File size: 35,092 Bytes
40b69ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db315c0
 
 
 
 
 
 
 
 
 
 
40b69ae
 
 
b2c7214
 
 
 
 
40b69ae
 
 
 
 
 
 
 
b2c7214
 
 
40b69ae
 
 
 
 
 
b2c7214
 
 
 
 
 
 
db315c0
 
 
 
 
 
 
 
 
 
 
 
b2c7214
 
 
40b69ae
b2c7214
 
 
40b69ae
b2c7214
40b69ae
 
 
b2c7214
 
 
 
 
 
 
40b69ae
b2c7214
 
 
 
 
 
 
 
 
 
 
 
40b69ae
b2c7214
 
 
 
 
40b69ae
b2c7214
40b69ae
b2c7214
 
 
 
40b69ae
db315c0
40b69ae
 
56285d0
40b69ae
b2c7214
 
40b69ae
 
 
 
 
b2c7214
56285d0
40b69ae
b2c7214
 
 
 
 
 
56285d0
 
 
 
4165c0d
a65bd9d
b2c7214
56285d0
 
1bbd471
40b69ae
1bbd471
39412d5
21a36a2
56285d0
 
1bbd471
56285d0
1bbd471
 
 
 
 
 
40b69ae
39412d5
56285d0
 
b2c7214
56285d0
b2c7214
 
40b69ae
 
 
 
39412d5
56285d0
 
b2c7214
56285d0
b2c7214
21a36a2
40b69ae
b2c7214
21a36a2
4a95bcb
56285d0
 
 
 
 
 
 
 
40b69ae
 
 
 
21a36a2
56285d0
21a36a2
 
 
 
 
4a95bcb
b2c7214
 
 
 
 
 
 
 
 
21a36a2
 
 
56285d0
 
21a36a2
 
 
 
 
 
b2c7214
 
 
 
40b69ae
 
21a36a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7214
 
21a36a2
 
 
 
56285d0
 
 
21a36a2
 
56285d0
 
21a36a2
 
40b69ae
56285d0
 
b2c7214
40b69ae
 
db315c0
 
40b69ae
 
 
 
db315c0
 
 
 
 
 
 
b2c7214
 
 
db315c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7214
 
db315c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7214
3cc19b3
b2c7214
 
db315c0
 
 
 
 
 
 
 
 
40b69ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7214
 
40b69ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c7214
40b69ae
 
 
21a36a2
 
40b69ae
b2c7214
 
3cc19b3
 
 
 
db315c0
3cc19b3
db315c0
 
 
3cc19b3
db315c0
 
21a36a2
db315c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a36a2
db315c0
 
 
 
 
 
 
 
21a36a2
 
 
db315c0
21a36a2
56285d0
21a36a2
 
 
 
 
db315c0
 
 
 
 
3cc19b3
 
db315c0
3cc19b3
56285d0
3cc19b3
40b69ae
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator\n",
        "\n",
        " This Notebook is a Stable-diffusion tool which allows you to find similiar prompts to an existing prompt. It uses the Nearest Neighbor decoder method listed here:https://arxiv.org/pdf/2303.03032"
      ],
      "metadata": {
        "id": "cRV2YWomjMBU"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "THIS IS AN OLD VERSION OF THE CLIP INTERROGATOR.\n",
        "\n",
        "YOU WILL FIND THE UP TO DATE VERSION HERE:https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data/tree/main/Google%20Colab%20Jupyter%20Notebooks"
      ],
      "metadata": {
        "id": "9slWHq0JIX6D"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "home_directory = '/content/'\n",
        "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
        "if using_Kaggle : home_directory = '/kaggle/working/'\n",
        "%cd {home_directory}\n",
        "\n",
        "def fix_bad_symbols(txt):\n",
        "  result = txt\n",
        "  for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
        "    result = result.replace(symbol,'\\\\' + symbol)\n",
        "  #------#\n",
        "  return result;\n",
        "\n",
        "def my_mkdirs(folder):\n",
        "  if os.path.exists(folder)==False:\n",
        "    os.makedirs(folder)\n",
        "\n",
        "#πŸ”ΈπŸ”Ή\n",
        "# Load the data if not already loaded\n",
        "try:\n",
        "    loaded\n",
        "except:\n",
        "  from safetensors.torch import load_file , save_file\n",
        "  import json , torch , requests , math\n",
        "  import pandas as pd\n",
        "  from PIL import Image\n",
        "  #----#\n",
        "  %cd {home_directory}\n",
        "  !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
        "  loaded = True"
      ],
      "metadata": {
        "id": "A30Xl4BswyEr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "  %cd {home_directory + 'fusion-t2i-generator-data/'}\n",
        "  !unzip vocab.zip\n",
        "  !unzip reference.zip\n",
        "#------#\n",
        "%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
        "with open(f'prompts.json', 'r') as f:\n",
        "  data = json.load(f)\n",
        "  _df = pd.DataFrame({'count': data})['count']\n",
        "  prompts = {\n",
        "      key : value for key, value in _df.items()\n",
        "  }\n",
        "#-------#\n",
        "%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
        "with open(f'reference_prompts.json', 'r') as f:\n",
        "  data = json.load(f)\n",
        "  _df = pd.DataFrame({'count': data})['count']\n",
        "  target_prompts = {\n",
        "      key : value for key, value in _df.items()\n",
        "  }\n",
        "#------#\n",
        "with open(f'reference_urls.json', 'r') as f:\n",
        "  data = json.load(f)\n",
        "  _df = pd.DataFrame({'count': data})['count']\n",
        "  target_urls = {\n",
        "      key : value for key, value in _df.items()\n",
        "  }\n",
        "from transformers import AutoTokenizer\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
        "from transformers import  CLIPProcessor, CLIPModel\n",
        "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
        "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
        "logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
        "\n",
        "index = 0\n",
        "%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
        "vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
        "for key in vocab_encodings:\n",
        "  index = index + 1;\n",
        "#------#\n",
        "NUM_VOCAB_ITEMS = index\n",
        "\n",
        "index = 0\n",
        "%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
        "for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
        "  index = index + 1;\n",
        "#------#\n",
        "NUM_REFERENCE_ITEMS = index"
      ],
      "metadata": {
        "id": "TC5lMJrS1HCC"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title \tβš„ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
        "# @markdown Choose a pre-encoded reference\n",
        "index = 213 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
        "PROMPT_INDEX = index\n",
        "prompt = target_prompts[f'{PROMPT_INDEX}']\n",
        "url = target_urls[f'{PROMPT_INDEX}']\n",
        "if url.find('perchance')>-1:\n",
        "  image = Image.open(requests.get(url, stream=True).raw)\n",
        "#------#\n",
        "# @markdown βš–οΈ πŸ–ΌοΈ encoding <-----?-----> πŸ“ encoding </div> <br>\n",
        "C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
        "log_strength_1 = 2.17 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
        "prompt_strength = torch.tensor(math.pow(10 ,log_strength_1-1)).to(dtype = torch.float32)\n",
        "reference = torch.zeros(768).to(dtype = torch.float32)\n",
        "\n",
        "%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
        "references = torch.load('reference_text_and_image_encodings.pt'  , weights_only=False)\n",
        "reference = torch.add(reference, prompt_strength * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
        "reference = torch.add(reference, prompt_strength * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
        "references = '' # Clear up memory\n",
        "# @markdown -----------\n",
        "# @markdown πŸ“βž• 1st Enhance similarity to prompt(s)\n",
        "POS_2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
        "log_strength_2 = 1.03 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
        "pos_strength = torch.tensor(math.pow(10 ,log_strength_2-1)).to(dtype = torch.float32)\n",
        "for _POS in POS_2.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
        "  inputs = tokenizer(text = _POS.strip(), truncation = True  , padding=True, return_tensors=\"pt\")\n",
        "  text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
        "  text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
        "  reference = torch.add(reference, pos_strength * text_features_POS)\n",
        "# @markdown -----------\n",
        "\n",
        "# @markdown -----------\n",
        "# @markdown πŸ“βž• 2nd Enhance similarity to prompt(s)\n",
        "POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
        "log_strength_3 = 1.06 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
        "pos_strength = torch.tensor(math.pow(10 ,log_strength_3-1)).to(dtype = torch.float32)\n",
        "for _POS in POS.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
        "  inputs = tokenizer(text = _POS.strip(), truncation = True  , padding=True, return_tensors=\"pt\")\n",
        "  text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
        "  text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
        "  reference = torch.add(reference, pos_strength * text_features_POS)\n",
        "# @markdown -----------\n",
        "\n",
        "# @markdown 🚫 Penalize similarity to prompt(s)\n",
        "NEG = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
        "log_strength_4 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
        "neg_strength = torch.tensor(math.pow(10 ,log_strength_4-1)).to(dtype = torch.float32)\n",
        "for _NEG in NEG.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
        "  inputs = tokenizer(text = _NEG.strip(), truncation = True  , padding=True, return_tensors=\"pt\")\n",
        "  text_features_NEG = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
        "  text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
        "  reference = torch.sub(reference, neg_strength * text_features_NEG)\n",
        "# @markdown -----------\n",
        "# @markdown ⏩ Skip item(s) containing the word(s)\n",
        "SKIP = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
        "\n",
        "min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
        "\n",
        "def isBlacklisted(_txt, _blacklist):\n",
        "  blacklist =  _blacklist.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
        "  txt = _txt.lower().strip()\n",
        "  if len(txt)<min_wordcount: return True\n",
        "  if txt.isnumeric(): return True\n",
        "  if blacklist == '': return False\n",
        "  for item in list(blacklist.split(',')):\n",
        "    if item.strip() == '' : continue\n",
        "    if txt.find(item.strip())> -1 : return True\n",
        "  #------#\n",
        "  found = False\n",
        "  alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
        "  for letter in alphabet:\n",
        "    found =  txt.find(letter)>-1\n",
        "    if found:break\n",
        "  #------#\n",
        "  return not found\n",
        "\n",
        "# @markdown -----------\n",
        "# @markdown πŸ” How similar should the results be?\n",
        "list_size = 1000 # @param {type:'number'}\n",
        "start_at_index = 1 # @param {type:'number'}\n",
        "# @markdown -----------\n",
        "# @markdown Repeat output N times\n",
        "N = 7 # @param {type:\"slider\", min:0, max:20, step:1}\n",
        "# @markdown -----------\n",
        "# @markdown βš™οΈ Run the script?\n",
        "update_list = True # @param {type:\"boolean\"}\n",
        "\n",
        "calculate_variance  = False # @param {type:\"boolean\"}\n",
        "\n",
        "ne = update_list\n",
        "\n",
        "try: first\n",
        "except:\n",
        "  enable = True\n",
        "  first = True\n",
        "\n",
        "if (enable):\n",
        "  reference = reference/reference.norm(p=2, dim=-1, keepdim=True)\n",
        "  %cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
        "  sims = torch.matmul(vocab_encodings.dequantize(),reference.t())\n",
        "  sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
        "\n",
        "  if calculate_variance:\n",
        "    average = torch.zeros(768)\n",
        "    for key in range(NUM_VOCAB_ITEMS):\n",
        "      if (key>=start_at_index and key < start_at_index + list_size):\n",
        "        average = torch.add(average, vocab_encodings[key].dequantize())\n",
        "      if (key>=start_at_index + list_size) : break\n",
        "    average = average * (1/max(1, list_size))\n",
        "    average = average/average.norm(p=2, dim=-1, keepdim=True)\n",
        "    average = average.clone().detach();\n",
        "    variance = torch.zeros(1)\n",
        "    for key in range(NUM_VOCAB_ITEMS):\n",
        "      if (key>=start_at_index and key < start_at_index + list_size):\n",
        "        #dot product\n",
        "        difference_to_average = 100 * (torch.ones(1) - torch.dot(average[0]\n",
        "        , vocab_encodings[key].dequantize()[0])/average.norm(p=2, dim=-1, keepdim=True))\n",
        "        variance =  torch.add(variance, difference_to_average * difference_to_average)\n",
        "      if (key>=start_at_index + list_size) : break\n",
        "    #--------#\n",
        "    variance =  variance * (1/max(1, list_size))\n",
        "    variance= variance.clone().detach();\n",
        "    print(f'The variance for the selected range is {math.sqrt(variance.item())} units from average')\n",
        "  #--------#\n",
        "#---#\n",
        "output = '{'\n",
        "for _index in range(list_size):\n",
        "  tmp = prompts[f'{indices[min(_index+start_at_index,NUM_VOCAB_ITEMS-1)].item()}']\n",
        "  if isBlacklisted(tmp , SKIP): continue\n",
        "  tmp = fix_bad_symbols(tmp)\n",
        "  if output.find(tmp)>-1:continue\n",
        "  output = output + tmp + '|'\n",
        "#---------#\n",
        "output = (output + '}').replace('|}' , '} ')\n",
        "print('')\n",
        "print('')\n",
        "for iter in range(N):\n",
        "  print(output)\n",
        "#-------#\n",
        "print('')\n",
        "print('')\n",
        "image or print('No image found')"
      ],
      "metadata": {
        "id": "NqL_I3ZSrISq",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [],
      "metadata": {
        "id": "ouE3KYiJefac"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# @title βš„ New interrogator code using quantized text corpus\n",
        "ref = '' # @param {type:'string' , placeholder:'type a single prompt to match'}\n",
        "LIST_SIZE = 1000  # @param {type:'number' , placeholder:'set how large the list should be'}\n",
        "\n",
        "# @markdown Select vocab\n",
        "fanfic = False # @param {type:\"boolean\"}\n",
        "civitai = True # @param {type:\"boolean\"}\n",
        "names = True # @param {type:\"boolean\"}\n",
        "r34 = True # @param {type:\"boolean\"}\n",
        "\n",
        "from transformers import AutoTokenizer\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
        "from transformers import  CLIPProcessor, CLIPModel\n",
        "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
        "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
        "logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
        "dot_dtype = torch.float32\n",
        "inputs = tokenizer(text = ref.strip(), truncation = True  , padding=True, return_tensors=\"pt\")\n",
        "ref = model.get_text_features(**inputs)[0]\n",
        "ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
        "#-----#\n",
        "prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab/text'\n",
        "encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab/text_encodings'\n",
        "#----#\n",
        "dim = 768\n",
        "scale = 0.0043\n",
        "size = 0\n",
        "#------#\n",
        "for filename in os.listdir(prompts_folder):\n",
        "  if (not civitai and filename.find('civitai')>-1):continue\n",
        "  if (not fanfic and filename.find('fanfic')>-1):continue\n",
        "  if (not r34 and filename.find('r34')>-1):continue\n",
        "  if (not names and filename.find('names')>-1):continue\n",
        "  size = size + LIST_SIZE\n",
        "#-------#\n",
        "similiar_sims = torch.zeros(size)\n",
        "similiar_prompts = {}\n",
        "_index = 0\n",
        "#-------#\n",
        "similiar_encodings = {}\n",
        "for filename in os.listdir(prompts_folder):\n",
        "  if (not civitai and filename.find('civitai')>-1):continue\n",
        "  if (not fanfic and filename.find('fanfic')>-1):continue\n",
        "  if (not r34 and filename.find('r34')>-1):continue\n",
        "  if (not names and filename.find('names')>-1):continue\n",
        "  #------#\n",
        "  root_filename = filename.replace('.json', '')\n",
        "  %cd {prompts_folder}\n",
        "  prompts = {}\n",
        "  with open(f'{root_filename}.json', 'r') as f:\n",
        "    data = json.load(f).items()\n",
        "    for key,value in data:\n",
        "      prompts[key] = value\n",
        "  num_items = int(prompts['num_items'])\n",
        "  #------#\n",
        "  %cd {encodings_folder}\n",
        "  _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
        "\n",
        "  text_encodings = torch.zeros(num_items , dim)\n",
        "  tmp = torch.ones(dim).to(dot_dtype)\n",
        "  for index in range(num_items):\n",
        "    text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
        "  #------#\n",
        "  sims = torch.matmul(text_encodings*scale, ref.t())\n",
        "  sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
        "  for index in range(LIST_SIZE):\n",
        "    key = indices[index].item()\n",
        "    prompt = prompts[f'{key}']\n",
        "    #-------#\n",
        "    similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
        "    similiar_prompts[f'{_index}'] = prompt\n",
        "    _index = _index + 1\n",
        "  #-------#\n",
        "  continue\n",
        "#---------#\n"
      ],
      "metadata": {
        "cellView": "form",
        "id": "w2dfozFY5IwM"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title βš„ Printing results from text corpus\n",
        "sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
        "\n",
        "include_similiarity = False # @param {type:\"boolean\"}\n",
        "for index in range(LIST_SIZE):\n",
        "  key = indices[index].item()\n",
        "  sim = similiar_sims[key].item()\n",
        "  prompt = similiar_prompts[f'{key}']\n",
        "  #-------#\n",
        "  if include_similiarity :print(f'{prompt}  - {round(sim*100,1)} %')\n",
        "  else: print(f'{prompt}')"
      ],
      "metadata": {
        "cellView": "form",
        "id": "E3kfOKXITDI9"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "OTHER STUFF BELOW"
      ],
      "metadata": {
        "id": "FRIqYJDEebpf"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# @title βš™οΈπŸ“ Print the results (Advanced)\n",
        "list_size = 1000 # @param {type:'number'}\n",
        "start_at_index = 0 # @param {type:'number'}\n",
        "print_Similarity = True # @param {type:\"boolean\"}\n",
        "print_Prompts = True # @param {type:\"boolean\"}\n",
        "print_Descriptions = True # @param {type:\"boolean\"}\n",
        "compact_Output = True # @param {type:\"boolean\"}\n",
        "newline_Separator = False # @param {type:\"boolean\"}\n",
        "\n",
        "import random\n",
        "# @markdown -----------\n",
        "# @markdown Mix with...\n",
        "list_size2 = 1000 # @param {type:'number'}\n",
        "start_at_index2 = 10000 # @param {type:'number'}\n",
        "rate_percent  = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
        "\n",
        "# @markdown -----------\n",
        "# @markdown Repeat output N times\n",
        "N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
        "\n",
        "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
        "RANGE = list_size\n",
        "separator = '|'\n",
        "if newline_Separator : separator = separator + '\\n'\n",
        "\n",
        "_prompts = ''\n",
        "_sims =  ''\n",
        "for _index in range(start_at_index + RANGE):\n",
        "  if _index < start_at_index : continue\n",
        "  index = indices[_index].item()\n",
        "\n",
        "  prompt = prompts[f'{index}']\n",
        "  if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
        "\n",
        "  #Remove duplicates\n",
        "  if _prompts.find(prompt + separator)<=-1:\n",
        "    _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
        "  #-------#\n",
        "  _prompts = _prompts.replace(prompt + separator,'')\n",
        "  _prompts = _prompts  + prompt + separator\n",
        "  #------#\n",
        "#------#\n",
        "__prompts = fix_bad_symbols(__prompts)\n",
        "__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
        "__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
        "#------#\n",
        "\n",
        "if(not print_Prompts): __prompts = ''\n",
        "if(not print_Similarity): __sims = ''\n",
        "\n",
        "if(not compact_Output):\n",
        "  if(print_Descriptions):\n",
        "    print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
        "    for i in range(N) : print(__prompts)\n",
        "    print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
        "    print('')\n",
        "  else:\n",
        "    for i in range(N) : print(__prompts)\n",
        "else:\n",
        "  for i in range(N) : print(__prompts)\n",
        "#-------#"
      ],
      "metadata": {
        "id": "EdBiAguJO9aX",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "The savefile can be used here : https://perchance.org/fusion-ai-image-generator"
      ],
      "metadata": {
        "id": "JldNmWy1iyvK"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# @title \tβš„ Create fusion-generator .json savefile from result\n",
        "filename = 'blank.json'\n",
        "path = '/content/text-to-image-prompts/fusion/'\n",
        "\n",
        "print(f'reading {filename}....')\n",
        "_index = 0\n",
        "%cd {path}\n",
        "with open(f'{filename}', 'r') as f:\n",
        "  data = json.load(f)\n",
        "#------#\n",
        "_df = pd.DataFrame({'count': data})['count']\n",
        "_savefile = {\n",
        "    key : value for key, value in _df.items()\n",
        "}\n",
        "#------#\n",
        "from safetensors.torch import load_file\n",
        "import json , os , torch\n",
        "import pandas as pd\n",
        "#----#\n",
        "def my_mkdirs(folder):\n",
        "  if os.path.exists(folder)==False:\n",
        "    os.makedirs(folder)\n",
        "#------#\n",
        "savefile_prompt = ''\n",
        "for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
        "_savefile['main'] = savefile_prompt.replace('\\n', ' ').replace('  ', ' ').replace('   ', ' ')\n",
        "#------#\n",
        "save_filename = f'fusion_C05_X7_1000_{PROMPT_INDEX}.json'\n",
        "output_folder = '/content/output/savefiles/'\n",
        "my_mkdirs(output_folder)\n",
        "#-----#\n",
        "%cd {output_folder}\n",
        "print(f'Saving segment {save_filename} to {output_folder}...')\n",
        "with open(save_filename, 'w') as f:\n",
        "    json.dump(_savefile, f)\n"
      ],
      "metadata": {
        "id": "Q7vpNAXQilbf",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title \tβš„ Create a savefile-set from the entire range of pre-encoded items\n",
        "\n",
        "# @markdown πŸ“₯ Load the data (only required one time)\n",
        "load_the_data = True # @param {type:\"boolean\"}\n",
        "\n",
        "import math\n",
        "from safetensors.torch import load_file\n",
        "import json , os , torch\n",
        "import pandas as pd\n",
        "from PIL import Image\n",
        "import requests\n",
        "\n",
        "def my_mkdirs(folder):\n",
        "  if os.path.exists(folder)==False:\n",
        "    os.makedirs(folder)\n",
        "\n",
        "# @markdown βš–οΈ Set the value for C in the reference  <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
        "\n",
        "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
        "\n",
        "# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
        "if(load_the_data):\n",
        "  target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS =  getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
        "  from transformers import AutoTokenizer\n",
        "  tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
        "  from transformers import  CLIPProcessor, CLIPModel\n",
        "  processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
        "  model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
        "  logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
        "#---------#\n",
        "\n",
        "filename = 'blank.json'\n",
        "path = '/content/text-to-image-prompts/fusion/'\n",
        "print(f'reading {filename}....')\n",
        "_index = 0\n",
        "%cd {path}\n",
        "with open(f'{filename}', 'r') as f:\n",
        "  data = json.load(f)\n",
        "#------#\n",
        "_df = pd.DataFrame({'count': data})['count']\n",
        "_blank = {\n",
        "    key : value for key, value in _df.items()\n",
        "}\n",
        "#------#\n",
        "\n",
        "root_savefile_name = 'fusion_C05_X7'\n",
        "\n",
        "%cd /content/\n",
        "output_folder = '/content/output/savefiles/'\n",
        "my_mkdirs(output_folder)\n",
        "my_mkdirs('/content/output2/savefiles/')\n",
        "my_mkdirs('/content/output3/savefiles/')\n",
        "my_mkdirs('/content/output4/savefiles/')\n",
        "my_mkdirs('/content/output5/savefiles/')\n",
        "my_mkdirs('/content/output6/savefiles/')\n",
        "my_mkdirs('/content/output7/savefiles/')\n",
        "my_mkdirs('/content/output8/savefiles/')\n",
        "my_mkdirs('/content/output9/savefiles/')\n",
        "my_mkdirs('/content/output10/savefiles/')\n",
        "my_mkdirs('/content/output11/savefiles/')\n",
        "my_mkdirs('/content/output12/savefiles/')\n",
        "my_mkdirs('/content/output13/savefiles/')\n",
        "\n",
        "\n",
        "NEG = '' # @param {type:'string'}\n",
        "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
        "\n",
        "for index in range(1667):\n",
        "\n",
        "  PROMPT_INDEX = index\n",
        "  prompt = target_prompts[f'{index}']\n",
        "  url = urls[f'{index}']\n",
        "  if url.find('perchance')>-1:\n",
        "    image = Image.open(requests.get(url, stream=True).raw)\n",
        "  else: continue #print(\"(No image for this ID)\")\n",
        "\n",
        "  print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
        "  text_features_A = target_text_encodings[f'{index}']\n",
        "  image_features_A =  target_image_encodings[f'{index}']\n",
        "  # text-similarity\n",
        "  sims =  C * torch.matmul(text_tensor, text_features_A.t())\n",
        "\n",
        "  neg_sims = 0*sims\n",
        "  if(NEG != ''):\n",
        "    # Get text features for user input\n",
        "    inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
        "    text_features_NEG = model.get_text_features(**inputs)\n",
        "    text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
        "    # text-similarity\n",
        "    neg_sims =  strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
        "  #------#\n",
        "\n",
        "  # plus image-similarity\n",
        "  sims = sims +  (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
        "\n",
        "  # minus NEG-similarity\n",
        "  sims = sims - neg_sims\n",
        "\n",
        "  # Sort the items\n",
        "  sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
        "\n",
        "  # @markdown Repeat output N times\n",
        "  RANGE = 1000\n",
        "  NUM_CHUNKS = 10+\n",
        "  separator = '|'\n",
        "  _savefiles = {}\n",
        "  #-----#\n",
        "  for chunk in range(NUM_CHUNKS):\n",
        "    if chunk=<10:continue\n",
        "    start_at_index = chunk * RANGE\n",
        "    _prompts = ''\n",
        "    for _index in range(start_at_index + RANGE):\n",
        "      if _index < start_at_index : continue\n",
        "      index = indices[_index].item()\n",
        "      prompt = prompts[f'{index}']\n",
        "      _prompts = _prompts.replace(prompt + separator,'')\n",
        "      _prompts = _prompts  + prompt + separator\n",
        "    #------#\n",
        "    _prompts = fix_bad_symbols(_prompts)\n",
        "    _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
        "    _savefiles[f'{chunk}'] = _prompts\n",
        "  #---------#\n",
        "  save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
        "\n",
        "\n",
        "  if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
        "  if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
        "  if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
        "  if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
        "  if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
        "  if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
        "  if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
        "  if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
        "  if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
        "  if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
        "  if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
        "  if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
        "\n",
        "\n",
        "  #------#\n",
        "  print(f'Saving savefile {save_filename} to {output_folder}...')\n",
        "  with open(save_filename, 'w') as f:\n",
        "      json.dump(_savefiles, f)\n",
        "  #---------#\n",
        "  continue\n",
        "#-----------#"
      ],
      "metadata": {
        "id": "x1uAVXZEoL0T",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Determine if this notebook is running on Colab or Kaggle\n",
        "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
        "home_directory = '/content/'\n",
        "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
        "if using_Kaggle : home_directory = '/kaggle/working/'\n",
        "%cd {home_directory}\n",
        "#-------#\n",
        "\n",
        "# @title Download the text_encodings as .zip\n",
        "import os\n",
        "%cd {home_directory}\n",
        "#os.remove(f'{home_directory}results.zip')\n",
        "root_output_folder = home_directory + 'output/'\n",
        "zip_dest = f'/content/results.zip' #drive/MyDrive\n",
        "!zip -r {zip_dest} {root_output_folder}"
      ],
      "metadata": {
        "id": "zivBNrw9uSVD",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title \tβš„ Quick fix for normalizing encoded text corpus tensors\n",
        "\n",
        "import os\n",
        "my_mkdirs('/content/output')\n",
        "my_mkdirs('/content/output/text_encodings')\n",
        "\n",
        "for filename in os.listdir(f'{prompts_folder}'):\n",
        "  %cd {prompts_folder}\n",
        "  prompts = {}\n",
        "  with open(f'{filename}', 'r') as f:\n",
        "    data = json.load(f).items()\n",
        "    for key,value in data:\n",
        "      prompts[key] = value\n",
        "    #------#\n",
        "  num_items = int(prompts['num_items'])\n",
        "\n",
        "  %cd {encodings_folder}\n",
        "  enc_filename = filename.replace('json', 'safetensors')\n",
        "  _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
        "  text_encodings = torch.zeros(num_items , dim)\n",
        "  tmp = torch.ones(dim)\n",
        "  tmp2 = torch.tensor(1/0.0043)\n",
        "  zero_point = 0\n",
        "  for index in range(num_items):\n",
        "    text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
        "    text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
        "    test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
        "    less_than_zero = test<0\n",
        "    while(torch.any(less_than_zero).item()):\n",
        "      zero_point = zero_point + 1\n",
        "      test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
        "      less_than_zero = test<0\n",
        "    #------#\n",
        "    _text_encodings[index][0]  = zero_point\n",
        "    _text_encodings[index][1:dim+1] = test\n",
        "  #-------#\n",
        "  %cd /content/output/text_encodings\n",
        "\n",
        "  tmp = {}\n",
        "  tmp['weights'] =  _text_encodings.to(torch.uint8)\n",
        "  tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
        "  tmp['scale'] = torch.tensor(0.0043)\n",
        "  save_file(tmp , f'{enc_filename}')\n",
        "#------#"
      ],
      "metadata": {
        "cellView": "form",
        "id": "9qgHW1Wr7kZn"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Check the average value for this set\n",
        "sims = torch.matmul(vocab_encodings.dequantize(),average.t())\n",
        "sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
        "for index in range(10):\n",
        "  print(prompts[f'{indices[index].item()}'])"
      ],
      "metadata": {
        "id": "XNHz0hfhHRUu"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}