Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -93,9 +93,21 @@
|
|
93 |
"\n",
|
94 |
"f_add = torch.nn.quantized.FloatFunctional()\n",
|
95 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"index = 0\n",
|
97 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
98 |
-
"\n",
|
99 |
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
|
100 |
"for key in vocab_encodings:\n",
|
101 |
" index = index + 1;\n",
|
@@ -107,10 +119,10 @@
|
|
107 |
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
|
108 |
" index = index + 1;\n",
|
109 |
"#------#\n",
|
110 |
-
"NUM_REFERENCE_ITEMS = index
|
111 |
],
|
112 |
"metadata": {
|
113 |
-
"id": "
|
114 |
},
|
115 |
"execution_count": null,
|
116 |
"outputs": []
|
@@ -239,7 +251,7 @@
|
|
239 |
"metadata": {
|
240 |
"id": "XNHz0hfhHRUu"
|
241 |
},
|
242 |
-
"execution_count":
|
243 |
"outputs": []
|
244 |
},
|
245 |
{
|
@@ -550,6 +562,51 @@
|
|
550 |
},
|
551 |
"execution_count": null,
|
552 |
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
}
|
554 |
]
|
555 |
}
|
|
|
93 |
"\n",
|
94 |
"f_add = torch.nn.quantized.FloatFunctional()\n",
|
95 |
"\n",
|
96 |
+
"\n",
|
97 |
+
"\n",
|
98 |
+
"\n"
|
99 |
+
],
|
100 |
+
"metadata": {
|
101 |
+
"id": "TC5lMJrS1HCC"
|
102 |
+
},
|
103 |
+
"execution_count": null,
|
104 |
+
"outputs": []
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"source": [
|
109 |
"index = 0\n",
|
110 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
|
|
111 |
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
|
112 |
"for key in vocab_encodings:\n",
|
113 |
" index = index + 1;\n",
|
|
|
119 |
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
|
120 |
" index = index + 1;\n",
|
121 |
"#------#\n",
|
122 |
+
"NUM_REFERENCE_ITEMS = index"
|
123 |
],
|
124 |
"metadata": {
|
125 |
+
"id": "Z8x3Y7IsnGlT"
|
126 |
},
|
127 |
"execution_count": null,
|
128 |
"outputs": []
|
|
|
251 |
"metadata": {
|
252 |
"id": "XNHz0hfhHRUu"
|
253 |
},
|
254 |
+
"execution_count": null,
|
255 |
"outputs": []
|
256 |
},
|
257 |
{
|
|
|
562 |
},
|
563 |
"execution_count": null,
|
564 |
"outputs": []
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"cell_type": "code",
|
568 |
+
"source": [
|
569 |
+
"\n",
|
570 |
+
"# @title \t⚄ New code (work in progress)\n",
|
571 |
+
"\n",
|
572 |
+
"LIST_SIZE = 1000\n",
|
573 |
+
"SCALE = 0.0043\n",
|
574 |
+
"DIM = 768\n",
|
575 |
+
"\n",
|
576 |
+
"from safetensors.torch import load_file\n",
|
577 |
+
"\n",
|
578 |
+
"def get_most_similiar_items_to(ref , url , num_items):\n",
|
579 |
+
" vocab = load_file(url)\n",
|
580 |
+
"\n",
|
581 |
+
" def similarity(item):\n",
|
582 |
+
" key = item[0]\n",
|
583 |
+
" value = item[1]\n",
|
584 |
+
" tmp = torch.sub(value[1:DIM+1] , torch.ones(DIM) , alpha = value[0].item()).to(dtype=torch.uint8)\n",
|
585 |
+
" return torch.dot(tmp,ref).item()\n",
|
586 |
+
" #--------#\n",
|
587 |
+
"\n",
|
588 |
+
" return dict(sorted(vocab.items(), key=similarity))\n",
|
589 |
+
"#----------#\n",
|
590 |
+
"\n",
|
591 |
+
"ref = torch.rand(DIM)\n",
|
592 |
+
"ref = (1/SCALE) * ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
593 |
+
"ref = torch.round(ref).to(dtype=torch.uint8)\n",
|
594 |
+
"\n",
|
595 |
+
"url = '/content/fusion-t2i-generator-data/lyrics_vocab_q0043_41905.safetensors'\n",
|
596 |
+
"test = get_most_similiar_items_to(ref , url , LIST_SIZE)\n",
|
597 |
+
"\n",
|
598 |
+
"index = 0\n",
|
599 |
+
"for key in test:\n",
|
600 |
+
" print(key)\n",
|
601 |
+
" index = index + 1\n",
|
602 |
+
" if index>=10:break\n",
|
603 |
+
"#-----#"
|
604 |
+
],
|
605 |
+
"metadata": {
|
606 |
+
"id": "PGyLzCmYqCPg"
|
607 |
+
},
|
608 |
+
"execution_count": null,
|
609 |
+
"outputs": []
|
610 |
}
|
611 |
]
|
612 |
}
|