 2 ; } return true ; } int sumOfMersenne ( int arr [ ] , int n ) { int sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] > 0 && isMersenne ( arr [ i ] ) ) { sum += arr [ i ] ; } } return sum ; } int main ( ) { int arr [ ] = { 17 , 6 , 7 , 63 , 3 } ; int n = sizeof ( arr ) / sizeof ( int ) ; cout << ( sumOfMersenne ( arr , n ) ) ; return 0 ; } |
Sum of all perfect numbers present in an array | C ++ implementation of the above approach ; Function to return the sum of all the proper factors of n ; f is the factor of n ; Function to return the required sum ; To store the sum ; If current element is non - zero and equal to the sum of proper factors of itself ; Driver code | #include <iostream> NEW_LINE using namespace std ; int sumOfFactors ( int n ) { int sum = 0 ; for ( int f = 1 ; f <= n / 2 ; f ++ ) { if ( n % f == 0 ) { sum += f ; } } return sum ; } int getSum ( int arr [ ] , int n ) { int sum = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] > 0 && arr [ i ] == sumOfFactors ( arr [ i ] ) ) { sum += arr [ i ] ; } } return sum ; } int main ( ) { int arr [ 10 ] = { 17 , 6 , 10 , 6 , 4 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << ( getSum ( arr , n ) ) ; return 0 ; } |
Check if two numbers have same number of digits | C ++ implementation of the approach ; Function that return true if A and B have same number of digits ; Both must be 0 now if they had same lengths ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool sameLength ( int A , int B ) { while ( A > 0 && B > 0 ) { A = A / 10 ; B = B / 10 ; } if ( A == 0 && B == 0 ) return true ; return false ; } int main ( ) { int A = 21 , B = 1 ; if ( sameLength ( A , B ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Find a way to fill matrix with 1 ' s β and β 0' s in blank positions | C ++ implementation of the approach ; Function to generate and print the required matrix ; Replace the ' . ' ; Toggle number ; For each row , change the starting number ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 2 NEW_LINE #define M 2 NEW_LINE void Matrix ( char a [ N ] [ M ] ) { char ch = '1' ; for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < M ; j ++ ) { if ( a [ i ] [ j ] == ' . ' ) a [ i ] [ j ] = ch ; ch = ( ch == '1' ) ? '0' : '1' ; cout << a [ i ] [ j ] << " β " ; } cout << endl ; if ( i % 2 == 0 ) ch = '0' ; else ch = '1' ; } } int main ( ) { char a [ N ] [ M ] = { { ' . ' , ' _ ' } , { ' _ ' , ' . ' } } ; Matrix ( a ) ; return 0 ; } |
Queries to check whether all the elements can be made positive by flipping signs exactly K times | C ++ implementation of the approach ; To store the count of negative integers ; Check if zero exists ; Function to find the count of negative integers and check if zero exists in the array ; Function that returns true if array elements can be made positive by changing signs exactly k times ; Driver code ; Pre - processing ; Perform queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; int cnt_neg ; bool exists_zero ; void preProcess ( int arr [ ] , int n ) { for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] < 0 ) cnt_neg ++ ; if ( arr [ i ] == 0 ) exists_zero = true ; } } bool isPossible ( int k ) { if ( ! exists_zero ) { if ( k >= cnt_neg and ( k - cnt_neg ) % 2 == 0 ) return true ; else return false ; } else { if ( k >= cnt_neg ) return true ; else return false ; } } int main ( ) { int arr [ ] = { -1 , 2 , -3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( int ) ; preProcess ( arr , n ) ; int queries [ ] = { 1 , 2 , 3 , 4 } ; int q = sizeof ( queries ) / sizeof ( int ) ; for ( int i = 0 ; i < q ; i ++ ) { if ( isPossible ( queries [ i ] ) ) cout << " Yes " << endl ; else cout << " No " << endl ; } return 0 ; } |
Sum of XOR of all sub | C ++ implementation of above approach ; Sum of XOR of all K length sub - array of an array ; If the length of the array is less than k ; Array that will store xor values of subarray from 1 to i ; Traverse through the array ; If i is greater than zero , store xor of all the elements from 0 to i ; If it is the first element ; If i is greater than k ; Xor of values from 0 to i ; Now to find subarray of length k that ends at i , xor sum with x [ i - k ] ; Add the xor of elements from i - k + 1 to i ; Return the resultant sum ; ; Driver code | #include <iostream> NEW_LINE using namespace std ; int FindXorSum ( int arr [ ] , int k , int n ) { if ( n < k ) return 0 ; int x [ n ] = { 0 } ; int result = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( i > 0 ) x [ i ] = x [ i - 1 ] ^ arr [ i ] ; else x [ i ] = arr [ i ] ; if ( i >= k - 1 ) { int sum = 0 ; sum = x [ i ] ; if ( i - k > -1 ) sum ^= x [ i - k ] ; result += sum ; } } return result ; } int main ( ) { int arr [ ] = { 1 , 2 , 3 , 4 } ; int n = 4 , k = 2 ; cout << FindXorSum ( arr , k , n ) << endl ; return 0 ; } |
Count the number of digits of palindrome numbers in an array | C ++ implementation of the approach ; Function to return the reverse of n ; Function that returns true if n is a palindrome ; Function to return the count of digits of n ; Function to return the count of digits in all the palindromic numbers of arr [ ] ; If arr [ i ] is a one digit number or it is a palindrome ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int reverse ( int n ) { int rev = 0 ; while ( n > 0 ) { int d = n % 10 ; rev = rev * 10 + d ; n = n / 10 ; } return rev ; } bool isPalin ( int n ) { return ( n == reverse ( n ) ) ; } int countDigits ( int n ) { int c = 0 ; while ( n > 0 ) { n = n / 10 ; c ++ ; } return c ; } int countPalinDigits ( int arr [ ] , int n ) { int s = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( arr [ i ] < 10 || isPalin ( arr [ i ] ) ) { s += countDigits ( arr [ i ] ) ; } } return s ; } int main ( ) { int arr [ ] = { 121 , 56 , 434 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << ( countPalinDigits ( arr , n ) ) ; return 0 ; } |
Sum of all palindrome numbers present in an Array | C ++ program to calculate the sum of all palindromic numbers in array ; Function to reverse a number n ; Function to check if a number n is palindrome ; If n is equal to the reverse of n it is a palindrome ; Function to calculate sum of all array elements which are palindrome ; summation of all palindrome numbers present in array ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int reverse ( int n ) { int d = 0 , s = 0 ; while ( n > 0 ) { d = n % 10 ; s = s * 10 + d ; n = n / 10 ; } return s ; } bool isPalin ( int n ) { return n == reverse ( n ) ; } int sumOfArray ( int arr [ ] , int n ) { int s = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( ( arr [ i ] > 10 ) && isPalin ( arr [ i ] ) ) { s += arr [ i ] ; } } return s ; } int main ( ) { int n = 6 ; int arr [ ] = { 12 , 313 , 11 , 44 , 9 , 1 } ; cout << sumOfArray ( arr , n ) ; return 0 ; } |
Queries for the difference between the count of composite and prime numbers in a given range | C ++ implementation of the approach ; Function to update prime [ ] such prime [ i ] stores the count of prime numbers <= i ; Initialization ; 0 and 1 are not primes ; Mark composite numbers as false and prime numbers as true ; Update prime [ ] such that prime [ i ] will store the count of all the prime numbers <= i ; Function to return the absolute difference between the number of primes and the number of composite numbers in the range [ l , r ] ; Total elements in the range ; Count of primes in the range [ l , r ] ; Count of composite numbers in the range [ l , r ] ; Return the sbsolute difference ; Driver code ; Perform queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAX 1000000 NEW_LINE int prime [ MAX + 1 ] ; void updatePrimes ( ) { for ( int i = 2 ; i <= MAX ; i ++ ) { prime [ i ] = 1 ; } prime [ 0 ] = prime [ 1 ] = 0 ; for ( int i = 2 ; i * i <= MAX ; i ++ ) { if ( prime [ i ] == 1 ) { for ( int j = i * i ; j <= MAX ; j += i ) { prime [ j ] = 0 ; } } } for ( int i = 1 ; i <= MAX ; i ++ ) { prime [ i ] += prime [ i - 1 ] ; } } int getDifference ( int l , int r ) { int total = r - l + 1 ; int primes = prime [ r ] - prime [ l - 1 ] ; int composites = total - primes ; return ( abs ( primes - composites ) ) ; } int main ( ) { int queries [ ] [ 2 ] = { { 1 , 10 } , { 5 , 30 } } ; int q = sizeof ( queries ) / sizeof ( queries [ 0 ] ) ; updatePrimes ( ) ; for ( int i = 0 ; i < q ; i ++ ) cout << getDifference ( queries [ i ] [ 0 ] , queries [ i ] [ 1 ] ) << endl ; return 0 ; } |
Check if the given Prufer sequence is valid or not | C ++ implementation of the approach ; Function that returns true if given Prufer sequence is valid ; Iterate in the Prufer sequence ; If out of range ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isValidSeq ( int a [ ] , int n ) { int nodes = n + 2 ; for ( int i = 0 ; i < n ; i ++ ) { if ( a [ i ] < 1 a [ i ] > nodes ) return false ; } return true ; } int main ( ) { int a [ ] = { 4 , 1 , 3 , 4 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; if ( isValidSeq ( a , n ) ) cout << " Valid " ; else cout << " Invalid " ; return 0 ; } |
Program to Calculate e ^ x by Recursion ( using Taylor Series ) | C ++ implementation of the approach ; Recursive Function with static variables p and f ; Termination condition ; Recursive call ; Update the power of x ; Factorial ; Driver code | #include <iostream> NEW_LINE using namespace std ; double e ( int x , int n ) { static double p = 1 , f = 1 ; double r ; if ( n == 0 ) return 1 ; r = e ( x , n - 1 ) ; p = p * x ; f = f * n ; return ( r + p / f ) ; } int main ( ) { int x = 4 , n = 15 ; cout << " STRNEWLINE " << e ( x , n ) ; return 0 ; } |
Check if each element of the given array is the product of exactly K prime numbers | C ++ program to check if each element of the given array is a product of exactly K prime factors ; initialise the global sieve array ; Function to generate Sieve ; NOTE : k value is necessarily more than 1 hence , 0 , 1 and any prime number cannot be represented as product of two or more prime numbers ; Function to check if each number of array satisfies the given condition ; Driver Code ; first construct the sieve | #include <iostream> NEW_LINE #define MAX 1000000 NEW_LINE using namespace std ; int Sieve [ MAX ] = { 0 } ; void constructSieve ( ) { for ( int i = 2 ; i <= MAX ; i ++ ) { if ( Sieve [ i ] == 0 ) { for ( int j = 2 * i ; j <= MAX ; j += i ) { int temp = j ; while ( temp > 1 && temp % i == 0 ) { Sieve [ j ] ++ ; temp = temp / i ; } } } } } void checkElements ( int A [ ] , int n , int k ) { for ( int i = 0 ; i < n ; i ++ ) { if ( Sieve [ A [ i ] ] == k ) { cout << " YES STRNEWLINE " ; } else { cout << " NO STRNEWLINE " ; } } } int main ( ) { constructSieve ( ) ; int k = 3 ; int A [ ] = { 12 , 36 , 42 , 72 } ; int n = sizeof ( A ) / sizeof ( int ) ; checkElements ( A , n , k ) ; return 0 ; } |
Fibonacci Power | ; Iterative function to compute modular power ; Initialize result ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now ; Helper function that multiplies 2 matrices F and M of size 2 * 2 , and puts the multiplication result back to F [ ] [ ] ; Helper function that calculates F [ ] [ ] raise to the power n and puts the result in F [ ] [ ] Note that this function is designed only for fib ( ) and won 't work as general power function ; Function that returns nth Fibonacci number ; Driver Code | #include <bits/stdc++.h> NEW_LINE #define mod 1000000007 NEW_LINE using namespace std ; long long modularexpo ( long long x , long long y , long long p ) { long long res = 1 ; x = x % p ; while ( y > 0 ) { if ( y & 1 ) res = ( res * x ) % p ; y = y >> 1 ; x = ( x * x ) % p ; } return res ; } void multiply ( long long F [ 2 ] [ 2 ] , long long M [ 2 ] [ 2 ] , long long m ) { long long x = ( ( F [ 0 ] [ 0 ] * M [ 0 ] [ 0 ] ) % m + ( F [ 0 ] [ 1 ] * M [ 1 ] [ 0 ] ) % m ) % m ; long long y = ( ( F [ 0 ] [ 0 ] * M [ 0 ] [ 1 ] ) % m + ( F [ 0 ] [ 1 ] * M [ 1 ] [ 1 ] ) % m ) % m ; long long z = ( ( F [ 1 ] [ 0 ] * M [ 0 ] [ 0 ] ) % m + ( F [ 1 ] [ 1 ] * M [ 1 ] [ 0 ] ) % m ) % m ; long long w = ( ( F [ 1 ] [ 0 ] * M [ 0 ] [ 1 ] ) % m + ( F [ 1 ] [ 1 ] * M [ 1 ] [ 1 ] ) % m ) % m ; F [ 0 ] [ 0 ] = x ; F [ 0 ] [ 1 ] = y ; F [ 1 ] [ 0 ] = z ; F [ 1 ] [ 1 ] = w ; } void power ( long long F [ 2 ] [ 2 ] , long long n , long long m ) { if ( n == 0 n == 1 ) return ; long long M [ 2 ] [ 2 ] = { { 1 , 1 } , { 1 , 0 } } ; power ( F , n / 2 , m ) ; multiply ( F , F , m ) ; if ( n % 2 != 0 ) multiply ( F , M , m ) ; } long long fib ( long long n , long long m ) { long long F [ 2 ] [ 2 ] = { { 1 , 1 } , { 1 , 0 } } ; if ( n == 0 ) return 0 ; power ( F , n - 1 , m ) ; return F [ 0 ] [ 0 ] ; } int main ( ) { long long n = 4 ; long long base = fib ( n , mod ) % mod ; long long expo = fib ( n , mod - 1 ) % ( mod - 1 ) ; long long result = modularexpo ( base , expo , mod ) % mod ; cout << result << endl ; } |
Count number of ways to divide an array into two halves with same sum | C ++ program to count the number of ways to divide an array into two halves with the same sum ; Function to count the number of ways to divide an array into two halves with same sum ; if length of array is 1 answer will be 0 as we have to split it into two non - empty halves ; variables to store total sum , current sum and count ; finding total sum ; checking if sum equals total_sum / 2 ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int cntWays ( int arr [ ] , int n ) { if ( n == 1 ) return 0 ; int tot_sum = 0 , sum = 0 , ans = 0 ; for ( int i = 0 ; i < n ; i ++ ) tot_sum += arr [ i ] ; for ( int i = 0 ; i < n - 1 ; i ++ ) { sum += arr [ i ] ; if ( sum == tot_sum / 2 ) ans ++ ; } return ans ; } int main ( ) { int arr [ ] = { 1 , -1 , 1 , -1 , 1 , -1 } ; int n = sizeof ( arr ) / sizeof ( int ) ; cout << cntWays ( arr , n ) ; return 0 ; } |
Find N distinct numbers whose bitwise Or is equal to K | C ++ implementation of the approach ; Function to pre - calculate all the powers of 2 upto MAX ; Function to return the count of set bits in x ; To store the count of set bits ; Function to add num to the answer by setting all bit positions as 0 which are also 0 in K ; Bit i is 0 in K ; Function to find and print N distinct numbers whose bitwise OR is K ; Choosing K itself as one number ; Find the count of set bits in K ; Impossible to get N distinct integers ; Add i to the answer after setting all the bits as 0 which are 0 in K ; If N distinct numbers are generated ; Print the generated numbers ; Driver code ; Pre - calculate all the powers of 2 | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long int NEW_LINE #define MAX 32 NEW_LINE ll pow2 [ MAX ] ; bool visited [ MAX ] ; vector < int > ans ; void power_2 ( ) { ll ans = 1 ; for ( int i = 0 ; i < MAX ; i ++ ) { pow2 [ i ] = ans ; ans *= 2 ; } } int countSetBits ( ll x ) { int setBits = 0 ; while ( x != 0 ) { x = x & ( x - 1 ) ; setBits ++ ; } return setBits ; } void add ( ll num ) { int point = 0 ; ll value = 0 ; for ( ll i = 0 ; i < MAX ; i ++ ) { if ( visited [ i ] ) continue ; else { if ( num & 1 ) { value += ( 1 << i ) ; } num /= 2 ; } } ans . push_back ( value ) ; } void solve ( ll n , ll k ) { ans . push_back ( k ) ; int countk = countSetBits ( k ) ; if ( pow2 [ countk ] < n ) { cout << -1 ; return ; } int count = 0 ; for ( ll i = 0 ; i < pow2 [ countk ] - 1 ; i ++ ) { add ( i ) ; count ++ ; if ( count == n ) break ; } for ( int i = 0 ; i < n ; i ++ ) { cout << ans [ i ] << " β " ; } } int main ( ) { ll n = 3 , k = 5 ; power_2 ( ) ; solve ( n , k ) ; return 0 ; } |
Count of all possible values of X such that A % X = B | C ++ implementation of the approach ; Function to return the count of all possible values for x such that ( A % x ) = B ; Case 1 ; Case 2 ; Case 3 ; Find the number of divisors of x which are greater than b ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countX ( int a , int b ) { if ( b > a ) return 0 ; else if ( a == b ) return -1 ; else { int x = a - b , ans = 0 ; for ( int i = 1 ; i * i <= x ; i ++ ) { if ( x % i == 0 ) { int d1 = i , d2 = b - 1 ; if ( i * i != x ) d2 = x / i ; if ( d1 > b ) ans ++ ; if ( d2 > b ) ans ++ ; } } return ans ; } } int main ( ) { int a = 21 , b = 5 ; cout << countX ( a , b ) ; return 0 ; } |
Find the Jaccard Index and Jaccard Distance between the two given sets | C ++ implementation of the approach ; Function to return the intersection set of s1 and s2 ; Find the intersection of the two sets ; Function to return the Jaccard index of two sets ; Sizes of both the sets ; Get the intersection set ; Size of the intersection set ; Calculate the Jaccard index using the formula ; Return the Jaccard index ; Function to return the Jaccard distance ; Calculate the Jaccard distance using the formula ; Return the Jaccard distance ; Driver code ; Elements of the 1 st set ; Elements of the 2 nd set ; Print the Jaccard index and Jaccard distance | #include <bits/stdc++.h> NEW_LINE using namespace std ; set < int > intersection ( set < int > s1 , set < int > s2 ) { set < int > intersect ; set_intersection ( s1 . begin ( ) , s1 . end ( ) , s2 . begin ( ) , s2 . end ( ) , inserter ( intersect , intersect . begin ( ) ) ) ; return intersect ; } double jaccard_index ( set < int > s1 , set < int > s2 ) { double size_s1 = s1 . size ( ) ; double size_s2 = s2 . size ( ) ; set < int > intersect = intersection ( s1 , s2 ) ; double size_in = intersect . size ( ) ; double jaccard_in = size_in / ( size_s1 + size_s2 - size_in ) ; return jaccard_in ; } double jaccard_distance ( double jaccardIndex ) { double jaccard_dist = 1 - jaccardIndex ; return jaccard_dist ; } int main ( ) { set < int > s1 ; s1 . insert ( 1 ) ; s1 . insert ( 2 ) ; s1 . insert ( 3 ) ; s1 . insert ( 4 ) ; s1 . insert ( 5 ) ; set < int > s2 ; s2 . insert ( 4 ) ; s2 . insert ( 5 ) ; s2 . insert ( 6 ) ; s2 . insert ( 7 ) ; s2 . insert ( 8 ) ; s2 . insert ( 9 ) ; s2 . insert ( 10 ) ; double jaccardIndex = jaccard_index ( s1 , s2 ) ; cout << " Jaccard β index β = β " << jaccardIndex << endl ; cout << " Jaccard β distance β = β " << jaccard_distance ( jaccardIndex ) ; return 0 ; } |
Find the sum of numbers from 1 to n excluding those which are powers of K | C ++ implementation of the approach ; Function to return the sum of all the powers of k from the range [ 1 , n ] ; To store the sum of the series ; While current power of k <= n ; Add current power to the sum ; Next power of k ; Return the sum of the series ; Find to return the sum of the elements from the range [ 1 , n ] excluding those which are powers of k ; Sum of all the powers of k from [ 1 , n ] ; Sum of all the elements from [ 1 , n ] ; Return the required sum ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long int NEW_LINE ll sumPowersK ( ll n , ll k ) { ll sum = 0 , num = 1 ; while ( num <= n ) { sum += num ; num *= k ; } return sum ; } ll getSum ( ll n , ll k ) { ll pwrK = sumPowersK ( n , k ) ; ll sumAll = ( n * ( n + 1 ) ) / 2 ; return ( sumAll - pwrK ) ; } int main ( ) { ll n = 10 , k = 3 ; cout << getSum ( n , k ) ; return 0 ; } |
Maximum number of people that can be killed with strength P | C ++ implementation of the approach ; Function to return the maximum number of people that can be killed ; Loop will break when the ith person cannot be killed ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxPeople ( int p ) { int tmp = 0 , count = 0 ; for ( int i = 1 ; i * i <= p ; i ++ ) { tmp = tmp + ( i * i ) ; if ( tmp <= p ) count ++ ; else break ; } return count ; } int main ( ) { int p = 14 ; cout << maxPeople ( p ) ; return 0 ; } |
Maximum number of people that can be killed with strength P | C ++ implementation of the approach ; Function to return the maximum number of people that can be killed ; Storing the sum beforehand so that it can be used in each query ; lower_bound returns an iterator pointing to the first element greater than or equal to your val ; Previous value ; Returns the index in array upto which killing is possible with strength P ; Driver code | #include <algorithm> NEW_LINE #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE static constexpr int kN = 1000000 ; int maxPeople ( int p ) { ll sums [ kN ] ; sums [ 0 ] = 0 ; for ( int i = 1 ; i < kN ; i ++ ) sums [ i ] = ( ll ) ( i * i ) + sums [ i - 1 ] ; auto it = std :: lower_bound ( sums , sums + kN , p ) ; if ( * it > p ) { -- it ; } return ( it - sums ) ; } int main ( ) { int p = 14 ; cout << maxPeople ( p ) ; return 0 ; } |
Maximum number of people that can be killed with strength P | C ++ implementation of the approach ; Helper function which returns the sum of series ( 1 ^ 2 + 2 ^ 2 + ... + n ^ 2 ) ; maxPeople function which returns appropriate value using Binary Search in O ( logn ) ; Set the lower and higher values ; Calculate the mid using low and high ; Compare value with n ; Return the ans ; Driver code | #include <algorithm> NEW_LINE #include <bits/stdc++.h> NEW_LINE using namespace std ; long squareSeries ( long n ) { return ( n * ( n + 1 ) * ( 2 * n + 1 ) ) / 6 ; } long maxPeople ( long n ) { long low = 0 ; long high = 1000000L ; long ans = 0L ; while ( low <= high ) { long mid = low + ( ( high - low ) / 2 ) ; long value = squareSeries ( mid ) ; if ( value <= n ) { ans = mid ; low = mid + 1 ; } else { high = mid - 1 ; } } return ans ; } int main ( ) { long p = 14 ; cout << maxPeople ( p ) ; return 0 ; } |
Find the index which is the last to be reduced to zero after performing a given operation | C ++ implementation of the approach ; Function that returns the index which will be the last to become zero after performing given operation ; Initialize the result ; Finding the ceil value of each index ; Finding the index with maximum ceil value ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int findIndex ( int a [ ] , int n , int k ) { int index = -1 , max_ceil = INT_MIN ; for ( int i = 0 ; i < n ; i ++ ) { a [ i ] = ( a [ i ] + k - 1 ) / k ; } for ( int i = 0 ; i < n ; i ++ ) { if ( a [ i ] >= max_ceil ) { max_ceil = a [ i ] ; index = i ; } } return index ; } int main ( ) { int arr [ ] = { 31 , 12 , 25 , 27 , 32 , 19 } ; int K = 5 ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << findIndex ( arr , N , K ) ; return 0 ; } |
Queries to find the maximum Xor value between X and the nodes of a given level of a perfect binary tree | C ++ implementation of the approach ; Function to solve queries of the maximum xor value between the nodes in a given level L of a perfect binary tree and a given value X ; Initialize result ; Initialize array to store bits ; Initialize a copy of X and size of array ; Storing the bits of X in the array a [ ] ; Filling the array b [ ] ; Initializing variable which gives maximum xor ; Getting the maximum xor value ; Return the result ; Driver code ; Perform queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define MAXN 60 NEW_LINE int solveQuery ( int L , int X ) { int res ; int a [ MAXN ] , b [ L ] ; int ref = X , size_a = 0 ; while ( ref > 0 ) { a [ size_a ] = ref % 2 ; ref /= 2 ; size_a ++ ; } for ( int i = 0 ; i < min ( size_a , L ) ; i ++ ) { if ( a [ i ] == 1 ) b [ i ] = 0 ; else b [ i ] = 1 ; } for ( int i = min ( size_a , L ) ; i < L ; i ++ ) b [ i ] = 1 ; b [ L - 1 ] = 1 ; int temp = 0 , p = 1 ; for ( int i = 0 ; i < L ; i ++ ) { temp += b [ i ] * p ; p *= 2 ; } res = temp ^ X ; return res ; } int main ( ) { int queries [ ] [ 2 ] = { { 2 , 5 } , { 3 , 15 } } ; int q = sizeof ( queries ) / sizeof ( queries [ 0 ] ) ; for ( int i = 0 ; i < q ; i ++ ) cout << solveQuery ( queries [ i ] [ 0 ] , queries [ i ] [ 1 ] ) << endl ; return 0 ; } |
Count index pairs which satisfy the given condition | CPP implementation of the approach ; Function to return the count of required index pairs ; To store the required count ; Array to store the left elements upto which current element is maximum ; Iterating through the whole permutation except first and last element ; If current element can be maximum in a subsegment ; Current maximum ; Iterating for smaller values then current maximum on left of it ; Storing left borders of the current maximum ; Iterating for smaller values then current maximum on right of it ; Condition satisfies ; Return count of subsegments ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int Count_Segment ( int p [ ] , int n ) { int count = 0 ; int upto [ n + 1 ] ; for ( int i = 0 ; i < n + 1 ; i ++ ) upto [ i ] = 0 ; int j = 0 , curr = 0 ; for ( int i = 1 ; i < n + 1 ; i ++ ) { if ( p [ i ] > p [ i - 1 ] and p [ i ] > p [ i + 1 ] ) { curr = p [ i ] ; j = i - 1 ; while ( j >= 0 and p [ j ] < curr ) { upto [ p [ j ] ] = curr ; j -= 1 ; } j = i + 1 ; while ( j < n and p [ j ] < curr ) { if ( upto [ curr - p [ j ] ] == curr ) count += 1 ; j += 1 ; } } } return count ; } int main ( ) { int p [ ] = { 3 , 4 , 1 , 5 , 2 } ; int n = sizeof ( p ) / sizeof ( p [ 0 ] ) ; cout << ( Count_Segment ( p , n ) ) ; return 0 ; } |
Check whether a number can be represented as sum of K distinct positive integers | C ++ implementation of the approach ; Function that returns true if n can be represented as the sum of exactly k distinct positive integers ; If n can be represented as 1 + 2 + 3 + ... + ( k - 1 ) + ( k + x ) ; Driver code | #include <iostream> NEW_LINE using namespace std ; bool solve ( int n , int k ) { if ( n >= ( k * ( k + 1 ) ) / 2 ) { return true ; } return false ; } int main ( ) { int n = 12 , k = 4 ; if ( solve ( n , k ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Check whether product of integers from a to b is positive , negative or zero | C ++ implementation of the approach ; Function to check whether the product of integers of the range [ a , b ] is positive , negative or zero ; If both a and b are positive then the product will be positive ; If a is negative and b is positive then the product will be zero ; If both a and b are negative then we have to find the count of integers in the range ; Total integers in the range ; If n is even then the resultant product is positive ; If n is odd then the resultant product is negative ; Driver code | #include <iostream> NEW_LINE using namespace std ; void solve ( long long int a , long long int b ) { if ( a > 0 && b > 0 ) { cout << " Positive " ; } else if ( a <= 0 && b >= 0 ) { cout << " Zero " << endl ; } else { long long int n = abs ( a - b ) + 1 ; if ( n % 2 == 0 ) { cout << " Positive " << endl ; } else { cout << " Negative " << endl ; } } } int main ( ) { int a = -10 , b = -2 ; solve ( a , b ) ; return 0 ; } |
Bitwise AND of sub | C ++ implementation of the approach ; Function to return the minimum possible value of | K - X | where X is the bitwise AND of the elements of some sub - array ; Check all possible sub - arrays ; Find the overall minimum ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int closetAND ( int arr [ ] , int n , int k ) { int ans = INT_MAX ; for ( int i = 0 ; i < n ; i ++ ) { int X = arr [ i ] ; for ( int j = i ; j < n ; j ++ ) { X &= arr [ j ] ; ans = min ( ans , abs ( k - X ) ) ; } } return ans ; } int main ( ) { int arr [ ] = { 4 , 7 , 10 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int k = 2 ; cout << closetAND ( arr , n , k ) ; return 0 ; } |
Program to find the rate percentage from compound interest of consecutive years | C ++ implementation of the approach ; Function to return the required rate percentage ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; float Rate ( int N1 , int N2 ) { float rate = ( N2 - N1 ) * 100 / float ( N1 ) ; return rate ; } int main ( ) { int N1 = 100 , N2 = 120 ; cout << Rate ( N1 , N2 ) << " β % " ; return 0 ; } |
Find prime number K in an array such that ( A [ i ] % K ) is maximum | C ++ implementation of the approach ; Function to return the required prime number from the array ; Find maximum value in the array ; USE SIEVE TO FIND ALL PRIME NUMBERS LESS THAN OR EQUAL TO max_val Create a boolean array " prime [ 0 . . n ] " . A value in prime [ i ] will finally be false if i is Not a prime , else true . ; Remaining part of SIEVE ; If prime [ p ] is not changed , then it is a prime ; Update all multiples of p ; To store the maximum prime number ; If current element is prime then update the maximum prime ; Return the maximum prime number from the array ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int getPrime ( int arr [ ] , int n ) { int max_val = * max_element ( arr , arr + n ) ; vector < bool > prime ( max_val + 1 , true ) ; prime [ 0 ] = false ; prime [ 1 ] = false ; for ( int p = 2 ; p * p <= max_val ; p ++ ) { if ( prime [ p ] == true ) { for ( int i = p * 2 ; i <= max_val ; i += p ) prime [ i ] = false ; } } int maximum = -1 ; for ( int i = 0 ; i < n ; i ++ ) { if ( prime [ arr [ i ] ] ) maximum = max ( maximum , arr [ i ] ) ; } return maximum ; } int main ( ) { int arr [ ] = { 2 , 10 , 15 , 7 , 6 , 8 , 13 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << getPrime ( arr , n ) ; return 0 ; } |
Minimum integer such that it leaves a remainder 1 on dividing with any element from the range [ 2 , N ] | C ++ implementation of the approach ; Function to return the smallest number which on dividing with any element from the range [ 2 , N ] leaves a remainder of 1 ; Find the LCM of the elements from the range [ 2 , N ] ; Return the required number ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; long getMinNum ( int N ) { int lcm = 1 ; for ( int i = 2 ; i <= N ; i ++ ) lcm = ( ( i * lcm ) / ( __gcd ( i , lcm ) ) ) ; return ( lcm + 1 ) ; } int main ( ) { int N = 5 ; cout << getMinNum ( N ) ; return 0 ; } |
Maximum number of edges in Bipartite graph | C ++ implementation of the approach ; Function to return the maximum number of edges possible in a Bipartite graph with N vertices ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxEdges ( int N ) { int edges = 0 ; edges = floor ( ( N * N ) / 4 ) ; return edges ; } int main ( ) { int N = 5 ; cout << maxEdges ( N ) ; return 0 ; } |
Check if the robot is within the bounds of the grid after given moves | C ++ implementation of the approach ; Function that returns true if the robot is safe ; If current move is " L " then increase the counter of coll ; If value of coll is equal to column then break ; If current move is " R " then increase the counter of colr ; If value of colr is equal to column then break ; If current move is " U " then increase the counter of rowu ; If value of rowu is equal to row then break ; If current move is " D " then increase the counter of rowd ; If value of rowd is equal to row then break ; If robot is within the bounds of the grid ; Unsafe ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isSafe ( int N , int M , string str ) { int coll = 0 , colr = 0 , rowu = 0 , rowd = 0 ; for ( int i = 0 ; i < str . length ( ) ; i ++ ) { if ( str [ i ] == ' L ' ) { coll ++ ; if ( colr > 0 ) { colr -- ; } if ( coll == M ) { break ; } } else if ( str [ i ] == ' R ' ) { colr ++ ; if ( coll > 0 ) { coll -- ; } if ( colr == M ) { break ; } } else if ( str [ i ] == ' U ' ) { - rowu ++ ; if ( rowd > 0 ) { rowd -- ; } if ( rowu == N ) { break ; } } else if ( str [ i ] == ' D ' ) { rowd ++ ; if ( rowu > 0 ) { rowu -- ; } if ( rowd == N ) { break ; } } } if ( abs ( rowd ) < N && abs ( rowu ) < N && abs ( coll ) < M && abs ( colr ) < M ) { return true ; } return false ; } int main ( ) { int N = 1 , M = 1 ; string str = " R " ; if ( isSafe ( N , M , str ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Find sub | C ++ implementation of the approach ; Function to print the valid indices in the array ; Function to find sub - arrays from two different arrays with equal sum ; Map to store the indices in A and B which produce the given difference ; Find the smallest j such that b [ j ] >= a [ i ] ; Difference encountered for the second time ; b [ j ] - a [ i ] = b [ idx . second ] - a [ idx . first ] b [ j ] - b [ idx . second ] = a [ i ] = a [ idx . first ] So sub - arrays are a [ idx . first + 1. . . i ] and b [ idx . second + 1. . . j ] ; Store the indices for difference in the map ; Utility function to calculate the cumulative sum of the array ; Driver code ; Function to update the arrays with their cumulative sum ; Swap is true as a and b are swapped during function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; void printAns ( int x , int y , int num ) { cout << " Indices β in β array β " << num << " β : β " ; for ( int i = x ; i < y ; ++ i ) { cout << i << " , β " ; } cout << y << " STRNEWLINE " ; } void findSubarray ( int N , int a [ ] , int b [ ] , bool swap ) { std :: map < int , pair < int , int > > index ; int difference ; index [ 0 ] = make_pair ( -1 , -1 ) ; int j = 0 ; for ( int i = 0 ; i < N ; ++ i ) { while ( b [ j ] < a [ i ] ) { j ++ ; } difference = b [ j ] - a [ i ] ; if ( index . find ( difference ) != index . end ( ) ) { if ( swap ) { pair < int , int > idx = index [ b [ j ] - a [ i ] ] ; printAns ( idx . second + 1 , j , 1 ) ; printAns ( idx . first + 1 , i , 2 ) ; } else { pair < int , int > idx = index [ b [ j ] - a [ i ] ] ; printAns ( idx . first + 1 , i , 1 ) ; printAns ( idx . second + 1 , j , 2 ) ; } return ; } index [ difference ] = make_pair ( i , j ) ; } cout << " - 1" ; } void cumulativeSum ( int arr [ ] , int n ) { for ( int i = 1 ; i < n ; ++ i ) arr [ i ] += arr [ i - 1 ] ; } int main ( ) { int a [ ] = { 1 , 2 , 3 , 4 , 5 } ; int b [ ] = { 6 , 2 , 1 , 5 , 4 } ; int N = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cumulativeSum ( a , N ) ; cumulativeSum ( b , N ) ; if ( b [ N - 1 ] > a [ N - 1 ] ) { findSubarray ( N , a , b , false ) ; } else { findSubarray ( N , b , a , true ) ; } return 0 ; } |
Find permutation of first N natural numbers that satisfies the given condition | C ++ implementation of the approach ; Function to find permutation ( p ) of first N natural numbers such that there are exactly K elements of permutation such that GCD ( p [ i ] , i ) > 1 ; First place all the numbers in their respective places ; Modify for first n - k integers ; In first index place n - k ; Print the permutation ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void Permutation ( int n , int k ) { int p [ n + 1 ] ; for ( int i = 1 ; i <= n ; i ++ ) p [ i ] = i ; for ( int i = 1 ; i < n - k ; i ++ ) p [ i + 1 ] = i ; p [ 1 ] = n - k ; for ( int i = 1 ; i <= n ; i ++ ) cout << p [ i ] << " β " ; } int main ( ) { int n = 5 , k = 2 ; Permutation ( n , k ) ; return 0 ; } |
Count number of 1 s in the array after N moves | C ++ implementation of the above approach ; Function to count number of 1 's in the array after performing N moves ; If index is multiple of move number ; arr [ j - 1 ] = 1 ; Convert 0 to 1 ; arr [ j - 1 ] = 0 ; Convert 1 to 0 ; Count number of 1 's ; count ++ ; count number of 1 's ; Driver Code ; Initialize all elements to 0 | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countOnes ( int arr [ ] , int N ) { for ( int i = 1 ; i <= N ; i ++ ) { for ( int j = i ; j <= N ; j ++ ) { if ( j % i == 0 ) { if ( arr [ j - 1 ] == 0 ) else } } } int count = 0 ; for ( int i = 0 ; i < N ; i ++ ) if ( arr [ i ] == 1 ) return count ; } int main ( ) { int arr [ 10 ] = { 0 } ; int ans = countOnes ( arr , N ) ; cout << ans ; return 0 ; } |
Number of positions such that adding K to the element is greater than sum of all other elements | C ++ program to implement above approach ; Function that will find out the valid position ; find sum of all the elements ; adding K to the element and check whether it is greater than sum of all other elements ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int validPosition ( int arr [ ] , int N , int K ) { int count = 0 , sum = 0 ; for ( int i = 0 ; i < N ; i ++ ) { sum += arr [ i ] ; } for ( int i = 0 ; i < N ; i ++ ) { if ( ( arr [ i ] + K ) > ( sum - arr [ i ] ) ) count ++ ; } return count ; } int main ( ) { int arr [ ] = { 2 , 1 , 6 , 7 } , K = 4 ; int N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << validPosition ( arr , N , K ) ; return 0 ; } |
Count unique numbers that can be generated from N by adding one and removing trailing zeros | C ++ implementation of the approach ; Function to count the unique numbers ; If the number has already been visited ; Insert the number to the set ; First step ; Second step remove trailing zeros ; Recur again for the new number ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void count_unique ( unordered_set < int > & s , int n ) { if ( s . count ( n ) ) return ; s . insert ( n ) ; n += 1 ; while ( n % 10 == 0 ) { n = n / 10 ; } count_unique ( s , n ) ; } int main ( ) { int n = 10 ; unordered_set < int > s ; count_unique ( s , n ) ; cout << s . size ( ) ; return 0 ; } |
Find element with the maximum set bits in an array | C ++ implementation of the approach ; Function to return the element from the array which has the maximum set bits ; To store the required element and the maximum set bits so far ; Count of set bits in the current element ; Update the max ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; ; int maxBitElement ( int arr [ ] , int n ) { int num = 0 , max = -1 ; for ( int i = 0 ; i < n ; i ++ ) { int cnt = __builtin_popcount ( arr [ i ] ) ; if ( cnt > max ) { max = cnt ; num = arr [ i ] ; } } return num ; } int main ( ) { int arr [ ] = { 3 , 2 , 4 , 7 , 1 , 10 , 5 , 8 , 9 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << maxBitElement ( arr , n ) << endl ; return 0 ; } |
Count pairs with average present in the same array | C ++ implementation of the approach ; Function to return the count of valid pairs ; Frequency array Twice the original size to hold negative elements as well ; Update the frequency of each of the array element ; If say x = - 1000 then we will place the frequency of - 1000 at ( - 1000 + 1000 = 0 ) a [ 0 ] index ; To store the count of valid pairs ; Remember we will check only for ( even , even ) or ( odd , odd ) pairs of indexes as the average of two consecutive elements is a floating point number ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int N = 1000 ; int countPairs ( int arr [ ] , int n ) { int size = ( 2 * N ) + 1 ; int freq [ size ] = { 0 } ; for ( int i = 0 ; i < n ; i ++ ) { int x = arr [ i ] ; freq [ x + N ] ++ ; } int ans = 0 ; for ( int i = 0 ; i < size ; i ++ ) { if ( freq [ i ] > 0 ) { ans += ( ( freq [ i ] ) * ( freq [ i ] - 1 ) ) / 2 ; for ( int j = i + 2 ; j < 2001 ; j += 2 ) { if ( freq [ j ] > 0 && ( freq [ ( i + j ) / 2 ] > 0 ) ) { ans += ( freq [ i ] * freq [ j ] ) ; } } } } return ans ; } int main ( ) { int arr [ ] = { 4 , 2 , 5 , 1 , 3 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << countPairs ( arr , n ) ; return 0 ; } |
Smallest and Largest sum of two n | C ++ implementation of the approach ; Function to return the smallest sum of 2 n - digit numbers ; Function to return the largest sum of 2 n - digit numbers ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int smallestSum ( int n ) { if ( n == 1 ) return 0 ; return ( 2 * pow ( 10 , n - 1 ) ) ; } int largestSum ( int n ) { return ( 2 * ( pow ( 10 , n ) - 1 ) ) ; } int main ( ) { int n = 4 ; cout << " Largest β = β " << largestSum ( n ) << endl ; cout << " Smallest β = β " << smallestSum ( n ) ; return 0 ; } |
Given two arrays count all pairs whose sum is an odd number | C ++ program to implement the above approach ; Function that returns the number of pairs ; Count of odd and even numbers ; Traverse in the first array and count the number of odd and evene numbers in them ; Traverse in the second array and count the number of odd and evene numbers in them ; Count the number of pairs ; Return the number of pairs ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int count_pairs ( int a [ ] , int b [ ] , int n , int m ) { int odd1 = 0 , even1 = 0 ; int odd2 = 0 , even2 = 0 ; for ( int i = 0 ; i < n ; i ++ ) { if ( a [ i ] % 2 ) odd1 ++ ; else even1 ++ ; } for ( int i = 0 ; i < m ; i ++ ) { if ( b [ i ] % 2 ) odd2 ++ ; else even2 ++ ; } int pairs = min ( odd1 , even2 ) + min ( odd2 , even1 ) ; return pairs ; } int main ( ) { int a [ ] = { 9 , 14 , 6 , 2 , 11 } ; int b [ ] = { 8 , 4 , 7 , 20 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int m = sizeof ( b ) / sizeof ( b [ 0 ] ) ; cout << count_pairs ( a , b , n , m ) ; return 0 ; } |
Print steps to make a number in form of 2 ^ X | C ++ program to implement the above approach ; Function to find the leftmost unset bit in a number . ; Function that perform the step ; Find the leftmost unset bit ; If the number has no bit unset , it means it is in form 2 ^ x - 1 ; Count the steps ; Iterate till number is of form 2 ^ x - 1 ; At even step increase by 1 ; Odd step xor with any 2 ^ m - 1 ; Find the leftmost unset bit ; 2 ^ m - 1 ; Perform the step ; Increase the steps ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int find_leftmost_unsetbit ( int n ) { int ind = -1 ; int i = 1 ; while ( n ) { if ( ! ( n & 1 ) ) ind = i ; i ++ ; n >>= 1 ; } return ind ; } void perform_steps ( int n ) { int left = find_leftmost_unsetbit ( n ) ; if ( left == -1 ) { cout << " No β steps β required " ; return ; } int step = 1 ; while ( find_leftmost_unsetbit ( n ) != -1 ) { if ( step % 2 == 0 ) { n += 1 ; cout << " Step " << step << " : β Increase β by β 1 STRNEWLINE " ; } else { int m = find_leftmost_unsetbit ( n ) ; int num = pow ( 2 , m ) - 1 ; n = n ^ num ; cout << " Step " << step << " : β Xor β with β " << num << endl ; } step += 1 ; } } int main ( ) { int n = 39 ; perform_steps ( n ) ; return 0 ; } |
Determine the position of the third person on regular N sided polygon | C ++ implementation of above approach ; Function to find out the number of that vertices ; Another person can 't stand on vertex on which 2 children stand. ; calculating minimum jumps from each vertex . ; Calculate sum of jumps . ; Driver code ; Calling function | #include <bits/stdc++.h> NEW_LINE using namespace std ; int vertices ( int N , int A , int B ) { int position = 0 ; int minisum = INT_MAX ; int sum = 0 ; for ( int i = 1 ; i <= N ; i ++ ) { if ( i == A i == B ) continue ; else { int x = abs ( i - A ) ; int y = abs ( i - B ) ; sum = x + y ; if ( sum < minisum ) { minisum = sum ; position = i ; } } } return position ; } int main ( ) { int N = 3 , A = 1 , B = 2 ; cout << " Vertex β = β " << vertices ( N , A , B ) ; return 0 ; } |
Find sum of factorials in an array | C ++ implementation of the approach ; Function to return the factorial of n ; Function to return the sum of factorials of the array elements ; To store the required sum ; Add factorial of all the elements ; Driver code | #include <iostream> NEW_LINE #include <bits/stdc++.h> NEW_LINE using namespace std ; int factorial ( int n ) { int f = 1 ; for ( int i = 1 ; i <= n ; i ++ ) { f *= i ; } return f ; } int sumFactorial ( int * arr , int n ) { int s = 0 , i ; for ( i = 0 ; i < n ; i ++ ) { s += factorial ( arr [ i ] ) ; } return s ; } int main ( ) { int arr [ ] = { 7 , 3 , 5 , 4 , 8 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << sumFactorial ( arr , n ) ; return 0 ; } |
Minimum steps to color the tree with given colors | C ++ implementation of the approach ; To store the required answer ; To store the graph ; Function to add edges ; Dfs function ; When there is difference in colors ; For all it 's child nodes ; Driver code ; Here zero is for parent of node 1 ; Adding edges in the graph ; Dfs call ; Required answer | #include <bits/stdc++.h> NEW_LINE using namespace std ; int ans = 0 ; vector < int > gr [ 100005 ] ; void Add_Edge ( int u , int v ) { gr [ u ] . push_back ( v ) ; gr [ v ] . push_back ( u ) ; } void dfs ( int child , int par , int color [ ] ) { if ( color [ child ] != color [ par ] ) ans ++ ; for ( auto it : gr [ child ] ) { if ( it == par ) continue ; dfs ( it , child , color ) ; } } int main ( ) { int color [ ] = { 0 , 1 , 2 , 3 , 2 , 2 , 3 } ; Add_Edge ( 1 , 2 ) ; Add_Edge ( 1 , 3 ) ; Add_Edge ( 2 , 4 ) ; Add_Edge ( 2 , 5 ) ; Add_Edge ( 3 , 6 ) ; dfs ( 1 , 0 , color ) ; cout << ans ; return 0 ; } |
Highest power of 2 that divides a number represented in binary | C ++ implementation of the approach ; Function to return the highest power of 2 which divides the given binary number ; To store the highest required power of 2 ; Counting number of consecutive zeros from the end in the given binary string ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int highestPower ( string str , int len ) { int ans = 0 ; for ( int i = len - 1 ; i >= 0 ; i -- ) { if ( str [ i ] == '0' ) ans ++ ; else break ; } return ans ; } int main ( ) { string str = "100100" ; int len = str . length ( ) ; cout << highestPower ( str , len ) ; return 0 ; } |
Number of ways to arrange K different objects taking N objects at a time | C ++ implementation of the approach ; Function to return n ! % p ; ll res = 1 ; Initialize result ; Iterative Function to calculate ( x ^ y ) % p in O ( log y ) ; x = x % p ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now y = y >> 1 ; y = y / 2 ; Returns n ^ ( - 1 ) mod p ; Returns nCr % p using Fermat 's little theorem. ; Base case ; Fill factorial array so that we can find all factorial of r , n and n - r ; Function to return the number of ways to arrange K different objects taking N objects at a time ; Drivers Code ; Function call | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE #define mod (ll)(1e9 + 7) NEW_LINE ll factorial ( ll n , ll p ) { for ( int i = 2 ; i <= n ; i ++ ) res = ( res * i ) % p ; return res ; } ll power ( ll x , ll y , ll p ) { while ( y > 0 ) { if ( y & 1 ) res = ( res * x ) % p ; x = ( x * x ) % p ; } return res ; } ll modInverse ( ll n , ll p ) { return power ( n , p - 2 , p ) ; } ll nCrModP ( ll n , ll r , ll p ) { if ( r == 0 ) return 1 ; ll fac [ n + 1 ] ; fac [ 0 ] = 1 ; for ( int i = 1 ; i <= n ; i ++ ) fac [ i ] = fac [ i - 1 ] * i % p ; return ( fac [ n ] * modInverse ( fac [ r ] , p ) % p * modInverse ( fac [ n - r ] , p ) % p ) % p ; } ll countArrangements ( ll n , ll k , ll p ) { return ( factorial ( n , p ) * nCrModP ( k , n , p ) ) % p ; } int main ( ) { ll N = 5 , K = 8 ; cout << countArrangements ( N , K , mod ) ; return 0 ; } |
Find maximum product of digits among numbers less than or equal to N | C ++ implementation of the approach ; Function that returns the maximum product of digits among numbers less than or equal to N ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxProd ( int N ) { if ( N == 0 ) return 1 ; if ( N < 10 ) return N ; return max ( maxProd ( N / 10 ) * ( N % 10 ) , maxProd ( N / 10 - 1 ) * 9 ) ; } int main ( ) { int N = 390 ; cout << maxProd ( N ) ; return 0 ; } |
Check if a number from every row can be selected such that xor of the numbers is greater than zero | C ++ program to implement the above approach ; Function to check if a number from every row can be selected such that xor of the numbers is greater than zero ; Find the xor of first column for every row ; If Xorr is 0 ; Traverse in the matrix ; Check is atleast 2 distinct elements ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 2 NEW_LINE #define M 3 NEW_LINE bool check ( int mat [ N ] [ M ] ) { int xorr = 0 ; for ( int i = 0 ; i < N ; i ++ ) { xorr ^= mat [ i ] [ 0 ] ; } if ( xorr != 0 ) return true ; for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 1 ; j < M ; j ++ ) { if ( mat [ i ] [ j ] != mat [ i ] [ 0 ] ) return true ; } } return false ; } int main ( ) { int mat [ N ] [ M ] = { { 7 , 7 , 7 } , { 10 , 10 , 7 } } ; if ( check ( mat ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Sum of the series 1 , 2 , 4 , 3 , 5 , 7 , 9 , 6 , 8 , 10 , 11 , 13. . till N | C ++ program to implement the above approach ; Function to find the sum of first N odd numbers ; Function to find the sum of first N even numbers ; Function to overall find the sum of series ; Initial odd numbers ; Initial even numbers ; First power of 2 ; Check for parity for odd / even ; Counts the sum ; Get the minimum out of remaining num or power of 2 ; Decrease that much numbers from num ; If the segment has odd numbers ; Summate the odd numbers By exclusion ; Increase number of odd numbers ; If the segment has even numbers ; Summate the even numbers By exclusion ; Increase number of even numbers ; Next set of numbers ; Change parity for odd / even ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int sumodd ( int n ) { return ( n * n ) ; } int sumeven ( int n ) { return ( n * ( n + 1 ) ) ; } int findSum ( int num ) { int sumo = 0 ; int sume = 0 ; int x = 1 ; int cur = 0 ; int ans = 0 ; while ( num > 0 ) { int inc = min ( x , num ) ; num -= inc ; if ( cur == 0 ) { ans = ans + sumodd ( sumo + inc ) - sumodd ( sumo ) ; sumo += inc ; } else { ans = ans + sumeven ( sume + inc ) - sumeven ( sume ) ; sume += inc ; } x *= 2 ; cur ^= 1 ; } return ans ; } int main ( ) { int n = 4 ; cout << findSum ( n ) ; return 0 ; } |
Find the nth term of the given series | C ++ implementation of the approach ; Function to return the nth term of the given series ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int oddTriangularNumber ( int N ) { return ( N * ( ( 2 * N ) - 1 ) ) ; } int main ( ) { int N = 3 ; cout << oddTriangularNumber ( N ) ; return 0 ; } |
Check if given two straight lines are identical or not | C ++ program to check if given two straight lines are identical or not ; Function to check if they are identical ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void idstrt ( double a1 , double b1 , double c1 , double a2 , double b2 , double c2 ) { if ( ( a1 / a2 == b1 / b2 ) && ( a1 / a2 == c1 / c2 ) && ( b1 / b2 == c1 / c2 ) ) cout << " The β given β straight " << " β lines β are β identical " << endl ; else cout << " The β given β straight " << " β lines β are β not β identical " << endl ; } int main ( ) { double a1 = -2 , b1 = 4 , c1 = 3 , a2 = -6 , b2 = 12 , c2 = 9 ; idstrt ( a1 , b1 , c1 , a2 , b2 , c2 ) ; return 0 ; } |
Count arrays of length K whose product of elements is same as that of given array | C ++ implementation of the approach ; To store the smallest prime factor for every number ; Initialize map to store count of prime factors ; Function to calculate SPF ( Smallest Prime Factor ) for every number till MAXN ; Marking smallest prime factor for every number to be itself ; Separately marking spf for every even number as 2 ; Checking if i is prime ; Marking SPF for all numbers divisible by i ; Marking spf [ j ] if it is not previously marked ; Function to factorize using spf and store in cnt ; Function to return n ! % p ; Initialize result ; Iterative Function to calculate ( x ^ y ) % p in O ( log y ) ; Initialize result ; Update x if it is >= p ; If y is odd , multiply x with result ; y must be even now y = y / 2 ; Function that returns n ^ ( - 1 ) mod p ; Function that returns nCr % p using Fermat 's little theorem ; Base case ; Fill factorial array so that we can find all factorial of r , n and n - r ; Function to return the count the number of possible arrays mod P of length K such that the product of all elements of that array is equal to the product of all elements of the given array of length N ; Initialize result ; Call sieve to get spf ; Factorize arr [ i ] , count and store its factors in cnt ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE #define MAXN (ll)(1e5 + 1) NEW_LINE #define mod (ll)(1e9 + 7) NEW_LINE ll spf [ MAXN ] ; map < ll , ll > cnt ; void sieve ( ) { spf [ 1 ] = 1 ; for ( int i = 2 ; i < MAXN ; i ++ ) spf [ i ] = i ; for ( int i = 4 ; i < MAXN ; i += 2 ) spf [ i ] = 2 ; for ( int i = 3 ; i * i < MAXN ; i ++ ) { if ( spf [ i ] == i ) { for ( int j = i * i ; j < MAXN ; j += i ) if ( spf [ j ] == j ) spf [ j ] = i ; } } } void factorize ( ll f ) { while ( f > 1 ) { ll x = spf [ f ] ; while ( f % x == 0 ) { cnt [ x ] ++ ; f /= x ; } } } ll factorial ( ll n , ll p ) { ll res = 1 ; for ( int i = 2 ; i <= n ; i ++ ) res = ( res * i ) % p ; return res ; } ll power ( ll x , ll y , ll p ) { ll res = 1 ; x = x % p ; while ( y > 0 ) { if ( y & 1 ) res = ( res * x ) % p ; y = y >> 1 ; x = ( x * x ) % p ; } return res ; } ll modInverse ( ll n , ll p ) { return power ( n , p - 2 , p ) ; } ll nCrModP ( ll n , ll r , ll p ) { if ( r == 0 ) return 1 ; ll fac [ n + 1 ] ; fac [ 0 ] = 1 ; for ( int i = 1 ; i <= n ; i ++ ) fac [ i ] = fac [ i - 1 ] * i % p ; return ( fac [ n ] * modInverse ( fac [ r ] , p ) % p * modInverse ( fac [ n - r ] , p ) % p ) % p ; } ll countArrays ( ll arr [ ] , ll N , ll K , ll P ) { ll res = 1 ; sieve ( ) ; for ( int i = 0 ; i < N ; i ++ ) { factorize ( arr [ i ] ) ; } for ( auto i : cnt ) { int ci = i . second ; res = ( res * nCrModP ( ci + K - 1 , K - 1 , P ) ) % P ; } return res ; } int main ( ) { ll arr [ ] = { 1 , 3 , 5 , 2 } , K = 3 ; ll N = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << countArrays ( arr , N , K , mod ) ; return 0 ; } |
Count different numbers possible using all the digits their frequency times | C ++ implementation of the above approach ; Initialize an array to store factorial values ; Function to calculate and store X ! values ; Iterative Function to calculate ( x ^ y ) % p in O ( log y ) ; x = x % p ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now y = y >> 1 ; y = y / 2 ; Function that return modular inverse of x under modulo p ; Function that returns the count of different number possible by using all the digits its frequency times ; Preprocess factorial values ; Initialize the result and sum of aint the frequencies ; Calculate the sum of frequencies ; Putting res equal to x ! ; Multiplying res with modular inverse of X0 ! , X1 ! , . . , X9 ! ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE #define MAXN 100000 NEW_LINE #define MOD 1000000007 NEW_LINE ll fact [ MAXN ] ; void factorial ( ) { fact [ 0 ] = 1 ; for ( int i = 1 ; i < MAXN ; i ++ ) fact [ i ] = ( fact [ i - 1 ] * i ) % MOD ; } ll power ( ll x , ll y , ll p ) { while ( y > 0 ) { if ( y & 1 ) res = ( res * x ) % p ; x = ( x * x ) % p ; } return res ; } ll modInverse ( ll x , ll p ) { return power ( x , p - 2 , p ) ; } ll countDifferentNumbers ( ll arr [ ] , ll P ) { factorial ( ) ; ll res = 0 , X = 0 ; for ( int i = 0 ; i < 10 ; i ++ ) X += arr [ i ] ; res = fact [ X ] ; for ( int i = 0 ; i < 10 ; i ++ ) { if ( arr [ i ] > 1 ) res = ( res * modInverse ( fact [ arr [ i ] ] , P ) ) % P ; } return res ; } int main ( ) { ll arr [ ] = { 1 , 0 , 2 , 0 , 0 , 7 , 4 , 0 , 0 , 3 } ; cout << countDifferentNumbers ( arr , MOD ) ; return 0 ; } |
Equation of straight line passing through a given point which bisects it into two equal line segments | C ++ implementation of the approach ; Function to print the equation of the required line ; Driver code | #include <iostream> NEW_LINE using namespace std ; void line ( double x0 , double y0 ) { double c = 2 * y0 * x0 ; cout << y0 << " x " << " β + β " << x0 << " y β = β " << c ; } int main ( ) { double x0 = 4 , y0 = 3 ; line ( x0 , y0 ) ; return 0 ; } |
Find the original matrix when largest element in a row and a column are given | C ++ implementation of the approach ; Function that prints the original matrix ; Iterate in the row ; Iterate in the column ; If previously existed an element ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define N 3 NEW_LINE #define M 7 NEW_LINE void printOriginalMatrix ( int a [ ] , int b [ ] , int mat [ N ] [ M ] ) { for ( int i = 0 ; i < N ; i ++ ) { for ( int j = 0 ; j < M ; j ++ ) { if ( mat [ i ] [ j ] == 1 ) cout << min ( a [ i ] , b [ j ] ) << " β " ; else cout << 0 << " β " ; } cout << endl ; } } int main ( ) { int a [ ] = { 2 , 1 , 3 } ; int b [ ] = { 2 , 3 , 0 , 0 , 2 , 0 , 1 } ; int mat [ N ] [ M ] = { { 1 , 0 , 0 , 0 , 1 , 0 , 0 } , { 0 , 0 , 0 , 0 , 0 , 0 , 1 } , { 1 , 1 , 0 , 0 , 0 , 0 , 0 } } ; printOriginalMatrix ( a , b , mat ) ; return 0 ; } |
Calculate the loss incurred in selling the given items at discounted price | C ++ implementation of the approach ; Function to return the x % of n ; Function to return the total loss ; To store the total loss ; Original price of the item ; The price at which the item will be sold ; The discounted price of the item ; Loss incurred ; Driver code ; Total items | #include <bits/stdc++.h> NEW_LINE using namespace std ; float percent ( int n , int x ) { float p = n * x ; p /= 100 ; return p ; } float getLoss ( int price [ ] , int quantity [ ] , int X [ ] , int n ) { float loss = 0 ; for ( int i = 0 ; i < n ; i ++ ) { float originalPrice = price [ i ] ; float sellingPrice = originalPrice + percent ( originalPrice , X [ i ] ) ; float afterDiscount = sellingPrice - percent ( sellingPrice , X [ i ] ) ; loss += ( ( originalPrice - afterDiscount ) * quantity [ i ] ) ; } return loss ; } int main ( ) { int price [ ] = { 20 , 48 , 200 , 100 } ; int quantity [ ] = { 20 , 48 , 1 , 1 } ; int X [ ] = { 0 , 48 , 200 , 5 } ; int n = sizeof ( X ) / sizeof ( X [ 0 ] ) ; cout << getLoss ( price , quantity , X , n ) ; return 0 ; } |
Maximum difference between two elements in an Array | C ++ implementation of the approach ; Function to return the maximum absolute difference between any two elements of the array ; To store the minimum and the maximum elements from the array ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxAbsDiff ( int arr [ ] , int n ) { int minEle = arr [ 0 ] ; int maxEle = arr [ 0 ] ; for ( int i = 1 ; i < n ; i ++ ) { minEle = min ( minEle , arr [ i ] ) ; maxEle = max ( maxEle , arr [ i ] ) ; } return ( maxEle - minEle ) ; } int main ( ) { int arr [ ] = { 2 , 1 , 5 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << maxAbsDiff ( arr , n ) ; return 0 ; } |
Maximize the maximum subarray sum after removing atmost one element | C ++ implementation of the approach ; Function to return the maximum sub - array sum ; Initialized ; Traverse in the array ; Increase the sum ; If sub - array sum is more than the previous ; If sum is negative ; Function that returns the maximum sub - array sum after removing an element from the same sub - array ; Maximum sub - array sum using Kadane 's Algorithm ; Re - apply Kadane 's with minor changes ; Increase the sum ; If sub - array sum is greater than the previous ; If elements are 0 , no removal ; If elements are more , then store the minimum value in the sub - array obtained till now ; If sum is negative ; Re - initialize everything ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int maxSubArraySum ( int a [ ] , int size ) { int max_so_far = INT_MIN , max_ending_here = 0 ; for ( int i = 0 ; i < size ; i ++ ) { max_ending_here = max_ending_here + a [ i ] ; if ( max_so_far < max_ending_here ) max_so_far = max_ending_here ; if ( max_ending_here < 0 ) max_ending_here = 0 ; } return max_so_far ; } int maximizeSum ( int a [ ] , int n ) { int cnt = 0 ; int mini = INT_MAX ; int minSubarray = INT_MAX ; int sum = maxSubArraySum ( a , n ) ; int max_so_far = INT_MIN , max_ending_here = 0 ; for ( int i = 0 ; i < n ; i ++ ) { max_ending_here = max_ending_here + a [ i ] ; cnt ++ ; minSubarray = min ( a [ i ] , minSubarray ) ; if ( sum == max_ending_here ) { if ( cnt == 1 ) mini = min ( mini , 0 ) ; else mini = min ( mini , minSubarray ) ; } if ( max_ending_here < 0 ) { max_ending_here = 0 ; cnt = 0 ; minSubarray = INT_MAX ; } } return sum - mini ; } int main ( ) { int a [ ] = { 1 , 2 , 3 , -2 , 3 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << maximizeSum ( a , n ) ; return 0 ; } |
3 | C ++ implementation of the approach ; Function that returns true if n is an Osiris number ; 3 rd digit ; 2 nd digit ; 1 st digit ; Check the required condition ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isOsiris ( int n ) { int a = n % 10 ; int b = ( n / 10 ) % 10 ; int c = n / 100 ; int digit_sum = a + b + c ; if ( n == ( 2 * ( digit_sum ) * 11 ) ) { return true ; } return false ; } int main ( ) { int n = 132 ; if ( isOsiris ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Dudeney Numbers | C ++ implementation of the approach ; Function that returns true if n is a Dudeney number ; If n is not a perfect cube ; Last digit ; Update the digit sum ; Remove the last digit ; If cube root of n is not equal to the sum of its digits ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isDudeney ( int n ) { int cube_rt = int ( round ( ( pow ( n , 1.0 / 3.0 ) ) ) ) ; if ( cube_rt * cube_rt * cube_rt != n ) return false ; int dig_sum = 0 ; int temp = n ; while ( temp > 0 ) { int rem = temp % 10 ; dig_sum += rem ; temp /= 10 ; } if ( cube_rt != dig_sum ) return false ; return true ; } int main ( ) { int n = 17576 ; if ( isDudeney ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Number of triangles possible with given lengths of sticks which are powers of 2 | C ++ implementation of the approach ; Function to return the number of positive area triangles ; To store the count of total triangles ; To store the count of pairs of sticks with equal lengths ; Back - traverse and count the number of triangles ; Count the number of pairs ; If we have one remaining stick and we have a pair ; Count 1 triangle ; Reduce one pair ; Count the remaining triangles that can be formed ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countTriangles ( int a [ ] , int n ) { int cnt = 0 ; int pairs = 0 ; for ( int i = n - 1 ; i >= 0 ; i -- ) { pairs += a [ i ] / 2 ; if ( a [ i ] % 2 == 1 && pairs > 0 ) { cnt += 1 ; pairs -= 1 ; } } cnt += ( 2 * pairs ) / 3 ; return cnt ; } int main ( ) { int a [ ] = { 1 , 2 , 2 , 2 , 2 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; cout << countTriangles ( a , n ) ; return 0 ; } |
Smallest N digit number which is a multiple of 5 | C ++ implementation of the approach ; Function to return the smallest n digit number which is a multiple of 5 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int smallestMultiple ( int n ) { if ( n == 1 ) return 5 ; return pow ( 10 , n - 1 ) ; } int main ( ) { int n = 4 ; cout << smallestMultiple ( n ) ; return 0 ; } |
Find HCF of two numbers without using recursion or Euclidean algorithm | C ++ implementation of the approach ; Function to return the HCF of x and y ; Minimum of the two numbers ; If both the numbers are divisible by the minimum of these two then the HCF is equal to the minimum ; Highest number between 2 and minimum / 2 which can divide both the numbers is the required HCF ; If both the numbers are divisible by i ; 1 divides every number ; Driver code | #include <iostream> NEW_LINE using namespace std ; int getHCF ( int x , int y ) { int minimum = min ( x , y ) ; if ( x % minimum == 0 && y % minimum == 0 ) return minimum ; for ( int i = minimum / 2 ; i >= 2 ; i -- ) { if ( x % i == 0 && y % i == 0 ) return i ; } return 1 ; } int main ( ) { int x = 16 , y = 32 ; cout << getHCF ( x , y ) ; return 0 ; } |
Check if product of first N natural numbers is divisible by their sum | C ++ implementation of the approach ; Function that returns true if n is prime ; Corner cases ; This is checked so that we can skip middle five numbers in below loop ; Function that return true if the product of the first n natural numbers is divisible by the sum of first n natural numbers ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPrime ( int n ) { if ( n <= 1 ) return false ; if ( n <= 3 ) return true ; if ( n % 2 == 0 n % 3 == 0 ) return false ; for ( int i = 5 ; i * i <= n ; i = i + 6 ) if ( n % i == 0 || n % ( i + 2 ) == 0 ) return false ; return true ; } bool isDivisible ( int n ) { if ( isPrime ( n + 1 ) ) return false ; return true ; } int main ( ) { int n = 6 ; if ( isDivisible ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Maximum sum of cocktail glass in a 2D matrix | C ++ implementation of the approach ; Function to return the maximum sum of a cocktail glass ; If no cocktail glass is possible ; Initialize max_sum with the mini ; Here loop runs ( R - 2 ) * ( C - 2 ) times considering different top left cells of cocktail glasses ; Considering mat [ i ] [ j ] as the top left cell of the cocktail glass ; Update the max_sum ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; const int R = 5 ; const int C = 5 ; int findMaxCock ( int ar [ R ] [ C ] ) { if ( R < 3 C < 3 ) return -1 ; int max_sum = INT_MIN ; for ( int i = 0 ; i < R - 2 ; i ++ ) { for ( int j = 0 ; j < C - 2 ; j ++ ) { int sum = ( ar [ i ] [ j ] + ar [ i ] [ j + 2 ] ) + ( ar [ i + 1 ] [ j + 1 ] ) + ( ar [ i + 2 ] [ j ] + ar [ i + 2 ] [ j + 1 ] + ar [ i + 2 ] [ j + 2 ] ) ; max_sum = max ( max_sum , sum ) ; } } return max_sum ; } int main ( ) { int ar [ ] [ C ] = { { 0 , 3 , 0 , 6 , 0 } , { 0 , 1 , 1 , 0 , 0 } , { 1 , 1 , 1 , 0 , 0 } , { 0 , 0 , 2 , 0 , 1 } , { 0 , 2 , 0 , 1 , 3 } } ; cout << findMaxCock ( ar ) ; return 0 ; } |
Find the number of sub arrays in the permutation of first N natural numbers such that their median is M | C ++ implementation of the approach ; Function to return the count of sub - arrays in the given permutation of first n natural numbers such that their median is m ; If element is less than m ; If element greater than m ; If m is found ; Count the answer ; Increment sum ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int segments ( int n , int p [ ] , int m ) { map < int , int > c ; c [ 0 ] = 1 ; bool has = false ; int sum = 0 ; long long ans = 0 ; for ( int r = 0 ; r < n ; r ++ ) { if ( p [ r ] < m ) sum -- ; else if ( p [ r ] > m ) sum ++ ; if ( p [ r ] == m ) has = true ; if ( has ) ans += c [ sum ] + c [ sum - 1 ] ; else c [ sum ] ++ ; } return ans ; } int main ( ) { int a [ ] = { 2 , 4 , 5 , 3 , 1 } ; int n = sizeof ( a ) / sizeof ( a [ 0 ] ) ; int m = 4 ; cout << segments ( n , a , m ) ; return 0 ; } |
Program to calculate the number of odd days in given number of years | C ++ implementation of the approach ; Function to return the count of odd days ; Count of years divisible by 100 and 400 ; Every 4 th year is a leap year ; Every 100 th year is divisible by 4 but is not a leap year ; Every 400 th year is divisible by 100 but is a leap year ; Total number of extra days ; modulo ( 7 ) for final answer ; Driver code ; Number of days | #include <iostream> NEW_LINE using namespace std ; int oddDays ( int N ) { int hund1 = N / 100 ; int hund4 = N / 400 ; int leap = N >> 2 ; int ord = N - leap ; if ( hund1 ) { ord += hund1 ; leap -= hund1 ; } if ( hund4 ) { ord -= hund4 ; leap += hund4 ; } int days = ord + leap * 2 ; int odd = days % 7 ; return odd ; } int main ( ) { int N = 100 ; cout << oddDays ( N ) ; return 0 ; } |
Largest ellipse that can be inscribed within a rectangle which in turn is inscribed within a semicircle | C ++ Program to find the biggest ellipse which can be inscribed within a rectangle which in turn is inscribed within a semicircle ; Function to find the area of the biggest ellipse ; the radius cannot be negative ; area of the ellipse ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; float ellipsearea ( float r ) { if ( r < 0 ) return -1 ; float a = ( 3.14 * r * r ) / 4 ; return a ; } int main ( ) { float r = 5 ; cout << ellipsearea ( r ) << endl ; return 0 ; } |
Find the minimum number of operations required to make all array elements equal | C ++ implementation of the approach ; Function to return the minimum operations required to make all array elements equal ; To store the frequency of all the array elements ; Traverse through array elements and update frequencies ; To store the maximum frequency of an element from the array ; Traverse through the map and find the maximum frequency for any element ; Return the minimum operations required ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int minOperations ( int arr [ ] , int n ) { unordered_map < int , int > mp ; for ( int i = 0 ; i < n ; i ++ ) mp [ arr [ i ] ] ++ ; int maxFreq = INT_MIN ; for ( auto x : mp ) maxFreq = max ( maxFreq , x . second ) ; return ( n - maxFreq ) ; } int main ( ) { int arr [ ] = { 2 , 4 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << minOperations ( arr , n ) ; return 0 ; } |
Count all prefixes of the given binary array which are divisible by x | C ++ implementation of the approach ; Function to return the count of total binary prefix which are divisible by x ; Initialize with zero ; Convert all prefixes to decimal ; If number is divisible by x then increase count ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int CntDivbyX ( int arr [ ] , int n , int x ) { int number = 0 ; int count = 0 ; for ( int i = 0 ; i < n ; i ++ ) { number = number * 2 + arr [ i ] ; if ( ( number % x == 0 ) ) count += 1 ; } return count ; } int main ( ) { int arr [ ] = { 1 , 0 , 1 , 0 , 1 , 1 , 0 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; int x = 2 ; cout << CntDivbyX ( arr , n , x ) ; return 0 ; } |
Count consecutive pairs of same elements | C ++ implementation of the approach ; Function to return the count of consecutive elements in the array which are equal ; If consecutive elements are same ; Driver code | #include <iostream> NEW_LINE using namespace std ; int countCon ( int ar [ ] , int n ) { int cnt = 0 ; for ( int i = 0 ; i < n - 1 ; i ++ ) { if ( ar [ i ] == ar [ i + 1 ] ) cnt ++ ; } return cnt ; } int main ( ) { int ar [ ] = { 1 , 2 , 2 , 3 , 4 , 4 , 5 , 5 , 5 , 5 } ; int n = sizeof ( ar ) / sizeof ( ar [ 0 ] ) ; cout << countCon ( ar , n ) ; return 0 ; } |
Reduce the fraction to its lowest form | C ++ program to reduce a fraction x / y to its lowest form ; Function to reduce a fraction to its lowest form ; Driver Code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void reduceFraction ( int x , int y ) { int d ; d = __gcd ( x , y ) ; x = x / d ; y = y / d ; cout << " x β = β " << x << " , β y β = β " << y << endl ; } int main ( ) { int x = 16 ; int y = 10 ; reduceFraction ( x , y ) ; return 0 ; } |
Number of ways of choosing K equal substrings of any length for every query | C ++ implementation of the approach ; Function to generate all the sub - strings ; Length of the string ; Generate all sub - strings ; Count the occurrence of every sub - string ; Compute the Binomial Coefficient ; Calculate value of Binomial Coefficient in bottom up manner ; Base Cases ; Calculate value using previously stored values ; Function to return the result for a query ; Iterate for every unique sub - string ; Count the combinations ; Driver code ; Get all the sub - strings Store the occurrence of all the sub - strings ; Pre - computation ; Queries ; Perform queries | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define maxlen 100 NEW_LINE void generateSubStrings ( string s , unordered_map < string , int > & mpp ) { int l = s . length ( ) ; for ( int i = 0 ; i < l ; i ++ ) { string temp = " " ; for ( int j = i ; j < l ; j ++ ) { temp += s [ j ] ; mpp [ temp ] += 1 ; } } } void binomialCoeff ( int C [ maxlen ] [ maxlen ] ) { int i , j ; for ( i = 0 ; i < 100 ; i ++ ) { for ( j = 0 ; j < 100 ; j ++ ) { if ( j == 0 j == i ) C [ i ] [ j ] = 1 ; else C [ i ] [ j ] = C [ i - 1 ] [ j - 1 ] + C [ i - 1 ] [ j ] ; } } } int answerQuery ( unordered_map < string , int > & mpp , int C [ maxlen ] [ maxlen ] , int k ) { int ans = 0 ; for ( auto it : mpp ) { if ( it . second >= k ) ans += C [ it . second ] [ k ] ; } return ans ; } int main ( ) { string s = " aabaab " ; unordered_map < string , int > mpp ; generateSubStrings ( s , mpp ) ; int C [ maxlen ] [ maxlen ] ; memset ( C , 0 , sizeof C ) ; binomialCoeff ( C ) ; int queries [ ] = { 2 , 3 , 4 } ; int q = sizeof ( queries ) / sizeof ( queries [ 0 ] ) ; for ( int i = 0 ; i < q ; i ++ ) cout << answerQuery ( mpp , C , queries [ i ] ) << endl ; return 0 ; } |
Times required by Simple interest for the Principal to become Y times itself | C ++ implementation of the approach ; Function to return the no . of years ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; float noOfYears ( int t1 , int n1 , int t2 ) { float years = ( ( t2 - 1 ) * n1 / ( float ) ( t1 - 1 ) ) ; return years ; } int main ( ) { int T1 = 3 , N1 = 5 , T2 = 6 ; cout << noOfYears ( T1 , N1 , T2 ) ; return 0 ; } |
Check if a given number divides the sum of the factorials of its digits | C ++ implementation of the approach ; Function that returns true if n divides the sum of the factorials of its digits ; To store factorials of digits ; To store sum of the factorials of the digits ; Store copy of the given number ; Store sum of the factorials of the digits ; If it is divisible ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPossible ( int n ) { int fac [ 10 ] ; fac [ 0 ] = fac [ 1 ] = 1 ; for ( int i = 2 ; i < 10 ; i ++ ) fac [ i ] = fac [ i - 1 ] * i ; int sum = 0 ; int x = n ; while ( x ) { sum += fac [ x % 10 ] ; x /= 10 ; } if ( sum % n == 0 ) return true ; return false ; } int main ( ) { int n = 19 ; if ( isPossible ( n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Find the longest subsequence of an array having LCM at most K | C ++ implementation of the approach ; Function to find the longest subsequence having LCM less than or equal to K ; Map to store unique elements and their frequencies ; Update the frequencies ; Array to store the count of numbers whom 1 <= X <= K is a multiple of ; Check every unique element ; Find all its multiples <= K ; Store its frequency ; Obtain the number having maximum count ; Condition to check if answer doesn 't exist ; Print the answer ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; void findSubsequence ( int * arr , int n , int k ) { map < int , int > M ; for ( int i = 0 ; i < n ; ++ i ) ++ M [ arr [ i ] ] ; int * numCount = new int [ k + 1 ] ; for ( int i = 0 ; i <= k ; ++ i ) numCount [ i ] = 0 ; for ( auto p : M ) { if ( p . first <= k ) { for ( int i = 1 ; ; ++ i ) { if ( p . first * i > k ) break ; numCount [ p . first * i ] += p . second ; } } else break ; } int lcm = 0 , length = 0 ; for ( int i = 1 ; i <= k ; ++ i ) { if ( numCount [ i ] > length ) { length = numCount [ i ] ; lcm = i ; } } if ( lcm == 0 ) cout << -1 << endl ; else { cout << " LCM β = β " << lcm << " , β Length β = β " << length << endl ; cout << " Indexes β = β " ; for ( int i = 0 ; i < n ; ++ i ) if ( lcm % arr [ i ] == 0 ) cout << i << " β " ; } } int main ( ) { int k = 14 ; int arr [ ] = { 2 , 3 , 4 , 5 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; findSubsequence ( arr , n , k ) ; return 0 ; } |
Count number of binary strings of length N having only 0 ' s β and β 1' s | C ++ implementation of the approach ; Iterative Function to calculate ( x ^ y ) % p in O ( log y ) ; x = x % p ; Update x if it is more than or equal to p ; If y is odd , multiply x with result ; y must be even now y = y >> 1 ; y = y / 2 ; Function to count the number of binary strings of length N having only 0 ' s β and β 1' s ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; #define ll long long NEW_LINE #define mod (ll)(1e9 + 7) NEW_LINE ll power ( ll x , ll y , ll p ) { while ( y > 0 ) { if ( y & 1 ) res = ( res * x ) % p ; x = ( x * x ) % p ; } return res ; } ll findCount ( ll N ) { int count = power ( 2 , N , mod ) ; return count ; } int main ( ) { ll N = 25 ; cout << findCount ( N ) ; return 0 ; } |
XOR of all the elements in the given range [ L , R ] | C ++ implementation of the approach ; Function to return the most significant bit ; Function to return the required XOR ; Finding the MSB ; Value of the current bit to be added ; To store the final answer ; Loop for case 1 ; Edge case when both the integers lie in the same segment of continuous 1 s ; To store whether parity of count is odd ; Updating the answer if parity is odd ; Updating the number to be added ; Case 2 ; Driver code ; Final answer | #include <bits/stdc++.h> NEW_LINE using namespace std ; int msb ( int x ) { int ret = 0 ; while ( ( x >> ( ret + 1 ) ) != 0 ) ret ++ ; return ret ; } int xorRange ( int l , int r ) { int max_bit = msb ( r ) ; int mul = 2 ; int ans = 0 ; for ( int i = 1 ; i <= max_bit ; i ++ ) { if ( ( l / mul ) * mul == ( r / mul ) * mul ) { if ( ( ( l & ( 1 << i ) ) != 0 ) && ( r - l + 1 ) % 2 == 1 ) ans += mul ; mul *= 2 ; continue ; } bool odd_c = 0 ; if ( ( ( l & ( 1 << i ) ) != 0 ) && l % 2 == 1 ) odd_c = ( odd_c ^ 1 ) ; if ( ( ( r & ( 1 << i ) ) != 0 ) && r % 2 == 0 ) odd_c = ( odd_c ^ 1 ) ; if ( odd_c ) ans += mul ; mul *= 2 ; } int zero_bit_cnt = zero_bit_cnt = ( r - l + 1 ) / 2 ; if ( l % 2 == 1 && r % 2 == 1 ) zero_bit_cnt ++ ; if ( zero_bit_cnt % 2 == 1 ) ans ++ ; return ans ; } int main ( ) { int l = 1 , r = 4 ; cout << xorRange ( l , r ) ; return 0 ; } |
XOR of all the elements in the given range [ L , R ] | C ++ implementation of the approach ; Function to return the required XOR ; Modulus operator are expensive on most of the computers . n & 3 will be equivalent to n % 4 n % 4 ; If n is a multiple of 4 ; If n % 4 gives remainder 1 ; If n % 4 gives remainder 2 ; If n % 4 gives remainder 3 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; long computeXOR ( const int n ) { switch ( n & 3 ) { case 0 : return n ; case 1 : return 1 ; case 2 : return n + 1 ; case 3 : return 0 ; } } int main ( ) { int l = 1 , r = 4 ; cout << ( computeXOR ( r ) ^ computeXOR ( l - 1 ) ) ; return 0 ; } |
Find the number of integers from 1 to n which contains digits 0 ' s β and β 1' s only | C ++ program to find the number of integers from 1 to n which contains digits 0 ' s β and β 1' s only ; Function to find the number of integers from 1 to n which contains 0 ' s β and β 1' s only ; If number is greater than n ; otherwise add count this number and call two functions ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countNumbers ( int x , int n ) { if ( x > n ) return 0 ; return 1 + countNumbers ( x * 10 , n ) + countNumbers ( x * 10 + 1 , n ) ; } int main ( ) { int n = 120 ; cout << countNumbers ( 1 , n ) ; return 0 ; } |
Check if factorial of N is divisible by the sum of squares of first N natural numbers | C ++ implementation of the approach ; Function to count number of times prime P divide factorial N ; Lengendre Formula ; Function to find count number of times all prime P divide summation ; Formula for summation of square after removing n and constant 6 ; Loop to traverse over all prime P which divide summation ; If Number itself is a Prime Number ; Driver Code | #include <bits/stdc++.h> NEW_LINE #define ll long long int NEW_LINE using namespace std ; bool checkfact ( int N , int countprime , int prime ) { int countfact = 0 ; if ( prime == 2 prime == 3 ) countfact ++ ; int divide = prime ; while ( N / divide != 0 ) { countfact += N / divide ; divide = divide * divide ; } if ( countfact >= countprime ) return true ; else return false ; } bool check ( int N ) { int sumsquares = ( N + 1 ) * ( 2 * N + 1 ) ; int countprime = 0 ; for ( int i = 2 ; i <= sqrt ( sumsquares ) ; i ++ ) { int flag = 0 ; while ( sumsquares % i == 0 ) { flag = 1 ; countprime ++ ; sumsquares /= i ; } if ( flag ) { if ( ! checkfact ( N - 1 , countprime , i ) ) return false ; countprime = 0 ; } } if ( sumsquares != 1 ) if ( ! checkfact ( N - 1 , 1 , sumsquares ) ) return false ; return true ; } int main ( ) { int N = 5 ; if ( check ( N ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Count the number of non | C ++ program to count number of non increasing subarrays ; Initialize result ; Initialize length of current non increasing subarray ; Traverse through the array ; If arr [ i + 1 ] is less than or equal to arr [ i ] , then increment length ; Else Update count and reset length ; If last length is more than 1 ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int countNonIncreasing ( int arr [ ] , int n ) { int cnt = 0 ; int len = 1 ; for ( int i = 0 ; i < n - 1 ; ++ i ) { if ( arr [ i + 1 ] <= arr [ i ] ) len ++ ; else { cnt += ( ( ( len + 1 ) * len ) / 2 ) ; len = 1 ; } } if ( len > 1 ) cnt += ( ( ( len + 1 ) * len ) / 2 ) ; return cnt ; } int main ( ) { int arr [ ] = { 5 , 2 , 3 , 7 , 1 , 1 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << countNonIncreasing ( arr , n ) ; return 0 ; } |
Minimum array elements to be changed to make Recaman 's sequence | C ++ implementation of the approach ; First term of the sequence is always 0 ; Fill remaining terms using recursive formula ; If arr [ i - 1 ] - i is negative or already exists ; Function that returns minimum changes required ; Set to store first n Recaman numbers ; Generate and store first n Recaman numbers ; Insert first n Recaman numbers to set ; If current element of the array is present in the set ; Return the remaining number of elements in the set ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int recamanGenerator ( int arr [ ] , int n ) { arr [ 0 ] = 0 ; for ( int i = 1 ; i <= n ; i ++ ) { int temp = arr [ i - 1 ] - i ; int j ; for ( j = 0 ; j < i ; j ++ ) { if ( ( arr [ j ] == temp ) temp < 0 ) { temp = arr [ i - 1 ] + i ; break ; } } arr [ i ] = temp ; } } int recamanArray ( int arr [ ] , int n ) { unordered_set < int > s ; int recaman [ n ] ; recamanGenerator ( recaman , n ) ; for ( int i = 0 ; i < n ; i ++ ) s . insert ( recaman [ i ] ) ; for ( int i = 0 ; i < n ; i ++ ) { auto it = s . find ( arr [ i ] ) ; if ( it != s . end ( ) ) s . erase ( it ) ; } return s . size ( ) ; } int main ( ) { int arr [ ] = { 7 , 11 , 20 , 4 , 2 , 1 , 8 , 6 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; cout << recamanArray ( arr , n ) ; return 0 ; } |
Check if product of array containing prime numbers is a perfect square | C ++ implementation of the approach ; Function that returns true if the product of all the array elements is a perfect square ; Update the frequencies of all the array elements ; If frequency of some element in the array is odd ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; bool isPerfectSquare ( int arr [ ] , int n ) { unordered_map < int , int > umap ; for ( int i = 0 ; i < n ; i ++ ) umap [ arr [ i ] ] ++ ; unordered_map < int , int > :: iterator itr ; for ( itr = umap . begin ( ) ; itr != umap . end ( ) ; itr ++ ) if ( ( itr -> second ) % 2 == 1 ) return false ; return true ; } int main ( ) { int arr [ ] = { 2 , 2 , 7 , 7 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; if ( isPerfectSquare ( arr , n ) ) cout << " Yes " ; else cout << " No " ; return 0 ; } |
Find the good permutation of first N natural numbers | C ++ implementation of the approach ; Function to print the good permutation of first N natural numbers ; If n is odd ; Otherwise ; Driver code | #include <bits/stdc++.h> NEW_LINE using namespace std ; int printPermutation ( int n ) { if ( n % 2 != 0 ) cout << -1 ; else for ( int i = 1 ; i <= n / 2 ; i ++ ) cout << 2 * i << " β " << 2 * i - 1 << " β " ; } int main ( ) { int n = 4 ; printPermutation ( n ) ; return 0 ; } |
Subsets and Splits