markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
25.2. Physical Representation Is Required: TRUE    Type: ENUM    Cardinality: 1.N Physical representation of cloud liquid droplets in the longwave radiation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
25.3. Optical Methods Is Required: TRUE    Type: ENUM    Cardinality: 1.N Optical methods applicable to cloud liquid droplets in the longwave radiation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
26. Radiation --> Longwave Cloud Inhomogeneity Cloud inhomogeneity in the longwave radiation scheme 26.1. Cloud Inhomogeneity Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Method for taking into account horizontal cloud inhomogeneity
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
27. Radiation --> Longwave Aerosols Longwave radiative properties of aerosols 27.1. General Interactions Is Required: TRUE    Type: ENUM    Cardinality: 1.N General longwave radiative interactions with aerosols
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
27.2. Physical Representation Is Required: TRUE    Type: ENUM    Cardinality: 1.N Physical representation of aerosols in the longwave radiation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
27.3. Optical Methods Is Required: TRUE    Type: ENUM    Cardinality: 1.N Optical methods applicable to aerosols in the longwave radiation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
28. Radiation --> Longwave Gases Longwave radiative properties of gases 28.1. General Interactions Is Required: TRUE    Type: ENUM    Cardinality: 1.N General longwave radiative interactions with gases
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
29. Turbulence Convection Atmosphere Convective Turbulence and Clouds 29.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of atmosphere convection and turbulence
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
30. Turbulence Convection --> Boundary Layer Turbulence Properties of the boundary layer turbulence scheme 30.1. Scheme Name Is Required: FALSE    Type: ENUM    Cardinality: 0.1 Boundary layer turbulence scheme name
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
30.2. Scheme Type Is Required: TRUE    Type: ENUM    Cardinality: 1.N Boundary layer turbulence scheme type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
30.3. Closure Order Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Boundary layer turbulence scheme closure order
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
30.4. Counter Gradient Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Uses boundary layer turbulence scheme counter gradient
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
31. Turbulence Convection --> Deep Convection Properties of the deep convection scheme 31.1. Scheme Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Deep convection scheme name
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
31.2. Scheme Type Is Required: TRUE    Type: ENUM    Cardinality: 1.N Deep convection scheme type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
31.3. Scheme Method Is Required: TRUE    Type: ENUM    Cardinality: 1.N Deep convection scheme method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
31.4. Processes Is Required: TRUE    Type: ENUM    Cardinality: 1.N Physical processes taken into account in the parameterisation of deep convection
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
31.5. Microphysics Is Required: FALSE    Type: ENUM    Cardinality: 0.N Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
32. Turbulence Convection --> Shallow Convection Properties of the shallow convection scheme 32.1. Scheme Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Shallow convection scheme name
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
32.2. Scheme Type Is Required: TRUE    Type: ENUM    Cardinality: 1.N shallow convection scheme type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
32.3. Scheme Method Is Required: TRUE    Type: ENUM    Cardinality: 1.1 shallow convection scheme method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
32.4. Processes Is Required: TRUE    Type: ENUM    Cardinality: 1.N Physical processes taken into account in the parameterisation of shallow convection
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
32.5. Microphysics Is Required: FALSE    Type: ENUM    Cardinality: 0.N Microphysics scheme for shallow convection
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
33. Microphysics Precipitation Large Scale Cloud Microphysics and Precipitation 33.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of large scale cloud microphysics and precipitation
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
34. Microphysics Precipitation --> Large Scale Precipitation Properties of the large scale precipitation scheme 34.1. Scheme Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Commonly used name of the large scale precipitation parameterisation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
34.2. Hydrometeors Is Required: TRUE    Type: ENUM    Cardinality: 1.N Precipitating hydrometeors taken into account in the large scale precipitation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
35. Microphysics Precipitation --> Large Scale Cloud Microphysics Properties of the large scale cloud microphysics scheme 35.1. Scheme Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Commonly used name of the microphysics parameterisation scheme used for large scale clouds.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
35.2. Processes Is Required: TRUE    Type: ENUM    Cardinality: 1.N Large scale cloud microphysics processes
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36. Cloud Scheme Characteristics of the cloud scheme 36.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of the atmosphere cloud scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.2. Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Commonly used name for the cloud scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.3. Atmos Coupling Is Required: FALSE    Type: ENUM    Cardinality: 0.N Atmosphere components that are linked to the cloud scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.4. Uses Separate Treatment Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Different cloud schemes for the different types of clouds (convective, stratiform and boundary layer)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.5. Processes Is Required: TRUE    Type: ENUM    Cardinality: 1.N Processes included in the cloud scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.6. Prognostic Scheme Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Is the cloud scheme a prognostic scheme?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.7. Diagnostic Scheme Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Is the cloud scheme a diagnostic scheme?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
36.8. Prognostic Variables Is Required: FALSE    Type: ENUM    Cardinality: 0.N List the prognostic variables used by the cloud scheme, if applicable.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
37. Cloud Scheme --> Optical Cloud Properties Optical cloud properties 37.1. Cloud Overlap Method Is Required: FALSE    Type: ENUM    Cardinality: 0.1 Method for taking into account overlapping of cloud layers
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
37.2. Cloud Inhomogeneity Is Required: FALSE    Type: STRING    Cardinality: 0.1 Method for taking into account cloud inhomogeneity
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
38. Cloud Scheme --> Sub Grid Scale Water Distribution Sub-grid scale water distribution 38.1. Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Sub-grid scale water distribution type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
38.2. Function Name Is Required: TRUE    Type: STRING    Cardinality: 1.1 Sub-grid scale water distribution function name
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
38.3. Function Order Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Sub-grid scale water distribution function type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
38.4. Convection Coupling Is Required: TRUE    Type: ENUM    Cardinality: 1.N Sub-grid scale water distribution coupling with convection
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
39. Cloud Scheme --> Sub Grid Scale Ice Distribution Sub-grid scale ice distribution 39.1. Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Sub-grid scale ice distribution type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
39.2. Function Name Is Required: TRUE    Type: STRING    Cardinality: 1.1 Sub-grid scale ice distribution function name
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
39.3. Function Order Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Sub-grid scale ice distribution function type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
39.4. Convection Coupling Is Required: TRUE    Type: ENUM    Cardinality: 1.N Sub-grid scale ice distribution coupling with convection
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
40. Observation Simulation Characteristics of observation simulation 40.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of observation simulator characteristics
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
41. Observation Simulation --> Isscp Attributes ISSCP Characteristics 41.1. Top Height Estimation Method Is Required: TRUE    Type: ENUM    Cardinality: 1.N Cloud simulator ISSCP top height estimation methodUo
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
41.2. Top Height Direction Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Cloud simulator ISSCP top height direction
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
42. Observation Simulation --> Cosp Attributes CFMIP Observational Simulator Package attributes 42.1. Run Configuration Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Cloud simulator COSP run configuration
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
42.2. Number Of Grid Points Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Cloud simulator COSP number of grid points
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
42.3. Number Of Sub Columns Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
42.4. Number Of Levels Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Cloud simulator COSP number of levels
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
43. Observation Simulation --> Radar Inputs Characteristics of the cloud radar simulator 43.1. Frequency Is Required: TRUE    Type: FLOAT    Cardinality: 1.1 Cloud simulator radar frequency (Hz)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
43.2. Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Cloud simulator radar type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
43.3. Gas Absorption Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Cloud simulator radar uses gas absorption
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
43.4. Effective Radius Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Cloud simulator radar uses effective radius
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
44. Observation Simulation --> Lidar Inputs Characteristics of the cloud lidar simulator 44.1. Ice Types Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Cloud simulator lidar ice type
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
44.2. Overlap Is Required: TRUE    Type: ENUM    Cardinality: 1.N Cloud simulator lidar overlap
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
45. Gravity Waves Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources. 45.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of gravity wave parameterisation in the atmosphere
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
45.2. Sponge Layer Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
45.3. Background Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Background wave distribution
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
45.4. Subgrid Scale Orography Is Required: TRUE    Type: ENUM    Cardinality: 1.N Subgrid scale orography effects taken into account.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
46. Gravity Waves --> Orographic Gravity Waves Gravity waves generated due to the presence of orography 46.1. Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Commonly used name for the orographic gravity wave scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
46.2. Source Mechanisms Is Required: TRUE    Type: ENUM    Cardinality: 1.N Orographic gravity wave source mechanisms
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
46.3. Calculation Method Is Required: TRUE    Type: ENUM    Cardinality: 1.N Orographic gravity wave calculation method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
46.4. Propagation Scheme Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Orographic gravity wave propogation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
46.5. Dissipation Scheme Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Orographic gravity wave dissipation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
47. Gravity Waves --> Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 47.1. Name Is Required: FALSE    Type: STRING    Cardinality: 0.1 Commonly used name for the non-orographic gravity wave scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
47.2. Source Mechanisms Is Required: TRUE    Type: ENUM    Cardinality: 1.N Non-orographic gravity wave source mechanisms
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
47.3. Calculation Method Is Required: TRUE    Type: ENUM    Cardinality: 1.N Non-orographic gravity wave calculation method
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
47.4. Propagation Scheme Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Non-orographic gravity wave propogation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
47.5. Dissipation Scheme Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Non-orographic gravity wave dissipation scheme
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
48. Solar Top of atmosphere solar insolation characteristics 48.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of solar insolation of the atmosphere
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
49. Solar --> Solar Pathways Pathways for solar forcing of the atmosphere 49.1. Pathways Is Required: TRUE    Type: ENUM    Cardinality: 1.N Pathways for the solar forcing of the atmosphere model domain
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
50. Solar --> Solar Constant Solar constant and top of atmosphere insolation characteristics 50.1. Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Time adaptation of the solar constant.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
50.2. Fixed Value Is Required: FALSE    Type: FLOAT    Cardinality: 0.1 If the solar constant is fixed, enter the value of the solar constant (W m-2).
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
50.3. Transient Characteristics Is Required: TRUE    Type: STRING    Cardinality: 1.1 solar constant transient characteristics (W m-2)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
51. Solar --> Orbital Parameters Orbital parameters and top of atmosphere insolation characteristics 51.1. Type Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Time adaptation of orbital parameters
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
51.2. Fixed Reference Date Is Required: TRUE    Type: INTEGER    Cardinality: 1.1 Reference date for fixed orbital parameters (yyyy)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
51.3. Transient Method Is Required: TRUE    Type: STRING    Cardinality: 1.1 Description of transient orbital parameters
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
51.4. Computation Method Is Required: TRUE    Type: ENUM    Cardinality: 1.1 Method used for computing orbital parameters.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
52. Solar --> Insolation Ozone Impact of solar insolation on stratospheric ozone 52.1. Solar Ozone Impact Is Required: TRUE    Type: BOOLEAN    Cardinality: 1.1 Does top of atmosphere insolation impact on stratospheric ozone?
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
53. Volcanos Characteristics of the implementation of volcanoes 53.1. Overview Is Required: TRUE    Type: STRING    Cardinality: 1.1 Overview description of the implementation of volcanic effects in the atmosphere
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
54. Volcanos --> Volcanoes Treatment Treatment of volcanoes in the atmosphere 54.1. Volcanoes Implementation Is Required: TRUE    Type: ENUM    Cardinality: 1.1 How volcanic effects are modeled in the atmosphere.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/test-institute-2/cmip6/models/sandbox-3/atmos.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
overwrite links, since v1.5.3 installation does not work properly due to https://github.com/JuliaLang/julia/issues/38411
if julia_version=='1.5.3': julia_version='1.6.0-rc1' ziplink64bit='https://julialang-s3.julialang.org/bin/winnt/x64/1.6/julia-1.6.0-rc1-win64.zip' md5link='https://julialang-s3.julialang.org/bin/checksums/julia-1.6.0-rc1.md5' sha256link='https://julialang-s3.julialang.org/bin/checksums/julia-1.6.0-rc1.sha256' print(julia_version) # download checksums g = request.urlopen(md5link) md5hashes = g.read().decode() g.close; g = request.urlopen(sha256link) sha256hashes = g.read().decode() g.close; # downloading julia (may take 1 minute or 2) if 'amd64' in sys.version.lower(): julia_zip=ziplink64bit.split("/")[-1] julia_url=ziplink64bit else: julia_zip=ziplink32bit.split("/")[-1] julia_url=ziplink32bit hashes=(re.findall(r"([0-9a-f]{32})\s"+julia_zip, md5hashes)[0] , re.findall(r"([0-9a-f]{64})\s+"+julia_zip, sha256hashes)[0]) julia_zip_fullpath = os.path.join(os.environ["WINPYDIRBASE"], "t", julia_zip) g = request.urlopen(julia_url) with io.open(julia_zip_fullpath, 'wb') as f: f.write(g.read()) g.close g = None #checking it's there assert os.path.isfile(julia_zip_fullpath) # checking the hashes import hashlib def give_hash(of_file, with_this): with io.open(julia_zip_fullpath, 'rb') as f: return with_this(f.read()).hexdigest() print (" "*12+"MD5"+" "*(32-12-3)+" "+" "*15+"SHA-256"+" "*(40-15-5)+"\n"+"-"*32+" "+"-"*64) print ("%s %s %s" % (give_hash(julia_zip_fullpath, hashlib.md5) , give_hash(julia_zip_fullpath, hashlib.sha256),julia_zip)) assert give_hash(julia_zip_fullpath, hashlib.md5) == hashes[0].lower() assert give_hash(julia_zip_fullpath, hashlib.sha256) == hashes[1].lower() # will be in env next time os.environ["JUPYTER"] = os.path.join(os.environ["WINPYDIR"],"Scripts","jupyter.exe") os.environ["JULIA_HOME"] = os.path.join(os.environ["WINPYDIRBASE"], "t", "julia-"+julia_version) os.environ["JULIA_EXE_PATH"] = os.path.join(os.environ["JULIA_HOME"], "bin") os.environ["JULIA_EXE"] = "julia.exe" os.environ["JULIA"] = os.path.join(os.environ["JULIA_EXE_PATH"],os.environ["JULIA_EXE"]) os.environ["JULIA_PKGDIR"] = os.path.join(os.environ["WINPYDIRBASE"],"settings",".julia") os.environ["JULIA_DEPOT_PATH"] = os.environ["JULIA_PKGDIR"] os.environ["JULIA_HISTORY"] = os.path.join(os.environ["JULIA_PKGDIR"],"logs","repl_history.jl") os.environ["CONDA_JL_HOME"] = os.path.join(os.environ["JULIA_HOME"], "conda", "3") # move JULIA_EXE_PATH to the beginning of PATH, since a julia installation may be present on the machine os.environ["PATH"] = os.environ["JULIA_EXE_PATH"] + ";" + os.environ["PATH"] if not os.path.isdir(os.environ["JULIA_PKGDIR"]): os.mkdir(os.environ["JULIA_PKGDIR"]) if not os.path.isdir(os.path.join(os.environ["JULIA_PKGDIR"],"logs")): os.mkdir(os.path.join(os.environ["JULIA_PKGDIR"],"logs")) if not os.path.isfile(os.environ["JULIA_HISTORY"]): open(os.environ["JULIA_HISTORY"], 'a').close() # create empty file # extract the zip archive import zipfile try: with zipfile.ZipFile(julia_zip_fullpath) as z: z.extractall(os.path.join(os.environ["WINPYDIRBASE"], "t")) print("Extracted all files") except: print("Invalid file") # delete zip file os.remove(julia_zip_fullpath)
docs/installing_julia_and_ijulia.ipynb
winpython/winpython_afterdoc
mit
2 - Initialize Julia , IJulia, and make them link to winpython
# connecting Julia to WinPython (only once, or everytime you move things) # see the Windows terminal window for the detailed status. This may take # a minute or two. import julia julia.install() %load_ext julia.magic info = julia.juliainfo.JuliaInfo.load() print(info.julia) print(info.sysimage) print(info.version_raw) from julia.api import Julia jl = Julia(compiled_modules=False) # sanity check assert jl.eval("1+2") == 3
docs/installing_julia_and_ijulia.ipynb
winpython/winpython_afterdoc
mit
Print julia's versioninfo() The environment should point to the usb drive and not to C:\ (your local installation of julia maybe...)
jl.eval("using InteractiveUtils") jl.eval('file = open("julia_versioninfo.txt","w")') jl.eval("versioninfo(file,verbose=false)") jl.eval("close(file)") with open('julia_versioninfo.txt', 'r') as f: print(f.read()) os.remove('julia_versioninfo.txt')
docs/installing_julia_and_ijulia.ipynb
winpython/winpython_afterdoc
mit
Install julia Packages
%%julia using Pkg Pkg.instantiate() Pkg.update() %%julia # add useful packages. Again, this may take a while... Pkg.add("IJulia") Pkg.add("Plots") Pkg.add("Interact") Pkg.add("Compose") Pkg.add("SymPy") using Compose using SymPy using IJulia using Plots
docs/installing_julia_and_ijulia.ipynb
winpython/winpython_afterdoc
mit
Fix the kernel.json to allow arbitrary drive letters and modify the env.bat the path to kernel.jl is hardcoded in the kernel.json file this will cause trouble, if the drive letter of the usb drive changes use relative paths instead rewrite kernel.json and delete the one created from IJulia.jl Package
kernel_path = os.path.join(os.environ["WINPYDIRBASE"], "settings", "kernels", "julia-"+julia_version[0:3]) assert os.path.isdir(kernel_path) with open(os.path.join(kernel_path,"kernel.json"), 'r') as f: kernel_str = f.read() new_kernel_str = kernel_str.replace(os.environ["WINPYDIRBASE"].replace("\\","\\\\"),"{prefix}\\\\..") print(new_kernel_str) with open(os.path.join(kernel_path,"kernel.json"), 'w') as f: f.write(new_kernel_str) # add JULIA env variables to env.bat inp_str = r""" rem ****************** rem handle Julia {0} if included rem ****************** if not exist "%WINPYDIRBASE%\t\julia-{0}\bin" goto julia_bad_{0} set JULIA_PKGDIR=%WINPYDIRBASE%\settings\.julia set JULIA_DEPOT_PATH=%JULIA_PKGDIR% set JULIA_EXE=julia.exe set JULIA_HOME=%WINPYDIRBASE%\t\julia-{0} set JULIA_HISTORY=%JULIA_PKGDIR%\logs\repl_history.jl :julia_bad_{0} """.format(julia_version) # append to env.bat with open(os.path.join(os.environ["WINPYDIRBASE"],"scripts","env.bat"), 'a') as file : file.write(inp_str)
docs/installing_julia_and_ijulia.ipynb
winpython/winpython_afterdoc
mit
Introduction Machine learning literature makes heavy use of probabilistic graphical models and bayesian statistics. In fact, state of the art (SOTA) architectures, such as [variational autoencoders][vae-blog] (VAE) or [generative adversarial networks][gan-blog] (GAN), are intrinsically stochastic by nature. To wholesomely understand research in this field not only do we need a broad knowledge of mathematics, probability, and optimization but we somehow need intuition about how these concepts are applied to real world problems. For example, one of the most common applications of deep learning techniques is vision. We may want to classify images or generate new ones. Most SOTA techniques pose these problems in a probabilistic framework. We frequently see things like $p(\mathbf{x}|\mathbf{z})$ where $\mathbf{x}$ is an image and $\mathbf{z}$ is a latent variable. What do we mean by the probability of an image? What is a latent variable, and why is it necessary[^Bishop2006] to pose the problems this way? Short answer, it is necessary due to the inherent uncertainty of our universe. In this case, uncertainty in image acquisition can be introduced via many sources, such as the recording apparatus, the finite precision of our measurements, as well as the intrinsic stochasticity of the process being measured. Perhaps the most important source of uncertainty we will consider is due to there being sources of variability that are themselves unobserved. Probability theory provides us with a framework to reason in the presence of uncertainty and information theory allows us to quantify uncertainty. As we elluded earlier the field of machine learning makes heavy use of both, and this is no coincidence. Representations How do we describe a face? The word "face" is a symbol and this symbol means different things to different people. Yet, there is enough commonality between our interpretations that we are able to effectively communicate with one another using the word. How is that? What are the underlying features of faces that we all hold common? Why is a simple smiley face clip art so obviously perceived as a face? To make it more concrete, why are two simple ellipses decorated underneath by a short curve so clearly a face, while an eye lid, lower lip, one ear and a nostril, not? Insert Image of Faces Left: Most would likely agree, this is clearly a face. Middle: With nearly all of the details removed, a mere two circles and curve are enough to create what the author still recognizes as a face. Right: Does this look like a face to you? An ear, nostril, eyelid, and lip do not seem to convey a face as clearly as the eyes and the mouth do. We will quantify this demonstration shortly. Features, or representations, are built on the idea that characteristics of the symbol "face" are not a property of any one face. Rather, they only arise from the myriad of things we use the symbol to represent. In other words, a particular face is not ascribed meaning by the word "face" - the word "face" derives meaning from the many faces it represents. This suggests that facial characteristics can be described through the statistical properties of all faces. Loosely speaking, these underlying statistical characteristics are what the machine learning field often calls latent variables. Probability of an Image Most images are contaminated with noise that must be addressed. At the highest level, we have noise being added to the data by the imaging device. The next level of uncertainty comes as a consequence of discretization. Images in reality are continuous but in the process of imaging we only measure certain points along the face. Consider for example a military satellite tracking a vehicle. If one wishes to predict the future location of the van, the prediction is limited to be within one of the discrete cells that make up its measurements. However, the true location of the van could be anywhere within that grid cell. There is also intrinsic stochasticity at the atomic level that we ignore. The fluctuations taking place at that scale are assumed to be averaged out in our observations. The unobserved sources of variability will be our primary focus. Before we address that, let us lay down some preliminary concepts. We are going to assume that there exists some true unknown process that determines what faces look like. A dataset of faces can then be considered as a sample of this process at various points throughout its life. This suggests that these snapshots are a outputs of the underlying data generating process. Considering the many sources of uncertainty outlined above, it is natural to describe this process as a probability distribution. There will be many ways to interpret the data as a probability, but we will begin by considering any one image to be the result of a data generating distribution, $P_{data}(\mathbf{x})$. Here $\mathbf{x}$ is considered to be an image of a face with $n$ pixels. So $P_{data}$ is a joint distribution over each pixel of the frame with a probability density function (pdf), $p_{data}(x_1,x_2,\dots,x_n)$. To build intuition about what $p_{data}(\mathbf{x})$ is and how it relates to the assumed data generating process, we will explore a simple example. Take an image with only 2 pixels... [$x_1$,$x_2$] where both $x_1$ and $x_2$ are in [0,1]. Each image can be considered as a two dimensional point, in $\mathbb{R}^2$. All possible images would occupy a square in the 2 dimensional plane. An example of what this might look like can be seen in Figure \ref{fig:images_in_2dspace} on page \pageref{fig:images_in_2dspace}. Any one point inside the unit square would represent an image. For example the image associated with the point $(0.25,0.85)$ is shown below.
x1 = np.random.uniform(size=500) x2 = np.random.uniform(size=500) fig = plt.figure(); ax = fig.add_subplot(1,1,1); ax.scatter(x1,x2, edgecolor='black', s=80); ax.grid(); ax.set_axisbelow(True); ax.set_xlim(-0.25,1.25); ax.set_ylim(-0.25,1.25) ax.set_xlabel('Pixel 2'); ax.set_ylabel('Pixel 1'); plt.savefig('images_in_2dspace.pdf')
mpfi/probability blog post.ipynb
mathnathan/notebooks
mit
Any one point inside the unit square would represent an image. For example the image associated with the point $(0.25,0.85)$ is shown below.
im = [(0.25, 0.85)] plt.imshow(im, cmap='gray',vmin=0,vmax=1) plt.tick_params( axis='both', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off left='off', right='off' ) plt.xticks([]) plt.yticks([]) plt.xlabel('Pixel 1 = 0.25 Pixel 2 = 0.85') plt.savefig('sample_2dspace_image.pdf')
mpfi/probability blog post.ipynb
mathnathan/notebooks
mit
Now consider the case where there is some process correlating the two variables. This would be similar to their being some rules behind the structure of faces. We know, that this must be the case because if it weren't then faces would be created randomly and we would not see the patterns that was do. In this case, the pixels would be correlated in some manner due to the mechanism driving the construction of faces. In this simple case, let's consider a direct correlation of the form $x_1 = \frac{1}{2} \cos(2\pi x_2)+\frac{1}{2}+\epsilon$ where $\epsilon$ is a noise term coming from a low variability normal distribution $\epsilon \sim N(0,\frac{1}{10})$. We see in Figure \ref{fig:structured_images_in_2dspace} on page \pageref{fig:structured_images_in_2dspace} that in this case, the images plotted in two dimensions resulting from this relationship form a distinct pattern.
x1 = lambda x2: 0.5*np.cos(2*np.pi*x2)+0.5 x2 = np.linspace(0,1,200) eps = np.random.normal(scale=0.1, size=200) fig = plt.figure(); ax = fig.add_subplot(1,1,1); ax.scatter(x2,x1(x2)+eps, edgecolor='black', s=80); ax.grid(); ax.set_axisbelow(True); ax.set_xlim(-0.25,1.25); ax.set_ylim(-0.25,1.25); plt.axes().set_aspect('equal') ax.set_xlabel('Pixel 2'); ax.set_ylabel('Pixel 1'); plt.savefig('structured_images_in_2dspace.pdf')
mpfi/probability blog post.ipynb
mathnathan/notebooks
mit
We will refer to the structure suggested by the two dimensional points as the 'manifold'. This is a common practice when analyzing images. A 28 by 28 dimensional image will be a point in 784 dimensional space. If we are examining images with structure, various images of the number 2 for example, then it turns out that these images will form a manifold in 784 dimensional space. In most cases, as is the case in our contrived example, this manifold exists in a lower dimensional space than that of the images themselves. The goal is to 'learn' this manifold. In our simple case we can describe the manifold as a function of only 1 variable $$f(t) = <t,\frac{1}{2} \cos(2\pi t)+\frac{1}{2}>$$ This is what we would call the underlying data generating process. In practice we usually describe the manifold in terms of a probability distribution. We will refer to the data generating distribution in our example as $p_{test}(x_1, x_2)$. Why did we choose a probability to describe the manifold created by the data generating process? How might this probability be interpreted? Learning the actual distribution turns out to be a difficult task. Here we will use a common non parametric technique for describing distributions, the histogram. Looking at a histogram of the images, or two dimensional points, will give us insight into the structure of the distribution from which they came. Notice here though that the histogram merely describes the distribution, we do not know what it is.
from matplotlib.colors import LogNorm x2 = np.random.uniform(size=100000) eps = np.random.normal(scale=0.1, size=100000) hist2d = plt.hist2d(x2,x1(x2)+eps, bins=50, norm=LogNorm()) plt.xlim(0.0,1.0); plt.ylim(-0.3,1.3); plt.axes().set_aspect('equal') plt.xlabel('Pixel 2'); plt.ylabel('Pixel 1') plt.colorbar(); plt.savefig('histogram_of_structured_images.pdf')
mpfi/probability blog post.ipynb
mathnathan/notebooks
mit
Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of sea ice model.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.)
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of prognostic variables in the sea ice component.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
3.2. Ocean Freezing Point Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant seawater freezing point, specify this value.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0
4.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.
# PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s)
notebooks/ec-earth-consortium/cmip6/models/ec-earth3-cc/seaice.ipynb
ES-DOC/esdoc-jupyterhub
gpl-3.0