File size: 35,092 Bytes
40b69ae db315c0 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 db315c0 b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae b2c7214 40b69ae db315c0 40b69ae 56285d0 40b69ae b2c7214 40b69ae b2c7214 56285d0 40b69ae b2c7214 56285d0 4165c0d a65bd9d b2c7214 56285d0 1bbd471 40b69ae 1bbd471 39412d5 21a36a2 56285d0 1bbd471 56285d0 1bbd471 40b69ae 39412d5 56285d0 b2c7214 56285d0 b2c7214 40b69ae 39412d5 56285d0 b2c7214 56285d0 b2c7214 21a36a2 40b69ae b2c7214 21a36a2 4a95bcb 56285d0 40b69ae 21a36a2 56285d0 21a36a2 4a95bcb b2c7214 21a36a2 56285d0 21a36a2 b2c7214 40b69ae 21a36a2 b2c7214 21a36a2 56285d0 21a36a2 56285d0 21a36a2 40b69ae 56285d0 b2c7214 40b69ae db315c0 40b69ae db315c0 b2c7214 db315c0 b2c7214 db315c0 b2c7214 3cc19b3 b2c7214 db315c0 40b69ae b2c7214 40b69ae b2c7214 40b69ae 21a36a2 40b69ae b2c7214 3cc19b3 db315c0 3cc19b3 db315c0 3cc19b3 db315c0 21a36a2 db315c0 21a36a2 db315c0 21a36a2 db315c0 21a36a2 56285d0 21a36a2 db315c0 3cc19b3 db315c0 3cc19b3 56285d0 3cc19b3 40b69ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator\n",
"\n",
" This Notebook is a Stable-diffusion tool which allows you to find similiar prompts to an existing prompt. It uses the Nearest Neighbor decoder method listed here:https://arxiv.org/pdf/2303.03032"
],
"metadata": {
"id": "cRV2YWomjMBU"
}
},
{
"cell_type": "markdown",
"source": [
"THIS IS AN OLD VERSION OF THE CLIP INTERROGATOR.\n",
"\n",
"YOU WILL FIND THE UP TO DATE VERSION HERE:https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data/tree/main/Google%20Colab%20Jupyter%20Notebooks"
],
"metadata": {
"id": "9slWHq0JIX6D"
}
},
{
"cell_type": "code",
"source": [
"import os\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"\n",
"def fix_bad_symbols(txt):\n",
" result = txt\n",
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
" result = result.replace(symbol,'\\\\' + symbol)\n",
" #------#\n",
" return result;\n",
"\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"\n",
"#πΈπΉ\n",
"# Load the data if not already loaded\n",
"try:\n",
" loaded\n",
"except:\n",
" from safetensors.torch import load_file , save_file\n",
" import json , torch , requests , math\n",
" import pandas as pd\n",
" from PIL import Image\n",
" #----#\n",
" %cd {home_directory}\n",
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
" loaded = True"
],
"metadata": {
"id": "A30Xl4BswyEr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
" %cd {home_directory + 'fusion-t2i-generator-data/'}\n",
" !unzip vocab.zip\n",
" !unzip reference.zip\n",
"#------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
"with open(f'prompts.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#-------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"with open(f'reference_prompts.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#------#\n",
"with open(f'reference_urls.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_urls = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"from transformers import CLIPProcessor, CLIPModel\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"\n",
"index = 0\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
"for key in vocab_encodings:\n",
" index = index + 1;\n",
"#------#\n",
"NUM_VOCAB_ITEMS = index\n",
"\n",
"index = 0\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
" index = index + 1;\n",
"#------#\n",
"NUM_REFERENCE_ITEMS = index"
],
"metadata": {
"id": "TC5lMJrS1HCC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
"# @markdown Choose a pre-encoded reference\n",
"index = 213 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
"PROMPT_INDEX = index\n",
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
"url = target_urls[f'{PROMPT_INDEX}']\n",
"if url.find('perchance')>-1:\n",
" image = Image.open(requests.get(url, stream=True).raw)\n",
"#------#\n",
"# @markdown βοΈ πΌοΈ encoding <-----?-----> π encoding </div> <br>\n",
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"log_strength_1 = 2.17 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"prompt_strength = torch.tensor(math.pow(10 ,log_strength_1-1)).to(dtype = torch.float32)\n",
"reference = torch.zeros(768).to(dtype = torch.float32)\n",
"\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
"reference = torch.add(reference, prompt_strength * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
"reference = torch.add(reference, prompt_strength * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
"references = '' # Clear up memory\n",
"# @markdown -----------\n",
"# @markdown πβ 1st Enhance similarity to prompt(s)\n",
"POS_2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"log_strength_2 = 1.03 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"pos_strength = torch.tensor(math.pow(10 ,log_strength_2-1)).to(dtype = torch.float32)\n",
"for _POS in POS_2.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
" inputs = tokenizer(text = _POS.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
" text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
" reference = torch.add(reference, pos_strength * text_features_POS)\n",
"# @markdown -----------\n",
"\n",
"# @markdown -----------\n",
"# @markdown πβ 2nd Enhance similarity to prompt(s)\n",
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"log_strength_3 = 1.06 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"pos_strength = torch.tensor(math.pow(10 ,log_strength_3-1)).to(dtype = torch.float32)\n",
"for _POS in POS.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
" inputs = tokenizer(text = _POS.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
" text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
" reference = torch.add(reference, pos_strength * text_features_POS)\n",
"# @markdown -----------\n",
"\n",
"# @markdown π« Penalize similarity to prompt(s)\n",
"NEG = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
"log_strength_4 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"neg_strength = torch.tensor(math.pow(10 ,log_strength_4-1)).to(dtype = torch.float32)\n",
"for _NEG in NEG.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
" inputs = tokenizer(text = _NEG.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" text_features_NEG = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
" text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
" reference = torch.sub(reference, neg_strength * text_features_NEG)\n",
"# @markdown -----------\n",
"# @markdown β© Skip item(s) containing the word(s)\n",
"SKIP = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
"\n",
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
"\n",
"def isBlacklisted(_txt, _blacklist):\n",
" blacklist = _blacklist.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
" txt = _txt.lower().strip()\n",
" if len(txt)<min_wordcount: return True\n",
" if txt.isnumeric(): return True\n",
" if blacklist == '': return False\n",
" for item in list(blacklist.split(',')):\n",
" if item.strip() == '' : continue\n",
" if txt.find(item.strip())> -1 : return True\n",
" #------#\n",
" found = False\n",
" alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
" for letter in alphabet:\n",
" found = txt.find(letter)>-1\n",
" if found:break\n",
" #------#\n",
" return not found\n",
"\n",
"# @markdown -----------\n",
"# @markdown π How similar should the results be?\n",
"list_size = 1000 # @param {type:'number'}\n",
"start_at_index = 1 # @param {type:'number'}\n",
"# @markdown -----------\n",
"# @markdown Repeat output N times\n",
"N = 7 # @param {type:\"slider\", min:0, max:20, step:1}\n",
"# @markdown -----------\n",
"# @markdown βοΈ Run the script?\n",
"update_list = True # @param {type:\"boolean\"}\n",
"\n",
"calculate_variance = False # @param {type:\"boolean\"}\n",
"\n",
"ne = update_list\n",
"\n",
"try: first\n",
"except:\n",
" enable = True\n",
" first = True\n",
"\n",
"if (enable):\n",
" reference = reference/reference.norm(p=2, dim=-1, keepdim=True)\n",
" %cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
" sims = torch.matmul(vocab_encodings.dequantize(),reference.t())\n",
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
"\n",
" if calculate_variance:\n",
" average = torch.zeros(768)\n",
" for key in range(NUM_VOCAB_ITEMS):\n",
" if (key>=start_at_index and key < start_at_index + list_size):\n",
" average = torch.add(average, vocab_encodings[key].dequantize())\n",
" if (key>=start_at_index + list_size) : break\n",
" average = average * (1/max(1, list_size))\n",
" average = average/average.norm(p=2, dim=-1, keepdim=True)\n",
" average = average.clone().detach();\n",
" variance = torch.zeros(1)\n",
" for key in range(NUM_VOCAB_ITEMS):\n",
" if (key>=start_at_index and key < start_at_index + list_size):\n",
" #dot product\n",
" difference_to_average = 100 * (torch.ones(1) - torch.dot(average[0]\n",
" , vocab_encodings[key].dequantize()[0])/average.norm(p=2, dim=-1, keepdim=True))\n",
" variance = torch.add(variance, difference_to_average * difference_to_average)\n",
" if (key>=start_at_index + list_size) : break\n",
" #--------#\n",
" variance = variance * (1/max(1, list_size))\n",
" variance= variance.clone().detach();\n",
" print(f'The variance for the selected range is {math.sqrt(variance.item())} units from average')\n",
" #--------#\n",
"#---#\n",
"output = '{'\n",
"for _index in range(list_size):\n",
" tmp = prompts[f'{indices[min(_index+start_at_index,NUM_VOCAB_ITEMS-1)].item()}']\n",
" if isBlacklisted(tmp , SKIP): continue\n",
" tmp = fix_bad_symbols(tmp)\n",
" if output.find(tmp)>-1:continue\n",
" output = output + tmp + '|'\n",
"#---------#\n",
"output = (output + '}').replace('|}' , '} ')\n",
"print('')\n",
"print('')\n",
"for iter in range(N):\n",
" print(output)\n",
"#-------#\n",
"print('')\n",
"print('')\n",
"image or print('No image found')"
],
"metadata": {
"id": "NqL_I3ZSrISq",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "ouE3KYiJefac"
}
},
{
"cell_type": "code",
"source": [
"# @title β New interrogator code using quantized text corpus\n",
"ref = '' # @param {type:'string' , placeholder:'type a single prompt to match'}\n",
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"\n",
"# @markdown Select vocab\n",
"fanfic = False # @param {type:\"boolean\"}\n",
"civitai = True # @param {type:\"boolean\"}\n",
"names = True # @param {type:\"boolean\"}\n",
"r34 = True # @param {type:\"boolean\"}\n",
"\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"from transformers import CLIPProcessor, CLIPModel\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"dot_dtype = torch.float32\n",
"inputs = tokenizer(text = ref.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
"ref = model.get_text_features(**inputs)[0]\n",
"ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
"#-----#\n",
"prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab/text'\n",
"encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab/text_encodings'\n",
"#----#\n",
"dim = 768\n",
"scale = 0.0043\n",
"size = 0\n",
"#------#\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not civitai and filename.find('civitai')>-1):continue\n",
" if (not fanfic and filename.find('fanfic')>-1):continue\n",
" if (not r34 and filename.find('r34')>-1):continue\n",
" if (not names and filename.find('names')>-1):continue\n",
" size = size + LIST_SIZE\n",
"#-------#\n",
"similiar_sims = torch.zeros(size)\n",
"similiar_prompts = {}\n",
"_index = 0\n",
"#-------#\n",
"similiar_encodings = {}\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not civitai and filename.find('civitai')>-1):continue\n",
" if (not fanfic and filename.find('fanfic')>-1):continue\n",
" if (not r34 and filename.find('r34')>-1):continue\n",
" if (not names and filename.find('names')>-1):continue\n",
" #------#\n",
" root_filename = filename.replace('.json', '')\n",
" %cd {prompts_folder}\n",
" prompts = {}\n",
" with open(f'{root_filename}.json', 'r') as f:\n",
" data = json.load(f).items()\n",
" for key,value in data:\n",
" prompts[key] = value\n",
" num_items = int(prompts['num_items'])\n",
" #------#\n",
" %cd {encodings_folder}\n",
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
"\n",
" text_encodings = torch.zeros(num_items , dim)\n",
" tmp = torch.ones(dim).to(dot_dtype)\n",
" for index in range(num_items):\n",
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
" #------#\n",
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
" for index in range(LIST_SIZE):\n",
" key = indices[index].item()\n",
" prompt = prompts[f'{key}']\n",
" #-------#\n",
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
" similiar_prompts[f'{_index}'] = prompt\n",
" _index = _index + 1\n",
" #-------#\n",
" continue\n",
"#---------#\n"
],
"metadata": {
"cellView": "form",
"id": "w2dfozFY5IwM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title β Printing results from text corpus\n",
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
"\n",
"include_similiarity = False # @param {type:\"boolean\"}\n",
"for index in range(LIST_SIZE):\n",
" key = indices[index].item()\n",
" sim = similiar_sims[key].item()\n",
" prompt = similiar_prompts[f'{key}']\n",
" #-------#\n",
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
" else: print(f'{prompt}')"
],
"metadata": {
"cellView": "form",
"id": "E3kfOKXITDI9"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"OTHER STUFF BELOW"
],
"metadata": {
"id": "FRIqYJDEebpf"
}
},
{
"cell_type": "code",
"source": [
"# @title βοΈπ Print the results (Advanced)\n",
"list_size = 1000 # @param {type:'number'}\n",
"start_at_index = 0 # @param {type:'number'}\n",
"print_Similarity = True # @param {type:\"boolean\"}\n",
"print_Prompts = True # @param {type:\"boolean\"}\n",
"print_Descriptions = True # @param {type:\"boolean\"}\n",
"compact_Output = True # @param {type:\"boolean\"}\n",
"newline_Separator = False # @param {type:\"boolean\"}\n",
"\n",
"import random\n",
"# @markdown -----------\n",
"# @markdown Mix with...\n",
"list_size2 = 1000 # @param {type:'number'}\n",
"start_at_index2 = 10000 # @param {type:'number'}\n",
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
"\n",
"# @markdown -----------\n",
"# @markdown Repeat output N times\n",
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
"\n",
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
"RANGE = list_size\n",
"separator = '|'\n",
"if newline_Separator : separator = separator + '\\n'\n",
"\n",
"_prompts = ''\n",
"_sims = ''\n",
"for _index in range(start_at_index + RANGE):\n",
" if _index < start_at_index : continue\n",
" index = indices[_index].item()\n",
"\n",
" prompt = prompts[f'{index}']\n",
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
"\n",
" #Remove duplicates\n",
" if _prompts.find(prompt + separator)<=-1:\n",
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
" #-------#\n",
" _prompts = _prompts.replace(prompt + separator,'')\n",
" _prompts = _prompts + prompt + separator\n",
" #------#\n",
"#------#\n",
"__prompts = fix_bad_symbols(__prompts)\n",
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
"#------#\n",
"\n",
"if(not print_Prompts): __prompts = ''\n",
"if(not print_Similarity): __sims = ''\n",
"\n",
"if(not compact_Output):\n",
" if(print_Descriptions):\n",
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
" for i in range(N) : print(__prompts)\n",
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
" print('')\n",
" else:\n",
" for i in range(N) : print(__prompts)\n",
"else:\n",
" for i in range(N) : print(__prompts)\n",
"#-------#"
],
"metadata": {
"id": "EdBiAguJO9aX",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The savefile can be used here : https://perchance.org/fusion-ai-image-generator"
],
"metadata": {
"id": "JldNmWy1iyvK"
}
},
{
"cell_type": "code",
"source": [
"# @title \tβ Create fusion-generator .json savefile from result\n",
"filename = 'blank.json'\n",
"path = '/content/text-to-image-prompts/fusion/'\n",
"\n",
"print(f'reading {filename}....')\n",
"_index = 0\n",
"%cd {path}\n",
"with open(f'{filename}', 'r') as f:\n",
" data = json.load(f)\n",
"#------#\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"_savefile = {\n",
" key : value for key, value in _df.items()\n",
"}\n",
"#------#\n",
"from safetensors.torch import load_file\n",
"import json , os , torch\n",
"import pandas as pd\n",
"#----#\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"#------#\n",
"savefile_prompt = ''\n",
"for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
"_savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
"#------#\n",
"save_filename = f'fusion_C05_X7_1000_{PROMPT_INDEX}.json'\n",
"output_folder = '/content/output/savefiles/'\n",
"my_mkdirs(output_folder)\n",
"#-----#\n",
"%cd {output_folder}\n",
"print(f'Saving segment {save_filename} to {output_folder}...')\n",
"with open(save_filename, 'w') as f:\n",
" json.dump(_savefile, f)\n"
],
"metadata": {
"id": "Q7vpNAXQilbf",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title \tβ Create a savefile-set from the entire range of pre-encoded items\n",
"\n",
"# @markdown π₯ Load the data (only required one time)\n",
"load_the_data = True # @param {type:\"boolean\"}\n",
"\n",
"import math\n",
"from safetensors.torch import load_file\n",
"import json , os , torch\n",
"import pandas as pd\n",
"from PIL import Image\n",
"import requests\n",
"\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"\n",
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
"\n",
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"\n",
"# @markdown π« Penalize similarity to this prompt(optional)\n",
"if(load_the_data):\n",
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
" from transformers import AutoTokenizer\n",
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
" from transformers import CLIPProcessor, CLIPModel\n",
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"#---------#\n",
"\n",
"filename = 'blank.json'\n",
"path = '/content/text-to-image-prompts/fusion/'\n",
"print(f'reading {filename}....')\n",
"_index = 0\n",
"%cd {path}\n",
"with open(f'{filename}', 'r') as f:\n",
" data = json.load(f)\n",
"#------#\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"_blank = {\n",
" key : value for key, value in _df.items()\n",
"}\n",
"#------#\n",
"\n",
"root_savefile_name = 'fusion_C05_X7'\n",
"\n",
"%cd /content/\n",
"output_folder = '/content/output/savefiles/'\n",
"my_mkdirs(output_folder)\n",
"my_mkdirs('/content/output2/savefiles/')\n",
"my_mkdirs('/content/output3/savefiles/')\n",
"my_mkdirs('/content/output4/savefiles/')\n",
"my_mkdirs('/content/output5/savefiles/')\n",
"my_mkdirs('/content/output6/savefiles/')\n",
"my_mkdirs('/content/output7/savefiles/')\n",
"my_mkdirs('/content/output8/savefiles/')\n",
"my_mkdirs('/content/output9/savefiles/')\n",
"my_mkdirs('/content/output10/savefiles/')\n",
"my_mkdirs('/content/output11/savefiles/')\n",
"my_mkdirs('/content/output12/savefiles/')\n",
"my_mkdirs('/content/output13/savefiles/')\n",
"\n",
"\n",
"NEG = '' # @param {type:'string'}\n",
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
"\n",
"for index in range(1667):\n",
"\n",
" PROMPT_INDEX = index\n",
" prompt = target_prompts[f'{index}']\n",
" url = urls[f'{index}']\n",
" if url.find('perchance')>-1:\n",
" image = Image.open(requests.get(url, stream=True).raw)\n",
" else: continue #print(\"(No image for this ID)\")\n",
"\n",
" print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
" text_features_A = target_text_encodings[f'{index}']\n",
" image_features_A = target_image_encodings[f'{index}']\n",
" # text-similarity\n",
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
"\n",
" neg_sims = 0*sims\n",
" if(NEG != ''):\n",
" # Get text features for user input\n",
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
" text_features_NEG = model.get_text_features(**inputs)\n",
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
" # text-similarity\n",
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
" #------#\n",
"\n",
" # plus image-similarity\n",
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
"\n",
" # minus NEG-similarity\n",
" sims = sims - neg_sims\n",
"\n",
" # Sort the items\n",
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
"\n",
" # @markdown Repeat output N times\n",
" RANGE = 1000\n",
" NUM_CHUNKS = 10+\n",
" separator = '|'\n",
" _savefiles = {}\n",
" #-----#\n",
" for chunk in range(NUM_CHUNKS):\n",
" if chunk=<10:continue\n",
" start_at_index = chunk * RANGE\n",
" _prompts = ''\n",
" for _index in range(start_at_index + RANGE):\n",
" if _index < start_at_index : continue\n",
" index = indices[_index].item()\n",
" prompt = prompts[f'{index}']\n",
" _prompts = _prompts.replace(prompt + separator,'')\n",
" _prompts = _prompts + prompt + separator\n",
" #------#\n",
" _prompts = fix_bad_symbols(_prompts)\n",
" _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
" _savefiles[f'{chunk}'] = _prompts\n",
" #---------#\n",
" save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
"\n",
"\n",
" if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
" if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
" if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
" if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
" if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
" if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
" if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
" if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
" if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
" if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
" if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
" if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
"\n",
"\n",
" #------#\n",
" print(f'Saving savefile {save_filename} to {output_folder}...')\n",
" with open(save_filename, 'w') as f:\n",
" json.dump(_savefiles, f)\n",
" #---------#\n",
" continue\n",
"#-----------#"
],
"metadata": {
"id": "x1uAVXZEoL0T",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Determine if this notebook is running on Colab or Kaggle\n",
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"#-------#\n",
"\n",
"# @title Download the text_encodings as .zip\n",
"import os\n",
"%cd {home_directory}\n",
"#os.remove(f'{home_directory}results.zip')\n",
"root_output_folder = home_directory + 'output/'\n",
"zip_dest = f'/content/results.zip' #drive/MyDrive\n",
"!zip -r {zip_dest} {root_output_folder}"
],
"metadata": {
"id": "zivBNrw9uSVD",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title \tβ Quick fix for normalizing encoded text corpus tensors\n",
"\n",
"import os\n",
"my_mkdirs('/content/output')\n",
"my_mkdirs('/content/output/text_encodings')\n",
"\n",
"for filename in os.listdir(f'{prompts_folder}'):\n",
" %cd {prompts_folder}\n",
" prompts = {}\n",
" with open(f'{filename}', 'r') as f:\n",
" data = json.load(f).items()\n",
" for key,value in data:\n",
" prompts[key] = value\n",
" #------#\n",
" num_items = int(prompts['num_items'])\n",
"\n",
" %cd {encodings_folder}\n",
" enc_filename = filename.replace('json', 'safetensors')\n",
" _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
" text_encodings = torch.zeros(num_items , dim)\n",
" tmp = torch.ones(dim)\n",
" tmp2 = torch.tensor(1/0.0043)\n",
" zero_point = 0\n",
" for index in range(num_items):\n",
" text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
" text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
" less_than_zero = test<0\n",
" while(torch.any(less_than_zero).item()):\n",
" zero_point = zero_point + 1\n",
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
" less_than_zero = test<0\n",
" #------#\n",
" _text_encodings[index][0] = zero_point\n",
" _text_encodings[index][1:dim+1] = test\n",
" #-------#\n",
" %cd /content/output/text_encodings\n",
"\n",
" tmp = {}\n",
" tmp['weights'] = _text_encodings.to(torch.uint8)\n",
" tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
" tmp['scale'] = torch.tensor(0.0043)\n",
" save_file(tmp , f'{enc_filename}')\n",
"#------#"
],
"metadata": {
"cellView": "form",
"id": "9qgHW1Wr7kZn"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Check the average value for this set\n",
"sims = torch.matmul(vocab_encodings.dequantize(),average.t())\n",
"sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
"for index in range(10):\n",
" print(prompts[f'{indices[index].item()}'])"
],
"metadata": {
"id": "XNHz0hfhHRUu"
},
"execution_count": null,
"outputs": []
}
]
} |