markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
4.3. Number Of Horizontal Gridpoints Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5. Key Properties --> Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required: TRUE    Type: STRING    Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.2. Target Is Required: TRUE    Type: STRING    Cardinality: 1.1 What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.3. Simulations Is Required: TRUE    Type: STRING    Cardinality: 1.1 *Which simulations had tuning applied, e.g. all, not historical, only pi-control? *
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.4. Metrics Used Is Required: TRUE    Type: STRING    Cardinality: 1.1 List any observed metrics used in tuning model/parameters
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
5.5. Variables Is Required: FALSE    Type: STRING    Cardinality: 0.1 Which variables were changed during the tuning process?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
6. Key Properties --> Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required: FALSE    Type: ENUM    Cardinality: 0.N What values were specificed for the following parameters if used?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
6.2. Additional Parameters Is Required: FALSE    Type: STRING    Cardinality: 0.N If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7. Key Properties --> Assumptions Assumptions made in the sea ice model 7.1. Description Is Required: TRUE    Type: STRING    Cardinality: 1.N General overview description of any key assumptions made in this model.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.2. On Diagnostic Variables Is Required: TRUE    Type: STRING    Cardinality: 1.N Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
7.3. Missing Processes Is Required: TRUE    Type: STRING    Cardinality: 1.N List any key processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8. Key Properties --> Conservation Conservation in the sea ice component 8.1. Description Is Required: TRUE    Type: STRING    Cardinality: 1.1 Provide a general description of conservation methodology.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.2. Properties Is Required: TRUE    Type: ENUM    Cardinality: 1.N Properties conserved in sea ice by the numerical schemes.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.3. Budget Is Required: TRUE    Type: STRING    Cardinality: 1.1 For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.4. Was Flux Correction Used Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Does conservation involved flux correction?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
8.5. Corrected Conserved Prognostic Variables Is Required: TRUE    Type: STRING    Cardinality: 1.1 List any variables which are conserved by more than the numerical scheme alone.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9. Grid --> Discretisation --> Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Grid on which sea ice is horizontal discretised?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9.2. Grid Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the type of sea ice grid?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9.3. Scheme Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the advection scheme?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9.4. Thermodynamics Time Step Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 What is the time step in the sea ice model thermodynamic component in seconds.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9.5. Dynamics Time Step Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 What is the time step in the sea ice model dynamic component in seconds.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
9.6. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Specify any additional horizontal discretisation details.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10. Grid --> Discretisation --> Vertical Sea ice vertical properties 10.1. Layering Is Required: TRUE    Type: ENUM    Cardinality: 1.N What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.2. Number Of Layers Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 If using multi-layers specify how many.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
10.3. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Specify any additional vertical grid details.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11. Grid --> Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Set to true if the sea ice model has multiple sea ice categories.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.2. Number Of Categories Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 If using sea ice categories specify how many.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.3. Category Limits Is Required: TRUE    Type: STRING    Cardinality: 1.1 If using sea ice categories specify each of the category limits.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.4. Ice Thickness Distribution Scheme Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the sea ice thickness distribution scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
11.5. Other Is Required: FALSE    Type: STRING    Cardinality: 0.1 If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12. Grid --> Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Is snow on ice represented in this model?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12.2. Number Of Snow Levels Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Number of vertical levels of snow on ice?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12.3. Snow Fraction Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe how the snow fraction on sea ice is determined
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
12.4. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Specify any additional details related to snow on ice.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the method of horizontal advection of sea ice?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.2. Transport In Thickness Space Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the method of sea ice transport in thickness space (i.e. in thickness categories)?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.3. Ice Strength Formulation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Which method of sea ice strength formulation is used?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.4. Redistribution Is Required: TRUE    Type: ENUM    Cardinality: 1.N Which processes can redistribute sea ice (including thickness)?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
13.5. Rheology Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Rheology, what is the ice deformation formulation?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14. Thermodynamics --> Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the energy formulation?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.2. Thermal Conductivity Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What type of thermal conductivity is used?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.3. Heat Diffusion Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the method of heat diffusion?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.4. Basal Heat Flux Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Method by which basal ocean heat flux is handled?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.5. Fixed Salinity Value Is Required: FALSE    Type: FLOAT    Cardinality: 0.1 If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.6. Heat Content Of Precipitation Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the method by which the heat content of precipitation is handled.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
14.7. Precipitation Effects On Salinity Is Required: FALSE    Type: STRING    Cardinality: 0.1 If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
15. Thermodynamics --> Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the method by which new sea ice is formed in open water.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
15.2. Ice Vertical Growth And Melt Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the method that governs the vertical growth and melt of sea ice.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
15.3. Ice Lateral Melting Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the method of sea ice lateral melting?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
15.4. Ice Surface Sublimation Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the method that governs sea ice surface sublimation.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
15.5. Frazil Ice Is Required: TRUE    Type: STRING    Cardinality: 1.1 Describe the method of frazil ice formation.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
16. Thermodynamics --> Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
16.2. Sea Ice Salinity Thermal Impacts Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Does sea ice salinity impact the thermal properties of sea ice?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
17. Thermodynamics --> Salt --> Mass Transport Mass transport of salt 17.1. Salinity Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 How is salinity determined in the mass transport of salt calculation?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
17.2. Constant Salinity Value Is Required: FALSE    Type: FLOAT    Cardinality: 0.1 If using a constant salinity value specify this value in PSU?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
17.3. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Describe the salinity profile used.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
18. Thermodynamics --> Salt --> Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 How is salinity determined in the thermodynamic calculation?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
18.2. Constant Salinity Value Is Required: FALSE    Type: FLOAT    Cardinality: 0.1 If using a constant salinity value specify this value in PSU?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
18.3. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Describe the salinity profile used.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
19. Thermodynamics --> Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 How is the sea ice thickness distribution represented?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
20. Thermodynamics --> Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 How is the sea ice floe-size represented?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
20.2. Additional Details Is Required: FALSE    Type: STRING    Cardinality: 0.1 Please provide further details on any parameterisation of floe-size.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
21. Thermodynamics --> Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Are melt ponds included in the sea ice model?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
21.2. Formulation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What method of melt pond formulation is used?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
21.3. Impacts Is Required: TRUE    Type: ENUM    Cardinality: 1.N What do melt ponds have an impact on?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22. Thermodynamics --> Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.N Set to True if the sea ice model has a snow aging scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22.2. Snow Aging Scheme Is Required: FALSE    Type: STRING    Cardinality: 0.1 Describe the snow aging scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22.3. Has Snow Ice Formation Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.N Set to True if the sea ice model has snow ice formation.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22.4. Snow Ice Formation Scheme Is Required: FALSE    Type: STRING    Cardinality: 0.1 Describe the snow ice formation scheme.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22.5. Redistribution Is Required: TRUE    Type: STRING    Cardinality: 1.1 What is the impact of ridging on snow cover?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
22.6. Heat Diffusion Is Required: TRUE    Type: ENUM    Cardinality: 1.1 What is the heat diffusion through snow methodology in sea ice thermodynamics?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Method used to handle surface albedo.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
23.2. Ice Radiation Transmission Is Required: TRUE    Type: ENUM    Cardinality: 1.N Method by which solar radiation through sea ice is handled.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
First, find the relative maxima of the spectrum.
from scipy.signal import argrelextrema maxes = argrelextrema(spectrum, np.greater, order=2) print maxes[0] for x in maxes[0]: plt.axvline(x) plt.plot(spectrum, color='r')
peak-detection.ipynb
greenca/diy-spectrometer
mit
This clearly gives us way too many local maxima. So, next, we try the find_peaks_cwt function from scipy.signal, which uses wavelets.
from scipy.signal import find_peaks_cwt cwt_peaks = find_peaks_cwt(spectrum, np.arange(10,15)) print cwt_peaks for x in cwt_peaks: plt.axvline(x) plt.plot(spectrum, color='r')
peak-detection.ipynb
greenca/diy-spectrometer
mit
This is better, in that we lost all the spurious values, but it doesn't match that well, and we don't get the double-peak (near 150) anymore. https://gist.github.com/endolith/250860 has a python translation of a matlab peak-detection script. Downloaded as peakdetect.py
import peakdetect peaks, valleys = peakdetect.peakdet(spectrum, 3) print peaks for index, val in peaks: plt.axvline(index) plt.plot(spectrum, color='r')
peak-detection.ipynb
greenca/diy-spectrometer
mit
This is a pretty decent result, which we should be able to use for matching with known spectra. Calibration The sample spectrum above is for a fluorescent lamp. This is a known spectrum, that we can use for calibration. Here is a labelled plot of the spectrum: "Fluorescent lighting spectrum peaks labelled". Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Fluorescent_lighting_spectrum_peaks_labelled.gif#/media/File:Fluorescent_lighting_spectrum_peaks_labelled.gif Visually, this appears to match pretty well with our spectrum. We calibrate the x-axis by matching two points with the known spectrum. Let's use the strongest two peaks: 5, at 546.5 nm (from Mercury) and 12, at 611.6 nm (from Europium). In our spectrum, peak 4 has a higher intensity than peak 12, but we'll use peak 12 anyway, because peaks 4 and 5 are too close together to get an accurate calibration.
intensities = sorted([intensity for index, intensity in peaks]) peak5 = [index for index, intensity in peaks if intensity == intensities[-1]][0] peak12 = [index for index, intensity in peaks if intensity == intensities[-3]][0] print peak5, peak12
peak-detection.ipynb
greenca/diy-spectrometer
mit
Linear scale between index numbers and wavelengths: <br>wavelength = m*index + b
peak5_wl = 546.5 peak12_wl = 611.6 m = (peak12_wl - peak5_wl)/(peak12 - peak5) b = peak5_wl - m*peak5 print m, b wavelengths = [m*index + b for index in range(len(spectrum))] plt.plot(wavelengths, spectrum) plt.xlabel('Wavelength (nm)') plt.ylabel('Intensity')
peak-detection.ipynb
greenca/diy-spectrometer
mit
2. Download Associations, if necessary
# Get ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz from goatools.base import download_ncbi_associations gene2go = download_ncbi_associations()
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
3. Read associations Normally, when reading associations, GeneID2GOs are returned. We get the reverse, GO2GeneIDs, by adding the key-word arg, "go2geneids=True" to the call to read_ncbi_gene2go.
from goatools.anno.genetogo_reader import Gene2GoReader objanno = Gene2GoReader("gene2go", taxids=[9606]) go2geneids_human = objanno.get_id2gos(namespace='BP', go2geneids=True) print("{N:} GO terms associated with human NCBI Entrez GeneIDs".format(N=len(go2geneids_human)))
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
4. Initialize Gene-Search Helper
from goatools.go_search import GoSearch srchhelp = GoSearch("go-basic.obo", go2items=go2geneids_human)
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
5. Find human all genes related to "cell cycle" 5a. Prepare "cell cycle" text searches We will need to search for both cell cycle and cell cycle-independent. Those GOs that contain the text cell cycle-independent are specifically not related to cell cycle and must be removed from our list of cell cycle GO terms.
import re # Compile search pattern for 'cell cycle' cell_cycle_all = re.compile(r'cell cycle', flags=re.IGNORECASE) cell_cycle_not = re.compile(r'cell cycle.independent', flags=re.IGNORECASE)
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
5b. Find NCBI Entrez GeneIDs related to "cell cycle"
# Find ALL GOs and GeneIDs associated with 'cell cycle'. # Details of search are written to a log file fout_allgos = "cell_cycle_gos_human.log" with open(fout_allgos, "w") as log: # Search for 'cell cycle' in GO terms gos_cc_all = srchhelp.get_matching_gos(cell_cycle_all, prt=log) # Find any GOs matching 'cell cycle-independent' (e.g., "lysosome") gos_no_cc = srchhelp.get_matching_gos(cell_cycle_not, gos=gos_cc_all, prt=log) # Remove GO terms that are not "cell cycle" GOs gos = gos_cc_all.difference(gos_no_cc) # Add children GOs of cell cycle GOs gos_all = srchhelp.add_children_gos(gos) # Get Entrez GeneIDs for cell cycle GOs geneids = srchhelp.get_items(gos_all) print("{N} human NCBI Entrez GeneIDs related to 'cell cycle' found.".format(N=len(geneids)))
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
6. Print the "cell cycle" protein-coding gene Symbols In this example, the background is all human protein-codinge genes. Follow the instructions in the background_genes_ncbi notebook to download a set of background population genes from NCBI.
from genes_ncbi_9606_proteincoding import GENEID2NT for geneid in geneids: # geneids associated with cell-cycle nt = GENEID2NT.get(geneid, None) if nt is not None: print("{Symbol:<10} {desc}".format( Symbol = nt.Symbol, desc = nt.description))
notebooks/cell_cycle.ipynb
tanghaibao/goatools
bsd-2-clause
First checking the avg RMSE for Linear Regression
clf = LinearRegression() scores = cross_val_score(clf, X_, y, cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean())
Baseline 2.ipynb
AkshanshChahal/BTP
mit
Epsilon-Support Vector Regression (SVR) RBF Kernel
# 5 Fold CV, to calculate avg RMSE clf = SVR(C=500000.0, epsilon=0.1, kernel='rbf', gamma=0.0008) scores = cross_val_score(clf, X_, y.values.ravel(), cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean()) # Just the 4 original features (no soil data) X_old = X[["X1_zscore", "X2_zscore", "X3_zscore", "X4_zscore"]] # 5 Fold CV, to calculate avg RMSE clf = SVR(C=1000.0, epsilon=0.1, kernel='rbf', gamma=0.027) scores = cross_val_score(clf, X_old, y.values.ravel(), cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean())
Baseline 2.ipynb
AkshanshChahal/BTP
mit
SVR : 927 LR : 1018 SVR (RBF kernel) works better than Linear Regression. Also, the soil feature, for now, does more harm than good (Phosphorous content) Lets check the importance of Rain Data
# Just 2 features (no rain data) X_nr = X[["X1_zscore", "X2_zscore"]] # 5 Fold CV, to calculate avg RMSE clf = SVR(C=1000.0, epsilon=0.1, kernel='rbf', gamma=0.027) scores = cross_val_score(clf, X_nr, y.values.ravel(), cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean())
Baseline 2.ipynb
AkshanshChahal/BTP
mit
The Rain data does helps us Lets try for SVR with other kernels ... Degree 3 Polynomial
# 5 Fold CV, to calculate avg RMSE clf = SVR(kernel='poly', gamma='auto', degree=3, coef0=2) scores = cross_val_score(clf, X_old, y.values.ravel(), cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean())
Baseline 2.ipynb
AkshanshChahal/BTP
mit
Polynomial Kernel also does better than Linear Regression Degree 4 Polynomial
# 5 Fold CV, to calculate avg RMSE clf = SVR(kernel='poly', gamma='auto', degree=4, coef0=2) scores = cross_val_score(clf, X_old, y.values.ravel(), cv=5, scoring='neg_mean_squared_error') for i in range(0,5): scores[i] = sqrt(-1*scores[i]) print(scores) avg_rmse = scores.mean() print("\n\nAvg RMSE is ",scores.mean())
Baseline 2.ipynb
AkshanshChahal/BTP
mit
To get the monthly traffic data on English Wikipedia from January 2008 through September 2017, we need to use 2 API endpoints, the Pagecounts API and the Pageviews API. The Pagecounts API provides monthy desktop and mobile traffic data from January 2008 through July 2016, and the Pageviews API provides monthy desktop, mobile-web, and mobile-app traffic data from July 2015 through September 2017. Once the user finishes the parameter settings for the API request, the traffic data will be returned in JSON format. The codes below will get you all pagecounts for English Wikipedia accessed through desktop from January 2008 through July 2016.
# Collect desktop traffic data from January 2008 through July 2016 using the Pagecounts API endpoint_pagecounts = 'https://wikimedia.org/api/rest_v1/metrics/legacy/pagecounts/aggregate/{project}/{access}/{granularity}/{start}/{end}' params_pc_desktop = { 'project' : 'en.wikipedia.org', 'access' : 'desktop-site', 'granularity' : 'monthly', 'start' : '2008010100', 'end' : '2016080100'#use the first day of the following month to ensure a full month of data is collected } api_call = requests.get(endpoint_pagecounts.format(**params_pc_desktop)) response_pc_desktop = api_call.json() with open('pagecounts_desktop-site_200801-201607.json', 'w') as outfile: json.dump(response_pc_desktop, outfile)
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
The codes below will get you all pagecounts for English Wikipedia accessed through mobile from January 2008 through July 2016.
# Collect mobile traffic data from January 2008 through July 2016 using the Pagecounts API endpoint_pagecounts = 'https://wikimedia.org/api/rest_v1/metrics/legacy/pagecounts/aggregate/{project}/{access}/{granularity}/{start}/{end}' params_pc_mobile = { 'project' : 'en.wikipedia.org', 'access' : 'mobile-site', 'granularity' : 'monthly', 'start' : '2008010100', 'end' : '2016080100' } api_call = requests.get(endpoint_pagecounts.format(**params_pc_mobile)) response_pc_mobile = api_call.json() with open('pagecounts_mobile-site_200801-201607.json', 'w') as outfile: json.dump(response_pc_mobile, outfile)
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
The codes below will get you all pageviews for English Wikipedia accessed through desktop from July 2015 through September 2017. Note that the data doesn't count traffic by web crawlers or spiders.
# Collect desktop traffic data from July 2015 through September 2017 using the Pageviews API endPoint_pageviews = 'https://wikimedia.org/api/rest_v1/metrics/pageviews/aggregate/{project}/{access}/{agent}/{granularity}/{start}/{end}' headers = {'User-Agent' : 'https://github.com/HWNi', 'From' : '[email protected]'} params_pv_desktop = { 'project' : 'en.wikipedia.org', 'access' : 'desktop', 'agent' : 'user', 'granularity' : 'monthly', 'start' : '2015070100', 'end' : '2017100100' } api_call = requests.get(endPoint_pageviews.format(**params_pv_desktop)) response_pv_desktop = api_call.json() with open('pageviews_desktop_201507-201709.json', 'w') as outfile: json.dump(response_pv_desktop, outfile)
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
The codes below will get you all pageviews for English Wikipedia accessed through mobile website from July 2015 through September 2017. Again, note that the data doesn't count traffic by web crawlers or spiders.
# Collect mobile web traffic data from July 2015 through September 2017 using the Pageviews API endPoint_pageviews = 'https://wikimedia.org/api/rest_v1/metrics/pageviews/aggregate/{project}/{access}/{agent}/{granularity}/{start}/{end}' headers = {'User-Agent' : 'https://github.com/HWNi', 'From' : '[email protected]'} params_pv_mobile_web = { 'project' : 'en.wikipedia.org', 'access' : 'mobile-web', 'agent' : 'user', 'granularity' : 'monthly', 'start' : '2015070100', 'end' : '2017100100' } api_call = requests.get(endPoint_pageviews.format(**params_pv_mobile_web)) response_pv_mobile_web = api_call.json() with open('pageviews_mobile-web_201507-201709.json', 'w') as outfile: json.dump(response_pv_mobile_web, outfile)
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
The codes below will get you all pageviews for English Wikipedia accessed through mobile app from July 2015 through September 2017. Again, note that the data doesn't count traffic by web crawlers or spiders.
# Collect mobile app traffic data from July 2015 through September 2017 using the Pageviews API endPoint_pageviews = 'https://wikimedia.org/api/rest_v1/metrics/pageviews/aggregate/{project}/{access}/{agent}/{granularity}/{start}/{end}' headers = {'User-Agent' : 'https://github.com/HWNi', 'From' : '[email protected]'} params_pv_mobile_app = { 'project' : 'en.wikipedia.org', 'access' : 'mobile-app', 'agent' : 'user', 'granularity' : 'monthly', 'start' : '2015070100', 'end' : '2017100100' } api_call = requests.get(endPoint_pageviews.format(**params_pv_mobile_app)) response_pv_mobile_app = api_call.json() with open('pageviews_mobile-app_201507-201709.json', 'w') as outfile: json.dump(response_pv_mobile_app, outfile)
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
Step 2: Data processing Now, we have 5 JSON files containing the traffic data we're interested in. In this step, we first iterate these 5 JSON files one by one and combine the data into a Python dictionary. Eventually, the key of the dictionary will be the list of time stamps (from January 2008 to September 2017). For each key (time stamp), we will append a list which contains 5 values: pagecounts accessed through desktop, pagecounts accessed through mobile, pageviews accessed through desktop, pageviews accessed through mobile web, and pageviews accessed through mobile app.
data_cleaned = {} for item in response_pc_desktop['items']: timeStamp = item['timestamp'] data_cleaned[timeStamp] = [item['count'], 0, 0, 0, 0] for item in response_pc_mobile['items']: timeStamp = item['timestamp'] if timeStamp in data_cleaned: data_cleaned[timeStamp][1] = item['count'] else: data_cleaned[timeStamp] = [0, item['count'], 0, 0, 0] for item in response_pv_desktop['items']: timeStamp = item['timestamp'] if timeStamp in data_cleaned: data_cleaned[timeStamp][2] = item['views'] else: data_cleaned[timeStamp] = [0, 0, item['views'], 0, 0] for item in response_pv_mobile_web['items']: timeStamp = item['timestamp'] if timeStamp in data_cleaned: data_cleaned[timeStamp][3] = item['views'] else: data_cleaned[timeStamp] = [0, 0, 0, item['views'], 0] for item in response_pv_mobile_app['items']: timeStamp = item['timestamp'] if timeStamp in data_cleaned: data_cleaned[timeStamp][4] = item['views'] else: data_cleaned[timeStamp] = [0, 0, 0, 0, item['views']]
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
After we get the dictionary, we could convert it into a Pandas dataframe and save the dataframe to a csv file
df = pd.DataFrame.from_dict(data_cleaned, orient='index') df_result = pd.DataFrame df['timestamp'] = df.index df['year'] = [t[0:4] for t in df['timestamp']] df['month'] = [t[4:6] for t in df['timestamp']] df['pagecount_all_views'] = df[0] + df[1] df['pagecount_desktop_views'] = df[0] df['pagecount_mobile_views'] = df[1] df['pageview_all_views'] = df[2] + df[3] + df[4] df['pageview_desktop_views'] = df[2] df['pageview_mobile_views'] = df[3] + df[4] df = df.loc[:, 'year' : 'pageview_mobile_views'] df.to_csv('en-wikipedia_traffic_200801-201709.csv', index=False) df
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
Step 3: Analysis In the final step, we make a time series plot for the data we processed before. The X-axis of the plot will be a date range, and Y-axis of the plot will be the amount of traffic times 1 million(The author downscaled the traffic data by 1 million).
dateRange = pd.date_range('2008-01', '2017-10', freq='M') scale = 1e-6 sns.set_style("whitegrid") fig = plt.figure(figsize=(18, 12)) plt.plot(dateRange, df['pagecount_all_views'] * scale, linestyle = ':') plt.plot(dateRange, df['pagecount_desktop_views'] * scale) plt.plot(dateRange, df['pagecount_mobile_views'] * scale) plt.plot(dateRange, df['pageview_all_views'] * scale, linestyle = ':') plt.plot(dateRange, df['pagecount_desktop_views'] * scale) plt.plot(dateRange, df['pagecount_mobile_views'] * scale) plt.legend() plt.xlabel('Year') plt.ylabel('Amount of Traffic (* 1,000,000)') fig.savefig('en-wikipedia_traffic_200801-201709.jpg')
hcds-a1-data-curation.ipynb
HWNi/data-512-a1
mit
Play with some basic functions adapted from tide data functions Query Builder
def query_builder(start_dt, end_dt, station, offset= 1): """Function accepts: a start and end datetime string in the form 'YYYYMMDD mm:ss' which are <= 1 year apart, a station ID, and an offset. Function assembles a query parameters/arguments dict and returns an API query and the query dictionary (query_dict). The relevant base URL is the NCDC endpoint 'http://www.ncdc.noaa.gov/cdo-web/api/v2/data?'.""" import urllib # API endpoint base_url= 'http://www.ncdc.noaa.gov/cdo-web/api/v2/data?' # dict of NOAA query parameters/arguments query_dict = dict(startdate= start_dt, enddate= end_dt, stationid= station, offset= offset, datasetid= 'GHCND', limit= 1000) # encode arguments encoded_args = urllib.urlencode(query_dict) # query query = base_url + encoded_args # decode url % (reconvert reserved characters to utf8 string) query= urllib.unquote(query) # create and return query from base url and encoded arguments return query, query_dict query_1, query_dict= query_builder('2014-01-01', '2015-01-01', station= 'GHCND:USW00023174') print(query_1) query_2, query_dict= query_builder('2014-01-01', '2015-01-01', station= 'GHCND:USW00023174', offset= 1001) print(query_2)
NOAA_sandbox.ipynb
baumanab/noaa_requests
gpl-3.0
Offset Generator
def offsetter(response): """ Function accepts a restful query response (JSON) Function returns a dictionary of offsets to pull the entire query set where the set is limited to 1000 records per query. Function also returns a record count for use in validation. """ # get repeats and repeat range import math count= response['metadata']['resultset']['count'] repeats= math.ceil(count/1000.) repeat_range= range(int(repeats)) # get offsets dictionary offset= 1 offsets= [1] for item in repeat_range[1:]: offset += 1000 offsets.append(offset) # zip up the results and convert to dictionary offset_dict= dict(zip(repeat_range[1:], offsets[1:])) # the first call has been done already to get meta return offset_dict, count # for quality control
NOAA_sandbox.ipynb
baumanab/noaa_requests
gpl-3.0
Query Generator TODO refactor with a decorator make key an attribute that can be hidden
def execute_query(query): """ Function accepts an NOAA query for daily summaries for a specfic location and executes the query. Function returns a response (JSON) """ url = query # replace token with token provided by NOAA. Enter token as string headers = {'token': NOAA_Token_Here} # https://www.ncdc.noaa.gov/cdo-web/token response = requests.get(url, headers = headers) response = response.json() return response working_1= execute_query(query_1)['results'] working_2 = execute_query(query_2)['results']
NOAA_sandbox.ipynb
baumanab/noaa_requests
gpl-3.0