Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -2935,7 +2935,7 @@
|
|
2935 |
]
|
2936 |
}
|
2937 |
},
|
2938 |
-
"execution_count":
|
2939 |
"outputs": [
|
2940 |
{
|
2941 |
"output_type": "stream",
|
@@ -3120,8 +3120,8 @@
|
|
3120 |
"\n",
|
3121 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
3122 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
3123 |
-
"reference = torch.add(reference, C * references[index][0].dequantize())\n",
|
3124 |
-
"reference = torch.add(reference, (1-C) * references[index][1].dequantize())\n",
|
3125 |
"references = ''\n",
|
3126 |
"# @markdown -----------\n",
|
3127 |
"# @markdown πβ Enhance similarity to prompt(s)\n",
|
@@ -3147,7 +3147,8 @@
|
|
3147 |
"# @markdown -----------\n",
|
3148 |
"# @markdown β© Skip item(s) containing the word(s)\n",
|
3149 |
"SKIP = 'futa ' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
3150 |
-
"
|
|
|
3151 |
" if txt.strip().isnumeric(): return True\n",
|
3152 |
" if blacklist.strip() == '': return False\n",
|
3153 |
" for item in list(blacklist.split(',')):\n",
|
@@ -3155,6 +3156,7 @@
|
|
3155 |
" if txt.find(item.strip())> -1 : return True\n",
|
3156 |
" #------#\n",
|
3157 |
" return False\n",
|
|
|
3158 |
"# @markdown -----------\n",
|
3159 |
"# @markdown π How similar should the results be?\n",
|
3160 |
"list_size = 1000 # @param {type:'number'}\n",
|
@@ -3198,7 +3200,9 @@
|
|
3198 |
"#---#\n",
|
3199 |
" output = '{'\n",
|
3200 |
" for _index in range(list_size):\n",
|
3201 |
-
"
|
|
|
|
|
3202 |
" #---------#\n",
|
3203 |
" output = (output + '}').replace('|}' , '} ')\n",
|
3204 |
" for iter in range(N):\n",
|
@@ -3536,93 +3540,12 @@
|
|
3536 |
"execution_count": null,
|
3537 |
"outputs": []
|
3538 |
},
|
3539 |
-
{
|
3540 |
-
"cell_type": "code",
|
3541 |
-
"source": [
|
3542 |
-
"ref"
|
3543 |
-
],
|
3544 |
-
"metadata": {
|
3545 |
-
"id": "J-IUkhBXe_a2",
|
3546 |
-
"outputId": "a4e1c5b2-9d10-4113-ccf8-43fd25b32749",
|
3547 |
-
"colab": {
|
3548 |
-
"base_uri": "https://localhost:8080/"
|
3549 |
-
}
|
3550 |
-
},
|
3551 |
-
"execution_count": 3,
|
3552 |
-
"outputs": [
|
3553 |
-
{
|
3554 |
-
"output_type": "execute_result",
|
3555 |
-
"data": {
|
3556 |
-
"text/plain": [
|
3557 |
-
"tensor([[ 4, 254, 7, 255, 3, 1, 1, 253, 1, 0, 0, 0, 3, 1,\n",
|
3558 |
-
" 249, 2, 255, 7, 3, 3, 253, 0, 4, 1, 253, 249, 7, 2,\n",
|
3559 |
-
" 5, 255, 254, 254, 253, 249, 254, 7, 5, 254, 255, 249, 252, 255,\n",
|
3560 |
-
" 6, 0, 254, 253, 3, 2, 2, 253, 250, 4, 8, 254, 253, 3,\n",
|
3561 |
-
" 1, 0, 0, 253, 0, 7, 2, 3, 254, 2, 7, 0, 0, 253,\n",
|
3562 |
-
" 252, 7, 3, 1, 1, 2, 252, 4, 5, 252, 255, 3, 5, 253,\n",
|
3563 |
-
" 4, 2, 0, 1, 0, 2, 4, 4, 252, 7, 255, 253, 253, 2,\n",
|
3564 |
-
" 4, 3, 254, 249, 0, 253, 0, 254, 0, 253, 6, 0, 0, 255,\n",
|
3565 |
-
" 0, 254, 252, 0, 250, 253, 249, 255, 252, 252, 0, 1, 5, 1,\n",
|
3566 |
-
" 5, 3, 1, 251, 254, 242, 250, 254, 252, 5, 5, 9, 254, 9,\n",
|
3567 |
-
" 9, 0, 0, 253, 1, 0, 3, 255, 255, 2, 2, 255, 4, 254,\n",
|
3568 |
-
" 254, 255, 4, 254, 253, 7, 255, 3, 1, 5, 252, 2, 0, 255,\n",
|
3569 |
-
" 5, 252, 255, 252, 3, 1, 3, 2, 254, 243, 252, 2, 8, 3,\n",
|
3570 |
-
" 255, 2, 254, 2, 254, 0, 254, 252, 253, 4, 254, 1, 255, 232,\n",
|
3571 |
-
" 253, 7, 2, 255, 0, 0, 254, 2, 253, 255, 254, 2, 7, 251,\n",
|
3572 |
-
" 255, 252, 255, 255, 254, 5, 5, 8, 255, 6, 0, 255, 253, 254,\n",
|
3573 |
-
" 3, 254, 2, 4, 8, 251, 255, 253, 2, 254, 7, 255, 250, 4,\n",
|
3574 |
-
" 3, 251, 1, 252, 3, 5, 255, 6, 255, 3, 2, 6, 3, 1,\n",
|
3575 |
-
" 1, 250, 253, 0, 252, 5, 251, 11, 255, 255, 254, 1, 3, 255,\n",
|
3576 |
-
" 252, 248, 254, 254, 255, 2, 255, 250, 252, 254, 254, 2, 7, 7,\n",
|
3577 |
-
" 253, 249, 0, 4, 4, 1, 5, 2, 238, 255, 254, 254, 252, 0,\n",
|
3578 |
-
" 248, 1, 254, 0, 0, 2, 254, 255, 252, 0, 255, 253, 254, 255,\n",
|
3579 |
-
" 1, 254, 253, 253, 254, 255, 4, 255, 112, 253, 251, 9, 0, 251,\n",
|
3580 |
-
" 5, 1, 254, 8, 252, 254, 0, 5, 254, 5, 254, 0, 255, 2,\n",
|
3581 |
-
" 252, 252, 2, 1, 253, 251, 251, 254, 0, 3, 250, 255, 5, 7,\n",
|
3582 |
-
" 1, 2, 2, 255, 3, 253, 2, 253, 254, 0, 253, 1, 3, 8,\n",
|
3583 |
-
" 7, 6, 13, 1, 1, 4, 4, 1, 1, 250, 0, 2, 250, 255,\n",
|
3584 |
-
" 1, 251, 7, 1, 252, 255, 2, 252, 2, 1, 2, 7, 0, 4,\n",
|
3585 |
-
" 0, 250, 251, 251, 4, 0, 255, 8, 9, 4, 5, 0, 17, 0,\n",
|
3586 |
-
" 3, 0, 254, 6, 250, 1, 254, 243, 254, 253, 255, 1, 254, 251,\n",
|
3587 |
-
" 249, 3, 0, 1, 1, 2, 2, 5, 3, 0, 248, 2, 9, 254,\n",
|
3588 |
-
" 2, 9, 0, 2, 255, 5, 138, 0, 1, 1, 255, 249, 4, 0,\n",
|
3589 |
-
" 254, 253, 236, 252, 3, 0, 255, 9, 6, 1, 250, 0, 2, 3,\n",
|
3590 |
-
" 2, 9, 252, 2, 4, 255, 251, 6, 4, 252, 2, 255, 2, 253,\n",
|
3591 |
-
" 253, 250, 251, 253, 1, 4, 251, 250, 251, 255, 4, 252, 6, 6,\n",
|
3592 |
-
" 254, 2, 241, 0, 1, 6, 2, 247, 1, 1, 4, 250, 254, 4,\n",
|
3593 |
-
" 253, 1, 253, 1, 247, 2, 2, 249, 3, 2, 5, 253, 255, 253,\n",
|
3594 |
-
" 254, 252, 1, 253, 5, 2, 4, 5, 0, 3, 239, 254, 250, 1,\n",
|
3595 |
-
" 5, 253, 7, 2, 2, 3, 1, 255, 254, 2, 4, 255, 2, 1,\n",
|
3596 |
-
" 0, 0, 0, 1, 4, 254, 4, 0, 3, 5, 3, 1, 0, 253,\n",
|
3597 |
-
" 18, 3, 253, 255, 252, 6, 3, 255, 254, 253, 2, 252, 0, 254,\n",
|
3598 |
-
" 253, 254, 252, 255, 255, 250, 4, 1, 2, 5, 249, 251, 250, 1,\n",
|
3599 |
-
" 250, 250, 3, 4, 255, 3, 2, 1, 0, 254, 2, 2, 255, 6,\n",
|
3600 |
-
" 1, 3, 3, 11, 0, 2, 2, 249, 1, 0, 255, 0, 1, 4,\n",
|
3601 |
-
" 3, 246, 250, 0, 4, 248, 1, 3, 247, 11, 3, 2, 6, 0,\n",
|
3602 |
-
" 253, 1, 251, 2, 2, 252, 254, 246, 0, 252, 252, 3, 255, 2,\n",
|
3603 |
-
" 13, 2, 1, 255, 3, 253, 0, 254, 251, 253, 6, 255, 0, 1,\n",
|
3604 |
-
" 254, 255, 248, 251, 1, 253, 252, 255, 0, 253, 2, 2, 252, 8,\n",
|
3605 |
-
" 255, 5, 251, 1, 3, 249, 4, 253, 255, 1, 4, 251, 255, 4,\n",
|
3606 |
-
" 254, 3, 1, 254, 255, 1, 245, 3, 6, 1, 1, 5, 254, 255,\n",
|
3607 |
-
" 2, 5, 0, 243, 254, 254, 255, 253, 251, 0, 251, 2, 2, 4,\n",
|
3608 |
-
" 1, 252, 255, 2, 3, 255, 0, 0, 255, 9, 12, 12, 9, 3,\n",
|
3609 |
-
" 248, 5, 254, 0, 1, 1, 9, 255, 6, 1, 2, 6, 2, 0,\n",
|
3610 |
-
" 255, 0, 254, 3, 6, 2, 251, 253, 252, 0, 5, 253, 248, 245,\n",
|
3611 |
-
" 0, 254, 1, 254, 250, 252, 5, 5, 5, 1, 254, 0]],\n",
|
3612 |
-
" dtype=torch.uint8)"
|
3613 |
-
]
|
3614 |
-
},
|
3615 |
-
"metadata": {},
|
3616 |
-
"execution_count": 3
|
3617 |
-
}
|
3618 |
-
]
|
3619 |
-
},
|
3620 |
{
|
3621 |
"cell_type": "code",
|
3622 |
"source": [
|
3623 |
"\n",
|
3624 |
"# @title \tβ New code (work in progress)\n",
|
3625 |
-
"_ref = '
|
3626 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
3627 |
"\n",
|
3628 |
"SCALE = 0.0043\n",
|
@@ -3651,8 +3574,6 @@
|
|
3651 |
" return 1\n",
|
3652 |
"#----------#\n",
|
3653 |
"\n",
|
3654 |
-
"\n",
|
3655 |
-
"\n",
|
3656 |
"inputs = tokenizer(text = _ref.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
3657 |
"ref = model.get_text_features(**inputs)[0]\n",
|
3658 |
"\n",
|
@@ -3663,13 +3584,12 @@
|
|
3663 |
"\n",
|
3664 |
"vocab = load_file(url)\n",
|
3665 |
"\n",
|
3666 |
-
"\n",
|
3667 |
"#get_most_similiar_items_to(ref , url , LIST_SIZE)"
|
3668 |
],
|
3669 |
"metadata": {
|
3670 |
"id": "PGyLzCmYqCPg"
|
3671 |
},
|
3672 |
-
"execution_count":
|
3673 |
"outputs": []
|
3674 |
}
|
3675 |
]
|
|
|
2935 |
]
|
2936 |
}
|
2937 |
},
|
2938 |
+
"execution_count": null,
|
2939 |
"outputs": [
|
2940 |
{
|
2941 |
"output_type": "stream",
|
|
|
3120 |
"\n",
|
3121 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
3122 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
3123 |
+
"reference = torch.add(reference, prompt_strength * C * references[index][0].dequantize())\n",
|
3124 |
+
"reference = torch.add(reference, prompt_strength * (1-C) * references[index][1].dequantize())\n",
|
3125 |
"references = ''\n",
|
3126 |
"# @markdown -----------\n",
|
3127 |
"# @markdown πβ Enhance similarity to prompt(s)\n",
|
|
|
3147 |
"# @markdown -----------\n",
|
3148 |
"# @markdown β© Skip item(s) containing the word(s)\n",
|
3149 |
"SKIP = 'futa ' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
3150 |
+
"\n",
|
3151 |
+
"def isBlacklisted(txt, blacklist):\n",
|
3152 |
" if txt.strip().isnumeric(): return True\n",
|
3153 |
" if blacklist.strip() == '': return False\n",
|
3154 |
" for item in list(blacklist.split(',')):\n",
|
|
|
3156 |
" if txt.find(item.strip())> -1 : return True\n",
|
3157 |
" #------#\n",
|
3158 |
" return False\n",
|
3159 |
+
"\n",
|
3160 |
"# @markdown -----------\n",
|
3161 |
"# @markdown π How similar should the results be?\n",
|
3162 |
"list_size = 1000 # @param {type:'number'}\n",
|
|
|
3200 |
"#---#\n",
|
3201 |
" output = '{'\n",
|
3202 |
" for _index in range(list_size):\n",
|
3203 |
+
" tmp = prompts[f'{indices[min(_index+start_at_index,NUM_VOCAB_ITEMS-1)].item()}']\n",
|
3204 |
+
" if isBlacklisted(tmp , SKIP): continue\n",
|
3205 |
+
" output = output + tmp + '|'\n",
|
3206 |
" #---------#\n",
|
3207 |
" output = (output + '}').replace('|}' , '} ')\n",
|
3208 |
" for iter in range(N):\n",
|
|
|
3540 |
"execution_count": null,
|
3541 |
"outputs": []
|
3542 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3543 |
{
|
3544 |
"cell_type": "code",
|
3545 |
"source": [
|
3546 |
"\n",
|
3547 |
"# @title \tβ New code (work in progress)\n",
|
3548 |
+
"_ref = '' # @param {type:'string' , placeholder:'type a single prompt to match'}\n",
|
3549 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
3550 |
"\n",
|
3551 |
"SCALE = 0.0043\n",
|
|
|
3574 |
" return 1\n",
|
3575 |
"#----------#\n",
|
3576 |
"\n",
|
|
|
|
|
3577 |
"inputs = tokenizer(text = _ref.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
3578 |
"ref = model.get_text_features(**inputs)[0]\n",
|
3579 |
"\n",
|
|
|
3584 |
"\n",
|
3585 |
"vocab = load_file(url)\n",
|
3586 |
"\n",
|
|
|
3587 |
"#get_most_similiar_items_to(ref , url , LIST_SIZE)"
|
3588 |
],
|
3589 |
"metadata": {
|
3590 |
"id": "PGyLzCmYqCPg"
|
3591 |
},
|
3592 |
+
"execution_count": null,
|
3593 |
"outputs": []
|
3594 |
}
|
3595 |
]
|