text
stringlengths
4
1.02M
meta
dict
from matrixbot import utils class BroadcastPlugin: def __init__(self, bot, settings): self.name = "BroadcastPlugin" self.logger = utils.get_logger() self.bot = bot self.settings = settings self.logger.info("BroadcastPlugin loaded (%(name)s)" % settings) def dispatch(self, handler): return def command(self, sender, room_id, body, handler): self.logger.debug("BroadcastPlugin command") plugin_name = self.settings["name"] command_list = body.split()[1:] if len(command_list) > 0 and command_list[0] == plugin_name: if sender not in self.settings["users"]: self.logger.warning("User %s not autorized to use BroadcastPlugin" % self) return announcement = body[body.find(plugin_name) + len(plugin_name) + 1:] html = "<h3>%s</h3> <pre>%s</pre>" % ('Announcement:', announcement) for room_id in self.settings["rooms"]: room_id = self.bot.get_real_room_id(room_id) self.logger.debug( "BroadcastPlugin announcement in %s: %s" % ( room_id, announcement ) ) self.bot.send_html(room_id,html) def help(self, sender, room_id, handler): self.logger.debug("BroadcastPlugin help") if sender in self.settings["users"]: if self.bot.is_private_room(room_id, self.bot.get_user_id()): message = "%(name)s Announcement to be sent\n" % self.settings else: message = "%(username)s: %(name)s Announcement to be sent\n" % self.settings handler(room_id, message)
{ "content_hash": "f5c2557d5ff2b16a85dd052807e5b6cd", "timestamp": "", "source": "github", "line_count": 43, "max_line_length": 92, "avg_line_length": 40.48837209302326, "alnum_prop": 0.5577254451464676, "repo_name": "psaavedra/matrix-bot", "id": "06e83a7b2e95c7b0b844b90fae8f9800b84574cd", "size": "1765", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "matrixbot/plugins/broadcast.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "84552" }, { "name": "Shell", "bytes": "3959" } ], "symlink_target": "" }
"""Prepares the data used for DeepLab training/evaluation.""" import tensorflow as tf from deeplab.core import feature_extractor from deeplab.core import preprocess_utils # The probability of flipping the images and labels # left-right during training _PROB_OF_FLIP = 0.5 def preprocess_image_and_label(image, label, crop_height, crop_width, min_resize_value=None, max_resize_value=None, resize_factor=None, min_scale_factor=1., max_scale_factor=1., scale_factor_step_size=0, ignore_label=255, is_training=True, model_variant=None): """Preprocesses the image and label. Args: image: Input image. label: Ground truth annotation label. crop_height: The height value used to crop the image and label. crop_width: The width value used to crop the image and label. min_resize_value: Desired size of the smaller image side. max_resize_value: Maximum allowed size of the larger image side. resize_factor: Resized dimensions are multiple of factor plus one. min_scale_factor: Minimum scale factor value. max_scale_factor: Maximum scale factor value. scale_factor_step_size: The step size from min scale factor to max scale factor. The input is randomly scaled based on the value of (min_scale_factor, max_scale_factor, scale_factor_step_size). ignore_label: The label value which will be ignored for training and evaluation. is_training: If the preprocessing is used for training or not. model_variant: Model variant (string) for choosing how to mean-subtract the images. See feature_extractor.network_map for supported model variants. Returns: original_image: Original image (could be resized). processed_image: Preprocessed image. label: Preprocessed ground truth segmentation label. Raises: ValueError: Ground truth label not provided during training. """ if is_training and label is None: raise ValueError('During training, label must be provided.') if model_variant is None: tf.logging.warning('Default mean-subtraction is performed. Please specify ' 'a model_variant. See feature_extractor.network_map for ' 'supported model variants.') # Keep reference to original image. original_image = image processed_image = tf.cast(image, tf.float32) if label is not None: label = tf.cast(label, tf.int32) # Resize image and label to the desired range. if min_resize_value or max_resize_value: [processed_image, label] = ( preprocess_utils.resize_to_range( image=processed_image, label=label, min_size=min_resize_value, max_size=max_resize_value, factor=resize_factor, align_corners=True)) # The `original_image` becomes the resized image. original_image = tf.identity(processed_image) # Data augmentation by randomly scaling the inputs. if is_training: scale = preprocess_utils.get_random_scale( min_scale_factor, max_scale_factor, scale_factor_step_size) processed_image, label = preprocess_utils.randomly_scale_image_and_label( processed_image, label, scale) processed_image.set_shape([None, None, 3]) # Pad image and label to have dimensions >= [crop_height, crop_width] image_shape = tf.shape(processed_image) image_height = image_shape[0] image_width = image_shape[1] target_height = image_height + tf.maximum(crop_height - image_height, 0) target_width = image_width + tf.maximum(crop_width - image_width, 0) # Pad image with mean pixel value. mean_pixel = tf.reshape( feature_extractor.mean_pixel(model_variant), [1, 1, 3]) processed_image = preprocess_utils.pad_to_bounding_box( processed_image, 0, 0, target_height, target_width, mean_pixel) if label is not None: label = preprocess_utils.pad_to_bounding_box( label, 0, 0, target_height, target_width, ignore_label) # Randomly crop the image and label. if is_training and label is not None: processed_image, label = preprocess_utils.random_crop( [processed_image, label], crop_height, crop_width) processed_image.set_shape([crop_height, crop_width, 3]) if label is not None: label.set_shape([crop_height, crop_width, 1]) if is_training: # Randomly left-right flip the image and label. processed_image, label, _ = preprocess_utils.flip_dim( [processed_image, label], _PROB_OF_FLIP, dim=1) return original_image, processed_image, label
{ "content_hash": "3a81d0a9dc5050fc62c833c06641d146", "timestamp": "", "source": "github", "line_count": 123, "max_line_length": 80, "avg_line_length": 39.53658536585366, "alnum_prop": 0.6512440880115156, "repo_name": "tombstone/models", "id": "9ca8bce4eb9104b22469419c4e6af4beaba9406a", "size": "5580", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "research/deeplab/input_preprocess.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "1365199" }, { "name": "GLSL", "bytes": "976" }, { "name": "HTML", "bytes": "147010" }, { "name": "JavaScript", "bytes": "33208" }, { "name": "Jupyter Notebook", "bytes": "1858048" }, { "name": "Makefile", "bytes": "4763" }, { "name": "Python", "bytes": "7241242" }, { "name": "Shell", "bytes": "102270" }, { "name": "TypeScript", "bytes": "6515" } ], "symlink_target": "" }
from __future__ import print_function # For flag of bool type, we consider the strings 'False', 'false' and '0' # as False, and the string s'True', 'true', '1' as True. # We also accept the bool type as its corresponding value! import logging import os import shlex import sys import warnings from six import StringIO import theano from theano.compat import configparser as ConfigParser from six import string_types _logger = logging.getLogger('theano.configparser') class TheanoConfigWarning(Warning): def warn(cls, message, stacklevel=0): warnings.warn(message, cls, stacklevel=stacklevel + 3) warn = classmethod(warn) THEANO_FLAGS = os.getenv("THEANO_FLAGS", "") # The THEANO_FLAGS environment variable should be a list of comma-separated # [section.]option=value entries. If the section part is omitted, there should # be only one section that contains the given option. def parse_config_string(config_string, issue_warnings=True): """ Parses a config string (comma-separated key=value components) into a dict. """ config_dict = {} my_splitter = shlex.shlex(config_string, posix=True) my_splitter.whitespace = ',' my_splitter.whitespace_split = True for kv_pair in my_splitter: kv_pair = kv_pair.strip() if not kv_pair: continue kv_tuple = kv_pair.split('=', 1) if len(kv_tuple) == 1: if issue_warnings: TheanoConfigWarning.warn( ("Config key '%s' has no value, ignoring it" % kv_tuple[0]), stacklevel=1) else: k, v = kv_tuple # subsequent values for k will override earlier ones config_dict[k] = v return config_dict THEANO_FLAGS_DICT = parse_config_string(THEANO_FLAGS, issue_warnings=True) # THEANORC can contain a colon-delimited list of config files, like # THEANORC=~lisa/.theanorc:~/.theanorc # In that case, definitions in files on the right (here, ~/.theanorc) have # precedence over those in files on the left. def config_files_from_theanorc(): rval = [os.path.expanduser(s) for s in os.getenv('THEANORC', '~/.theanorc').split(os.pathsep)] if os.getenv('THEANORC') is None and sys.platform == "win32": # to don't need to change the filename and make it open easily rval.append(os.path.expanduser('~/.theanorc.txt')) return rval config_files = config_files_from_theanorc() theano_cfg = ConfigParser.SafeConfigParser( {'USER': os.getenv("USER", os.path.split(os.path.expanduser('~'))[-1]), 'LSCRATCH': os.getenv("LSCRATCH", ""), 'TMPDIR': os.getenv("TMPDIR", ""), 'TEMP': os.getenv("TEMP", ""), 'TMP': os.getenv("TMP", ""), 'PID': str(os.getpid()), } ) theano_cfg.read(config_files) # Having a raw version of the config around as well enables us to pass # through config values that contain format strings. # The time required to parse the config twice is negligible. theano_raw_cfg = ConfigParser.RawConfigParser() theano_raw_cfg.read(config_files) def change_flags(**kwargs): """ Use this as a decorator to change the value of Theano config variable. Useful during tests. """ def change_flags_exec(f): def inner(*args, **kwargs_): old_val = {} for k in kwargs: l = [v for v in theano.configparser._config_var_list if v.fullname == k] assert len(l) == 1 old_val[k] = l[0].__get__(True, None) try: for k in kwargs: l = [v for v in theano.configparser._config_var_list if v.fullname == k] assert len(l) == 1 l[0].__set__(None, kwargs[k]) return f(*args, **kwargs_) finally: for k in kwargs: l = [v for v in theano.configparser._config_var_list if v.fullname == k] assert len(l) == 1 l[0].__set__(None, old_val[k]) # Make sure that the name of the decorated function remains the same. inner.__name__ = f.__name__ return inner return change_flags_exec def fetch_val_for_key(key): """Return the overriding config value for a key. A successful search returns a string value. An unsuccessful search raises a KeyError The (decreasing) priority order is: - THEANO_FLAGS - ~./theanorc """ # first try to find it in the FLAGS try: return THEANO_FLAGS_DICT[key] except KeyError: pass # next try to find it in the config file # config file keys can be of form option, or section.option key_tokens = key.rsplit('.', 1) if len(key_tokens) > 2: raise KeyError(key) if len(key_tokens) == 2: section, option = key_tokens else: section, option = 'global', key try: try: return theano_cfg.get(section, option) except ConfigParser.InterpolationError: return theano_raw_cfg.get(section, option) except (ConfigParser.NoOptionError, ConfigParser.NoSectionError): raise KeyError(key) _config_var_list = [] def _config_print(thing, buf): for cv in _config_var_list: print(cv, file=buf) print(" Doc: ", cv.doc, file=buf) print(" Value: ", cv.__get__(True, None), file=buf) print("", file=buf) def get_config_md5(): """ Return a string md5 of the current config options. It should be such that we can safely assume that two different config setups will lead to two different strings. We only take into account config options for which `in_c_key` is True. """ all_opts = sorted([c for c in _config_var_list if c.in_c_key], key=lambda cv: cv.fullname) return theano.gof.utils.hash_from_code('\n'.join( ['%s = %s' % (cv.fullname, cv.__get__(True, None)) for cv in all_opts])) class TheanoConfigParser(object): # properties are installed by AddConfigVar _i_am_a_config_class = True def __str__(self): sio = StringIO() _config_print(self.__class__, sio) return sio.getvalue() # N.B. all instances of TheanoConfigParser give access to the same properties. config = TheanoConfigParser() # The data structure at work here is a tree of CLASSES with # CLASS ATTRIBUTES/PROPERTIES that are either a) INSTANTIATED # dynamically-generated CLASSES, or b) ConfigParam instances. The root # of this tree is the TheanoConfigParser CLASS, and the internal nodes # are the SubObj classes created inside of AddConfigVar(). # Why this design ? # - The config object is a true singleton. Every instance of # TheanoConfigParser is an empty instance that looks up attributes/properties # in the [single] TheanoConfigParser.__dict__ # - The subtrees provide the same interface as the root # - ConfigParser subclasses control get/set of config properties to guard # against craziness. def AddConfigVar(name, doc, configparam, root=config, in_c_key=True): """Add a new variable to theano.config :type name: string for form "[section0.[section1.[etc]]].option" :param name: the full name for this configuration variable. :type doc: string :param doc: What does this variable specify? :type configparam: ConfigParam instance :param configparam: an object for getting and setting this configuration parameter :type root: object :param root: used for recursive calls -- do not provide an argument for this parameter. :type in_c_key: boolean :param in_c_key: If True, then whenever this config option changes, the key associated to compiled C modules also changes, i.e. it may trigger a compilation of these modules (this compilation will only be partial if it turns out that the generated C code is unchanged). Set this option to False only if you are confident this option should not affect C code compilation. :returns: None """ # This method also performs some of the work of initializing ConfigParam # instances if root is config: # only set the name in the first call, not the recursive ones configparam.fullname = name sections = name.split('.') if len(sections) > 1: # set up a subobject if not hasattr(root, sections[0]): # every internal node in the config tree is an instance of its own # unique class class SubObj(object): _i_am_a_config_class = True setattr(root.__class__, sections[0], SubObj()) newroot = getattr(root, sections[0]) if (not getattr(newroot, '_i_am_a_config_class', False) or isinstance(newroot, type)): raise TypeError( 'Internal config nodes must be config class instances', newroot) return AddConfigVar('.'.join(sections[1:]), doc, configparam, root=newroot, in_c_key=in_c_key) else: if hasattr(root, name): raise AttributeError('This name is already taken', configparam.fullname) configparam.doc = doc configparam.in_c_key = in_c_key # Trigger a read of the value from config files and env vars # This allow to filter wrong value from the user. if not callable(configparam.default): configparam.__get__(root, type(root)) else: # We do not want to evaluate now the default value # when it is a callable. try: fetch_val_for_key(configparam.fullname) # The user provided a value, filter it now. configparam.__get__(root, type(root)) except KeyError: pass setattr(root.__class__, sections[0], configparam) _config_var_list.append(configparam) class ConfigParam(object): def __init__(self, default, filter=None, allow_override=True): """ If allow_override is False, we can't change the value after the import of Theano. So the value should be the same during all the execution. """ self.default = default self.filter = filter self.allow_override = allow_override self.is_default = True # N.B. -- # self.fullname # set by AddConfigVar # self.doc # set by AddConfigVar # Note that we do not call `self.filter` on the default value: this # will be done automatically in AddConfigVar, potentially with a # more appropriate user-provided default value. # Calling `filter` here may actually be harmful if the default value is # invalid and causes a crash or has unwanted side effects. def __get__(self, cls, type_): if cls is None: return self if not hasattr(self, 'val'): try: val_str = fetch_val_for_key(self.fullname) self.is_default = False except KeyError: if callable(self.default): val_str = self.default() else: val_str = self.default self.__set__(cls, val_str) # print "RVAL", self.val return self.val def __set__(self, cls, val): if not self.allow_override and hasattr(self, 'val'): raise Exception( "Can't change the value of this config parameter " "after initialization!") # print "SETTING PARAM", self.fullname,(cls), val if self.filter: self.val = self.filter(val) else: self.val = val class EnumStr(ConfigParam): def __init__(self, default, *options, **kwargs): self.default = default self.all = (default,) + options # All options should be strings for val in self.all: if not isinstance(val, string_types): raise ValueError('Valid values for an EnumStr parameter ' 'should be strings', val, type(val)) convert = kwargs.get("convert", None) def filter(val): if convert: val = convert(val) if val in self.all: return val else: raise ValueError(( 'Invalid value ("%s") for configuration variable "%s". ' 'Valid options are %s' % (val, self.fullname, self.all))) over = kwargs.get("allow_override", True) super(EnumStr, self).__init__(default, filter, over) def __str__(self): return '%s (%s) ' % (self.fullname, self.all) class TypedParam(ConfigParam): def __init__(self, default, mytype, is_valid=None, allow_override=True): self.mytype = mytype def filter(val): cast_val = mytype(val) if callable(is_valid): if is_valid(cast_val): return cast_val else: raise ValueError( 'Invalid value (%s) for configuration variable ' '"%s".' % (val, self.fullname), val) return cast_val super(TypedParam, self).__init__(default, filter, allow_override=allow_override) def __str__(self): return '%s (%s) ' % (self.fullname, self.mytype) def StrParam(default, is_valid=None, allow_override=True): return TypedParam(default, str, is_valid, allow_override=allow_override) def IntParam(default, is_valid=None, allow_override=True): return TypedParam(default, int, is_valid, allow_override=allow_override) def FloatParam(default, is_valid=None, allow_override=True): return TypedParam(default, float, is_valid, allow_override=allow_override) def BoolParam(default, is_valid=None, allow_override=True): # see comment at the beginning of this file. def booltype(s): if s in ['False', 'false', '0', False]: return False elif s in ['True', 'true', '1', True]: return True def is_valid_bool(s): if s in ['False', 'false', '0', 'True', 'true', '1', False, True]: return True else: return False if is_valid is None: is_valid = is_valid_bool return TypedParam(default, booltype, is_valid, allow_override=allow_override)
{ "content_hash": "4cd8b3000be37156c9bdb232c6ac72bc", "timestamp": "", "source": "github", "line_count": 420, "max_line_length": 80, "avg_line_length": 34.864285714285714, "alnum_prop": 0.5983063579867514, "repo_name": "cmdunkers/DeeperMind", "id": "196214722ec6faa50065cc6200877e409984284b", "size": "14643", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "PythonEnv/lib/python2.7/site-packages/theano/configparser.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "653032" }, { "name": "C++", "bytes": "3354338" }, { "name": "Cuda", "bytes": "538188" }, { "name": "FORTRAN", "bytes": "10375" }, { "name": "HTML", "bytes": "124328" }, { "name": "Makefile", "bytes": "214" }, { "name": "Matlab", "bytes": "4346" }, { "name": "Python", "bytes": "22186197" }, { "name": "Shell", "bytes": "4377" } ], "symlink_target": "" }
import copy from oslo_log import log from manila.common import constants from manila.i18n import _, _LI from manila import utils LOG = log.getLogger(__name__) def locked_access_rules_operation(operation): """Lock decorator for access rules operations. Takes a named lock prior to executing the operation. The lock is named with the ID of the share instance to which the access rule belongs. Intended use: If an database operation to retrieve or update access rules uses this decorator, it will block actions on all access rules of the share instance until the named lock is free. This is used to avoid race conditions while performing access rules updates on a given share instance. """ def wrapped(*args, **kwargs): instance_id = kwargs.get('share_instance_id') @utils.synchronized( "locked_access_rules_operation_by_share_instance_%s" % instance_id, external=True) def locked_operation(*_args, **_kwargs): return operation(*_args, **_kwargs) return locked_operation(*args, **kwargs) return wrapped class ShareInstanceAccessDatabaseMixin(object): @locked_access_rules_operation def get_and_update_share_instance_access_rules_status( self, context, status=None, conditionally_change=None, share_instance_id=None): """Get and update the access_rules_status of a share instance. :param status: Set this parameter only if you want to omit the conditionally_change parameter; i.e, if you want to force a state change on the share instance regardless of the prior state. :param conditionally_change: Set this parameter to a dictionary of rule state transitions to be made. The key is the expected access_rules_status and the value is the state to transition the access_rules_status to. If the state is not as expected, no transition is performed. Default is {}, which means no state transitions will be made. :returns share_instance: if an update was made. """ if status is not None: updates = {'access_rules_status': status} elif conditionally_change: share_instance = self.db.share_instance_get( context, share_instance_id) access_rules_status = share_instance['access_rules_status'] try: updates = { 'access_rules_status': conditionally_change[access_rules_status], } except KeyError: updates = {} else: updates = {} if updates: share_instance = self.db.share_instance_update( context, share_instance_id, updates, with_share_data=True) return share_instance @locked_access_rules_operation def get_and_update_share_instance_access_rules(self, context, filters=None, updates=None, conditionally_change=None, share_instance_id=None): """Get and conditionally update all access rules of a share instance. :param updates: Set this parameter to a dictionary of key:value pairs corresponding to the keys in the ShareInstanceAccessMapping model. Include 'state' in this dictionary only if you want to omit the conditionally_change parameter; i.e, if you want to force a state change on all filtered rules regardless of the prior state. This parameter is always honored, regardless of whether conditionally_change allows for a state transition as desired. Example:: { 'access_key': 'bob007680048318f4239dfc1c192d5', 'access_level': 'ro', } :param conditionally_change: Set this parameter to a dictionary of rule state transitions to be made. The key is the expected state of the access rule the value is the state to transition the access rule to. If the state is not as expected, no transition is performed. Default is {}, which means no state transitions will be made. Example:: { 'queued_to_apply': 'applying', 'queued_to_deny': 'denying', } """ instance_rules = self.db.share_access_get_all_for_instance( context, share_instance_id, filters=filters) if instance_rules and (updates or conditionally_change): if not updates: updates = {} if not conditionally_change: conditionally_change = {} for rule in instance_rules: mapping_state = rule['state'] rule_updates = copy.deepcopy(updates) try: rule_updates['state'] = conditionally_change[mapping_state] except KeyError: pass if rule_updates: self.db.share_instance_access_update( context, rule['access_id'], share_instance_id, rule_updates) # Refresh the rules after the updates rules_to_get = { 'access_id': tuple([i['access_id'] for i in instance_rules]), } instance_rules = self.db.share_access_get_all_for_instance( context, share_instance_id, filters=rules_to_get) return instance_rules def get_share_instance_access_rules(self, context, filters=None, share_instance_id=None): return self.get_and_update_share_instance_access_rules( context, filters, None, None, share_instance_id) @locked_access_rules_operation def get_and_update_share_instance_access_rule(self, context, rule_id, updates=None, share_instance_id=None, conditionally_change=None): """Get and conditionally update a given share instance access rule. :param updates: Set this parameter to a dictionary of key:value pairs corresponding to the keys in the ShareInstanceAccessMapping model. Include 'state' in this dictionary only if you want to omit the conditionally_change parameter; i.e, if you want to force a state change regardless of the prior state. :param conditionally_change: Set this parameter to a dictionary of rule state transitions to be made. The key is the expected state of the access rule the value is the state to transition the access rule to. If the state is not as expected, no transition is performed. Default is {}, which means no state transitions will be made. Example:: { 'queued_to_apply': 'applying', 'queued_to_deny': 'denying', } """ instance_rule_mapping = self.db.share_instance_access_get( context, rule_id, share_instance_id) if not updates: updates = {} if conditionally_change: mapping_state = instance_rule_mapping['state'] try: updated_state = conditionally_change[mapping_state] updates.update({'state': updated_state}) except KeyError: msg = ("The state of the access rule %(rule_id)s (allowing " "access to share instance %(si)s) was not updated " "because its state was modified by another operation.") msg_payload = { 'si': share_instance_id, 'rule_id': rule_id, } LOG.debug(msg, msg_payload) if updates: self.db.share_instance_access_update( context, rule_id, share_instance_id, updates) # Refresh the rule after update instance_rule_mapping = self.db.share_instance_access_get( context, rule_id, share_instance_id) return instance_rule_mapping @locked_access_rules_operation def delete_share_instance_access_rules(self, context, access_rules, share_instance_id=None): for rule in access_rules: self.db.share_instance_access_delete(context, rule['id']) class ShareInstanceAccess(ShareInstanceAccessDatabaseMixin): def __init__(self, db, driver): self.db = db self.driver = driver def update_access_rules(self, context, share_instance_id, delete_all_rules=False, share_server=None): """Update access rules for a given share instance. :param context: request context :param share_instance_id: ID of the share instance :param delete_all_rules: set this parameter to True if all existing access rules must be denied for a given share instance :param share_server: Share server model or None """ share_instance = self.db.share_instance_get( context, share_instance_id, with_share_data=True) msg_payload = { 'si': share_instance_id, 'shr': share_instance['share_id'], } if delete_all_rules: updates = { 'state': constants.ACCESS_STATE_QUEUED_TO_DENY, } self.get_and_update_share_instance_access_rules( context, updates=updates, share_instance_id=share_instance_id) # Is there a sync in progress? If yes, ignore the incoming request. rule_filter = { 'state': (constants.ACCESS_STATE_APPLYING, constants.ACCESS_STATE_DENYING), } syncing_rules = self.get_and_update_share_instance_access_rules( context, filters=rule_filter, share_instance_id=share_instance_id) if syncing_rules: msg = ("Access rules are being synced for share instance " "%(si)s belonging to share %(shr)s, any rule changes will " "be applied shortly.") LOG.debug(msg, msg_payload) else: rules_to_apply_or_deny = ( self._update_and_get_unsynced_access_rules_from_db( context, share_instance_id) ) if rules_to_apply_or_deny: msg = ("Updating access rules for share instance %(si)s " "belonging to share %(shr)s.") LOG.debug(msg, msg_payload) self._update_access_rules(context, share_instance_id, share_server=share_server) else: msg = ("All access rules have been synced for share instance " "%(si)s belonging to share %(shr)s.") LOG.debug(msg, msg_payload) def _update_access_rules(self, context, share_instance_id, share_server=None): # Refresh the share instance model share_instance = self.db.share_instance_get( context, share_instance_id, with_share_data=True) conditionally_change = { constants.STATUS_ACTIVE: constants.SHARE_INSTANCE_RULES_SYNCING, } share_instance = ( self.get_and_update_share_instance_access_rules_status( context, conditionally_change=conditionally_change, share_instance_id=share_instance_id) or share_instance ) rules_to_be_removed_from_db = [] # Populate rules to send to the driver (access_rules_to_be_on_share, add_rules, delete_rules) = ( self._get_rules_to_send_to_driver(context, share_instance) ) if share_instance['cast_rules_to_readonly']: # Ensure read/only semantics for a migrating instances access_rules_to_be_on_share = self._set_rules_to_readonly( access_rules_to_be_on_share, share_instance) add_rules = [] rules_to_be_removed_from_db = delete_rules delete_rules = [] try: driver_rule_updates = self._update_rules_through_share_driver( context, share_instance, access_rules_to_be_on_share, add_rules, delete_rules, rules_to_be_removed_from_db, share_server) self._process_driver_rule_updates( context, driver_rule_updates, share_instance_id) # Update access rules that are still in 'applying' state conditionally_change = { constants.ACCESS_STATE_APPLYING: constants.ACCESS_STATE_ACTIVE, } self.get_and_update_share_instance_access_rules( context, share_instance_id=share_instance_id, conditionally_change=conditionally_change) except Exception: conditionally_change_rule_state = { constants.ACCESS_STATE_APPLYING: constants.ACCESS_STATE_ERROR, constants.ACCESS_STATE_DENYING: constants.ACCESS_STATE_ERROR, } self.get_and_update_share_instance_access_rules( context, share_instance_id=share_instance_id, conditionally_change=conditionally_change_rule_state) conditionally_change_access_rules_status = { constants.ACCESS_STATE_ACTIVE: constants.STATUS_ERROR, constants.SHARE_INSTANCE_RULES_SYNCING: constants.STATUS_ERROR, } self.get_and_update_share_instance_access_rules_status( context, share_instance_id=share_instance_id, conditionally_change=conditionally_change_access_rules_status) raise if rules_to_be_removed_from_db: delete_rules = rules_to_be_removed_from_db self.delete_share_instance_access_rules( context, delete_rules, share_instance_id=share_instance['id']) self._loop_for_refresh_else_update_access_rules_status( context, share_instance_id, share_server) msg = _("Access rules were successfully modified for share instance " "%(si)s belonging to share %(shr)s.") msg_payload = { 'si': share_instance['id'], 'shr': share_instance['share_id'], } LOG.info(msg, msg_payload) def _update_rules_through_share_driver(self, context, share_instance, access_rules_to_be_on_share, add_rules, delete_rules, rules_to_be_removed_from_db, share_server): driver_rule_updates = {} try: driver_rule_updates = self.driver.update_access( context, share_instance, access_rules_to_be_on_share, add_rules=add_rules, delete_rules=delete_rules, share_server=share_server ) or {} except NotImplementedError: # NOTE(u_glide): Fallback to legacy allow_access/deny_access # for drivers without update_access() method support self._update_access_fallback(context, add_rules, delete_rules, rules_to_be_removed_from_db, share_instance, share_server) return driver_rule_updates def _loop_for_refresh_else_update_access_rules_status(self, context, share_instance_id, share_server): # Do we need to re-sync or apply any new changes? if self._check_needs_refresh(context, share_instance_id): self._update_access_rules(context, share_instance_id, share_server=share_server) else: # Switch the share instance's access_rules_status to 'active' # if there are no more rules in 'error' state, else, ensure # 'error' state. rule_filter = {'state': constants.STATUS_ERROR} rules_in_error_state = ( self.get_and_update_share_instance_access_rules( context, filters=rule_filter, share_instance_id=share_instance_id) ) if not rules_in_error_state: conditionally_change = { constants.SHARE_INSTANCE_RULES_SYNCING: constants.STATUS_ACTIVE, constants.SHARE_INSTANCE_RULES_ERROR: constants.STATUS_ACTIVE, } self.get_and_update_share_instance_access_rules_status( context, conditionally_change=conditionally_change, share_instance_id=share_instance_id) else: conditionally_change = { constants.SHARE_INSTANCE_RULES_SYNCING: constants.SHARE_INSTANCE_RULES_ERROR, } self.get_and_update_share_instance_access_rules_status( context, conditionally_change=conditionally_change, share_instance_id=share_instance_id) def _process_driver_rule_updates(self, context, driver_rule_updates, share_instance_id): for rule_id, rule_updates in driver_rule_updates.items(): if 'state' in rule_updates: # We allow updates *only* if the state is unchanged from # the time this update was initiated. It is possible # that the access rule was denied at the API prior to # the driver reporting that the access rule was added # successfully. state = rule_updates.pop('state') conditional_state_updates = { constants.ACCESS_STATE_APPLYING: state, constants.ACCESS_STATE_DENYING: state, constants.ACCESS_STATE_ACTIVE: state, } else: conditional_state_updates = {} self.get_and_update_share_instance_access_rule( context, rule_id, updates=rule_updates, share_instance_id=share_instance_id, conditionally_change=conditional_state_updates) @staticmethod def _set_rules_to_readonly(access_rules_to_be_on_share, share_instance): LOG.debug("All access rules of share instance %s are being " "cast to read-only for a migration or because the " "instance is a readable replica.", share_instance['id']) for rule in access_rules_to_be_on_share: rule['access_level'] = constants.ACCESS_LEVEL_RO return access_rules_to_be_on_share def _get_rules_to_send_to_driver(self, context, share_instance): add_rules = [] delete_rules = [] access_filters = { 'state': (constants.ACCESS_STATE_APPLYING, constants.ACCESS_STATE_ACTIVE, constants.ACCESS_STATE_DENYING), } existing_rules_in_db = self.get_and_update_share_instance_access_rules( context, filters=access_filters, share_instance_id=share_instance['id']) # Update queued rules to transitional states for rule in existing_rules_in_db: if rule['state'] == constants.ACCESS_STATE_APPLYING: add_rules.append(rule) elif rule['state'] == constants.ACCESS_STATE_DENYING: delete_rules.append(rule) delete_rule_ids = [r['id'] for r in delete_rules] access_rules_to_be_on_share = [ r for r in existing_rules_in_db if r['id'] not in delete_rule_ids ] return access_rules_to_be_on_share, add_rules, delete_rules def _check_needs_refresh(self, context, share_instance_id): rules_to_apply_or_deny = ( self._update_and_get_unsynced_access_rules_from_db( context, share_instance_id) ) return any(rules_to_apply_or_deny) def _update_access_fallback(self, context, add_rules, delete_rules, remove_rules, share_instance, share_server): for rule in add_rules: LOG.info( _LI("Applying access rule '%(rule)s' for share " "instance '%(instance)s'"), {'rule': rule['id'], 'instance': share_instance['id']} ) self.driver.allow_access( context, share_instance, rule, share_server=share_server ) # NOTE(ganso): Fallback mode temporary compatibility workaround if remove_rules: delete_rules.extend(remove_rules) for rule in delete_rules: LOG.info( _LI("Denying access rule '%(rule)s' from share " "instance '%(instance)s'"), {'rule': rule['id'], 'instance': share_instance['id']} ) self.driver.deny_access( context, share_instance, rule, share_server=share_server ) def _update_and_get_unsynced_access_rules_from_db(self, context, share_instance_id): rule_filter = { 'state': (constants.ACCESS_STATE_QUEUED_TO_APPLY, constants.ACCESS_STATE_QUEUED_TO_DENY), } conditionally_change = { constants.ACCESS_STATE_QUEUED_TO_APPLY: constants.ACCESS_STATE_APPLYING, constants.ACCESS_STATE_QUEUED_TO_DENY: constants.ACCESS_STATE_DENYING, } rules_to_apply_or_deny = ( self.get_and_update_share_instance_access_rules( context, filters=rule_filter, share_instance_id=share_instance_id, conditionally_change=conditionally_change) ) return rules_to_apply_or_deny def reset_applying_rules(self, context, share_instance_id): conditional_updates = { constants.ACCESS_STATE_APPLYING: constants.ACCESS_STATE_QUEUED_TO_APPLY, constants.ACCESS_STATE_DENYING: constants.ACCESS_STATE_QUEUED_TO_DENY, } self.get_and_update_share_instance_access_rules( context, share_instance_id=share_instance_id, conditionally_change=conditional_updates)
{ "content_hash": "212e85e24a8b9d2616fc94e23005247c", "timestamp": "", "source": "github", "line_count": 540, "max_line_length": 79, "avg_line_length": 43.03333333333333, "alnum_prop": 0.5602031155865392, "repo_name": "vponomaryov/manila", "id": "6bca410524ba43a2dd317713c50444df580ab967", "size": "23871", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "manila/share/access.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "953" }, { "name": "Python", "bytes": "9697997" }, { "name": "Shell", "bytes": "103800" } ], "symlink_target": "" }
def oracle_connect(ip, port, username, passwd, sid=None, service_name=None): import cx_Oracle if sid: # sid connect dsn = cx_Oracle.makedsn(ip, port, sid) instance_status = 1 db = cx_Oracle.connect(username, passwd, dsn) return db if service_name: # service_name connect handle = ip + ":" + port + "/" + service_name db = cx_Oracle.connect(username, passwd, handle) return db
{ "content_hash": "f55401f29c1754de244adb63b4fc13e8", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 76, "avg_line_length": 35.38461538461539, "alnum_prop": 0.5869565217391305, "repo_name": "CreditEaseDBA/Themis", "id": "cde159e8af49cb15d5560e3686d0a9889ad483dc", "size": "485", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "webui/utils/oracle_connect.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "1696258" }, { "name": "CoffeeScript", "bytes": "124205" }, { "name": "Go", "bytes": "7075" }, { "name": "HTML", "bytes": "518220" }, { "name": "JavaScript", "bytes": "1565150" }, { "name": "PHP", "bytes": "52571" }, { "name": "Python", "bytes": "220060" }, { "name": "Shell", "bytes": "1353" } ], "symlink_target": "" }
import os import sys import importlib import argparse __dir__ = os.path.dirname(__file__) sys.path.insert(0, os.path.join(__dir__, '')) import cv2 import logging import numpy as np from pathlib import Path ppcv = importlib.import_module('.', 'ppcv') tools = importlib.import_module('.', 'tools') tests = importlib.import_module('.', 'tests') VERSION = '0.1.0' import yaml from ppcv.model_zoo.model_zoo import TASK_DICT, list_model, get_config_file from ppcv.engine.pipeline import Pipeline from ppcv.utils.logger import setup_logger logger = setup_logger() class PaddleCV(object): def __init__(self, task_name=None, config_path=None, output_dir=None, run_mode='paddle', device='CPU'): if task_name is not None: assert task_name in TASK_DICT, f"task_name must be one of {list(TASK_DICT.keys())} but got {task_name}" config_path = get_config_file(task_name) else: assert config_path is not None, "task_name and config_path can not be None at the same time!!!" self.cfg_dict = dict( config=config_path, output_dir=output_dir, run_mode=run_mode, device=device) cfg = argparse.Namespace(**self.cfg_dict) self.pipeline = Pipeline(cfg) @classmethod def list_all_supported_tasks(self, ): logger.info( f"Tasks and recommanded configs that paddlecv supports are : ") buffer = yaml.dump(TASK_DICT) print(buffer) return @classmethod def list_all_supported_models(self, filters=[]): list_model(filters) return def __call__(self, input): res = self.pipeline.run(input) return res
{ "content_hash": "68386c3b2ca990e4b57cfef8b4501e9c", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 115, "avg_line_length": 27.106060606060606, "alnum_prop": 0.606484069312465, "repo_name": "PaddlePaddle/models", "id": "49ba871bcb785e723181da11ca6d85faa542a1ca", "size": "2400", "binary": false, "copies": "1", "ref": "refs/heads/release/2.3", "path": "paddlecv/paddlecv.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "46835" }, { "name": "CMake", "bytes": "8248" }, { "name": "Jupyter Notebook", "bytes": "1720166" }, { "name": "Makefile", "bytes": "2920" }, { "name": "Python", "bytes": "3099697" }, { "name": "Shell", "bytes": "70177" } ], "symlink_target": "" }
import urllib from utils import simplejson, geocoder_factory # http://www.multimap.com/openapidocs/1.2/web_service/ws_geocoding.htm def geocode(q, api_key): base_url = 'http://developer.multimap.com/API/geocode/1.2/%s' % urllib.quote(api_key) json = simplejson.load(urllib.urlopen(base_url + '?' + urllib.urlencode({ 'qs': q, 'output': 'json' }) )) try: lon = json['result_set'][0]['point']['lon'] lat = json['result_set'][0]['point']['lat'] except (KeyError, IndexError): return None, (None, None) name = json['result_set'][0]['address']['display_name'] return name, (lat, lon) geocoder = geocoder_factory(geocode)
{ "content_hash": "c13adb6747f071208da2c1d68db99bd1", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 89, "avg_line_length": 33.476190476190474, "alnum_prop": 0.6088193456614509, "repo_name": "simonw/geocoders", "id": "d0400afa4ca24198de3a48e04f9b7242ad7f7fde", "size": "703", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "geocoders/multimap.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "6885" } ], "symlink_target": "" }
import operator import abc class Expression(object): __metaclass__ = abc.ABCMeta def __init__(self): pass @abc.abstractmethod def get_value(self): pass @abc.abstractmethod def __str__(self): pass @abc.abstractmethod def copy(self): pass @classmethod def coerce_operand(cls, operand): if isinstance(operand, Expression): return operand else: return ConstExpression(operand) def bind(self, owner): pass def get_labels(self): return set() def __add__(self, other): return Add(self, other) def __radd__(self, other): return Add(other, self) def __sub__(self, other): return Sub(self, other) def __rsub__(self, other): return Sub(other, self) def __mul__(self, other): return Mul(self, other) def __rmul__(self, other): return Mul(other, self) def __div__(self, other): return Div(self, other) def __floordiv__(self, other): return FloorDiv(self, other) def __truediv__(self, other): return TrueDiv(self, other) def __rdiv__(self, other): return Div(other, self) def __rfloordiv__(self, other): return FloorDiv(other, self) def __rtruediv__(self, other): return TrueDiv(other, self) def __mod__(self, other): return Mod(self, other) def __pow__(self, other): return Pow(self, other) def __eq__(self, other): return Eq(self, other) def __ne__(self, other): return Ne(self, other) def __gt__(self, other): return Gt(self, other) def __ge__(self, other): return Ge(self, other) def __lt__(self, other): return Lt(self, other) def __le__(self, other): return Le(self, other) def __and__(self, other): """using bitwise and instead of short-circuit logical and""" return And(self, other) def __or__(self, other): """using bitwise or instead of short-circuit logical or""" return Or(self, other) def __not__(self): """logical not""" return Not(self) def __invert__(self): """using bitwise invert as logical not""" return self.__not__() def __pos__(self): return Pos(self) def __neg__(self): return Neq(self) def __abs__(self): return Abs(self) def __getitem__(self, index): return ItemGetter(self, index) class ConstExpression(Expression): def __init__(self, const_value): super(ConstExpression, self).__init__() self._const_value = const_value def get_value(self): return self._const_value def __str__(self): return str(self._const_value) def copy(self): return self.__class__(self._const_value) class Operator(Expression): def __init__(self, *operands): self._operands = operands def bind(self, owner): for operand in self._operands: operand.bind(owner) def get_labels(self): labels = set() for operand in self._operands: labels.update(operand.get_labels()) return labels class BinaryOperator(Operator): __symbol__ = '?' def __init__(self, left_operand, right_operand): self.left_operand = self.coerce_operand(left_operand) self.right_operand = self.coerce_operand(right_operand) super(BinaryOperator, self).__init__(self.left_operand, self.right_operand) def get_value(self): return self.binary_compute(self.left_operand.get_value(), self.right_operand.get_value()) @abc.abstractmethod def binary_compute(self, l, r): pass def copy(self): return self.__class__(self.left_operand.copy(), self.right_operand.copy()) def __str__(self): return "({0} {1} {2})".format(self.left_operand, self.__symbol__, self.right_operand) class UnaryOperator(Operator): __metaclass__ = abc.ABCMeta __symbol__ = '?' def __init__(self, operand): self.operand = self.coerce_operand(operand) super(UnaryOperator, self).__init__(self.operand) def get_value(self): return self.unary_compute(self.operand.get_value()) @abc.abstractmethod def unary_compute(self, o): pass def copy(self): return self.__class__(self.operand.copy()) def __str__(self): return "({0}{1})".format(self.__symbol__, self.operand) class Add(BinaryOperator): __symbol__ = '+' def binary_compute(self, l, r): return l + r class Sub(BinaryOperator): __symbol__ = '-' def binary_compute(self, l, r): return l - r class Mul(BinaryOperator): __symbol__ = '*' def binary_compute(self, l, r): return l * r class Div(BinaryOperator): __symbol__ = '/' def binary_compute(self, l, r): return l / r class FloorDiv(BinaryOperator): __symbol__ = '//' def binary_compute(self, l, r): return l // r class TrueDiv(BinaryOperator): __symbol__ = '/' def binary_compute(self, l, r): return operator.__truediv__(l, r) class Pow(BinaryOperator): __symbol__ = '**' def binary_compute(self, l, r): return l ** r class Mod(BinaryOperator): __symbol__ = '%' def binary_compute(self, l, r): return l % r class Eq(BinaryOperator): __symbol__ = '==' def binary_compute(self, l, r): return l == r class Ne(BinaryOperator): __symbol__ = '!=' def binary_compute(self, l, r): return l != r class Gt(BinaryOperator): __symbol__ = '>' def binary_compute(self, l, r): return l > r class Ge(BinaryOperator): __symbol__ = '>=' def binary_compute(self, l, r): return l >= r class Lt(BinaryOperator): __symbol__ = '<' def binary_compute(self, l, r): return l < r class Le(BinaryOperator): __symbol__ = '<=' def binary_compute(self, l, r): return l <= r class And(BinaryOperator): __symbol__ = '&' def binary_compute(self, l, r): return l and r class Or(BinaryOperator): __symbol__ = '|' def binary_compute(self, l, r): return l or r class Not(UnaryOperator): __symbol__ = '|' def unary_compute(self, o): return not o class Pos(UnaryOperator): __symbol__ = '+' def unary_compute(self, o): return o class Neq(UnaryOperator): __symbol__ = '-' def unary_compute(self, o): return -o class UnaryFunction(UnaryOperator): __function_name__ = None def __str__(self): return "{0}({1})".format(self.__function_name__, self.operand) class Abs(UnaryFunction): __function_name__ = "abs" def unary_compute(self, o): return abs(o) class IntCast(UnaryFunction): __function_name__ = "int" def unary_compute(self, o): return int(o) class FloatCast(UnaryFunction): __function_name__ = "float" def unary_compute(self, o): return float(o) class StrCast(UnaryFunction): __function_name__ = "str" def unary_compute(self, o): return str(o) class BoolCast(UnaryFunction): __function_name__ = "bool" def unary_compute(self, o): return bool(o) class Len(UnaryFunction): __function_name__ = "len" def unary_compute(self, o): return len(o) class ItemGetter(BinaryOperator): def binary_compute(self, l, r): return l[r] def __str__(self): return "{0}({1})".format(self.left_operand, self.right_operand) class AttributeGetter(Expression): def __init__(self, label): self._owner = None self._label = label super(AttributeGetter, self).__init__() def bind(self, owner): self._owner = owner def get_value(self): return getattr(self._owner, self._label) #.value def copy(self): instance = self.__class__(self._label) if self._owner is not None: instance.bind(self._owner) return instance def get_labels(self): return {self._label} def __str__(self): return 'BIND.{0}'.format(self._label) class Binder(object): def __getattr__(self, label): return AttributeGetter(label) BIND = Binder()
{ "content_hash": "606790ea1d12563c2a8a73aa68bafffb", "timestamp": "", "source": "github", "line_count": 357, "max_line_length": 97, "avg_line_length": 23.394957983193276, "alnum_prop": 0.5692049808429118, "repo_name": "simone-campagna/py-structparser", "id": "42ad312726fa5222de9735a5dc90f9604a3844f2", "size": "8375", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "structparser/bind.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "194538" } ], "symlink_target": "" }
"""A play local music files example To use the script: * Make sure soco is installed * Drop this script into a folder that, besides python files, contains nothing but music files * Choose which player to use and run the script at the command line as such: play_local_files.py "Living Room" NOTE: The script has been changed from the earlier version, where the settings were written directly into the file. They now have to be given at the command line instead. But, it should only be necessary to supply the zone name. The local machine IP should be autodetected. """ from __future__ import print_function, unicode_literals import os import sys import time import socket from threading import Thread from random import choice try: # Python 3 from urllib.parse import quote from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer print('Running as python 3') except ImportError: # Python 2 from urllib import quote from SimpleHTTPServer import SimpleHTTPRequestHandler from SocketServer import TCPServer print('Running as python 2') from soco.discovery import by_name, discover class HttpServer(Thread): """A simple HTTP Server in its own thread""" def __init__(self, port): super(HttpServer, self).__init__() self.daemon = True handler = SimpleHTTPRequestHandler self.httpd = TCPServer(("", port), handler) def run(self): """Start the server""" print('Start HTTP server') self.httpd.serve_forever() def stop(self): """Stop the server""" print('Stop HTTP server') self.httpd.socket.close() def add_random_file_from_present_folder(machine_ip, port, zone): """Add a random non-py file from this folder and subfolders to soco""" # Make a list of music files, right now it is done by collection all files # below the current folder whose extension does not start with .py # This will probably need to be modded for other pusposes. music_files = [] print('Looking for music files') for path, dirs, files in os.walk('.'): for file_ in files: if not os.path.splitext(file_)[1].startswith('.py'): music_files.append(os.path.relpath(os.path.join(path, file_))) print('Found:', music_files[-1]) random_file = choice(music_files) # urlencode all the path parts (but not the /'s) random_file = os.path.join( *[quote(part) for part in os.path.split(random_file)] ) print('\nPlaying random file:', random_file) netpath = 'http://{}:{}/{}'.format(machine_ip, port, random_file) number_in_queue = zone.add_uri_to_queue(netpath) # play_from_queue indexes are 0-based zone.play_from_queue(number_in_queue - 1) def detect_ip_address(): """Return the local ip-address""" # Rather hackish way to get the local ip-address, recipy from # https://stackoverflow.com/a/166589 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) ip_address = s.getsockname()[0] s.close() return ip_address def parse_args(): """Parse the command line arguments""" import argparse description = 'Play local files with Sonos by running a local web server' parser = argparse.ArgumentParser(description=description) parser.add_argument('zone', help='The name of the zone to play from') parser.add_argument('--port', default=8000, help='The local machine port to run the webser on') parser.add_argument('--ip', default=detect_ip_address(), help='The local IP address of this machine. By ' 'default it will attempt to autodetect it.') return parser.parse_args() def main(): # Settings args = parse_args() print(" Will use the following settings:\n" " Zone: {args.zone}\n" " IP of this machine: {args.ip}\n" " Use port: {args.port}".format(args=args)) # Get the zone zone = by_name(args.zone) # Check if a zone by the given name was found if zone is None: zone_names = [zone_.player_name for zone_ in discover()] print("No Sonos player named '{}'. Player names are {}"\ .format(args.zone, zone_names)) sys.exit(1) # Check whether the zone is a coordinator (stand alone zone or # master of a group) if not zone.is_coordinator: print("The zone '{}' is not a group master, and therefore cannot " "play music. Please use '{}' in stead"\ .format(args.zone, zone.group.coordinator.player_name)) sys.exit(2) # Setup and start the http server server = HttpServer(args.port) server.start() # When the http server is setup you can really add your files in # any way that is desired. The source code for # add_random_file_from_present_folder is just an example, but it may be # helpful in figuring out how to format the urls try: add_random_file_from_present_folder(args.ip, args.port, zone) # Remember the http server runs in its own daemonized thread, so it is # necessary to keep the main thread alive. So sleep for 3 years. time.sleep(10**8) except KeyboardInterrupt: server.stop() main()
{ "content_hash": "30e4b101ed1677867fca69fad95ea41a", "timestamp": "", "source": "github", "line_count": 159, "max_line_length": 78, "avg_line_length": 33.61006289308176, "alnum_prop": 0.6538173652694611, "repo_name": "dajobe/SoCo", "id": "4f43dfccbe656e1631ca06d0bd46c538caf85cf8", "size": "5344", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/play_local_files/play_local_files.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "168" }, { "name": "Makefile", "bytes": "368" }, { "name": "Python", "bytes": "640813" }, { "name": "Shell", "bytes": "342" } ], "symlink_target": "" }
"""Tests for flag_util.py.""" import unittest from perfkitbenchmarker import flag_util class TestIntegerList(unittest.TestCase): def testSimpleLength(self): il = flag_util.IntegerList([1, 2, 3]) self.assertEqual(len(il), 3) def testRangeLength(self): il = flag_util.IntegerList([1, (2, 5), 9]) self.assertEqual(len(il), 6) def testSimpleGetItem(self): il = flag_util.IntegerList([1, 2, 3]) self.assertEqual(il[0], 1) self.assertEqual(il[1], 2) self.assertEqual(il[2], 3) def testOutOfRangeIndexError(self): il = flag_util.IntegerList([1, 2, 3]) with self.assertRaises(IndexError): il[4] def testRangeGetItem(self): il = flag_util.IntegerList([1, (2, 5), 9]) self.assertEqual(il[1], 2) self.assertEqual(il[2], 3) self.assertEqual(il[5], 9) def testIter(self): il = flag_util.IntegerList([1, (2, 5), 9]) self.assertEqual(list(il), [1, 2, 3, 4, 5, 9]) class TestParseIntegerList(unittest.TestCase): def setUp(self): self.ilp = flag_util.IntegerListParser() def testOneInteger(self): self.assertEqual(list(self.ilp.Parse('3')), [3]) def testIntegerRange(self): self.assertEqual(list(self.ilp.Parse('3-5')), [3, 4, 5]) def testIntegerList(self): self.assertEqual(list(self.ilp.Parse('3-5,8,10-12')), [3, 4, 5, 8, 10, 11, 12]) def testNoInteger(self): with self.assertRaises(ValueError): self.ilp.Parse('a') def testBadRange(self): with self.assertRaises(ValueError): self.ilp.Parse('3-a') def testBadList(self): with self.assertRaises(ValueError): self.ilp.Parse('3-5,8a') def testTrailingComma(self): with self.assertRaises(ValueError): self.ilp.Parse('3-5,') def testNonIncreasingEntries(self): ilp = flag_util.IntegerListParser( on_nonincreasing=flag_util.IntegerListParser.EXCEPTION) with self.assertRaises(ValueError): ilp.Parse('3,2,1') def testNonIncreasingRange(self): ilp = flag_util.IntegerListParser( on_nonincreasing=flag_util.IntegerListParser.EXCEPTION) with self.assertRaises(ValueError): ilp.Parse('3-1') class TestIntegerListSerializer(unittest.TestCase): def testSerialize(self): ser = flag_util.IntegerListSerializer() il = flag_util.IntegerList([1, (2, 5), 9]) self.assertEqual(ser.Serialize(il), '1,2-5,9')
{ "content_hash": "7f575a27687e55e7be32757e8ca0dd99", "timestamp": "", "source": "github", "line_count": 88, "max_line_length": 63, "avg_line_length": 27.318181818181817, "alnum_prop": 0.6580698835274542, "repo_name": "kivio/PerfKitBenchmarker", "id": "eebcae05830683773653959a3cf01ce756963c7a", "size": "3015", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tests/test_flag_util.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "1128835" }, { "name": "Shell", "bytes": "25650" } ], "symlink_target": "" }
from openstack.tests.unit import base from openstack.orchestration.v1 import stack_environment as se FAKE = { 'encrypted_param_names': ['n1', 'n2'], 'event_sinks': { 's1': 'v1' }, 'parameters': { 'key_name': { 'type': 'string' } }, 'parameter_defaults': { 'p1': 'def1' }, 'resource_registry': { 'resources': { 'type1': 'type2' } }, } class TestStackTemplate(base.TestCase): def test_basic(self): sot = se.StackEnvironment() self.assertFalse(sot.allow_create) self.assertTrue(sot.allow_fetch) self.assertFalse(sot.allow_commit) self.assertFalse(sot.allow_delete) self.assertFalse(sot.allow_list) def test_make_it(self): sot = se.StackEnvironment(**FAKE) self.assertEqual(FAKE['encrypted_param_names'], sot.encrypted_param_names) self.assertEqual(FAKE['event_sinks'], sot.event_sinks) self.assertEqual(FAKE['parameters'], sot.parameters) self.assertEqual(FAKE['parameter_defaults'], sot.parameter_defaults) self.assertEqual(FAKE['resource_registry'], sot.resource_registry)
{ "content_hash": "23f3eb632a2569ceca9a64ae87554243", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 76, "avg_line_length": 27.636363636363637, "alnum_prop": 0.5921052631578947, "repo_name": "dtroyer/python-openstacksdk", "id": "08737dc7e428cd42efd2ed48eb794205f268644d", "size": "1762", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "openstack/tests/unit/orchestration/v1/test_stack_environment.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "3803161" }, { "name": "Shell", "bytes": "9027" } ], "symlink_target": "" }
from django.shortcuts import render, render_to_response, redirect from django.views.generic.base import View from decision_engine.settings import DEBUG from venue.models import Event from decision.models import Decision, DecisionAnswers from guest.models import Guest, GuestAnswers from django.http import HttpResponse import json from django.views.decorators.csrf import csrf_exempt # Create your views here. class GuestView(View): def __init__(self): View.__init__(self) self.current_request = None self.profile = None self.parameter_dict = {} def dispatch(self, request, *args, **kwargs): self.parameter_dict = dict() self.current_request = request self.parameter_dict['guest_ip'] = get_client_ip(request) self.parameter_dict['DEBUG'] = DEBUG return super(GuestView, self).dispatch(request, *args, **kwargs) class GuestSignUp(GuestView): def get(self , *args, **kwargs): eid = kwargs['eid'] #event = print eid print self.parameter_dict['guest_ip'] return render_to_response('guest/register.html', self.parameter_dict) class GuestVote(GuestView): def get(self , request, eid): event = Event.objects.get(id=eid) self.parameter_dict['event'] = event self.parameter_dict['notification_type'] = 'success' if not DEBUG: if event.internal_only: if event.venue.low_ip_range: if event.venue.low_ip_range != self.parameter_dict['guest_ip']: return render_to_response('guest/invalid_ip.html', self.parameter_dict) if event.requires_credentials: if 'registered' not in request.session: return render_to_response('guest/register.html', self.parameter_dict) try: decision = Decision.objects.get(event=event, published=True) self.parameter_dict['decision'] = decision message = decision.question_to_be_asked except Decision.DoesNotExist: decision = None message = "There is nothing to vote on at the current moment" self.parameter_dict['notification_type'] = 'danger' except Decision.MultipleObjectsReturned: self.parameter_dict['notification_type'] = 'danger' message = "More than 1 decision is published error...system error" decision = None if decision: decision_answers = DecisionAnswers.objects.filter(decision = decision) self.parameter_dict['decision_answers'] = decision_answers if event.venue.low_ip_range == self.parameter_dict['guest_ip']: event.number_of_internal_users =+ 1 else: event.number_of_external_users = + 1 event.save() if 'guest_id' not in request.session: guest = Guest(first_name="anon", ip=self.parameter_dict['guest_ip']) guest.save() request.session['guest_id'] = guest.id else: self.parameter_dict['decision_answers'] = None self.parameter_dict['message'] = message return render_to_response('guest/vote.html', self.parameter_dict) def vote(request, da_id): decision_answer = DecisionAnswers.objects.get(id=da_id) guest = Guest.objects.get(id=request.session['guest_id']) ga = GuestAnswers(guest=guest,decision_answers = decision_answer ) ga.save() message = "Success" return HttpResponse(json.dumps(message), content_type='application/json') @csrf_exempt def register(request): request.session['registered'] = True if 'guest_id' not in request.session: guest = Guest(first_name=request.POST.get("first_name"), zip=request.POST.get("zip_code")) guest.save() request.session['guest_id'] = guest.id return redirect('guest.views.GuestVote', eid=request.POST.get("event_id")) def get_client_ip(request): x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR') if x_forwarded_for: ip = x_forwarded_for.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip
{ "content_hash": "0c02c198492e92e9cf6e7b19076c9cfa", "timestamp": "", "source": "github", "line_count": 113, "max_line_length": 98, "avg_line_length": 37.13274336283186, "alnum_prop": 0.6341754051477597, "repo_name": "civiclee/Hack4Cause2017", "id": "a363272fabcc7864136bd6f91056ce1963bcf388", "size": "4196", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/askeugene/guest/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "ApacheConf", "bytes": "387" }, { "name": "C#", "bytes": "93689" }, { "name": "CSS", "bytes": "2985545" }, { "name": "GLSL", "bytes": "1732" }, { "name": "HTML", "bytes": "1332796" }, { "name": "Java", "bytes": "3653" }, { "name": "JavaScript", "bytes": "4022838" }, { "name": "Jupyter Notebook", "bytes": "210359" }, { "name": "Objective-C", "bytes": "5255" }, { "name": "PHP", "bytes": "15253449" }, { "name": "PLSQL", "bytes": "1307152" }, { "name": "Python", "bytes": "90164" }, { "name": "Shell", "bytes": "708" }, { "name": "TypeScript", "bytes": "208784" } ], "symlink_target": "" }
import copy import re from collections import OrderedDict from collections import defaultdict from app.data_model.answer_store import natural_order from app.questionnaire_state.state_answer import StateAnswer from app.questionnaire_state.state_question import StateQuestion class RepeatingAnswerStateQuestion(StateQuestion): def __init__(self, item_id, schema_item): super().__init__(item_id=item_id, schema_item=schema_item) def update_state(self, user_input): self.build_repeating_state(user_input) self.children = self.answers for state_answer in self.answers: state_answer.update_state(user_input) def build_repeating_state(self, user_input): for answer_id, answer_index in iterate_over_instance_ids(user_input.keys()): for answer_schema in self.schema_item.answers: if answer_schema.id == answer_id and self.is_new_answer_state_required(answer_schema, answer_index): new_answer_state = self.create_new_answer_state(answer_schema, answer_index) self.add_new_answer_state(new_answer_state) break def is_new_answer_state_required(self, answer_schema, answer_instance): for answer_state in self.answers: if answer_schema.id == answer_state.id and answer_instance == answer_state.answer_instance: return False return True def create_new_answer_state(self, answer_schema, answer_instance, group_instance=0): new_answer_schema = copy.copy(answer_schema) suffix = '_' + str(answer_instance) if answer_instance > 0 else '' widget_id = answer_schema.id + suffix new_answer_schema.widget = type(answer_schema.widget)(widget_id) new_answer_state = StateAnswer(new_answer_schema.id, new_answer_schema) new_answer_state.answer_instance = answer_instance new_answer_state.group_instance = group_instance new_answer_state.parent = self return new_answer_state def add_new_answer_state(self, answer_state): self.answers.append(answer_state) def answers_grouped_by_instance(self): """ Groups answers by their answer_instance Id. :return: A list of lists containing the answers grouped by answer_instance. """ answer_states_by_id = defaultdict(list) for answer_state in self.answers: answer_states_by_id[answer_state.id].append(answer_state) answer_states_grouped_by_instance = OrderedDict() for answer_schema in self.schema_item.answers: answer_states = answer_states_by_id.get(answer_schema.id) if answer_states: for answer_state in answer_states: answer_states_grouped_by_instance.setdefault(answer_state.answer_instance, []).append(answer_state) return list(answer_states_grouped_by_instance.values()) def iterate_over_instance_ids(answer_instances): """ Iterates over a collection of answer instances yielding the answer Id and answer instance Id. :param answer_instances: A list of raw answer_instance_ids :return: Tuple containing the answer Id and answer instance Id. """ answer_instance_ids = sorted(answer_instances, key=natural_order) for answer_instance_id in answer_instance_ids: answer_id, answer_index = extract_answer_instance_id(answer_instance_id) yield answer_id, answer_index def extract_answer_instance_id(answer_instance_id): matches = re.match(r'^(.+?)_(\d+)$', answer_instance_id) if matches: answer_id, index = matches.groups() else: answer_id = answer_instance_id index = 0 return answer_id, int(index)
{ "content_hash": "5b683d48dcd7d5ed62e89c39c877af96", "timestamp": "", "source": "github", "line_count": 91, "max_line_length": 119, "avg_line_length": 41.252747252747255, "alnum_prop": 0.6728822589238146, "repo_name": "qateam123/eq", "id": "b73fc12cc6a5b6647b97812936487ba9f64b4c59", "size": "3754", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/questionnaire_state/state_repeating_answer_question.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "56444" }, { "name": "HTML", "bytes": "64720" }, { "name": "JavaScript", "bytes": "752517" }, { "name": "Python", "bytes": "735531" }, { "name": "Shell", "bytes": "7685" } ], "symlink_target": "" }
from rally.common.i18n import _ from rally.common import logging from rally.common import utils as rutils from rally import consts from rally import osclients from rally.plugins.openstack.cleanup import manager as resource_manager from rally.plugins.openstack.scenarios.nova import utils as nova_utils from rally.plugins.openstack import types from rally.task import context LOG = logging.getLogger(__name__) @context.configure(name="servers", order=430) class ServerGenerator(context.Context): """Context class for adding temporary servers for benchmarks. Servers are added for each tenant. """ CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "image": { "type": "object", "properties": { "name": { "type": "string" } } }, "flavor": { "type": "object", "properties": { "name": { "type": "string" } } }, "servers_per_tenant": { "type": "integer", "minimum": 1 }, "auto_assign_nic": { "type": "boolean", } }, "required": ["image", "flavor"], "additionalProperties": False } DEFAULT_CONFIG = { "servers_per_tenant": 5, "auto_assign_nic": False } @logging.log_task_wrapper(LOG.info, _("Enter context: `Servers`")) def setup(self): image = self.config["image"] flavor = self.config["flavor"] auto_nic = self.config["auto_assign_nic"] servers_per_tenant = self.config["servers_per_tenant"] clients = osclients.Clients(self.context["users"][0]["credential"]) image_id = types.GlanceImage.transform(clients=clients, resource_config=image) flavor_id = types.Flavor.transform(clients=clients, resource_config=flavor) for iter_, (user, tenant_id) in enumerate(rutils.iterate_per_tenants( self.context["users"])): LOG.debug("Booting servers for user tenant %s " % (user["tenant_id"])) tmp_context = {"user": user, "tenant": self.context["tenants"][tenant_id], "task": self.context["task"], "iteration": iter_} nova_scenario = nova_utils.NovaScenario(tmp_context) LOG.debug("Calling _boot_servers with image_id=%(image_id)s " "flavor_id=%(flavor_id)s " "servers_per_tenant=%(servers_per_tenant)s" % {"image_id": image_id, "flavor_id": flavor_id, "servers_per_tenant": servers_per_tenant}) servers = nova_scenario._boot_servers(image_id, flavor_id, requests=servers_per_tenant, auto_assign_nic=auto_nic) current_servers = [server.id for server in servers] LOG.debug("Adding booted servers %s to context" % current_servers) self.context["tenants"][tenant_id][ "servers"] = current_servers @logging.log_task_wrapper(LOG.info, _("Exit context: `Servers`")) def cleanup(self): resource_manager.cleanup(names=["nova.servers"], users=self.context.get("users", []))
{ "content_hash": "0be9473be67df19c21fb68755bf29b1c", "timestamp": "", "source": "github", "line_count": 104, "max_line_length": 78, "avg_line_length": 35.92307692307692, "alnum_prop": 0.5, "repo_name": "eayunstack/rally", "id": "aeb293a2c9a68afe9b63056b7375bb21e1b0e319", "size": "4302", "binary": false, "copies": "2", "ref": "refs/heads/product", "path": "rally/plugins/openstack/context/nova/servers.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "36716" }, { "name": "Mako", "bytes": "17389" }, { "name": "Python", "bytes": "2988245" }, { "name": "Shell", "bytes": "41128" } ], "symlink_target": "" }
""" This module defines base classes for worker, aggregator and stats processor. Look at pyaloha.main module for a pipeline sequence understanding. """ from __future__ import print_function import multiprocessing import shutil import traceback from pyaloha.event_factory import EventFactory from pyaloha.protocol import WorkerResults, to_unicode, SerializableSet class ShareableData(object): """ Base class for both worker and aggregator to optional access of the same routine of instantiating same data properties. Can be used like (guaranteed to run in __init__): def shared_method(instance, *constructor_args, **constructor_kwargs): instance.mega_storage = collections.defaultdict(list) class Worker(BaseWorker): setup_shareable_data = shared_method ... class Aggregator(BaseAggregator): setup_shareable_data = shared_method ... """ def setup_shareable_data(self): self.lost_data = SerializableSet() class DataStreamWorker(ShareableData): """ This is a base class representing a worker that preprocesses given raw events (one by one). This worker is not guaranteed to have all available data, so do not try to write a stats processor class. This is a low-level preprocessor/filter/etc. @method process_unspecified is a generic method called on every event regardless of its actual type. In general this is the most basic method to overload while writing worker in your script. __events__ field is used in low-level filtering of the events provided to specific worker. """ __events__ = tuple() def __init__(self, event_factory=None, *args, **kwargs): super(DataStreamWorker, self).__init__(*args, **kwargs) self._event_factory = event_factory or EventFactory(custom_events=[]) self.setup_shareable_data(*args, **kwargs) def process_unspecified(self, event): pass def process_event(self, key, event_time_p, user_info_p, str_data_p, str_data_len): """ Main callback used in the main event stream processing loop """ try: ev = self._event_factory.make_event( key, event_time_p[0], user_info_p[0], str_data_p, str_data_len ) ev.process_me(self) except Exception: logger = multiprocessing.get_logger() logger.error(traceback.format_exc()) def dumps_results(self): return WorkerResults.dumps_object(self, debug=False) def pre_output(self): pass class DataAggregator(ShareableData): """ This is a 'singleton' class that accumulates results from the workers. @method aggregate must be overloaded in your script. It is called every time a worker is done with its events to accumulate results. @method post_aggregate is an optional method. It is called after all results are accumulated. Look for an example in daily_over_fs usage pattern. """ def __init__(self, results_dir=None, *args, **kwargs): super(DataAggregator, self).__init__(*args, **kwargs) self.logger = multiprocessing.get_logger() self.results_dir = results_dir if self.results_dir: self.created_dirs = set() shutil.rmtree(self.results_dir, ignore_errors=True) self.logger.info( "Results directory '%s' is set and cleaned" % self.results_dir ) self.setup_shareable_data(*args, **kwargs) def aggregate(self): raise NotImplementedError() def post_aggregate(self, pool=None): pass class StatsProcessor(object): """ This is a fully prepared stats data processor and printer. It is instantiated with a pointer to aggregator that has already been done with all workers and his own postprocessing. Class can be used as a business logic processor (it is guaranteed to have all available data) or just as a sequential printer (if actual stats processing logic is simple). @method gen_stats must be overloaded in your script. It is called at the end of the stats processing pipeline and yields one or several stats sections - each with a human-readable text header and a sequence of sequence objects interpreted as a table of values. @method process_stats is optional. It is called just before calling gen_stats. """ def __init__(self, aggregator): self.aggregator = aggregator def process_stats(self): pass def gen_stats(self): """ Look at @method print_stats for a results format to be generated """ raise NotImplementedError() def print_stats(self): for header, stats_generator in self.gen_stats(): print('-' * 20) print(header) print('-' * 20) for row in stats_generator: print( u'\t'.join(map(to_unicode, row)) ) print()
{ "content_hash": "ef954135100879910238e11ba90a1c15", "timestamp": "", "source": "github", "line_count": 160, "max_line_length": 79, "avg_line_length": 31.7375, "alnum_prop": 0.6478928712091374, "repo_name": "ruilin/RLMap", "id": "7abf77621d9d2e34259122d0c9b91089f7bf0c54", "size": "5078", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "3party/Alohalytics/snippets/pyaloha/base.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Awk", "bytes": "3962" }, { "name": "Batchfile", "bytes": "6451" }, { "name": "C", "bytes": "15370980" }, { "name": "C#", "bytes": "2505826" }, { "name": "C++", "bytes": "146782061" }, { "name": "CMake", "bytes": "270225" }, { "name": "CSS", "bytes": "26798" }, { "name": "Common Lisp", "bytes": "17521" }, { "name": "DIGITAL Command Language", "bytes": "36710" }, { "name": "Dockerfile", "bytes": "13403" }, { "name": "Emacs Lisp", "bytes": "7822" }, { "name": "GLSL", "bytes": "47102" }, { "name": "Gherkin", "bytes": "305230" }, { "name": "Go", "bytes": "21320" }, { "name": "HTML", "bytes": "1170286" }, { "name": "IDL", "bytes": "10263" }, { "name": "Inno Setup", "bytes": "4337" }, { "name": "Java", "bytes": "5581298" }, { "name": "JavaScript", "bytes": "511179" }, { "name": "Lua", "bytes": "57672" }, { "name": "M4", "bytes": "129381" }, { "name": "Makefile", "bytes": "603329" }, { "name": "Module Management System", "bytes": "2080" }, { "name": "Objective-C", "bytes": "4727440" }, { "name": "Objective-C++", "bytes": "1182400" }, { "name": "PHP", "bytes": "467172" }, { "name": "Perl", "bytes": "57807" }, { "name": "PowerShell", "bytes": "1885" }, { "name": "Python", "bytes": "1988301" }, { "name": "QMake", "bytes": "137217" }, { "name": "Roff", "bytes": "13545" }, { "name": "Ruby", "bytes": "282599" }, { "name": "Shell", "bytes": "1455455" }, { "name": "Swift", "bytes": "135818" }, { "name": "TSQL", "bytes": "3530" }, { "name": "Vim Script", "bytes": "3759" }, { "name": "sed", "bytes": "236" } ], "symlink_target": "" }
""" build.py ~~~~~~~~ This module builds a bloomfilter from the NSRL Whitelist Database. :copyright: (c) 2014 by Josh "blacktop" Maine. :license: GPLv3 """ import os import binascii from pybloom import BloomFilter nsrl_path = '/nsrl/NSRLFile.txt' error_rate = 0.01 # reference - http://stackoverflow.com/a/9631635 def blocks(this_file, size=65536): while True: b = this_file.read(size) if not b: break yield b def main(): if os.path.isfile(nsrl_path): print "BUILDING: Reading in NSRL Database" with open(nsrl_path) as f_line: # Strip off header _ = f_line.readline() print "BUILDING: Calculating number of hashes in NSRL..." num_lines = sum(bl.count("\n") for bl in blocks(f_line)) print "BUILDING: There are %s hashes in the NSRL Database" % num_lines with open(nsrl_path) as f_nsrl: # Strip off header _ = f_nsrl.readline() print "BUILDING: Creating bloomfilter" bf = BloomFilter(num_lines, error_rate) print "BUILDING: Inserting hashes into bloomfilter" for line in f_nsrl: md5_hash = line.split(",")[1].strip('"') if md5_hash: try: md5 = binascii.unhexlify(md5_hash) bf.add(md5) except Exception as e: print "ERROR: %s" % e print "BUILDING: NSRL bloomfilter contains {} items.".format(len(bf)) with open('nsrl.bloom', 'wb') as nb: bf.tofile(nb) print "BUILDING: Complete" else: print("ERROR: No such file or directory: %s", nsrl_path) return if __name__ == "__main__": main()
{ "content_hash": "52ad35753e88c18b70b3ecffc1bc8005", "timestamp": "", "source": "github", "line_count": 63, "max_line_length": 82, "avg_line_length": 28.714285714285715, "alnum_prop": 0.5439469320066335, "repo_name": "kost/docker-kf", "id": "a25c29aeb5f78bc93833d844fa8907c0b6575792", "size": "1857", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nsrl/scripts/build.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "3251" }, { "name": "Shell", "bytes": "5966" } ], "symlink_target": "" }
""" Tests for the public interface of Automat. """ from functools import reduce from unittest import TestCase from .. import MethodicalMachine, NoTransition class MethodicalTests(TestCase): """ Tests for L{MethodicalMachine}. """ def test_oneTransition(self): """ L{MethodicalMachine} provides a way for you to declare a state machine with inputs, outputs, and states as methods. When you have declared an input, an output, and a state, calling the input method in that state will produce the specified output. """ class Machination(object): machine = MethodicalMachine() @machine.input() def anInput(self): "an input" @machine.output() def anOutput(self): "an output" return "an-output-value" @machine.output() def anotherOutput(self): "another output" return "another-output-value" @machine.state(initial=True) def anState(self): "a state" @machine.state() def anotherState(self): "another state" anState.upon(anInput, enter=anotherState, outputs=[anOutput]) anotherState.upon(anInput, enter=anotherState, outputs=[anotherOutput]) m = Machination() self.assertEqual(m.anInput(), ["an-output-value"]) self.assertEqual(m.anInput(), ["another-output-value"]) def test_machineItselfIsPrivate(self): """ L{MethodicalMachine} is an implementation detail. If you attempt to access it on an instance of your class, you will get an exception. However, since tools may need to access it for the purposes of, for example, visualization, you may access it on the class itself. """ expectedMachine = MethodicalMachine() class Machination(object): machine = expectedMachine machination = Machination() with self.assertRaises(AttributeError) as cm: machination.machine self.assertIn("MethodicalMachine is an implementation detail", str(cm.exception)) self.assertIs(Machination.machine, expectedMachine) def test_outputsArePrivate(self): """ One of the benefits of using a state machine is that your output method implementations don't need to take invalid state transitions into account - the methods simply won't be called. This property would be broken if client code called output methods directly, so output methods are not directly visible under their names. """ class Machination(object): machine = MethodicalMachine() counter = 0 @machine.input() def anInput(self): "an input" @machine.output() def anOutput(self): self.counter += 1 @machine.state(initial=True) def state(self): "a machine state" state.upon(anInput, enter=state, outputs=[anOutput]) mach1 = Machination() mach1.anInput() self.assertEqual(mach1.counter, 1) mach2 = Machination() with self.assertRaises(AttributeError) as cm: mach2.anOutput self.assertEqual(mach2.counter, 0) self.assertIn( "Machination.anOutput is a state-machine output method; to " "produce this output, call an input method instead.", str(cm.exception) ) def test_multipleMachines(self): """ Two machines may co-exist happily on the same instance; they don't interfere with each other. """ class MultiMach(object): a = MethodicalMachine() b = MethodicalMachine() @a.input() def inputA(self): "input A" @b.input() def inputB(self): "input B" @a.state(initial=True) def initialA(self): "initial A" @b.state(initial=True) def initialB(self): "initial B" @a.output() def outputA(self): return "A" @b.output() def outputB(self): return "B" initialA.upon(inputA, initialA, [outputA]) initialB.upon(inputB, initialB, [outputB]) mm = MultiMach() self.assertEqual(mm.inputA(), ["A"]) self.assertEqual(mm.inputB(), ["B"]) def test_collectOutputs(self): """ Outputs can be combined with the "collector" argument to "upon". """ import operator class Machine(object): m = MethodicalMachine() @m.input() def input(self): "an input" @m.output() def outputA(self): return "A" @m.output() def outputB(self): return "B" @m.state(initial=True) def state(self): "a state" state.upon(input, state, [outputA, outputB], collector=lambda x: reduce(operator.add, x)) m = Machine() self.assertEqual(m.input(), "AB") def test_methodName(self): """ Input methods preserve their declared names. """ class Mech(object): m = MethodicalMachine() @m.input() def declaredInputName(self): "an input" @m.state(initial=True) def aState(self): "state" m = Mech() with self.assertRaises(TypeError) as cm: m.declaredInputName("too", "many", "arguments") self.assertIn("declaredInputName", str(cm.exception)) def test_inputWithArguments(self): """ If an input takes an argument, it will pass that along to its output. """ class Mechanism(object): m = MethodicalMachine() @m.input() def input(self, x, y=1): "an input" @m.state(initial=True) def state(self): "a state" @m.output() def output(self, x, y=1): self._x = x return x + y state.upon(input, state, [output]) m = Mechanism() self.assertEqual(m.input(3), [4]) self.assertEqual(m._x, 3) def test_inputOutputMismatch(self): """ All the argument lists of the outputs for a given input must match; if one does not the call to C{upon} will raise a C{TypeError}. """ class Mechanism(object): m = MethodicalMachine() @m.input() def nameOfInput(self, a): "an input" @m.output() def outputThatMatches(self, a): "an output that matches" @m.output() def outputThatDoesntMatch(self, b): "an output that doesn't match" @m.state() def state(self): "a state" with self.assertRaises(TypeError) as cm: state.upon(nameOfInput, state, [outputThatMatches, outputThatDoesntMatch]) self.assertIn("nameOfInput", str(cm.exception)) self.assertIn("outputThatDoesntMatch", str(cm.exception)) def test_multipleInitialStatesFailure(self): """ A L{MethodicalMachine} can only have one initial state. """ class WillFail(object): m = MethodicalMachine() @m.state(initial=True) def firstInitialState(self): "The first initial state -- this is OK." with self.assertRaises(ValueError): @m.state(initial=True) def secondInitialState(self): "The second initial state -- results in a ValueError." def test_badTransitionForCurrentState(self): """ Calling any input method that lacks a transition for the machine's current state raises an informative L{NoTransition}. """ class OnlyOnePath(object): m = MethodicalMachine() @m.state(initial=True) def start(self): "Start state." @m.state() def end(self): "End state." @m.input() def advance(self): "Move from start to end." @m.input() def deadEnd(self): "A transition from nowhere to nowhere." start.upon(advance, end, []) machine = OnlyOnePath() with self.assertRaises(NoTransition) as cm: machine.deadEnd() self.assertIn("deadEnd", str(cm.exception)) self.assertIn("start", str(cm.exception)) machine.advance() with self.assertRaises(NoTransition) as cm: machine.deadEnd() self.assertIn("deadEnd", str(cm.exception)) self.assertIn("end", str(cm.exception)) def test_saveState(self): """ L{MethodicalMachine.serializer} is a decorator that modifies its decoratee's signature to take a "state" object as its first argument, which is the "serialized" argument to the L{MethodicalMachine.state} decorator. """ class Mechanism(object): m = MethodicalMachine() def __init__(self): self.value = 1 @m.state(serialized="first-state", initial=True) def first(self): "First state." @m.state(serialized="second-state") def second(self): "Second state." @m.serializer() def save(self, state): return { 'machine-state': state, 'some-value': self.value, } self.assertEqual( Mechanism().save(), { "machine-state": "first-state", "some-value": 1, } ) def test_restoreState(self): """ L{MethodicalMachine.unserializer} decorates a function that becomes a machine-state unserializer; its return value is mapped to the C{serialized} parameter to C{state}, and the L{MethodicalMachine} associated with that instance's state is updated to that state. """ class Mechanism(object): m = MethodicalMachine() def __init__(self): self.value = 1 self.ranOutput = False @m.state(serialized="first-state", initial=True) def first(self): "First state." @m.state(serialized="second-state") def second(self): "Second state." @m.input() def input(self): "an input" @m.output() def output(self): self.value = 2 self.ranOutput = True return 1 @m.output() def output2(self): return 2 first.upon(input, second, [output], collector=lambda x: list(x)[0]) second.upon(input, second, [output2], collector=lambda x: list(x)[0]) @m.serializer() def save(self, state): return { 'machine-state': state, 'some-value': self.value, } @m.unserializer() def _restore(self, blob): self.value = blob['some-value'] return blob['machine-state'] @classmethod def fromBlob(cls, blob): self = cls() self._restore(blob) return self m1 = Mechanism() m1.input() blob = m1.save() m2 = Mechanism.fromBlob(blob) self.assertEqual(m2.ranOutput, False) self.assertEqual(m2.input(), 2) self.assertEqual( m2.save(), { 'machine-state': 'second-state', 'some-value': 2, } ) # FIXME: error for wrong types on any call to _oneTransition # FIXME: better public API for .upon; maybe a context manager? # FIXME: when transitions are defined, validate that we can always get to # terminal? do we care about this? # FIXME: implementation (and use-case/example) for passing args from in to out # FIXME: possibly these need some kind of support from core # FIXME: wildcard state (in all states, when input X, emit Y and go to Z) # FIXME: wildcard input (in state X, when any input, emit Y and go to Z) # FIXME: combined wildcards (in any state for any input, emit Y go to Z)
{ "content_hash": "7ea95099f5a0fdc1d2a4004afae2ccb7", "timestamp": "", "source": "github", "line_count": 399, "max_line_length": 79, "avg_line_length": 32.849624060150376, "alnum_prop": 0.5269703212024109, "repo_name": "ntuecon/server", "id": "c94ee7e3130df72cb0338937802b30376ace4aee", "size": "13108", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "pyenv/Lib/site-packages/automat/_test/test_methodical.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ASP", "bytes": "2209" }, { "name": "Batchfile", "bytes": "1509" }, { "name": "C", "bytes": "504013" }, { "name": "C++", "bytes": "96440" }, { "name": "CSS", "bytes": "133288" }, { "name": "GAP", "bytes": "18122" }, { "name": "HTML", "bytes": "150026" }, { "name": "JavaScript", "bytes": "243314" }, { "name": "Objective-C", "bytes": "1292" }, { "name": "PowerShell", "bytes": "8325" }, { "name": "Python", "bytes": "27048260" }, { "name": "Shell", "bytes": "47820" }, { "name": "Tcl", "bytes": "1237796" }, { "name": "Visual Basic", "bytes": "949" }, { "name": "XSLT", "bytes": "2113" } ], "symlink_target": "" }
import sys, os, logging from hyperopt import hp, fmin, tpe from hyperopt import STATUS_OK, STATUS_FAIL from ghosh import GhoshModel, MODEL_FILE LEARN = 'a' KERNEL = 'kernel' BATCH = 'batch' log = logging.getLogger('OPTIMIZER') class Optimizer: def __init__(self, model, output_dir, train_path, validation_path): self.model = model self.output_dir = output_dir self.train_path = train_path self.validation_path = validation_path def objective(self, args): learn = args[LEARN] kernel = args[KERNEL] batch = args[BATCH] log.info("Running objective: %s, %s, %s" % (str(batch), str(kernel), str(learn))) log.info(" Batch size: %s" % str(batch)) log.info(" Kernel size: %s" % str(kernel)) log.info(" Learning rate: %s" % str(learn)) if learn is None or kernel is None or batch is None: return {'status': STATUS_FAIL} out_path = self.get_output_dir(learn, kernel, batch) log.info("Outputting to %s" % out_path) if not os.path.isdir(out_path): os.mkdir(out_path) log.info("Creating model") model = self.model(self.train_path, self.validation_path, learning_rate=learn, kernel_size=kernel, batch_size=batch, output_dir=out_path, retrain=True) log.info("Running model") f1_score, accuracy = model.run() result = { 'status': STATUS_OK, 'loss': 1 - (sum(f1_score) / float(len(f1_score))), 'attachments': { 'model': model.get_file_path(MODEL_FILE), 'dir': out_path, 'f1_score': f1_score, 'accuracy': accuracy } } log.info(result) return result def get_output_dir(self, a, b, c): return os.path.join(self.output_dir, "optimize_%s_%s_%s" % (a,b,c)) def main(): #Setup log dir_path = os.path.dirname(os.path.realpath(__file__)) fmt = "%(levelname) -10s %(asctime)s %(module)s:%(lineno)s %(funcName)s %(message)s" handler = logging.FileHandler(os.path.join(dir_path, 'optimizer.log'), mode='w') handler.setFormatter(logging.Formatter(fmt)) log.addHandler(handler) log.setLevel(logging.DEBUG) try: optimizer = Optimizer(GhoshModel, sys.argv[3], sys.argv[1], sys.argv[2]) except Exception as e: log.error(e) space = { LEARN: hp.uniform(LEARN, 0.0000001, 0.0001), KERNEL: hp.quniform(KERNEL, 8, 3, 1), BATCH: hp.quniform(BATCH, 128, 4, 1) } log.info("Space:") log.info(space) best = fmin(optimizer.objective, space=space, algo=tpe.suggest, max_evals=100) print(best) log.info(str(best)) if __name__ == '__main__': main()
{ "content_hash": "fbf50680b89e449cd6ef7d85c8e03e94", "timestamp": "", "source": "github", "line_count": 104, "max_line_length": 89, "avg_line_length": 28.596153846153847, "alnum_prop": 0.5457296570275723, "repo_name": "cosanlab/emote", "id": "1f11d89f93bc15a2b8711557ee5f2b9f92e2dc9f", "size": "2974", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "v2/optimize.py", "mode": "33188", "license": "mit", "language": [ { "name": "Protocol Buffer", "bytes": "124" }, { "name": "Python", "bytes": "93872" }, { "name": "Shell", "bytes": "2788" } ], "symlink_target": "" }
"""Dropout operations and handling.""" # Copyright 2015-present Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division, print_function, absolute_import import tensorflow as tf # Key to collect dropout probabilities. DROPOUTS = "dropouts" def dropout(tensor_in, prob, name=None): """Adds dropout node and stores probability tensor into graph collection. Args: tensor_in: Input tensor. prob: Float or Tensor. Returns: Tensor of the same shape of `tensor_in`. Raises: ValueError: If `keep_prob` is not in `(0, 1]`. """ with tf.op_scope([tensor_in], name, "dropout") as name: if isinstance(prob, float): prob = tf.get_variable("prob", [], initializer=tf.constant_initializer(prob), trainable=False) tf.add_to_collection(DROPOUTS, prob) return tf.nn.dropout(tensor_in, prob)
{ "content_hash": "733251783d9592d931342ffcc351d74b", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 77, "avg_line_length": 33.644444444444446, "alnum_prop": 0.6651254953764861, "repo_name": "dansbecker/skflow", "id": "b0c5836632ff0bea713e560e75bdee0e5223a059", "size": "1514", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "skflow/ops/dropout_ops.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "178200" }, { "name": "Shell", "bytes": "2075" } ], "symlink_target": "" }
import sys import unicodedata #reload(sys) #sys.setdefaultencoding("utf-8") class StopwordFilter: def __init__(self): self.list = [] def add_stopword(self, word): self.list.append(word) def get_stopword_list(self): return self.list def filter(self, sentence): tmp_sentence = [] for word in sentence: word = self.remove_accents(word).lower() if word not in self.list: tmp_sentence.append(word) return tmp_sentence def remove_accents(self, string): nkfd_form = unicodedata.normalize('NFKD', string) return u"".join([c for c in nkfd_form if not unicodedata.combining(c)]) def load(self, lang): with open('cognitiveSQL/stopwords/' + lang + '.txt', encoding='utf8') as f: lines = f.read().split('\n') for word in lines: stopword = self.remove_accents(word).lower() self.list.append(stopword)
{ "content_hash": "7a4e27b745862f09fcc30eb00ec5b8d9", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 83, "avg_line_length": 28.542857142857144, "alnum_prop": 0.5785785785785785, "repo_name": "dhmodi/virtual_patient_assistant", "id": "be79a0e461d140e450b00bff34e7cd67c42e3ac3", "size": "1023", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cognitiveSQL/StopwordFilter.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "372684" }, { "name": "HTML", "bytes": "17847" }, { "name": "JavaScript", "bytes": "753996" }, { "name": "Python", "bytes": "81149" } ], "symlink_target": "" }
""" Integer factorization """ from __future__ import print_function, division import random import math from .primetest import isprime from .generate import sieve, primerange, nextprime from sympy.core import sympify from sympy.core.evalf import bitcount from sympy.core.logic import fuzzy_and from sympy.core.numbers import igcd, Rational from sympy.core.power import integer_nthroot, Pow from sympy.core.mul import Mul from sympy.core.compatibility import as_int, SYMPY_INTS, range from sympy.core.singleton import S from sympy.core.function import Function small_trailing = [i and max(int(not i % 2**j) and j for j in range(1, 8)) for i in range(256)] def smoothness(n): """ Return the B-smooth and B-power smooth values of n. The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity. >>> from sympy.ntheory.factor_ import smoothness >>> smoothness(2**7*3**2) (3, 128) >>> smoothness(2**4*13) (13, 16) >>> smoothness(2) (2, 2) See Also ======== factorint, smoothness_p """ if n == 1: return (1, 1) # not prime, but otherwise this causes headaches facs = factorint(n) return max(facs), max(m**facs[m] for m in facs) def smoothness_p(n, m=-1, power=0, visual=None): """ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...] where: 1. p**M is the base-p divisor of n 2. sm(p + m) is the smoothness of p + m (m = -1 by default) 3. psm(p + m) is the power smoothness of p + m The list is sorted according to smoothness (default) or by power smoothness if power=1. The smoothness of the numbers to the left (m = -1) or right (m = 1) of a factor govern the results that are obtained from the p +/- 1 type factoring methods. >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> smoothness_p(10431, m=1) (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) >>> smoothness_p(10431) (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) >>> smoothness_p(10431, power=1) (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) If visual=True then an annotated string will be returned: >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 This string can also be generated directly from a factorization dictionary and vice versa: >>> factorint(17*9) {3: 2, 17: 1} >>> smoothness_p(_) 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16' >>> smoothness_p(_) {3: 2, 17: 1} The table of the output logic is: ====== ====== ======= ======= | Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict str tuple str str str tuple dict tuple str tuple str n str tuple tuple mul str tuple tuple ====== ====== ======= ======= See Also ======== factorint, smoothness """ from sympy.utilities import flatten # visual must be True, False or other (stored as None) if visual in (1, 0): visual = bool(visual) elif visual not in (True, False): visual = None if type(n) is str: if visual: return n d = {} for li in n.splitlines(): k, v = [int(i) for i in li.split('has')[0].split('=')[1].split('**')] d[k] = v if visual is not True and visual is not False: return d return smoothness_p(d, visual=False) elif type(n) is not tuple: facs = factorint(n, visual=False) if power: k = -1 else: k = 1 if type(n) is not tuple: rv = (m, sorted([(f, tuple([M] + list(smoothness(f + m)))) for f, M in [i for i in facs.items()]], key=lambda x: (x[1][k], x[0]))) else: rv = n if visual is False or (visual is not True) and (type(n) in [int, Mul]): return rv lines = [] for dat in rv[1]: dat = flatten(dat) dat.insert(2, m) lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat)) return '\n'.join(lines) def trailing(n): """Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n. Examples ======== >>> from sympy import trailing >>> trailing(128) 7 >>> trailing(63) 0 """ n = int(n) if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] # 2**m is quick for z up through 2**30 z = bitcount(n) - 1 if isinstance(z, SYMPY_INTS): if n == 1 << z: return z t = 0 p = 8 while not n & 1: while not n & ((1 << p) - 1): n >>= p t += p p *= 2 p //= 2 return t def multiplicity(p, n): """ Find the greatest integer m such that p**m divides n. Examples ======== >>> from sympy.ntheory import multiplicity >>> from sympy.core.numbers import Rational as R >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]] [0, 1, 2, 3, 3] >>> multiplicity(3, R(1, 9)) -2 """ try: p, n = as_int(p), as_int(n) except ValueError: if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)): try: p = Rational(p) n = Rational(n) if p.q == 1: if n.p == 1: return -multiplicity(p.p, n.q) return S.Zero elif p.p == 1: return multiplicity(p.q, n.q) else: like = min( multiplicity(p.p, n.p), multiplicity(p.q, n.q)) cross = min( multiplicity(p.q, n.p), multiplicity(p.p, n.q)) return like - cross except AttributeError: pass raise ValueError('expecting ints or fractions, got %s and %s' % (p, n)) if p == 2: return trailing(n) if p < 2: raise ValueError('p must be an integer, 2 or larger, but got %s' % p) if p == n: return 1 m = 0 n, rem = divmod(n, p) while not rem: m += 1 if m > 5: # The multiplicity could be very large. Better # to increment in powers of two e = 2 while 1: ppow = p**e if ppow < n: nnew, rem = divmod(n, ppow) if not rem: m += e e *= 2 n = nnew continue return m + multiplicity(p, n) n, rem = divmod(n, p) return m def perfect_power(n, candidates=None, big=True, factor=True): """ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a perfect power; otherwise return ``False``. By default, the base is recursively decomposed and the exponents collected so the largest possible ``e`` is sought. If ``big=False`` then the smallest possible ``e`` (thus prime) will be chosen. If ``candidates`` for exponents are given, they are assumed to be sorted and the first one that is larger than the computed maximum will signal failure for the routine. If ``factor=True`` then simultaneous factorization of n is attempted since finding a factor indicates the only possible root for n. This is True by default since only a few small factors will be tested in the course of searching for the perfect power. Examples ======== >>> from sympy import perfect_power >>> perfect_power(16) (2, 4) >>> perfect_power(16, big = False) (4, 2) """ n = int(n) if n < 3: return False logn = math.log(n, 2) max_possible = int(logn) + 2 # only check values less than this not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8 if not candidates: candidates = primerange(2 + not_square, max_possible) afactor = 2 + n % 2 for e in candidates: if e < 3: if e == 1 or e == 2 and not_square: continue if e > max_possible: return False # see if there is a factor present if factor: if n % afactor == 0: # find what the potential power is if afactor == 2: e = trailing(n) else: e = multiplicity(afactor, n) # if it's a trivial power we are done if e == 1: return False # maybe the bth root of n is exact r, exact = integer_nthroot(n, e) if not exact: # then remove this factor and check to see if # any of e's factors are a common exponent; if # not then it's not a perfect power n //= afactor**e m = perfect_power(n, candidates=primefactors(e), big=big) if m is False: return False else: r, m = m # adjust the two exponents so the bases can # be combined g = igcd(m, e) if g == 1: return False m //= g e //= g r, e = r**m*afactor**e, g if not big: e0 = primefactors(e) if len(e0) > 1 or e0[0] != e: e0 = e0[0] r, e = r**(e//e0), e0 return r, e else: # get the next factor ready for the next pass through the loop afactor = nextprime(afactor) # Weed out downright impossible candidates if logn/e < 40: b = 2.0**(logn/e) if abs(int(b + 0.5) - b) > 0.01: continue # now see if the plausible e makes a perfect power r, exact = integer_nthroot(n, e) if exact: if big: m = perfect_power(r, big=big, factor=factor) if m is not False: r, e = m[0], e*m[1] return int(r), e else: return False def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None): r""" Use Pollard's rho method to try to extract a nontrivial factor of ``n``. The returned factor may be a composite number. If no factor is found, ``None`` is returned. The algorithm generates pseudo-random values of x with a generator function, replacing x with F(x). If F is not supplied then the function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``. Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be supplied; the ``a`` will be ignored if F was supplied. The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'. For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries: >>> from sympy.ntheory.generate import cycle_length >>> n = 16843009 >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n >>> for s in range(5): ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s))) ... loop length = 2489; leader length = 42 loop length = 78; leader length = 120 loop length = 1482; leader length = 99 loop length = 1482; leader length = 285 loop length = 1482; leader length = 100 Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat: >>> x=2 >>> for i in range(9): ... x=(x**2+12)%17 ... print(x) ... 16 13 11 14 4 11 14 4 11 >>> next(cycle_length(lambda x: (x**2+12)%17, 2)) (3, 2) >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True)) [16, 13, 11, 14, 4] Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If ``max_steps`` is specified, the iteration is cancelled with a failure after the specified number of steps. Examples ======== >>> from sympy import pollard_rho >>> n=16843009 >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n >>> pollard_rho(n, F=F) 257 Use the default setting with a bad value of ``a`` and no retries: >>> pollard_rho(n, a=n-2, retries=0) If retries is > 0 then perhaps the problem will correct itself when new values are generated for a: >>> pollard_rho(n, a=n-2, retries=1) 257 References ========== - Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231 """ n = int(n) if n < 5: raise ValueError('pollard_rho should receive n > 4') prng = random.Random(seed + retries) V = s for i in range(retries + 1): U = V if not F: F = lambda x: (pow(x, 2, n) + a) % n j = 0 while 1: if max_steps and (j > max_steps): break j += 1 U = F(U) V = F(F(V)) # V is 2x further along than U g = igcd(U - V, n) if g == 1: continue if g == n: break return int(g) V = prng.randint(0, n - 1) a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2 F = None return None def pollard_pm1(n, B=10, a=2, retries=0, seed=1234): """ Use Pollard's p-1 method to try to extract a nontrivial factor of ``n``. Either a divisor (perhaps composite) or ``None`` is returned. The value of ``a`` is the base that is used in the test gcd(a**M - 1, n). The default is 2. If ``retries`` > 0 then if no factor is found after the first attempt, a new ``a`` will be generated randomly (using the ``seed``) and the process repeated. Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)). A search is made for factors next to even numbers having a power smoothness less than ``B``. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on ``a`` and the power smoothness of the even mumber just less than the factor p (hence the name p - 1). Although some discussion of what constitutes a good ``a`` some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1 for every prime power divisor of N. But consider the following: >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1 >>> n=257*1009 >>> smoothness_p(n) (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))]) So we should (and can) find a root with B=16: >>> pollard_pm1(n, B=16, a=3) 1009 If we attempt to increase B to 256 we find that it doesn't work: >>> pollard_pm1(n, B=256) >>> But if the value of ``a`` is changed we find that only multiples of 257 work, e.g.: >>> pollard_pm1(n, B=256, a=257) 1009 Checking different ``a`` values shows that all the ones that didn't work had a gcd value not equal to ``n`` but equal to one of the factors: >>> from sympy.core.numbers import ilcm, igcd >>> from sympy import factorint, Pow >>> M = 1 >>> for i in range(2, 256): ... M = ilcm(M, i) ... >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if ... igcd(pow(a, M, n) - 1, n) != n]) set([1009]) But does aM % d for every divisor of n give 1? >>> aM = pow(255, M, n) >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args] [(257**1, 1), (1009**1, 1)] No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that: 1) the power smoothness of the p - 1 value next to the root does not exceed B 2) a**M % p != 1 for any of the divisors of n. By trying more than one ``a`` it is possible that one of them will yield a factor. Examples ======== With the default smoothness bound, this number can't be cracked: >>> from sympy.ntheory import pollard_pm1, primefactors >>> pollard_pm1(21477639576571) Increasing the smoothness bound helps: >>> pollard_pm1(21477639576571, B=2000) 4410317 Looking at the smoothness of the factors of this number we find: >>> from sympy.utilities import flatten >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor: >>> factorint(4410317 - 1) {2: 2, 617: 1, 1787: 1} >>> factorint(4869863-1) {2: 1, 2434931: 1} Note that until B reaches the B-pow value of 1787, the number is not cracked; >>> pollard_pm1(21477639576571, B=1786) >>> pollard_pm1(21477639576571, B=1787) 4410317 The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we don't know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the percentages are nearly reversed...but in that range the simple trial division is quite fast. References ========== - Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238 - http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html - http://www.cs.toronto.edu/~yuvalf/Factorization.pdf """ n = int(n) if n < 4 or B < 3: raise ValueError('pollard_pm1 should receive n > 3 and B > 2') prng = random.Random(seed + B) # computing a**lcm(1,2,3,..B) % n for B > 2 # it looks weird, but it's right: primes run [2, B] # and the answer's not right until the loop is done. for i in range(retries + 1): aM = a for p in sieve.primerange(2, B + 1): e = int(math.log(B, p)) aM = pow(aM, pow(p, e), n) g = igcd(aM - 1, n) if 1 < g < n: return int(g) # get a new a: # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1' # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will # give a zero, too, so we set the range as [2, n-2]. Some references # say 'a' should be coprime to n, but either will detect factors. a = prng.randint(2, n - 2) def _trial(factors, n, candidates, verbose=False): """ Helper function for integer factorization. Trial factors ``n` against all integers given in the sequence ``candidates`` and updates the dict ``factors`` in-place. Returns the reduced value of ``n`` and a flag indicating whether any factors were found. """ if verbose: factors0 = list(factors.keys()) nfactors = len(factors) for d in candidates: if n % d == 0: m = multiplicity(d, n) n //= d**m factors[d] = m if verbose: for k in sorted(set(factors).difference(set(factors0))): print(factor_msg % (k, factors[k])) return int(n), len(factors) != nfactors def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1, verbose): """ Helper function for integer factorization. Checks if ``n`` is a prime or a perfect power, and in those cases updates the factorization and raises ``StopIteration``. """ if verbose: print('Check for termination') # since we've already been factoring there is no need to do # simultaneous factoring with the power check p = perfect_power(n, factor=False) if p is not False: base, exp = p if limitp1: limit = limitp1 - 1 else: limit = limitp1 facs = factorint(base, limit, use_trial, use_rho, use_pm1, verbose=False) for b, e in facs.items(): if verbose: print(factor_msg % (b, e)) factors[b] = exp*e raise StopIteration if isprime(n): factors[int(n)] = 1 raise StopIteration if n == 1: raise StopIteration trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i" trial_msg = "Trial division with primes [%i ... %i]" rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i" pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i" factor_msg = '\t%i ** %i' fermat_msg = 'Close factors satisying Fermat condition found.' complete_msg = 'Factorization is complete.' def _factorint_small(factors, n, limit, fail_max): """ Return the value of n and either a 0 (indicating that factorization up to the limit was complete) or else the next near-prime that would have been tested. Factoring stops if there are fail_max unsuccessful tests in a row. If factors of n were found they will be in the factors dictionary as {factor: multiplicity} and the returned value of n will have had those factors removed. The factors dictionary is modified in-place. """ def done(n, d): """return n, d if the sqrt(n) wasn't reached yet, else n, 0 indicating that factoring is done. """ if d*d <= n: return n, d return n, 0 d = 2 m = trailing(n) if m: factors[d] = m n >>= m d = 3 if limit < d: if n > 1: factors[n] = 1 return done(n, d) # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m # when d*d exceeds maxx or n we are done; if limit**2 is greater # than n then maxx is set to zero so the value of n will flag the finish if limit*limit > n: maxx = 0 else: maxx = limit*limit dd = maxx or n d = 5 fails = 0 while fails < fail_max: if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 d += 2 if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 # d = 6*(i+1) - 1 d += 4 return done(n, d) def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None): r""" Given a positive integer ``n``, ``factorint(n)`` returns a dict containing the prime factors of ``n`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorint >>> factorint(2000) # 2000 = (2**4) * (5**3) {2: 4, 5: 3} >>> factorint(65537) # This number is prime {65537: 1} For input less than 2, factorint behaves as follows: - ``factorint(1)`` returns the empty factorization, ``{}`` - ``factorint(0)`` returns ``{0:1}`` - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n`` Partial Factorization: If ``limit`` (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting. This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily: >>> from sympy.ntheory import isprime >>> from sympy.core.compatibility import long >>> a = 1407633717262338957430697921446883 >>> f = factorint(a, limit=10000) >>> f == {991: 1, long(202916782076162456022877024859): 1, 7: 1} True >>> isprime(max(f)) False This number has a small factor and a residual perfect power whose base is greater than the limit: >>> factorint(3*101**7, limit=5) {3: 1, 101: 7} Visual Factorization: If ``visual`` is set to ``True``, then it will return a visual factorization of the integer. For example: >>> from sympy import pprint >>> pprint(factorint(4200, visual=True)) 3 1 2 1 2 *3 *5 *7 Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors. You can easily switch between the two forms by sending them back to factorint: >>> from sympy import Mul, Pow >>> regular = factorint(1764); regular {2: 2, 3: 2, 7: 2} >>> pprint(factorint(regular)) 2 2 2 2 *3 *7 >>> visual = factorint(1764, visual=True); pprint(visual) 2 2 2 2 *3 *7 >>> print(factorint(visual)) {2: 2, 3: 2, 7: 2} If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression: >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form {2: 10, 3: 3} >>> factorint(Mul(4, 12, evaluate=False)) {2: 4, 3: 1} The table of the output logic is: ====== ====== ======= ======= Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict mul dict mul n mul dict dict mul mul dict dict ====== ====== ======= ======= Notes ===== Algorithm: The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds: >>> factors = factorint(12345678910111213141516) >>> for base, exp in sorted(factors.items()): ... print('%s %s' % (base, exp)) ... 2 2 2507191691 1 1231026625769 1 Any of these methods can optionally be disabled with the following boolean parameters: - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method ``factorint`` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops. If ``verbose`` is set to ``True``, detailed progress is printed. See Also ======== smoothness, smoothness_p, divisors """ factordict = {} if visual and not isinstance(n, Mul) and not isinstance(n, dict): factordict = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) elif isinstance(n, Mul): factordict = dict([(int(k), int(v)) for k, v in list(n.as_powers_dict().items())]) elif isinstance(n, dict): factordict = n if factordict and (isinstance(n, Mul) or isinstance(n, dict)): # check it for k in list(factordict.keys()): if isprime(k): continue e = factordict.pop(k) d = factorint(k, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) for k, v in d.items(): if k in factordict: factordict[k] += v*e else: factordict[k] = v*e if visual or (type(n) is dict and visual is not True and visual is not False): if factordict == {}: return S.One if -1 in factordict: factordict.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(factordict.items())]) return Mul(*args, evaluate=False) elif isinstance(n, dict) or isinstance(n, Mul): return factordict assert use_trial or use_rho or use_pm1 n = as_int(n) if limit: limit = int(limit) # special cases if n < 0: factors = factorint( -n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) factors[-1] = 1 return factors if limit and limit < 2: if n == 1: return {} return {n: 1} elif n < 10: # doing this we are assured of getting a limit > 2 # when we have to compute it later return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1}, {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n] factors = {} # do simplistic factorization if verbose: sn = str(n) if len(sn) > 50: print('Factoring %s' % sn[:5] + \ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:]) else: print('Factoring', n) if use_trial: # this is the preliminary factorization for small factors small = 2**15 fail_max = 600 small = min(small, limit or small) if verbose: print(trial_int_msg % (2, small, fail_max)) n, next_p = _factorint_small(factors, n, small, fail_max) else: next_p = 2 if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if next_p == 0: if n > 1: factors[int(n)] = 1 if verbose: print(complete_msg) return factors # continue with more advanced factorization methods # first check if the simplistic run didn't finish # because of the limit and check for a perfect # power before exiting try: if limit and next_p > limit: if verbose: print('Exceeded limit:', limit) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) if n > 1: factors[int(n)] = 1 return factors else: # Before quitting (or continuing on)... # ...do a Fermat test since it's so easy and we need the # square root anyway. Finding 2 factors is easy if they are # "close enough." This is the big root equivalent of dividing by # 2, 3, 5. sqrt_n = integer_nthroot(n, 2)[0] a = sqrt_n + 1 a2 = a**2 b2 = a2 - n for i in range(3): b, fermat = integer_nthroot(b2, 2) if fermat: break b2 += 2*a + 1 # equiv to (a+1)**2 - n a += 1 if fermat: if verbose: print(fermat_msg) if limit: limit -= 1 for r in [a - b, a + b]: facs = factorint(r, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) factors.update(facs) raise StopIteration # ...see if factorization can be terminated _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors # these are the limits for trial division which will # be attempted in parallel with pollard methods low, high = next_p, 2*next_p limit = limit or sqrt_n # add 1 to make sure limit is reached in primerange calls limit += 1 while 1: try: high_ = high if limit < high_: high_ = limit # Trial division if use_trial: if verbose: print(trial_msg % (low, high_)) ps = sieve.primerange(low, high_) n, found_trial = _trial(factors, n, ps, verbose) if found_trial: _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) else: found_trial = False if high > limit: if verbose: print('Exceeded limit:', limit) if n > 1: factors[int(n)] = 1 raise StopIteration # Only used advanced methods when no small factors were found if not found_trial: if (use_pm1 or use_rho): high_root = max(int(math.log(high_**0.7)), low, 3) # Pollard p-1 if use_pm1: if verbose: print(pm1_msg % (high_root, high_)) c = pollard_pm1(n, B=high_root, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) # Pollard rho if use_rho: max_steps = high_root if verbose: print(rho_msg % (1, max_steps, high_)) c = pollard_rho(n, retries=1, max_steps=max_steps, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors low, high = high, high*2 def primefactors(n, limit=None, verbose=False): """Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0. Examples ======== >>> from sympy.ntheory import primefactors, factorint, isprime >>> primefactors(6) [2, 3] >>> primefactors(-5) [5] >>> sorted(factorint(123456).items()) [(2, 6), (3, 1), (643, 1)] >>> primefactors(123456) [2, 3, 643] >>> sorted(factorint(10000000001, limit=200).items()) [(101, 1), (99009901, 1)] >>> isprime(99009901) False >>> primefactors(10000000001, limit=300) [101] See Also ======== divisors """ n = int(n) factors = sorted(factorint(n, limit=limit, verbose=verbose).keys()) s = [f for f in factors[:-1:] if f not in [-1, 0, 1]] if factors and isprime(factors[-1]): s += [factors[-1]] return s def _divisors(n): """Helper function for divisors which generates the divisors.""" factordict = factorint(n) ps = sorted(factordict.keys()) def rec_gen(n=0): if n == len(ps): yield 1 else: pows = [1] for j in range(factordict[ps[n]]): pows.append(pows[-1] * ps[n]) for q in rec_gen(n + 1): for p in pows: yield p * q for p in rec_gen(): yield p def divisors(n, generator=False): r""" Return all divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned. The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n). Examples ======== >>> from sympy import divisors, divisor_count >>> divisors(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> divisor_count(24) 8 >>> list(divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120] This is a slightly modified version of Tim Peters referenced at: http://stackoverflow.com/questions/1010381/python-factorization See Also ======== primefactors, factorint, divisor_count """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _divisors(n) if not generator: return sorted(rv) return rv def divisor_count(n, modulus=1): """ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only those that are divisible by ``modulus`` are counted. References ========== - http://www.mayer.dial.pipex.com/maths/formulae.htm >>> from sympy import divisor_count >>> divisor_count(6) 4 See Also ======== factorint, divisors, totient """ if not modulus: return 0 elif modulus != 1: n, r = divmod(n, modulus) if r: return 0 if n == 0: return 0 return Mul(*[v + 1 for k, v in factorint(n).items() if k > 1]) def _antidivisors(n): """Helper function for antidivisors which generates the antidivisors.""" for d in _divisors(n): y = 2*d if n > y and n % y: yield y for d in _divisors(2*n-1): if n > d >= 2 and n % d: yield d for d in _divisors(2*n+1): if n > d >= 2 and n % d: yield d def antidivisors(n, generator=False): r""" Return all antidivisors of n sorted from 1..n by default. Antidivisors [1]_ of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned. References ========== .. [1] definition is described in http://oeis.org/A066272/a066272a.html Examples ======== >>> from sympy.ntheory.factor_ import antidivisors >>> antidivisors(24) [7, 16] >>> sorted(antidivisors(128, generator=True)) [3, 5, 15, 17, 51, 85] See Also ======== primefactors, factorint, divisors, divisor_count, antidivisor_count """ n = as_int(abs(n)) if n <= 2: return [] rv = _antidivisors(n) if not generator: return sorted(rv) return rv def antidivisor_count(n): """ Return the number of antidivisors [1]_ of ``n``. References ========== .. [1] formula from https://oeis.org/A066272 Examples ======== >>> from sympy.ntheory.factor_ import antidivisor_count >>> antidivisor_count(13) 4 >>> antidivisor_count(27) 5 See Also ======== factorint, divisors, antidivisors, divisor_count, totient """ n = as_int(abs(n)) if n <= 2: return 0 return divisor_count(2*n-1) + divisor_count(2*n+1) + \ divisor_count(n) - divisor_count(n, 2) - 5 class totient(Function): """ Calculate the Euler totient function phi(n) >>> from sympy.ntheory import totient >>> totient(1) 1 >>> totient(25) 20 See Also ======== divisor_count """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) t = 1 for p, k in factors.items(): t *= (p - 1) * p**(k - 1) return t def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) class divisor_sigma(Function): """ Calculate the divisor function `\sigma_k(n)` for positive integer n ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots + p_i^{m_ik}). Parameters ========== k : power of divisors in the sum for k = 0, 1: ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)`` ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))`` Default for k is 1. References ========== .. [1] http://en.wikipedia.org/wiki/Divisor_function Examples ======== >>> from sympy.ntheory import divisor_sigma >>> divisor_sigma(18, 0) 6 >>> divisor_sigma(39, 1) 56 >>> divisor_sigma(12, 2) 210 >>> divisor_sigma(37) 38 See Also ======== divisor_count, totient, divisors, factorint """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items()]) def core(n, t=2): """ Calculate core(n,t) = `core_t(n)` of a positive integer n ``core_2(n)`` is equal to the squarefree part of n If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}. Parameters ========== t : core(n,t) calculates the t-th power free part of n ``core(n, 2)`` is the squarefree part of ``n`` ``core(n, 3)`` is the cubefree part of ``n`` Default for t is 2. References ========== .. [1] http://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core Examples ======== >>> from sympy.ntheory.factor_ import core >>> core(24, 2) 6 >>> core(9424, 3) 1178 >>> core(379238) 379238 >>> core(15**11, 10) 15 See Also ======== factorint """ n = as_int(n) t = as_int(t) if n <= 0: raise ValueError("n must be a positive integer") elif t <= 1: raise ValueError("t must be >= 2") else: y = 1 for p, e in factorint(n).items(): y *= p**(e % t) return y def digits(n, b=10): """ Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative). Examples ======== >>> from sympy.ntheory.factor_ import digits >>> digits(35) [10, 3, 5] >>> digits(27, 2) [2, 1, 1, 0, 1, 1] >>> digits(65536, 256) [256, 1, 0, 0] >>> digits(-3958, 27) [-27, 5, 11, 16] """ b = as_int(b) n = as_int(n) if b <= 1: raise ValueError("b must be >= 2") else: x, y = abs(n), [] while x >= b: x, r = divmod(x, b) y.append(r) y.append(x) y.append(-b if n < 0 else b) y.reverse() return y
{ "content_hash": "44eec6ea0b7dee2cd888efc72a8cc3b9", "timestamp": "", "source": "github", "line_count": 1581, "max_line_length": 86, "avg_line_length": 29.838077166350413, "alnum_prop": 0.523169542544622, "repo_name": "liangjiaxing/sympy", "id": "2d850a6c4990551e6eff220ded4ed2325542dd5a", "size": "47174", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "sympy/ntheory/factor_.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "13597754" }, { "name": "Ruby", "bytes": "304" }, { "name": "Scheme", "bytes": "125" }, { "name": "Shell", "bytes": "4008" }, { "name": "XSLT", "bytes": "366202" } ], "symlink_target": "" }
import pycurl import io import json jsonStr = '{"port":8099, "fileName":"plugin.xml", "line":5, "col":5, "offsetline":4}' jsonStr1 = '{"port":8091, "fileName":"plugin.xml", "line":2, "col":0, "offsetline":4}' jsonStr2 = '{"port":8091, "fileName":"plugin.xml", "line":2, "col":5, "offsetline":0}' jsonStr3 = '{"port":8091, "fileName":"plugin.xml", "line":2, "col":0, "offsetline":0}' cj = json.loads(jsonStr) buf = io.StringIO() curl = pycurl.Curl() curl.setopt(curl.URL, 'http://localhost:%s?message=%s:%d:%d:%d' % (cj['port'], cj['fileName'], cj['line'], cj['col'], cj['offsetline'])) curl.setopt(curl.WRITEFUNCTION, buf.write) try: curl.perform() # todo: process return values except pycurl.error as error: pass print(buf.getvalue()) buf.close()
{ "content_hash": "c4861c2b5949693ace11f6f2b9ce4399", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 136, "avg_line_length": 34.68181818181818, "alnum_prop": 0.6435124508519003, "repo_name": "luoluyao/AppetizerRemoteCall", "id": "fea9667d27e63aaea9de313a64bc732508187b26", "size": "763", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sample/openFileExample.py", "mode": "33188", "license": "mit", "language": [ { "name": "Java", "bytes": "21962" }, { "name": "Python", "bytes": "763" } ], "symlink_target": "" }
"""Paddings.""" from sonnet.src.pad import causal from sonnet.src.pad import create from sonnet.src.pad import full from sonnet.src.pad import reverse_causal from sonnet.src.pad import same from sonnet.src.pad import valid __all__ = ( "causal", "create", "full", "reverse_causal", "same", "valid", )
{ "content_hash": "69742d8cb27d1757334e93a50ab5f0fb", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 41, "avg_line_length": 19.176470588235293, "alnum_prop": 0.6717791411042945, "repo_name": "deepmind/sonnet", "id": "b8fb9c9666ac524cb8e153e77b476a0f1aa937e4", "size": "1009", "binary": false, "copies": "1", "ref": "refs/heads/v2", "path": "sonnet/pad.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "794977" }, { "name": "Shell", "bytes": "1844" }, { "name": "Starlark", "bytes": "31841" } ], "symlink_target": "" }
from __future__ import division ''' This file provides an active learning environment for the demo interface. Needs the file 'Topic.xlsx' as input. Description of functionality --- data model: COMMENT KASPAR: I interpreted 'score' as the class of the noun phrase, i.e. 0 or 1. datapoint = { str(noun phrase) : { 'score': float(controversy score), 'confidence':float(confidence)}} estimates = l st(datapoint1, .... , datapointN) labelled = { str(noun phrase) : { 'label' : 'controversial' OR 'noncontroversial') , 'ip' : str(ip address of user) } } --- Controversy is labelled on the noun-phrase (here considered topic) level. Timestamps should be implemented on the backend side. ''' import random # while real data lacks import json import sys import os # KB: Added modules import numpy as np import pandas as pd import random # libact classes from libact.base.dataset import Dataset from libact.models import LogisticRegression from libact.query_strategies import UncertaintySampling from elasticsearch import Elasticsearch from esengine import Payload, Query, Filter from models.anchor import * es = Elasticsearch( ['http://controcurator.org/ess/'], port=80) def load_anchors(): #query = es.search(index="anchors", doc_type="vaccination")#, query=body) #topTopics = top['aggregations']['topics']['buckets'] query = {"query": { "bool": { "must": [{ "range": { "features.instances": { "gt": "0" } } }], } } } anchors = Anchor.search(query, size=10) data = pd.DataFrame([a.features for a in anchors if a.features['entities'] > 0], index=[a.label for a in anchors if a.features['entities'] > 0]) ''' We need to keep track of the original topic name. This information is needed when asking the user whether the topic is controversial ''' names = data.index ''' As features we currently only look at # of 'positive' words (col 3), # of 'negative' words (col 4), and'intensity' (col 5). ''' X = np.asarray(data.ix[:,2:3]) ''' The active learning environment used here (libact) needs a few coded observation. Otherwise search new data points won't work Since the existing spreadsheet already ranked topics according to their controversy scores, I made a best guess, and assigned the first five to class 1 (controversial) and the last five to class 0 (not controversial) ''' y = np.asarray([1,1,1,1,1] + [None]*(X.shape[0]-10)+[0,0,0,0,0]) return X,y,names def loadDocuments(): documents = Article.all() return documents def load_data(path_to_file): ''' Okay, let's load the Excel spreadsheet in which topics, here understood as noun phrases, are given controversy scores. ''' data = pd.read_excel(path_to_file, header=None,skiprows=1) ''' We need to keep track of the original topic name. This information is needed when asking the user whether the topic is controversial ''' names = list(data.ix[:,0]) ''' As features we currently only look at # of 'positive' words (col 3), # of 'negative' words (col 4), and'intensity' (col 5). ''' X = np.asarray(data.ix[:,3:5]) ''' The active learning environment used here (libact) needs a few coded observation. Otherwise search new data points won't work Since the existing spreadsheet already ranked topics according to their controversy scores, I made a best guess, and assigned the first five to class 1 (controversial) and the last five to class 0 (not controversial) ''' y = np.asarray([1,1,1,1,1] + [None]*(X.shape[0]-10)+[0,0,0,0,0]) return X,y,names def initialize_model(X,y): ''' Convert feature matrix and target vector to a format that is easy to digest for the libact model and searchers ''' trn_ds = Dataset(X,y) ''' Define model. We start with a simple Logistic Regression. More refined models can be implemented later. There is a possibility to integrate Sklearn classifiers. ''' model=LogisticRegression() ''' Before looking for new datapoins the model needs to fitted using the scarce observation we have given, see the construction of the 'y' target vector in the load_data function ''' model.train(trn_ds) return model,trn_ds def convert_label(label): ''' Function that converts manually given labels to a binary class. ''' if label == 'controversial': return 1 return 0 def unsure(data=None): ''' implements the /controversial endpoint. parameters ---- data: labeled returns --- { controversial : estimates, noncontroversial : estimates } CHANGED CODE HERE: We'll use active learning to search for new datapoints. Two scenarios are possible: 1) If a data point _and_ label are given, it will update the training set and retrain the model. 2) If no data point is given, it will search for a new data point to code and return this. ''' if data: ''' expects an object like: {'nounphrase': {'label':'controversial'/'noncrontroversial','ip':'127.0.01'}}''' data = json.loads(data) '''get the topic name''' ## Python 2.7 3.5 difference here! # Python 3.5 use name = list(data.keys())[0] # Python 2.7 use # name = data.keys()[0] '''get the label''' label = convert_label(data[name]['label']) '''get the position of the topic in the training set''' ask_id = names.index(name) '''update training set with new label''' trn_ds.update(ask_id, label) '''retrain model''' model.train(trn_ds) else: ''' When asked for a new data point, we call the UncertaintySampling method and write the name of this topic to JSON file ''' ask_id = qs.make_query() results = { 'unsure' : names[ask_id] } return json.dumps(results) def controversial(trn_ds): ''' implements the /controversial endpoint. parameters ---- none returns --- { controversial : estimates, noncontroversial : estimates } This function returns the ten most controversial and non controversial topic based on the current model. ''' labeled_features = trn_ds.get_labeled_entries() positions = [i for i,a in enumerate(trn_ds.data) if trn_ds.data[i][1] != None] datapoints = [] for p in positions: datapoints.append( { 'anchor' : names[p], 'score':model.predict(X[p])[0], # Get confidence for class one, i.e. the topic being controversial 'confidence':model.predict_real(X[p])[0][1] } ) datapoints_sorted = sorted(datapoints, key=lambda x: (x['confidence']),reverse=True) controversial = datapoints_sorted[:10] noncontroversial = datapoints_sorted[-10:] keys = {label:label.replace(' ','_').lower() for label in names} results = {'controversial':controversial, 'noncontroversial':noncontroversial, 'keys':keys} return results if __name__=='__main__': input = sys.argv[1:] task = input[0] if task == 'anchor' and len(input) == 2: # return anchor anchor = input[1] try: anchor = Anchor.get(id=anchor) instances = anchor.getInstances() for i in instances: i['_source']['sentences'] = i['_source']['sentences'][0:2] print json.dumps(instances) except: print json.dumps([]) if task == 'article' and len(input) == 2: # return article article = input[1] try: article = Article.get(id=article) print json.dumps(vars(article), default=str) except: print json.dumps([]) if task == 'controversial': ## DEMO ## # Initialize the model #X,y,names = load_anchors() #X,y,names = load_anchors() #model,trn_ds = initialize_model(X,y) #qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression()) # Cell used for simulation, we randomly annotate words as being controversial or not # During each iteration we update the model. # Lastly we call the 'controversial' function and sort all topics as controversial # or not based on the confidence score returned by the logistic regression #import warnings #warnings.filterwarnings('ignore') #n_turns = 10 #answers = ['noncontroversial','controversial']*int(n_turns/2) #random.shuffle(answers) # for t in range(n_turns): # result = unsure() # labeled = {json.loads(result)['unsure']:{'label':answers[t],'ip':'127.0.01'}} # unsure(json.dumps(labeled)) #controversies = controversial(trn_ds) documents = loadDocuments() print(json.dumps(controversies))
{ "content_hash": "276d15f0c8c342d44cbb10f664ff2c00", "timestamp": "", "source": "github", "line_count": 318, "max_line_length": 148, "avg_line_length": 28.70440251572327, "alnum_prop": 0.6214943032427696, "repo_name": "ControCurator/controcurator", "id": "b3e136d100edc1edfd02948f1398efd3ec83adb1", "size": "9142", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python_code/endpoints.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "349" }, { "name": "HTML", "bytes": "37291" }, { "name": "JavaScript", "bytes": "32468" }, { "name": "Jupyter Notebook", "bytes": "24678" }, { "name": "Python", "bytes": "208868" } ], "symlink_target": "" }
import mock import unittest from airflow import DAG, configuration from airflow.contrib.operators.druid_operator import DruidOperator from airflow.utils import timezone from airflow.models import TaskInstance DEFAULT_DATE = timezone.datetime(2017, 1, 1) class TestDruidOperator(unittest.TestCase): def setUp(self): configuration.load_test_config() args = { 'owner': 'airflow', 'start_date': timezone.datetime(2017, 1, 1) } self.dag = DAG('test_dag_id', default_args=args) def test_read_spec_from_file(self): m = mock.mock_open(read_data='{"some": "json"}') with mock.patch('airflow.contrib.operators.druid_operator.open', m, create=True) as m: druid = DruidOperator( task_id='druid_indexing_job', json_index_file='index_spec.json', dag=self.dag ) m.assert_called_once_with('index_spec.json') self.assertEqual(druid.index_spec_str, '{\n "some": "json"\n}') def test_render_template(self): json_str = ''' { "type": "{{ params.index_type }}", "datasource": "{{ params.datasource }}", "spec": { "dataSchema": { "granularitySpec": { "intervals": ["{{ ds }}/{{ macros.ds_add(ds, 1) }}"] } } } } ''' m = mock.mock_open(read_data=json_str) with mock.patch('airflow.contrib.operators.druid_operator.open', m, create=True) as m: operator = DruidOperator( task_id='spark_submit_job', json_index_file='index_spec.json', params={ 'index_type': 'index_hadoop', 'datasource': 'datasource_prd' }, dag=self.dag ) ti = TaskInstance(operator, DEFAULT_DATE) ti.render_templates() m.assert_called_once_with('index_spec.json') expected = '''{ "datasource": "datasource_prd", "spec": { "dataSchema": { "granularitySpec": { "intervals": [ "2017-01-01/2017-01-02" ] } } }, "type": "index_hadoop" }''' self.assertEqual(expected, getattr(operator, 'index_spec_str')) if __name__ == '__main__': unittest.main()
{ "content_hash": "98aac7ae225ed556b9d40e8287bf1786", "timestamp": "", "source": "github", "line_count": 79, "max_line_length": 94, "avg_line_length": 32, "alnum_prop": 0.4964398734177215, "repo_name": "zack3241/incubator-airflow", "id": "c8f92f5958c0cd7ff941a2aea890cd5a4dd43df6", "size": "3097", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "tests/contrib/operators/test_druid_operator.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "57054" }, { "name": "HTML", "bytes": "152247" }, { "name": "JavaScript", "bytes": "1364571" }, { "name": "Mako", "bytes": "1037" }, { "name": "Python", "bytes": "2777082" }, { "name": "Shell", "bytes": "28198" } ], "symlink_target": "" }
"""This example fetches data from PQL tables and creates match table files.""" __author__ = ('Nicholas Chen', 'Joseph DiLallo') import tempfile # Import appropriate modules from the client library. from googleads import dfp def main(client): # Initialize a report downloader. report_downloader = client.GetDataDownloader(version='v201408') line_items_file = tempfile.NamedTemporaryFile( prefix='line_items_', suffix='.csv', mode='w', delete=False) ad_units_file = tempfile.NamedTemporaryFile( prefix='ad_units_', suffix='.csv', mode='w', delete=False) line_items_pql_query = ('SELECT Name, Id, Status FROM Line_Item ORDER BY Id ' 'ASC') ad_units_pql_query = 'SELECT Name, Id FROM Ad_Unit ORDER BY Id ASC' # Downloads the response from PQL select statement to the specified file report_downloader.DownloadPqlResultToCsv( line_items_pql_query, line_items_file) report_downloader.DownloadPqlResultToCsv( ad_units_pql_query, ad_units_file) line_items_file.close() ad_units_file.close() print ('Saved line items to... %s' % line_items_file.name) print ('Saved ad units to... %s' % ad_units_file.name) if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
{ "content_hash": "e5d392e5dd84baf7ac9bc6ba3c468d3d", "timestamp": "", "source": "github", "line_count": 41, "max_line_length": 79, "avg_line_length": 32.21951219512195, "alnum_prop": 0.6866010598031794, "repo_name": "coxmediagroup/googleads-python-lib", "id": "18f2080632b18c06a787db536fb72ad23abbe308", "size": "1939", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "examples/dfp/v201408/publisher_query_language_service/fetch_match_tables.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "492" }, { "name": "HTML", "bytes": "8336" }, { "name": "JavaScript", "bytes": "504" }, { "name": "Python", "bytes": "2535137" } ], "symlink_target": "" }
import os from som.wordfish.structures import ( structure_compressed, structure_folder ) # If you want to control the debug level, change MESSAGELEVEL in your # environment # Eg, only print critical information. os.environ['MESSAGELEVEL'] = "CRITICAL" # File compressed_file = "data.zip" structure = structure_compressed(compressed_file) # Folder folder_path = os.path.abspath("data") structure = structure_folder(folder_path)
{ "content_hash": "8002a43d4548561ccef4861adf6a011e", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 70, "avg_line_length": 22.1, "alnum_prop": 0.751131221719457, "repo_name": "radinformatics/som-tools", "id": "de4f937b35078f4b7dce9bd810d5d956f918e193", "size": "695", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/wordfish/structures/structure_data.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "16452" }, { "name": "HTML", "bytes": "780" }, { "name": "JavaScript", "bytes": "163002" }, { "name": "Python", "bytes": "115696" }, { "name": "Shell", "bytes": "1092" } ], "symlink_target": "" }
"""CompactBlocksTest -- test compact blocks (BIP 152, without segwit support, version 1) """ import random from test_framework.blocktools import create_block, create_coinbase from test_framework.messages import BlockTransactions, BlockTransactionsRequest, calculate_shortid, CBlock, CBlockHeader, CInv, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, HeaderAndShortIDs, msg_block, msg_blocktxn, msg_cmpctblock, msg_getblocktxn, msg_getdata, msg_getheaders, msg_headers, msg_inv, msg_sendcmpct, msg_sendheaders, msg_tx, NODE_NETWORK, P2PHeaderAndShortIDs, PrefilledTransaction, ToHex, NODE_HEADERS_COMPRESSED from test_framework.mininode import mininode_lock, P2PInterface from test_framework.script import CScript, OP_TRUE, OP_DROP from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, wait_until # TestP2PConn: A peer we use to send messages to dashd, and store responses. class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.last_sendcmpct = [] self.block_announced = False # Store the hashes of blocks we've seen announced. # This is for synchronizing the p2p message traffic, # so we can eg wait until a particular block is announced. self.announced_blockhashes = set() def on_sendcmpct(self, message): self.last_sendcmpct.append(message) def on_cmpctblock(self, message): self.block_announced = True self.last_message["cmpctblock"].header_and_shortids.header.calc_sha256() self.announced_blockhashes.add(self.last_message["cmpctblock"].header_and_shortids.header.sha256) def on_headers(self, message): self.block_announced = True for x in self.last_message["headers"].headers: x.calc_sha256() self.announced_blockhashes.add(x.sha256) def on_inv(self, message): for x in self.last_message["inv"].inv: if x.type == 2: self.block_announced = True self.announced_blockhashes.add(x.hash) # Requires caller to hold mininode_lock def received_block_announcement(self): return self.block_announced def clear_block_announcement(self): with mininode_lock: self.block_announced = False self.last_message.pop("inv", None) self.last_message.pop("headers", None) self.last_message.pop("cmpctblock", None) def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.send_message(msg) def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) def request_headers_and_sync(self, locator, hashstop=0): self.clear_block_announcement() self.get_headers(locator, hashstop) wait_until(self.received_block_announcement, timeout=30, lock=mininode_lock) self.clear_block_announcement() # Block until a block announcement for a particular block hash is # received. def wait_for_block_announcement(self, block_hash, timeout=30): def received_hash(): return (block_hash in self.announced_blockhashes) wait_until(received_hash, timeout=timeout, lock=mininode_lock) def send_await_disconnect(self, message, timeout=30): """Sends a message to the node and wait for disconnect. This is used when we want to send a message into the node that we expect will get us disconnected, eg an invalid block.""" self.send_message(message) wait_until(lambda: not self.is_connected, timeout=timeout, lock=mininode_lock) class CompactBlocksTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True # both nodes has the same version self.num_nodes = 2 self.extra_args = [[ "-txindex", "-acceptnonstdtxn=1", ]] * 2 self.utxos = [] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def build_block_on_tip(self, node): height = node.getblockcount() tip = node.getbestblockhash() mtp = node.getblockheader(tip)['mediantime'] block = create_block(int(tip, 16), create_coinbase(height + 1), mtp + 1) block.solve() return block # Create 10 more anyone-can-spend utxo's for testing. def make_utxos(self): # Doesn't matter which node we use, just use node0. block = self.build_block_on_tip(self.nodes[0]) self.test_node.send_and_ping(msg_block(block)) assert int(self.nodes[0].getbestblockhash(), 16) == block.sha256 self.nodes[0].generate(100) total_value = block.vtx[0].vout[0].nValue out_value = total_value // 10 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b'')) for i in range(10): tx.vout.append(CTxOut(out_value, CScript([OP_TRUE]))) tx.rehash() block2 = self.build_block_on_tip(self.nodes[0]) block2.vtx.append(tx) block2.hashMerkleRoot = block2.calc_merkle_root() block2.solve() self.test_node.send_and_ping(msg_block(block2)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256) self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)]) return # Test "sendcmpct" (between peers with the same version): # - No compact block announcements unless sendcmpct is sent. # - If sendcmpct is sent with boolean 0, then block announcements are not # made with compact blocks. # - If sendcmpct is then sent with boolean 1, then new block announcements # are made with compact blocks. # If old_node is passed in, request compact blocks with version=preferred-1 # and verify that it receives block announcements via compact block. def test_sendcmpct(self, node, test_node, preferred_version, old_node=None): # Make sure we get a SENDCMPCT message from our peer def received_sendcmpct(): return (len(test_node.last_sendcmpct) > 0) wait_until(received_sendcmpct, timeout=30, lock=mininode_lock) with mininode_lock: # Check that the first version received is the preferred one assert_equal(test_node.last_sendcmpct[0].version, preferred_version) test_node.last_sendcmpct = [] tip = int(node.getbestblockhash(), 16) def check_announcement_of_new_block(node, peer, predicate): peer.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) peer.wait_for_block_announcement(block_hash, timeout=30) assert peer.block_announced with mininode_lock: assert predicate(peer), ( "block_hash={!r}, cmpctblock={!r}, inv={!r}".format( block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None))) # We shouldn't get any block announcements via cmpctblock yet. check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Try one more time, this time after requesting headers. test_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message) # Test a few ways of using sendcmpct that should NOT # result in compact block announcements. # Before each test, sync the headers chain. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-high version sendcmpct = msg_sendcmpct() sendcmpct.version = preferred_version+1 sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with valid version, but announce=False sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Finally, try a SENDCMPCT message with announce=True sendcmpct.version = preferred_version sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time (no headers sync should be needed!) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after turning on sendheaders test_node.send_and_ping(msg_sendheaders()) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message) # Now turn off announcements sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message) # This code should be enabled after increasing cmctblk version #if old_node is not None: # Verify that a peer using an older protocol version can receive # announcements from this node. # sendcmpct.version = preferred_version-1 # sendcmpct.announce = True # old_node.send_and_ping(sendcmpct) # Header sync # old_node.request_headers_and_sync(locator=[tip]) # check_announcement_of_new_block(node, old_node, lambda p: "cmpctblock" in p.last_message) # This test actually causes dashd to (reasonably!) disconnect us, so do this last. def test_invalid_cmpctblock_message(self): self.nodes[0].generate(101) block = self.build_block_on_tip(self.nodes[0]) cmpct_block = P2PHeaderAndShortIDs() cmpct_block.header = CBlockHeader(block) cmpct_block.prefilled_txn_length = 1 # This index will be too high prefilled_txn = PrefilledTransaction(1, block.vtx[0]) cmpct_block.prefilled_txn = [prefilled_txn] self.test_node.send_await_disconnect(msg_cmpctblock(cmpct_block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock) # Compare the generated shortids to what we expect based on BIP 152, given # dashd's choice of nonce. def test_compactblock_construction(self, node, test_node, version): # Generate a bunch of transactions. node.generate(101) num_transactions = 25 address = node.getnewaddress() for i in range(num_transactions): txid = node.sendtoaddress(address, 0.1) hex_tx = node.gettransaction(txid)["hex"] tx = FromHex(CTransaction(), hex_tx) # Wait until we've seen the block announcement for the resulting tip tip = int(node.getbestblockhash(), 16) test_node.wait_for_block_announcement(tip) # Make sure we will receive a fast-announce compact block self.request_cb_announcements(test_node, node, version) # Now mine a block, and look at the resulting compact block. test_node.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) # Store the raw block in our internal format. block = FromHex(CBlock(), node.getblock("%02x" % block_hash, False)) for tx in block.vtx: tx.calc_sha256() block.rehash() # Wait until the block was announced (via compact blocks) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) # Now fetch and check the compact block header_and_shortids = None with mininode_lock: # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block) # Now fetch the compact block using a normal non-announce getdata with mininode_lock: test_node.clear_block_announcement() inv = CInv(20, block_hash) # 20 == "CompactBlock" test_node.send_message(msg_getdata([inv])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) # Now fetch and check the compact block header_and_shortids = None with mininode_lock: # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block) def check_compactblock_construction_from_block(self, version, header_and_shortids, block_hash, block): # Check that we got the right block! header_and_shortids.header.calc_sha256() assert_equal(header_and_shortids.header.sha256, block_hash) # Make sure the prefilled_txn appears to have included the coinbase assert len(header_and_shortids.prefilled_txn) >= 1 assert_equal(header_and_shortids.prefilled_txn[0].index, 0) # Check that all prefilled_txn entries match what's in the block. for entry in header_and_shortids.prefilled_txn: entry.tx.calc_sha256() # This checks the tx agree assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256) # Check that the cmpctblock message announced all the transactions. assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx)) # And now check that all the shortids are as expected as well. # Determine the siphash keys to use. [k0, k1] = header_and_shortids.get_siphash_keys() index = 0 while index < len(block.vtx): if (len(header_and_shortids.prefilled_txn) > 0 and header_and_shortids.prefilled_txn[0].index == index): # Already checked prefilled transactions above header_and_shortids.prefilled_txn.pop(0) else: tx_hash = block.vtx[index].sha256 shortid = calculate_shortid(k0, k1, tx_hash) assert_equal(shortid, header_and_shortids.shortids[0]) header_and_shortids.shortids.pop(0) index += 1 # Test that dashd requests compact blocks when we announce new blocks # via header or inv, and that responding to getblocktxn causes the block # to be successfully reconstructed. def test_compactblock_requests(self, node, test_node): # Try announcing a block with an inv or header, expect a compactblock # request for announce in ["inv", "header"]: block = self.build_block_on_tip(node) with mininode_lock: test_node.last_message.pop("getdata", None) if announce == "inv": test_node.send_message(msg_inv([CInv(2, block.sha256)])) getheaders_key = "getheaders2" if test_node.nServices & NODE_HEADERS_COMPRESSED else "getheaders" wait_until(lambda: getheaders_key in test_node.last_message, timeout=30, lock=mininode_lock) test_node.send_header_for_blocks([block]) else: test_node.send_header_for_blocks([block]) wait_until(lambda: "getdata" in test_node.last_message, timeout=30, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert_equal(test_node.last_message["getdata"].inv[0].type, 20) assert_equal(test_node.last_message["getdata"].inv[0].hash, block.sha256) # Send back a compactblock message that omits the coinbase comp_block = HeaderAndShortIDs() comp_block.header = CBlockHeader(block) comp_block.nonce = 0 [k0, k1] = comp_block.get_siphash_keys() comp_block.shortids = [ calculate_shortid(k0, k1, block.vtx[0].sha256) ] test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # Expect a getblocktxn message. with mininode_lock: assert "getblocktxn" in test_node.last_message absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [0]) # should be a coinbase request # Send the coinbase, and verify that the tip advances. msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = [block.vtx[0]] test_node.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) # Create a chain of transactions from given utxo, and add to a new block. def build_block_with_transactions(self, node, utxo, num_transactions): block = self.build_block_on_tip(node) for i in range(num_transactions): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b'')) tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.rehash() utxo = [tx.sha256, 0, tx.vout[0].nValue] block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() return block # Test that we only receive getblocktxn requests for transactions that the # node needs, and that responding to them causes the block to be # reconstructed. def test_getblocktxn_requests(self, node, test_node, version): def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert "getblocktxn" in peer.last_message absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_blocktxn() msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, prefill_list=[0, 1, 5]) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(block.vtx[1])) assert block.vtx[1].hash in node.getrawmempool() # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4]) test_getblocktxn_response(comp_block, test_node, [5]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0]) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert "getblocktxn" not in test_node.last_message # Incorrectly responding to a getblocktxn shouldn't cause the block to be # permanently failed. def test_incorrect_blocktxn_response(self, node, test_node, version): if (len(self.utxos) == 0): self.make_utxos() utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:6]: assert tx.hash in mempool # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0]) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indexes = [] with mininode_lock: assert "getblocktxn" in test_node.last_message absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [6, 7, 8, 9, 10]) # Now give an incorrect response. # Note that it's possible for dashd to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change was made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request wait_until(lambda: "getdata" in test_node.last_message, timeout=10, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert test_node.last_message["getdata"].inv[0].type == 2 assert_equal(test_node.last_message["getdata"].inv[0].hash, block.sha256) # Deliver the block test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def test_getblocktxn_handler(self, node, test_node, version): # dashd will not send blocktxn responses for blocks whose height is # more than 10 blocks deep. MAX_GETBLOCKTXN_DEPTH = 10 chain_height = node.getblockcount() current_height = chain_height while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH): block_hash = node.getblockhash(current_height) block = FromHex(CBlock(), node.getblock(block_hash, False)) msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), []) num_to_request = random.randint(1, len(block.vtx)) msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request))) test_node.send_message(msg) wait_until(lambda: "blocktxn" in test_node.last_message, timeout=10, lock=mininode_lock) [tx.calc_sha256() for tx in block.vtx] with mininode_lock: assert_equal(test_node.last_message["blocktxn"].block_transactions.blockhash, int(block_hash, 16)) all_indices = msg.block_txn_request.to_absolute() for index in all_indices: tx = test_node.last_message["blocktxn"].block_transactions.transactions.pop(0) tx.calc_sha256() assert_equal(tx.sha256, block.vtx[index].sha256) test_node.last_message.pop("blocktxn", None) current_height -= 1 # Next request should send a full block response, as we're past the # allowed depth for a blocktxn response. block_hash = node.getblockhash(current_height) msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0]) with mininode_lock: test_node.last_message.pop("block", None) test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(block_hash, 16)) assert "blocktxn" not in test_node.last_message def test_compactblocks_not_at_tip(self, node, test_node): # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for i in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(20, int(new_blocks[0], 16))])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() with mininode_lock: test_node.last_message.pop("block", None) test_node.send_message(msg_getdata([CInv(20, int(new_blocks[0], 16))])) wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height-5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert found # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: assert "blocktxn" not in test_node.last_message def test_end_to_end_block_relay(self, node, listeners): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) [l.clear_block_announcement() for l in listeners] node.submitblock(ToHex(block)) for l in listeners: wait_until(lambda: "cmpctblock" in l.last_message, timeout=30, lock=mininode_lock) with mininode_lock: for l in listeners: l.last_message["cmpctblock"].header_and_shortids.header.calc_sha256() assert_equal(l.last_message["cmpctblock"].header_and_shortids.header.sha256, block.sha256) # Test that we don't get disconnected if we relay a compact block with valid header, # but invalid transactions. def test_invalid_tx_in_compactblock(self, node, test_node): assert len(self.utxos) utxo = self.utxos[0] block = self.build_block_with_transactions(node, utxo, 5) del block.vtx[3] block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Now send the compact block with all transactions prefilled, and # verify that we don't get disconnected. comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4]) msg = msg_cmpctblock(comp_block.to_p2p()) test_node.send_and_ping(msg) # Check that the tip didn't advance assert int(node.getbestblockhash(), 16) is not block.sha256 test_node.sync_with_ping() # Helper for enabling cb announcements # Send the sendcmpct request and sync headers def request_cb_announcements(self, peer, node, version): tip = node.getbestblockhash() peer.get_headers(locator=[int(tip, 16)], hashstop=0) msg = msg_sendcmpct() msg.version = version msg.announce = True peer.send_and_ping(msg) def test_compactblock_reconstruction_multiple_peers(self, node, stalling_peer, delivery_peer): assert len(self.utxos) def announce_cmpct_block(node, peer): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert "getblocktxn" in peer.last_message return block, cmpct_block block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.sha256) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now test that delivering an invalid compact block won't break relay block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() cmpct_block.prefilled_txn[0].tx = CTxIn() delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert int(node.getbestblockhash(), 16) != block.sha256 msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] stalling_peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def run_test(self): # Setup the p2p connections self.test_node = self.nodes[0].add_p2p_connection(TestP2PConn()) self.second_node = self.nodes[1].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_HEADERS_COMPRESSED) self.old_node = self.nodes[1].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_HEADERS_COMPRESSED) # We will need UTXOs to construct transactions in later tests. self.make_utxos() self.log.info("Running tests:") self.log.info("Testing SENDCMPCT p2p message... ") self.test_sendcmpct(self.nodes[0], self.test_node, 1) self.sync_blocks() self.test_sendcmpct(self.nodes[1], self.second_node, 1) self.sync_blocks() self.log.info("Testing compactblock construction...") self.test_compactblock_construction(self.nodes[0], self.test_node, 1) self.sync_blocks() self.test_compactblock_construction(self.nodes[1], self.second_node, 1) self.sync_blocks() self.log.info("Testing compactblock requests... ") self.test_compactblock_requests(self.nodes[0], self.test_node) self.sync_blocks() self.test_compactblock_requests(self.nodes[1], self.second_node) self.sync_blocks() self.log.info("Testing getblocktxn requests...") self.test_getblocktxn_requests(self.nodes[0], self.test_node, 1) self.sync_blocks() self.test_getblocktxn_requests(self.nodes[1], self.second_node, 1) self.sync_blocks() self.log.info("Testing getblocktxn handler...") self.test_getblocktxn_handler(self.nodes[0], self.test_node, 1) self.sync_blocks() self.test_getblocktxn_handler(self.nodes[1], self.second_node, 1) self.test_getblocktxn_handler(self.nodes[1], self.old_node, 1) self.sync_blocks() self.log.info("Testing compactblock requests/announcements not at chain tip...") self.test_compactblocks_not_at_tip(self.nodes[0], self.test_node) self.sync_blocks() self.test_compactblocks_not_at_tip(self.nodes[1], self.second_node) self.test_compactblocks_not_at_tip(self.nodes[1], self.old_node) self.sync_blocks() self.log.info("Testing handling of incorrect blocktxn responses...") self.test_incorrect_blocktxn_response(self.nodes[0], self.test_node, 1) self.sync_blocks() self.test_incorrect_blocktxn_response(self.nodes[1], self.second_node, 1) self.sync_blocks() # End-to-end block relay tests self.log.info("Testing end-to-end block relay...") self.request_cb_announcements(self.test_node, self.nodes[0], 1) self.request_cb_announcements(self.old_node, self.nodes[1], 1) self.request_cb_announcements(self.second_node, self.nodes[1], 1) self.test_end_to_end_block_relay(self.nodes[0], [self.second_node, self.test_node, self.old_node]) self.test_end_to_end_block_relay(self.nodes[1], [self.second_node, self.test_node, self.old_node]) self.log.info("Testing handling of invalid compact blocks...") self.test_invalid_tx_in_compactblock(self.nodes[0], self.test_node) self.test_invalid_tx_in_compactblock(self.nodes[1], self.second_node) self.test_invalid_tx_in_compactblock(self.nodes[1], self.old_node) self.log.info("Testing reconstructing compact blocks from all peers...") self.test_compactblock_reconstruction_multiple_peers(self.nodes[1], self.second_node, self.old_node) self.sync_blocks() self.log.info("Testing invalid index in cmpctblock message...") self.test_invalid_cmpctblock_message() if __name__ == '__main__': CompactBlocksTest().main()
{ "content_hash": "6a9dbb12e4b831f16fb50ec3057963fc", "timestamp": "", "source": "github", "line_count": 794, "max_line_length": 433, "avg_line_length": 46.44458438287154, "alnum_prop": 0.643788811454294, "repo_name": "dashpay/dash", "id": "a3c750872f8cb57d5c64e5f00e20ac037c8db9ae", "size": "37086", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "test/functional/p2p_compactblocks.py", "mode": "33261", "license": "mit", "language": [ { "name": "Assembly", "bytes": "28178" }, { "name": "C", "bytes": "1866352" }, { "name": "C++", "bytes": "9729795" }, { "name": "CMake", "bytes": "32255" }, { "name": "CSS", "bytes": "113028" }, { "name": "Dockerfile", "bytes": "6344" }, { "name": "GDB", "bytes": "444" }, { "name": "HTML", "bytes": "21833" }, { "name": "M4", "bytes": "235904" }, { "name": "Makefile", "bytes": "128711" }, { "name": "Objective-C++", "bytes": "5478" }, { "name": "Python", "bytes": "1899906" }, { "name": "QMake", "bytes": "1389" }, { "name": "Sage", "bytes": "39795" }, { "name": "Shell", "bytes": "134642" } ], "symlink_target": "" }
""" WSGI config for beauty_and_pics project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "beauty_and_pics.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
{ "content_hash": "30ee92b995badae618275daa998fd6bf", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 78, "avg_line_length": 28.928571428571427, "alnum_prop": 0.7728395061728395, "repo_name": "entpy/beauty-and-pics", "id": "10d7b48ef3393e4fb71a7a53dc263a1beab9b5df", "size": "405", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "beauty_and_pics/beauty_and_pics/wsgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "43305" }, { "name": "HTML", "bytes": "318159" }, { "name": "JavaScript", "bytes": "98290" }, { "name": "Python", "bytes": "540131" } ], "symlink_target": "" }
import creole from .utils import binders_map, object_slug class PinaxWikiHtmlEmitter(creole.HtmlEmitter): def __init__(self, wiki, root, link_rules=None): self.wiki = wiki super().__init__(root, link_rules) def link_emit(self, node): target = node.content if node.children: inside = self.emit_children(node) else: inside = self.html_escape(target) m = self.link_rules.addr_re.match(target) if m: if m.group("extern_addr"): return '<a href="{}">{}</a>'.format(self.attr_escape(target), inside) elif m.group("inter_wiki"): raise NotImplementedError slug = object_slug(self.wiki) page_url = binders_map()[slug].page_url(self.wiki, target) return '<a href="{}">{}</a>'.format(self.attr_escape(page_url), inside) def creole_parse(wiki, text): document = creole.CreoleParser(text, blog_line_breaks=True).parse() return PinaxWikiHtmlEmitter(wiki, document).emit()
{ "content_hash": "0ac2a82da0fdb08cafcdb918df85bd9b", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 85, "avg_line_length": 33.54838709677419, "alnum_prop": 0.6019230769230769, "repo_name": "pinax/pinax-wiki", "id": "4d4923ba51d75b1be6a38767501cb15f4e060e3e", "size": "1040", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pinax/wiki/parsers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "120" }, { "name": "Python", "bytes": "23785" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ("djasana", "0011_modifies_choices"), ] operations = [ migrations.AlterField( model_name="project", name="team", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.CASCADE, to="djasana.Team", to_field="remote_id", ), ), ]
{ "content_hash": "7cf071f7021dea231a8634d65bc796ac", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 60, "avg_line_length": 23.75, "alnum_prop": 0.5473684210526316, "repo_name": "sbywater/django-asana", "id": "6f049cf80cae005e34d0961c62e6321a07f8d03d", "size": "643", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djasana/migrations/0012_project_team_allows_null.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "199690" } ], "symlink_target": "" }
"""Defun decorator for defining graph-mode functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import re import sys import threading import types as types_lib import weakref import numpy as np import six from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import function_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import context from tensorflow.python.eager import execute from tensorflow.python.eager import tape from tensorflow.python.eager.graph_only_ops import graph_placeholder from tensorflow.python.framework import c_api_util from tensorflow.python.framework import constant_op from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes as dtypes_module from tensorflow.python.framework import func_graph as func_graph_module from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import custom_gradient from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect # This is to avoid a circular dependency with gradients_impl gradients_impl._function = sys.modules[__name__] # pylint: disable=protected-access FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name" BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name" # TODO(scottzhu): Update this to allow arbitrary attribute names in future. WHITELIST_FUNCTION_ATTRIBUTE_REGEX = [ "experimental_.*", FORWARD_FUNCTION_ATTRIBUTE_NAME, BACKWARD_FUNCTION_ATTRIBUTE_NAME ] CacheKey = collections.namedtuple("CacheKey", [ "input_signature", "parent_graph", "device_functions", "colocation_stack", "uses_xla" ]) def _parse_func_attrs(attributes): """Convert the keyword arguments into function_def attributes. Currently only support primitive types: bool, int, float and string. Args: attributes: the dictionary of attributes. Returns: A dict of attributes where the key is the name of attribute and the value is the AttrValue proto. Raises: ValueError: If the kwargs contains unwhitelisted name or unsupported value types. """ attrs = {} for key, value in attributes.items(): if not any(re.match(reg, key) for reg in WHITELIST_FUNCTION_ATTRIBUTE_REGEX): raise ValueError("Attribute name is not whitelisted. " "Whitelisted: prefix %s, got: %s" % (WHITELIST_FUNCTION_ATTRIBUTE_REGEX, key)) if isinstance(value, attr_value_pb2.AttrValue): attrs[key] = value # bool type check has to happen before int since bool is a subclass of int. elif isinstance(value, bool): attrs[key] = attr_value_pb2.AttrValue(b=value) elif isinstance(value, int): attrs[key] = attr_value_pb2.AttrValue(i=value) elif isinstance(value, float): attrs[key] = attr_value_pb2.AttrValue(f=value) elif isinstance(value, (str, bytes)): attrs[key] = attr_value_pb2.AttrValue(s=compat.as_bytes(value)) else: raise ValueError("Unsupported attribute type for %s with type %s" % (key, type(value))) return attrs def _forward_name(n): """The name of a generated forward defun named n.""" return "__forward_%s_%s" % (n, ops.uid()) def _backward_name(n): """The name of a generated backward defun named n.""" return "__backward_%s_%s" % (n, ops.uid()) def _inference_name(n): """The name of a forward-but-no-gradient defun named n.""" return "__inference_%s_%s" % (n, ops.uid()) # TODO(apassos) get rid of this by splitting framework.function._DefinedFunction # so it doesn't have the definition-generating logic and is just a container for # an already-defined function. class _EagerDefinedFunction(object): """Callable with the interface of `framework.function._DefinedFunction.` `_EagerDefinedFunction` encapsulates a function definition and its properties, and it provides a method for calling the encapsulated function. Some Ops take functions as attributes, which have type `func`; an instance of this class may be provided as the value of these `func` attributes. """ def __init__(self, name, graph, inputs, outputs, attrs): """Initializes an eager defined function. Args: name: str, the name for the created function. graph: Graph, the graph containing the operations in the function inputs: the tensors in the graph to be used as inputs to the function outputs: the tensors in the graph which will be outputs to the function attrs: dict mapping names of attributes to their AttrValue values """ input_ops = set(arg.op for arg in inputs) operations = [op for op in graph.get_operations() if op not in input_ops] fn = pywrap_tensorflow.TF_GraphToFunction_wrapper( graph._c_graph, # pylint: disable=protected-access compat.as_str(name), False, [o._c_op for o in operations], # pylint: disable=protected-access [t._as_tf_output() for t in inputs], # pylint: disable=protected-access [t._as_tf_output() for t in outputs], # pylint: disable=protected-access [], None, compat.as_str("")) for name, attr_value in attrs.items(): serialized = attr_value.SerializeToString() # TODO(iga): this creates and deletes a new TF_Status for every attr. # It might be worth creating a convenient way to re-use status. pywrap_tensorflow.TF_FunctionSetAttrValueProto( fn, compat.as_str(name), serialized) # TODO(apassos) avoid creating a FunctionDef (specially to grab the # signature, but also in general it's nice not to depend on it. with c_api_util.tf_buffer() as buffer_: pywrap_tensorflow.TF_FunctionToFunctionDef(fn, buffer_) proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_) function_def = function_pb2.FunctionDef() function_def.ParseFromString(compat.as_bytes(proto_data)) with ops.init_scope(): if context.executing_eagerly(): context.add_function(fn) self.definition = function_def self.name = compat.as_bytes(function_def.signature.name) self.signature = function_def.signature self._num_outputs = len(self.signature.output_arg) self._output_types = [o.type for o in self.signature.output_arg] self._output_shapes = [o.shape for o in outputs] self._func_graph_outputs = outputs self.grad_func_name = None self.python_grad_func = None self._c_func = c_api_util.ScopedTFFunction(fn) self._grad_func = None self._graph = graph self._stateful_ops = tuple(op for op in operations if op.op_def.is_stateful) def add_to_graph(self, g): # pylint: disable=protected-access if self.name not in g._functions: g._add_function(self) for f in self._graph._functions.values(): if f.name not in g._functions: g._add_function(f) # pylint: enable=protected-access @property def stateful_ops(self): return self._stateful_ops def call(self, ctx, args): """Calls this function with `args` as inputs. Function execution respects device annotations only if the function won't be compiled with xla. Args: ctx: a Context object args: a list of arguments to supply this function with. Returns: The outputs of the function call. Raises: ValueError: if the number of arguments is incorrect. """ executing_eagerly = ctx.executing_eagerly() if self._graph._xla_compile: # pylint: disable=protected-access # XLA compilation relies upon a custom kernel creator to run functions. signature = self.signature if executing_eagerly: outputs = execute.execute( str(signature.name), num_outputs=self._num_outputs, inputs=args, attrs=None, ctx=ctx) else: g = ops.get_default_graph() self.add_to_graph(g) op = g.create_op( signature.name, [ops.internal_convert_to_tensor(x, ctx=ctx) for x in args], tuple(dtypes_module.DType(x.type) for x in signature.output_arg), op_def=signature, name="FunctionCall", compute_shapes=False) outputs = op.outputs if not outputs: return op outputs = [outputs] if isinstance( outputs, (ops.Tensor, type(None))) else list(outputs) else: # TODO(akshayka): Either remove this if the FunctionLibraryRuntime # creates `PartitionedCallOp` kernels by default, or remove the previous # branch if a TPU kernel is registered for `PartitionedCall`. if len(args) != len(self.signature.input_arg): raise ValueError( "Arguments and signature arguments do not match: %s %s " % (len(args), len(list(self.signature.input_arg)))) function_call_options = ctx.get_function_call_options() outputs = functional_ops.partitioned_call( args=args, f=self, tout=self._output_types, executing_eagerly=executing_eagerly, config=function_call_options.config_proto_serialized, executor_type=function_call_options.executor_type) if executing_eagerly: return outputs else: for i, shape in enumerate(self._output_shapes): outputs[i].set_shape(shape) for i, func_graph_output in enumerate(self._func_graph_outputs): custom_gradient.copy_handle_data(func_graph_output, outputs[i]) return outputs class Function(object): """Callable object encapsulating a function definition and its gradient. `Function` is a callable that encapsulates a function definition and is differentiable under `tf.GradientTape` objects. """ def __init__(self, func_graph, attrs=None, signature=None): """Initialize a Function. Args: func_graph: An instance of FuncGraph: the function body to wrap. attrs: (optional) dict mapping names of attributes to their AttrValue values. Attributes in `attrs` will be included in this function's definition. signature: a nested sequence of `TensorSpec` objects specifying the input signature of this function. Raises: ValueError: If number of input_placeholders is not equal to the number of function inputs. """ self._arg_keywords = None self._num_positional_args = None self._func_graph = func_graph self._captured_inputs = list(self._func_graph.captures.keys()) self._num_outputs = len(self._func_graph.outputs) self._output_shapes = tuple( output.shape for output in self._func_graph.outputs) self._attrs = _parse_func_attrs(attrs or {}) self._inference_function = _EagerDefinedFunction( _inference_name(self._func_graph.name), self._func_graph, self._func_graph.inputs, self._func_graph.outputs, self._attrs) self._backward_graph_function = None self._signature = signature self._gradient_name = None def __call__(self, *args, **kwargs): """Executes the wrapped function. Args: *args: Tensors or Variables. Positional arguments are only accepted when they correspond one-to-one with arguments of the traced Python function. **kwargs: Tensors or Variables specified by name. When `get_concrete_function` was called to create this `Function`, each Tensor input was given a name, defaulting to the name of the Python function's argument but possibly overridden by the `name=` argument to `tf.TensorSpec`. These names become the argument names for the concrete function. Returns: The result of applying the TF function on the given Tensors. Raises: AssertionError: If this `Function` was not created through `get_concrete_function`. ValueError: If arguments contains anything other than Tensors or Variables. TypeError: For invalid positional/keyword argument combinations. """ if self._arg_keywords is None or self._num_positional_args is None: if self._signature is not None: if kwargs: raise NotImplementedError( "Keyword arguments not supported when calling a " "wrap_function-decorated function.") return self._call_flat(args) raise AssertionError( "Tried to call a concrete function obtained from an internal API " "through the public interface. Use get_concrete_function instead.") if len(args) > self._num_positional_args: raise TypeError( ("Expected at most {} positional arguments ({}), got {}. When " "calling a concrete function, positional arguments may not be bound " "to Tensors within nested structures.").format( self._num_positional_args, self._arg_keywords[:self._num_positional_args], args)) args = list(args) for keyword in self._arg_keywords[len(args):]: args.append(kwargs.pop(compat.as_str(keyword))) if kwargs: positional_arg_keywords = set(self._arg_keywords[:len(args)]) for unused_key in kwargs: if unused_key in positional_arg_keywords: raise TypeError("Got two values for keyword '{}'.".format(unused_key)) raise TypeError("Keyword arguments {} unknown.".format(kwargs.keys())) return self._call_flat(args) def _filtered_call(self, args, kwargs): """Executes the function, filtering arguments from the Python function. Objects aside from Tensors and Variables are ignored. Args: args: Canonicalized positional arguments of the Python function. kwargs: Canonicalized keyword arguments of the Python function. Returns: The result of applying the function on the Tensors/Variables contained in `args` and `kwargs`. """ return self._call_flat( (t for t in nest.flatten((args, kwargs)) if isinstance( t, (ops.Tensor, resource_variable_ops.ResourceVariable)))) def _call_flat(self, args): """Executes the wrapped function. Args: args: a list of Tensors or Variables. Returns: The result of applying the TF function to `args`. Raises: ValueError: If `args` contains anything other than Tensors or Variables. """ ctx = context.context() for v in self._func_graph.variables: if v.trainable: tape.variable_accessed(v) tensor_inputs = [] for i, arg in enumerate(args): if isinstance(arg, resource_variable_ops.ResourceVariable): if arg.trainable: tape.variable_accessed(arg) tensor_inputs.append(arg.handle) elif isinstance(arg, ops.Tensor): tensor_inputs.append(arg) elif (self._signature is not None and isinstance(self._signature[i], tensor_spec.TensorSpec)): tensor_inputs.append( ops.convert_to_tensor(arg, self._signature[i].dtype)) else: raise ValueError("All inputs to `Function`s must be Tensors; " "on invocation of %s, the %d-th input (%s) was not a " "Tensor." % (self._func_graph.name, i, str(arg))) args = tensor_inputs + self._captured_inputs if (tape.should_record(tensor_inputs) or tape.should_record(self._captured_inputs)): if context.executing_eagerly(): return self._eager_backprop_call(args) else: return self._backprop_call_with_delayed_rewrite(args) # Only need to override the gradient in graph mode and when we have outputs. if context.executing_eagerly() or not self.outputs: outputs = self._inference_function.call(ctx, args) else: if not self._gradient_name: self._gradient_name = "PartitionedCall-%s" % ops.uid() self._register_gradient(self._gradient_name) with ops.get_default_graph().gradient_override_map( {"PartitionedCall": self._gradient_name, "StatefulPartitionedCall": self._gradient_name}): outputs = self._inference_function.call(ctx, args) return self._build_call_outputs(outputs) def _register_gradient(self, name): """Registers the gradient for the current Function under the given name. The gradient rewrites an inference call op to a forward call op, but does not modify a pre-existing forward call op. It then computes the gradient from the output's gradients and the side outputs of the forward op. Args: name: The name to register the gradient as. """ @ops.RegisterGradient(name) def _registered_grad_fn(op, *doutputs): # pylint: disable=unused-variable return self._grad_fn(op, *doutputs) def _grad_fn(self, op, *doutputs): """Gradients of this function.""" if self._backward_graph_function is None: self._construct_backprop_function() # pylint: disable=protected-access self._forward_function.add_to_graph(op.graph) num_inference_outputs = self._inference_function._num_outputs # Rewrite an inference call op to be a forward call op if op.get_attr("f").name.encode() == self._inference_function.name: op._set_func_attr("f", self._forward_function.name) op._set_type_list_attr("Tout", self._forward_function._output_types) op._add_outputs( self._forward_function._output_types[num_inference_outputs:], self._forward_function._output_shapes[num_inference_outputs:]) for i in range(num_inference_outputs, len(op.outputs)): func_graph_output = self._forward_function._func_graph_outputs[i] custom_gradient.copy_handle_data(func_graph_output, op.outputs[i]) # pylint: enable=protected-access # Compute the gradients using the side outputs side_outputs = op.outputs[num_inference_outputs:] args = list(doutputs[:num_inference_outputs]) + list(side_outputs) return self._backward_graph_function._call_flat( # pylint: disable=protected-access (a for a in args if a is not None)) @property def name(self): """Function name.""" return self._inference_function.name @property def graph(self): """Returns the graph from which this function was constructed.""" return self._func_graph @property def inputs(self): """Returns tensors in `self.graph` corresponding to arguments.""" return self._func_graph.inputs @property def outputs(self): """Returns tensors in `self.graph` corresponding to return values.""" return self._func_graph.outputs @property def captured_inputs(self): """Returns external Tensors captured by this function. self.__call__(*args) passes `args + self.captured_inputs` to the function. """ return self._captured_inputs @property def function_def(self): """Returns a `FunctionDef` object representing this function.""" return self._inference_function.definition @property def output_shapes(self): """The function's output shapes.""" # TODO(ebrevdo): Should we only keep the output shapes associated # with len(self._python_returns) outputs? # TODO(akshayka): Consider removing this. outputs_list = nest.flatten(self._func_graph.structured_outputs) j = 0 for i, o in enumerate(outputs_list): if o is not None: if isinstance(o, ops.IndexedSlices): # Extract the shape of the `IndexedSlices` object's `values` field. outputs_list[i] = self._output_shapes[j] # the `values` shape if o.dense_shape is not None: j += 3 # skip over shapes for `values`, `indices`, `dense_shape` else: j += 2 # skip over shapes for `values`, `indices` else: outputs_list[i] = self._output_shapes[j] j += 1 return nest.pack_sequence_as(self._func_graph.structured_outputs, outputs_list) @property def output_dtypes(self): # TODO(akshayka): Consider removing this. return nest.map_structure(lambda x: x.dtype if x is not None else None, self._func_graph.structured_outputs) def add_to_graph(self, g=None, register_gradient_functions=False): """Registers the function, adds it to the graph g or default graph.""" # If we are not executing eagerly, adds the function to default graph if no # graph is specified. # In case of eager execution, function definition gets added to context # during construction itself. # TODO(allel/shivaniagrawal): rename this to register to reflect the # method's functionality better. Remove register_gradient_functions argument # and figure out if these needs to be registered. if not context.executing_eagerly() or g: if not g: g = ops.get_default_graph() self._inference_function.add_to_graph(g) # pylint: disable=protected-access # pylint: disable=protected-access if register_gradient_functions: # There are two situations for the actual call of a defun: # 1. If none of the input args are resource variables or watch by any # tape, and it will run the _inference_function of concrete_func for # forward pass, the gradient will be generated by standard mechanism. # 2. Otherwise, defun will create two functions, one for forward pass, # and the backward pass will be created via tape. # When registering the function, we register both cases. if self._backward_graph_function is None: self._construct_backprop_function() forward_function = self._forward_function backward_function = self._backward_graph_function._inference_function # pylint: enable=protected-access forward_function.add_to_graph(g) backward_function.add_to_graph(g) def _construct_backprop_function(self): """Constructs the backprop function object for this function.""" backwards_graph = func_graph_module.FuncGraph( _backward_name(self._func_graph.name)) forward_function_name = _forward_name(self._func_graph.name) outputs = [x for x in self._func_graph.outputs if gradients_impl.IsTrainable(x)] with backwards_graph.as_default(): gradients_wrt_outputs = [ graph_placeholder(x.dtype, x.shape) for x in outputs ] gradients_wrt_inputs = gradients_impl._GradientsHelper( # pylint: disable=protected-access outputs, self._func_graph.inputs, grad_ys=gradients_wrt_outputs, src_graph=self._func_graph) backwards_graph_captures = list(backwards_graph.captures.keys()) backward_function_attr = _parse_func_attrs( {FORWARD_FUNCTION_ATTRIBUTE_NAME: forward_function_name}) backward_function_attr.update(self._attrs) # The ordering of `backwards_graph.inputs` is important: inputs of # `self._backward_graph_function` correspond to outputs of # `self._forward_function`. backwards_graph.inputs = gradients_wrt_outputs + list( backwards_graph.captures.values()) # Clear captures, since we pass them in as inputs. backwards_graph.captures = {} backwards_graph.outputs.extend( grad for grad in func_graph_module.flatten(gradients_wrt_inputs) if grad is not None) backwards_graph.structured_outputs = gradients_wrt_inputs self._backward_graph_function = Function( backwards_graph, attrs=backward_function_attr) forward_function_attr = _parse_func_attrs({ BACKWARD_FUNCTION_ATTRIBUTE_NAME: self._backward_graph_function._inference_function.name}) # pylint: disable=protected-access forward_function_attr.update(self._attrs) self._forward_function = _EagerDefinedFunction( forward_function_name, self._func_graph, self._func_graph.inputs, self._func_graph.outputs + backwards_graph_captures, forward_function_attr) def _eager_backprop_call(self, args): """Calls the forward function and records the result on a tape. This method fully constructs the forward and backward functions before calling the function and recording them on the tape. (Only records results on a tape if the function has outputs). Args: args: All inputs to the function, including resolved captured inputs Returns: The call output. """ if self._backward_graph_function is None: self._construct_backprop_function() ctx = context.context() if not self._gradient_name: self._gradient_name = "PartitionedCall-%s" % ops.uid() self._register_gradient(self._gradient_name) with ops.get_default_graph().gradient_override_map( {"PartitionedCall": self._gradient_name, "StatefulPartitionedCall": self._gradient_name}): outputs = self._forward_function.call(ctx, args) if isinstance(outputs, ops.Operation) or outputs is None: return outputs # `real_outputs` are the actual outputs of the inference graph function; # `side_outputs` are the intermediate Tensors that were added as outputs to # the forward graph function so that we can compute its gradient. real_outputs = outputs[:self._num_outputs] skip_positions = [i for i, t in enumerate(real_outputs) if not gradients_impl.IsTrainable(t)] side_outputs = outputs[self._num_outputs:] def backward_function(*args): args = [a for i, a in enumerate(args) if a is not None and i not in skip_positions] return self._backward_graph_function._call_flat( # pylint: disable=protected-access list(args) + side_outputs) tape.record_operation(self._forward_function.signature.name, real_outputs, args, backward_function) return self._build_call_outputs(real_outputs) def _backprop_call_with_delayed_rewrite(self, args): """Calls the inference function and records the result on a tape. The recorded backwards function will construct the backwards graph and rewrite the inference function to the forward function. This only happens if the recorded backwards function ends up being used to compute gradients. This approach avoids constructing unnecessary graphs, but it only works if we are calling this function when not executing eagerly. (Only records results on a tape if the function has outputs) Args: args: All inputs to the function, including resolved captured inputs Returns: The call output. """ ctx = context.context() if not self._gradient_name: self._gradient_name = "PartitionedCall-%s" % ops.uid() self._register_gradient(self._gradient_name) with ops.get_default_graph().gradient_override_map( {"PartitionedCall": self._gradient_name, "StatefulPartitionedCall": self._gradient_name}): outputs = self._inference_function.call(ctx, args) if isinstance(outputs, ops.Operation) or outputs is None: return outputs call_op = outputs[0].op def backward_function(*args): return self._grad_fn(call_op, *args) tape.record_operation(self._inference_function.signature.name, outputs, args, backward_function) return self._build_call_outputs(outputs) def _build_call_outputs(self, result): """Maps the fdef output list to actual output structure. Args: result: Output lists defined by FunctionDef. Returns: The actual call output. """ if self._func_graph.structured_outputs is None: return result # Use `nest.flatten` instead of `func_graph_module.flatten` in order to # preserve any IndexedSlices in `self._func_graph.structured_outputs`. outputs_list = nest.flatten(self._func_graph.structured_outputs) j = 0 for i, o in enumerate(outputs_list): if o is not None: if isinstance(o, ops.IndexedSlices): # Repack Tensors for IndexedSlices. if o.dense_shape is not None: outputs_list[i] = ops.IndexedSlices( values=result[j], indices=result[j + 1], dense_shape=result[j + 2]) j += 3 else: outputs_list[i] = ops.IndexedSlices( values=result[j], indices=result[j + 1]) j += 2 else: outputs_list[i] = result[j] j += 1 ret = nest.pack_sequence_as(self._func_graph.structured_outputs, outputs_list) return ret class UnknownArgument(object): """Signifies an argument which is not currently handled.""" pass def _encode_arg_for_serialization(arg): """A representation for this argument, for serializing signatures.""" if isinstance(arg, ops.Tensor): return tensor_spec.TensorSpec(arg.shape, arg.dtype) else: return UnknownArgument() pywrap_tensorflow.RegisterType("Tensor", ops.Tensor) pywrap_tensorflow.RegisterType("IndexedSlices", ops.IndexedSlices) def _deterministic_dict_values(dictionary): return tuple(dictionary[key] for key in sorted(dictionary)) class PolymorphicFunction(object): """Wrapper class for the graph functions defined for a Python function. See the documentation for `defun` for more information on the semantics of defined functions. PolymorphicFunction class is thread-compatible meaning that minimal usage of defuns (defining and calling) is thread-safe, but if users call other methods or invoke the base `python_function` themselves, external synchronization is necessary. """ def __init__(self, python_function, name, input_signature=None, attributes=None, autograph=True): """Initializes a polymorphic function. Args: python_function: the function to be wrapped. name: the name given to it. input_signature: a possibly nested sequence of `TensorSpec` objects specifying the input signature of this function. If `None`, a separate function is instantiated for each inferred input signature. attributes: dict, extra keyword arguments that will be added as attribute of the function. autograph: whether to use autograph to compile `python_function`. See https://www.tensorflow.org/guide/autograph for more information. Raises: ValueError: if `input_signature` is not None and the `python_function`'s argspec has keyword arguments. """ if isinstance(python_function, functools.partial): self._python_function = python_function.func self._args_to_prepend = python_function.args or tuple() self._kwargs_to_include = python_function.keywords or {} else: self._python_function = python_function self._args_to_prepend = tuple() self._kwargs_to_include = {} self._name = name self._autograph = autograph self._function_cache = collections.OrderedDict() self._function_attributes = attributes or {} self._lock = threading.Lock() # _descriptor_cache is a of instance of a class to an instance-specific # PolymorphicFunction, used to make sure defun-decorated methods create # different functions for each instance. self._descriptor_cache = weakref.WeakKeyDictionary() fullargspec = tf_inspect.getfullargspec(self._python_function) if tf_inspect.ismethod(self._python_function): # Remove `self`: default arguments shouldn't be matched to it. args = fullargspec.args[1:] else: args = fullargspec.args # A cache mapping from argument name to index, for canonicalizing # arguments that are called in a keyword-like fashion. self._args_to_indices = {arg: i for i, arg in enumerate(args)} self._arg_names = args self._vararg_name = fullargspec.varargs # A cache mapping from arg index to default value, for canonicalization. offset = len(args) - len(fullargspec.defaults or []) self._arg_indices_to_default_values = { offset + index: default for index, default in enumerate(fullargspec.defaults or []) } self._default_values = fullargspec.defaults self._default_values_start_index = offset if input_signature is None: self._input_signature = None else: if fullargspec.varkw is not None or fullargspec.kwonlyargs: raise ValueError("Cannot define a TensorFlow function from a Python " "function with keyword arguments when " "input_signature is provided.") if not isinstance(input_signature, (tuple, list)): raise TypeError("input_signature must be either a tuple or a " "list, received " + str(type(input_signature))) self._input_signature = tuple(input_signature) self._flat_input_signature = tuple(nest.flatten(input_signature)) def __call__(self, *args, **kwargs): """Calls a graph function specialized to the inputs.""" graph_function, args, kwargs = self._maybe_define_function(args, kwargs) return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access @property def python_function(self): """Returns the wrapped Python function.""" return self._python_function def _get_concrete_function_internal(self, *args, **kwargs): """Bypasses error checking when getting a graph function.""" if self._input_signature: args, kwargs = None, None graph_function, _, _ = self._maybe_define_function(args, kwargs) return graph_function def get_concrete_function(self, *args, **kwargs): """Returns a `Function` object specialized to inputs and execution context. Args: *args: inputs to specialize on. **kwargs: inputs to specialize on. """ if self._input_signature: if kwargs: raise ValueError("Cannot define a TensorFlow function from a Python " "function with keyword arguments when " "input_signature is provided.") if args: # If args are provided, they must match the input signature. try: nest.assert_same_structure(self._input_signature, args) except (ValueError, TypeError): raise ValueError("Structure of Python function inputs does not match " "input_signature.") flat_inputs = nest.flatten(args) if any(not isinstance(arg, (ops.Tensor, tensor_spec.TensorSpec)) for arg in flat_inputs): raise ValueError("When input_signature is provided, all inputs to " "the Python function must be Tensors or " "tf.TensorSpec objects.") if any(not spec.is_compatible_with(other) for spec, other in zip(self._flat_input_signature, flat_inputs)): raise ValueError("Python inputs incompatible with input_signature: " "inputs (%s), input_signature (%s)" % (str(args), str(self._input_signature))) args, kwargs = None, None graph_function, args, kwargs = self._maybe_define_function(args, kwargs) if self._input_signature: args = self._input_signature kwargs = {} seen_names = set() captured = frozenset(graph_function.graph.internal_captures) allowed_positional = 0 if args: for outer_arg in args: # TODO(allenl): Consider allowing arguments with defaults in the Python # function's signature to be passed as positional arguments to the # concrete function. if not isinstance( outer_arg, (ops.Tensor, resource_variable_ops.ResourceVariable, tensor_spec.TensorSpec)): break allowed_positional += 1 # pylint: disable=protected-access graph_function._num_positional_args = allowed_positional graph_function._arg_keywords = [] # pylint: enable=protected-access for arg in graph_function.graph.inputs: if arg in captured: break user_arg_name = arg.op.get_attr("_user_specified_name") if user_arg_name in seen_names: raise ValueError( ("Unable to construct a concrete function for {} since some " "arguments do not have unique names. Got two arguments named " "'{}'. When constructing a concrete TensorFlow function from a " "Python function which takes nested structures or variadic " "positional arguments, pass unique names to tf.TensorSpec objects " "used to identify these Tensor inputs. These names may then be " "used as keyword arguments to the concrete function.") .format( self._python_function, compat.as_str(arg.op.get_attr("_user_specified_name")))) seen_names.add(user_arg_name) graph_function._arg_keywords.append(user_arg_name) # pylint: disable=protected-access return graph_function def __get__(self, instance, owner): """Makes it possible to defun instance methods.""" del owner # `instance` here is the instance that this `PolymorphicFunction` was # accessed through; e.g., for # # class Foo(object): # # @function.defun # def bar(self): # ... # # foo = Foo() # foo.bar() # `foo.bar` is a `PolymorphicFunction` instance # # then `instance` will be `foo` (and `owner` will be `Foo`). We create a # new instance of PolymorphicFunction here to allow different instances each # to create variables once, thereby allowing methods to be decorated with # defun. Keeps a cache to avoid retracing the function every time the # descriptor is accessed. if instance not in self._descriptor_cache: if instance is None: return self # If there is no instance-specific polymorphic func in the cache, # we construct an instance-specific polymorphic function # that uses a weak reference to the instance (so that the instance will # be correctly gc'd). # And finally add the wrapped function to the description cache self._descriptor_cache[instance] = class_method_to_instance_method( self, instance) # Return the cached polymorphic function for the instance return self._descriptor_cache[instance] def _cache_key(self, args, kwargs): """Computes the cache key given inputs and execution context.""" if self._input_signature is None: inputs = (args, kwargs) if kwargs else args input_signature = pywrap_tensorflow.TFE_Py_EncodeArg(inputs) else: del args, kwargs input_signature = self._flat_input_signature ctx = context.context() # Don't need to open an init_scope if the _cache_key call is in eager mode # already. executing_eagerly = ctx.executing_eagerly() parent_graph = None if not executing_eagerly: with ops.init_scope(): # The graph, or whether we're executing eagerly, should be a part of the # cache key so we don't improperly capture tensors such as variables. executing_eagerly = ctx.executing_eagerly() parent_graph = None if executing_eagerly else ops.get_default_graph() # pylint: disable=protected-access default_graph = ops.get_default_graph() # TODO(b/117617952): The current distribution strategy will affect graph # building (e.g. accessing different variables from different devices) and # so requires retracing for each device. uses_distribution_strategy = bool( default_graph._distribution_strategy_stack) if executing_eagerly: colocation_stack = () uses_xla = ctx.device_spec.device_type == "TPU" if uses_distribution_strategy or uses_xla: device_functions = (pydev.merge_device(ctx.device_name),) else: device_functions = () else: colocation_stack = tuple(default_graph._colocation_stack.peek_objs()) uses_xla = getattr(default_graph, "_xla_compile", False) if (uses_distribution_strategy or uses_xla or func_graph_module.device_stack_has_callable( default_graph._device_function_stack)): # Putting the device in the cache key ensures that call-site device # annotations are respected. device_functions = tuple(default_graph._device_functions_outer_to_inner) else: device_functions = () # pylint: enable=protected-access return CacheKey(input_signature, parent_graph, device_functions, colocation_stack, uses_xla) def _canonicalize_function_inputs(self, *args, **kwargs): """Canonicalizes `args` and `kwargs`. Canonicalize the inputs to the Python function using its fullargspec. In particular, we parse the varags and kwargs that this `PolymorphicFunction` was called with into a tuple corresponding to the Python function's positional (named) arguments and a dictionary corresponding to its kwargs. Args: *args: The varargs this object was called with. **kwargs: The keyword args this function was called with. Returns: A canonicalized ordering of the inputs. Raises: ValueError: If a keyword in `kwargs` cannot be matched with a positional argument when an input signature is specified, or when the inputs do not conform to the input signature. """ args = self._args_to_prepend + args kwargs = dict(kwargs, **self._kwargs_to_include) if not kwargs: if self._default_values: inputs = args + self._default_values[len(args) - self._default_values_start_index:] else: inputs = args else: # Maps from index of arg to its corresponding value, according to `args` # and `kwargs`; seeded with the default values for the named args that # aren't in `args`. arg_indices_to_values = { index: default for index, default in six.iteritems( self._arg_indices_to_default_values) if index >= len(args) } consumed_args = [] for arg, value in six.iteritems(kwargs): index = self._args_to_indices.get(arg, None) if index is not None: arg_indices_to_values[index] = value consumed_args.append(arg) elif self._input_signature is not None: raise ValueError("Cannot define a TensorFlow function from a Python " "function with keyword arguments when " "input_signature is provided.") for arg in consumed_args: # After this loop, `kwargs` will only contain true keyword arguments, as # opposed to named arguments called in a keyword-like fashion. kwargs.pop(arg) inputs = args + _deterministic_dict_values(arg_indices_to_values) flat_inputs = nest.flatten(inputs) # Check for NumPy arrays in arguments and convert them to Tensors. # TODO(nareshmodi): Skip ndarray conversion to tensor altogether, perhaps # finding a way to store them directly in the cache key (currently not # possible since ndarrays are not hashable). need_packing = False for index, value in enumerate(flat_inputs): if type(value) == np.ndarray: flat_inputs[index] = constant_op.constant(value) need_packing = True if need_packing: inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_inputs) if self._input_signature is None: return inputs, kwargs else: assert not kwargs signature_relevant_inputs = inputs[:len(self._input_signature)] try: nest.assert_same_structure(self._input_signature, signature_relevant_inputs) except (ValueError, TypeError): raise ValueError("Structure of Python function inputs does not match " "input_signature.") signature_inputs_flat = nest.flatten(signature_relevant_inputs) if any(not pywrap_tensorflow.IsTensor(arg) for arg in signature_inputs_flat): raise ValueError("When input_signature is provided, all inputs to " "the Python function must be Tensors.") if any(not spec.is_compatible_with(other) for spec, other in zip(self._flat_input_signature, signature_inputs_flat)): raise ValueError("Python inputs incompatible with input_signature: " "inputs (%s), input_signature (%s)" % (str(inputs), str(self._input_signature))) return inputs, {} def _maybe_define_function(self, args, kwargs): """Gets a function for these inputs, defining it if necessary. `args` and `kwargs` can be None if this `PolymorphicFunction` was created with an `input_signature`. Args: args: The varargs for the Python function. kwargs: The keyword args for the Python function. Returns: A graph function corresponding to the input signature implied by args and kwargs, as well as the inputs that the object should be called with. Raises: ValueError: If inputs are incompatible with the input signature. TypeError: If the function inputs include non-hashable objects """ if self._input_signature is None or args is not None or kwargs is not None: args, kwargs = self._canonicalize_function_inputs(*args, **kwargs) cache_key = self._cache_key(args, kwargs) with self._lock: try: graph_function = self._function_cache.get(cache_key, None) except TypeError: raise TypeError("Arguments supplied to `defun`-generated functions " "must be hashable.") if graph_function is None: logging.vlog(1, "Creating new FuncGraph for Python function %r (key: %r)", self._python_function, cache_key) if self._input_signature is None: arglen = len(args) else: arglen = len(self._input_signature) arg_names = ( self._arg_names[:arglen] + [self._vararg_name] * (arglen - len(self._arg_names))) graph_function = Function( func_graph_module.func_graph_from_py_func( self._name, self._python_function, args, kwargs, self._input_signature, autograph=self._autograph, arg_names=arg_names), self._function_attributes) if self._input_signature: python_call_signature = self._input_signature else: python_call_signature = tuple( _encode_arg_for_serialization(arg) for arg in args) # Save information about non-Tensor arguments with the concrete # function. Used to serialize PolymorphicFunctions. graph_function._python_call_signature = python_call_signature # pylint: disable=protected-access self._function_cache[cache_key] = graph_function return graph_function, args, kwargs def register(func, *args, **kwargs): """Register a specialization of a PolymorphicFunction into the graph. This won't actually call the function with the inputs, and only put the function definition into graph. Register function with different input param will result into multiple version of functions registered in graph. Args: func: the PolymorphicFunction instance that generated by a @defun *args: input arguments for the Python function. **kwargs: input keyword arguments for the Python function. Returns: a `Function` object specialized to inputs and execution context. Raises: ValueError: When the input function is not a defun wrapped python function. """ if not isinstance(func, PolymorphicFunction): raise ValueError("Only defun function is allowed to be registered. " "Got type: %s" % type(func)) concrete_func = func.get_concrete_function(*args, **kwargs) concrete_func.add_to_graph(register_gradient_functions=True) return concrete_func def validate_signature(signature): if any(not isinstance(arg, tensor_spec.TensorSpec) for arg in nest.flatten(signature)): raise TypeError("Invalid input_signature %s; input_signature must be " "a possibly nested sequence of TensorSpec objects.") def defun(func=None, input_signature=None, autograph=True): """Compiles a Python function into a callable TensorFlow graph. `defun` (short for "define function") compiles a Python function composed of TensorFlow operations into a callable that executes a `tf.Graph` containing those operations. The callable produced by `defun` contains only the subgraph of TensorFlow operations that were executed when the Python function was called with a particular input signature, defined as a list of the shapes and dtypes of the Python function's Tensor-valued arguments and the values of its non-Tensor Python objects. When eager execution is enabled, the ability to create graphs from Python functions makes it possible to incrementally trade off debugability and interactivity for performance. Functions compiled with `defun` cannot be inspected with `pdb`; however, executing a graph generated by `defun` sometimes takes less time and memory than eagerly executing the corresponding Python function, since specifying computations as graphs allows for optimizations like automatic buffer reuse and parallelization among ops. Note that executing a `defun`-compiled function incurs a small constant overhead, so eagerly executing sufficiently small Python functions might take less time than executing their corresponding `defun`-generated graphs. For a Python function to be compatible with `defun`, all of its arguments must be hashable Python objects or lists thereof. The function itself may not modify the list/map structure of its arguments. Additionally, it must return zero or more `tf.Tensor` objects. If the Python function returns a `tf.Variable`, its compiled version will return the value of that variable as a `tf.Tensor`. Executing a graph generated by `defun` respects device annotations (i.e., all `with tf.device` directives present in a Python function will also be present in its corresponding graph), but it is not yet possible to execute the generated graphs across multiple machines. _Example Usage_ ```python import tensorflow as tf tf.enable_eager_execution() # A simple example. def f(x, y): return tf.reduce_mean(tf.multiply(x ** 2, 3) + y) g = tf.contrib.eager.defun(f) x = tf.constant([[2.0, 3.0]]) y = tf.constant([[3.0, -2.0]]) # `f` and `g` will return the same value, but `g` will be executed as a # TensorFlow graph. assert f(x, y).numpy() == g(x, y).numpy() # `defun` is capable of compiling Python functions that close over Python # objects, including Tensors and Variables. @tf.contrib.eager.defun def h(): return f(x, y) assert (h().numpy() == f(x, y).numpy()).all() # `defun` automatically lifts variables out of the graphs it creates, # allowing you to compile the `call` methods of `tf.keras.layers.Layer` and # `tf.keras.Model` objects. class MyModel(tf.keras.Model): def __init__(self, keep_probability=0.2): super(MyModel, self).__init__() self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) self.keep_probability = keep_probability @tf.contrib.eager.defun def call(self, inputs, training=True): x = self.dense2(self.dense1(inputs)) if training: return tf.nn.dropout(x, self.keep_probability) else: return x model = MyModel() model(x, training=True) # executes a graph, with dropout model(x, training=False) # executes a graph, without dropout # `defun`-compiled functions are differentiable. optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) with tf.GradientTape() as tape: outputs = model(x) gradient = tape.gradient(outputs, model.trainable_variables) optimizer.apply_gradients((grad, var) for grad, var in zip(gradient, model.trainable_variables)) ``` When using `defun`, there are subtleties regarding inputs, Python control flow, and variable creation that one should be aware of. For concreteness, let `f` be a Python function that returns zero or more `tf.Tensor` objects and let `F = defun(f)`. `F` builds a graph for each unique input signature it sees, Python control flow is baked into graphs, and operations related to variable initialization are automatically lifted out of the graphs that `F` generates and placed in the eager context if executing eagerly or into an outer graph otherwise. _Input Signatures_ By default, `F = tf.contrib.eager.defun(f)` instantiates a separate graph for every unique sequence of the shapes and dtypes of Tensor arguments and the values of Python objects it is invoked with. For example, calling `F(tf.random_uniform([2])` will execute a different graph than `F(tf.random_uniform([3])` because the two inputs have different shapes. The first time that `F(*args, **kwargs)` is called with a particular sequence of Tensor shapes and dtypes and Python values, it constructs a graph by tracing the execution of `f(*args, **kwargs)`; this graph is bound to an input signature inferred from `(*args, **kwargs)` and cached for future reuse. NumPy arrays passed as inputs to `F` are converted to `tf.Tensor` objects before being passed to `f`, and are treated as Tensors for caching. This allows a function to be called multiple times with NumPy arrays having different values but the same shape and dtype without re-tracing each time. `tf.contrib.eager.defun` caches graphs for your convenience, letting you define TensorFlow functions without explicitly specifying their signatures. However, this policy is conservative and potentially expensive; for example, when different invocations of your function have differently-shaped Tensor inputs, this policy might generate more graph functions than necessary. To eliminate such costs, `tf.contrib.eager.defun` allows you to supply an optional `input_signature` argument specifying the shapes and dtypes of the inputs. In particular, the shapes may be partially unspecified, with `None`s in the unknown dimensions. When an input signature is provided, `tf.contrib.eager.defun` will only instantiate a single graph for the decorated Python function. The following is an example: ```python import tensorflow as tf # The first `TensorSpec` below describes the shape and dtype of `words`, # and the second describes the shape and dtype of `another_tensor`. Note that # the last dimension of the `words` `TensorSpec` is left unspecified. @tf.contrib.eager.defun(input_signature=[ tf.contrib.eager.TensorSpec(shape=[50, 300, None], dtype=tf.float32), tf.contrib.eager.TensorSpec(shape=[300, 100], dtype=tf.float32) ]) def my_sequence_model(words, another_tensor): ... # Note how the third dimension of the first input can vary freely. words = tf.random_uniform(([50, 300, 10]) second_input = tf.random_uniform([300, 100]) my_sequence_model(words, second_input) words = tf.random_uniform(([50, 300, 20]) my_sequence_model(words, second_input) # Passing an input with an incompatible shape will raise an error. words = tf.random_uniform(([50, 100, 20]) my_sequence_model(words, second_input) # <---- This will raise an error. ``` Python functions that are compiled with an `input_signature` must only accept Tensors as arguments and must not take unnamed keyword arguments (**kwargs). _Tracing_ Be aware that because `F` only logs TensorFlow operations, all the other Python code that `f` executes will only shape the _construction_ of the graphs that `F` executes: the Python code won't be executed when the graphs themselves are executed, though it will be executed every time the Python function is traced (and a given Python function might be traced multiple times, once for each input signature it is invoked with). For example, whereas the Python function ```python import tensorflow as tf import numpy as np tf.enable_eager_execution() def add_noise(): return tf.eye(5) + np.random.randn(5, 5) ``` will return a different output everytime it is invoked, the compiled function `compiled = tf.contrib.eager.defun(add_noise)` will return the same value every time it is called, since a particular random offset generated by NumPy will be inserted into the graph as a TensorFlow constant. The solution is to replace the call to `np.random.randn` with `tf.random_normal((5, 5))`. _Python Side-Effects_ A corollary of the previous discussion on tracing is the following: If a Python function `f` has Python side-effects, then executing `f` multiple times will not necessarily be semantically equivalent to executing `F = tf.contrib.eager.defun(f)` multiple times; this difference is due to the fact that `defun` only captures the subgraph of TensorFlow operations that is constructed when `f` is called in a graph-building context. _Python Control Flow_ The structure of many machine learning computations depend upon whether one is training or validating, and it is common to nest specialized logic under `if training:` blocks. By mapping each input signature to a unique graph, `defun` lets users transparently compile such code, as the following code snippet demonstrates: ```python import tensorflow as tf tf.enable_eager_execution() @tf.contrib.eager.defun def lossy_matmul(W, x, training=True): outputs = tf.matmul(W, x) if training: outputs = tf.nn.dropout(outputs, keep_probability=0.2) return outputs W = tf.random_normal((3, 5)) x = tf.random_normal((5, 1)) # Executes a graph that applies dropout. lossy_outputs = lossy_matmul(W, x, training=True) # Executes a graph that does not apply dropout. exact_outputs = lossy_matmul(W, x, training=False) ``` _TensorFlow Control Flow_ When `autograph` is `True`, data-dependent control flow is allowed as well. Control flow statements that depend on `Tensor` values are staged into corresponding TensorFlow ops. For example, the following code will work as expected: ```python @tf.contrib.eager.defun def dynamic_rnn_loop(cell, seq): state, output = cell.zero_state() for input in seq: state, output = cell(input, state) return output ``` For more information see `tf.autograph`. _Variables_ TensorFlow operations related to variable creation and initialization are automatically lifted out of the graphs generated by `defun`. In practice, this implies that variable creation and initialization only happen the first time `F` is called, and that variables are reused every time thereafter. Many TensorFlow APIs, like `tf.keras.layers.Layer` objects, create variables the first time they are called and reuse them thereafter. Automatic variable lifting makes it possible to compile these APIs without extra effort, at the cost of introducing a discrepancy between the semantics of executing Python functions and their corresponding compiled functions. For example: ```python import tensorflow as tf tf.enable_eager_execution() def fn(): x = tf.Variable(0.0) x.assign_add(1.0) return x.read_value() # `fn` is a Python function, so x is created, initialized, and destroyed upon # every invocation assert fn().numpy() == fn().numpy() == 1.0 compiled = tf.contrib.eager.defun(fn) # Compiling `fn` with `defun` hoists all variables outside of the generated # graph, so initialization happens exactly once. assert compiled().numpy() == 1.0 assert compiled().numpy() == 2.0 ``` Finally, because each input signature is bound to a unique graph, if your Python function constructs `tf.Variable` objects, then each graph constructed for that Python function will reference a unique set of variables. To circumvent this problem, we recommend against compiling Python functions that create `tf.Variable` objects. Instead, Python functions should either lexically close over `tf.Variable` objects or accept them as arguments, preferably encapsulated in an object-oriented container. If you must create variables inside your Python function and you want each graph generated for it to reference the same set of variables, add logic to your Python function that ensures that variables are only created the first time it is called and are reused for every subsequent invocation; note that this is precisely what `tf.keras.layers.Layer` objects do, so we recommend using them to represent variable-bearing computations whenever possible. Args: func: function to be compiled. If `func` is None, returns a decorator that can be invoked with a single argument - `func`. The end result is equivalent to providing all the arguments up front. In other words, defun(input_signature=...)(func) is equivalent to defun(func, input_signature=...). The former allows the following use case: @tf.contrib.eager.defun(input_signature=...) def foo(...): ... input_signature: A possibly nested sequence of `tf.contrib.eager.TensorSpec` objects specifying the shapes and dtypes of the Tensors that will be supplied to this function. If `None`, a separate function is instantiated for each inferred input signature. If a signature is specified, every input to `func` must be a `Tensor`, and `func` cannot accept `**kwargs`. autograph: Whether `func` should be compiled before constructing the graph. See https://www.tensorflow.org/guide/autograph for more information. Returns: If `func` is not None, returns a callable that will execute the compiled function (and return zero or more `tf.Tensor` objects). If `func` is None, returns a decorator that, when invoked with a single `func` argument, returns a callable equivalent to the case above. Raises: TypeError: If `input_signature` is neither `None` nor a sequence of `tf.contrib.eager.TensorSpec` objects. """ return defun_with_attributes( func=func, input_signature=input_signature, autograph=autograph) def defun_with_attributes(func=None, input_signature=None, attributes=None, autograph=True): """Compiles a Python function into a callable TensorFlow graph. This function supports adding extra function attributes. See detailed documentation in defun(). Currently this is not exposed in public API since we don't expect user to directly use attributes, and attribute won't work by itself. This assumption might change in future. Args: func: function to be compiled. input_signature: same as defun()'s input_signature. attributes: A dictionary of arguments which will be added to function def as attributes. Currently only support primitive types as value, and only whitelisted attribute name is allowed. Unwhitelisted attribute name or unsupported value will result into ValueError. `func_name` is also one of the whitelisted argument which is a python string, and sets the name for this `Function` in the graph. autograph: same as defun()'s autograph. Returns: Same as the return value of defun, with attributes added to the function in graph. """ if input_signature is not None: validate_signature(input_signature) # TODO(apassos): deal with captured global state. Deal with control flow. def decorated(function): try: if attributes: name = attributes.pop("func_name", function.__name__) else: name = function.__name__ except AttributeError: name = "function" return tf_decorator.make_decorator( function, PolymorphicFunction( function, name, input_signature=input_signature, attributes=attributes, autograph=autograph)) # This code path is for the `foo = tfe.defun(foo, ...)` use case if func is not None: return decorated(func) # This code path is for the # # @tfe.defun(...) # def foo(...): # ... # # use case, which is equivalent to `foo = tfe.defun(...)(foo)` return decorated # When a method is bound to objects of this type, it allows AutoGraph to # recover a weak reference the original method's self pointer. This uses the # mechanism from pyct.inspect_utils.getmethodclass. # TODO(b/119246461): This is not pretty. Use a descriptor instead? class _WeakrefSelf(object): def __init__(self, target): self.ag_self_weakref__ = target def class_method_to_instance_method(original_function, instance): """Constructs a new PolymorphicFunction with `self` bound.""" weak_instance = weakref.ref(instance) # Note: while we could bind to a weakref proxy instead, that causes the # bound method to be unhashable. bound_method = types_lib.MethodType(original_function.python_function, _WeakrefSelf(weak_instance)) # original_function is expected to be of one of the two PolymorphicFunction # types (defined either in function.py or def_function.py). assert hasattr(original_function, "_name") assert hasattr(original_function, "_autograph") assert hasattr(original_function, "_input_signature") assert hasattr(original_function, "python_function") def bound_method_wrapper(*args, **kwargs): """Wraps either a dummy MethodType or a converted AutoGraph function.""" # __wrapped__ allows AutoGraph to swap in a converted function. wrapped_fn = bound_method_wrapper.__wrapped__ if wrapped_fn is bound_method_wrapper.__original_wrapped__: # If __wrapped__ was not replaced, then call original_function. wrapped_fn = original_function.python_function if tf_inspect.ismethod(wrapped_fn): wrapped_fn = six.get_unbound_function(wrapped_fn) return wrapped_fn(weak_instance(), *args, **kwargs) # If __wrapped__ was replaced, then it is always an unbound function # that takes self as first argument. return wrapped_fn(weak_instance(), *args, **kwargs) # pylint: disable=protected-access # We make a dummy MethodType object to generate the correct bound method # signature. The actual call is to a function with a weak reference to # `instance`. instance_func = type(original_function)( tf_decorator.make_decorator(bound_method, bound_method_wrapper), name=original_function._name, autograph=original_function._autograph, input_signature=original_function._input_signature) # pylint: enable=protected-access # And we wrap the function with tf_decorator so inspection works correctly wrapped_instance_func = tf_decorator.make_decorator( original_function.python_function, instance_func) return wrapped_instance_func
{ "content_hash": "396e56cc215fbdf58ba94d059209837c", "timestamp": "", "source": "github", "line_count": 1657, "max_line_length": 105, "avg_line_length": 40.92939046469523, "alnum_prop": 0.6817752875258036, "repo_name": "asimshankar/tensorflow", "id": "6770f1d3b3745906ebf4c13f24591c1d79e2d909", "size": "68549", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tensorflow/python/eager/function.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "4882" }, { "name": "Batchfile", "bytes": "10132" }, { "name": "C", "bytes": "490070" }, { "name": "C#", "bytes": "8446" }, { "name": "C++", "bytes": "52677142" }, { "name": "CMake", "bytes": "207176" }, { "name": "Dockerfile", "bytes": "39454" }, { "name": "Go", "bytes": "1290930" }, { "name": "HTML", "bytes": "4680032" }, { "name": "Java", "bytes": "890529" }, { "name": "Jupyter Notebook", "bytes": "2618412" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "68402" }, { "name": "Objective-C", "bytes": "16140" }, { "name": "Objective-C++", "bytes": "102518" }, { "name": "PHP", "bytes": "5172" }, { "name": "Pascal", "bytes": "221" }, { "name": "Perl", "bytes": "7536" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "43038983" }, { "name": "RobotFramework", "bytes": "891" }, { "name": "Ruby", "bytes": "838" }, { "name": "Shell", "bytes": "497659" }, { "name": "Smarty", "bytes": "6976" } ], "symlink_target": "" }
from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['arni_gui'], package_dir={'': 'src'}, ) setup(**setup_args)
{ "content_hash": "aa1bdca166ded693e174c20cd320b683", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 60, "avg_line_length": 24.5, "alnum_prop": 0.726530612244898, "repo_name": "andreasBihlmaier/arni", "id": "2f38067d77a869bba88289cfc1b41fe7c5a2df99", "size": "308", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "arni_gui/setup.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "CMake", "bytes": "1293" }, { "name": "Python", "bytes": "416094" }, { "name": "QMake", "bytes": "850" } ], "symlink_target": "" }
"""Query build slave hardware info, and print it to stdout as csv.""" import csv import json import logging import sys import urllib2 _MASTERS = [ 'chromium.perf', 'client.catapult', 'tryserver.chromium.perf', 'tryserver.client.catapult', ] _KEYS = [ 'master', 'builder', 'hostname', 'os family', 'os version', 'product name', 'architecture', 'processor count', 'processor type', 'memory total', 'facter version', 'git version', 'puppet version', 'python version', 'ruby version', 'android device 1', 'android device 2', 'android device 3', 'android device 4', 'android device 5', 'android device 6', 'android device 7', ] _EXCLUDED_KEYS = frozenset([ 'architecture (userland)', 'b directory', 'last puppet run', 'uptime', 'windows version', ]) def main(): writer = csv.DictWriter(sys.stdout, _KEYS) writer.writeheader() for master_name in _MASTERS: master_data = json.load(urllib2.urlopen( 'http://build.chromium.org/p/%s/json/slaves' % master_name)) slaves = sorted(master_data.iteritems(), key=lambda x: (x[1]['builders'].keys(), x[0])) for slave_name, slave_data in slaves: for builder_name in slave_data['builders']: row = { 'master': master_name, 'builder': builder_name, 'hostname': slave_name, } host_data = slave_data['host'] if host_data: host_data = host_data.splitlines() if len(host_data) > 1: for line in host_data: if not line: continue key, value = line.split(': ') if key in _EXCLUDED_KEYS: continue row[key] = value # Munge keys. row = {key.replace('_', ' '): value for key, value in row.iteritems()} if 'osfamily' in row: row['os family'] = row.pop('osfamily') if 'product name' not in row and slave_name.startswith('slave'): row['product name'] = 'Google Compute Engine' try: writer.writerow(row) except ValueError: logging.error(row) raise if __name__ == '__main__': main()
{ "content_hash": "01e474e0ca2d6d9e489340aab2187d98", "timestamp": "", "source": "github", "line_count": 87, "max_line_length": 78, "avg_line_length": 25.57471264367816, "alnum_prop": 0.5635955056179776, "repo_name": "SummerLW/Perf-Insight-Report", "id": "85d4ffca7e97b6b01131a90e7df94996c60e9ea2", "size": "2410", "binary": false, "copies": "1", "ref": "refs/heads/test", "path": "experimental/hardware.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "3598" }, { "name": "C++", "bytes": "6411" }, { "name": "CSS", "bytes": "14952" }, { "name": "HTML", "bytes": "27508823" }, { "name": "JavaScript", "bytes": "75587" }, { "name": "Python", "bytes": "4638631" }, { "name": "Shell", "bytes": "2124" } ], "symlink_target": "" }
from yapsy.IPlugin import IPlugin import logging import requests import requests_cache import socket import json from xml.etree import ElementTree import plugin_ilmatieteenlaitos_secret as secret from datetime import datetime from jinja2 import Environment, PackageLoader logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) log.setLevel(logging.INFO) CITY = 'tampere' REMOTE_API_BASE_URL = "http://data.fmi.fi/fmi-apikey/" class Ilmatieteenlaitos(IPlugin): def __init__(self): cache_path = "plugins/" + __name__ requests_cache.install_cache(cache_path, backend='memory', expire_after=240) log.debug("Installed cache") def _get_xml_data(self, url): """ Helper for fetching xml from url. """ try: result = requests.get(url) log.debug('From cache: %s' % result.from_cache) if result.status_code != 200: log.error("Server returned %s" % result.status_code) raise Exception("Server returned %s" % result.status_code) root = ElementTree.fromstring(result.content) except requests.exceptions.ConnectionError, err: log.error(err) except Exception, err: log.error(err) raise err return root def _parse_xml_data(self, url): """ Helper for parsing xml from url. Always returns valid JSON """ root = self._get_xml_data(url) ns = { 'gml': 'http://www.opengis.net/gml/3.2', 'gmlcov': 'http://www.opengis.net/gmlcov/1.0', 'swe': 'http://www.opengis.net/swe/2.0' } assert len(root.findall(".//gmlcov:positions", ns)) == 1, "More than one gmlcov:positions found" assert len(root.findall(".//gml:doubleOrNilReasonTupleList", ns)) == 1, "More than one gml:doubleOrNilReasonTupleList found" assert len(root.findall(".//swe:DataRecord", ns)) == 1, "More than one swe:DataRecord found" forecast = [] try: # Parse parameter names field_types = [field.attrib.get('name') for field in root.findall(".//swe:DataRecord", ns)[0]] # Parse forecast timestamps for line in root.findall(".//gmlcov:positions", ns)[0].text.splitlines(): split_line = line.split() if len(split_line) == 3: #data['dt_time'] = str(datetime.fromtimestamp(data['dt']).strftime('%H:%M')) forecast.append({'Timestamp': int(split_line[2])}) # Parse parameters for each forecast point in time forecast_index = 0 for line in root.findall(".//gml:doubleOrNilReasonTupleList", ns)[0].text.splitlines(): split_line = line.split() if len(split_line) == len(field_types): for i, value in enumerate(split_line): forecast[forecast_index][field_types[i]] = float(value) forecast_index += 1 except Exception, err: log.error(err) raise err return forecast def get_data(self, args): """ Return current weather and forecast in json, or json error object on error """ try: forecast_data = self._parse_xml_data('{}{}/wfs?request=getFeature&storedquery_id=fmi::forecast::hirlam::surface::point::multipointcoverage&place={}'.format(REMOTE_API_BASE_URL, secret.remote_api_key, CITY)) #current_data = self._get_json_data('{}weather?q={}&units=metric&appid={}'.format(REMOTE_API_BASE_URL, CITY, secret.remote_api_key)) current_data = {"msg": "not implemented"} return json.dumps({"status": "ok", "current": current_data, "forecast": forecast_data}, indent=1) except socket.gaierror, err: log.error(err) return json.dumps({"status": "error", "message": err}) if(__name__ == "__main__"): plugin = Ilmatieteenlaitos() print plugin.get_data(None)
{ "content_hash": "5d020bee96ab074e1d4d7d452502b293", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 218, "avg_line_length": 38.6, "alnum_prop": 0.5978287688132248, "repo_name": "Vilsepi/radiate", "id": "973d7100feac4952c524a7035206904ef0fe0e9b", "size": "4289", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "radiate-server/plugins/plugin_ilmatieteenlaitos.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "1817" }, { "name": "HTML", "bytes": "3838" }, { "name": "JavaScript", "bytes": "5476" }, { "name": "Python", "bytes": "14000" }, { "name": "Shell", "bytes": "1272" } ], "symlink_target": "" }
"""Support for monitoring a Smappee energy sensor.""" from __future__ import annotations from dataclasses import dataclass, field from homeassistant.components.sensor import ( SensorDeviceClass, SensorEntity, SensorEntityDescription, SensorStateClass, ) from homeassistant.const import ( ELECTRIC_POTENTIAL_VOLT, ENERGY_KILO_WATT_HOUR, ENERGY_WATT_HOUR, POWER_WATT, ) from homeassistant.helpers.entity import DeviceInfo from .const import DOMAIN @dataclass class SmappeeRequiredKeysMixin: """Mixin for required keys.""" sensor_id: str @dataclass class SmappeeSensorEntityDescription(SensorEntityDescription, SmappeeRequiredKeysMixin): """Describes Smappee sensor entity.""" @dataclass class SmappeePollingSensorEntityDescription(SmappeeSensorEntityDescription): """Describes Smappee sensor entity.""" local_polling: bool = False @dataclass class SmappeeVoltageSensorEntityDescription(SmappeeSensorEntityDescription): """Describes Smappee sensor entity.""" phase_types: set[str] = field(default_factory=set) TREND_SENSORS: tuple[SmappeePollingSensorEntityDescription, ...] = ( SmappeePollingSensorEntityDescription( key="total_power", name="Total consumption - Active power", native_unit_of_measurement=POWER_WATT, sensor_id="total_power", device_class=SensorDeviceClass.POWER, state_class=SensorStateClass.MEASUREMENT, local_polling=True, # both cloud and local ), SmappeePollingSensorEntityDescription( key="alwayson", name="Always on - Active power", native_unit_of_measurement=POWER_WATT, sensor_id="alwayson", device_class=SensorDeviceClass.POWER, state_class=SensorStateClass.MEASUREMENT, ), SmappeePollingSensorEntityDescription( key="power_today", name="Total consumption - Today", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="power_today", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), SmappeePollingSensorEntityDescription( key="power_current_hour", name="Total consumption - Current hour", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="power_current_hour", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), SmappeePollingSensorEntityDescription( key="power_last_5_minutes", name="Total consumption - Last 5 minutes", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="power_last_5_minutes", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), SmappeePollingSensorEntityDescription( key="alwayson_today", name="Always on - Today", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="alwayson_today", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), ) REACTIVE_SENSORS: tuple[SmappeeSensorEntityDescription, ...] = ( SmappeeSensorEntityDescription( key="total_reactive_power", name="Total consumption - Reactive power", native_unit_of_measurement=POWER_WATT, sensor_id="total_reactive_power", device_class=SensorDeviceClass.POWER, state_class=SensorStateClass.MEASUREMENT, ), ) SOLAR_SENSORS: tuple[SmappeePollingSensorEntityDescription, ...] = ( SmappeePollingSensorEntityDescription( key="solar_power", name="Total production - Active power", native_unit_of_measurement=POWER_WATT, sensor_id="solar_power", device_class=SensorDeviceClass.POWER, state_class=SensorStateClass.MEASUREMENT, local_polling=True, # both cloud and local ), SmappeePollingSensorEntityDescription( key="solar_today", name="Total production - Today", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="solar_today", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), SmappeePollingSensorEntityDescription( key="solar_current_hour", name="Total production - Current hour", native_unit_of_measurement=ENERGY_WATT_HOUR, sensor_id="solar_current_hour", device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), ) VOLTAGE_SENSORS: tuple[SmappeeVoltageSensorEntityDescription, ...] = ( SmappeeVoltageSensorEntityDescription( key="phase_voltages_a", name="Phase voltages - A", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="phase_voltage_a", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"ONE", "TWO", "THREE_STAR", "THREE_DELTA"}, ), SmappeeVoltageSensorEntityDescription( key="phase_voltages_b", name="Phase voltages - B", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="phase_voltage_b", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"TWO", "THREE_STAR", "THREE_DELTA"}, ), SmappeeVoltageSensorEntityDescription( key="phase_voltages_c", name="Phase voltages - C", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="phase_voltage_c", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"THREE_STAR"}, ), SmappeeVoltageSensorEntityDescription( key="line_voltages_a", name="Line voltages - A", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="line_voltage_a", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"ONE", "TWO", "THREE_STAR", "THREE_DELTA"}, ), SmappeeVoltageSensorEntityDescription( key="line_voltages_b", name="Line voltages - B", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="line_voltage_b", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"TWO", "THREE_STAR", "THREE_DELTA"}, ), SmappeeVoltageSensorEntityDescription( key="line_voltages_c", name="Line voltages - C", native_unit_of_measurement=ELECTRIC_POTENTIAL_VOLT, sensor_id="line_voltage_c", device_class=SensorDeviceClass.VOLTAGE, state_class=SensorStateClass.MEASUREMENT, phase_types={"THREE_STAR", "THREE_DELTA"}, ), ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Smappee sensor.""" smappee_base = hass.data[DOMAIN][config_entry.entry_id] entities = [] for service_location in smappee_base.smappee.service_locations.values(): # Add all basic sensors (realtime values and aggregators) # Some are available in local only env entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=description, ) for description in TREND_SENSORS if not service_location.local_polling or description.local_polling ] ) if service_location.has_reactive_value: entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=description, ) for description in REACTIVE_SENSORS ] ) # Add solar sensors (some are available in local only env) if service_location.has_solar_production: entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=description, ) for description in SOLAR_SENSORS if not service_location.local_polling or description.local_polling ] ) # Add all CT measurements entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=SmappeeSensorEntityDescription( key="load", name=measurement.name, native_unit_of_measurement=POWER_WATT, sensor_id=measurement_id, device_class=SensorDeviceClass.POWER, state_class=SensorStateClass.MEASUREMENT, ), ) for measurement_id, measurement in service_location.measurements.items() ] ) # Add phase- and line voltages if available if service_location.has_voltage_values: entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=description, ) for description in VOLTAGE_SENSORS if ( service_location.phase_type in description.phase_types and not ( description.key.startswith("line_") and service_location.local_polling ) ) ] ) # Add Gas and Water sensors entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=SmappeeSensorEntityDescription( key="sensor", name=channel.get("name"), icon=( "mdi:water" if channel.get("type") == "water" else "mdi:gas-cylinder" ), native_unit_of_measurement=channel.get("uom"), sensor_id=f"{sensor_id}-{channel.get('channel')}", state_class=SensorStateClass.MEASUREMENT, ), ) for sensor_id, sensor in service_location.sensors.items() for channel in sensor.channels ] ) # Add today_energy_kwh sensors for switches entities.extend( [ SmappeeSensor( smappee_base=smappee_base, service_location=service_location, description=SmappeeSensorEntityDescription( key="switch", name=f"{actuator.name} - energy today", native_unit_of_measurement=ENERGY_KILO_WATT_HOUR, sensor_id=actuator_id, device_class=SensorDeviceClass.ENERGY, state_class=SensorStateClass.TOTAL_INCREASING, ), ) for actuator_id, actuator in service_location.actuators.items() if actuator.type == "SWITCH" and not service_location.local_polling ] ) async_add_entities(entities, True) class SmappeeSensor(SensorEntity): """Implementation of a Smappee sensor.""" entity_description: SmappeeSensorEntityDescription def __init__( self, smappee_base, service_location, description: SmappeeSensorEntityDescription, ): """Initialize the Smappee sensor.""" self.entity_description = description self._smappee_base = smappee_base self._service_location = service_location @property def name(self): """Return the name for this sensor.""" sensor_key = self.entity_description.key sensor_name = self.entity_description.name if sensor_key in ("sensor", "load", "switch"): return ( f"{self._service_location.service_location_name} - " f"{sensor_key.title()} - {sensor_name}" ) return f"{self._service_location.service_location_name} - {sensor_name}" @property def unique_id(self): """Return the unique ID for this sensor.""" sensor_key = self.entity_description.key if sensor_key in ("load", "sensor", "switch"): return ( f"{self._service_location.device_serial_number}-" f"{self._service_location.service_location_id}-" f"{sensor_key}-{self.entity_description.sensor_id}" ) return ( f"{self._service_location.device_serial_number}-" f"{self._service_location.service_location_id}-" f"{sensor_key}" ) @property def device_info(self) -> DeviceInfo: """Return the device info for this sensor.""" return DeviceInfo( identifiers={(DOMAIN, self._service_location.device_serial_number)}, manufacturer="Smappee", model=self._service_location.device_model, name=self._service_location.service_location_name, sw_version=self._service_location.firmware_version, ) async def async_update(self): """Get the latest data from Smappee and update the state.""" await self._smappee_base.async_update() sensor_key = self.entity_description.key if sensor_key == "total_power": self._attr_native_value = self._service_location.total_power elif sensor_key == "total_reactive_power": self._attr_native_value = self._service_location.total_reactive_power elif sensor_key == "solar_power": self._attr_native_value = self._service_location.solar_power elif sensor_key == "alwayson": self._attr_native_value = self._service_location.alwayson elif sensor_key in ( "phase_voltages_a", "phase_voltages_b", "phase_voltages_c", ): phase_voltages = self._service_location.phase_voltages if phase_voltages is not None: if sensor_key == "phase_voltages_a": self._attr_native_value = phase_voltages[0] elif sensor_key == "phase_voltages_b": self._attr_native_value = phase_voltages[1] elif sensor_key == "phase_voltages_c": self._attr_native_value = phase_voltages[2] elif sensor_key in ("line_voltages_a", "line_voltages_b", "line_voltages_c"): line_voltages = self._service_location.line_voltages if line_voltages is not None: if sensor_key == "line_voltages_a": self._attr_native_value = line_voltages[0] elif sensor_key == "line_voltages_b": self._attr_native_value = line_voltages[1] elif sensor_key == "line_voltages_c": self._attr_native_value = line_voltages[2] elif sensor_key in ( "power_today", "power_current_hour", "power_last_5_minutes", "solar_today", "solar_current_hour", "alwayson_today", ): trend_value = self._service_location.aggregated_values.get(sensor_key) self._attr_native_value = ( round(trend_value) if trend_value is not None else None ) elif sensor_key == "load": self._attr_native_value = self._service_location.measurements.get( self.entity_description.sensor_id ).active_total elif sensor_key == "sensor": sensor_id, channel_id = self.entity_description.sensor_id.split("-") sensor = self._service_location.sensors.get(int(sensor_id)) for channel in sensor.channels: if channel.get("channel") == int(channel_id): self._attr_native_value = channel.get("value_today") elif sensor_key == "switch": cons = self._service_location.actuators.get( self.entity_description.sensor_id ).consumption_today if cons is not None: self._attr_native_value = round(cons / 1000.0, 2)
{ "content_hash": "cf5cd24a5a7241e58b42618fe2e130b5", "timestamp": "", "source": "github", "line_count": 446, "max_line_length": 88, "avg_line_length": 38.0762331838565, "alnum_prop": 0.582970203745142, "repo_name": "home-assistant/home-assistant", "id": "e2eef5d06cf79d2347d633601683f0a3f268a3c2", "size": "16982", "binary": false, "copies": "1", "ref": "refs/heads/dev", "path": "homeassistant/components/smappee/sensor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "20557383" }, { "name": "Shell", "bytes": "6671" } ], "symlink_target": "" }
import time from test_framework.test_particl import ( ParticlTestFramework, isclose ) KEEP_FUNDING_TX_DATA = 86400 * 31 class SmsgRollingCacheTest(ParticlTestFramework): def set_test_params(self): self.setup_clean_chain = True # Don't copy from cache self.num_nodes = 3 self.extra_args = [ ['-debug', '-reservebalance=10000000'] for i in range(self.num_nodes) ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self, split=False): self.add_nodes(self.num_nodes, extra_args=self.extra_args) self.start_nodes() self.connect_nodes_bi(0, 1) self.connect_nodes_bi(0, 2) def run_test(self): nodes = self.nodes self.import_genesis_coins_a(nodes[0]) self.import_genesis_coins_b(nodes[1]) nodes[2].extkeyimportmaster(nodes[2].mnemonic('new')['master']) address1 = nodes[1].getnewaddress() nodes[1].smsgaddlocaladdress(address1) nodes[2].smsgaddaddress(address1, nodes[1].smsglocalkeys()['wallet_keys'][0]['public_key']) address0 = nodes[0].getnewaddress() address1 = nodes[1].getnewaddress() nodes[0].smsgaddlocaladdress(address0) nodes[1].smsgaddaddress(address0, nodes[0].smsglocalkeys()['wallet_keys'][0]['public_key']) text = 'Some text to test' ro = nodes[1].smsgsend(address1, address0, text, True, 10) assert (ro['result'] == 'Sent.') assert (isclose(ro['fee'], 0.00159000)) self.stakeBlocks(1, nStakeNode=1) self.log.info('Waiting for paid smsg to send') for i in range(20): txns = nodes[1].smsgdebug('dumpfundingtxids') if len(txns['txns']) < 1: time.sleep(1) continue break assert (len(txns['txns']) > 0) now = int(time.time()) for i in range(len(nodes)): nodes[i].setmocktime(now + KEEP_FUNDING_TX_DATA, True) self.log.info('Waiting for rolling cache to expire') for i in range(60): txns = nodes[1].smsgdebug('dumpfundingtxids') if len(txns['txns']) > 0: time.sleep(1) continue break assert (len(txns['txns']) == 0) self.log.info('Done.') if __name__ == '__main__': SmsgRollingCacheTest().main()
{ "content_hash": "28390c432918b7f5802e25ed686df43e", "timestamp": "", "source": "github", "line_count": 77, "max_line_length": 99, "avg_line_length": 31.051948051948052, "alnum_prop": 0.5872020075282308, "repo_name": "particl/particl-core", "id": "b2f809c2451769ed841cf3c20366889190e9ccc0", "size": "2601", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "test/functional/feature_part_smsg_rollingcache.py", "mode": "33261", "license": "mit", "language": [ { "name": "Assembly", "bytes": "28178" }, { "name": "Batchfile", "bytes": "13" }, { "name": "C", "bytes": "2889723" }, { "name": "C++", "bytes": "13218778" }, { "name": "CMake", "bytes": "29182" }, { "name": "Cap'n Proto", "bytes": "1256" }, { "name": "Dockerfile", "bytes": "1740" }, { "name": "HTML", "bytes": "21833" }, { "name": "Java", "bytes": "541" }, { "name": "M4", "bytes": "229063" }, { "name": "Makefile", "bytes": "159386" }, { "name": "Objective-C++", "bytes": "5486" }, { "name": "Python", "bytes": "3388224" }, { "name": "QMake", "bytes": "1276" }, { "name": "Sage", "bytes": "59728" }, { "name": "Scheme", "bytes": "26427" }, { "name": "Shell", "bytes": "190057" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('robocrm', '0022_auto_20141027_0155'), ] operations = [ migrations.AlterField( model_name='robouser', name='major', field=models.CharField(max_length=50), ), ]
{ "content_hash": "6453be403e0d558ff1a751731af26489", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 50, "avg_line_length": 21.055555555555557, "alnum_prop": 0.5910290237467019, "repo_name": "sreidy/roboticsclub.org", "id": "0d68a3ff065e758effaff4afcb3d110b7f688b78", "size": "403", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "robocrm/migrations/0023_auto_20141120_1102.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "87807" }, { "name": "HTML", "bytes": "32573" }, { "name": "JavaScript", "bytes": "5052" }, { "name": "Python", "bytes": "239652" } ], "symlink_target": "" }
"""Python dataset sparse tensor utility functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.util import nest from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import sparse_ops def any_sparse(classes): """Checks for sparse tensor. Args: classes: a structure of objects that identify the dataset item classes Returns: `True` if `classes` contains a sparse tensor type and `False` otherwise. """ return any(c is sparse_tensor.SparseTensor for c in nest.flatten(classes)) def as_dense_shapes(shapes, classes): """Converts sparse tensor shapes to their physical shapes. Args: shapes: a structure of shapes to convert. classes: a structure of objects that identify the dataset item classes Returns: a structure matching the nested structure of `shapes`, containing `tensor_shape.unknown_shape()` at positions where `classes` contains `tf.SparseTensor` and matching contents of `shapes` otherwise """ ret = nest.pack_sequence_as(shapes, [ tensor_shape.unknown_shape() if c is sparse_tensor.SparseTensor else shape for shape, c in zip(nest.flatten(shapes), nest.flatten(classes)) ]) return ret def as_dense_types(types, classes): """Converts sparse tensor types to `dtypes.variant`. Args: types: a structure of types to convert. classes: a structure of objects that identify the dataset item classes Returns: a structure matching the nested structure of `types`, containing `dtypes.variant` at positions where `classes` contains `tf.SparseTensor` and matching contents of `types` otherwise """ ret = nest.pack_sequence_as(types, [ dtypes.variant if c is sparse_tensor.SparseTensor else ty for ty, c in zip(nest.flatten(types), nest.flatten(classes)) ]) return ret def deserialize_sparse_tensors(tensors, types, shapes, classes): """Deserializes sparse tensors. Args: tensors: a structure of tensors to deserialize. types: a structure that holds information about types of `tensors` shapes: a structure that holds information about shapes of `tensors` classes: a structure of objects that identify the dataset item classes Returns: `tensors` with any serialized sparse tensors replaced by their deserialized version. """ ret = nest.pack_sequence_as(types, [ sparse_ops.deserialize_sparse(tensor, dtype=ty, rank=shape.ndims) if c is sparse_tensor.SparseTensor else tensor for (tensor, ty, shape, c) in zip( nest.flatten(tensors), nest.flatten(types), nest.flatten(shapes), nest.flatten(classes)) ]) return ret def get_classes(tensors): """Gets classes for a structure of tensors. Args: tensors: the tensor structure to get classes for. Returns: a structure matching the nested structure of `tensors`, containing `tf.SparseTensor` at positions where `tensors` contains a sparse tensor and `tf.Tensor` otherwise """ return nest.pack_sequence_as(tensors, [ sparse_tensor.SparseTensor if isinstance(tensor, sparse_tensor.SparseTensor) else ops.Tensor for tensor in nest.flatten(tensors) ]) def serialize_many_sparse_tensors(tensors): """Serializes many sparse tensors into a batch. Args: tensors: a tensor structure to serialize. Returns: `tensors` with any sparse tensors replaced by the serialized batch. """ ret = nest.pack_sequence_as(tensors, [ sparse_ops.serialize_many_sparse(tensor, out_type=dtypes.variant) if sparse_tensor.is_sparse(tensor) else tensor for tensor in nest.flatten(tensors) ]) return ret def serialize_sparse_tensors(tensors): """Serializes sparse tensors. Args: tensors: a tensor structure to serialize. Returns: `tensors` with any sparse tensors replaced by their serialized version. """ ret = nest.pack_sequence_as(tensors, [ sparse_ops.serialize_sparse(tensor, out_type=dtypes.variant) if isinstance(tensor, sparse_tensor.SparseTensor) else tensor for tensor in nest.flatten(tensors) ]) return ret
{ "content_hash": "80f56ce2fa64aadd390103347b25f73d", "timestamp": "", "source": "github", "line_count": 138, "max_line_length": 80, "avg_line_length": 31.384057971014492, "alnum_prop": 0.7252366658970215, "repo_name": "renyi533/tensorflow", "id": "d7e516e24f91e4a0c12ed778742c6e4db1b9e4a4", "size": "5020", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tensorflow/python/data/util/sparse.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "31572" }, { "name": "Batchfile", "bytes": "55269" }, { "name": "C", "bytes": "903309" }, { "name": "C#", "bytes": "8562" }, { "name": "C++", "bytes": "82507951" }, { "name": "CMake", "bytes": "6967" }, { "name": "Dockerfile", "bytes": "113964" }, { "name": "Go", "bytes": "1871425" }, { "name": "HTML", "bytes": "4686483" }, { "name": "Java", "bytes": "988219" }, { "name": "Jupyter Notebook", "bytes": "550861" }, { "name": "LLVM", "bytes": "6536" }, { "name": "MLIR", "bytes": "2073744" }, { "name": "Makefile", "bytes": "66796" }, { "name": "Objective-C", "bytes": "116558" }, { "name": "Objective-C++", "bytes": "319021" }, { "name": "PHP", "bytes": "4236" }, { "name": "Pascal", "bytes": "318" }, { "name": "Pawn", "bytes": "20422" }, { "name": "Perl", "bytes": "7536" }, { "name": "Python", "bytes": "37811412" }, { "name": "RobotFramework", "bytes": "1779" }, { "name": "Roff", "bytes": "2705" }, { "name": "Ruby", "bytes": "7464" }, { "name": "SWIG", "bytes": "6846" }, { "name": "Shell", "bytes": "696058" }, { "name": "Smarty", "bytes": "35725" }, { "name": "Starlark", "bytes": "3655758" }, { "name": "Swift", "bytes": "62814" }, { "name": "Vim Snippet", "bytes": "58" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/hair/human/shared_hair_human_female_s20.iff" result.attribute_template_id = -1 result.stfName("hair_name","hair") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "360f3d20bbee0a1e0839768b45dcee91", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 80, "avg_line_length": 23.46153846153846, "alnum_prop": 0.6918032786885245, "repo_name": "anhstudios/swganh", "id": "eef61d8dd8530fd16217f4a330342d65a423bd00", "size": "450", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "data/scripts/templates/object/tangible/hair/human/shared_hair_human_female_s20.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11887" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2357839" }, { "name": "CMake", "bytes": "41264" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7503510" }, { "name": "SQLPL", "bytes": "42770" } ], "symlink_target": "" }
import sys, os, time, tempfile, shutil, socket, fcntl, signal from subprocess import Popen, PIPE try: socket.getaddrinfo('non-existing-host', 80) NON_EXISTING_RESOLVABLE = True except socket.gaierror: NON_EXISTING_RESOLVABLE = False def get_testenv(): env = os.environ.copy() env['PYTHONPATH'] = os.getcwd() return env def get_ephemeral_port(): s = socket.socket() s.bind(("", 0)) return s.getsockname()[1] def _non_block_read(output): fd = output.fileno() fl = fcntl.fcntl(fd, fcntl.F_GETFL) fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK) try: return output.read() except Exception: return "" def _wait_for_port(portnum, delay=0.1, attempts=100): while attempts > 0: s = socket.socket() if s.connect_ex(('127.0.0.1', portnum)) == 0: s.close() return time.sleep(delay) attempts -= 1 raise RuntimeError("Port %d is not open" % portnum) class SplashServer(object): def __init__(self, logfile=None, proxy_profiles_path=None, js_profiles_path=None, filters_path=None, portnum=None, proxy_portnum=None, extra_args=None, verbosity=3): self.logfile = logfile self.proxy_profiles_path = proxy_profiles_path self.js_profiles_path = js_profiles_path self.filters_path = filters_path self.verbosity = verbosity self.portnum = portnum if portnum is not None else get_ephemeral_port() self.proxy_portnum = proxy_portnum if proxy_portnum is not None else get_ephemeral_port() self.tempdir = tempfile.mkdtemp() self.extra_args = extra_args or [] def __enter__(self): args = [sys.executable, '-u', '-m', 'splash.server'] args += ['--cache-path', self.tempdir] args += ['--port', str(self.portnum)] args += ['--verbosity', str(self.verbosity)] if self.logfile: args += ['-f', self.logfile] if self.proxy_profiles_path: args += ['--proxy-profiles-path', self.proxy_profiles_path] if self.js_profiles_path: args += ['--js-profiles-path', self.js_profiles_path] if self.filters_path: args += ['--filters-path', self.filters_path] if self.proxy_portnum: args += ['--proxy-portnum', str(self.proxy_portnum)] args.extend(self.extra_args) self.proc = Popen(args, env=get_testenv()) self.proc.poll() if self.proc.returncode is not None: msg = ("unable to start splash server. return code: %d" % self.proc.returncode) raise RuntimeError(msg) _wait_for_port(self.portnum) return self def __exit__(self, exc_type, exc_value, traceback): if self.proc is not None: self.proc.send_signal(signal.SIGINT) self.proc.wait() self.proc = None shutil.rmtree(self.tempdir) def url(self, path): return "http://localhost:%s/%s" % (self.portnum, path.lstrip('/')) def proxy_url(self): return "http://localhost:%s" % self.proxy_portnum class MockServer(object): def __init__(self, http_port=None, https_port=None, proxy_port=None): self.http_port = http_port if http_port is not None else get_ephemeral_port() self.https_port = https_port if https_port is not None else get_ephemeral_port() self.proxy_port = proxy_port if proxy_port is not None else get_ephemeral_port() def __enter__(self): self.proc = Popen([ sys.executable, '-u', '-m', 'splash.tests.mockserver', '--http-port', str(self.http_port), '--https-port', str(self.https_port), '--proxy-port', str(self.proxy_port), ], env=get_testenv() ) for port in (self.http_port, self.https_port, self.proxy_port): _wait_for_port(port) return self def __exit__(self, exc_type, exc_value, traceback): self.proc.kill() self.proc.wait() def url(self, path, gzip=True, host='localhost'): gzip_path = '' if not gzip else '/gzip' return "http://%s:%s%s/%s" % ( host, self.http_port, gzip_path, path.lstrip('/') ) def https_url(self, path): return "https://localhost:%s/%s" % (self.https_port, path.lstrip('/')) class TestServers(object): def __init__(self, logfile=None): self.logfile = logfile self.tmp_folder = tempfile.mkdtemp("splash-tests-tmp") self.proxy_profiles_path = self._copy_test_folder('proxy_profiles') self.js_profiles_path = self._copy_test_folder('js_profiles') self.filters_path = self._copy_test_folder('filters') self.lua_modules = self._copy_test_folder('lua_modules') self.lua_sandbox_allowed_modules = ['emulation', 'utils', 'utils_patch', 'non_existing'] self.mock_http_port = get_ephemeral_port() self.mock_https_port = get_ephemeral_port() self.mock_proxy_port = get_ephemeral_port() print("TestServers mock ports: %s http, %s https, %s proxy" % ( self.mock_http_port, self.mock_https_port, self.mock_proxy_port)) self._fix_testproxy_port() def _copy_test_folder(self, src, dst=None): src_path = test_path(src) dst_path = os.path.join(self.tmp_folder, dst or src) shutil.copytree(src_path, dst_path) return dst_path def _fix_testproxy_port(self): filename = os.path.join(self.proxy_profiles_path, 'test.ini') with open(filename, 'rb') as f: data = f.read() data = data.replace('8990', str(self.mock_proxy_port)) with open(filename, 'wb') as f: f.write(data) def __enter__(self): self.mockserver = MockServer( self.mock_http_port, self.mock_https_port, self.mock_proxy_port, ) self.mockserver.__enter__() self.splashserver = SplashServer( logfile=self.logfile, proxy_profiles_path=self.proxy_profiles_path, js_profiles_path=self.js_profiles_path, filters_path=self.filters_path, extra_args = [ '--lua-package-path', '%s/?.lua' % self.lua_modules.rstrip('/'), '--lua-sandbox-allowed-modules', ';'.join(self.lua_sandbox_allowed_modules), ] ) self.splashserver.__enter__() return self def __exit__(self, exc_type, exc_value, traceback): self.splashserver.__exit__(None, None, None) self.mockserver.__exit__(None, None, None) shutil.rmtree(self.tmp_folder) def test_path(*args): return os.path.join(os.path.dirname(__file__), *args)
{ "content_hash": "802dec88ee44f586da0e6b12665023ae", "timestamp": "", "source": "github", "line_count": 199, "max_line_length": 97, "avg_line_length": 34.42713567839196, "alnum_prop": 0.5813749817544884, "repo_name": "dwdm/splash", "id": "aa5e4347fed785f2794acf5666175e77cc0ccb6b", "size": "6851", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "splash/tests/utils.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "307" }, { "name": "Lua", "bytes": "21331" }, { "name": "Python", "bytes": "598792" }, { "name": "Shell", "bytes": "3747" } ], "symlink_target": "" }
""" This file contains tests that focus on general set-up of the python environment. They also check things that probably don't need any checking. """ import sys import pathlib # Ensure that 'matmodlab' is imported from parent directory. sys.path.insert(0, str(pathlib.Path(__file__).absolute().parent.parent)) try: import matmodlab2 except ImportError: matmodlab2 = None def test_absolute_truth(): """Ensure that the testing library is working.""" # Setup # Test assert True # Teardown def test_require_python3(): """The module 'matmodlab' and these tests require at least Python 3.0.""" # Setup # Test assert sys.version_info > (3, 0) or sys.version_info > (2, 6) # Teardown def test_import(): """Ensure that 'matmodlab' is imported.""" # Setup # Test assert matmodlab2 is not None # Teardown def test_initialize(): """Do something simple with 'matmodlab'.""" # Setup # Test assert 'MaterialPointSimulator' in matmodlab2.__all__ # Teardown if __name__ == '__main__': test_import()
{ "content_hash": "3b4842694235ef9e44baa070eb51ac52", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 78, "avg_line_length": 18.283333333333335, "alnum_prop": 0.649954421148587, "repo_name": "matmodlab/matmodlab2", "id": "b81098e5da9e05154a495d146a36003cd8952cc5", "size": "1121", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_environment.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Fortran", "bytes": "419488" }, { "name": "Jupyter Notebook", "bytes": "1458750" }, { "name": "Python", "bytes": "400440" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import models, migrations import datetime from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('imgpage', '0002_auto_20150823_2320'), ] operations = [ migrations.AddField( model_name='imgobject', name='img_title', field=models.CharField(default=datetime.datetime(2015, 9, 10, 10, 31, 8, 712000, tzinfo=utc), max_length=128), preserve_default=False, ), ]
{ "content_hash": "043a96ea3bb6061b70e05fcf7badb176", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 122, "avg_line_length": 25.904761904761905, "alnum_prop": 0.6305147058823529, "repo_name": "sudhaMR/Django-Perception", "id": "df646581aa01bf2710ad53e55bf86b1cb7b6d58b", "size": "568", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "imgpage/migrations/0003_imgobject_img_title.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "27536" }, { "name": "Python", "bytes": "15450" } ], "symlink_target": "" }
"""A module for defining structured request species. :author: Matthew Gidden <matthew.gidden _at_ gmail.com> """ import itertools import numpy as np import random import math from collections import OrderedDict, defaultdict, Iterable from cyclopts import tools as cyctools from cyclopts import cyclopts_io as cycio from cyclopts import io_tools as io_tools import cyclopts.exchange_instance as exinst from cyclopts.problems import ProblemSpecies from cyclopts.exchange_family import ResourceExchange from cyclopts.structured_species import data from cyclopts.structured_species import tools as strtools def rxtr_commods(kind, fidelity): """return a list of commodities per reactor kind and fidelity""" commods = [data.Commodities.uox] if fidelity > 0: commods += [data.Commodities.th_mox, data.Commodities.f_mox] if fidelity > 1 and kind != data.Reactors.th: commods += [data.Commodities.f_thox] return commods class Point(strtools.Point): """A container class representing a point in parameter space""" """ordered mapping from input parameters to default values and np.dtypes, see the theory manual for further explanation of the parameter names""" parameters = OrderedDict(sorted({ "f_rxtr": strtools.Param(0, np.int8), "f_fc": strtools.Param(0, np.int8), "f_loc": strtools.Param(0, np.int8), # use a different tool for more than 4294967295 rxtrs! "n_rxtr": strtools.Param(1, np.uint32), "r_t_f": strtools.Param(1.0, np.float32), "r_th_pu": strtools.Param(0.0, np.float32), "r_s_th": strtools.Param(1.0 / 2, np.float32), "r_s_mox_uox": strtools.Param(1.0, np.float32), "r_s_mox": strtools.Param(1.0 / 2, np.float32), "r_s_thox": strtools.Param(1.0 / 2, np.float32), "f_mox": strtools.Param(1.0, np.float32), "r_inv_proc": strtools.Param(1.0, np.float32), # use a different tool for more than 4294967295 regions! "n_reg": strtools.Param(10, np.uint32), "r_l_c": strtools.Param(1.0, np.float32), "seed": strtools.Param(-1.0, np.int64), # default is negative }.items(), key=lambda t: t[0])) def __init__(self, d=None): """Parameters ---------- d : dict, optional a dictionary with key value pairs of parameter name, parameter value """ super(Point, self).__init__(d) if self.seed > 0: random.seed(self.seed) def _parameters(self): return Point.parameters class Reactor(strtools.Reactor): """An extension reactor model for Structured Request Species""" def __init__(self, kind, point, gids, nids): super(Reactor, self).__init__(kind, point) req = True qty = data.fuel_unit * data.core_vol_frac[self.kind] self.base_req_qty = qty / self.n_assems gid = gids.next() grp = exinst.ExGroup(gid, req, qty) grp.AddCap(qty) self.group = grp self._gen_nodes(point, gid, nids) def _gen_nodes(self, point, gid, nids): self.nodes = [] self.commod_to_nodes = defaultdict(list) req = True excl = True for commod in rxtr_commods(self.kind, point.f_fc): nreq = self.n_assems # account for less mox requests if self.kind == data.Reactors.th: if commod == data.Commodities.f_mox or \ commod == data.Commodities.th_mox: nreq = int(math.ceil(nreq * point.f_mox)) for i in range(nreq): node = exinst.ExNode(nids.next(), gid, req, self.req_qty(commod), excl) self.nodes.append(node) self.commod_to_nodes[commod].append(node) def req_qty(self, commod): return self.base_req_qty * data.relative_qtys[self.kind][commod] class Supplier(object): """A simplified supplier model for Structured Request Species""" def __init__(self, kind, point, gids): self.kind = kind self.nodes = [] req = True # process then inventory rhs = [data.sup_rhs[kind], data.sup_rhs[kind] * point.r_inv_proc * strtools.conv_ratio(kind)] grp = exinst.ExGroup(gids.next(), not req) for cap in rhs: grp.AddCap(cap) self.group = grp self.loc = data.loc() def coeffs(self, qty, enr): return [data.converters[self.kind][k]( qty, enr, data.sup_to_commod[self.kind]) / qty \ for k in ['proc', 'inv']] class PathMap(io_tools.PathMap): """A simple container class for mapping columns to Hdf5 paths implemented for the StructuredRequest problem species""" def __init__(self, col): super(PathMap, self).__init__(col) @property def path(self): # this is an approx. heuristic, it might need to be updated inst = StructuredRequest() col = self.col if col.startswith('n_') and not col.endswith('_rxtr') \ and not col.endswith('_reg'): tbl = inst.sum_tbl_name elif col.endswith('pref_flow') or col.endswith('cost_flow'): tbl = strtools.pp_tbl_name else: tbl = inst.param_tbl_name return '/'.join([inst.io_prefix, tbl]) class StructuredRequest(ProblemSpecies): """A class representing structured request-based exchanges species.""" @property def family(cls): """Returns ------- family : ResourceExchange An instance of this species' family """ return ResourceExchange() @property def name(cls): """Returns ------- name : string The name of this species """ return 'StructuredRequest' @property def param_tbl_name(cls): """Returns ------- name : string The name of parameter space output table """ return 'Points' @property def sum_tbl_name(cls): """Returns ------- name : string The name of summary output table """ return 'Summary' @property def summary_tbls(cls): """ Returns ------- name : list A list of cyclopts_io.TblDesc for summary tables. """ return strtools.tbl_descs(cls.io_prefix) + [ cycio.TblDesc('/'.join([cls.io_prefix, cls.sum_tbl_name]), 'param', 'paramid'), cycio.TblDesc('/'.join([cls.io_prefix, cls.param_tbl_name]), 'param', 'paramid'), ] def __init__(self): super(StructuredRequest, self).__init__() self.space = None self._n_points = None # 16 bytes for uuid self._param_dtype = np.dtype( [('paramid', ('str', 16)), ('family', ('str', 30))] + \ [(name, param.dtype) for name, param in Point.parameters.items()]) facs = ['n_r_th', 'n_r_f_mox', 'n_r_f_thox', 'n_s_uox', 'n_s_th_mox', 'n_s_f_mox', 'n_s_f_thox'] self._sum_dtype = np.dtype( [('paramid', ('str', 16)), ('family', ('str', 30))] + \ [(name, np.uint32) for name in facs]) self.nids = cyctools.Incrementer() self.gids = cyctools.Incrementer() self.arcids = cyctools.Incrementer() self.instid = None self.tables = None self.groups = None self.arc_tbl = None def register_tables(self, h5file, prefix): """Parameters ---------- h5file : PyTables File the hdf5 file prefix : string the absolute path to the group for tables of this species Returns ------- tables : list of cyclopts_io.Tables All tables that could be written to by this species. """ return [cycio.Table(h5file, '/'.join([prefix, self.param_tbl_name]), self._param_dtype), cycio.Table(h5file, '/'.join([prefix, self.sum_tbl_name]), self._sum_dtype), cycio.Table(h5file, '/'.join([prefix, strtools.pp_tbl_name]), strtools.pp_tbl_dtype),] def register_groups(self, h5file, prefix): """Parameters ---------- h5file : PyTables File the hdf5 file prefix : string the absolute path to the group for tables of this family Returns ------- groups : list of cyclopts_io.Groups All groups that could be written to by this species. """ return [cycio.Group(h5file, '/'.join([prefix, strtools.arc_io_name]))] def read_space(self, space_dict): """Parameters ---------- space_dict : dict A dictionary container resulting from the reading in of a run control file """ self.space = {k: v if isinstance(v, Iterable) else [v] \ for k, v in space_dict.items() \ if k in Point.parameters} @property def n_points(self): """Returns ------- n : int The total number of points in the parameter space """ return cyctools.n_permutations(self.space) def points(self): """Derived classes must implement this function returning a representation of a point in its parameter space to be used by other class member functions. Returns ------- point_generator : generator A generator for representation of a point in parameter space to be used by this species """ keys = self.space.keys() vals = self.space.values() for args in cyctools.expand_args(vals): d = {keys[i]: args[i] for i in range(len(args))} yield Point(d) def record_point(self, point, param_uuid, io_manager): """Parameters ---------- point : tuple or other A representation of a point in parameter space param_uuid : uuid The uuid of the point in parameter space io_manager : cyclopts_io.IOManager, optional IOManager that gives access to tables/groups for writing """ tables = io_manager.tables uid = param_uuid.bytes if len(param_uuid.bytes) == 16 \ else param_uuid.bytes + '\0' data = [param_uuid.bytes, self.family.name] data += [getattr(point, k) for k in Point.parameters.keys()] tables[self.param_tbl_name].append_data([tuple(data)]) data = [param_uuid.bytes, self.family.name] data += strtools.reactor_breakdown(point) data += strtools.support_breakdown(point)[:-1] tables[self.sum_tbl_name].append_data([tuple(data)]) def _get_reactors(self, point): n_uox, n_mox, n_thox = strtools.reactor_breakdown(point) uox_th_r = np.ndarray( shape=(n_uox,), buffer=np.array([Reactor(data.Reactors.th, point, self.gids, self.nids) \ for i in range(n_uox)]), dtype=Reactor) mox_f_r = np.ndarray( shape=(n_mox,), buffer=np.array([Reactor(data.Reactors.f_mox, point, self.gids, self.nids) \ for i in range(n_mox)]), dtype=Reactor) thox_f_r = np.ndarray( shape=(n_thox,), buffer=np.array([Reactor(data.Reactors.f_thox, point, self.gids, self.nids) \ for i in range(n_thox)]), dtype=Reactor) reactors = { data.Reactors.th: uox_th_r, data.Reactors.f_mox: mox_f_r, data.Reactors.f_thox: thox_f_r, } return reactors def _get_suppliers(self, point): n_uox, n_t_mox, n_f_mox, n_f_thox, _ = strtools.support_breakdown(point) uox_s = np.ndarray( shape=(n_uox,), buffer=np.array([Supplier(data.Supports.uox, point, self.gids) \ for i in range(n_uox)]), dtype=Supplier) mox_th_s = np.ndarray( shape=(n_t_mox,), buffer=np.array([Supplier(data.Supports.th_mox, point, self.gids) \ for i in range(n_t_mox)]), dtype=Supplier) mox_f_s = np.ndarray( shape=(n_f_mox,), buffer=np.array([Supplier(data.Supports.f_mox, point, self.gids) \ for i in range(n_f_mox)]), dtype=Supplier) thox_s = np.ndarray( shape=(n_f_thox,), buffer=np.array([Supplier(data.Supports.f_thox, point, self.gids) \ for i in range(n_f_thox)]), dtype=Supplier) suppliers = { data.Supports.uox: uox_s, data.Supports.th_mox: mox_th_s, data.Supports.f_mox: mox_f_s, data.Supports.f_thox: thox_s, } return suppliers def _generate_supply(self, point, commod, requester, supplier): r = requester s = supplier commod_pref = data.rxtr_pref_basis[r.kind][commod] loc_pref = strtools.loc_pref(r.loc, s.loc, point.f_loc, point.n_reg) pref = commod_pref + loc_pref * point.r_l_c rnodes = r.commod_to_nodes[commod] arcs = [] enr = r.enr(commod) # req coeffs have full orders take into relative fissile material req_coeffs = r.coeffs(commod) # sup coeffs act on the quantity of fissile material qty = r.req_qty(commod) sup_coeffs = s.coeffs(qty, enr) for i in range(len(rnodes)): req = True nid = self.nids.next() node = exinst.ExNode(nid, s.group.id, not req, qty) s.nodes.append(node) arcid = self.arcids.next() if self.arc_tbl is not None: self.arc_tbl.append_data([(arcid, commod, commod_pref, loc_pref)]) #print('id', arcid, 'commod', commod, 'pref', pref) arcs.append(exinst.ExArc( arcid, rnodes[i].id, req_coeffs, nid, sup_coeffs, pref)) return arcs def _get_arcs(self, point, reactors, suppliers): arcs = [] for r_kind, r_ary in reactors.items(): for r in r_ary: for commod in rxtr_commods(r.kind, point.f_fc): for s in suppliers[data.commod_to_sup[commod]]: supply = self._generate_supply(point, commod, r, s) arcs.append(supply) return np.concatenate(arcs) def gen_inst(self, point, instid=None, io_manager=None): """Parameters ---------- point : structured_species.Point A representation of a point in parameter space instid : uuid the id for the instance io_manager : cyclopts_io.IOManager, optional IOManager that gives access to tables/groups for writing Returns ------- inst : tuple of lists of ExGroups, ExNodes, and ExArgs A representation of a problem instance to be used by this species' family """ # reset id generation self.nids = cyctools.Incrementer() self.gids = cyctools.Incrementer() self.arcids = cyctools.Incrementer() self.instid = instid # set up IO self.tables = None if io_manager is None else io_manager.tables self.groups = None if io_manager is None else io_manager.groups self.arc_tbl = None if self.groups is not None: arc_grp = self.groups[strtools.arc_io_name] arc_tbl_path = '/'.join([arc_grp.path, 'id_' + self.instid.hex]) self.arc_tbl = cycio.Table(arc_grp.h5file, arc_tbl_path, strtools.arc_tbl_dtype) self.arc_tbl.cond_create() # species objects reactors = self._get_reactors(point) suppliers = self._get_suppliers(point) # create arcs arcs = self._get_arcs(point, reactors, suppliers) if self.arc_tbl is not None: self.arc_tbl.flush() # collect nodes r_nodes = np.concatenate([x.nodes for ary in reactors.values() \ for x in ary]) s_nodes = np.concatenate([x.nodes for ary in suppliers.values() \ for x in ary]) nodes = np.concatenate((r_nodes, s_nodes)) # collect groups r_groups = [x.group for ary in reactors.values() for x in ary] s_groups = [x.group for ary in suppliers.values() for x in ary] groups = np.concatenate((r_groups, s_groups)) return groups, nodes, arcs def post_process(self, instid, solnids, props, io_managers): """Perform any post processing on input and output. Parameters ---------- instid : UUID UUID of the instance to post process solnids : tuple of UUIDs a collection of solution UUIDs corresponding the instid props : tuple, other as defined by cyclopts.exchange_family io_managers : tuple of cyclopts.cyclopts_io.IOManager iomanager from an input file, iomanager from an output file, and iomanager from a post-processed file """ strtools.post_process(instid, solnids, props, io_managers, self.name)
{ "content_hash": "f7afb8a7780c970099129b057cc251ce", "timestamp": "", "source": "github", "line_count": 489, "max_line_length": 92, "avg_line_length": 36.98364008179959, "alnum_prop": 0.5409455349737351, "repo_name": "gidden/cyclopts", "id": "68e620e551dc002d5e4a3b483c14aed966f21a68", "size": "18085", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cyclopts/structured_species/request.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "3245" }, { "name": "C++", "bytes": "10533" }, { "name": "Python", "bytes": "530544" }, { "name": "Shell", "bytes": "295" } ], "symlink_target": "" }
from . import PluginBase __all__ = ['Hash'] class Hash(PluginBase): def help(self): return """[string1] [string2] Convert from ASCII string to hash string. ex) > hash a b c3 """ def execute(self, args): if len(args) != 2: raise ValueError('wrong number of arguments are given') def calc(string): return modified_scientific_notation(ascii_digits(string)) return '{:x}'.format(calc(args[0]) + calc(args[1])) def ascii_digits(string): """ Convert string to digits based on ASCII codes. >>> ascii_digits('a') # same as ord('a') 97 >>> ascii_digits('ab') 9798 >>> ascii_digits('abc') 979899 >>> ascii_digits('I ♥️ Python.') Traceback (most recent call last): ... ValueError: string has non-ascii character :type string: str :rtype: int """ digits = [ord(c) for c in string] if any(d > 127 for d in digits): raise ValueError('string has non-ascii character') return int(''.join([str(d) for d in digits])) def modified_scientific_notation(num): """ Convert numerical value to modified scientific notation. If length of num is greater than 22, return num as it is. >>> modified_scientific_notation(1) 1 Otherwise, return concatenated two parts, mantissa without integral part and exponent. >>> modified_scientific_notation(123456789012345678901234567890) # 1.2345678901234568e+29 234567890123456829 :type num: int :rtype: int """ if len(str(num)) < 22: return num import re p = re.split('(\.|e\+)', '{:.16e}'.format(num)) return int(p[2] + p[4])
{ "content_hash": "175c42e588e7b6e6d0c271ba3a7679f8", "timestamp": "", "source": "github", "line_count": 77, "max_line_length": 94, "avg_line_length": 21.818181818181817, "alnum_prop": 0.6083333333333333, "repo_name": "mikoim/funstuff", "id": "08d36169858cefd8c564741d6686e0bcf5a37e8d", "size": "1684", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "codecheck/codecheck-3608/app/plugins/hash.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "26516" }, { "name": "C", "bytes": "85616" }, { "name": "C++", "bytes": "7221" }, { "name": "CMake", "bytes": "2282" }, { "name": "CSS", "bytes": "1661" }, { "name": "Elixir", "bytes": "541" }, { "name": "Go", "bytes": "8433" }, { "name": "HTML", "bytes": "176956" }, { "name": "Haskell", "bytes": "603" }, { "name": "Java", "bytes": "3206" }, { "name": "JavaScript", "bytes": "48109" }, { "name": "Jupyter Notebook", "bytes": "9043" }, { "name": "Lex", "bytes": "5512" }, { "name": "Makefile", "bytes": "273" }, { "name": "Mathematica", "bytes": "189020" }, { "name": "Nginx", "bytes": "648" }, { "name": "PHP", "bytes": "5962" }, { "name": "Protocol Buffer", "bytes": "968" }, { "name": "Python", "bytes": "147116" }, { "name": "Shell", "bytes": "2192" }, { "name": "Yacc", "bytes": "14693" } ], "symlink_target": "" }
import sys import codecs import pprint import argparse from const import * from utils import * def show_resource(resource): print "name: %s" % resource['name'] print "description: %s" % resource['description'] print "orgUnitPath: %s" % resource['orgUnitPath'] print "parentOrgUnitPath: %s" % resource['parentOrgUnitPath'] if resource.has_key('blockInheritance'): print "blockInheritance: %s" % resource['blockInheritance'] def show_resource_list(resources, verbose): if resources.has_key('organizationUnits'): for resource in resources['organizationUnits']: if verbose: show_resource(resource) print "" else: print resource['orgUnitPath'] def list_orgunit(sv, args): params = {} params['customerId'] = args.customerId if args.orgUnitPath: params['orgUnitPath'] = args.orgUnitPath.decode('utf-8') if args.type: params['type'] = args.type status, r = execute_admin_api(sv.list(**params)) if args.jsonPretty: print to_pretty_json(r['organizationUnits']) elif args.json: print to_json(r['organizationUnits']) else: show_resource_list(r, args.verbose) def get_orgunit(sv, args): status, r = execute_admin_api(sv.get(customerId=args.customerId, orgUnitPath=args.orgUnitPath)) if status == 404: sys.stderr.write('%s does not exist\n' % args.orgUnitPath) sys.exit(2) if args.jsonPretty: print to_pretty_json(r) elif args.json: print to_json(r) else: show_resource(r) def insert_orgunit(sv, args): body = { 'name': args.name, 'parentOrgUnitPath': args.parentOrgUnitPath } if args.description: body['description'] = args.description if args.blockInheritance: body['blockInheritance'] = True if args.blockInheritance == 'true' else False status, r = execute_admin_api(sv.insert(customerId=args.customerId, body=body)) if args.verbose: if args.jsonPretty: print to_pretty_json(r) elif args.json: print to_json(r) else: show_resource(r) def patch_orgunit(sv, args): body = {} if args.name: body['name'] = args.name if args.description: body['description'] = args.description if args.parentOrgUnitPath: body['parentOrgUnitPath'] = args.parentOrgUnitPath if args.blockInheritance: body['blockInheritance'] = True if args.blockInheritance == 'true' else False if len(body) > 0: status, r = execute_admin_api(sv.patch(customerId=args.customerId, orgUnitPath=args.orgUnitPath, body=body)) if status == 404: sys.stderr.write('%s does not exist\n' % args.orgUnitPath) sys.exit(2) if args.verbose: if args.jsonPretty: print to_pretty_json(r) elif args.json: print to_json(r) else: show_resource(r) def delete_orgunit(sv, args): status, r = execute_admin_api(sv.delete(customerId=args.customerId, orgUnitPath=args.orgUnitPath)) if status == 404: sys.stderr.write('%s does not exist\n' % args.orgUnitPath) sys.exit(2) def main(): parser = argparse.ArgumentParser(parents=[tools.argparser]) subparsers = parser.add_subparsers(help='sub command') #------------------------------------------------------------------------- # LIST #------------------------------------------------------------------------- parser_list = subparsers.add_parser('list', help='Retrieves a list of all organization units for an account') parser_list.add_argument('customerId', help='customer id') parser_list.add_argument('--orgUnitPath', help='full path to the organization unit') parser_list.add_argument('--type', choices=['all', 'children'], default='children', help='all: all sub-org, children: immediate children only (default)') parser_list.add_argument('-v', '--verbose', action='store_true', help='show organization unit data') parser_list.add_argument('--json', action='store_true', help='output in JSON') parser_list.add_argument('--jsonPretty', action='store_true', help='output in pretty JSON') parser_list.set_defaults(func=list_orgunit) #------------------------------------------------------------------------- # GET #------------------------------------------------------------------------- parser_get = subparsers.add_parser('get', help='Retrieves an organization unit') parser_get.add_argument('customerId', help='customer id') parser_get.add_argument('orgUnitPath', help='full path of the organization unit') parser_get.add_argument('--json', action='store_true', help='output in JSON') parser_get.add_argument('--jsonPretty', action='store_true', help='output in pretty JSON') parser_get.set_defaults(func=get_orgunit) #------------------------------------------------------------------------- # INSERT #------------------------------------------------------------------------- parser_insert = subparsers.add_parser('insert', help='Adds an organization unit') parser_insert.add_argument('customerId', help='customer id') parser_insert.add_argument('name', help='organization unit name') parser_insert.add_argument('parentOrgUnitPath', help='parent organization unit path') parser_insert.add_argument('--blockInheritance', choices=['true', 'false']) parser_insert.add_argument('--description') parser_insert.add_argument('-v', '--verbose', action='store_true', help='show all group data') parser_insert.add_argument('--json', action='store_true', help='output in JSON') parser_insert.add_argument('--jsonPretty', action='store_true', help='output in pretty JSON') parser_insert.set_defaults(func=insert_orgunit) #------------------------------------------------------------------------- # PATCH #------------------------------------------------------------------------- parser_patch = subparsers.add_parser('patch', help='Updates an organization unit') parser_patch.add_argument('customerId') parser_patch.add_argument('orgUnitPath', help='full path of the organization unit') parser_patch.add_argument('--name') parser_patch.add_argument('--description') parser_patch.add_argument('--orgUnitPath') parser_patch.add_argument('--parentOrgUnitPath') parser_patch.add_argument('--blockInheritance', choices=['true', 'false']) parser_patch.add_argument('-v', '--verbose', action='store_true', help='show all group data') parser_patch.add_argument('--json', action='store_true', help='output in JSON') parser_patch.add_argument('--jsonPretty', action='store_true', help='output in pretty JSON') parser_patch.set_defaults(func=patch_orgunit) #------------------------------------------------------------------------- # DELETE #------------------------------------------------------------------------- parser_delete = subparsers.add_parser('delete', help='Removes an organization unit') parser_delete.add_argument('customerId') parser_delete.add_argument('orgUnitPath', help='full path of the organization unit') parser_delete.set_defaults(func=delete_orgunit) args = parser.parse_args() service = get_directory_service(args) args.func(service.orgunits(), args) if __name__ == '__main__': sys.stdout = codecs.getwriter('utf_8')(sys.stdout) main()
{ "content_hash": "59ef94c136fb5cdb51ff0eac2fd81394", "timestamp": "", "source": "github", "line_count": 173, "max_line_length": 116, "avg_line_length": 44.104046242774565, "alnum_prop": 0.5874180865006553, "repo_name": "yteraoka/googleapps-directory-tools", "id": "a2d41751ca3997627fd3c0f2239f11b6a4e1d120", "size": "7677", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "orgunit.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "86205" } ], "symlink_target": "" }
from flask import render_template, Response, request, flash, redirect, url_for, abort, send_from_directory from flask.ext.login import login_required from werkzeug import secure_filename from app import app, db, models from app.forms.upload_forms import RecordForm from app.views.util.login import requires_roles from app.views.util.image import resize_image_thumb, resize_image_regular from app.views.util.selectors import personChoicesForSelectField, selectPersonsWhoAreDoctors, selectPersonsWhoAreRadiologists, selectPersonsWhoArePatients import uuid import os @app.route('/record/list', methods=['GET']) @login_required @requires_roles('r', 'a') def list_records(): """ List of all the Radiology Records """ records = models.Record.query.all() return render_template('list_records.html', records=records) @app.route('/record/upload', methods=['GET', 'POST']) @login_required @requires_roles('r', 'a') def upload_record(): """ Upload a new Radiology Record """ form = RecordForm(request.form) # Populate the Form patients = selectPersonsWhoArePatients() patientChoices = personChoicesForSelectField(patients) doctors = selectPersonsWhoAreDoctors() doctorChoices = personChoicesForSelectField(doctors) radiologists = selectPersonsWhoAreRadiologists() radiologistChoices = personChoicesForSelectField(radiologists) form.patient_id.choices = patientChoices form.doctor_id.choices = doctorChoices form.radiologist_id.choices = radiologistChoices if form.validate_on_submit(): # Create the Record record = models.Record() form.populate_obj(record) db.session.add(record) db.session.commit() # Create the images images = request.files.getlist("images") if images: for img in images: # Create Images file_name = str(uuid.uuid4()) + secure_filename(img.filename) image_file = os.path.join(app.config['UPLOAD_FOLDER'], file_name) img.save(image_file) thumb_file_name = os.path.splitext(file_name)[0] + ".thumbnail" thumb_file = os.path.splitext(image_file)[0] + ".thumbnail" regular_file_name = os.path.splitext(file_name)[0] + ".regular" regular_file = os.path.splitext(image_file)[0] + ".regular" # Resize resize_image_thumb(img, thumb_file) resize_image_regular(img, regular_file) image = models.Image(record_id=record.record_id, thumbnail=thumb_file_name.encode('utf-8'), regular_size=regular_file_name.encode('utf-8'), full_size=file_name.encode('utf-8')) db.session.add(image) db.session.commit() flash(u'Record {} has been saved'.format(record.record_id)) return redirect(url_for('list_records')) return render_template('upload_record.html', title='Upload a Record', form=form) @app.route('/record/<id>/delete', methods=['GET', 'POST']) @login_required @requires_roles('r', 'a') def delete_record(id): """ Delete a record. :param id: id of record to delete. :return: Delete warning dialogue page. """ record = models.Record.query.get_or_404(id) form = RecordForm(obj=record) if form.is_submitted(): # Delete the record's images for image in record.images: db.session.delete(image) db.session.commit() # Delete the record db.session.delete(record) db.session.commit() flash(u'{} has been deleted'.format(id)) return redirect(url_for('list_records')) return render_template('delete_warning.html', form=form, objType="Record", objId=id) @app.route('/image/<int:image_id>/full') @login_required @requires_roles('r', 'a') def full_img(image_id): """ Returns a full size of an image from the database as a jpeg. :param id: id of image to display. """ image = models.Image.query.get_or_404(image_id) return send_from_directory(app.config['UPLOAD_FOLDER'], image.full_size.decode("utf-8")) @app.route('/image/<int:image_id>/regular/<template>') @app.route('/image/<int:image_id>/regular') @login_required @requires_roles('r', 'a') def regular_img(image_id, template=""): """ Returns a regular of an image from the database as a jpeg. :param id: id of image to display. """ image = models.Image.query.get_or_404(image_id) if template != "": return render_template('regular_image.html', image=image) else: return send_from_directory(app.config['UPLOAD_FOLDER'], image.regular_size.decode("utf-8")) @app.route('/image/<int:image_id>/thumbnail') @login_required @requires_roles('r', 'a') def thumbnail_img(image_id): """ Returns a thumbnail of an image from the database as a jpeg. :param id: id of image to display. """ image = models.Image.query.get_or_404(image_id) return send_from_directory(app.config['UPLOAD_FOLDER'], image.thumbnail.decode("utf-8"))
{ "content_hash": "52066c85b98cac267900da0d64c2d416", "timestamp": "", "source": "github", "line_count": 149, "max_line_length": 154, "avg_line_length": 34.79194630872483, "alnum_prop": 0.6458333333333334, "repo_name": "MarkGalloway/RIS", "id": "d70704607a9db2b023add291a1f4e3d870069415", "size": "5184", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/views/record_views.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "1197" }, { "name": "HTML", "bytes": "16817" }, { "name": "Python", "bytes": "47439" } ], "symlink_target": "" }
from typing import Optional from path import Path import cli_ui as ui import tsrc import tsrc.executor class RemoteSetter(tsrc.executor.Task[tsrc.Repo]): """ For each repository: * look for the remote configured in the manifest, * add any missing remote, * if a remote is found but with an incorrect URL, update its URL. """ def __init__(self, workspace_path: Path) -> None: self.workspace_path = workspace_path def on_start(self, *, num_items: int) -> None: ui.info_2("Configuring remotes") def on_failure(self, *, num_errors: int) -> None: ui.error("Failed to configure remotes") def display_item(self, repo: tsrc.Repo) -> str: return repo.dest def process(self, index: int, count: int, repo: tsrc.Repo) -> None: for remote in repo.remotes: existing_remote = self.get_remote(repo, remote.name) if existing_remote: if existing_remote.url != remote.url: self.set_remote(repo, remote) else: self.add_remote(repo, remote) def get_remote(self, repo: tsrc.Repo, name: str) -> Optional[tsrc.Remote]: full_path = self.workspace_path / repo.dest rc, url = tsrc.git.run_captured( full_path, "remote", "get-url", name, check=False ) if rc != 0: return None else: return tsrc.Remote(name=name, url=url) def set_remote(self, repo: tsrc.Repo, remote: tsrc.Remote) -> None: full_path = self.workspace_path / repo.dest # fmt: off ui.info_3(repo.dest + ":", "Update remote", ui.reset, ui.bold, remote.name, ui.reset, "to new url:", ui.brown, f"({remote.url})") # fmt: on tsrc.git.run(full_path, "remote", "set-url", remote.name, remote.url) def add_remote(self, repo: tsrc.Repo, remote: tsrc.Remote) -> None: full_path = self.workspace_path / repo.dest # fmt: off ui.info_3(repo.dest + ":", "Add remote", ui.bold, remote.name, ui.reset, ui.brown, f"({remote.url})") # fmt: on tsrc.git.run(full_path, "remote", "add", remote.name, remote.url)
{ "content_hash": "b9ea3ebd72d5266e93da81679c136beb", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 78, "avg_line_length": 34.21212121212121, "alnum_prop": 0.5739592559787422, "repo_name": "TankerApp/tsrc", "id": "99db37e4babc6ef0eb63763622c0f2e88e1c42ee", "size": "2258", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tsrc/workspace/remote_setter.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "108166" } ], "symlink_target": "" }
def sqrt(n): approx = n/2.0 better = (approx + n/approx)/2.0 while better != approx: approx = better better = (approx + n/approx)/2.0 return approx x = input("Enter x: ") print "Square Root: ", sqrt(x)
{ "content_hash": "5f0c4da3b9460abc4a4d23e33026ea91", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 40, "avg_line_length": 23.5, "alnum_prop": 0.5617021276595745, "repo_name": "yusufshakeel/Python-Project", "id": "8fe7d2af41b0405bb50be4204507a7753d6abc28", "size": "277", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "example/newtonSquareRoot.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "54750" } ], "symlink_target": "" }
import requests import re from hashlib import sha512 from webpageparser import WebPageParser, WebPageNode class WebPage: titles_seen = dict() descriptions_seen = dict() # hash for description: id of the first webpage regex_url = re.compile(r'(?:http[s]?:/|)/(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+') def __init__(self, url, depth=0, internal=True): """ Initialise an instance of WebPage """ self.id = None self.url = url self.depth = depth self.internal = internal self.noindex = False self.link_used_by = list() self.ressource_used_by = list() self.link_towards_ext = None # None => not analysed self.link_towards_int = None self.ressource_from = None self.has_brokenlinks = False self.has_brokenressources = False self.server_unreachable = False self.server_invalid_query = False self.status = 0 self.content_type = None self.content_length = None self.duplicated_title = False self.duplicated_description = False self.check_dict = None def get_url(self): return self.url def get_formatted_length(self): if not self.content_length: return "N.A." unit = 0 length = self.content_length while length >= 1024: unit += 1 length /= 1024. units = ["o", "ko", "Mo", "Go", "To"] if unit >= len(units): return "N.A." if unit == 0: return "%d%s" % (int(length), units[unit]) return "%d.%d%s" % (int(length), int((length*10.)%10), units[unit]) def add_link_used_by(self, from_wp): """ A scanned webpage has a link towards this page """ self.link_used_by.append(from_wp) def add_ressource_used_by(self, from_wp): """ A scanned webpage uses this webpage as a resource """ self.ressource_used_by.append(from_wp) def check_failures(func): def inner(*args, **kwargs): output = func(*args, **kwargs) self = args[0] print "depth=%d, url=%s [%s][%d]" % (self.depth, self.url, self.content_type, self.status) if self.status not in (200, 301, 302): for wp in self.link_used_by: wp.has_brokenlinks = True for wp in self.ressource_used_by: wp.has_brokenressources = True return output return inner def carryout_request(self, full_request, num_retry=0): """ Try to get the webpage content/header of self.url full_request : content ! full_request: header It will retry num_retry times before stopping. The maximum number of tries is num_retry +1 """ retry = 0 webpage = None while retry <= num_retry and not webpage: retry += 1 print "Try #%d: %s" % (retry, self.url) self.server_unreachable = False self.server_invalid_query = False try: if full_request: webpage = requests.get(self.url, timeout=10) else: webpage = requests.head(self.url, timeout=10) except requests.ConnectionError: self.server_unreachable = True wbepage = None except requests.exceptions.Timeout: self.server_unreachable = True webpage = None except requests.HTTPError: self.server_invalid_query = True webpage = False except requests.exceptions.TooManyRedirects: self.server_invalid_query = True return None except requests.exceptions.InvalidSchema: self.server_invalid_query = True return None if not webpage: return None # Status self.status = webpage.status_code # Content-type try: if webpage.headers['content-type']: m = re.search(r'[a-zA-Z\.0-9-]+/[a-zA-Z\.0-9-]+', webpage.headers['content-type']) if m: self.content_type = m.group(0) except KeyError: pass # Content-length # The best way to get the real value of content-length is to compute it from the data # The value returned by a server during head/get query for non-static files is not good (except on custom configurations of Apache) if full_request: self.content_length = len(webpage.text) else: try: self.content_length = int(webpage.headers['content-length']) except TypeError: pass except ValueError: pass except KeyError: pass return webpage def sourcecode_analysis(self, html_code, website, seocheckmanager, nofollow, noindex): """ Analyse the source code of the webpage in order to give relevant details concerning ways to improve the ranking of the website This analysis focus on: + Gathering data for SEOChecks + Adding probes in order to check the availability of ressources (images, favicons, iframes, applets, stylesheets or js scripts) + Adding probes to crawl pages that are directly linked to this one + Getting title and description to find possible duplicates beween different pages """ webpageparser = WebPageParser() webpageparser.feed(html_code) # SEOCheckManager self.check_dict = seocheckmanager.generate_webpage_check_dict(webpageparser) # Look for ressources nodes_ressources = webpageparser.find("script[src] , link[href] , img[src] , iframe[src] , object[data] , applet[code]") for node in nodes_ressources: try: node_tag = node.get_tag() node_attrs = node.get_attrs() if node_tag == "link": url = node_attrs["href"] elif node_tag == "object": url = node_attrs["data"] elif node_tag == "applet": url = node_attrs["code"] else: url = node_attrs["src"] m_url = WebPage.regex_url.match(url) if m_url: wp = website.retrieve_webpage(self, url, True) self.ressource_from.append(wp) if wp.status and wp.status not in (200, 301, 302): self.has_brokenressources = True except KeyError: pass # meta[name=robots] nofollow_global = False if nofollow: nodes = webpageparser.find("meta[name=robots][content*=nofollow]") if len(nodes) >= 1: nofollow_global = True # Look for other pages if not nofollow_global: nodes_a = webpageparser.find("a[href]") for node in nodes_a: try: node_attrs = node.get_attrs() url = node_attrs["href"] try: nofollow_local = "nofollow" in node_attrs["rel"] except KeyError: nofollow_local = False if nofollow and nofollow_local: continue m_url = WebPage.regex_url.match(url) if m_url: wp = website.retrieve_webpage(self, url) if wp.internal: self.link_towards_int.append(wp) else: self.link_towards_ext.append(wp) if wp.status and wp.status not in (200, 301, 302): self.has_brokenlinks = True except KeyError: pass # title / description nodes = webpageparser.find("head > meta[name=robots][content*=noindex]") if len(nodes) >= 1: self.noindex = True if noindex: return nodes = webpageparser.find("head > title") if len(nodes) >= 1: node = nodes[0] title = node.get_data() if title: title_digest = sha512(title.encode('utf-8')).digest() if title_digest in WebPage.titles_seen.keys(): self.duplicated_title = True WebPage.titles_seen[title_digest].duplicated_title = True else: WebPage.titles_seen[title_digest] = self nodes = webpageparser.find("head > meta[name=description][content]") if len(nodes) >= 1: node = nodes[0] description = node.get_attrs()["content"] if description: description_digest = sha512(description.encode('utf-8')).digest() if description_digest in WebPage.descriptions_seen.keys(): self.duplicated_description = True WebPage.descriptions_seen[description_digest].duplicated_description = True else: WebPage.descriptions_seen[description_digest] = self @check_failures def scan(self, website, seocheckmanager, noindex, nofollow, deep, num_retry): """ Scan the webpage looking for relationships with other pages """ self.link_towards_ext = list() self.link_towards_int = list() self.ressource_from = list() webpage_header = self.carryout_request(False, num_retry) if not webpage_header: return # Not a success # or external page if deep: if not self.content_type: # if content-type is not defined for deep analysis: full request pass elif self.status not in (200, 301, 302) or "text/html" not in self.content_type: return else: if self.status != 200 or not self.internal or not self.content_type or "text/html" not in self.content_type: return self.status = 0 self.content_length = None webpage_query = self.carryout_request(True, num_retry) if not webpage_query: return # Status can change when we run a get query # eg. 500 status can be caused by a programming error that cancels the generation of the page if self.status != 200: return # Stop there for external webpages and deep analysis if not self.internal: return self.sourcecode_analysis(webpage_query.text, website, seocheckmanager, nofollow, noindex) return def get_check_dict(self): return self.check_dict
{ "content_hash": "efadfabc50361529bfce76f9db6770d3", "timestamp": "", "source": "github", "line_count": 318, "max_line_length": 139, "avg_line_length": 35.57232704402516, "alnum_prop": 0.5236916548797736, "repo_name": "dubzzz/py-seo-helper", "id": "7c40b149f4758dd30a3258306f0140713904f02c", "size": "11312", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/webpage.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1102" }, { "name": "Python", "bytes": "58094" } ], "symlink_target": "" }
from app_util import default_logger from app_util import iso8601_to_fixed_ts class db_connector_template(): def __init__(self, **kwargs): """ kwargs should contain: logger, debug_level """ self.logger = kwargs.get("logger", default_logger) self.debug_level = kwargs.get("debug_level", 0) self.tz = kwargs.get("tz", "GMT") self.sql_create_table = kwargs.get("sql_create_table") self.sql_insert_table = kwargs.get("sql_insert_table") self.db_init(**kwargs) def db_init(self, **kwargs): ''' TEMPLATE should be overwritten. - initialize your database. - the return value should be: + False: something error. + True: succeeded. ''' return True def db_submit(self, **kwargs): ''' TEMPLATE should be overwritten. - submit the data into your database such as mongodb or sqlite3. - the return value should be: + None: ignore parsing. + False: something error. + True: succeeded. ''' return True def get_app_data(self, kv_data, **kwargs): """ if something error happenes, return False. """ app_data = kv_data.get("__app_data") if app_data is None: self.logger.error("the payload haven't been parsed.") return False app_data["ts"] = iso8601_to_fixed_ts(kv_data["Time"], self.tz) app_data["deveui"] = kv_data["DevEUI"] app_data["rssi"] = kv_data["LrrRSSI"] app_data["snr"] = kv_data["LrrSNR"] if self.debug_level > 0: self.logger.debug("app_data = {}".format(app_data)) return app_data
{ "content_hash": "ba190121bcf4f1663a55242c24ff658a", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 72, "avg_line_length": 33.61538461538461, "alnum_prop": 0.5560640732265446, "repo_name": "tanupoo/lorawan-ss-as", "id": "44879b884df5c188b8de70b28e228c3838d8ddb0", "size": "1748", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "db_connectors/db_connector_template.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "27001" }, { "name": "Shell", "bytes": "1362" } ], "symlink_target": "" }
from sympy.combinatorics.named_groups import SymmetricGroup, AlternatingGroup,\ CyclicGroup from sympy.combinatorics.testutil import _verify_bsgs, _cmp_perm_lists,\ _naive_list_centralizer, _verify_centralizer,\ _verify_normal_closure from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup from random import shuffle def test_cmp_perm_lists(): S = SymmetricGroup(4) els = list(S.generate_dimino()) other = els[:] shuffle(other) assert _cmp_perm_lists(els, other) == True def test_naive_list_centralizer(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) assert _naive_list_centralizer(S, S) == [Permutation([0, 1, 2])] assert PermutationGroup(_naive_list_centralizer(S, A)) == A def test_verify_bsgs(): S = SymmetricGroup(5) S.schreier_sims() base = S.base strong_gens = S.strong_gens gens = S.generators assert _verify_bsgs(S, base, strong_gens) == True assert _verify_bsgs(S, base[:-1], strong_gens) == False assert _verify_bsgs(S, base, S.generators) == False def test_verify_centralizer(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) triv = PermutationGroup([Permutation([0, 1, 2])]) assert _verify_centralizer(S, S, centr=triv) assert _verify_centralizer(S, A, centr=A) def test_verify_normal_closure(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) assert _verify_normal_closure(S, A, closure=A) S = SymmetricGroup(5) A = AlternatingGroup(5) C = CyclicGroup(5) assert _verify_normal_closure(S, A, closure=A) assert _verify_normal_closure(S, C, closure=A)
{ "content_hash": "6e2d2991cb27bd41e33089c71e6832e2", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 79, "avg_line_length": 33, "alnum_prop": 0.6905594405594405, "repo_name": "flacjacket/sympy", "id": "63a1a1bdb1acd11dc7b3403eb062bf7ade90422c", "size": "1716", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "sympy/combinatorics/tests/test_testutil.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "10293116" }, { "name": "Scheme", "bytes": "125" }, { "name": "XSLT", "bytes": "366202" } ], "symlink_target": "" }
"""Test the collector flows.""" import os from grr.client import vfs from grr.lib import action_mocks from grr.lib import aff4 from grr.lib import artifact from grr.lib import artifact_registry from grr.lib import artifact_test from grr.lib import flags from grr.lib import rdfvalue from grr.lib import test_lib from grr.lib import utils # pylint: disable=unused-import from grr.lib.flows.general import artifact_fallbacks from grr.lib.flows.general import collectors # pylint: enable=unused-import from grr.lib.flows.general import transfer from grr.test_data import client_fixture # pylint: mode=test class CollectorTest(artifact_test.ArtifactTest): pass class TestArtifactCollectors(CollectorTest): """Test the artifact collection mechanism with fake artifacts.""" def setUp(self): """Make sure things are initialized.""" super(TestArtifactCollectors, self).setUp() self.original_artifact_reg = artifact_registry.ArtifactRegistry.artifacts artifact_registry.ArtifactRegistry.ClearRegistry() self.LoadTestArtifacts() artifact_reg = artifact_registry.ArtifactRegistry.artifacts self.fakeartifact = artifact_reg["FakeArtifact"] self.fakeartifact2 = artifact_reg["FakeArtifact2"] self.output_count = 0 with aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") as fd: fd.Set(fd.Schema.SYSTEM("Linux")) kb = fd.Schema.KNOWLEDGE_BASE() artifact.SetCoreGRRKnowledgeBaseValues(kb, fd) fd.Set(kb) def tearDown(self): super(TestArtifactCollectors, self).tearDown() artifact_registry.ArtifactRegistry.artifacts = self.original_artifact_reg self.fakeartifact.sources = [] # Reset any ArtifactSources self.fakeartifact.conditions = [] # Reset any Conditions self.fakeartifact2.sources = [] # Reset any ArtifactSources self.fakeartifact2.conditions = [] # Reset any Conditions def testInterpolateArgs(self): collect_flow = collectors.ArtifactCollectorFlow(None, token=self.token) collect_flow.state.Register("knowledge_base", rdfvalue.KnowledgeBase()) collect_flow.current_artifact_name = "blah" collect_flow.state.knowledge_base.MergeOrAddUser( rdfvalue.KnowledgeBaseUser(username="test1")) collect_flow.state.knowledge_base.MergeOrAddUser( rdfvalue.KnowledgeBaseUser(username="test2")) test_rdf = rdfvalue.KnowledgeBase() action_args = {"usernames": ["%%users.username%%", "%%users.username%%"], "nointerp": "asdfsdf", "notastring": test_rdf} kwargs = collect_flow.InterpolateDict(action_args) self.assertItemsEqual(kwargs["usernames"], ["test1", "test2", "test1", "test2"]) self.assertEqual(kwargs["nointerp"], "asdfsdf") self.assertEqual(kwargs["notastring"], test_rdf) # We should be using an array since users.username will expand to multiple # values. self.assertRaises(ValueError, collect_flow.InterpolateDict, {"bad": "%%users.username%%"}) list_args = collect_flow.InterpolateList(["%%users.username%%", r"%%users.username%%\aa"]) self.assertItemsEqual(list_args, ["test1", "test2", r"test1\aa", r"test2\aa"]) list_args = collect_flow.InterpolateList(["one"]) self.assertEqual(list_args, ["one"]) def testGrepRegexCombination(self): collect_flow = collectors.ArtifactCollectorFlow(None, token=self.token) self.assertEqual(collect_flow._CombineRegex([r"simple"]), "simple") self.assertEqual(collect_flow._CombineRegex(["a", "b"]), "(a)|(b)") self.assertEqual(collect_flow._CombineRegex(["a", "b", "c"]), "(a)|(b)|(c)") self.assertEqual(collect_flow._CombineRegex(["a|b", "[^_]b", "c|d"]), "(a|b)|([^_]b)|(c|d)") def testGrep(self): class MockCallFlow(object): def CallFlow(self, *args, **kwargs): self.args = args self.kwargs = kwargs mock_call_flow = MockCallFlow() with utils.Stubber(collectors.ArtifactCollectorFlow, "CallFlow", mock_call_flow.CallFlow): collect_flow = collectors.ArtifactCollectorFlow(None, token=self.token) collect_flow.state.Register("knowledge_base", rdfvalue.KnowledgeBase()) collect_flow.current_artifact_name = "blah" collect_flow.state.knowledge_base.MergeOrAddUser( rdfvalue.KnowledgeBaseUser(username="test1")) collect_flow.state.knowledge_base.MergeOrAddUser( rdfvalue.KnowledgeBaseUser(username="test2")) collector = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.GREP, attributes={"paths": ["/etc/passwd"], "content_regex_list": [r"^a%%users.username%%b$"]}) collect_flow.Grep(collector, rdfvalue.PathSpec.PathType.TSK) conditions = mock_call_flow.kwargs["conditions"] self.assertEqual(len(conditions), 1) regexes = conditions[0].contents_regex_match.regex.SerializeToString() self.assertItemsEqual(regexes.split("|"), ["(^atest1b$)", "(^atest2b$)"]) self.assertEqual(mock_call_flow.kwargs["paths"], ["/etc/passwd"]) def testGetArtifact1(self): """Test we can get a basic artifact.""" client_mock = action_mocks.ActionMock("TransferBuffer", "StatFile", "Find", "FingerprintFile", "HashBuffer") client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Linux")) client.Flush() # Dynamically add a ArtifactSource specifying the base path. file_path = os.path.join(self.base_path, "test_img.dd") coll1 = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.FILE, attributes={"paths": [file_path]}) self.fakeartifact.sources.append(coll1) artifact_list = ["FakeArtifact"] for _ in test_lib.TestFlowHelper( "ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, use_tsk=False, token=self.token, client_id=self.client_id): pass # Test the AFF4 file that was created. fd1 = aff4.FACTORY.Open("%s/fs/os/%s" % (self.client_id, file_path), token=self.token) fd2 = open(file_path) fd2.seek(0, 2) self.assertEqual(fd2.tell(), int(fd1.Get(fd1.Schema.SIZE))) def testRunGrrClientActionArtifact(self): """Test we can get a GRR client artifact.""" client_mock = action_mocks.ActionMock("ListProcesses") client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Linux")) client.Flush() coll1 = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.GRR_CLIENT_ACTION, attributes={"client_action": r"ListProcesses"}) self.fakeartifact.sources.append(coll1) artifact_list = ["FakeArtifact"] for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, output="test_artifact"): pass # Test the AFF4 file that was created. fd = aff4.FACTORY.Open(rdfvalue.RDFURN(self.client_id).Add("test_artifact"), token=self.token) self.assertTrue(isinstance(list(fd)[0], rdfvalue.Process)) self.assertTrue(len(fd) > 5) def testRunGrrClientActionArtifactSplit(self): """Test that artifacts get split into separate collections.""" client_mock = action_mocks.ActionMock("ListProcesses", "StatFile") client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Linux")) client.Flush() coll1 = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.GRR_CLIENT_ACTION, attributes={"client_action": r"ListProcesses"}) self.fakeartifact.sources.append(coll1) self.fakeartifact2.sources.append(coll1) artifact_list = ["FakeArtifact", "FakeArtifact2"] for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, output="test_artifact", split_output_by_artifact=True): pass # Check that we got two separate collections based on artifact name fd = aff4.FACTORY.Open(rdfvalue.RDFURN( self.client_id).Add("test_artifact_FakeArtifact"), token=self.token) self.assertTrue(isinstance(list(fd)[0], rdfvalue.Process)) self.assertTrue(len(fd) > 5) fd = aff4.FACTORY.Open(rdfvalue.RDFURN( self.client_id).Add("test_artifact_FakeArtifact2"), token=self.token) self.assertTrue(len(fd) > 5) self.assertTrue(isinstance(list(fd)[0], rdfvalue.Process)) def testConditions(self): """Test we can get a GRR client artifact with conditions.""" # Run with false condition. client_mock = action_mocks.ActionMock("ListProcesses") coll1 = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.GRR_CLIENT_ACTION, attributes={"client_action": "ListProcesses"}, conditions=["os == 'Windows'"]) self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "AFF4Volume") # Now run with matching or condition. coll1.conditions = ["os == 'Linux' or os == 'Windows'"] self.fakeartifact.sources = [] self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "RDFValueCollection") # Now run with impossible or condition. coll1.conditions.append("os == 'NotTrue'") self.fakeartifact.sources = [] self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "AFF4Volume") def testSupportedOS(self): """Test supported_os inside the collector object.""" # Run with false condition. client_mock = action_mocks.ActionMock("ListProcesses") coll1 = rdfvalue.ArtifactSource( type=rdfvalue.ArtifactSource.SourceType.GRR_CLIENT_ACTION, attributes={"client_action": "ListProcesses"}, supported_os=["Windows"]) self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "AFF4Volume") # Now run with matching or condition. coll1.conditions = [] coll1.supported_os = ["Linux", "Windows"] self.fakeartifact.sources = [] self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "RDFValueCollection") # Now run with impossible or condition. coll1.conditions = ["os == 'Linux' or os == 'Windows'"] coll1.supported_os = ["NotTrue"] self.fakeartifact.sources = [] self.fakeartifact.sources.append(coll1) fd = self._RunClientActionArtifact(client_mock, ["FakeArtifact"]) self.assertEqual(fd.__class__.__name__, "AFF4Volume") def _RunClientActionArtifact(self, client_mock, artifact_list): client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Linux")) client.Flush() self.output_count += 1 output = "test_artifact_%d" % self.output_count for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, output=output): pass # Test the AFF4 file was not created, as flow should not have run due to # conditions. fd = aff4.FACTORY.Open(rdfvalue.RDFURN(self.client_id).Add(output), token=self.token) return fd class TestArtifactCollectorsInteractions(CollectorTest): """Test the collection of artifacts. This class loads both real and test artifacts to test the interaction of badly defined artifacts with real artifacts. """ def setUp(self): """Add test artifacts to existing registry.""" super(TestArtifactCollectorsInteractions, self).setUp() self.original_artifact_reg = artifact_registry.ArtifactRegistry.artifacts self.LoadTestArtifacts() def tearDown(self): super(TestArtifactCollectorsInteractions, self).tearDown() artifact_registry.ArtifactRegistry.artifacts = self.original_artifact_reg def testProcessCollectedArtifacts(self): """Test downloading files from artifacts.""" client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Windows")) client.Set(client.Schema.OS_VERSION("6.2")) client.Flush() vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.REGISTRY] = test_lib.FakeRegistryVFSHandler vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.OS] = test_lib.FakeFullVFSHandler client_mock = action_mocks.ActionMock("TransferBuffer", "StatFile", "Find", "HashBuffer", "FingerprintFile", "ListDirectory") # Get KB initialized for _ in test_lib.TestFlowHelper( "KnowledgeBaseInitializationFlow", client_mock, client_id=self.client_id, token=self.token): pass artifact_list = ["WindowsPersistenceMechanismFiles"] with test_lib.Instrument( transfer.MultiGetFile, "Start") as getfile_instrument: for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, output="analysis/{p}/{u}-{t}", split_output_by_artifact=True): pass # Check MultiGetFile got called for our runkey files # TODO(user): RunKeys for S-1-5-20 are not found because users.sid only # expands to users with profiles. pathspecs = getfile_instrument.args[0][0].args.pathspecs self.assertItemsEqual([x.path for x in pathspecs], [u"C:\\Windows\\TEMP\\A.exe"]) artifact_list = ["BadPathspecArtifact"] with test_lib.Instrument( transfer.MultiGetFile, "Start") as getfile_instrument: for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, output="analysis/{p}/{u}-{t}", split_output_by_artifact=True): pass self.assertFalse(getfile_instrument.args) class TestArtifactCollectorsRealArtifacts(CollectorTest): """Test the collection of real artifacts.""" def _CheckDriveAndRoot(self): client_mock = action_mocks.ActionMock("StatFile", "ListDirectory") for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=[ "SystemDriveEnvironmentVariable"], token=self.token, client_id=self.client_id, output="testsystemdrive"): pass fd = aff4.FACTORY.Open(rdfvalue.RDFURN( self.client_id).Add("testsystemdrive"), token=self.token) self.assertEqual(len(fd), 1) self.assertEqual(str(fd[0]), "C:") for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", client_mock, artifact_list=["SystemRoot"], token=self.token, client_id=self.client_id, output="testsystemroot"): pass fd = aff4.FACTORY.Open( rdfvalue.RDFURN(self.client_id).Add("testsystemroot"), token=self.token) self.assertEqual(len(fd), 1) # Filesystem gives WINDOWS, registry gives Windows self.assertTrue(str(fd[0]) in [r"C:\Windows", r"C:\WINDOWS"]) def testSystemDriveArtifact(self): client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Windows")) client.Set(client.Schema.OS_VERSION("6.2")) client.Flush() class BrokenClientMock(action_mocks.ActionMock): def StatFile(self, _): raise IOError def ListDirectory(self, _): raise IOError # No registry, broken filesystem, this should just raise. with self.assertRaises(RuntimeError): for _ in test_lib.TestFlowHelper("ArtifactCollectorFlow", BrokenClientMock(), artifact_list=[ "SystemDriveEnvironmentVariable"], token=self.token, client_id=self.client_id, output="testsystemdrive"): pass # No registry, so this should use the fallback flow vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.OS] = test_lib.ClientVFSHandlerFixture self._CheckDriveAndRoot() # Registry is present, so this should use the regular artifact collection vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.REGISTRY] = test_lib.FakeRegistryVFSHandler self._CheckDriveAndRoot() def testRunWMIComputerSystemProductArtifact(self): class WMIActionMock(action_mocks.ActionMock): def WmiQuery(self, _): return client_fixture.WMI_CMP_SYS_PRD client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Windows")) client.Set(client.Schema.OS_VERSION("6.2")) client.Flush() client_mock = WMIActionMock() for _ in test_lib.TestFlowHelper( "ArtifactCollectorFlow", client_mock, artifact_list=["WMIComputerSystemProduct"], token=self.token, client_id=self.client_id, dependencies=rdfvalue.ArtifactCollectorFlowArgs.Dependency.IGNORE_DEPS, store_results_in_aff4=True): pass client = aff4.FACTORY.Open(self.client_id, token=self.token,) hardware = client.Get(client.Schema.HARDWARE_INFO) self.assertTrue(isinstance(hardware, rdfvalue.HardwareInfo)) self.assertEqual(str(hardware.serial_number), "2RXYYZ1") self.assertEqual(str(hardware.system_manufacturer), "Dell Inc.") def testRunWMIArtifact(self): class WMIActionMock(action_mocks.ActionMock): def WmiQuery(self, _): return client_fixture.WMI_SAMPLE client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Windows")) client.Set(client.Schema.OS_VERSION("6.2")) client.Flush() client_mock = WMIActionMock() for _ in test_lib.TestFlowHelper( "ArtifactCollectorFlow", client_mock, artifact_list=["WMILogicalDisks"], token=self.token, client_id=self.client_id, dependencies=rdfvalue.ArtifactCollectorFlowArgs.Dependency.IGNORE_DEPS, store_results_in_aff4=True): pass # Test that we set the client VOLUMES attribute client = aff4.FACTORY.Open(self.client_id, token=self.token) volumes = client.Get(client.Schema.VOLUMES) self.assertEqual(len(volumes), 2) for result in volumes: self.assertTrue(isinstance(result, rdfvalue.Volume)) self.assertTrue(result.windows.drive_letter in ["Z:", "C:"]) if result.windows.drive_letter == "C:": self.assertAlmostEqual(result.FreeSpacePercent(), 76.142, delta=0.001) self.assertEqual(result.Name(), "C:") elif result.windows.drive_letter == "Z:": self.assertEqual(result.Name(), "homefileshare$") self.assertAlmostEqual(result.FreeSpacePercent(), 58.823, delta=0.001) def testRetrieveDependencies(self): """Test getting an artifact without a KB using retrieve_depdendencies.""" client = aff4.FACTORY.Open(self.client_id, token=self.token, mode="rw") client.Set(client.Schema.SYSTEM("Windows")) client.Set(client.Schema.OS_VERSION("6.2")) client.Flush() vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.REGISTRY] = test_lib.FakeRegistryVFSHandler vfs.VFS_HANDLERS[ rdfvalue.PathSpec.PathType.OS] = test_lib.FakeFullVFSHandler client_mock = action_mocks.ActionMock("TransferBuffer", "StatFile", "Find", "HashBuffer", "FingerprintFile", "ListDirectory") artifact_list = ["WinDirEnvironmentVariable"] for _ in test_lib.TestFlowHelper( "ArtifactCollectorFlow", client_mock, artifact_list=artifact_list, token=self.token, client_id=self.client_id, dependencies=rdfvalue.ArtifactCollectorFlowArgs.Dependency.FETCH_NOW, output="testRetrieveDependencies"): pass output = aff4.FACTORY.Open(self.client_id.Add("testRetrieveDependencies"), token=self.token) self.assertEqual(len(output), 1) self.assertEqual(output[0], r"C:\Windows") def main(argv): # Run the full test suite test_lib.GrrTestProgram(argv=argv) if __name__ == "__main__": flags.StartMain(main)
{ "content_hash": "90c3f8c43be3220d7ce2539cc2756b86", "timestamp": "", "source": "github", "line_count": 524, "max_line_length": 80, "avg_line_length": 41.54389312977099, "alnum_prop": 0.644218843309293, "repo_name": "ksmaheshkumar/grr", "id": "d382e36dba8eb528d60d2f55cd5a088e88a7520c", "size": "21791", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "lib/flows/general/collectors_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "227" }, { "name": "Batchfile", "bytes": "14993" }, { "name": "C", "bytes": "9062" }, { "name": "C++", "bytes": "55149" }, { "name": "CSS", "bytes": "12047" }, { "name": "Groff", "bytes": "444" }, { "name": "HTML", "bytes": "48624" }, { "name": "JavaScript", "bytes": "230351" }, { "name": "Makefile", "bytes": "5863" }, { "name": "Protocol Buffer", "bytes": "181723" }, { "name": "Python", "bytes": "4855590" }, { "name": "Ruby", "bytes": "4931" }, { "name": "Shell", "bytes": "45459" } ], "symlink_target": "" }
from Axon.Ipc import WaitComplete from Kamaelia.Apps.Europython09.BB.Exceptions import GotShutdownMessage from Kamaelia.Apps.Europython09.BB.RequestResponseComponent import RequestResponseComponent class Authenticator(RequestResponseComponent): users = {} State = {} def main(self): loggedin = False try: self.netPrint("") while not loggedin: self.send("login: ", "outbox") yield self.waitMsg() username = self.getMsg()[:-2] # strip \r\n self.send("password: ", "outbox") yield self.waitMsg() password= self.getMsg()[:-2] # strip \r\n self.netPrint("") if self.users.get(username.lower(), None) == password: self.netPrint("Login Successful") loggedin = True else: self.netPrint("Login Failed!") except GotShutdownMessage: self.send(self.recv("control"), "signal") if loggedin: self.State["remoteuser"] = username
{ "content_hash": "28a3cd910190ea3326a04002e81efaa1", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 91, "avg_line_length": 34.8125, "alnum_prop": 0.5529622980251346, "repo_name": "bbc/kamaelia", "id": "ee4c686d2ad1bcae1ab106ffe897e7096c22b268", "size": "1939", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "Sketches/MPS/BugReports/FixTests/Kamaelia/Kamaelia/Apps/Europython09/BB/Authenticator.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "ApacheConf", "bytes": "62985" }, { "name": "C", "bytes": "212854" }, { "name": "C++", "bytes": "327546" }, { "name": "CSS", "bytes": "114434" }, { "name": "ChucK", "bytes": "422" }, { "name": "Diff", "bytes": "483" }, { "name": "Gettext Catalog", "bytes": "3919909" }, { "name": "HTML", "bytes": "1288960" }, { "name": "Java", "bytes": "31832" }, { "name": "JavaScript", "bytes": "829491" }, { "name": "Makefile", "bytes": "5768" }, { "name": "NSIS", "bytes": "18867" }, { "name": "PHP", "bytes": "49059" }, { "name": "Perl", "bytes": "31234" }, { "name": "Processing", "bytes": "2885" }, { "name": "Pure Data", "bytes": "7485482" }, { "name": "Python", "bytes": "18896320" }, { "name": "Ruby", "bytes": "4165" }, { "name": "Shell", "bytes": "711244" } ], "symlink_target": "" }
from __future__ import unicode_literals, absolute_import from unittest import TestCase import time from datetime import datetime from py3utils import TimeUtils, DatetimeUtils class TestTimeUtils(TestCase): def test_get_current_timestamp(self): expected = time.time() actual = TimeUtils.get_current_timestamp() self.assertTrue(0 < expected - actual < 1) class TestDatetimeUtils(TestCase): def test_get_current_local_dt(self): expected = datetime.now() actual = DatetimeUtils.get_current_local_dt() self.assertTrue(expected.day == actual.day and expected.hour == actual.hour)
{ "content_hash": "1bf0ab91f2a60ecacf89db3a9b0ae668", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 84, "avg_line_length": 27.73913043478261, "alnum_prop": 0.713166144200627, "repo_name": "hezhiming/py3utils", "id": "4484389266e92a67b858687466ba2397dcf54215", "size": "741", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_time.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "18207" }, { "name": "Shell", "bytes": "858" } ], "symlink_target": "" }
"""Support for Wink hubs.""" from datetime import timedelta import json import logging import os import time import voluptuous as vol from homeassistant.components.http import HomeAssistantView from homeassistant.const import ( ATTR_BATTERY_LEVEL, ATTR_ENTITY_ID, ATTR_NAME, CONF_EMAIL, CONF_PASSWORD, EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STOP, STATE_OFF, STATE_ON, __version__) from homeassistant.core import callback from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.event import track_time_interval from homeassistant.util.json import load_json, save_json REQUIREMENTS = ['python-wink==1.10.3', 'pubnubsub-handler==1.0.3'] _LOGGER = logging.getLogger(__name__) DOMAIN = 'wink' SUBSCRIPTION_HANDLER = None CONF_CLIENT_ID = 'client_id' CONF_CLIENT_SECRET = 'client_secret' CONF_USER_AGENT = 'user_agent' CONF_OAUTH = 'oauth' CONF_LOCAL_CONTROL = 'local_control' CONF_MISSING_OAUTH_MSG = 'Missing oauth2 credentials.' ATTR_ACCESS_TOKEN = 'access_token' ATTR_REFRESH_TOKEN = 'refresh_token' ATTR_CLIENT_ID = 'client_id' ATTR_CLIENT_SECRET = 'client_secret' ATTR_PAIRING_MODE = 'pairing_mode' ATTR_KIDDE_RADIO_CODE = 'kidde_radio_code' ATTR_HUB_NAME = 'hub_name' WINK_AUTH_CALLBACK_PATH = '/auth/wink/callback' WINK_AUTH_START = '/auth/wink' WINK_CONFIG_FILE = '.wink.conf' USER_AGENT = "Manufacturer/Home-Assistant{} python/3 Wink/3".format( __version__) DEFAULT_CONFIG = { 'client_id': 'CLIENT_ID_HERE', 'client_secret': 'CLIENT_SECRET_HERE', } SERVICE_ADD_NEW_DEVICES = 'pull_newly_added_devices_from_wink' SERVICE_REFRESH_STATES = 'refresh_state_from_wink' SERVICE_RENAME_DEVICE = 'rename_wink_device' SERVICE_DELETE_DEVICE = 'delete_wink_device' SERVICE_SET_PAIRING_MODE = 'pair_new_device' SERVICE_SET_CHIME_VOLUME = "set_chime_volume" SERVICE_SET_SIREN_VOLUME = "set_siren_volume" SERVICE_ENABLE_CHIME = "enable_chime" SERVICE_SET_SIREN_TONE = "set_siren_tone" SERVICE_SET_AUTO_SHUTOFF = "siren_set_auto_shutoff" SERVICE_SIREN_STROBE_ENABLED = "set_siren_strobe_enabled" SERVICE_CHIME_STROBE_ENABLED = "set_chime_strobe_enabled" SERVICE_ENABLE_SIREN = "enable_siren" SERVICE_SET_DIAL_CONFIG = "set_nimbus_dial_configuration" SERVICE_SET_DIAL_STATE = "set_nimbus_dial_state" ATTR_VOLUME = "volume" ATTR_TONE = "tone" ATTR_ENABLED = "enabled" ATTR_AUTO_SHUTOFF = "auto_shutoff" ATTR_MIN_VALUE = "min_value" ATTR_MAX_VALUE = "max_value" ATTR_ROTATION = "rotation" ATTR_SCALE = "scale" ATTR_TICKS = "ticks" ATTR_MIN_POSITION = "min_position" ATTR_MAX_POSITION = "max_position" ATTR_VALUE = "value" ATTR_LABELS = "labels" SCALES = ["linear", "log"] ROTATIONS = ["cw", "ccw"] VOLUMES = ["low", "medium", "high"] TONES = ["doorbell", "fur_elise", "doorbell_extended", "alert", "william_tell", "rondo_alla_turca", "police_siren", "evacuation", "beep_beep", "beep"] CHIME_TONES = TONES + ["inactive"] AUTO_SHUTOFF_TIMES = [None, -1, 30, 60, 120] CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Inclusive(CONF_EMAIL, CONF_OAUTH, msg=CONF_MISSING_OAUTH_MSG): cv.string, vol.Inclusive(CONF_PASSWORD, CONF_OAUTH, msg=CONF_MISSING_OAUTH_MSG): cv.string, vol.Inclusive(CONF_CLIENT_ID, CONF_OAUTH, msg=CONF_MISSING_OAUTH_MSG): cv.string, vol.Inclusive(CONF_CLIENT_SECRET, CONF_OAUTH, msg=CONF_MISSING_OAUTH_MSG): cv.string, vol.Optional(CONF_LOCAL_CONTROL, default=False): cv.boolean }) }, extra=vol.ALLOW_EXTRA) RENAME_DEVICE_SCHEMA = vol.Schema({ vol.Required(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_NAME): cv.string, }, extra=vol.ALLOW_EXTRA) DELETE_DEVICE_SCHEMA = vol.Schema({ vol.Required(ATTR_ENTITY_ID): cv.entity_ids, }, extra=vol.ALLOW_EXTRA) SET_PAIRING_MODE_SCHEMA = vol.Schema({ vol.Required(ATTR_HUB_NAME): cv.string, vol.Required(ATTR_PAIRING_MODE): cv.string, vol.Optional(ATTR_KIDDE_RADIO_CODE): cv.string, }, extra=vol.ALLOW_EXTRA) SET_VOLUME_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_VOLUME): vol.In(VOLUMES), }) SET_SIREN_TONE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_TONE): vol.In(TONES), }) SET_CHIME_MODE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_TONE): vol.In(CHIME_TONES), }) SET_AUTO_SHUTOFF_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_AUTO_SHUTOFF): vol.In(AUTO_SHUTOFF_TIMES), }) SET_STROBE_ENABLED_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_ENABLED): cv.boolean, }) ENABLED_SIREN_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_ENABLED): cv.boolean }) DIAL_CONFIG_SCHEMA = vol.Schema({ vol.Required(ATTR_ENTITY_ID): cv.entity_ids, vol.Optional(ATTR_MIN_VALUE): vol.Coerce(int), vol.Optional(ATTR_MAX_VALUE): vol.Coerce(int), vol.Optional(ATTR_MIN_POSITION): cv.positive_int, vol.Optional(ATTR_MAX_POSITION): cv.positive_int, vol.Optional(ATTR_ROTATION): vol.In(ROTATIONS), vol.Optional(ATTR_SCALE): vol.In(SCALES), vol.Optional(ATTR_TICKS): cv.positive_int, }) DIAL_STATE_SCHEMA = vol.Schema({ vol.Required(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_VALUE): vol.Coerce(int), vol.Optional(ATTR_LABELS): cv.ensure_list(cv.string), }) WINK_COMPONENTS = [ 'binary_sensor', 'sensor', 'light', 'switch', 'lock', 'cover', 'climate', 'fan', 'alarm_control_panel', 'scene', 'water_heater' ] WINK_HUBS = [] def _request_app_setup(hass, config): """Assist user with configuring the Wink dev application.""" hass.data[DOMAIN]['configurator'] = True configurator = hass.components.configurator def wink_configuration_callback(callback_data): """Handle configuration updates.""" _config_path = hass.config.path(WINK_CONFIG_FILE) if not os.path.isfile(_config_path): setup(hass, config) return client_id = callback_data.get('client_id').strip() client_secret = callback_data.get('client_secret').strip() if None not in (client_id, client_secret): save_json(_config_path, {ATTR_CLIENT_ID: client_id, ATTR_CLIENT_SECRET: client_secret}) setup(hass, config) return error_msg = "Your input was invalid. Please try again." _configurator = hass.data[DOMAIN]['configuring'][DOMAIN] configurator.notify_errors(_configurator, error_msg) start_url = "{}{}".format(hass.config.api.base_url, WINK_AUTH_CALLBACK_PATH) description = """Please create a Wink developer app at https://developer.wink.com. Add a Redirect URI of {}. They will provide you a Client ID and secret after reviewing your request. (This can take several days). """.format(start_url) hass.data[DOMAIN]['configuring'][DOMAIN] = configurator.request_config( DOMAIN, wink_configuration_callback, description=description, submit_caption="submit", description_image="/static/images/config_wink.png", fields=[{'id': 'client_id', 'name': 'Client ID', 'type': 'string'}, {'id': 'client_secret', 'name': 'Client secret', 'type': 'string'}] ) def _request_oauth_completion(hass, config): """Request user complete Wink OAuth2 flow.""" hass.data[DOMAIN]['configurator'] = True configurator = hass.components.configurator if DOMAIN in hass.data[DOMAIN]['configuring']: configurator.notify_errors( hass.data[DOMAIN]['configuring'][DOMAIN], "Failed to register, please try again.") return def wink_configuration_callback(callback_data): """Call setup again.""" setup(hass, config) start_url = '{}{}'.format(hass.config.api.base_url, WINK_AUTH_START) description = "Please authorize Wink by visiting {}".format(start_url) hass.data[DOMAIN]['configuring'][DOMAIN] = configurator.request_config( DOMAIN, wink_configuration_callback, description=description) def setup(hass, config): """Set up the Wink component.""" import pywink from pubnubsubhandler import PubNubSubscriptionHandler if hass.data.get(DOMAIN) is None: hass.data[DOMAIN] = { 'unique_ids': [], 'entities': {}, 'oauth': {}, 'configuring': {}, 'pubnub': None, 'configurator': False } if config.get(DOMAIN) is not None: client_id = config[DOMAIN].get(ATTR_CLIENT_ID) client_secret = config[DOMAIN].get(ATTR_CLIENT_SECRET) email = config[DOMAIN].get(CONF_EMAIL) password = config[DOMAIN].get(CONF_PASSWORD) local_control = config[DOMAIN].get(CONF_LOCAL_CONTROL) else: client_id = None client_secret = None email = None password = None local_control = None hass.data[DOMAIN]['configurator'] = True if None not in [client_id, client_secret]: _LOGGER.info("Using legacy OAuth authentication") if not local_control: pywink.disable_local_control() hass.data[DOMAIN]["oauth"]["client_id"] = client_id hass.data[DOMAIN]["oauth"]["client_secret"] = client_secret hass.data[DOMAIN]["oauth"]["email"] = email hass.data[DOMAIN]["oauth"]["password"] = password pywink.legacy_set_wink_credentials(email, password, client_id, client_secret) else: _LOGGER.info("Using OAuth authentication") if not local_control: pywink.disable_local_control() config_path = hass.config.path(WINK_CONFIG_FILE) if os.path.isfile(config_path): config_file = load_json(config_path) if config_file == DEFAULT_CONFIG: _request_app_setup(hass, config) return True # else move on because the user modified the file else: save_json(config_path, DEFAULT_CONFIG) _request_app_setup(hass, config) return True if DOMAIN in hass.data[DOMAIN]['configuring']: _configurator = hass.data[DOMAIN]['configuring'] hass.components.configurator.request_done(_configurator.pop( DOMAIN)) # Using oauth access_token = config_file.get(ATTR_ACCESS_TOKEN) refresh_token = config_file.get(ATTR_REFRESH_TOKEN) # This will be called after authorizing Home-Assistant if None not in (access_token, refresh_token): pywink.set_wink_credentials(config_file.get(ATTR_CLIENT_ID), config_file.get(ATTR_CLIENT_SECRET), access_token=access_token, refresh_token=refresh_token) # This is called to create the redirect so the user can Authorize # Home . else: redirect_uri = '{}{}'.format( hass.config.api.base_url, WINK_AUTH_CALLBACK_PATH) wink_auth_start_url = pywink.get_authorization_url( config_file.get(ATTR_CLIENT_ID), redirect_uri) hass.http.register_redirect(WINK_AUTH_START, wink_auth_start_url) hass.http.register_view(WinkAuthCallbackView( config, config_file, pywink.request_token)) _request_oauth_completion(hass, config) return True pywink.set_user_agent(USER_AGENT) hass.data[DOMAIN]['pubnub'] = PubNubSubscriptionHandler( pywink.get_subscription_key()) def _subscribe(): hass.data[DOMAIN]['pubnub'].subscribe() # Call subscribe after the user sets up wink via the configurator # All other methods will complete setup before # EVENT_HOMEASSISTANT_START is called meaning they # will call subscribe via the method below. (start_subscription) if hass.data[DOMAIN]['configurator']: _subscribe() def keep_alive_call(event_time): """Call the Wink API endpoints to keep PubNub working.""" _LOGGER.info("Polling the Wink API to keep PubNub updates flowing") pywink.set_user_agent(str(int(time.time()))) _temp_response = pywink.get_user() _LOGGER.debug(str(json.dumps(_temp_response))) time.sleep(1) pywink.set_user_agent(USER_AGENT) _temp_response = pywink.wink_api_fetch() _LOGGER.debug("%s", _temp_response) _temp_response = pywink.post_session() _LOGGER.debug("%s", _temp_response) # Call the Wink API every hour to keep PubNub updates flowing track_time_interval(hass, keep_alive_call, timedelta(minutes=60)) def start_subscription(event): """Start the PubNub subscription.""" _subscribe() hass.bus.listen(EVENT_HOMEASSISTANT_START, start_subscription) def stop_subscription(event): """Stop the PubNub subscription.""" hass.data[DOMAIN]['pubnub'].unsubscribe() hass.data[DOMAIN]['pubnub'] = None hass.bus.listen(EVENT_HOMEASSISTANT_STOP, stop_subscription) def save_credentials(event): """Save currently set OAuth credentials.""" if hass.data[DOMAIN]["oauth"].get("email") is None: config_path = hass.config.path(WINK_CONFIG_FILE) _config = pywink.get_current_oauth_credentials() save_json(config_path, _config) hass.bus.listen(EVENT_HOMEASSISTANT_STOP, save_credentials) # Save the users potentially updated oauth credentials at a regular # interval to prevent them from being expired after a HA reboot. track_time_interval(hass, save_credentials, timedelta(minutes=60)) def force_update(call): """Force all devices to poll the Wink API.""" _LOGGER.info("Refreshing Wink states from API") for entity_list in hass.data[DOMAIN]['entities'].values(): # Throttle the calls to Wink API for entity in entity_list: time.sleep(1) entity.schedule_update_ha_state(True) hass.services.register(DOMAIN, SERVICE_REFRESH_STATES, force_update) def pull_new_devices(call): """Pull new devices added to users Wink account since startup.""" _LOGGER.info("Getting new devices from Wink API") for _component in WINK_COMPONENTS: discovery.load_platform(hass, _component, DOMAIN, {}, config) hass.services.register(DOMAIN, SERVICE_ADD_NEW_DEVICES, pull_new_devices) def set_pairing_mode(call): """Put the hub in provided pairing mode.""" hub_name = call.data.get('hub_name') pairing_mode = call.data.get('pairing_mode') kidde_code = call.data.get('kidde_radio_code') for hub in WINK_HUBS: if hub.name() == hub_name: hub.pair_new_device(pairing_mode, kidde_radio_code=kidde_code) def rename_device(call): """Set specified device's name.""" # This should only be called on one device at a time. found_device = None entity_id = call.data.get('entity_id')[0] all_devices = [] for list_of_devices in hass.data[DOMAIN]['entities'].values(): all_devices += list_of_devices for device in all_devices: if device.entity_id == entity_id: found_device = device if found_device is not None: name = call.data.get('name') found_device.wink.set_name(name) hass.services.register(DOMAIN, SERVICE_RENAME_DEVICE, rename_device, schema=RENAME_DEVICE_SCHEMA) def delete_device(call): """Delete specified device.""" # This should only be called on one device at a time. found_device = None entity_id = call.data.get('entity_id')[0] all_devices = [] for list_of_devices in hass.data[DOMAIN]['entities'].values(): all_devices += list_of_devices for device in all_devices: if device.entity_id == entity_id: found_device = device if found_device is not None: found_device.wink.remove_device() hass.services.register(DOMAIN, SERVICE_DELETE_DEVICE, delete_device, schema=DELETE_DEVICE_SCHEMA) hubs = pywink.get_hubs() for hub in hubs: if hub.device_manufacturer() == 'wink': WINK_HUBS.append(hub) if WINK_HUBS: hass.services.register( DOMAIN, SERVICE_SET_PAIRING_MODE, set_pairing_mode, schema=SET_PAIRING_MODE_SCHEMA) def nimbus_service_handle(service): """Handle nimbus services.""" entity_id = service.data.get('entity_id')[0] _all_dials = [] for sensor in hass.data[DOMAIN]['entities']['sensor']: if isinstance(sensor, WinkNimbusDialDevice): _all_dials.append(sensor) for _dial in _all_dials: if _dial.entity_id == entity_id: if service.service == SERVICE_SET_DIAL_CONFIG: _dial.set_configuration(**service.data) if service.service == SERVICE_SET_DIAL_STATE: _dial.wink.set_state(service.data.get("value"), service.data.get("labels")) def siren_service_handle(service): """Handle siren services.""" entity_ids = service.data.get('entity_id') all_sirens = [] for switch in hass.data[DOMAIN]['entities']['switch']: if isinstance(switch, WinkSirenDevice): all_sirens.append(switch) sirens_to_set = [] if entity_ids is None: sirens_to_set = all_sirens else: for siren in all_sirens: if siren.entity_id in entity_ids: sirens_to_set.append(siren) for siren in sirens_to_set: _man = siren.wink.device_manufacturer() if (service.service != SERVICE_SET_AUTO_SHUTOFF and service.service != SERVICE_ENABLE_SIREN and _man not in ('dome', 'wink')): _LOGGER.error("Service only valid for Dome or Wink sirens") return if service.service == SERVICE_ENABLE_SIREN: siren.wink.set_state(service.data.get(ATTR_ENABLED)) elif service.service == SERVICE_SET_AUTO_SHUTOFF: siren.wink.set_auto_shutoff( service.data.get(ATTR_AUTO_SHUTOFF)) elif service.service == SERVICE_SET_CHIME_VOLUME: siren.wink.set_chime_volume(service.data.get(ATTR_VOLUME)) elif service.service == SERVICE_SET_SIREN_VOLUME: siren.wink.set_siren_volume(service.data.get(ATTR_VOLUME)) elif service.service == SERVICE_SET_SIREN_TONE: siren.wink.set_siren_sound(service.data.get(ATTR_TONE)) elif service.service == SERVICE_ENABLE_CHIME: siren.wink.set_chime(service.data.get(ATTR_TONE)) elif service.service == SERVICE_SIREN_STROBE_ENABLED: siren.wink.set_siren_strobe_enabled( service.data.get(ATTR_ENABLED)) elif service.service == SERVICE_CHIME_STROBE_ENABLED: siren.wink.set_chime_strobe_enabled( service.data.get(ATTR_ENABLED)) # Load components for the devices in Wink that we support for wink_component in WINK_COMPONENTS: hass.data[DOMAIN]['entities'][wink_component] = [] discovery.load_platform(hass, wink_component, DOMAIN, {}, config) component = EntityComponent(_LOGGER, DOMAIN, hass) sirens = [] has_dome_or_wink_siren = False for siren in pywink.get_sirens(): _man = siren.device_manufacturer() if _man in ("dome", "wink"): has_dome_or_wink_siren = True _id = siren.object_id() + siren.name() if _id not in hass.data[DOMAIN]['unique_ids']: sirens.append(WinkSirenDevice(siren, hass)) if sirens: hass.services.register(DOMAIN, SERVICE_SET_AUTO_SHUTOFF, siren_service_handle, schema=SET_AUTO_SHUTOFF_SCHEMA) hass.services.register(DOMAIN, SERVICE_ENABLE_SIREN, siren_service_handle, schema=ENABLED_SIREN_SCHEMA) if has_dome_or_wink_siren: hass.services.register(DOMAIN, SERVICE_SET_SIREN_TONE, siren_service_handle, schema=SET_SIREN_TONE_SCHEMA) hass.services.register(DOMAIN, SERVICE_ENABLE_CHIME, siren_service_handle, schema=SET_CHIME_MODE_SCHEMA) hass.services.register(DOMAIN, SERVICE_SET_SIREN_VOLUME, siren_service_handle, schema=SET_VOLUME_SCHEMA) hass.services.register(DOMAIN, SERVICE_SET_CHIME_VOLUME, siren_service_handle, schema=SET_VOLUME_SCHEMA) hass.services.register(DOMAIN, SERVICE_SIREN_STROBE_ENABLED, siren_service_handle, schema=SET_STROBE_ENABLED_SCHEMA) hass.services.register(DOMAIN, SERVICE_CHIME_STROBE_ENABLED, siren_service_handle, schema=SET_STROBE_ENABLED_SCHEMA) component.add_entities(sirens) nimbi = [] dials = {} all_nimbi = pywink.get_cloud_clocks() all_dials = [] for nimbus in all_nimbi: if nimbus.object_type() == "cloud_clock": nimbi.append(nimbus) dials[nimbus.object_id()] = [] for nimbus in all_nimbi: if nimbus.object_type() == "dial": dials[nimbus.parent_id()].append(nimbus) for nimbus in nimbi: for dial in dials[nimbus.object_id()]: all_dials.append(WinkNimbusDialDevice(nimbus, dial, hass)) if nimbi: hass.services.register(DOMAIN, SERVICE_SET_DIAL_CONFIG, nimbus_service_handle, schema=DIAL_CONFIG_SCHEMA) hass.services.register(DOMAIN, SERVICE_SET_DIAL_STATE, nimbus_service_handle, schema=DIAL_STATE_SCHEMA) component.add_entities(all_dials) return True class WinkAuthCallbackView(HomeAssistantView): """Handle OAuth finish callback requests.""" url = '/auth/wink/callback' name = 'auth:wink:callback' requires_auth = False def __init__(self, config, config_file, request_token): """Initialize the OAuth callback view.""" self.config = config self.config_file = config_file self.request_token = request_token @callback def get(self, request): """Finish OAuth callback request.""" from aiohttp import web hass = request.app['hass'] data = request.query response_message = """Wink has been successfully authorized! You can close this window now! For the best results you should reboot HomeAssistant""" html_response = """<html><head><title>Wink Auth</title></head> <body><h1>{}</h1></body></html>""" if data.get('code') is not None: response = self.request_token( data.get('code'), self.config_file['client_secret']) config_contents = { ATTR_ACCESS_TOKEN: response['access_token'], ATTR_REFRESH_TOKEN: response['refresh_token'], ATTR_CLIENT_ID: self.config_file['client_id'], ATTR_CLIENT_SECRET: self.config_file['client_secret'] } save_json(hass.config.path(WINK_CONFIG_FILE), config_contents) hass.async_add_job(setup, hass, self.config) return web.Response(text=html_response.format(response_message), content_type='text/html') error_msg = "No code returned from Wink API" _LOGGER.error(error_msg) return web.Response(text=html_response.format(error_msg), content_type='text/html') class WinkDevice(Entity): """Representation a base Wink device.""" def __init__(self, wink, hass): """Initialize the Wink device.""" self.hass = hass self.wink = wink hass.data[DOMAIN]['pubnub'].add_subscription( self.wink.pubnub_channel, self._pubnub_update) hass.data[DOMAIN]['unique_ids'].append(self.wink.object_id() + self.wink.name()) def _pubnub_update(self, message): _LOGGER.debug(message) try: if message is None: _LOGGER.error("Error on pubnub update for %s " "polling API for current state", self.name) self.schedule_update_ha_state(True) else: self.wink.pubnub_update(message) self.schedule_update_ha_state() except (ValueError, KeyError, AttributeError): _LOGGER.error("Error in pubnub JSON for %s " "polling API for current state", self.name) self.schedule_update_ha_state(True) @property def name(self): """Return the name of the device.""" return self.wink.name() @property def unique_id(self): """Return the unique id of the Wink device.""" if hasattr(self.wink, 'capability') and \ self.wink.capability() is not None: return "{}_{}".format(self.wink.object_id(), self.wink.capability()) return self.wink.object_id() @property def available(self): """Return true if connection == True.""" return self.wink.available() def update(self): """Update state of the device.""" self.wink.update_state() @property def should_poll(self): """Only poll if we are not subscribed to pubnub.""" return self.wink.pubnub_channel is None @property def device_state_attributes(self): """Return the state attributes.""" attributes = {} battery = self._battery_level if battery: attributes[ATTR_BATTERY_LEVEL] = battery man_dev_model = self._manufacturer_device_model if man_dev_model: attributes["manufacturer_device_model"] = man_dev_model man_dev_id = self._manufacturer_device_id if man_dev_id: attributes["manufacturer_device_id"] = man_dev_id dev_man = self._device_manufacturer if dev_man: attributes["device_manufacturer"] = dev_man model_name = self._model_name if model_name: attributes["model_name"] = model_name tamper = self._tamper if tamper is not None: attributes["tamper_detected"] = tamper return attributes @property def _battery_level(self): """Return the battery level.""" if self.wink.battery_level() is not None: return self.wink.battery_level() * 100 @property def _manufacturer_device_model(self): """Return the manufacturer device model.""" return self.wink.manufacturer_device_model() @property def _manufacturer_device_id(self): """Return the manufacturer device id.""" return self.wink.manufacturer_device_id() @property def _device_manufacturer(self): """Return the device manufacturer.""" return self.wink.device_manufacturer() @property def _model_name(self): """Return the model name.""" return self.wink.model_name() @property def _tamper(self): """Return the devices tamper status.""" if hasattr(self.wink, 'tamper_detected'): return self.wink.tamper_detected() return None class WinkSirenDevice(WinkDevice): """Representation of a Wink siren device.""" async def async_added_to_hass(self): """Call when entity is added to hass.""" self.hass.data[DOMAIN]['entities']['switch'].append(self) @property def state(self): """Return sirens state.""" if self.wink.state(): return STATE_ON return STATE_OFF @property def icon(self): """Return the icon to use in the frontend, if any.""" return "mdi:bell-ring" @property def device_state_attributes(self): """Return the device state attributes.""" attributes = super(WinkSirenDevice, self).device_state_attributes auto_shutoff = self.wink.auto_shutoff() if auto_shutoff is not None: attributes["auto_shutoff"] = auto_shutoff siren_volume = self.wink.siren_volume() if siren_volume is not None: attributes["siren_volume"] = siren_volume chime_volume = self.wink.chime_volume() if chime_volume is not None: attributes["chime_volume"] = chime_volume strobe_enabled = self.wink.strobe_enabled() if strobe_enabled is not None: attributes["siren_strobe_enabled"] = strobe_enabled chime_strobe_enabled = self.wink.chime_strobe_enabled() if chime_strobe_enabled is not None: attributes["chime_strobe_enabled"] = chime_strobe_enabled siren_sound = self.wink.siren_sound() if siren_sound is not None: attributes["siren_sound"] = siren_sound chime_mode = self.wink.chime_mode() if chime_mode is not None: attributes["chime_mode"] = chime_mode return attributes class WinkNimbusDialDevice(WinkDevice): """Representation of the Quirky Nimbus device.""" def __init__(self, nimbus, dial, hass): """Initialize the Nimbus dial.""" super().__init__(dial, hass) self.parent = nimbus async def async_added_to_hass(self): """Call when entity is added to hass.""" self.hass.data[DOMAIN]['entities']['sensor'].append(self) @property def state(self): """Return dials current value.""" return self.wink.state() @property def name(self): """Return the name of the device.""" return self.parent.name() + " dial " + str(self.wink.index() + 1) @property def device_state_attributes(self): """Return the device state attributes.""" attributes = super(WinkNimbusDialDevice, self).device_state_attributes dial_attributes = self.dial_attributes() return {**attributes, **dial_attributes} def dial_attributes(self): """Return the dial only attributes.""" return { "labels": self.wink.labels(), "position": self.wink.position(), "rotation": self.wink.rotation(), "max_value": self.wink.max_value(), "min_value": self.wink.min_value(), "num_ticks": self.wink.ticks(), "scale_type": self.wink.scale(), "max_position": self.wink.max_position(), "min_position": self.wink.min_position() } def set_configuration(self, **kwargs): """ Set the dial config. Anything not sent will default to current setting. """ attributes = {**self.dial_attributes(), **kwargs} min_value = attributes["min_value"] max_value = attributes["max_value"] rotation = attributes["rotation"] ticks = attributes["num_ticks"] scale = attributes["scale_type"] min_position = attributes["min_position"] max_position = attributes["max_position"] self.wink.set_configuration(min_value, max_value, rotation, scale=scale, ticks=ticks, min_position=min_position, max_position=max_position)
{ "content_hash": "403621608c0761851187a0d380a15adf", "timestamp": "", "source": "github", "line_count": 886, "max_line_length": 78, "avg_line_length": 36.87020316027088, "alnum_prop": 0.6033918021244681, "repo_name": "HydrelioxGitHub/home-assistant", "id": "2b03d7711acbd6b60720e2712ac87da408322a39", "size": "32667", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "homeassistant/components/wink/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1175" }, { "name": "Dockerfile", "bytes": "1081" }, { "name": "Python", "bytes": "14330009" }, { "name": "Ruby", "bytes": "745" }, { "name": "Shell", "bytes": "17364" } ], "symlink_target": "" }
""" sphinx.util.i18n ~~~~~~~~~~~~~~~~ Builder superclass for all builders. :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import gettext from os import path from collections import namedtuple from babel.messages.pofile import read_po from babel.messages.mofile import write_mo from sphinx.util.osutil import walk from sphinx.util import SEP LocaleFileInfoBase = namedtuple('CatalogInfo', 'base_dir,domain') class CatalogInfo(LocaleFileInfoBase): @property def po_file(self): return self.domain + '.po' @property def mo_file(self): return self.domain + '.mo' @property def po_path(self): return path.join(self.base_dir, self.po_file) @property def mo_path(self): return path.join(self.base_dir, self.mo_file) def is_outdated(self): return ( not path.exists(self.mo_path) or path.getmtime(self.mo_path) < path.getmtime(self.po_path)) def write_mo(self, locale): with open(self.po_path, 'rt') as po: with open(self.mo_path, 'wb') as mo: write_mo(mo, read_po(po, locale)) def find_catalog(docname, compaction): if compaction: ret = docname.split(SEP, 1)[0] else: ret = docname return ret def find_catalog_files(docname, srcdir, locale_dirs, lang, compaction): if not(lang and locale_dirs): return [] domain = find_catalog(docname, compaction) files = [gettext.find(domain, path.join(srcdir, dir_), [lang]) for dir_ in locale_dirs] files = [path.relpath(f, srcdir) for f in files if f] return files def find_catalog_source_files(locale_dirs, locale, domains=None, gettext_compact=False, force_all=False): """ :param list locale_dirs: list of path as `['locale_dir1', 'locale_dir2', ...]` to find translation catalogs. Each path contains a structure such as `<locale>/LC_MESSAGES/domain.po`. :param str locale: a language as `'en'` :param list domains: list of domain names to get. If empty list or None is specified, get all domain names. default is None. :param boolean gettext_compact: * False: keep domains directory structure (default). * True: domains in the sub directory will be merged into 1 file. :param boolean force_all: Set True if you want to get all catalogs rather than updated catalogs. default is False. :return: [CatalogInfo(), ...] """ if not locale: return [] # locale is not specified catalogs = set() for locale_dir in locale_dirs: if not locale_dir: continue # skip system locale directory base_dir = path.join(locale_dir, locale, 'LC_MESSAGES') if not path.exists(base_dir): continue # locale path is not found for dirpath, dirnames, filenames in walk(base_dir, followlinks=True): filenames = [f for f in filenames if f.endswith('.po')] for filename in filenames: base = path.splitext(filename)[0] domain = path.relpath(path.join(dirpath, base), base_dir) if gettext_compact and path.sep in domain: domain = path.split(domain)[0] domain = domain.replace(path.sep, SEP) if domains and domain not in domains: continue cat = CatalogInfo(base_dir, domain) if force_all or cat.is_outdated(): catalogs.add(cat) return catalogs
{ "content_hash": "f828cc96fbbb387503f2bea7882af763", "timestamp": "", "source": "github", "line_count": 118, "max_line_length": 87, "avg_line_length": 30.97457627118644, "alnum_prop": 0.612859097127223, "repo_name": "ArcherSys/ArcherSys", "id": "efdc31828be89475fb256d98e9dabf0db0114006", "size": "3679", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "Lib/site-packages/sphinx/util/i18n.py", "mode": "33188", "license": "mit", "language": [], "symlink_target": "" }
from __future__ import print_function import logging import sys import time # THIRD PARTY from django.db import DataError from django.db.migrations.operations.base import Operation from google.appengine.api.datastore import Delete, Query, Get, Key, Put, RunInTransaction from google.appengine.api import datastore_errors from google.appengine.runtime import DeadlineExceededError # DJANGAE from djangae.db.backends.appengine.caching import remove_entities_from_cache_by_key from djangae.db.backends.appengine.commands import reserve_id from . import mapper_library from .constants import TASK_RECHECK_INTERVAL from .utils import do_with_retry, clone_entity TESTING = 'test' in sys.argv class DjangaeMigration(object): """ Base class to enable us to distinguish between Djangae migrations and Django migrations. """ pass class BaseEntityMapperOperation(Operation, DjangaeMigration): """ Base class for operations which map over Datastore Entities, rather than Django model instances. """ reversible = False reduces_to_sql = False def __init__(self, *args, **kwargs): self.uid = kwargs.pop("uid", "") self.shard_count = kwargs.pop("shard_count", None) self.entities_per_task = kwargs.pop("entities_per_task", None) self.queue = kwargs.pop("queue", None) self.skip_errors = kwargs.pop("skip_errors", False) super(BaseEntityMapperOperation, self).__init__(*args, **kwargs) def state_forwards(self, app_label, state): """ As all Djangae migrations are only supplements to the Django migrations, we don't need to do any altering of the model state. """ pass def _print(self, *objects): if not TESTING: print(*objects) def database_forwards(self, app_label, schema_editor, from_state, to_state): # Django's `migrate` command writes to stdout without a trailing line break, which means # that unless we print a blank line our first print statement is on the same line self._print("") # yay self.identifier = self._get_identifier(app_label, schema_editor, from_state, to_state) if self.uid: self.identifier = "{}.{}".format(self.uid, self.identifier) self._set_map_kind(app_label, schema_editor, from_state, to_state) self._pre_map_hook(app_label, schema_editor, from_state, to_state) self.namespace = schema_editor.connection.settings_dict.get("NAMESPACE") if mapper_library.mapper_exists(self.identifier, self.namespace): self._wait_until_task_finished() return self._print("Deferring migration operation task for %s" % self.identifier) self._start_task() def database_backwards(self, app_label, schema_editor, from_state, to_state): raise NotImplementedError("Erm...? Help?!") def _wait_until_task_finished(self): if mapper_library.is_mapper_finished(self.identifier, self.namespace): self._print("Task for migration operation '%s' already finished. Skipping." % self.identifier) return while mapper_library.is_mapper_running(self.identifier, self.namespace): self._print("Waiting for migration operation '%s' to complete." % self.identifier) time.sleep(TASK_RECHECK_INTERVAL) self._print("Migration operation '%s' completed!" % self.identifier) def _start_task(self): assert not mapper_library.is_mapper_running(self.identifier, self.namespace), "Migration started by separate thread?" query = Query(self.map_kind, namespace=self.namespace) return mapper_library.start_mapping( self.identifier, query, self, operation_method="_wrapped_map_entity", shard_count=self.shard_count, entities_per_task=self.entities_per_task, queue=self.queue ) def _wrapped_map_entity(self, entity): """ Wrapper for self._map_entity which removes the entity from Djangae's cache. """ # TODO: Note that other threads (from the general application running) could also be # modifying the entity, and that we're not using Djangae's transaction managers for our # stuff here. remove_entities_from_cache_by_key([entity.key()], self.namespace) try: do_with_retry(self._map_entity, entity) except DeadlineExceededError: # This is (probably) not an error with the individual entity, but more likey that the # task has tried to process too many entities. Either way, we always re-raise it so # that the mapper library can deal with it raise except Exception: if self.skip_errors: logging.exception( "Error processing operation %s for entity %s. Skipping.", self.identifier, entity.key() ) else: raise if entity.key(): # Assuming the entity hasn't been deleted and/or it's key been wiped... remove_entities_from_cache_by_key([entity.key()], self.namespace) ############################################################################################## # METHODS FOR SUBCLASSES TO IMPLEMENT ############################################################################################## def _pre_map_hook(self, app_label, schema_editor, from_state, to_state): """ A hook for subclasses to do anything that needs to be done before the mapping starts but which cannot be done in __init__ due to the need for the schema_editor/state/etc. """ pass def _get_identifier(self, app_label, schema_editor, from_state, to_state): """ Return an ID for self.identifier, which must be a string which uniquely identifies this operation across the entire site. It must be able to fit in a Datastore string property. This will likely need to use app_label combined with values passed to __init__. """ raise NotImplementedError( "Subclasses of EntityMapperOperation must implement _get_identifier" ) def _set_map_kind(self, app_label, schema_editor, from_state, to_state): """ Set an attribute 'map_kind' of the 'kind' of Datastore Entities to be mapped over. """ raise NotImplementedError( "Subclasses of EntityMapperOperation must implement _set_map_kind" ) def _map_entity(self, entity): """ Hook for subclasses to implement. This is called for every Entity and should do whatever data manipulation is necessary. Note that whatever you do to the entity must be done transactionally; this is not wrapped in a transaction. """ raise NotImplementedError("Subclasses of EntityMapperOperation must implement _map_entity") class AddFieldData(BaseEntityMapperOperation): def __init__(self, model_name, name, field, **kwargs): self.model_name = model_name self.name = name self.field = field super(AddFieldData, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s.%s:%s" % ( app_label, self.model_name, self.__class__.__name__, self.name ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _map_entity(self, entity): column_name = self.field.db_column or self.name # Call get_default() separately for each entity, in case it's a callable like timezone.now value = self.field.get_default() def txn(entity): entity = Get(entity.key()) entity[column_name] = value Put(entity) RunInTransaction(txn, entity) class RemoveFieldData(BaseEntityMapperOperation): def __init__(self, model_name, name, field, **kwargs): self.model_name = model_name self.name = name self.field = field super(RemoveFieldData, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s.%s:%s" % ( app_label, self.model_name, self.__class__.__name__, self.name ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _map_entity(self, entity): column_name = self.field.db_column or self.name def txn(entity): entity = Get(entity.key()) try: del entity[column_name] except KeyError: return Put(entity) RunInTransaction(txn, entity) class CopyFieldData(BaseEntityMapperOperation): def __init__(self, model_name, from_column_name, to_column_name, **kwargs): self.model_name = model_name self.from_column_name = from_column_name self.to_column_name = to_column_name super(CopyFieldData, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s.%s:%s.%s" % ( app_label, self.model_name, self.__class__.__name__, self.from_column_name, self.to_column_name ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _map_entity(self, entity): def txn(entity): entity = Get(entity.key()) try: entity[self.to_column_name] = entity[self.from_column_name] except KeyError: return Put(entity) RunInTransaction(txn, entity) class DeleteModelData(BaseEntityMapperOperation): def __init__(self, model_name, **kwargs): self.model_name = model_name super(DeleteModelData, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s:%s" % ( app_label, self.model_name, self.__class__.__name__ ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _map_entity(self, entity): try: Delete(entity.key()) except datastore_errors.EntityNotFoundError: return class CopyModelData(BaseEntityMapperOperation): """ Copies entities from one entity kind to another. """ def __init__( self, model_name, to_app_label, to_model_name, overwrite_existing=False, **kwargs ): self.model_name = model_name self.to_app_label = to_app_label self.to_model_name = to_model_name self.overwrite_existing = overwrite_existing super(CopyModelData, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s.%s:%s.%s" % ( app_label, self.model_name, self.__class__.__name__, self.to_app_label, self.to_model_name ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): """ We need to map over the entities that we're copying *from*. """ model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _pre_map_hook(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(self.to_app_label, self.to_model_name) self.to_kind = to_model._meta.db_table def _map_entity(self, entity): new_key = Key.from_path(self.to_kind, entity.key().id_or_name(), namespace=self.namespace) def txn(): try: existing = Get(new_key) except datastore_errors.EntityNotFoundError: existing = None if existing and not self.overwrite_existing: return if isinstance(entity.key().id_or_name(), (int, long)): reserve_id(self.to_kind, entity.key().id_or_name(), self.namespace) new_entity = clone_entity(entity, new_key) Put(new_entity) RunInTransaction(txn) class CopyModelDataToNamespace(BaseEntityMapperOperation): """ Copies entities from one Datastore namespace to another. """ def __init__( self, model_name, to_namespace, to_app_label=None, to_model_name=None, overwrite_existing=False, **kwargs ): self.model_name = model_name self.to_namespace = to_namespace self.to_app_label = to_app_label self.to_model_name = to_model_name self.overwrite_existing = overwrite_existing super(CopyModelDataToNamespace, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): to_app_label = self.to_app_label or app_label to_model_name = self.to_model_name or self.model_name identifier = "%s.%s.%s:%s.%s.%s" % ( app_label, self.model_name, self.__class__.__name__, self.to_namespace, to_app_label, to_model_name ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): """ We need to map over the entities that we're copying *from*. """ model = to_state.apps.get_model(app_label, self.model_name) self.map_kind = model._meta.db_table def _pre_map_hook(self, app_label, schema_editor, from_state, to_state): to_app_label = self.to_app_label or app_label to_model_name = self.to_model_name or self.model_name to_model = to_state.apps.get_model(to_app_label, to_model_name) self.to_kind = to_model._meta.db_table def _map_entity(self, entity): new_key = Key.from_path( self.to_kind, entity.key().id_or_name(), namespace=self.to_namespace ) parent = entity.parent() if parent: # If the entity has an ancestor then we need to make sure that that ancestor exists in # the new namespace as well new_parent_key = Key.from_path( parent.kind(), parent.is_or_name(), namespace=self.to_namespace ) new_parent_exists = Get([new_parent_key])[0] if not new_parent_exists: raise DataError( "Trying to copy entity with an ancestor (%r) to a new namespace but the " "ancestor does not exist in the new namespace. Copy the ancestors first." % entity.key() ) def txn(): existing = Get([new_key])[0] if existing and not self.overwrite_existing: return if isinstance(entity.key().id_or_name(), (int, long)): reserve_id(self.to_kind, entity.key().id_or_name(), self.to_namespace) new_entity = clone_entity(entity, new_key) Put(new_entity) RunInTransaction(txn) class MapFunctionOnEntities(BaseEntityMapperOperation): """ Operation for calling a custom function on each entity of a given model. """ def __init__(self, model_name, function, **kwargs): self.model_name = model_name self.function = function super(MapFunctionOnEntities, self).__init__(**kwargs) def _get_identifier(self, app_label, schema_editor, from_state, to_state): identifier = "%s.%s.%s:%s" % ( app_label, self.model_name, self.__class__.__name__, self.function.__name__ ) return identifier def _set_map_kind(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) kind = model._meta.db_table self.map_kind = kind def _map_entity(self, entity): self.function(entity)
{ "content_hash": "4a3543d3f6f0d304698eb6c9890c1636", "timestamp": "", "source": "github", "line_count": 419, "max_line_length": 125, "avg_line_length": 39.38424821002387, "alnum_prop": 0.6136225912010665, "repo_name": "grzes/djangae", "id": "7ee4e12198e361ca9efa8884b7260f2f67ce9954", "size": "16517", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djangae/db/migrations/operations.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "2305" }, { "name": "Python", "bytes": "1074740" }, { "name": "Shell", "bytes": "1052" } ], "symlink_target": "" }
from girc import message from girc.common import iterable class Handler(object): """A handler object manages a handler callback. It wraps the callback with additional metadata governing matches. It is normally registered to a client automatically at init time, or you can manually register it later with handler.register(client). You can set before and after kwargs with other handlers (or lists of handlers) to control the order in which handlers are executed. You can also set sync=True to specify that the client should not process the next message until this handler has finished. (In truth, sync=True is just a shortcut for before='sync'. after='sync' is also valid, though likely not useful.) To support its use as a decorator for methods of a class, it will bind to a class instance on __get__ just like a function object. In addition, if you do instance.handler.register(client), then any callbacks from that client will be associated with that instance. So for example, this will work how you expect: class Foo(object): @Handler(**match_args) def callback(self, client, msg): ... def __init__(self, client): self.callback.register(client) but so will this: @Handler(**match_args) def callback(client, msg): ... def set_client(client): callback.register(client) """ def __init__(self, client=None, callback=None, before=[], after=[], sync=False, **match_args): """Register a handler for client to call when a message matches. Match args are as per message.match() Callback should take args (client, message) and may return True to de-register itself. If callback object is already a Handler, the new init data is merged into the old handler. Callback may be omitted, in which case the first time Handler() is called it will act as a decorator, binding to the given argument. Client may be omitted, in which case the handler must later be bound to a client with handler.register(). """ self.match_list = [] # list of match_args dicts to match on self.client_binds = {} # maps {client: set(instances to bind and call)} self.before = set(before) if iterable(before) else [before] self.after = set(after) if iterable(after) else [after] if sync: self.before.add('sync') self.add_match(**match_args) self.set_callback(callback) if client: self.register(client) def __repr__(self): return "<{cls.__name__}({self.callback})>".format(cls=type(self), self=self) def add_match(self, **match_args): """Add a new set of match_args to the handler. Either this new set or the existing set matching will trigger the handler.""" self.match_list.append(match_args) def register(self, client, instance=None): """Register handler with a client. Optional arg instance is for internal use, and is used to implement the "call with callback bound to instance" functionality as described in the class docstring.""" self.client_binds.setdefault(client, set()).add(instance) client.message_handlers.add(self) client.logger.info("Registering handler {} with match args {}".format(self, self.match_list)) def unregister(self, client, instance=None): """Remove association of handler with client.""" # note: if instance given, we only want to disassociate that instance with that client, # unless it is the last bind for that client. if client not in self.client_binds: return self.client_binds[client].discard(instance) if not self.client_binds[client]: client.message_handlers.discard(self) del self.client_binds[client] @classmethod def find_handlers(cls, instance): """Returns a set of BoundHandlers for Handlers that are methods for given instance.""" result = set() for attr in dir(instance): value = getattr(instance, attr) if isinstance(value, BoundHandler): result.add(value) return result @classmethod def register_all(cls, client, instance): """Find methods of the given instance that are Handlers, and register them to client.""" for handler in cls.find_handlers(instance): handler.register(client) @classmethod def unregister_all(cls, client, instance): """As register_all(), unregisters any handlers for instance if registered""" for handler in cls.find_handlers(instance): handler.unregister(client) def unregister_for_client(self, client): """You probably don't want this. It removes all registrations with client, not just for one instance. It is mainly intended for a client to call when it is stopping.""" self.client_binds.pop(client, None) def set_callback(self, callback): self.callback = callback def __call__(self, *args, **kwargs): """If callback not set, set callback and return self (for decorator use). Else, call callback normally.""" if self.callback: return self.callback(*args, **kwargs) self.set_callback(*args, **kwargs) return self def __get__(self, instance, cls): if instance is None: return self return BoundHandler(self, instance) def _handle(self, client, msg, instance=None): """subclasses can hook here to customise how the callback is called without changing the behaviour of a naive __call__.""" return self(instance, client, msg) if instance else self(client, msg) def handle(self, client, msg): try: if not any(message.match(msg, **match_args) for match_args in self.match_list): return except message.InvalidMessage: client.logger.warning("Problem with message {} while matching handler {}".format(msg, self), exc_info=True) return if not self.callback: return client.logger.debug("Handling message {} with handler {}".format(msg, self)) for instance in self.client_binds.get(client, set()).copy(): try: ret = self._handle(client, msg, instance=instance) except Exception: client.logger.exception("Handler {} failed{}".format( self, (' for instance {}'.format(instance) if instance else ''))) else: if ret: self.unregister(client, instance) class BoundHandler(object): """A wrapper around a handler that applies the bound instance to certain operations.""" def __init__(self, handler, instance): self.handler = handler self.instance = instance def register(self, client): return self.handler.register(client, self.instance) def unregister(self, client): return self.handler.unregister(client, self.instance) def __call__(self, *args, **kwargs): if not self.handler.callback: raise ValueError("Cannot set callback from BoundHandler") return self.handler(self.instance, *args, **kwargs)
{ "content_hash": "2ed1da598cfac42c51ca8439d0f153b6", "timestamp": "", "source": "github", "line_count": 169, "max_line_length": 109, "avg_line_length": 38.86390532544379, "alnum_prop": 0.7193970767356882, "repo_name": "ekimekim/girc", "id": "f64ba9913d9f90f4debe2a3ae4e6510c1343234a", "size": "6569", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "girc/handler.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "78864" } ], "symlink_target": "" }
import pytest from web3.utils.abi import ( function_abi_to_4byte_selector, ) @pytest.fixture(autouse=True) def wait_for_first_block(web3, wait_for_block): wait_for_block(web3) @pytest.fixture() def math_contract(web3, MATH_ABI, MATH_CODE, MATH_RUNTIME, MATH_SOURCE, wait_for_transaction): MathContract = web3.eth.contract( abi=MATH_ABI, code=MATH_CODE, code_runtime=MATH_RUNTIME, source=MATH_SOURCE, ) deploy_txn = MathContract.deploy({'from': web3.eth.coinbase}) deploy_receipt = wait_for_transaction(web3, deploy_txn) assert deploy_receipt is not None contract_address = deploy_receipt['contractAddress'] web3.isAddress(contract_address) _math_contract = MathContract(address=contract_address) return _math_contract def test_contract_estimateGas(web3, math_contract): increment_abi = math_contract._find_matching_fn_abi('increment', []) call_data = function_abi_to_4byte_selector(increment_abi) gas_estimate = math_contract.estimateGas().increment() try: assert abs(gas_estimate - 21272) < 200 # Geth except AssertionError: assert abs(gas_estimate - 42820) < 200 # TestRPC pass
{ "content_hash": "42f29a9995cf02422e9c7475430d1058", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 72, "avg_line_length": 29.285714285714285, "alnum_prop": 0.6804878048780488, "repo_name": "shravan-shandilya/web3.py", "id": "365c26f139ddc0e5ac2968a64bacb813fe5b7ead", "size": "1230", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/contracts/test_contract_estimateGas.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "926" }, { "name": "Python", "bytes": "306962" } ], "symlink_target": "" }
from django.http import HttpResponse from django.views.decorators.cache import never_cache from prometheus_client import generate_latest, CONTENT_TYPE_LATEST @never_cache def metrics(request): """Exposes prometheus metrics""" return HttpResponse(generate_latest(), content_type=CONTENT_TYPE_LATEST)
{ "content_hash": "1642e954c81d9a70db0125c007d3b6b6", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 76, "avg_line_length": 31, "alnum_prop": 0.7935483870967742, "repo_name": "micktwomey/gamecraft-mk-iii", "id": "6d845bead79007d9272ad8979290c4b8b801b0c1", "size": "310", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gamecraft/django_prometheus_light/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "25876" }, { "name": "HTML", "bytes": "24346" }, { "name": "JavaScript", "bytes": "788538" }, { "name": "Makefile", "bytes": "1392" }, { "name": "Python", "bytes": "137898" }, { "name": "Shell", "bytes": "1271" } ], "symlink_target": "" }
from collections import defaultdict import iso8601 import arrow import logging from impactstoryanalytics.widgets.widget import Widget, get_raw_dataclip_data logger = logging.getLogger("impactstoryanalytics.widgets.hourly_new_users") class Hourly_new_users(Widget): new_accounts_query_url = "https://dataclips.heroku.com/hefcjkzcteluxosfhdvsofefjrjr.json" def get_data(self): number_of_datapoints = 72 datapoints = get_raw_dataclip_data(self.new_accounts_query_url)["values"][0:number_of_datapoints] pans = Widget.get_time_pan_list(number_of_datapoints, interval="hour") for datapoint in datapoints: (iso_time, new_accounts, total_accounts) = datapoint time = arrow.get(str(iso_time), 'YYYY-MM-DDTHH:mm:ss') pans.add_to_pan(time, "new_accounts", int(new_accounts)) return pans.replace_NAs_with_zeroes().as_list()
{ "content_hash": "8568567a2b6243c2848c2e80b9d3196e", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 105, "avg_line_length": 37.625, "alnum_prop": 0.70874861572536, "repo_name": "Impactstory/impactstory-analytics", "id": "af530a8459e4cac1eacb55614d2a58e268a2a4eb", "size": "903", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "impactstoryanalytics/widgets/hourly_new_users.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "25774" }, { "name": "HTML", "bytes": "16197" }, { "name": "JavaScript", "bytes": "414447" }, { "name": "Perl", "bytes": "60" }, { "name": "Python", "bytes": "103688" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function, unicode_literals __metaclass__ = type import pickle import tornado.httpserver import tornado.ioloop import tornado.web import tornado.websocket import base64 import threading from time import sleep from RealSense import Streamer SERVER_CLOSING = 'Server has shut down' LOG_PREFIX = 'SERVER:' PORT_NUMBER = 8888 class SentinelServer(tornado.websocket.WebSocketHandler): stream = None def initialize(self): self.realsense_stream = SentinelServer.stream def send_frame(self): frame = self.realsense_stream.next() encoded_frame = pickle.dumps(frame, 2) self.write_message(encoded_frame, binary = True) def on_pong(self, pong): self.log('Pong:', pong) def open(self): self.stream.set_nodelay(True) self.ping(b'ping') self.send_frame() def log(self, *args): print(LOG_PREFIX, *args) def on_message(self, message): self.log(pickle.loads(message)) self.send_frame() def on_close(self): self.log('Lost connection to client.') if __name__ == '__main__': with Streamer() as stream: try: SentinelServer.stream = stream application = tornado.web.Application([(r'/ws', SentinelServer),]) http_server = tornado.httpserver.HTTPServer(application) http_server.listen(PORT_NUMBER) tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt as interrupt: pass
{ "content_hash": "450e8439cd071d1ac52151a8f223c316", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 82, "avg_line_length": 26.083333333333332, "alnum_prop": 0.6466453674121406, "repo_name": "MST-MRR/DroneKit", "id": "6594b5868bc22d35459865a47e5d5a8722108e0d", "size": "1565", "binary": false, "copies": "1", "ref": "refs/heads/development", "path": "Vision/HTTPServer/server.py", "mode": "33188", "license": "mit", "language": [ { "name": "Arduino", "bytes": "4092" }, { "name": "C++", "bytes": "551725" }, { "name": "CSS", "bytes": "4784" }, { "name": "HTML", "bytes": "267862" }, { "name": "JavaScript", "bytes": "269634" }, { "name": "Makefile", "bytes": "5688" }, { "name": "Python", "bytes": "314086" } ], "symlink_target": "" }
""" Copyright 2012 Basho Technologies, Inc. This file is provided to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import string import re from cgi import parse_header from email import message_from_string from riak.util import decode_index_value from riak.client.index_page import CONTINUATION class RiakHttpStream(object): """ Base class for HTTP streaming iterators. """ BLOCK_SIZE = 2048 def __init__(self, response): self.response = response self.buffer = '' self.response_done = False def __iter__(self): return self def _read(self): chunk = self.response.read(self.BLOCK_SIZE) if chunk == '': self.response_done = True self.buffer += chunk def next(self): raise NotImplementedError def close(self): pass class RiakHttpJsonStream(RiakHttpStream): _json_field = None def next(self): while '}' not in self.buffer and not self.response_done: self._read() if '}' in self.buffer: idx = string.index(self.buffer, '}') + 1 chunk = self.buffer[:idx] self.buffer = self.buffer[idx:] field = json.loads(chunk)[self._json_field] return field else: raise StopIteration class RiakHttpKeyStream(RiakHttpJsonStream): """ Streaming iterator for list-keys over HTTP """ _json_field = u'keys' class RiakHttpBucketStream(RiakHttpJsonStream): """ Streaming iterator for list-buckets over HTTP """ _json_field = u'buckets' class RiakHttpMultipartStream(RiakHttpStream): """ Streaming iterator for multipart messages over HTTP """ def __init__(self, response): super(RiakHttpMultipartStream, self).__init__(response) ctypehdr = response.getheader('content-type') _, params = parse_header(ctypehdr) self.boundary_re = re.compile('\r?\n--%s(?:--)?\r?\n' % re.escape(params['boundary'])) self.next_boundary = None self.seen_first = False def next(self): # multipart/mixed starts with a boundary, then the first part. if not self.seen_first: self.read_until_boundary() self.advance_buffer() self.seen_first = True self.read_until_boundary() if self.next_boundary: part = self.advance_buffer() message = message_from_string(part) return message else: raise StopIteration def try_match(self): self.next_boundary = self.boundary_re.search(self.buffer) return self.next_boundary def advance_buffer(self): part = self.buffer[:self.next_boundary.start()] self.buffer = self.buffer[self.next_boundary.end():] self.next_boundary = None return part def read_until_boundary(self): while not self.try_match() and not self.response_done: self._read() class RiakHttpMapReduceStream(RiakHttpMultipartStream): """ Streaming iterator for MapReduce over HTTP """ def next(self): message = super(RiakHttpMapReduceStream, self).next() payload = json.loads(message.get_payload()) return payload['phase'], payload['data'] class RiakHttpIndexStream(RiakHttpMultipartStream): """ Streaming iterator for secondary indexes over HTTP """ def __init__(self, response, index, return_terms): super(RiakHttpIndexStream, self).__init__(response) self.index = index self.return_terms = return_terms def next(self): message = super(RiakHttpIndexStream, self).next() payload = json.loads(message.get_payload()) if u'keys' in payload: return payload[u'keys'] elif u'results' in payload: structs = payload[u'results'] # Format is {"results":[{"2ikey":"primarykey"}, ...]} return [self._decode_pair(d.items()[0]) for d in structs] elif u'continuation' in payload: return CONTINUATION(payload[u'continuation']) def _decode_pair(self, pair): return (decode_index_value(self.index, pair[0]), pair[1])
{ "content_hash": "6f4f329f6fc1a4f065fe5a49dd7d282f", "timestamp": "", "source": "github", "line_count": 165, "max_line_length": 70, "avg_line_length": 28.715151515151515, "alnum_prop": 0.6274799493457155, "repo_name": "Mitali-Sodhi/CodeLingo", "id": "e992bbecbe9ac7b835f783511f88e704438c71bf", "size": "4738", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Dataset/python/stream.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "9681846" }, { "name": "C#", "bytes": "1741915" }, { "name": "C++", "bytes": "5686017" }, { "name": "HTML", "bytes": "11812193" }, { "name": "Java", "bytes": "11198971" }, { "name": "JavaScript", "bytes": "21693468" }, { "name": "M", "bytes": "61627" }, { "name": "Objective-C", "bytes": "4085820" }, { "name": "Perl", "bytes": "193472" }, { "name": "Perl6", "bytes": "176248" }, { "name": "Python", "bytes": "10296284" }, { "name": "Ruby", "bytes": "1050136" } ], "symlink_target": "" }
from feedly.feeds.aggregated_feed.redis import RedisAggregatedFeed from feedly.tests.feeds.aggregated_feed.base import TestAggregatedFeed,\ implementation from feedly.activity import AggregatedActivity from feedly.tests.feeds.redis import CustomActivity class CustomAggregated(AggregatedActivity): pass class RedisCustomAggregatedFeed(RedisAggregatedFeed): activity_class = CustomActivity aggregated_activity_class = CustomAggregated class TestRedisAggregatedFeed(TestAggregatedFeed): feed_cls = RedisAggregatedFeed class TestRedisCustomAggregatedFeed(TestAggregatedFeed): feed_cls = RedisCustomAggregatedFeed activity_class = CustomActivity aggregated_activity_class = CustomAggregated @implementation def test_custom_activity(self): assert self.test_feed.count() == 0 self.feed_cls.insert_activity( self.activity ) self.test_feed.add(self.activity) assert self.test_feed.count() == 1 aggregated = self.test_feed[:10][0] assert type(aggregated) == self.aggregated_activity_class assert type(aggregated.activities[0]) == self.activity_class
{ "content_hash": "8230b70c0e5ac2de6ac39c6c1ecf177d", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 72, "avg_line_length": 32.388888888888886, "alnum_prop": 0.7487135506003431, "repo_name": "izhan/Stream-Framework", "id": "c0a2eac24114de1bd635a65745612a76ec3ba7ba", "size": "1166", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "feedly/tests/feeds/aggregated_feed/redis.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "86131" }, { "name": "Nginx", "bytes": "1796" }, { "name": "Pascal", "bytes": "1113" }, { "name": "Puppet", "bytes": "76558" }, { "name": "Python", "bytes": "542714" }, { "name": "Ruby", "bytes": "259164" }, { "name": "Shell", "bytes": "8427" } ], "symlink_target": "" }
from django.core.management.base import BaseCommand from inventory.models import Jar from pyment import settings from django.utils import timezone from datetime import timedelta class Command(BaseCommand): help = "Delete inactive jars more than %d days old" % settings.INACTIVE_JAR_AGE_DAYS def add_arguments(self, parser): parser.add_argument("--dry-run", action="store_true", dest="dryrun", default=False, help="Simulate the command") def handle(self, **options): self.stdout.write("Removing inactive jars\n") # calculate date of INACTIVE_JAR_AGE_DAYS days ago remove_before = timezone.now() + timedelta(days=-settings.INACTIVE_JAR_AGE_DAYS) old_jars = Jar.objects.filter(is_active=False, updated_at__lt=remove_before) if not options["dryrun"]: old_jars.delete() self.stdout.write("%d jars were removed\n" % len(old_jars))
{ "content_hash": "b9aa0e57191222a50399049505454560", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 120, "avg_line_length": 43.285714285714285, "alnum_prop": 0.7007700770077008, "repo_name": "mathuin/pyment", "id": "f33b11e4a30b108e1e39968b48db08951c485868", "size": "909", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "django/inventory/management/commands/delete_old_jars.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "7253" }, { "name": "CSS", "bytes": "3691" }, { "name": "Dockerfile", "bytes": "325" }, { "name": "HTML", "bytes": "17986" }, { "name": "JavaScript", "bytes": "1995" }, { "name": "Makefile", "bytes": "7418" }, { "name": "Python", "bytes": "239563" }, { "name": "Shell", "bytes": "4610" } ], "symlink_target": "" }
from pygw.base import GeoWaveObject from pygw.base.type_conversions import StringArrayType from .query_constraints_factory import QueryConstraintsFactory from .query_hint_key import QueryHintKey from .query_constraints import QueryConstraints from ..base.java_transformer import NoOpTransformer class BaseQueryBuilder(GeoWaveObject): """ A base class for building queries. This class should not be used directly. Instead, use one of the derived classes such as `pygw.query.vector.VectorQueryBuilder` or `pygw.query.vector.VectorAggregationQueryBuilder`. """ def __init__(self, java_ref, java_transformer=NoOpTransformer()): self._java_transformer = java_transformer super().__init__(java_ref) def constraints_factory(self): """ Creates a constraints factory for the type of query that is being built. Returns: An appropriate `pygw.query.QueryConstraintsFactory` for the query type. """ return QueryConstraintsFactory(self._java_ref.constraints_factory()) def all_indices(self): """ Configure the query to allow the use of all indices when getting data. This is the default. Returns: This query builder. """ self._java_ref.allIndices() return self def index_name(self, index_name): """ Configure the query to get data from a specific index. Args: index_name (str): The name of the index to get data from. Returns: This query builder. """ self._java_ref.indexName(index_name) return self def add_authorization(self, authorization): """ Configure the query to get data using the given authorization. Args: authorization (str): The authorization to use in the query. Returns: This query builder. """ self._java_ref.addAuthorization(authorization) return self def set_authorizations(self, authorizations): """ Configure the query to get data using the given set of authorizations. Args: authorizations (list of str): The authorizations to use in the query. Returns: This query builder. """ self._java_ref.setAuthorizations(StringArrayType().to_java(authorizations)) return self def no_authorizations(self): """ Configure the query to get data without using any authorizations. This is the default. Returns: This query builder. """ self._java_ref.noAuthorizations() return self def no_limit(self): """ Configure the query to get all results that match the query constraints. This is the default. Returns: This query builder. """ self._java_ref.noLimit() return self def limit(self, limit): """ Configure the query to only return a limited number of results. Args: limit (int): The maximum number of results to get. Returns: This query builder. """ self._java_ref.limit(limit) return self def add_hint(self, key, value): """ Adds a hint to the query. Available query hints are defined by the enumeration at `pygw.query.query_hint_key.QueryHintKey`. Args: key (pygw.query.query_hint_key.QueryHintKey): The key of the hint to set. value (any): The value to use for the hint. Returns: This query builder. """ assert isinstance(key, QueryHintKey) self._java_ref.addHint(QueryHintKey.get_key(key), value) return self def no_hints(self): """ Configure the query to use no query hints. This is the default. Returns: This query builder. """ self._java_ref.noHints() return self def constraints(self, constraints): """ Configure the query to be constrained by the given query constraints. Constraints can be constructed using the factory provided by the `pygw.query.query_builder.QueryBuilder.constraints_factory` method. Args: constraints (pygw.query.query_constraints.QueryConstraints): The constraints to use. Returns: This query builder. """ assert isinstance(constraints, QueryConstraints) self._java_ref.constraints(constraints._java_ref) return self def build(self): """ Builds the configured query. Raises: NotImplementedError: This should be overridden by derived query builders. Returns: The constructed query. """ raise NotImplementedError
{ "content_hash": "61d56f46319fa3277ba6edc4bdc74f04", "timestamp": "", "source": "github", "line_count": 159, "max_line_length": 120, "avg_line_length": 30.641509433962263, "alnum_prop": 0.6151477832512315, "repo_name": "ngageoint/geowave", "id": "cd634f733305987dfa7892d243fb4c8e02115844", "size": "5392", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/src/main/python/pygw/query/base_query_builder.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "5073" }, { "name": "CMake", "bytes": "2032" }, { "name": "FreeMarker", "bytes": "2879" }, { "name": "Gnuplot", "bytes": "57750" }, { "name": "Groovy", "bytes": "1323" }, { "name": "HTML", "bytes": "1903" }, { "name": "Java", "bytes": "7103026" }, { "name": "Protocol Buffer", "bytes": "1525" }, { "name": "Puppet", "bytes": "4039" }, { "name": "Scala", "bytes": "26507" }, { "name": "Scheme", "bytes": "20491" }, { "name": "Shell", "bytes": "68381" } ], "symlink_target": "" }
from unittest import mock import pytest from saleor.payment import PaymentError from saleor.payment.gateways.adyen.utils.apple_pay import ( initialize_apple_pay_session, validate_payment_data_for_apple_pay, ) @pytest.mark.parametrize( "validation_url,merchant_identifier,domain,display_name,certificate", [ ( "https://apple-pay-gateway.apple.com/paymentservices/startSession", "merchant.com.identifier", "saleor.com", None, "certifiate data", ), (None, "merchant.com.identifier", "saleor.com", "Saleor", "certifiate data"), ( "https://apple-pay-gateway.apple.com/paymentservices/startSession", None, "saleor.com", "Saleor", "certifiate data", ), ( "https://apple-pay-gateway.apple.com/paymentservices/startSession", "merchant.com.identifier", None, "Saleor", "certifiate data", ), ( "https://not-whitelisted-domain.com/paymentservices/startSession", "merchant.com.identifier", "saleor.com", "Saleor", "certifiate data", ), ( "https://apple-pay-gateway.apple.com/paymentservices/startSession", "merchant.com.identifier", "saleor.com", "Saleor", None, ), ], ) def test_validate_payment_data_for_apple_pay_raises_payment_error( validation_url, merchant_identifier, domain, display_name, certificate ): with pytest.raises(PaymentError): validate_payment_data_for_apple_pay( validation_url, merchant_identifier, domain, display_name, certificate ) def test_validate_payment_data_for_apple_pay(): validation_url = "https://apple-pay-gateway.apple.com/paymentservices/startSession" merchant_identifier = "merchant.com.identifier" domain = "saleor.com" display_name = "Saleor " certificate = "certifiate data" validate_payment_data_for_apple_pay( validation_url, merchant_identifier, domain, display_name, certificate ) @mock.patch("saleor.payment.gateways.adyen.utils.apple_pay.NamedTemporaryFile") @mock.patch("saleor.payment.gateways.adyen.utils.apple_pay.requests.post") def test_initialize_payment_for_apple_pay(mocked_request, mocked_tmp_file): mocked_cert_file_name = "cert-file-name" mocked_file = mock.MagicMock() mocked_file.__enter__.return_value = mocked_file mocked_file.name = mocked_cert_file_name mocked_tmp_file.return_value = mocked_file mocked_response = mock.Mock() mocked_response.ok = True mocked_response.json.return_value = { "epochTimestamp": 1604652056653, "expiresAt": 1604655656653, "merchantSessionIdentifier": "SSH5EFCB46BA25C4B14B3F37795A7F5B974_BB8E", } mocked_request.return_value = mocked_response validation_url = "https://apple-pay-gateway.apple.com/paymentservices/startSession" merchant_identifier = "merchant.com.identifier" domain = "saleor.com" display_name = "Saleor Shop" certificate = "certifiate data" initialize_apple_pay_session( validation_url, merchant_identifier, domain, display_name, certificate, ) expected_data = { "merchantIdentifier": merchant_identifier, "displayName": display_name, "initiative": "web", "initiativeContext": domain, } mocked_request.assert_called_with( validation_url, json=expected_data, cert=mocked_cert_file_name ) @mock.patch("saleor.payment.gateways.adyen.utils.apple_pay.requests.post") def test_initialize_payment_for_apple_pay_request_failed(mocked_request): mocked_response = mock.Mock() mocked_response.ok = False mocked_response.json.return_value = {} mocked_request.return_value = mocked_response validation_url = "https://apple-pay-gateway.apple.com/paymentservices/startSession" merchant_identifier = "merchant.com.identifier" domain = "saleor.com" display_name = "Saleor Shop" certificate = "certifiate data" with pytest.raises(PaymentError): initialize_apple_pay_session( validation_url, merchant_identifier, domain, display_name, certificate, )
{ "content_hash": "acd894595341b922b32f057a911827f4", "timestamp": "", "source": "github", "line_count": 139, "max_line_length": 87, "avg_line_length": 31.884892086330936, "alnum_prop": 0.6389891696750902, "repo_name": "mociepka/saleor", "id": "1f0c2ff0cc889d6897096a922ac1c2e8ee8a5a66", "size": "4432", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "saleor/payment/gateways/adyen/tests/utils/test_apple_pay.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Dockerfile", "bytes": "2228" }, { "name": "HTML", "bytes": "249248" }, { "name": "Procfile", "bytes": "290" }, { "name": "Python", "bytes": "12686831" }, { "name": "Shell", "bytes": "439" } ], "symlink_target": "" }
"""Tests for the CoinMarketCap sensor platform.""" import json import unittest from unittest.mock import patch import homeassistant.components.sensor as sensor from homeassistant.setup import setup_component from tests.common import ( get_test_home_assistant, load_fixture, assert_setup_component) VALID_CONFIG = { 'platform': 'coinmarketcap', 'currency': 'ethereum', 'display_currency': 'EUR', } class TestCoinMarketCapSensor(unittest.TestCase): """Test the CoinMarketCap sensor.""" def setUp(self): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.config = VALID_CONFIG def tearDown(self): """Stop everything that was started.""" self.hass.stop() @patch('coinmarketcap.Market.ticker', return_value=json.loads(load_fixture('coinmarketcap.json'))) def test_setup(self, mock_request): """Test the setup with custom settings.""" with assert_setup_component(1, sensor.DOMAIN): assert setup_component(self.hass, sensor.DOMAIN, { 'sensor': VALID_CONFIG}) state = self.hass.states.get('sensor.ethereum') assert state is not None assert state.state == '240.47' assert state.attributes.get('symbol') == 'ETH' assert state.attributes.get('unit_of_measurement') == 'EUR'
{ "content_hash": "354e19ff66b6e7bb9cde6255702e20c9", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 71, "avg_line_length": 31.59090909090909, "alnum_prop": 0.660431654676259, "repo_name": "stefan-jonasson/home-assistant", "id": "15c254bfb274aba88ff628f08ccf05e8cac9f9e6", "size": "1390", "binary": false, "copies": "8", "ref": "refs/heads/dev", "path": "tests/components/sensor/test_coinmarketcap.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "4056" }, { "name": "Python", "bytes": "8360711" }, { "name": "Ruby", "bytes": "517" }, { "name": "Shell", "bytes": "12658" } ], "symlink_target": "" }
''' Using Turtle Graphics to draw a blue polygon with customizable number and length of sides according to user's input. ''' import turtle sides = int(input("Number of sides: ")) distance = int(input("Side's length: ")) turtle.color('blue') # Set the pen's color to blue turtle.pendown() # Start drawing deg = 360 / sides # Calculate the turn for i in range(sides): turtle.forward(distance) # By using loop, turn and turtle.left(deg) # move the turtle forward turtle.hideturtle() # Hide the turtle/arrow turtle.exitonclick() # Close the window on click event
{ "content_hash": "23d16410eb7ab3a97c6b0157aa283363", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 73, "avg_line_length": 30.9, "alnum_prop": 0.6699029126213593, "repo_name": "laymonage/TarungLab", "id": "5bc187c28dface4b47f67c7239f157a58ae0f76a", "size": "618", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "lab/01/lab01_f.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "30286" } ], "symlink_target": "" }
'''Forced Choice App ===================== The main module that starts the experiment. ''' from functools import partial from os.path import join, dirname, isdir from cplcom.moa.app import ExperimentApp, run_app as run_cpl_app from kivy.properties import ObjectProperty from kivy.resources import resource_add_path from kivy.uix.behaviors.knspace import knspace from kivy.garden.filebrowser import FileBrowser from kivy.lang import Builder import forced_choice.graphics import forced_choice.stages __all__ = ('ForcedChoiceApp', 'run_app') class ForcedChoiceApp(ExperimentApp): '''The app which runs the experiment. ''' def __init__(self, **kwargs): super(ForcedChoiceApp, self).__init__(**kwargs) Builder.load_file(join(dirname(__file__), 'Experiment.kv')) def clean_up_root_stage(self): super(ForcedChoiceApp, self).clean_up_root_stage() knspace.gui_start_stop.state = 'normal' run_app = partial(run_cpl_app, ForcedChoiceApp) '''The function that starts the experiment GUI and the entry point for the main script. ''' if __name__ == '__main__': run_app()
{ "content_hash": "0738221a38ae9294684e5b8b0b1ac489", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 70, "avg_line_length": 26.666666666666668, "alnum_prop": 0.7026785714285714, "repo_name": "matham/forced_choice", "id": "0eba926f1a86c4b3be90088cfc926ddaf5f33f77", "size": "1120", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "forced_choice/main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "66053" } ], "symlink_target": "" }
""" Spatial kernels for dwarf galaxies. """ import sys import inspect from abc import abstractmethod from collections import OrderedDict as odict import copy import numpy as np import healpy as hp import scipy.integrate import scipy.interpolate import ugali.utils.projector from ugali.utils.projector import Projector, angsep from ugali.analysis.model import Model, Parameter from ugali.utils.healpix import ang2vec, ang2pix, query_disc, ang2disc from ugali.utils.logger import logger #ADW: WARNING some funky stuff may be happening at the origin (0,0) class Kernel(Model): """ Base class for kernels. """ _params = odict([ ('lon', Parameter(0.0, [0.0, 360. ])), ('lat', Parameter(0.0, [-90., 90. ])), ]) _mapping = odict([]) _proj = 'ait' def __init__(self, proj='ait', **kwargs): # This __init__ is probably not necessary... self.proj = proj super(Kernel,self).__init__(**kwargs) def __call__(self, lon, lat): """ Return the value of the pdf at a give location. Parameters ---------- lon : longitude (deg) lat : latitude (deg) Returns ------- pdf : normalized, truncated pdf """ return self.pdf(lon, lat) @abstractmethod def _kernel(self, r): """Unnormalized, untruncated kernel""" pass def _pdf(self, radius): """Unnormalized, truncated kernel""" return np.where(radius<=self.edge, self._kernel(radius), 0.) @abstractmethod def pdf(self, lon, lat): """Normalized, truncated pdf""" pass @property def norm(self): """Normalization from the integated pdf""" return 1./self.integrate() @property def projector(self): """Projector used to transform to local sky coordinates.""" if self.proj is None or self.proj.lower()=='none': return None else: return Projector(self.lon, self.lat, self.proj) def integrate(self, rmin=0, rmax=np.inf): """ Calculate the 2D integral of the 1D surface brightness profile (i.e, the flux) between rmin and rmax (elliptical radii). Parameters: ----------- rmin : minimum integration radius (deg) rmax : maximum integration radius (deg) Returns: -------- integral : Solid angle integral (deg^2) """ if rmin < 0: raise Exception('rmin must be >= 0') integrand = lambda r: self._pdf(r) * 2*np.pi * r return scipy.integrate.quad(integrand,rmin,rmax,full_output=True,epsabs=0)[0] class ToyKernel(Kernel): """ Simple toy kernel that selects healpix pixels within the given extension radius. Similar to 'RadialDisk'. """ _params = odict( list(Kernel._params.items()) + [ ('extension', Parameter(0.1, [0.0001,5.0]) ), ('nside', Parameter(4096,[4096,4096])), ]) def _cache(self, name=None): pixel_area = hp.nside2pixarea(self.nside,degrees=True) vec = ang2vec(self.lon, self.lat) #self.pix = query_disc(self.nside,vec,self.extension) self.pix = ang2disc(self.nside,self.lon,self.lat,self.extension,inclusive=True) self._norm = 1./(len(self.pix)*pixel_area) @property def norm(self): return self._norm def _pdf(self,pix): return np.in1d(pix,self.pix) def pdf(self,lon,lat): pix = ang2pix(self.nside,lon,lat) return self.norm * self._pdf(pix) class EllipticalKernel(Kernel): """ Base class for elliptical kernels. Ellipticity is defined as 1 - b/a where a,b are the semi-major,semi-minor axes respectively. The position angle is defined in degrees east of north. This definition follows from Martin et al. 2008: http://adsabs.harvard.edu/abs/2008ApJ...684.1075M ### This is a depricated warning (2015/08/12) ### ADW: WARNING!!! This is actually the PA *WEST* of North! ### to get the conventional PA EAST of North take 90-PA ### Documentation?!?! """ _params = odict( list(Kernel._params.items()) + [ # This is the semi-major axis ('extension', Parameter(0.1, [0.0001,0.5]) ), # This is e = 1 - b/a (0 for RadialKernel) ('ellipticity', Parameter(0.0, [0.0, 0.99]) ), # This is the PA *WEST* of North (0 for RadialKernel) # to get the conventional PA EAST of North take 90-PA # Would it be better to have bounds [-90,90]? ('position_angle',Parameter(0.0, [0.0, 180.0]) ), # ]) _mapping = odict([ ('e','ellipticity'), ('theta','position_angle'), ]) @property def norm(self): norm = super(EllipticalKernel,self).norm return norm * 1./self.jacobian @property def jacobian(self): return 1. - self.e @property def a(self): return self.extension @property def b(self): return self.a*self.jacobian @property def edge(self): return 5.*self.extension def angsep(self,lon,lat): return angsep(self.lon,self.lat,lon,lat) def radius(self,lon,lat): x,y = self.projector.sphereToImage(lon,lat) costh = np.cos(np.radians(self.theta)) sinth = np.sin(np.radians(self.theta)) return np.sqrt(((x*costh-y*sinth)/(1-self.e))**2 + (x*sinth+y*costh)**2) def pdf(self,lon,lat): radius = self.radius(lon,lat) return self.norm*self._pdf(radius) def sample_radius(self, n): """ Sample the radial distribution (deg) from the 2D stellar density. Output is elliptical radius in true projected coordinates. Parameters ---------- n : number of stars to sample Returns ------- radius : distance from centroid (deg) """ size = int(n) edge = self.edge if self.edge<20*self.extension else 20*self.extension radius = np.linspace(0, edge, int(10**5)) pdf = self._pdf(radius) * np.sin(np.radians(radius)) cdf = np.cumsum(pdf) cdf /= cdf[-1] fn = scipy.interpolate.interp1d(cdf, list(range(0, len(cdf)))) index = np.floor(fn(np.random.uniform(size=size))).astype(int) return radius[index] def sample_lonlat(self, n): """ Sample 2D distribution of points in lon, lat Parameters ---------- n : number of stars to sample Returns ------- lon,lat : longitude and latitude (deg) """ # From http://en.wikipedia.org/wiki/Ellipse#General_parametric_form # However, Martin et al. (2009) use PA theta "from North to East" # Definition of phi (position angle) is offset by pi/4 # Definition of t (eccentric anamoly) remains the same (x,y-frame usual) # In the end, everything is trouble because we use glon, glat... radius = self.sample_radius(n) a = radius; b = self.jacobian * radius t = 2. * np.pi * np.random.rand(n) cost,sint = np.cos(t),np.sin(t) phi = np.pi/2. - np.deg2rad(self.theta) cosphi,sinphi = np.cos(phi),np.sin(phi) x = a*cost*cosphi - b*sint*sinphi y = a*cost*sinphi + b*sint*cosphi if self.projector is None: logger.debug("Creating AITOFF projector for sampling") projector = Projector(self.lon,self.lat,'ait') else: projector = self.projector lon, lat = projector.imageToSphere(x, y) return lon, lat simulate = sample_lonlat sample = sample_lonlat # Back-compatibility def setExtension(self,extension): self.extension = extension def setCenter(self,lon,lat): self.lon = lon self.lat = lat class EllipticalDisk(EllipticalKernel): """ Simple uniform disk kernel for testing. f(r) = 1 for r <= r_0 f(r) = 0 for r > r_0 """ _params = EllipticalKernel._params _mapping = odict( list(EllipticalKernel._mapping.items()) + [ ('r_0','extension') ]) ### ADW: stellar mass conversion? def _kernel(self, radius): return np.where(radius<=self.r_0, 1.0, 0.0) @property def norm(self): return 1./(np.pi*self.r_0**2 * self.jacobian) class EllipticalGaussian(EllipticalKernel): """ Simple Gaussian kernel for testing: f(r) = C * exp(-r**2 / 2*sigma**2) """ _params = EllipticalKernel._params _mapping = odict( list(EllipticalKernel._mapping.items()) + [ ('sigma','extension') ]) ### ADW: stellar mass conversion? def _kernel(self, radius): return np.exp(-radius**2/(2*self.sigma**2)) @property def norm(self): # Analytic integral from 0 to edge return 1./(2*np.pi*self.sigma**2*(1-np.exp(-self.edge**2/(2*self.sigma**2)))*self.jacobian) class EllipticalExponential(EllipticalKernel): """ Stellar density distribution for Exponential profile: f(r) = C * exp(-r / r_e) where r_e = r_h/1.68 http://adsabs.harvard.edu//abs/2006MNRAS.365.1263M (Eq. 5) """ _params = odict(EllipticalKernel._params) _mapping = odict( list(EllipticalKernel._mapping.items()) + [ ('r_h','extension'), # Half-light radius ]) def _kernel(self,radius): return np.exp(-radius/self.r_e) @property def norm(self): # Analytic integral xedge = self.edge/self.r_e return 1./(2*np.pi*self.r_e**2*(1 - (xedge+1)*np.exp(-xedge))*self.jacobian) @property def r_e(self): # Exponential scale radius return self.r_h/1.68 @property def edge(self): return 20.*self.r_h class EllipticalPlummer(EllipticalKernel): """ Stellar density distribution for Plummer profile: f(r) = C * r_c**2 / (r_c**2 + r**2)**2 http://adsabs.harvard.edu//abs/2006MNRAS.365.1263M (Eq. 6) """ _params = odict( list(EllipticalKernel._params.items()) + [ ('truncate', Parameter(3.0, [0.0, np.inf]) ), # Truncation radius ]) _mapping = odict( list(EllipticalKernel._mapping.items()) + [ ('r_c','extension'), # Plummer radius ('r_h','extension'), # ADW: Depricated ('r_t','truncate'), # Tidal radius ]) def _kernel(self, radius): return 1./(np.pi*self.r_h**2 * (1.+(radius/self.r_h)**2)**2) def _cache(self, name=None): if name in [None,'extension','ellipticity','truncate']: self._norm = 1./self.integrate() * 1./self.jacobian else: return @property def norm(self): return self._norm @property def u_t(self): # Truncation factor return self.truncate/self.extension @property def edge(self): return self.r_t class EllipticalKing(EllipticalKernel): """ Stellar density distribution for King profile: f(r) = C * [ 1/sqrt(1 + (r/r_c)**2) - 1/sqrt(1 + (r_t/r_c)**2) ]**2 http://adsabs.harvard.edu//abs/2006MNRAS.365.1263M (Eq. 4) The half-light radius is related to the King radius for c = log10(r_t/r_c) = 0.7 : r_h = 1.185 * r_c http://adsabs.harvard.edu/abs/2010MNRAS.406.1220W (App.B) """ _params = odict( list(EllipticalKernel._params.items()) + [ ('truncate', Parameter(3.0, [0.0, np.inf]) ), # Truncation radius ]) _mapping = odict( list(EllipticalKernel._mapping.items()) + [ ('r_c','extension'), # Core radius ('r_t','truncate'), # Tidal radius ]) def _kernel(self, radius): return ((1./np.sqrt(1.+(radius/self.r_c)**2))-(1./np.sqrt(1.+(self.r_t/self.r_c)**2)))**2 def _cache(self, name=None): if name in [None,'extension','ellipticity','truncate']: self._norm = 1./self.integrate() else: return @property def norm(self): return self._norm @property def c(self): return np.log10(self.r_t/self.r_c) @property def edge(self): return self.r_t ##################################################### ### Radial Kernels ##################################################### class RadialKernel(EllipticalKernel): """ Radial kernel subclass fixing ellipticity and position angle to zero. """ _frozen_params = ['ellipticity','position_angle'] def __init__(self,**kwargs): # This is a bit messy because the defaults are set # at the instance level not at the class level self._params = copy.deepcopy(self._params) def frozen(x): if x: raise Exception("Parameter is frozen") self._params['ellipticity'].set(0, [0, 0], False) self._params['ellipticity'].set_free = frozen self._params['position_angle'].set(0, [0, 0], False) self._params['ellipticity'].set_free = frozen #logger.warning("Setting bounds on extension") #self._params['extension'].set(0.1, [1e-4, 0.1]) super(RadialKernel,self).__init__(**kwargs) def pdf(self, lon, lat): if self.projector is None: radius = angsep(self.lon,self.lat,lon,lat) return self.norm*self._pdf(radius) else: return super(RadialKernel,self).pdf(lon,lat) # Back-compatibility def surfaceIntensity(self,radius): return self.norm*self._pdf(radius) # For fast access... class RadialDisk(RadialKernel,EllipticalDisk): pass class RadialExponential(RadialKernel,EllipticalExponential): pass class RadialGaussian(RadialKernel,EllipticalGaussian): pass class RadialPlummer(RadialKernel,EllipticalPlummer): pass class RadialKing(RadialKernel,EllipticalKing): pass Disk = RadialDisk Gaussian = RadialGaussian Exponential = RadialExponential Plummer = RadialPlummer King = RadialKing ### def kernelFactory2(name, **kwargs): ### """ ### Factory for creating spatial kernels. Arguments ### are passed directly to the constructor of the chosen ### kernel. ### """ ### fn = lambda member: inspect.isclass(member) and member.__module__==__name__ ### kernels = odict(inspect.getmembers(sys.modules[__name__], fn)) ### ### if name not in kernels.keys(): ### msg = "%s not found in kernels:\n %s"%(name,kernels.keys()) ### logger.error(msg) ### msg = "Unrecognized kernel: %s"%name ### raise Exception(msg) ### ### return kernels[name](**kwargs) ### ### ### def kernelFactory(name, **kwargs): ### """ ### Factory for creating spatial kernels. Arguments ### are passed directly to the constructor of the chosen ### kernel. ### """ ### fn = lambda member: inspect.isclass(member) and member.__module__==__name__ ### kernels = odict(inspect.getmembers(sys.modules[__name__], fn)) ### ### if name not in kernels.keys(): ### msg = "%s not found in kernels:\n %s"%(name,kernels.keys()) ### logger.error(msg) ### msg = "Unrecognized kernel: %s"%name ### raise Exception(msg) ### ### return kernels[name](**kwargs) #ADW: Should change 'name' to 'type' (but lots of legacy to deal with) def factory(name, **kwargs): from ugali.utils.factory import factory return factory(name, module=__name__, **kwargs) kernelFactory = factory if __name__ == "__main__": import argparse description = "python script" parser = argparse.ArgumentParser(description=description) parser.add_argument('args',nargs=argparse.REMAINDER) opts = parser.parse_args(); args = opts.args
{ "content_hash": "4be528678ca85ee550d1f73e1c7456f2", "timestamp": "", "source": "github", "line_count": 524, "max_line_length": 99, "avg_line_length": 30.599236641221374, "alnum_prop": 0.5743420232006985, "repo_name": "DarkEnergySurvey/ugali", "id": "02f8f094a9c644bec386146a54708833ba338d76", "size": "16056", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "ugali/analysis/kernel.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "355304" }, { "name": "Python", "bytes": "949638" } ], "symlink_target": "" }
"""Celko's "Nested Sets" Tree Structure. http://www.intelligententerprise.com/001020/celko.jhtml """ from sqlalchemy import case from sqlalchemy import Column from sqlalchemy import create_engine from sqlalchemy import event from sqlalchemy import func from sqlalchemy import Integer from sqlalchemy import select from sqlalchemy import String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import aliased from sqlalchemy.orm import Session Base = declarative_base() class Employee(Base): __tablename__ = "personnel" __mapper_args__ = { "batch": False # allows extension to fire for each # instance before going to the next. } parent = None emp = Column(String, primary_key=True) left = Column("lft", Integer, nullable=False) right = Column("rgt", Integer, nullable=False) def __repr__(self): return "Employee(%s, %d, %d)" % (self.emp, self.left, self.right) @event.listens_for(Employee, "before_insert") def before_insert(mapper, connection, instance): if not instance.parent: instance.left = 1 instance.right = 2 else: personnel = mapper.mapped_table right_most_sibling = connection.scalar( select([personnel.c.rgt]).where( personnel.c.emp == instance.parent.emp ) ) connection.execute( personnel.update(personnel.c.rgt >= right_most_sibling).values( lft=case( [ ( personnel.c.lft > right_most_sibling, personnel.c.lft + 2, ) ], else_=personnel.c.lft, ), rgt=case( [ ( personnel.c.rgt >= right_most_sibling, personnel.c.rgt + 2, ) ], else_=personnel.c.rgt, ), ) ) instance.left = right_most_sibling instance.right = right_most_sibling + 1 # before_update() would be needed to support moving of nodes # after_delete() would be needed to support removal of nodes. engine = create_engine("sqlite://", echo=True) Base.metadata.create_all(engine) session = Session(bind=engine) albert = Employee(emp="Albert") bert = Employee(emp="Bert") chuck = Employee(emp="Chuck") donna = Employee(emp="Donna") eddie = Employee(emp="Eddie") fred = Employee(emp="Fred") bert.parent = albert chuck.parent = albert donna.parent = chuck eddie.parent = chuck fred.parent = chuck # the order of "add" is important here. elements must be added in # the order in which they should be INSERTed. session.add_all([albert, bert, chuck, donna, eddie, fred]) session.commit() print(session.query(Employee).all()) # 1. Find an employee and all their supervisors, no matter how deep the tree. ealias = aliased(Employee) print( session.query(Employee) .filter(ealias.left.between(Employee.left, Employee.right)) .filter(ealias.emp == "Eddie") .all() ) # 2. Find the employee and all their subordinates. # (This query has a nice symmetry with the first query.) print( session.query(Employee) .filter(Employee.left.between(ealias.left, ealias.right)) .filter(ealias.emp == "Chuck") .all() ) # 3. Find the level of each node, so you can print the tree # as an indented listing. for indentation, employee in ( session.query(func.count(Employee.emp).label("indentation") - 1, ealias) .filter(ealias.left.between(Employee.left, Employee.right)) .group_by(ealias.emp) .order_by(ealias.left) ): print(" " * indentation + str(employee))
{ "content_hash": "ddc07ce345f9e91330af998d9c07efd6", "timestamp": "", "source": "github", "line_count": 135, "max_line_length": 77, "avg_line_length": 28.2, "alnum_prop": 0.6109797741003414, "repo_name": "wujuguang/sqlalchemy", "id": "ba45231ceeb8ba255ec3eda0bbde77801dd31ced", "size": "3807", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "examples/nested_sets/nested_sets.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "45930" }, { "name": "Python", "bytes": "11287383" } ], "symlink_target": "" }
"""Set up script for mod_pywebsocket. """ from distutils.core import setup, Extension import sys _PACKAGE_NAME = 'mod_pywebsocket' # Build and use a C++ extension for faster masking. SWIG is required. _USE_FAST_MASKING = False if sys.version < '2.3': print >> sys.stderr, '%s requires Python 2.3 or later.' % _PACKAGE_NAME sys.exit(1) if _USE_FAST_MASKING: setup(ext_modules=[ Extension( 'mod_pywebsocket/_fast_masking', ['mod_pywebsocket/fast_masking.i'], swig_opts=['-c++'])]) setup(author='Yuzo Fujishima', author_email='[email protected]', description='WebSocket extension for Apache HTTP Server.', long_description=( 'mod_pywebsocket is an Apache HTTP Server extension for ' 'the WebSocket Protocol (RFC 6455). ' 'See mod_pywebsocket/__init__.py for more detail.'), license='See LICENSE', name=_PACKAGE_NAME, packages=[_PACKAGE_NAME, _PACKAGE_NAME + '.handshake'], url='http://code.google.com/p/pywebsocket/', # See the source of distutils.version, distutils.versionpredicate and # distutils.dist to understand how to name version numbers. version='0.7.9', ) # vi:sts=4 sw=4 et
{ "content_hash": "455b8c5e0ab226083ced1e0a1e9d0182", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 75, "avg_line_length": 31.166666666666668, "alnum_prop": 0.6058059587471352, "repo_name": "Teamxrtc/webrtc-streaming-node", "id": "935d6b105899ca1348d7d6d68bbe2bd49e85d118", "size": "2863", "binary": false, "copies": "34", "ref": "refs/heads/master", "path": "third_party/webrtc/src/chromium/src/third_party/pywebsocket/src/setup.py", "mode": "33261", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "44" }, { "name": "C++", "bytes": "221840" }, { "name": "HTML", "bytes": "2383" }, { "name": "JavaScript", "bytes": "37396" }, { "name": "Python", "bytes": "2860" }, { "name": "Shell", "bytes": "104" } ], "symlink_target": "" }
from multiverse.mars import * from multiverse.mars.objects import * from multiverse.mars.core import * from multiverse.mars.util import * from multiverse.server.math import * from multiverse.server.events import * from multiverse.server.objects import * from multiverse.server.engine import * World.setTheme("mvfantasy.toc")
{ "content_hash": "53e0ddeeded0d480ebd4ccdec87e6eed", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 39, "avg_line_length": 32.6, "alnum_prop": 0.8067484662576687, "repo_name": "longde123/MultiversePlatform", "id": "ff546aa6ea5c34d27d4660973875cfce54c8acf9", "size": "1544", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "server/config/mv_fantasy/global_props.py", "mode": "33188", "license": "mit", "language": [ { "name": "Awk", "bytes": "1148" }, { "name": "Batchfile", "bytes": "56002" }, { "name": "C", "bytes": "2958956" }, { "name": "C#", "bytes": "11292123" }, { "name": "C++", "bytes": "428039" }, { "name": "CSS", "bytes": "107446" }, { "name": "Groff", "bytes": "3653" }, { "name": "HTML", "bytes": "767415" }, { "name": "Inno Setup", "bytes": "2093" }, { "name": "Java", "bytes": "4444010" }, { "name": "JavaScript", "bytes": "115349" }, { "name": "Makefile", "bytes": "35639" }, { "name": "Matlab", "bytes": "2076" }, { "name": "Objective-C", "bytes": "44581" }, { "name": "Perl", "bytes": "6299" }, { "name": "Python", "bytes": "4648545" }, { "name": "Scheme", "bytes": "48864" }, { "name": "Shell", "bytes": "880494" }, { "name": "XSLT", "bytes": "1834" } ], "symlink_target": "" }
from u2flib_server.attestation.resolvers import create_resolver from u2flib_server.attestation.metadata import MetadataProvider, Attestation __all__ = ['create_resolver', 'MetadataProvider', 'Attestation']
{ "content_hash": "f5fb3833923a56b3be826e65eb2c8254", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 76, "avg_line_length": 51.75, "alnum_prop": 0.8115942028985508, "repo_name": "reqa/pkg-python-u2flib-server", "id": "99cbbd8c6031a90c61486451336eceedbb351207", "size": "1579", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "u2flib_server/attestation/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "61656" } ], "symlink_target": "" }
from day_19 import (parse, count_molecules, steps_to_generate, reverse_dict, generate_prev) def test_parse(): stream = "H => HO\nH => OH\nO => HH\n\nHOH\n" assert parse(stream) == ({"H": ["HO", "OH"], "O": ["HH"]}, "HOH") assert parse(stream.strip()) == ({"H": ["HO", "OH"], "O": ["HH"]}, "HOH") def test_count_molecules(): replacements = {"H": ["HO", "OH"], "O": ["HH"], "Al": ["C"]} assert count_molecules("HOH", replacements) == 4 assert count_molecules("HOHOHO", replacements) == 7 assert count_molecules("HOHC", replacements) == 4 assert count_molecules("AlHOH", replacements) == 5 assert count_molecules("HOAlH", replacements) == 6 def test_steps_to_generate(): replacements = {"e": ["H", "O"], "H": ["HO", "OH"], "O": ["HH"]} assert steps_to_generate("HOH", replacements) == 3 assert steps_to_generate("HOHOHO", replacements) == 6 def test_reverse_dict(): replacements = {"e": ["H", "O"], "H": ["HO", "OH"], "O": ["HH"]} assert reverse_dict(replacements) == {"H": ["e"], "O": ["e"], "HO": ["H"], "OH": ["H"], "HH": ["O"]} def test_generate_prev(): replacements = {"e": ["H", "O"], "H": ["HO", "OH"], "O": ["HH"]} assert generate_prev("HOH", reverse_dict(replacements)) == {"HH"} assert generate_prev("HH", reverse_dict(replacements)) == {"O"} assert generate_prev("O", reverse_dict(replacements)) == {"e"}
{ "content_hash": "586f45a6ef5dbaecb0cb5745d0731899", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 77, "avg_line_length": 40.513513513513516, "alnum_prop": 0.5203468979319547, "repo_name": "masasin/advent_of_code_2015", "id": "df7a0d5679b6df742a41099aeff88a49ec76cbac", "size": "1499", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_day_19.py", "mode": "33188", "license": "mit", "language": [ { "name": "Nimrod", "bytes": "2706" }, { "name": "Python", "bytes": "120818" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import division from past.utils import old_div from proteus import * from proteus.default_n import * try: from .poisson_3d_tetgen_p import * except: from poisson_3d_tetgen_p import * #steady-state so no time integration timeIntegration = NoIntegration #number of output timesteps nDTout = 1 #finite element spaces femSpaces = {0:C0_AffineQuadraticOnSimplexWithNodalBasis} #numerical quadrature choices elementQuadrature = SimplexGaussQuadrature(nd,4) elementBoundaryQuadrature = SimplexGaussQuadrature(nd-1,4) logEvent("""Mesh generated using: tetgen -%s %s""" % (triangleOptions,domain.polyfile+".poly")) domain.MeshOptions.triangleOptions="VApq1.35q12feena%e" % (old_div((he**3),6.0),) #number of levels in mesh nLevels = 1 #no stabilization or shock capturing subgridError = None shockCapturing = None #nonlinear solver choices multilevelNonlinearSolver = Newton levelNonlinearSolver = Newton #linear problem so force 1 iteration allowed maxNonlinearIts = 1 maxLineSearches = 1 fullNewtonFlag = True #absolute nonlinear solver residual tolerance nl_atol_res = 1.0e-8 #relative nonlinear solver convergence tolerance as a function of h #(i.e., tighten relative convergence test as we refine) tolFac = 0.0 #matrix type matrix = SparseMatrix #convenience flag parallel = True if parallel: multilevelLinearSolver = KSP_petsc4py #for petsc do things lie #"-ksp_type cg -pc_type asm -pc_asm_type basic -ksp_atol 1.0e-10 -ksp_rtol 1.0e-10 -ksp_monitor_draw" or #-pc_type lu -pc_factor_mat_solver_package #can also set -pc_asm_overlap 2 with default asm type (restrict) levelLinearSolver = KSP_petsc4py# #for petsc do things like #"-ksp_type cg -pc_type asm -pc_asm_type basic -ksp_atol 1.0e-10 -ksp_rtol 1.0e-10 -ksp_monitor_draw" or #-pc_type lu -pc_factor_mat_solver_package #can also set -pc_asm_overlap 2 with default asm type (restrict) #levelLinearSolver = PETSc# #pick number of layers to use in overlap nLayersOfOverlapForParallel = 0 #type of partition parallelPartitioningType = MeshParallelPartitioningTypes.node #parallelPartitioningType = MeshParallelPartitioningTypes.element #have to have a numerical flux in parallel numericalFluxType = ConstantAdvection_Diffusion_SIPG_exterior#Advection_DiagonalUpwind_Diffusion_IIPG_exterior #for true residual test linearSolverConvergenceTest = 'r-true' #to allow multiple models to set different ksp options #linear_solver_options_prefix = 'poisson_' linearSmoother = None else: multilevelLinearSolver = LU levelLinearSolver = LU numericalFluxType = ConstantAdvection_Diffusion_SIPG_exterior #linear solver parameters linearSmoother = None #linear solver relative convergence test linTolFac = 0.0 #linear solver absolute convergence test l_atol_res = 1.0e-10 conservativeFlux = None cfluxtag = None conservativeFlux = {0:'pwl-bdm2'}
{ "content_hash": "b4c0f2c98a3f5ddc6309b1694596846a", "timestamp": "", "source": "github", "line_count": 90, "max_line_length": 114, "avg_line_length": 32.977777777777774, "alnum_prop": 0.7611185983827493, "repo_name": "erdc/proteus", "id": "3539d0076f13c2e1079ed34b56afec2b37e13ca5", "size": "2968", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "proteus/tests/ci/poisson_3d_tetgen_c0p2_n.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "2790" }, { "name": "Asymptote", "bytes": "1569" }, { "name": "C", "bytes": "2827957" }, { "name": "C++", "bytes": "7262408" }, { "name": "Cython", "bytes": "154607" }, { "name": "Dockerfile", "bytes": "2738" }, { "name": "Fortran", "bytes": "51671" }, { "name": "Jupyter Notebook", "bytes": "33357" }, { "name": "Makefile", "bytes": "19043" }, { "name": "Python", "bytes": "12534530" }, { "name": "Roff", "bytes": "322" }, { "name": "Shell", "bytes": "14084" } ], "symlink_target": "" }
import os import shutil import tempfile import unittest from telemetry import story from telemetry import page as page_module from telemetry.testing import system_stub from telemetry.timeline import trace_data from telemetry.value import trace class TestBase(unittest.TestCase): def setUp(self): story_set = story.StorySet(base_dir=os.path.dirname(__file__)) story_set.AddStory( page_module.Page('http://www.bar.com/', story_set, story_set.base_dir)) story_set.AddStory( page_module.Page('http://www.baz.com/', story_set, story_set.base_dir)) story_set.AddStory( page_module.Page('http://www.foo.com/', story_set, story_set.base_dir)) self.story_set = story_set self._cloud_storage_stub = system_stub.Override(trace, ['cloud_storage']) def tearDown(self): if self._cloud_storage_stub: self._cloud_storage_stub.Restore() self._cloud_storage_stub = None @property def pages(self): return self.story_set.stories class TestSet(object): """ A test set that represents a set that contains any key. """ def __contains__(self, key): return True class TestDefaultDict(object): """ A test default dict that represents a dictionary that contains any key with value |default_value|. """ def __init__(self, default_value): self._default_value = default_value self._test_set = TestSet() def __contains__(self, key): return key in self._test_set def __getitem__(self, key): return self._default_value def keys(self): return self._test_set class ValueTest(TestBase): def testRepr(self): v = trace.TraceValue(self.pages[0], trace_data.TraceData({'test': 1}), important=True, description='desc') self.assertEquals('TraceValue(http://www.bar.com/, trace)', str(v)) def testAsDictWhenTraceSerializedAndUploaded(self): tempdir = tempfile.mkdtemp() try: v = trace.TraceValue(None, trace_data.TraceData({'test': 1})) fh = v.Serialize(tempdir) trace.cloud_storage.SetCalculatedHashesForTesting( {fh.GetAbsPath(): 123}) bucket = trace.cloud_storage.PUBLIC_BUCKET cloud_url = v.UploadToCloud(bucket) d = v.AsDict() self.assertEqual(d['file_id'], fh.id) self.assertEqual(d['cloud_url'], cloud_url) finally: shutil.rmtree(tempdir) def testAsDictWhenTraceIsNotSerializedAndUploaded(self): test_temp_file = tempfile.NamedTemporaryFile(delete=False) try: v = trace.TraceValue(None, trace_data.TraceData({'test': 1})) trace.cloud_storage.SetCalculatedHashesForTesting( TestDefaultDict(123)) bucket = trace.cloud_storage.PUBLIC_BUCKET cloud_url = v.UploadToCloud(bucket) d = v.AsDict() self.assertEqual(d['cloud_url'], cloud_url) finally: if os.path.exists(test_temp_file.name): test_temp_file.close() os.remove(test_temp_file.name) def _IsEmptyDir(path): return os.path.exists(path) and not os.listdir(path) class NoLeakedTempfilesTests(TestBase): def setUp(self): super(NoLeakedTempfilesTests, self).setUp() self.temp_test_dir = tempfile.mkdtemp() self.actual_tempdir = trace.tempfile.tempdir trace.tempfile.tempdir = self.temp_test_dir def testNoLeakedTempFileOnImplicitCleanUp(self): with trace.TraceValue(None, trace_data.TraceData({'test': 1})): pass self.assertTrue(_IsEmptyDir(self.temp_test_dir)) def testNoLeakedTempFileWhenUploadingTrace(self): v = trace.TraceValue(None, trace_data.TraceData({'test': 1})) v.CleanUp() self.assertTrue(_IsEmptyDir(self.temp_test_dir)) def tearDown(self): super(NoLeakedTempfilesTests, self).tearDown() shutil.rmtree(self.temp_test_dir) trace.tempfile.tempdir = self.actual_tempdir
{ "content_hash": "23b0da8fa7dd5936196d67147cce4213", "timestamp": "", "source": "github", "line_count": 125, "max_line_length": 79, "avg_line_length": 30.368, "alnum_prop": 0.6862486828240253, "repo_name": "SummerLW/Perf-Insight-Report", "id": "d3481461adafc4770557b2d008d0bf488e41f449", "size": "3959", "binary": false, "copies": "10", "ref": "refs/heads/test", "path": "telemetry/telemetry/value/trace_unittest.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "3598" }, { "name": "C++", "bytes": "6411" }, { "name": "CSS", "bytes": "14952" }, { "name": "HTML", "bytes": "27508823" }, { "name": "JavaScript", "bytes": "75587" }, { "name": "Python", "bytes": "4638631" }, { "name": "Shell", "bytes": "2124" } ], "symlink_target": "" }
from django.test import TestCase import server.interface.nodes as views from django.http import HttpResponse, HttpResponseNotFound, HttpResponseBadRequest import server.interface.closest as cviews import server.interface.util as util from django.test.client import RequestFactory class NodeTestCase(TestCase): """ Test the node interface. Kind of obsolete due to test_urls, but still useful """ def setUp(self): self.rf = RequestFactory() def test_get_edge_tuple(self): util.get_edge_tuple(None, 51.0, 3.8) def test_get_node(self): """ Fuzzy test Test whether indexing yields the correct response type """ node = views.get_node(self.rf.get('/node?index=0')) self.assertTrue(isinstance(node, HttpResponse)) self.assertFalse(isinstance(node, HttpResponseNotFound)) node = views.get_node(self.rf.get('/node?index=-5')) self.assertTrue(isinstance(node, HttpResponseNotFound)) def test_get_from(self): """ Fuzzy tests. They test whether the function returns the correct response kind. """ node = cviews.get_id_from_pos( self.rf.get('/node?lat=51.0&lon=3.8')) self.assertTrue(isinstance(node, HttpResponse)) node = cviews.get_node_from_pos( self.rf.get('/node?lat=5.1.0&lon=3.8')) self.assertTrue(isinstance(node, HttpResponseBadRequest)) node = cviews.get_id_from_pos( self.rf.get('/node?lat=51.0&lon=3.8.0')) self.assertTrue(isinstance(node, HttpResponseBadRequest)) def test_in_city(self): """ Test whether the coordinates are inside/outside the city """ self.assertEquals(views.in_city(self.rf.get('/node?lat=51.0&lon=3.8')).content, "true") self.assertEquals(views.in_city(self.rf.get('/node?lat=51.0&lon=2.8')).content, "false") self.assertTrue(isinstance(views.in_city(self.rf.get('/node?lat=51.0&lon=3.8.0')), HttpResponseBadRequest))
{ "content_hash": "44d23d5da82dbcf60b30155105f93f2b", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 115, "avg_line_length": 39.59615384615385, "alnum_prop": 0.6435162700339971, "repo_name": "simonneuville/runamic_server", "id": "dbc52706dee4f21e4e9622b15579243c289240dd", "size": "2059", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djangoserver/server/interface/tests.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "76077" }, { "name": "HTML", "bytes": "1289731" }, { "name": "JavaScript", "bytes": "282165" }, { "name": "Makefile", "bytes": "629" }, { "name": "Python", "bytes": "111879" }, { "name": "Rust", "bytes": "54288" }, { "name": "Shell", "bytes": "1588" } ], "symlink_target": "" }
from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import copy import sys from pants.option.arg_splitter import GLOBAL_SCOPE, ArgSplitter from pants.option.global_options import GlobalOptionsRegistrar from pants.option.option_value_container import OptionValueContainer from pants.option.parser_hierarchy import ParserHierarchy, enclosing_scope from pants.option.scope import ScopeInfo class Options(object): """The outward-facing API for interacting with options. Supports option registration and fetching option values. Examples: The value in global scope of option '--foo-bar' (registered in global scope) will be selected in the following order: - The value of the --foo-bar flag in global scope. - The value of the PANTS_DEFAULT_FOO_BAR environment variable. - The value of the PANTS_FOO_BAR environment variable. - The value of the foo_bar key in the [DEFAULT] section of pants.ini. - The hard-coded value provided at registration time. - None. The value in scope 'compile.java' of option '--foo-bar' (registered in global scope) will be selected in the following order: - The value of the --foo-bar flag in scope 'compile.java'. - The value of the --foo-bar flag in scope 'compile'. - The value of the --foo-bar flag in global scope. - The value of the PANTS_COMPILE_JAVA_FOO_BAR environment variable. - The value of the PANTS_COMPILE_FOO_BAR environment variable. - The value of the PANTS_DEFAULT_FOO_BAR environment variable. - The value of the PANTS_FOO_BAR environment variable. - The value of the foo_bar key in the [compile.java] section of pants.ini. - The value of the foo_bar key in the [compile] section of pants.ini. - The value of the foo_bar key in the [DEFAULT] section of pants.ini. - The hard-coded value provided at registration time. - None. The value in scope 'compile.java' of option '--foo-bar' (registered in scope 'compile') will be selected in the following order: - The value of the --foo-bar flag in scope 'compile.java'. - The value of the --foo-bar flag in scope 'compile'. - The value of the PANTS_COMPILE_JAVA_FOO_BAR environment variable. - The value of the PANTS_COMPILE_FOO_BAR environment variable. - The value of the foo_bar key in the [compile.java] section of pants.ini. - The value of the foo_bar key in the [compile] section of pants.ini. - The value of the foo_bar key in the [DEFAULT] section of pants.ini (because of automatic config file fallback to that section). - The hard-coded value provided at registration time. - None. """ class OptionTrackerRequiredError(Exception): """Options requires an OptionTracker instance.""" @classmethod def complete_scopes(cls, scope_infos): """Expand a set of scopes to include all enclosing scopes. E.g., if the set contains `foo.bar.baz`, ensure that it also contains `foo.bar` and `foo`. """ ret = {GlobalOptionsRegistrar.get_scope_info()} for scope_info in scope_infos: ret.add(scope_info) original_scopes = {si.scope for si in scope_infos} for scope_info in scope_infos: scope = scope_info.scope while scope != '': if scope not in original_scopes: ret.add(ScopeInfo(scope, ScopeInfo.INTERMEDIATE)) scope = enclosing_scope(scope) return ret @classmethod def create(cls, env, config, known_scope_infos, args=None, bootstrap_option_values=None, option_tracker=None,): """Create an Options instance. :param env: a dict of environment variables. :param config: data from a config file (must support config.get[list](section, name, default=)). :param known_scope_infos: ScopeInfos for all scopes that may be encountered. :param args: a list of cmd-line args; defaults to `sys.argv` if None is supplied. :param bootstrap_option_values: An optional namespace containing the values of bootstrap options. We can use these values when registering other options. :param :class:`pants.option.option_tracker.OptionTracker` option_tracker: option tracker instance to record how option values were assigned. """ # We need parsers for all the intermediate scopes, so inherited option values # can propagate through them. complete_known_scope_infos = cls.complete_scopes(known_scope_infos) splitter = ArgSplitter(complete_known_scope_infos) args = sys.argv if args is None else args goals, scope_to_flags, target_specs, passthru, passthru_owner = splitter.split_args(args) if not option_tracker: raise cls.OptionTrackerRequiredError() if bootstrap_option_values: target_spec_files = bootstrap_option_values.target_spec_files if target_spec_files: for spec in target_spec_files: with open(spec) as f: target_specs.extend(filter(None, [line.strip() for line in f])) help_request = splitter.help_request parser_hierarchy = ParserHierarchy(env, config, complete_known_scope_infos, option_tracker) values_by_scope = {} # Arg values, parsed per-scope on demand. bootstrap_option_values = bootstrap_option_values known_scope_to_info = {s.scope: s for s in complete_known_scope_infos} return cls(goals, scope_to_flags, target_specs, passthru, passthru_owner, help_request, parser_hierarchy, values_by_scope, bootstrap_option_values, known_scope_to_info, option_tracker) def __init__(self, goals, scope_to_flags, target_specs, passthru, passthru_owner, help_request, parser_hierarchy, values_by_scope, bootstrap_option_values, known_scope_to_info, option_tracker): """The low-level constructor for an Options instance. Dependees should use `Options.create` instead. """ self._goals = goals self._scope_to_flags = scope_to_flags self._target_specs = target_specs self._passthru = passthru self._passthru_owner = passthru_owner self._help_request = help_request self._parser_hierarchy = parser_hierarchy self._values_by_scope = values_by_scope self._bootstrap_option_values = bootstrap_option_values self._known_scope_to_info = known_scope_to_info self._option_tracker = option_tracker @property def tracker(self): return self._option_tracker @property def help_request(self): return self._help_request @property def target_specs(self): """The targets to operate on.""" return self._target_specs @property def goals(self): """The requested goals, in the order specified on the cmd line.""" return self._goals @property def known_scope_to_info(self): return self._known_scope_to_info @property def scope_to_flags(self): return self._scope_to_flags def drop_flag_values(self): """Returns a copy of these options that ignores values specified via flags. Any pre-cached option values are cleared and only option values that come from option defaults, the config or the environment are used. """ # An empty scope_to_flags to force all values to come via the config -> env hierarchy alone # and empty values in case we already cached some from flags. no_flags = {} no_values = {} return Options(self._goals, no_flags, self._target_specs, self._passthru, self._passthru_owner, self._help_request, self._parser_hierarchy, no_values, self._bootstrap_option_values, self._known_scope_to_info, self._option_tracker) def is_known_scope(self, scope): """Whether the given scope is known by this instance.""" return scope in self._known_scope_to_info def passthru_args_for_scope(self, scope): # Passthru args "belong" to the last scope mentioned on the command-line. # Note: If that last scope is a goal, we allow all tasks in that goal to access the passthru # args. This is to allow the more intuitive # pants run <target> -- <passthru args> # instead of requiring # pants run.py <target> -- <passthru args>. # # However note that in the case where multiple tasks run in the same goal, e.g., # pants test <target> -- <passthru args> # Then, e.g., both junit and pytest will get the passthru args even though the user probably # only intended them to go to one of them. If the wrong one is not a no-op then the error will # be unpredictable. However this is not a common case, and can be circumvented with an # explicit test.pytest or test.junit scope. if (scope and self._passthru_owner and scope.startswith(self._passthru_owner) and (len(scope) == len(self._passthru_owner) or scope[len(self._passthru_owner)] == '.')): return self._passthru else: return [] def register(self, scope, *args, **kwargs): """Register an option in the given scope, using argparse params.""" self.get_parser(scope).register(*args, **kwargs) def registration_function_for_optionable(self, optionable_class): """Returns a function for registering argparse args on the given scope.""" # TODO(benjy): Make this an instance of a class that implements __call__, so we can # docstring it, and so it's less weird than attatching properties to a function. def register(*args, **kwargs): kwargs['registering_class'] = optionable_class self.register(optionable_class.options_scope, *args, **kwargs) # Clients can access the bootstrap option values as register.bootstrap. register.bootstrap = self.bootstrap_option_values() # Clients can access the scope as register.scope. register.scope = optionable_class.options_scope return register def get_parser(self, scope): """Returns the parser for the given scope, so code can register on it directly.""" return self._parser_hierarchy.get_parser_by_scope(scope) def walk_parsers(self, callback): self._parser_hierarchy.walk(callback) def for_scope(self, scope): """Return the option values for the given scope. Values are attributes of the returned object, e.g., options.foo. Computed lazily per scope. """ # Short-circuit, if already computed. if scope in self._values_by_scope: return self._values_by_scope[scope] # First get enclosing scope's option values, if any. if scope == GLOBAL_SCOPE: values = OptionValueContainer() else: values = copy.deepcopy(self.for_scope(enclosing_scope(scope))) # Now add our values. flags_in_scope = self._scope_to_flags.get(scope, []) self._parser_hierarchy.get_parser_by_scope(scope).parse_args(flags_in_scope, values) self._values_by_scope[scope] = values for option in values: self._option_tracker.record_option(scope=scope, option=option, value=values[option], rank=values.get_rank(option)) return values def registration_args_iter_for_scope(self, scope): """Returns an iterator over the registration arguments of each option in this scope. See `Parser.registration_args_iter` for details. """ return self._parser_hierarchy.get_parser_by_scope(scope).registration_args_iter() def get_fingerprintable_for_scope(self, scope): """Returns a list of fingerprintable (option type, option value) pairs for the given scope. Fingerprintable options are options registered via a "fingerprint=True" kwarg. """ pairs = [] # Note that we iterate over options registered at `scope` and at all enclosing scopes, since # option-using code can read those values indirectly via its own OptionValueContainer, so # they can affect that code's output. registration_scope = scope while registration_scope is not None: # This iterator will have already sorted the options, so their order is deterministic. for (name, _, kwargs) in self.registration_args_iter_for_scope(registration_scope): if kwargs.get('recursive') and not kwargs.get('recursive_root'): continue # We only need to fprint recursive options once. if kwargs.get('fingerprint') is not True: continue # Note that we read the value from scope, even if the registration was on an enclosing # scope, to get the right value for recursive options (and because this mirrors what # option-using code does). val = self.for_scope(scope)[name] val_type = kwargs.get('type', '') pairs.append((val_type, val)) registration_scope = (None if registration_scope == '' else enclosing_scope(registration_scope)) return pairs def __getitem__(self, scope): # TODO(John Sirois): Mainly supports use of dict<str, dict<str, str>> for mock options in tests, # Consider killing if tests consolidate on using TestOptions instead of the raw dicts. return self.for_scope(scope) def bootstrap_option_values(self): """Return the option values for bootstrap options. General code can also access these values in the global scope. But option registration code cannot, hence this special-casing of this small set of options. """ return self._bootstrap_option_values def for_global_scope(self): """Return the option values for the global scope.""" return self.for_scope(GLOBAL_SCOPE)
{ "content_hash": "7b47d9619980b51b83718e4e36a15fbe", "timestamp": "", "source": "github", "line_count": 312, "max_line_length": 100, "avg_line_length": 43.51602564102564, "alnum_prop": 0.688149075642631, "repo_name": "slyphon/pants", "id": "ccc662ac935da7171cf16e21a159dc6e0c1caf77", "size": "13724", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/python/pants/option/options.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "767" }, { "name": "CSS", "bytes": "11572" }, { "name": "GAP", "bytes": "2459" }, { "name": "Go", "bytes": "1437" }, { "name": "HTML", "bytes": "70362" }, { "name": "Java", "bytes": "309840" }, { "name": "JavaScript", "bytes": "28545" }, { "name": "Protocol Buffer", "bytes": "3783" }, { "name": "Python", "bytes": "4020643" }, { "name": "Scala", "bytes": "85437" }, { "name": "Shell", "bytes": "49550" }, { "name": "Thrift", "bytes": "2858" } ], "symlink_target": "" }
""" WSGI config for mybook project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mybook.settings") application = get_wsgi_application()
{ "content_hash": "3510eda86f807e7efcea989af6e908ec", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 78, "avg_line_length": 24.3125, "alnum_prop": 0.7686375321336761, "repo_name": "kyon-bll/django_mybook", "id": "8b18d4f263ac3027c0cde0932be144df86aa42ec", "size": "389", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mybook/mybook/wsgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "17419" }, { "name": "HTML", "bytes": "2079343" }, { "name": "JavaScript", "bytes": "229832" }, { "name": "PHP", "bytes": "4727" }, { "name": "Python", "bytes": "13832" }, { "name": "Shell", "bytes": "3730" } ], "symlink_target": "" }
""" @version: ?? @author: 闫刚 @license: @contact: [email protected] @site: http://www.cashmerepipeline.com @software: @file: anim_utils.py @time: 2017/12/11 16:13 """ import maya.cmds as cmds def getTimeLineStartEnd(): """ :return: """ start_frame = cmds.playbackOptions(query=True, min = True) end_frame = cmds.playbackOptions(query = True, max = True) + 1 return (start_frame, end_frame) def getFPSUnit(): """ :return: """ fps_unit = cmds.currentUnit( query=True, time=True) return fps_unit
{ "content_hash": "468f8451abcd49eb67ae21359d1dece6", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 66, "avg_line_length": 17.451612903225808, "alnum_prop": 0.6321626617375231, "repo_name": "yes7rose/maya_utils", "id": "5b6eed4e8a839c35563e7c0d26c4c01c7ff20db0", "size": "591", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/maya_utils/anim_utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "37432" } ], "symlink_target": "" }
import fiona import numpy as np import numpy.ma as ma import rasterio import rasterio.features import rasterio.mask import pandas as pd import sys import pdb shp_file = '/Users/ricardog/src/eec/data/from-adriana/tropicalforests.shp' shp_file = '/Users/ricardog/src/eec/predicts/playground/tmp/topical-band34-24.shp' src_file = '/Users/ricardog/src/eec/data/sources/PAS_1km_2005_0ice.bil' #src_file = '/Users/ricardog/src/eec/data/sources/pas_1km_2005_0ice.tif' src_file = 'zip:///Users/ricardog/src/eec/data/sources/PAS_2005.zip!' + \ 'PAS_1km_2005_0ice.bil' out_file = 'pasture-2005-masked.tif' with rasterio.Env(GDAL_TIFF_INTERNAL_MASK=True): with fiona.open(shp_file) as shp: with rasterio.open(src_file, 'r', format='GTiff') as src: meta = src.meta.copy() meta.update({'driver': 'GTiff', 'compress': 'lzw', 'predictor': 2}) blocks = src.block_shapes nans = np.full(blocks[0], np.nan, dtype=np.float32) with rasterio.open(out_file, 'w', **meta) as dst: for ji, window in src.block_windows(1): if ji[0] % 100 == 0: sys.stdout.write('.') sys.stdout.flush() out_transform = src.window_transform(window) minx, miny = (window[1][0], window[0][0]) * src.affine maxx, maxy = (window[1][1], window[0][1]) * src.affine cropped = list(shp.items(bbox=(minx, miny, maxx, maxy))) if len(cropped) == 0: pass #print("%d, %d : skip" % (ji[0], ji[1])) dst.write(nans, window = window, indexes = 1) continue shapes = [feature[1]["geometry"] for feature in cropped] shape_mask = rasterio.features.geometry_mask(shapes, transform=out_transform, invert=False, out_shape=nans.shape, all_touched=True) data = src.read(window=window, masked=True) data.mask = data.mask | shape_mask out_shape = data.shape[1:] df = pd.Series(data.reshape(-1)) df = df.dropna() #print("%d, %d : %d rows" % (ji[0], ji[1], len(df.index))) out = df.reindex(range(out_shape[0] * out_shape[1])).values out = ma.masked_invalid(out.reshape(out_shape)) dst.write(out, window = window, indexes = 1) print("")
{ "content_hash": "d5a2e04a1652fcf9e706d380c00689dc", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 82, "avg_line_length": 44.42857142857143, "alnum_prop": 0.5562700964630225, "repo_name": "ricardog/raster-project", "id": "e1a8be25740146ef03e9d104ef30e9052a2e7f04", "size": "2511", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "blocks.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "296" }, { "name": "Dockerfile", "bytes": "509" }, { "name": "HTML", "bytes": "3896" }, { "name": "JavaScript", "bytes": "6062" }, { "name": "Jupyter Notebook", "bytes": "58981" }, { "name": "Makefile", "bytes": "12383" }, { "name": "Python", "bytes": "488587" }, { "name": "R", "bytes": "61424" }, { "name": "Shell", "bytes": "5573" } ], "symlink_target": "" }
from __future__ import with_statement import datetime import time import warnings from itertools import imap, izip, starmap from redis.connection import ConnectionPool, UnixDomainSocketConnection from redis.exceptions import ( ConnectionError, DataError, RedisError, ResponseError, WatchError, NoScriptError, ) def list_or_args(keys, args): # returns a single list combining keys and args try: i = iter(keys) # a string can be iterated, but indicates # keys wasn't passed as a list if isinstance(keys, basestring): keys = [keys] except TypeError: keys = [keys] if args: keys.extend(args) return keys def timestamp_to_datetime(response): "Converts a unix timestamp to a Python datetime object" if not response: return None try: response = int(response) except ValueError: return None return datetime.datetime.fromtimestamp(response) def string_keys_to_dict(key_string, callback): return dict.fromkeys(key_string.split(), callback) def dict_merge(*dicts): merged = {} [merged.update(d) for d in dicts] return merged def parse_info(response): "Parse the result of Redis's INFO command into a Python dict" info = {} def get_value(value): if ',' not in value: return value sub_dict = {} for item in value.split(','): k, v = item.rsplit('=', 1) try: sub_dict[k] = int(v) except ValueError: sub_dict[k] = v return sub_dict for line in response.splitlines(): if line and not line.startswith('#'): key, value = line.split(':') try: if '.' in value: info[key] = float(value) else: info[key] = int(value) except ValueError: info[key] = get_value(value) return info def pairs_to_dict(response): "Create a dict given a list of key/value pairs" it = iter(response) return dict(izip(it, it)) def zset_score_pairs(response, **options): """ If ``withscores`` is specified in the options, return the response as a list of (value, score) pairs """ if not response or not options['withscores']: return response score_cast_func = options.get('score_cast_func', float) it = iter(response) return zip(it, imap(score_cast_func, it)) def int_or_none(response): if response is None: return None return int(response) def float_or_none(response): if response is None: return None return float(response) def parse_config(response, **options): # this is stupid, but don't have a better option right now if options['parse'] == 'GET': return response and pairs_to_dict(response) or {} return response == 'OK' def parse_script(response, **options): parse = options['parse'] if parse in ('FLUSH', 'KILL'): return response == 'OK' if parse == 'EXISTS': return list(imap(bool, response)) return response class StrictRedis(object): """ Implementation of the Redis protocol. This abstract class provides a Python interface to all Redis commands and an implementation of the Redis protocol. Connection and Pipeline derive from this, implementing how the commands are sent and received to the Redis server """ RESPONSE_CALLBACKS = dict_merge( string_keys_to_dict( 'AUTH DEL EXISTS EXPIRE EXPIREAT HDEL HEXISTS HMSET MOVE MSETNX ' 'PERSIST RENAMENX SADD SISMEMBER SMOVE SETEX SETNX SREM ZADD ZREM', bool ), string_keys_to_dict( 'DECRBY GETBIT HLEN INCRBY LINSERT LLEN LPUSHX RPUSHX SCARD ' 'SDIFFSTORE SETBIT SETRANGE SINTERSTORE STRLEN SUNIONSTORE ZCARD ' 'ZREMRANGEBYRANK ZREMRANGEBYSCORE', int ), string_keys_to_dict( # these return OK, or int if redis-server is >=1.3.4 'LPUSH RPUSH', lambda r: isinstance(r, long) and r or r == 'OK' ), string_keys_to_dict('ZSCORE ZINCRBY', float_or_none), string_keys_to_dict( 'FLUSHALL FLUSHDB LSET LTRIM MSET RENAME ' 'SAVE SELECT SET SHUTDOWN SLAVEOF WATCH UNWATCH', lambda r: r == 'OK' ), string_keys_to_dict('BLPOP BRPOP', lambda r: r and tuple(r) or None), string_keys_to_dict('SDIFF SINTER SMEMBERS SUNION', lambda r: r and set(r) or set() ), string_keys_to_dict('ZRANGE ZRANGEBYSCORE ZREVRANGE ZREVRANGEBYSCORE', zset_score_pairs ), string_keys_to_dict('ZRANK ZREVRANK', int_or_none), { 'BGREWRITEAOF': lambda r: \ r == 'Background rewriting of AOF file started', 'BGSAVE': lambda r: r == 'Background saving started', 'BRPOPLPUSH': lambda r: r and r or None, 'CONFIG': parse_config, 'HGETALL': lambda r: r and pairs_to_dict(r) or {}, 'INFO': parse_info, 'LASTSAVE': timestamp_to_datetime, 'PING': lambda r: r == 'PONG', 'RANDOMKEY': lambda r: r and r or None, 'SCRIPT': parse_script, 'TTL': lambda r: r != -1 and r or None, } ) def __init__(self, host='localhost', port=6379, db=0, password=None, socket_timeout=None, connection_pool=None, charset='utf-8', errors='strict', unix_socket_path=None): if not connection_pool: kwargs = { 'db': db, 'password': password, 'socket_timeout': socket_timeout, 'encoding': charset, 'encoding_errors': errors } # based on input, setup appropriate connection args if unix_socket_path: kwargs.update({ 'path': unix_socket_path, 'connection_class': UnixDomainSocketConnection }) else: kwargs.update({ 'host': host, 'port': port }) connection_pool = ConnectionPool(**kwargs) self.connection_pool = connection_pool self.response_callbacks = self.__class__.RESPONSE_CALLBACKS.copy() def set_response_callback(self, command, callback): "Set a custom Response Callback" self.response_callbacks[command] = callback def pipeline(self, transaction=False, shard_hint=None): """ Return a new pipeline object that can queue multiple commands for later execution. ``transaction`` indicates whether all commands should be executed atomically. Apart from making a group of operations atomic, pipelines are useful for reducing the back-and-forth overhead between the client and server. """ return StrictPipeline( self.connection_pool, self.response_callbacks, transaction, shard_hint) def transaction(self, func, *watches, **kwargs): """ Convenience method for executing the callable `func` as a transaction while watching all keys specified in `watches`. The 'func' callable should expect a single arguement which is a Pipeline object. """ shard_hint = kwargs.pop('shard_hint', None) with self.pipeline(True, shard_hint) as pipe: while 1: try: pipe.watch(*watches) func(pipe) return pipe.execute() except WatchError: continue def lock(self, name, timeout=None, sleep=0.1): """ Return a new Lock object using key ``name`` that mimics the behavior of threading.Lock. If specified, ``timeout`` indicates a maximum life for the lock. By default, it will remain locked until release() is called. ``sleep`` indicates the amount of time to sleep per loop iteration when the lock is in blocking mode and another client is currently holding the lock. """ return Lock(self, name, timeout=timeout, sleep=sleep) def pubsub(self, shard_hint=None): """ Return a Publish/Subscribe object. With this object, you can subscribe to channels and listen for messages that get published to them. """ return PubSub(self.connection_pool, shard_hint) #### COMMAND EXECUTION AND PROTOCOL PARSING #### def execute_command(self, *args, **options): "Execute a command and return a parsed response" pool = self.connection_pool command_name = args[0] connection = pool.get_connection(command_name, **options) try: connection.send_command(*args) return self.parse_response(connection, command_name, **options) except ConnectionError: connection.disconnect() connection.send_command(*args) return self.parse_response(connection, command_name, **options) finally: pool.release(connection) def parse_response(self, connection, command_name, **options): "Parses a response from the Redis server" response = connection.read_response() if command_name in self.response_callbacks: return self.response_callbacks[command_name](response, **options) return response #### SERVER INFORMATION #### def bgrewriteaof(self): "Tell the Redis server to rewrite the AOF file from data in memory." return self.execute_command('BGREWRITEAOF') def bgsave(self): """ Tell the Redis server to save its data to disk. Unlike save(), this method is asynchronous and returns immediately. """ return self.execute_command('BGSAVE') def config_get(self, pattern="*"): "Return a dictionary of configuration based on the ``pattern``" return self.execute_command('CONFIG', 'GET', pattern, parse='GET') def config_set(self, name, value): "Set config item ``name`` with ``value``" return self.execute_command('CONFIG', 'SET', name, value, parse='SET') def dbsize(self): "Returns the number of keys in the current database" return self.execute_command('DBSIZE') def delete(self, *names): "Delete one or more keys specified by ``names``" return self.execute_command('DEL', *names) __delitem__ = delete def flushall(self): "Delete all keys in all databases on the current host" return self.execute_command('FLUSHALL') def flushdb(self): "Delete all keys in the current database" return self.execute_command('FLUSHDB') def info(self): "Returns a dictionary containing information about the Redis server" return self.execute_command('INFO') def lastsave(self): """ Return a Python datetime object representing the last time the Redis database was saved to disk """ return self.execute_command('LASTSAVE') def ping(self): "Ping the Redis server" return self.execute_command('PING') def save(self): """ Tell the Redis server to save its data to disk, blocking until the save is complete """ return self.execute_command('SAVE') def shutdown(self): "Shutdown the server" try: self.execute_command('SHUTDOWN') except ConnectionError: # a ConnectionError here is expected return raise RedisError("SHUTDOWN seems to have failed.") def slaveof(self, host=None, port=None): """ Set the server to be a replicated slave of the instance identified by the ``host`` and ``port``. If called without arguements, the instance is promoted to a master instead. """ if host is None and port is None: return self.execute_command("SLAVEOF", "NO", "ONE") return self.execute_command("SLAVEOF", host, port) #### BASIC KEY COMMANDS #### def append(self, key, value): """ Appends the string ``value`` to the value at ``key``. If ``key`` doesn't already exist, create it with a value of ``value``. Returns the new length of the value at ``key``. """ return self.execute_command('APPEND', key, value) def decr(self, name, amount=1): """ Decrements the value of ``key`` by ``amount``. If no key exists, the value will be initialized as 0 - ``amount`` """ return self.execute_command('DECRBY', name, amount) def exists(self, name): "Returns a boolean indicating whether key ``name`` exists" return self.execute_command('EXISTS', name) __contains__ = exists def expire(self, name, time): "Set an expire flag on key ``name`` for ``time`` seconds" return self.execute_command('EXPIRE', name, time) def expireat(self, name, when): """ Set an expire flag on key ``name``. ``when`` can be represented as an integer indicating unix time or a Python datetime object. """ if isinstance(when, datetime.datetime): when = int(time.mktime(when.timetuple())) return self.execute_command('EXPIREAT', name, when) def get(self, name): """ Return the value at key ``name``, or None if the key doesn't exist """ return self.execute_command('GET', name) def __getitem__(self, name): """ Return the value at key ``name``, raises a KeyError if the key doesn't exist. """ value = self.get(name) if value: return value raise KeyError(name) def getbit(self, name, offset): "Returns a boolean indicating the value of ``offset`` in ``name``" return self.execute_command('GETBIT', name, offset) def getset(self, name, value): """ Set the value at key ``name`` to ``value`` if key doesn't exist Return the value at key ``name`` atomically """ return self.execute_command('GETSET', name, value) def incr(self, name, amount=1): """ Increments the value of ``key`` by ``amount``. If no key exists, the value will be initialized as ``amount`` """ return self.execute_command('INCRBY', name, amount) def keys(self, pattern='*'): "Returns a list of keys matching ``pattern``" return self.execute_command('KEYS', pattern) def mget(self, keys, *args): """ Returns a list of values ordered identically to ``keys`` """ keys = list_or_args(keys, args) return self.execute_command('MGET', *keys) def mset(self, mapping): "Sets each key in the ``mapping`` dict to its corresponding value" items = [] for pair in mapping.iteritems(): items.extend(pair) return self.execute_command('MSET', *items) def msetnx(self, mapping): """ Sets each key in the ``mapping`` dict to its corresponding value if none of the keys are already set """ items = [] for pair in mapping.iteritems(): items.extend(pair) return self.execute_command('MSETNX', *items) def move(self, name, db): "Moves the key ``name`` to a different Redis database ``db``" return self.execute_command('MOVE', name, db) def persist(self, name): "Removes an expiration on ``name``" return self.execute_command('PERSIST', name) def randomkey(self): "Returns the name of a random key" return self.execute_command('RANDOMKEY') def rename(self, src, dst): """ Rename key ``src`` to ``dst`` """ return self.execute_command('RENAME', src, dst) def renamenx(self, src, dst): "Rename key ``src`` to ``dst`` if ``dst`` doesn't already exist" return self.execute_command('RENAMENX', src, dst) def set(self, name, value): "Set the value at key ``name`` to ``value``" return self.execute_command('SET', name, value) __setitem__ = set def setbit(self, name, offset, value): """ Flag the ``offset`` in ``name`` as ``value``. Returns a boolean indicating the previous value of ``offset``. """ value = value and 1 or 0 return self.execute_command('SETBIT', name, offset, value) def setex(self, name, time, value): """ Set the value of key ``name`` to ``value`` that expires in ``time`` seconds """ return self.execute_command('SETEX', name, time, value) def setnx(self, name, value): "Set the value of key ``name`` to ``value`` if key doesn't exist" return self.execute_command('SETNX', name, value) def setrange(self, name, offset, value): """ Overwrite bytes in the value of ``name`` starting at ``offset`` with ``value``. If ``offset`` plus the length of ``value`` exceeds the length of the original value, the new value will be larger than before. If ``offset`` exceeds the length of the original value, null bytes will be used to pad between the end of the previous value and the start of what's being injected. Returns the length of the new string. """ return self.execute_command('SETRANGE', name, offset, value) def strlen(self, name): "Return the number of bytes stored in the value of ``name``" return self.execute_command('STRLEN', name) def substr(self, name, start, end=-1): """ Return a substring of the string at key ``name``. ``start`` and ``end`` are 0-based integers specifying the portion of the string to return. """ return self.execute_command('SUBSTR', name, start, end) def ttl(self, name): "Returns the number of seconds until the key ``name`` will expire" return self.execute_command('TTL', name) def type(self, name): "Returns the type of key ``name``" return self.execute_command('TYPE', name) def watch(self, *names): """ Watches the values at keys ``names``, or None if the key doesn't exist """ warnings.warn(DeprecationWarning('Call WATCH from a Pipeline object')) def unwatch(self): """ Unwatches the value at key ``name``, or None of the key doesn't exist """ warnings.warn(DeprecationWarning('Call UNWATCH from a Pipeline object')) #### LIST COMMANDS #### def blpop(self, keys, timeout=0): """ LPOP a value off of the first non-empty list named in the ``keys`` list. If none of the lists in ``keys`` has a value to LPOP, then block for ``timeout`` seconds, or until a value gets pushed on to one of the lists. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 if isinstance(keys, basestring): keys = [keys] else: keys = list(keys) keys.append(timeout) return self.execute_command('BLPOP', *keys) def brpop(self, keys, timeout=0): """ RPOP a value off of the first non-empty list named in the ``keys`` list. If none of the lists in ``keys`` has a value to LPOP, then block for ``timeout`` seconds, or until a value gets pushed on to one of the lists. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 if isinstance(keys, basestring): keys = [keys] else: keys = list(keys) keys.append(timeout) return self.execute_command('BRPOP', *keys) def brpoplpush(self, src, dst, timeout=0): """ Pop a value off the tail of ``src``, push it on the head of ``dst`` and then return it. This command blocks until a value is in ``src`` or until ``timeout`` seconds elapse, whichever is first. A ``timeout`` value of 0 blocks forever. """ if timeout is None: timeout = 0 return self.execute_command('BRPOPLPUSH', src, dst, timeout) def lindex(self, name, index): """ Return the item from list ``name`` at position ``index`` Negative indexes are supported and will return an item at the end of the list """ return self.execute_command('LINDEX', name, index) def linsert(self, name, where, refvalue, value): """ Insert ``value`` in list ``name`` either immediately before or after [``where``] ``refvalue`` Returns the new length of the list on success or -1 if ``refvalue`` is not in the list. """ return self.execute_command('LINSERT', name, where, refvalue, value) def llen(self, name): "Return the length of the list ``name``" return self.execute_command('LLEN', name) def lpop(self, name): "Remove and return the first item of the list ``name``" return self.execute_command('LPOP', name) def lpush(self, name, *values): "Push ``values`` onto the head of the list ``name``" return self.execute_command('LPUSH', name, *values) def lpushx(self, name, value): "Push ``value`` onto the head of the list ``name`` if ``name`` exists" return self.execute_command('LPUSHX', name, value) def lrange(self, name, start, end): """ Return a slice of the list ``name`` between position ``start`` and ``end`` ``start`` and ``end`` can be negative numbers just like Python slicing notation """ return self.execute_command('LRANGE', name, start, end) def lrem(self, name, count, value): """ Remove the first ``count`` occurrences of elements equal to ``value`` from the list stored at ``name``. The count argument influences the operation in the following ways: count > 0: Remove elements equal to value moving from head to tail. count < 0: Remove elements equal to value moving from tail to head. count = 0: Remove all elements equal to value. """ return self.execute_command('LREM', name, count, value) def lset(self, name, index, value): "Set ``position`` of list ``name`` to ``value``" return self.execute_command('LSET', name, index, value) def ltrim(self, name, start, end): """ Trim the list ``name``, removing all values not within the slice between ``start`` and ``end`` ``start`` and ``end`` can be negative numbers just like Python slicing notation """ return self.execute_command('LTRIM', name, start, end) def rpop(self, name): "Remove and return the last item of the list ``name``" return self.execute_command('RPOP', name) def rpoplpush(self, src, dst): """ RPOP a value off of the ``src`` list and atomically LPUSH it on to the ``dst`` list. Returns the value. """ return self.execute_command('RPOPLPUSH', src, dst) def rpush(self, name, *values): "Push ``values`` onto the tail of the list ``name``" return self.execute_command('RPUSH', name, *values) def rpushx(self, name, value): "Push ``value`` onto the tail of the list ``name`` if ``name`` exists" return self.execute_command('RPUSHX', name, value) def sort(self, name, start=None, num=None, by=None, get=None, desc=False, alpha=False, store=None): """ Sort and return the list, set or sorted set at ``name``. ``start`` and ``num`` allow for paging through the sorted data ``by`` allows using an external key to weight and sort the items. Use an "*" to indicate where in the key the item value is located ``get`` allows for returning items from external keys rather than the sorted data itself. Use an "*" to indicate where int he key the item value is located ``desc`` allows for reversing the sort ``alpha`` allows for sorting lexicographically rather than numerically ``store`` allows for storing the result of the sort into the key ``store`` """ if (start is not None and num is None) or \ (num is not None and start is None): raise RedisError("``start`` and ``num`` must both be specified") pieces = [name] if by is not None: pieces.append('BY') pieces.append(by) if start is not None and num is not None: pieces.append('LIMIT') pieces.append(start) pieces.append(num) if get is not None: # If get is a string assume we want to get a single value. # Otherwise assume it's an interable and we want to get multiple # values. We can't just iterate blindly because strings are # iterable. if isinstance(get, basestring): pieces.append('GET') pieces.append(get) else: for g in get: pieces.append('GET') pieces.append(g) if desc: pieces.append('DESC') if alpha: pieces.append('ALPHA') if store is not None: pieces.append('STORE') pieces.append(store) return self.execute_command('SORT', *pieces) #### SET COMMANDS #### def sadd(self, name, *values): "Add ``value(s)`` to set ``name``" return self.execute_command('SADD', name, *values) def scard(self, name): "Return the number of elements in set ``name``" return self.execute_command('SCARD', name) def sdiff(self, keys, *args): "Return the difference of sets specified by ``keys``" keys = list_or_args(keys, args) return self.execute_command('SDIFF', *keys) def sdiffstore(self, dest, keys, *args): """ Store the difference of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ keys = list_or_args(keys, args) return self.execute_command('SDIFFSTORE', dest, *keys) def sinter(self, keys, *args): "Return the intersection of sets specified by ``keys``" keys = list_or_args(keys, args) return self.execute_command('SINTER', *keys) def sinterstore(self, dest, keys, *args): """ Store the intersection of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ keys = list_or_args(keys, args) return self.execute_command('SINTERSTORE', dest, *keys) def sismember(self, name, value): "Return a boolean indicating if ``value`` is a member of set ``name``" return self.execute_command('SISMEMBER', name, value) def smembers(self, name): "Return all members of the set ``name``" return self.execute_command('SMEMBERS', name) def smove(self, src, dst, value): "Move ``value`` from set ``src`` to set ``dst`` atomically" return self.execute_command('SMOVE', src, dst, value) def spop(self, name): "Remove and return a random member of set ``name``" return self.execute_command('SPOP', name) def srandmember(self, name): "Return a random member of set ``name``" return self.execute_command('SRANDMEMBER', name) def srem(self, name, *values): "Remove ``values`` from set ``name``" return self.execute_command('SREM', name, *values) def sunion(self, keys, *args): "Return the union of sets specifiued by ``keys``" keys = list_or_args(keys, args) return self.execute_command('SUNION', *keys) def sunionstore(self, dest, keys, *args): """ Store the union of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ keys = list_or_args(keys, args) return self.execute_command('SUNIONSTORE', dest, *keys) #### SORTED SET COMMANDS #### def zadd(self, name, *args, **kwargs): """ Set any number of score, element-name pairs to the key ``name``. Pairs can be specified in two ways: As *args, in the form of: score1, name1, score2, name2, ... or as **kwargs, in the form of: name1=score1, name2=score2, ... The following example would add four values to the 'my-key' key: redis.zadd('my-key', 1.1, 'name1', 2.2, 'name2', name3=3.3, name4=4.4) """ pieces = [] if args: if len(args) % 2 != 0: raise RedisError("ZADD requires an equal number of " "values and scores") pieces.extend(args) for pair in kwargs.iteritems(): pieces.append(pair[1]) pieces.append(pair[0]) return self.execute_command('ZADD', name, *pieces) def zcard(self, name): "Return the number of elements in the sorted set ``name``" return self.execute_command('ZCARD', name) def zcount(self, name, min, max): return self.execute_command('ZCOUNT', name, min, max) def zincrby(self, name, value, amount=1): "Increment the score of ``value`` in sorted set ``name`` by ``amount``" return self.execute_command('ZINCRBY', name, amount, value) def zinterstore(self, dest, keys, aggregate=None): """ Intersect multiple sorted sets specified by ``keys`` into a new sorted set, ``dest``. Scores in the destination will be aggregated based on the ``aggregate``, or SUM if none is provided. """ return self._zaggregate('ZINTERSTORE', dest, keys, aggregate) def zrange(self, name, start, end, desc=False, withscores=False, score_cast_func=float): """ Return a range of values from sorted set ``name`` between ``start`` and ``end`` sorted in ascending order. ``start`` and ``end`` can be negative, indicating the end of the range. ``desc`` a boolean indicating whether to sort the results descendingly ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ if desc: return self.zrevrange(name, start, end, withscores) pieces = ['ZRANGE', name, start, end] if withscores: pieces.append('withscores') options = {'withscores': withscores, 'score_cast_func': score_cast_func} return self.execute_command(*pieces, **options) def zrangebyscore(self, name, min, max, start=None, num=None, withscores=False, score_cast_func=float): """ Return a range of values from the sorted set ``name`` with scores between ``min`` and ``max``. If ``start`` and ``num`` are specified, then return a slice of the range. ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs `score_cast_func`` a callable used to cast the score return value """ if (start is not None and num is None) or \ (num is not None and start is None): raise RedisError("``start`` and ``num`` must both be specified") pieces = ['ZRANGEBYSCORE', name, min, max] if start is not None and num is not None: pieces.extend(['LIMIT', start, num]) if withscores: pieces.append('withscores') options = {'withscores': withscores, 'score_cast_func': score_cast_func} return self.execute_command(*pieces, **options) def zrank(self, name, value): """ Returns a 0-based value indicating the rank of ``value`` in sorted set ``name`` """ return self.execute_command('ZRANK', name, value) def zrem(self, name, *values): "Remove member ``values`` from sorted set ``name``" return self.execute_command('ZREM', name, *values) def zremrangebyrank(self, name, min, max): """ Remove all elements in the sorted set ``name`` with ranks between ``min`` and ``max``. Values are 0-based, ordered from smallest score to largest. Values can be negative indicating the highest scores. Returns the number of elements removed """ return self.execute_command('ZREMRANGEBYRANK', name, min, max) def zremrangebyscore(self, name, min, max): """ Remove all elements in the sorted set ``name`` with scores between ``min`` and ``max``. Returns the number of elements removed. """ return self.execute_command('ZREMRANGEBYSCORE', name, min, max) def zrevrange(self, name, start, num, withscores=False, score_cast_func=float): """ Return a range of values from sorted set ``name`` between ``start`` and ``num`` sorted in descending order. ``start`` and ``num`` can be negative, indicating the end of the range. ``withscores`` indicates to return the scores along with the values The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ pieces = ['ZREVRANGE', name, start, num] if withscores: pieces.append('withscores') options = {'withscores': withscores, 'score_cast_func': score_cast_func} return self.execute_command(*pieces, **options) def zrevrangebyscore(self, name, max, min, start=None, num=None, withscores=False, score_cast_func=float): """ Return a range of values from the sorted set ``name`` with scores between ``min`` and ``max`` in descending order. If ``start`` and ``num`` are specified, then return a slice of the range. ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ if (start is not None and num is None) or \ (num is not None and start is None): raise RedisError("``start`` and ``num`` must both be specified") pieces = ['ZREVRANGEBYSCORE', name, max, min] if start is not None and num is not None: pieces.extend(['LIMIT', start, num]) if withscores: pieces.append('withscores') options = {'withscores': withscores, 'score_cast_func': score_cast_func} return self.execute_command(*pieces, **options) def zrevrank(self, name, value): """ Returns a 0-based value indicating the descending rank of ``value`` in sorted set ``name`` """ return self.execute_command('ZREVRANK', name, value) def zscore(self, name, value): "Return the score of element ``value`` in sorted set ``name``" return self.execute_command('ZSCORE', name, value) def zunionstore(self, dest, keys, aggregate=None): """ Union multiple sorted sets specified by ``keys`` into a new sorted set, ``dest``. Scores in the destination will be aggregated based on the ``aggregate``, or SUM if none is provided. """ return self._zaggregate('ZUNIONSTORE', dest, keys, aggregate) def _zaggregate(self, command, dest, keys, aggregate=None): pieces = [command, dest, len(keys)] if isinstance(keys, dict): keys, weights = keys.keys(), keys.values() else: weights = None pieces.extend(keys) if weights: pieces.append('WEIGHTS') pieces.extend(weights) if aggregate: pieces.append('AGGREGATE') pieces.append(aggregate) return self.execute_command(*pieces) #### HASH COMMANDS #### def hdel(self, name, *keys): "Delete ``keys`` from hash ``name``" return self.execute_command('HDEL', name, *keys) def hexists(self, name, key): "Returns a boolean indicating if ``key`` exists within hash ``name``" return self.execute_command('HEXISTS', name, key) def hget(self, name, key): "Return the value of ``key`` within the hash ``name``" return self.execute_command('HGET', name, key) def hgetall(self, name): "Return a Python dict of the hash's name/value pairs" return self.execute_command('HGETALL', name) def hincrby(self, name, key, amount=1): "Increment the value of ``key`` in hash ``name`` by ``amount``" return self.execute_command('HINCRBY', name, key, amount) def hkeys(self, name): "Return the list of keys within hash ``name``" return self.execute_command('HKEYS', name) def hlen(self, name): "Return the number of elements in hash ``name``" return self.execute_command('HLEN', name) def hset(self, name, key, value): """ Set ``key`` to ``value`` within hash ``name`` Returns 1 if HSET created a new field, otherwise 0 """ return self.execute_command('HSET', name, key, value) def hsetnx(self, name, key, value): """ Set ``key`` to ``value`` within hash ``name`` if ``key`` does not exist. Returns 1 if HSETNX created a field, otherwise 0. """ return self.execute_command("HSETNX", name, key, value) def hmset(self, name, mapping): """ Sets each key in the ``mapping`` dict to its corresponding value in the hash ``name`` """ if not mapping: raise DataError("'hmset' with 'mapping' of length 0") items = [] for pair in mapping.iteritems(): items.extend(pair) return self.execute_command('HMSET', name, *items) def hmget(self, name, keys): "Returns a list of values ordered identically to ``keys``" return self.execute_command('HMGET', name, *keys) def hvals(self, name): "Return the list of values within hash ``name``" return self.execute_command('HVALS', name) def publish(self, channel, message): """ Publish ``message`` on ``channel``. Returns the number of subscribers the message was delivered to. """ return self.execute_command('PUBLISH', channel, message) def eval(self, script, numkeys, *keys_and_args): """ Execute the LUA ``script``, specifying the ``numkeys`` the script will touch and the key names and argument values in ``keys_and_args``. Returns the result of the script. In practice, use the object returned by ``register_script``. This function exists purely for Redis API completion. """ return self.execute_command('EVAL', script, numkeys, *keys_and_args) def evalsha(self, sha, numkeys, *keys_and_args): """ Use the ``sha`` to execute a LUA script already registered via EVAL or SCRIPT LOAD. Specify the ``numkeys`` the script will touch and the key names and argument values in ``keys_and_args``. Returns the result of the script. In practice, use the object returned by ``register_script``. This function exists purely for Redis API completion. """ return self.execute_command('EVALSHA', sha, numkeys, *keys_and_args) def script_exists(self, *args): """ Check if a script exists in the script cache by specifying the SHAs of each script as ``args``. Returns a list of boolean values indicating if if each already script exists in the cache. """ options = {'parse': 'EXISTS'} return self.execute_command('SCRIPT', 'EXISTS', *args, **options) def script_flush(self): "Flush all scripts from the script cache" options = {'parse': 'FLUSH'} return self.execute_command('SCRIPT', 'FLUSH', **options) def script_kill(self): "Kill the currently executing LUA script" options = {'parse': 'KILL'} return self.execute_command('SCRIPT', 'KILL', **options) def script_load(self, script): "Load a LUA ``script`` into the script cache. Returns the SHA." options = {'parse': 'LOAD'} return self.execute_command('SCRIPT', 'LOAD', script, **options) class Redis(StrictRedis): """ Provides backwards compatibility with older versions of redis-py that changed arguments to some commands to be more Pythonic, sane, or by accident. """ def pipeline(self, transaction=False, shard_hint=None): """ Return a new pipeline object that can queue multiple commands for later execution. ``transaction`` indicates whether all commands should be executed atomically. Apart from making a group of operations atomic, pipelines are useful for reducing the back-and-forth overhead between the client and server. """ return Pipeline( self.connection_pool, self.response_callbacks, transaction, shard_hint) def setex(self, name, value, time): """ Set the value of key ``name`` to ``value`` that expires in ``time`` seconds """ return self.execute_command('SETEX', name, time, value) def lrem(self, name, value, num=0): """ Remove the first ``num`` occurrences of elements equal to ``value`` from the list stored at ``name``. The ``num`` argument influences the operation in the following ways: num > 0: Remove elements equal to value moving from head to tail. num < 0: Remove elements equal to value moving from tail to head. num = 0: Remove all elements equal to value. """ return self.execute_command('LREM', name, num, value) def zadd(self, name, *args, **kwargs): """ NOTE: The order of arguments differs from that of the official ZADD command. For backwards compatability, this method accepts arguments in the form of name1, score1, name2, score2, while the official Redis documents expects score1, name1, score2, name2. If you're looking to use the standard syntax, consider using the StrictRedis class. See the API Reference section of the docs for more information. Set any number of element-name, score pairs to the key ``name``. Pairs can be specified in two ways: As *args, in the form of: name1, score1, name2, score2, ... or as **kwargs, in the form of: name1=score1, name2=score2, ... The following example would add four values to the 'my-key' key: redis.zadd('my-key', 'name1', 1.1, 'name2', 2.2, name3=3.3, name4=4.4) """ pieces = [] if args: if len(args) % 2 != 0: raise RedisError("ZADD requires an equal number of " "values and scores") pieces.extend(reversed(args)) for pair in kwargs.iteritems(): pieces.append(pair[1]) pieces.append(pair[0]) return self.execute_command('ZADD', name, *pieces) class PubSub(object): """ PubSub provides publish, subscribe and listen support to Redis channels. After subscribing to one or more channels, the listen() method will block until a message arrives on one of the subscribed channels. That message will be returned and it's safe to start listening again. """ def __init__(self, connection_pool, shard_hint=None): self.connection_pool = connection_pool self.shard_hint = shard_hint self.connection = None self.channels = set() self.patterns = set() self.subscription_count = 0 self.subscribe_commands = set( ('subscribe', 'psubscribe', 'unsubscribe', 'punsubscribe') ) def execute_command(self, *args, **kwargs): "Execute a publish/subscribe command" if self.connection is None: self.connection = self.connection_pool.get_connection( 'pubsub', self.shard_hint ) connection = self.connection try: connection.send_command(*args) return self.parse_response() except ConnectionError: connection.disconnect() # resubscribe to all channels and patterns before # resending the current command for channel in self.channels: self.subscribe(channel) for pattern in self.patterns: self.psubscribe(pattern) connection.send_command(*args) return self.parse_response() def parse_response(self): "Parse the response from a publish/subscribe command" response = self.connection.read_response() if response[0] in self.subscribe_commands: self.subscription_count = response[2] # if we've just unsubscribed from the remaining channels, # release the connection back to the pool if not self.subscription_count: self.connection_pool.release(self.connection) self.connection = None return response def psubscribe(self, patterns): "Subscribe to all channels matching any pattern in ``patterns``" if isinstance(patterns, basestring): patterns = [patterns] for pattern in patterns: self.patterns.add(pattern) return self.execute_command('PSUBSCRIBE', *patterns) def punsubscribe(self, patterns=[]): """ Unsubscribe from any channel matching any pattern in ``patterns``. If empty, unsubscribe from all channels. """ if isinstance(patterns, basestring): patterns = [patterns] for pattern in patterns: try: self.patterns.remove(pattern) except KeyError: pass return self.execute_command('PUNSUBSCRIBE', *patterns) def subscribe(self, channels): "Subscribe to ``channels``, waiting for messages to be published" if isinstance(channels, basestring): channels = [channels] for channel in channels: self.channels.add(channel) return self.execute_command('SUBSCRIBE', *channels) def unsubscribe(self, channels=[]): """ Unsubscribe from ``channels``. If empty, unsubscribe from all channels """ if isinstance(channels, basestring): channels = [channels] for channel in channels: try: self.channels.remove(channel) except KeyError: pass return self.execute_command('UNSUBSCRIBE', *channels) def listen(self): "Listen for messages on channels this client has been subscribed to" while self.subscription_count: r = self.parse_response() if r[0] == 'pmessage': msg = { 'type': r[0], 'pattern': r[1], 'channel': r[2], 'data': r[3] } else: msg = { 'type': r[0], 'pattern': None, 'channel': r[1], 'data': r[2] } yield msg class BasePipeline(object): """ Pipelines provide a way to transmit multiple commands to the Redis server in one transmission. This is convenient for batch processing, such as saving all the values in a list to Redis. All commands executed within a pipeline are wrapped with MULTI and EXEC calls. This guarantees all commands executed in the pipeline will be executed atomically. Any command raising an exception does *not* halt the execution of subsequent commands in the pipeline. Instead, the exception is caught and its instance is placed into the response list returned by execute(). Code iterating over the response list should be able to deal with an instance of an exception as a potential value. In general, these will be ResponseError exceptions, such as those raised when issuing a command on a key of a different datatype. """ UNWATCH_COMMANDS = set(('DISCARD', 'EXEC', 'UNWATCH')) def __init__(self, connection_pool, response_callbacks, transaction, shard_hint): self.connection_pool = connection_pool self.connection = None self.response_callbacks = response_callbacks if transaction: pass # TODO enable this when we're all nutcracker-d # raise RedisError("Transactions are no longer supported") self.transaction = transaction self.shard_hint = shard_hint self.watching = False self.in_scatter_gather = False self.reset() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.reset() def reset(self): self.command_stack = [] # make sure to reset the connection state in the event that we were # watching something if self.watching and self.connection: try: # call this manually since our unwatch or # immediate_execute_command methods can call reset() self.connection.send_command('UNWATCH') self.connection.read_response() except ConnectionError: # disconnect will also remove any previous WATCHes self.connection.disconnect() # clean up the other instance attributes self.watching = False self.explicit_transaction = False # we can safely return the connection to the pool here since we're # sure we're no longer WATCHing anything if self.connection: self.connection_pool.release(self.connection) self.connection = None def multi(self): """ Start a transactional block of the pipeline after WATCH commands are issued. End the transactional block with `execute`. """ if self.explicit_transaction: raise RedisError('Cannot issue nested calls to MULTI') if self.command_stack: raise RedisError('Commands without an initial WATCH have already ' 'been issued') self.explicit_transaction = True def execute_command(self, *args, **kwargs): if (self.watching or args[0] == 'WATCH') and \ not self.explicit_transaction: return self.immediate_execute_command(*args, **kwargs) return self.pipeline_execute_command(*args, **kwargs) def immediate_execute_command(self, *args, **options): """ Execute a command immediately, but don't auto-retry on a ConnectionError if we're already WATCHing a variable. Used when issuing WATCH or subsequent commands retrieving their values but before MULTI is called. """ command_name = args[0] conn = self.connection # if this is the first call, we need a connection if not conn: conn = self.connection_pool.get_connection(command_name, self.shard_hint) self.connection = conn try: conn.send_command(*args) return self.parse_response(conn, command_name, **options) except ConnectionError: conn.disconnect() # if we're not already watching, we can safely retry the command # assuming it was a connection timeout if not self.watching: conn.send_command(*args) return self.parse_response(conn, command_name, **options) self.reset() raise def pipeline_execute_command(self, *args, **options): """ Stage a command to be executed when execute() is next called Returns the current Pipeline object back so commands can be chained together, such as: pipe = pipe.set('foo', 'bar').incr('baz').decr('bang') At some other point, you can then run: pipe.execute(), which will execute all commands queued in the pipe. """ if self.in_scatter_gather: raise RedisError("You must gather() your data before adding another command to the pipeline") self.command_stack.append((args, options)) return self def _execute_transaction(self, connection, commands): all_cmds = ''.join(starmap(connection.pack_command, [args for args, options in commands])) connection.send_packed_command(all_cmds) # we don't care about the multi/exec any longer commands = commands[1:-1] # parse off the response for MULTI and all commands prior to EXEC. # the only data we care about is the response the EXEC # which is the last command for i in range(len(commands)+1): self.parse_response(connection, '_') # parse the EXEC. response = self.parse_response(connection, '_') if response is None: raise WatchError("Watched variable changed.") if len(response) != len(commands): raise ResponseError("Wrong number of response items from " "pipeline execution") # We have to run response callbacks manually data = [] for r, cmd in izip(response, commands): if not isinstance(r, Exception): args, options = cmd command_name = args[0] if command_name in self.response_callbacks: r = self.response_callbacks[command_name](r, **options) data.append(r) return data def _execute_pipeline(self, connection, commands, scatter_gather=False, retry=True): # build up all commands into a single request to increase network perf all_cmds = ''.join(starmap(connection.pack_command, [args for args, options in commands])) connection.send_packed_command(all_cmds) def _gather(): if scatter_gather and not self.in_scatter_gather: raise RedisError("Can't gather results twice") try: return [self.parse_response(connection, args[0], **options) for args, options in commands] except ConnectionError, e: connection.disconnect() self.in_scatter_gather = False if retry: return self._execute_pipeline(connection, commands, scatter_gather=False, retry=False) else: raise e finally: if self.in_scatter_gather: self.in_scatter_gather = False self.reset() if scatter_gather: self.in_scatter_gather = True return _gather else: return _gather() def parse_response(self, connection, command_name, **options): result = StrictRedis.parse_response( self, connection, command_name, **options) if command_name in self.UNWATCH_COMMANDS: self.watching = False elif command_name == 'WATCH': self.watching = True return result def execute(self, scatter_gather=False): "Execute all the commands in the current pipeline" stack = self.command_stack if self.transaction or self.explicit_transaction: stack = [(('MULTI' ,), {})] + stack + [(('EXEC', ), {})] execute = self._execute_transaction if scatter_gather: raise RedisError("Transactions don't support scatter/gather") else: execute = self._execute_pipeline conn = self.connection if not conn: conn = self.connection_pool.get_connection('MULTI', self.shard_hint) # assign to self.connection so reset() releases the connection # back to the pool after we're done self.connection = conn execute_kwargs = {'scatter_gather': scatter_gather} if scatter_gather else {} try: return execute(conn, stack, **execute_kwargs) except ConnectionError: conn.disconnect() # if we were watching a variable, the watch is no longer valid since # this connection has died. raise a WatchError, which indicates # the user should retry his transaction. If this is more than a # temporary failure, the WATCH that the user next issue will fail, # propegating the real ConnectionError if self.watching: raise WatchError("A ConnectionError occured on while watching " "one or more keys") # otherwise, it's safe to retry since the transaction isn't # predicated on any state return execute(conn, stack, **execute_kwargs) finally: if not scatter_gather: self.reset() def watch(self, *names): """ Watches the values at keys ``names`` """ if self.explicit_transaction: raise RedisError('Cannot issue a WATCH after a MULTI') return self.execute_command('WATCH', *names) def unwatch(self): """ Unwatches all previously specified keys """ return self.watching and self.execute_command('UNWATCH') or True class StrictPipeline(BasePipeline, StrictRedis): "Pipeline for the StrictRedis class" pass class Pipeline(BasePipeline, Redis): "Pipeline for the Redis class" pass class LockError(RedisError): "Errors thrown from the Lock" pass class Lock(object): """ A shared, distributed Lock. Using Redis for locking allows the Lock to be shared across processes and/or machines. It's left to the user to resolve deadlock issues and make sure multiple clients play nicely together. """ LOCK_FOREVER = float(2**31+1) # 1 past max unix time def __init__(self, redis, name, timeout=None, sleep=0.1): """ Create a new Lock instnace named ``name`` using the Redis client supplied by ``redis``. ``timeout`` indicates a maximum life for the lock. By default, it will remain locked until release() is called. ``sleep`` indicates the amount of time to sleep per loop iteration when the lock is in blocking mode and another client is currently holding the lock. Note: If using ``timeout``, you should make sure all the hosts that are running clients have their time synchronized with a network time service like ntp. """ self.redis = redis self.name = name self.acquired_until = None self.timeout = timeout self.sleep = sleep if self.timeout and self.sleep > self.timeout: raise LockError("'sleep' must be less than 'timeout'") def __enter__(self): return self.acquire() def __exit__(self, exc_type, exc_value, traceback): self.release() def acquire(self, blocking=True): """ Use Redis to hold a shared, distributed lock named ``name``. Returns True once the lock is acquired. If ``blocking`` is False, always return immediately. If the lock was acquired, return True, otherwise return False. """ sleep = self.sleep timeout = self.timeout while 1: unixtime = int(time.time()) if timeout: timeout_at = unixtime + timeout else: timeout_at = Lock.LOCK_FOREVER timeout_at = float(timeout_at) if self.redis.setnx(self.name, timeout_at): self.acquired_until = timeout_at return True # We want blocking, but didn't acquire the lock # check to see if the current lock is expired existing = float(self.redis.get(self.name) or 1) if existing < unixtime: # the previous lock is expired, attempt to overwrite it existing = float(self.redis.getset(self.name, timeout_at) or 1) if existing < unixtime: # we successfully acquired the lock self.acquired_until = timeout_at return True if not blocking: return False time.sleep(sleep) def release(self): "Releases the already acquired lock" if self.acquired_until is None: raise ValueError("Cannot release an unlocked lock") existing = float(self.redis.get(self.name) or 1) # if the lock time is in the future, delete the lock if existing >= self.acquired_until: self.redis.delete(self.name) self.acquired_until = None
{ "content_hash": "2ddb74ef223fd9470ffe852284ebda88", "timestamp": "", "source": "github", "line_count": 1658, "max_line_length": 106, "avg_line_length": 37.51568154402895, "alnum_prop": 0.5907782833073423, "repo_name": "Instagram/redis-py", "id": "43222d6dcb6fe010c490930047a72fd9901cf582", "size": "62201", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "redis/client.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "136974" } ], "symlink_target": "" }
def n_(num, strng): return strng if num == 1 else strng + 's'
{ "content_hash": "1bb8b0bccc9b061dd40c855f4296ae8a", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 45, "avg_line_length": 33, "alnum_prop": 0.5909090909090909, "repo_name": "resmio/nslocapysation", "id": "4b6a788b418d643aff6c592d027251d510d3953c", "size": "68", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nslocapysation/utils/n_.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "36854" } ], "symlink_target": "" }
import pygame, random from pygame.locals import * pygame.init() pygame.mixer.init() size = width, height = 500, 500 screen = pygame.display.set_mode((size)) pygame.display.set_caption("Run away Spidy") bg = pygame.image.load("img/bg.png") bg = bg.convert() bgrect = bg.get_rect() screen.blit(bg, (0,0)) song = pygame.mixer.Sound("wav/song.wav") vl = pygame.mixer.Sound("wav/vl.wav") #pygame.mixer.music.play(-1) #song.play() pygame.mouse.set_visible(False) sm = pygame.image.load("img/sm.gif") smrect = sm.get_rect() ouch = pygame.image.load("img/ouch.jpg") ouchR = ouch.get_rect() v = pygame.image.load("img/v.gif") vrect = v.get_rect() web = pygame.image.load("img/web.jpg") webrect = web.get_rect() black = 0, 0, 0 white = 250,250,250 print(smrect) smrect.move_ip(10,10) vrect.move_ip(100,100) while True: for event in pygame.event.get(): if event.type == KEYDOWN and event.key == K_ESCAPE: pygame.quit() if event.type == KEYDOWN and event.key == K_DOWN: smrect = smrect.move([0,10]) if event.type == KEYDOWN and event.key == K_UP: smrect = smrect.move([0,-10]) if event.type == KEYDOWN and event.key == K_RIGHT: smrect = smrect.move([10,0]) if event.type == KEYDOWN and event.key == K_LEFT: smrect = smrect.move([-10,0]) screen.fill(white) #screen.blit(bg, (0,0)) print("sm",smrect) print("v ",vrect) print("collide",vrect.collidelist([smrect]) ) if vrect.collidelist([smrect])==0: vl.play() screen.blit(ouch,ouchR) pygame.display.flip() pygame.time.delay(3000) pygame.quit() print("random",random.randint(-10,10)) x=random.randint(-1,1) y=random.randint(-1,1) speed=20 vrect = vrect.move([x*speed,y*speed]) print("contains",webrect.contains(smrect) ) screen.blit(web,webrect) screen.blit(sm, smrect) screen.blit(v, vrect) pygame.display.flip() pygame.time.delay(100) pygame.quit() # smrect = smrect.move(speed) # if smrect.left < 0 or smrect.right > width: # speed[0] = -speed[0] # if smrect.top < 0 or smrect.bottom > height: # speed[1] = -speed[1]
{ "content_hash": "372376fc148f6be2125bf518fccd2c7a", "timestamp": "", "source": "github", "line_count": 87, "max_line_length": 55, "avg_line_length": 24.114942528735632, "alnum_prop": 0.6506196377502383, "repo_name": "bszcz/python", "id": "e45dbcd582d274c73894399714ad5c6f4767b55c", "size": "2170", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "run_away_spidy_1.py", "mode": "33188", "license": "mit", "language": [ { "name": "Gnuplot", "bytes": "1248" }, { "name": "Python", "bytes": "40016" }, { "name": "Shell", "bytes": "805" } ], "symlink_target": "" }
''' test for vm migrate with assigned host uuid in newly add vcenter @author: SyZhao ''' import apibinding.inventory as inventory import zstackwoodpecker.test_util as test_util import zstackwoodpecker.test_lib as test_lib import zstackwoodpecker.test_state as test_state import zstackwoodpecker.operations.vm_operations as vm_ops import zstackwoodpecker.operations.vcenter_operations as vct_ops import zstackwoodpecker.operations.resource_operations as res_ops import zstacklib.utils.ssh as ssh import test_stub import os vcenter_uuid = None another_host_uuid = None vm = None def test(): global vcenter_uuid, vm vcenter1_name = os.environ['vcenter2_name'] vcenter1_domain_name = os.environ['vcenter2_ip'] vcenter1_username = os.environ['vcenter2_domain_name'] vcenter1_password = os.environ['vcenter2_password'] ova_image_name = os.environ['vcenter2_template_exist'] network_pattern1 = os.environ['vcenter2_network_pattern1'] zone_uuid = res_ops.get_resource(res_ops.ZONE)[0].uuid inv = vct_ops.add_vcenter(vcenter1_name, vcenter1_domain_name, vcenter1_username, vcenter1_password, True, zone_uuid) vcenter_uuid = inv.uuid if vcenter_uuid == None: test_util.test_fail("vcenter_uuid is None") #this test suppose user has already deployed a cluster with more than 2 hosts included, #the vm is created in one of the host, then start the vm with another host uuid, #which leads vm migration triggering. vm = test_stub.create_vm_in_vcenter(vm_name = 'vm-start-stop-test', image_name = ova_image_name, l3_name = network_pattern1) vm.check() vm.stop() vm.check() vm_host_uuid = test_lib.lib_get_vm_host(vm.get_vm()).uuid host_cond = res_ops.gen_query_conditions("status", '=', "Connected") host_uuids = res_ops.query_resource_fields(res_ops.HOST, host_cond, None, fields=['uuid']) for host_uuid in host_uuids: if host_uuid != vm_host_uuid: another_host_uuid = host_uuid break test_stub.start_vm_with_host_uuid(vm.get_vm(), vm_host_uuid) vm.check() vm.destroy() vm.check() vm.expunge() vct_ops.delete_vcenter(vcenter_uuid) test_util.test_pass("vm start and stop of vcenter test passed.") def error_cleanup(): global vcenter_uuid, vm if vm: vm.destroy() vm.expunge() if vcenter_uuid: vct_ops.delete_vcenter(vcenter_uuid)
{ "content_hash": "94b92a0463a25f4bf08cad9c0c611a4e", "timestamp": "", "source": "github", "line_count": 75, "max_line_length": 128, "avg_line_length": 33.333333333333336, "alnum_prop": 0.6788, "repo_name": "zstackorg/zstack-woodpecker", "id": "ed9617746a27c3faea48af67e130fcd01b2ee340", "size": "2500", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "integrationtest/vm/vcenter/test_vcenter_vm_migrate_by_vm_start.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Go", "bytes": "46522" }, { "name": "Makefile", "bytes": "692" }, { "name": "Puppet", "bytes": "875" }, { "name": "Python", "bytes": "2891030" }, { "name": "Shell", "bytes": "54266" } ], "symlink_target": "" }
from __future__ import unicode_literals from datetime import date from django import forms from django.contrib.admin import BooleanFieldListFilter, SimpleListFilter from django.contrib.admin.options import ( HORIZONTAL, VERTICAL, ModelAdmin, TabularInline, ) from django.contrib.admin.sites import AdminSite from django.contrib.admin.widgets import AdminDateWidget, AdminRadioSelect from django.core.checks import Error from django.forms.models import BaseModelFormSet from django.forms.widgets import Select from django.test import SimpleTestCase, TestCase from django.utils import six from .models import ( Band, Concert, ValidationTestInlineModel, ValidationTestModel, ) class MockRequest(object): pass class MockSuperUser(object): def has_perm(self, perm): return True request = MockRequest() request.user = MockSuperUser() class ModelAdminTests(TestCase): def setUp(self): self.band = Band.objects.create( name='The Doors', bio='', sign_date=date(1965, 1, 1), ) self.site = AdminSite() # form/fields/fieldsets interaction ############################## def test_default_fields(self): ma = ModelAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'bio', 'sign_date']) self.assertEqual(list(ma.get_fields(request)), ['name', 'bio', 'sign_date']) self.assertEqual(list(ma.get_fields(request, self.band)), ['name', 'bio', 'sign_date']) def test_default_fieldsets(self): # fieldsets_add and fieldsets_change should return a special data structure that # is used in the templates. They should generate the "right thing" whether we # have specified a custom form, the fields argument, or nothing at all. # # Here's the default case. There are no custom form_add/form_change methods, # no fields argument, and no fieldsets argument. ma = ModelAdmin(Band, self.site) self.assertEqual(ma.get_fieldsets(request), [(None, {'fields': ['name', 'bio', 'sign_date']})]) self.assertEqual(ma.get_fieldsets(request, self.band), [(None, {'fields': ['name', 'bio', 'sign_date']})]) def test_get_fieldsets(self): # Test that get_fieldsets is called when figuring out form fields. # Refs #18681. class BandAdmin(ModelAdmin): def get_fieldsets(self, request, obj=None): return [(None, {'fields': ['name', 'bio']})] ma = BandAdmin(Band, self.site) form = ma.get_form(None) self.assertEqual(form._meta.fields, ['name', 'bio']) class InlineBandAdmin(TabularInline): model = Concert fk_name = 'main_band' can_delete = False def get_fieldsets(self, request, obj=None): return [(None, {'fields': ['day', 'transport']})] ma = InlineBandAdmin(Band, self.site) form = ma.get_formset(None).form self.assertEqual(form._meta.fields, ['day', 'transport']) def test_lookup_allowed_allows_nonexistent_lookup(self): """ Ensure that a lookup_allowed allows a parameter whose field lookup doesn't exist. Refs #21129. """ class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertTrue(ma.lookup_allowed('name__nonexistent', 'test_value')) def test_field_arguments(self): # If we specify the fields argument, fieldsets_add and fieldsets_change should # just stick the fields into a formsets structure and return it. class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_fields(request)), ['name']) self.assertEqual(list(ma.get_fields(request, self.band)), ['name']) self.assertEqual(ma.get_fieldsets(request), [(None, {'fields': ['name']})]) self.assertEqual(ma.get_fieldsets(request, self.band), [(None, {'fields': ['name']})]) def test_field_arguments_restricted_on_form(self): # If we specify fields or fieldsets, it should exclude fields on the Form class # to the fields specified. This may cause errors to be raised in the db layer if # required model fields aren't in fields/fieldsets, but that's preferable to # ghost errors where you have a field in your Form class that isn't being # displayed because you forgot to add it to fields/fieldsets # Using `fields`. class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) self.assertEqual(list(ma.get_form(request, self.band).base_fields), ['name']) # Using `fieldsets`. class BandAdmin(ModelAdmin): fieldsets = [(None, {'fields': ['name']})] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) self.assertEqual(list(ma.get_form(request, self.band).base_fields), ['name']) # Using `exclude`. class BandAdmin(ModelAdmin): exclude = ['bio'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) # You can also pass a tuple to `exclude`. class BandAdmin(ModelAdmin): exclude = ('bio',) ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) # Using `fields` and `exclude`. class BandAdmin(ModelAdmin): fields = ['name', 'bio'] exclude = ['bio'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) def test_custom_form_meta_exclude_with_readonly(self): """ Ensure that the custom ModelForm's `Meta.exclude` is respected when used in conjunction with `ModelAdmin.readonly_fields` and when no `ModelAdmin.exclude` is defined. Refs #14496. """ # First, with `ModelAdmin` ----------------------- class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['bio'] class BandAdmin(ModelAdmin): readonly_fields = ['name'] form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['sign_date']) # Then, with `InlineModelAdmin` ----------------- class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): readonly_fields = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets_with_inlines(request))[0][0]().forms[0].fields), ['main_band', 'opening_band', 'id', 'DELETE']) def test_custom_formfield_override_readonly(self): class AdminBandForm(forms.ModelForm): name = forms.CharField() class Meta: exclude = tuple() model = Band class BandAdmin(ModelAdmin): form = AdminBandForm readonly_fields = ['name'] ma = BandAdmin(Band, self.site) # `name` shouldn't appear in base_fields because it's part of # readonly_fields. self.assertEqual( list(ma.get_form(request).base_fields), ['bio', 'sign_date'] ) # But it should appear in get_fields()/fieldsets() so it can be # displayed as read-only. self.assertEqual( list(ma.get_fields(request)), ['bio', 'sign_date', 'name'] ) self.assertEqual( list(ma.get_fieldsets(request)), [(None, {'fields': ['bio', 'sign_date', 'name']})] ) def test_custom_form_meta_exclude(self): """ Ensure that the custom ModelForm's `Meta.exclude` is overridden if `ModelAdmin.exclude` or `InlineModelAdmin.exclude` are defined. Refs #14496. """ # First, with `ModelAdmin` ----------------------- class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['bio'] class BandAdmin(ModelAdmin): exclude = ['name'] form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['bio', 'sign_date']) # Then, with `InlineModelAdmin` ----------------- class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): exclude = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets_with_inlines(request))[0][0]().forms[0].fields), ['main_band', 'opening_band', 'day', 'id', 'DELETE']) def test_custom_form_validation(self): # If we specify a form, it should use it allowing custom validation to work # properly. This won't, however, break any of the admin widgets or media. class AdminBandForm(forms.ModelForm): delete = forms.BooleanField() class BandAdmin(ModelAdmin): form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'bio', 'sign_date', 'delete']) self.assertEqual( type(ma.get_form(request).base_fields['sign_date'].widget), AdminDateWidget) def test_form_exclude_kwarg_override(self): """ Ensure that the `exclude` kwarg passed to `ModelAdmin.get_form()` overrides all other declarations. Refs #8999. """ class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['name'] class BandAdmin(ModelAdmin): exclude = ['sign_date'] form = AdminBandForm def get_form(self, request, obj=None, **kwargs): kwargs['exclude'] = ['bio'] return super(BandAdmin, self).get_form(request, obj, **kwargs) ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) def test_formset_exclude_kwarg_override(self): """ Ensure that the `exclude` kwarg passed to `InlineModelAdmin.get_formset()` overrides all other declarations. Refs #8999. """ class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): exclude = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert def get_formset(self, request, obj=None, **kwargs): kwargs['exclude'] = ['opening_band'] return super(ConcertInline, self).get_formset(request, obj, **kwargs) class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets_with_inlines(request))[0][0]().forms[0].fields), ['main_band', 'day', 'transport', 'id', 'DELETE']) def test_queryset_override(self): # If we need to override the queryset of a ModelChoiceField in our custom form # make sure that RelatedFieldWidgetWrapper doesn't mess that up. band2 = Band(name='The Beatles', bio='', sign_date=date(1962, 1, 1)) band2.save() class ConcertAdmin(ModelAdmin): pass ma = ConcertAdmin(Concert, self.site) form = ma.get_form(request)() self.assertHTMLEqual(str(form["main_band"]), '<div class="related-widget-wrapper">' '<select name="main_band" id="id_main_band">' '<option value="" selected="selected">---------</option>' '<option value="%d">The Beatles</option>' '<option value="%d">The Doors</option>' '</select></div>' % (band2.id, self.band.id)) class AdminConcertForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(AdminConcertForm, self).__init__(*args, **kwargs) self.fields["main_band"].queryset = Band.objects.filter(name='The Doors') class ConcertAdminWithForm(ModelAdmin): form = AdminConcertForm ma = ConcertAdminWithForm(Concert, self.site) form = ma.get_form(request)() self.assertHTMLEqual(str(form["main_band"]), '<div class="related-widget-wrapper">' '<select name="main_band" id="id_main_band">' '<option value="" selected="selected">---------</option>' '<option value="%d">The Doors</option>' '</select></div>' % self.band.id) def test_regression_for_ticket_15820(self): """ Ensure that `obj` is passed from `InlineModelAdmin.get_fieldsets()` to `InlineModelAdmin.get_formset()`. """ class CustomConcertForm(forms.ModelForm): class Meta: model = Concert fields = ['day'] class ConcertInline(TabularInline): model = Concert fk_name = 'main_band' def get_formset(self, request, obj=None, **kwargs): if obj: kwargs['form'] = CustomConcertForm return super(ConcertInline, self).get_formset(request, obj, **kwargs) class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] Concert.objects.create(main_band=self.band, opening_band=self.band, day=1) ma = BandAdmin(Band, self.site) inline_instances = ma.get_inline_instances(request) fieldsets = list(inline_instances[0].get_fieldsets(request)) self.assertEqual(fieldsets[0][1]['fields'], ['main_band', 'opening_band', 'day', 'transport']) fieldsets = list(inline_instances[0].get_fieldsets(request, inline_instances[0].model)) self.assertEqual(fieldsets[0][1]['fields'], ['day']) # radio_fields behavior ########################################### def test_default_foreign_key_widget(self): # First, without any radio_fields specified, the widgets for ForeignKey # and fields with choices specified ought to be a basic Select widget. # ForeignKey widgets in the admin are wrapped with RelatedFieldWidgetWrapper so # they need to be handled properly when type checking. For Select fields, all of # the choices lists have a first entry of dashes. cma = ModelAdmin(Concert, self.site) cmafa = cma.get_form(request) self.assertEqual(type(cmafa.base_fields['main_band'].widget.widget), Select) self.assertEqual( list(cmafa.base_fields['main_band'].widget.choices), [('', '---------'), (self.band.id, 'The Doors')]) self.assertEqual( type(cmafa.base_fields['opening_band'].widget.widget), Select) self.assertEqual( list(cmafa.base_fields['opening_band'].widget.choices), [('', '---------'), (self.band.id, 'The Doors')]) self.assertEqual(type(cmafa.base_fields['day'].widget), Select) self.assertEqual(list(cmafa.base_fields['day'].widget.choices), [('', '---------'), (1, 'Fri'), (2, 'Sat')]) self.assertEqual(type(cmafa.base_fields['transport'].widget), Select) self.assertEqual( list(cmafa.base_fields['transport'].widget.choices), [('', '---------'), (1, 'Plane'), (2, 'Train'), (3, 'Bus')]) def test_foreign_key_as_radio_field(self): # Now specify all the fields as radio_fields. Widgets should now be # RadioSelect, and the choices list should have a first entry of 'None' if # blank=True for the model field. Finally, the widget should have the # 'radiolist' attr, and 'inline' as well if the field is specified HORIZONTAL. class ConcertAdmin(ModelAdmin): radio_fields = { 'main_band': HORIZONTAL, 'opening_band': VERTICAL, 'day': VERTICAL, 'transport': HORIZONTAL, } cma = ConcertAdmin(Concert, self.site) cmafa = cma.get_form(request) self.assertEqual(type(cmafa.base_fields['main_band'].widget.widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['main_band'].widget.attrs, {'class': 'radiolist inline'}) self.assertEqual(list(cmafa.base_fields['main_band'].widget.choices), [(self.band.id, 'The Doors')]) self.assertEqual( type(cmafa.base_fields['opening_band'].widget.widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['opening_band'].widget.attrs, {'class': 'radiolist'}) self.assertEqual( list(cmafa.base_fields['opening_band'].widget.choices), [('', 'None'), (self.band.id, 'The Doors')]) self.assertEqual(type(cmafa.base_fields['day'].widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['day'].widget.attrs, {'class': 'radiolist'}) self.assertEqual(list(cmafa.base_fields['day'].widget.choices), [(1, 'Fri'), (2, 'Sat')]) self.assertEqual(type(cmafa.base_fields['transport'].widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['transport'].widget.attrs, {'class': 'radiolist inline'}) self.assertEqual(list(cmafa.base_fields['transport'].widget.choices), [('', 'None'), (1, 'Plane'), (2, 'Train'), (3, 'Bus')]) class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ('transport',) class ConcertAdmin(ModelAdmin): form = AdminConcertForm ma = ConcertAdmin(Concert, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['main_band', 'opening_band', 'day']) class AdminConcertForm(forms.ModelForm): extra = forms.CharField() class Meta: model = Concert fields = ['extra', 'transport'] class ConcertAdmin(ModelAdmin): form = AdminConcertForm ma = ConcertAdmin(Concert, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['extra', 'transport']) class ConcertInline(TabularInline): form = AdminConcertForm model = Concert fk_name = 'main_band' can_delete = True class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets_with_inlines(request))[0][0]().forms[0].fields), ['extra', 'transport', 'id', 'DELETE', 'main_band']) class CheckTestCase(SimpleTestCase): def assertIsInvalid(self, model_admin, model, msg, id=None, hint=None, invalid_obj=None): invalid_obj = invalid_obj or model_admin admin_obj = model_admin(model, AdminSite()) errors = admin_obj.check() expected = [ Error( msg, hint=hint, obj=invalid_obj, id=id, ) ] self.assertEqual(errors, expected) def assertIsInvalidRegexp(self, model_admin, model, msg, id=None, hint=None, invalid_obj=None): """ Same as assertIsInvalid but treats the given msg as a regexp. """ invalid_obj = invalid_obj or model_admin admin_obj = model_admin(model, AdminSite()) errors = admin_obj.check() self.assertEqual(len(errors), 1) error = errors[0] self.assertEqual(error.hint, hint) self.assertEqual(error.obj, invalid_obj) self.assertEqual(error.id, id) six.assertRegex(self, error.msg, msg) def assertIsValid(self, model_admin, model): admin_obj = model_admin(model, AdminSite()) errors = admin_obj.check() expected = [] self.assertEqual(errors, expected) class RawIdCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'raw_id_fields' must be a list or tuple.", 'admin.E001') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'raw_id_fields[0]' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E002') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('name',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'raw_id_fields[0]' must be a foreign key or a many-to-many field.", 'admin.E003') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('users',) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class FieldsetsCheckTests(CheckTestCase): def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {'fields': ('name',)}),) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fieldsets' must be a list or tuple.", 'admin.E007') def test_non_iterable_item(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = ({},) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fieldsets[0]' must be a list or tuple.", 'admin.E008') def test_item_not_a_pair(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = ((),) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fieldsets[0]' must be of length 2.", 'admin.E009') def test_second_element_of_item_not_a_dict(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", ()),) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fieldsets[0][1]' must be a dictionary.", 'admin.E010') def test_missing_fields_key(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {}),) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fieldsets[0][1]' must contain the key 'fields'.", 'admin.E011') class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {'fields': ('name',)}),) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) def test_specified_both_fields_and_fieldsets(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {'fields': ('name',)}),) fields = ['name'] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "Both 'fieldsets' and 'fields' are specified.", 'admin.E005') def test_duplicate_fields(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = [(None, {'fields': ['name', 'name']})] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "There are duplicate field(s) in 'fieldsets[0][1]'.", 'admin.E012') def test_fieldsets_with_custom_form_validation(self): class BandAdmin(ModelAdmin): fieldsets = ( ('Band', { 'fields': ('name',) }), ) self.assertIsValid(BandAdmin, Band) class FieldsCheckTests(CheckTestCase): def test_duplicate_fields_in_fields(self): class ValidationTestModelAdmin(ModelAdmin): fields = ['name', 'name'] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fields' contains duplicate field(s).", 'admin.E006') def test_inline(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fields = 10 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'fields' must be a list or tuple.", 'admin.E004', invalid_obj=ValidationTestInline) class FormCheckTests(CheckTestCase): def test_invalid_type(self): class FakeForm(object): pass class ValidationTestModelAdmin(ModelAdmin): form = FakeForm self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'form' must inherit from 'BaseModelForm'.", 'admin.E016') def test_fieldsets_with_custom_form_validation(self): class BandAdmin(ModelAdmin): fieldsets = ( ('Band', { 'fields': ('name',) }), ) self.assertIsValid(BandAdmin, Band) def test_valid_case(self): class AdminBandForm(forms.ModelForm): delete = forms.BooleanField() class BandAdmin(ModelAdmin): form = AdminBandForm fieldsets = ( ('Band', { 'fields': ('name', 'bio', 'sign_date', 'delete') }), ) self.assertIsValid(BandAdmin, Band) class FilterVerticalCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): filter_vertical = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'filter_vertical' must be a list or tuple.", 'admin.E017') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'filter_vertical[0]' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E019') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ('name',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'filter_vertical[0]' must be a many-to-many field.", 'admin.E020') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ("users",) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class FilterHorizontalCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'filter_horizontal' must be a list or tuple.", 'admin.E018') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'filter_horizontal[0]' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E019') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ('name',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'filter_horizontal[0]' must be a many-to-many field.", 'admin.E020') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ("users",) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class RadioFieldsCheckTests(CheckTestCase): def test_not_dictionary(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = () self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'radio_fields' must be a dictionary.", 'admin.E021') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = {'non_existent_field': VERTICAL} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'radio_fields' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E022') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = {'name': VERTICAL} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'radio_fields' refers to 'name', which is not an instance " "of ForeignKey, and does not have a 'choices' definition."), 'admin.E023') def test_invalid_value(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"state": None} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'radio_fields[\"state\"]' must be either admin.HORIZONTAL or admin.VERTICAL.", 'admin.E024') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"state": VERTICAL} self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class PrepopulatedFieldsCheckTests(CheckTestCase): def test_not_dictionary(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = () self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'prepopulated_fields' must be a dictionary.", 'admin.E026') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {'non_existent_field': ("slug",)} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'prepopulated_fields' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E027') def test_missing_field_again(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"slug": ('non_existent_field',)} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'prepopulated_fields[\"slug\"][0]' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E030') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"users": ('name',)} self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'prepopulated_fields' refers to 'users', which must not be " "a DateTimeField, a foreign key, or a many-to-many field."), 'admin.E028') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"slug": ('name',)} self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListDisplayTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): list_display = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_display' must be a list or tuple.", 'admin.E107') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): list_display = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'list_display[0]' refers to 'non_existent_field', which is not a callable, an attribute " "of 'ValidationTestModelAdmin', or an attribute or method on 'modeladmin.ValidationTestModel'."), 'admin.E108') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): list_display = ('users',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_display[0]' must not be a many-to-many field.", 'admin.E109') def test_valid_case(self): def a_callable(obj): pass class ValidationTestModelAdmin(ModelAdmin): def a_method(self, obj): pass list_display = ('name', 'decade_published_in', 'a_method', a_callable) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListDisplayLinksCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): list_display_links = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_display_links' must be a list, a tuple, or None.", 'admin.E110') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): list_display_links = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ( "The value of 'list_display_links[0]' refers to " "'non_existent_field', which is not defined in 'list_display'." ), 'admin.E111' ) def test_missing_in_list_display(self): class ValidationTestModelAdmin(ModelAdmin): list_display_links = ('name',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_display_links[0]' refers to 'name', which is not defined in 'list_display'.", 'admin.E111') def test_valid_case(self): def a_callable(obj): pass class ValidationTestModelAdmin(ModelAdmin): def a_method(self, obj): pass list_display = ('name', 'decade_published_in', 'a_method', a_callable) list_display_links = ('name', 'decade_published_in', 'a_method', a_callable) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) def test_None_is_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): list_display_links = None self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListFilterTests(CheckTestCase): def test_list_filter_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_filter = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter' must be a list or tuple.", 'admin.E112') def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): list_filter = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter[0]' refers to 'non_existent_field', which does not refer to a Field.", 'admin.E116') def test_not_filter(self): class RandomClass(object): pass class ValidationTestModelAdmin(ModelAdmin): list_filter = (RandomClass,) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter[0]' must inherit from 'ListFilter'.", 'admin.E113') def test_not_filter_again(self): class RandomClass(object): pass class ValidationTestModelAdmin(ModelAdmin): list_filter = (('is_active', RandomClass),) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter[0][1]' must inherit from 'FieldListFilter'.", 'admin.E115') def test_not_filter_again_again(self): class AwesomeFilter(SimpleListFilter): def get_title(self): return 'awesomeness' def get_choices(self, request): return (('bit', 'A bit awesome'), ('very', 'Very awesome'), ) def get_queryset(self, cl, qs): return qs class ValidationTestModelAdmin(ModelAdmin): list_filter = (('is_active', AwesomeFilter),) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter[0][1]' must inherit from 'FieldListFilter'.", 'admin.E115') def test_not_associated_with_field_name(self): class ValidationTestModelAdmin(ModelAdmin): list_filter = (BooleanFieldListFilter,) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_filter[0]' must not inherit from 'FieldListFilter'.", 'admin.E114') def test_valid_case(self): class AwesomeFilter(SimpleListFilter): def get_title(self): return 'awesomeness' def get_choices(self, request): return (('bit', 'A bit awesome'), ('very', 'Very awesome'), ) def get_queryset(self, cl, qs): return qs class ValidationTestModelAdmin(ModelAdmin): list_filter = ('is_active', AwesomeFilter, ('is_active', BooleanFieldListFilter), 'no') self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListPerPageCheckTests(CheckTestCase): def test_not_integer(self): class ValidationTestModelAdmin(ModelAdmin): list_per_page = 'hello' self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_per_page' must be an integer.", 'admin.E118') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): list_per_page = 100 self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListMaxShowAllCheckTests(CheckTestCase): def test_not_integer(self): class ValidationTestModelAdmin(ModelAdmin): list_max_show_all = 'hello' self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_max_show_all' must be an integer.", 'admin.E119') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): list_max_show_all = 200 self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class SearchFieldsCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): search_fields = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'search_fields' must be a list or tuple.", 'admin.E126') class DateHierarchyCheckTests(CheckTestCase): def test_missing_field(self): class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'non_existent_field' self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, ("The value of 'date_hierarchy' refers to 'non_existent_field', which " "is not an attribute of 'modeladmin.ValidationTestModel'."), 'admin.E127') def test_invalid_field_type(self): class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'name' self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'date_hierarchy' must be a DateField or DateTimeField.", 'admin.E128') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'pub_date' self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class OrderingCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): ordering = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'ordering' must be a list or tuple.", 'admin.E031' ) class ValidationTestModelAdmin(ModelAdmin): ordering = ('non_existent_field',) self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'ordering[0]' refers to 'non_existent_field', " "which is not an attribute of 'modeladmin.ValidationTestModel'.", 'admin.E033' ) def test_random_marker_not_alone(self): class ValidationTestModelAdmin(ModelAdmin): ordering = ('?', 'name') self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'ordering' has the random ordering marker '?', but contains " "other fields as well.", 'admin.E032', hint='Either remove the "?", or remove the other fields.' ) def test_valid_random_marker_case(self): class ValidationTestModelAdmin(ModelAdmin): ordering = ('?',) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) def test_valid_complex_case(self): class ValidationTestModelAdmin(ModelAdmin): ordering = ('band__name',) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): ordering = ('name',) self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListSelectRelatedCheckTests(CheckTestCase): def test_invalid_type(self): class ValidationTestModelAdmin(ModelAdmin): list_select_related = 1 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'list_select_related' must be a boolean, tuple or list.", 'admin.E117') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): list_select_related = False self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class SaveAsCheckTests(CheckTestCase): def test_not_boolean(self): class ValidationTestModelAdmin(ModelAdmin): save_as = 1 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'save_as' must be a boolean.", 'admin.E101') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): save_as = True self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class SaveOnTopCheckTests(CheckTestCase): def test_not_boolean(self): class ValidationTestModelAdmin(ModelAdmin): save_on_top = 1 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'save_on_top' must be a boolean.", 'admin.E102') def test_valid_case(self): class ValidationTestModelAdmin(ModelAdmin): save_on_top = True self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class InlinesCheckTests(CheckTestCase): def test_not_iterable(self): class ValidationTestModelAdmin(ModelAdmin): inlines = 10 self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'inlines' must be a list or tuple.", 'admin.E103') def test_not_model_admin(self): class ValidationTestInline(object): pass class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalidRegexp( ValidationTestModelAdmin, ValidationTestModel, r"'.*\.ValidationTestInline' must inherit from 'BaseModelAdmin'\.", 'admin.E104') def test_missing_model_field(self): class ValidationTestInline(TabularInline): pass class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalidRegexp( ValidationTestModelAdmin, ValidationTestModel, r"'.*\.ValidationTestInline' must have a 'model' attribute\.", 'admin.E105') def test_invalid_model_type(self): """ Test if `model` attribute on inline model admin is a models.Model. """ class SomethingBad(object): pass class ValidationTestInline(TabularInline): model = SomethingBad class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalidRegexp( ValidationTestModelAdmin, ValidationTestModel, r"The value of '.*\.ValidationTestInline.model' must be a Model\.", 'admin.E106') def test_valid_case(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class FkNameCheckTests(CheckTestCase): def test_missing_field(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fk_name = 'non_existent_field' class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "'modeladmin.ValidationTestInlineModel' has no field named 'non_existent_field'.", 'admin.E202', invalid_obj=ValidationTestInline) def test_valid_case(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fk_name = "parent" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ExtraCheckTests(CheckTestCase): def test_not_integer(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel extra = "hello" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'extra' must be an integer.", 'admin.E203', invalid_obj=ValidationTestInline) def test_valid_case(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel extra = 2 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class MaxNumCheckTests(CheckTestCase): def test_not_integer(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel max_num = "hello" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'max_num' must be an integer.", 'admin.E204', invalid_obj=ValidationTestInline) def test_valid_case(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel max_num = 2 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class MinNumCheckTests(CheckTestCase): def test_not_integer(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel min_num = "hello" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'min_num' must be an integer.", 'admin.E205', invalid_obj=ValidationTestInline) def test_valid_case(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel min_num = 2 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class FormsetCheckTests(CheckTestCase): def test_invalid_type(self): class FakeFormSet(object): pass class ValidationTestInline(TabularInline): model = ValidationTestInlineModel formset = FakeFormSet class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsInvalid( ValidationTestModelAdmin, ValidationTestModel, "The value of 'formset' must inherit from 'BaseModelFormSet'.", 'admin.E206', invalid_obj=ValidationTestInline) def test_valid_case(self): class RealModelFormSet(BaseModelFormSet): pass class ValidationTestInline(TabularInline): model = ValidationTestInlineModel formset = RealModelFormSet class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] self.assertIsValid(ValidationTestModelAdmin, ValidationTestModel) class ListDisplayEditableTests(CheckTestCase): def test_list_display_links_is_none(self): """ list_display and list_editable can contain the same values when list_display_links is None """ class ProductAdmin(ModelAdmin): list_display = ['name', 'slug', 'pub_date'] list_editable = list_display list_display_links = None self.assertIsValid(ProductAdmin, ValidationTestModel) def test_list_display_first_item_same_as_list_editable_first_item(self): """ The first item in list_display can be the same as the first in list_editable. """ class ProductAdmin(ModelAdmin): list_display = ['name', 'slug', 'pub_date'] list_editable = ['name', 'slug'] list_display_links = ['pub_date'] self.assertIsValid(ProductAdmin, ValidationTestModel) def test_list_display_first_item_in_list_editable(self): """ The first item in list_display can be in list_editable as long as list_display_links is defined. """ class ProductAdmin(ModelAdmin): list_display = ['name', 'slug', 'pub_date'] list_editable = ['slug', 'name'] list_display_links = ['pub_date'] self.assertIsValid(ProductAdmin, ValidationTestModel) def test_list_display_first_item_same_as_list_editable_no_list_display_links(self): """ The first item in list_display cannot be the same as the first item in list_editable if list_display_links is not defined. """ class ProductAdmin(ModelAdmin): list_display = ['name'] list_editable = ['name'] self.assertIsInvalid( ProductAdmin, ValidationTestModel, "The value of 'list_editable[0]' refers to the first field " "in 'list_display' ('name'), which cannot be used unless " "'list_display_links' is set.", id='admin.E124', ) def test_list_display_first_item_in_list_editable_no_list_display_links(self): """ The first item in list_display cannot be in list_editable if list_display_links isn't defined. """ class ProductAdmin(ModelAdmin): list_display = ['name', 'slug', 'pub_date'] list_editable = ['slug', 'name'] self.assertIsInvalid( ProductAdmin, ValidationTestModel, "The value of 'list_editable[1]' refers to the first field " "in 'list_display' ('name'), which cannot be used unless " "'list_display_links' is set.", id='admin.E124', ) class ModelAdminPermissionTests(SimpleTestCase): class MockUser(object): def has_module_perms(self, app_label): if app_label == "modeladmin": return True return False class MockAddUser(MockUser): def has_perm(self, perm): if perm == "modeladmin.add_band": return True return False class MockChangeUser(MockUser): def has_perm(self, perm): if perm == "modeladmin.change_band": return True return False class MockDeleteUser(MockUser): def has_perm(self, perm): if perm == "modeladmin.delete_band": return True return False def test_has_add_permission(self): """ Ensure that has_add_permission returns True for users who can add objects and False for users who can't. """ ma = ModelAdmin(Band, AdminSite()) request = MockRequest() request.user = self.MockAddUser() self.assertTrue(ma.has_add_permission(request)) request.user = self.MockChangeUser() self.assertFalse(ma.has_add_permission(request)) request.user = self.MockDeleteUser() self.assertFalse(ma.has_add_permission(request)) def test_has_change_permission(self): """ Ensure that has_change_permission returns True for users who can edit objects and False for users who can't. """ ma = ModelAdmin(Band, AdminSite()) request = MockRequest() request.user = self.MockAddUser() self.assertFalse(ma.has_change_permission(request)) request.user = self.MockChangeUser() self.assertTrue(ma.has_change_permission(request)) request.user = self.MockDeleteUser() self.assertFalse(ma.has_change_permission(request)) def test_has_delete_permission(self): """ Ensure that has_delete_permission returns True for users who can delete objects and False for users who can't. """ ma = ModelAdmin(Band, AdminSite()) request = MockRequest() request.user = self.MockAddUser() self.assertFalse(ma.has_delete_permission(request)) request.user = self.MockChangeUser() self.assertFalse(ma.has_delete_permission(request)) request.user = self.MockDeleteUser() self.assertTrue(ma.has_delete_permission(request)) def test_has_module_permission(self): """ Ensure that has_module_permission returns True for users who have any permission for the module and False for users who don't. """ ma = ModelAdmin(Band, AdminSite()) request = MockRequest() request.user = self.MockAddUser() self.assertTrue(ma.has_module_permission(request)) request.user = self.MockChangeUser() self.assertTrue(ma.has_module_permission(request)) request.user = self.MockDeleteUser() self.assertTrue(ma.has_module_permission(request)) original_app_label = ma.opts.app_label ma.opts.app_label = 'anotherapp' try: request.user = self.MockAddUser() self.assertFalse(ma.has_module_permission(request)) request.user = self.MockChangeUser() self.assertFalse(ma.has_module_permission(request)) request.user = self.MockDeleteUser() self.assertFalse(ma.has_module_permission(request)) finally: ma.opts.app_label = original_app_label
{ "content_hash": "55d9757b26a4d390eb239cbe7e32d480", "timestamp": "", "source": "github", "line_count": 1703, "max_line_length": 116, "avg_line_length": 34.50029359953024, "alnum_prop": 0.607243762126834, "repo_name": "gitaarik/django", "id": "790d24f66d9342c25b00bbbfdaf5613e710a751d", "size": "58754", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tests/modeladmin/tests.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "52372" }, { "name": "HTML", "bytes": "170531" }, { "name": "JavaScript", "bytes": "256023" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "11546984" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "130" } ], "symlink_target": "" }
""" Demonstrates how to limit the extent of grid lines """ # Major library imports from numpy import array, linspace, zeros from scipy.special import jn # Enthought library imports from enable.api import Component, ComponentEditor from traits.api import HasTraits, Instance from traitsui.api import UItem, View # Chaco imports from chaco.api import ArrayPlotData, HPlotContainer, Plot from chaco.tools.api import PanTool, ZoomTool #=============================================================================== # # Create the Chaco plot. #=============================================================================== def _create_plot_component(): # Create some x-y data series to plot x = linspace(-2.0, 10.0, 100) pd = ArrayPlotData(index = x) for i in range(5): pd.set_data("y" + str(i), jn(i,x)) # Create some line plots of some of the data plot = Plot(pd, title="Line Plot", padding=50, border_visible=True) plot.legend.visible = True plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto") plot.plot(("index", "y3"), name="j_3", color="auto") plot.x_grid.line_color = "black" plot.y_grid.line_color = "black" xmin, xmax = 1.0, 6.0 ymin, ymax = 0.2, 0.80001 plot.x_grid.set(data_min = xmin, data_max = xmax, transverse_bounds = (ymin, ymax), transverse_mapper = plot.y_mapper) plot.y_grid.set(data_min = ymin, data_max = ymax, transverse_bounds = (xmin, xmax), transverse_mapper = plot.x_mapper) # Attach some tools to the plot plot.tools.append(PanTool(plot)) zoom = ZoomTool(component=plot, tool_mode="box", always_on=False) plot.overlays.append(zoom) # A second plot whose vertical grid lines are clipped to the jn(3) function def my_bounds_func(ticks): """ Returns y_low and y_high for each grid tick in the array **ticks** """ tmp = array([zeros(len(ticks)),jn(3, ticks)]).T return tmp func_plot = Plot(pd, padding=50, border_visible=True) func_plot.plot(("index", "y3"), color="red") func_plot.x_grid.set(transverse_bounds = my_bounds_func, transverse_mapper = func_plot.y_mapper, line_color="black") func_plot.tools.append(PanTool(func_plot)) container = HPlotContainer() container.add(plot) container.add(func_plot) return container #=============================================================================== # Attributes to use for the plot view. size=(900,500) title="Grids with bounded extents" #=============================================================================== # # Demo class that is used by the demo.py application. #=============================================================================== class Demo(HasTraits): plot = Instance(Component) traits_view = View(UItem('plot', editor=ComponentEditor()), width=size[0], height=size[1], resizable=True, title=title ) def _plot_default(self): return _create_plot_component() demo = Demo() if __name__ == "__main__": demo.configure_traits()
{ "content_hash": "cbfacc14b14f671c1d599d385630a65d", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 82, "avg_line_length": 33.96808510638298, "alnum_prop": 0.5530848731600376, "repo_name": "tommy-u/chaco", "id": "b3dddacb53fd901bfea6387f4fdbc257aefb6665", "size": "3215", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "examples/demo/basic/bounded_grids.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "57089" }, { "name": "C++", "bytes": "9881" }, { "name": "Gnuplot", "bytes": "611" }, { "name": "Python", "bytes": "2475987" } ], "symlink_target": "" }
import numpy as np from .spectrum import Spectrum, unify_mz from .spectrum_io import hdf5_load from .spectrum_utils import ThresholdedPeakFiltering from copy import deepcopy from sklearn.metrics import zero_one_loss, f1_score, precision_score, recall_score def load_spectra(datafile): """ Loads the spectra from an hdf5 file into memory :param datafile: the hdf5 file containing the spectra :return: the spectra in an ndarray. """ spectra = hdf5_load(datafile) thresher = ThresholdedPeakFiltering(threshold=250) spectra = thresher.fit_transform(spectra) return spectra def spectrum_to_matrix(spectra): """ Convert an array of spectra to a ndarray :param spectra: The spectra to extract :return: ndarray of the peak intensities """ new_spectra = deepcopy(spectra) unify_mz(new_spectra) data = [] for s in new_spectra: data.append(s.intensity_values) return np.asarray(data) def extract_tags(spectra): tags = [] for s in spectra: if("_Non_Infected_" in s.metadata["file"]): tags.append(0) else: tags.append(1) return np.asarray(tags) def evaluate_learner(y_true, y_pred): results = {} results["zero_one_loss"] = zero_one_loss(y_true, y_pred) results["f1_score"] = f1_score(y_true, y_pred) results["precision"] = precision_score(y_true, y_pred) results["recall"] = recall_score(y_true, y_pred) return results
{ "content_hash": "f92fb5dc02dda9d9e19ac0b440a2d375", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 82, "avg_line_length": 28.88235294117647, "alnum_prop": 0.6727766463000678, "repo_name": "francisbrochu/microbiome-summer-school-2017_mass-spec", "id": "09a089aab41012711e18f9e6756e0f64ecfbed2b", "size": "1498", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "example/tutorial_code/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "17554" }, { "name": "C++", "bytes": "39869" }, { "name": "CMake", "bytes": "18489" }, { "name": "Jupyter Notebook", "bytes": "16468" }, { "name": "Makefile", "bytes": "32922" }, { "name": "Python", "bytes": "37021" }, { "name": "Shell", "bytes": "586" } ], "symlink_target": "" }
import math from i2c_core import i2c_core class HMC5883(object): # Define registers values from datasheet ConfigurationRegisterA = 0x00 ConfigurationRegisterB = 0x01 ModeRegister = 0x02 AxisXDataRegisterMSB = 0x03 AxisXDataRegisterLSB = 0x04 AxisZDataRegisterMSB = 0x05 AxisZDataRegisterLSB = 0x06 AxisYDataRegisterMSB = 0x07 AxisYDataRegisterLSB = 0x08 StatusRegister = 0x09 IdentificationRegisterA = 0x10 IdentificationRegisterB = 0x11 IdentificationRegisterC = 0x12 MeasurementContinuous = 0x00 MeasurementSingleShot = 0x01 MeasurementIdle = 0x03 def __init__(self, address=0x1e, busnum=-1, gauss=1.3, debug=False): self.debug = debug self.i2c = i2c_core(address, busnum=busnum, debug=debug,) self.i2c.write_8(self.ConfigurationRegisterA, 0b01110000) # Set to 8 samples @ 15Hz self.set_scale(gauss, debug=debug) self.set_continuous_mode() # Continuous sampling # def read_word(self, reg): # high = self.i2c.read_byte(address, reg) # low = self.i2c.read_byte(address, reg+1) # val = (high << 8) + low # return val # def read_word_2c(self, reg): # val = read_word(reg) # if (val >= 0x8000): # return -((65535 - val) + 1) # else: # return val def set_scale(self, gauss, debug=False): if gauss == 0.88: self.scale_reg = 0x00 self.scale = 0.73 elif gauss == 1.3: self.scale_reg = 0x01 self.scale = 0.92 elif gauss == 1.9: self.scale_reg = 0x02 self.scale = 1.22 elif gauss == 2.5: self.scale_reg = 0x03 self.scale = 1.52 elif gauss == 4.0: self.scale_reg = 0x04 self.scale = 2.27 elif gauss == 4.7: self.scale_reg = 0x05 self.scale = 2.56 elif gauss == 5.6: self.scale_reg = 0x06 self.scale = 3.03 elif gauss == 8.1: self.scale_reg = 0x07 self.scale = 4.35 self.scale_reg = self.scale_reg << 5 self.set_option(self.ConfigurationRegisterB, self.scale_reg) if debug == True: print("HMC5883L set : gauss "+gauss+", scale "+scale) def set_option(self, register, *function_set): options = 0x00 for function in function_set: options = options | function self.i2c.write_8(register, options) def get_axes(self): magno_x = self.i2c.read_word_2c(self.AxisXDataRegisterMSB) magno_y = self.i2c.read_word_2c(self.AxisYDataRegisterMSB) magno_z = self.i2c.read_word_2c(self.AxisZDataRegisterMSB) if (magno_x == -4096): magno_x = None else: magno_x = round(magno_x * self.scale, 4) if (magno_y == -4096): magno_y = None else: magno_y = round(magno_y * self.scale, 4) if (magno_z == -4096): magno_z = None else: magno_z = round(magno_z * self.scale, 4) return (magno_x, magno_y, magno_z) def get_heading(self): (scaled_x, scaled_y, scaled_z) = self.get_axes() heading_rad = math.atan2(scaled_y, scaled_x) heading_rad += self.declination # Correct for reversed heading if(heading_rad < 0): heading_rad += 2 * math.pi # Check for wrap and compensate if(heading_rad > 2 * math.pi): heading_rad -= 2 * math.pi # Convert to degrees from radians heading_deg = heading_rad * 180 / math.pi degrees = math.floor(heading_deg) minutes = round(((heading_deg - degrees) * 60)) return (degrees, minutes) def set_declination(self, degree, min=0): self.declinationDeg = degree self.declinationMin = min self.declination = (degree + min / 60) * (math.pi / 180) def __str__(self): ret_str = "" (x, y, z) = self.get_axes() ret_str += "Axis X: " + str(x) + "\n" ret_str += "Axis Y: " + str(y) + "\n" ret_str += "Axis Z: " + str(z) + "\n" ret_str += "Declination: " + self.get_declination_string() + "\n" ret_str += "Heading: " + self.get_heading_string() + "\n" return ret_str def get_declination_string(self): return str(self.declinationDeg) + " deg, " + str(self.declinationMin) + " minutes" def get_heading_string(self): (degrees, minutes) = self.get_heading() return str(degrees) + " deg, " + str(minutes) + " minutes" def set_continuous_mode(self): self.set_option(self.ModeRegister, self.MeasurementContinuous) if __name__ == "__main__": # constructor defaults : address=0x1e, gauss=1.3, debug=False i2c_HMC5883l = HMC5883(gauss=1.3) i2c_HMC5883l.set_declination(2, 18) while True: print i2c_HMC5883l.get_heading()
{ "content_hash": "f3e2d51203b7e1c70c7e754d06369230", "timestamp": "", "source": "github", "line_count": 162, "max_line_length": 93, "avg_line_length": 30.333333333333332, "alnum_prop": 0.5738705738705738, "repo_name": "CaptainStouf/python_libs", "id": "19b6c4902bfd1fd2b52041b8b0196125ae72a8c5", "size": "5556", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "i2c/i2c_hmc5883l.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "42017" } ], "symlink_target": "" }
import luigi.worker from luigi.worker import Worker from luigi import Task, RemoteScheduler, Parameter import unittest import logging import luigi.notifications from mock import Mock luigi.notifications.DEBUG = True class DummyTask(Task): param = Parameter() def __init__(self, *args, **kwargs): super(DummyTask, self).__init__(*args, **kwargs) self.has_run = False def complete(self): old_value = self.has_run self.has_run = True return old_value def run(self): logging.debug("%s - setting has_run", self.task_id) self.has_run = True class MultiprocessWorkerTest(unittest.TestCase): def setUp(self): self.scheduler = RemoteScheduler() self.scheduler.add_worker = Mock() self.scheduler.add_task = Mock() self.worker = Worker(scheduler=self.scheduler, worker_id='X', worker_processes=2) def tearDown(self): self.worker.stop() def test_positive_path(self): a = DummyTask("a") b = DummyTask("b") class MultipleRequirementTask(DummyTask): def requires(self): return [a, b] c = MultipleRequirementTask("C") self.assertTrue(self.worker.add(c)) self.scheduler.get_work = Mock(side_effect=[(3, str(a)), (2, str(b)), (1, str(c)), (0, None), (0, None)]) self.assertTrue(self.worker.run()) self.assertTrue(c.has_run) def test_path_with_task_failures(self): class FailingTask(DummyTask): def run(self): raise Exception("I am failing") a = FailingTask("a") b = FailingTask("b") class MultipleRequirementTask(DummyTask): def requires(self): return [a, b] c = MultipleRequirementTask("C") self.assertTrue(self.worker.add(c)) self.scheduler.get_work = Mock(side_effect=[(3, str(a)), (2, str(b)), (1, str(c)), (0, None), (0, None)]) self.assertFalse(self.worker.run()) if __name__ == '__main__': unittest.main()
{ "content_hash": "4f188c0adf4f6e376113ffb336b97ba0", "timestamp": "", "source": "github", "line_count": 78, "max_line_length": 113, "avg_line_length": 26.44871794871795, "alnum_prop": 0.5971885603490062, "repo_name": "Mappy/luigi", "id": "b4f68f3861a988d4f39bc22408a4515b44aacb1b", "size": "2638", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "test/worker_multiprocess_test.py", "mode": "33188", "license": "apache-2.0", "language": [], "symlink_target": "" }
from oslo_log import log as logging from sqlalchemy import Boolean, Column, DateTime from sqlalchemy import Integer, MetaData, String, Table, ForeignKey from cinder.i18n import _ LOG = logging.getLogger(__name__) def upgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine Table('snapshots', meta, autoload=True) # New table snapshot_metadata = Table( 'snapshot_metadata', meta, Column('created_at', DateTime), Column('updated_at', DateTime), Column('deleted_at', DateTime), Column('deleted', Boolean), Column('id', Integer, primary_key=True, nullable=False), Column('snapshot_id', String(length=36), ForeignKey('snapshots.id'), nullable=False), Column('key', String(length=255)), Column('value', String(length=255)), mysql_engine='InnoDB' ) try: snapshot_metadata.create() except Exception: LOG.error(_("Table |%s| not created!"), repr(snapshot_metadata)) raise def downgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine snapshot_metadata = Table('snapshot_metadata', meta, autoload=True) try: snapshot_metadata.drop() except Exception: LOG.error(_("snapshot_metadata table not dropped")) raise
{ "content_hash": "7c4ee05543e5f0738bb3f04ff3eb2bc5", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 76, "avg_line_length": 28.979166666666668, "alnum_prop": 0.6096333572969087, "repo_name": "tmenjo/cinder-2015.1.1", "id": "b5377115e9de74110d6e5303fb9dfd0fa021401a", "size": "1964", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "cinder/db/sqlalchemy/migrate_repo/versions/009_add_snapshot_metadata_table.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "PLpgSQL", "bytes": "2511" }, { "name": "Python", "bytes": "10804398" }, { "name": "Shell", "bytes": "8111" } ], "symlink_target": "" }
""" Implementation of optimized einsum. """ from __future__ import division, absolute_import, print_function import itertools from numpy.compat import basestring from numpy.core.multiarray import c_einsum from numpy.core.numeric import asanyarray, tensordot from numpy.core.overrides import array_function_dispatch __all__ = ['einsum', 'einsum_path'] einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' einsum_symbols_set = set(einsum_symbols) def _flop_count(idx_contraction, inner, num_terms, size_dictionary): """ Computes the number of FLOPS in the contraction. Parameters ---------- idx_contraction : iterable The indices involved in the contraction inner : bool Does this contraction require an inner product? num_terms : int The number of terms in a contraction size_dictionary : dict The size of each of the indices in idx_contraction Returns ------- flop_count : int The total number of FLOPS required for the contraction. Examples -------- >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5}) 30 >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5}) 60 """ overall_size = _compute_size_by_dict(idx_contraction, size_dictionary) op_factor = max(1, num_terms - 1) if inner: op_factor += 1 return overall_size * op_factor def _compute_size_by_dict(indices, idx_dict): """ Computes the product of the elements in indices based on the dictionary idx_dict. Parameters ---------- indices : iterable Indices to base the product on. idx_dict : dictionary Dictionary of index sizes Returns ------- ret : int The resulting product. Examples -------- >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5}) 90 """ ret = 1 for i in indices: ret *= idx_dict[i] return ret def _find_contraction(positions, input_sets, output_set): """ Finds the contraction for a given set of input and output sets. Parameters ---------- positions : iterable Integer positions of terms used in the contraction. input_sets : list List of sets that represent the lhs side of the einsum subscript output_set : set Set that represents the rhs side of the overall einsum subscript Returns ------- new_result : set The indices of the resulting contraction remaining : list List of sets that have not been contracted, the new set is appended to the end of this list idx_removed : set Indices removed from the entire contraction idx_contraction : set The indices used in the current contraction Examples -------- # A simple dot product test case >>> pos = (0, 1) >>> isets = [set('ab'), set('bc')] >>> oset = set('ac') >>> _find_contraction(pos, isets, oset) ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'}) # A more complex case with additional terms in the contraction >>> pos = (0, 2) >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set('ac') >>> _find_contraction(pos, isets, oset) ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'}) """ idx_contract = set() idx_remain = output_set.copy() remaining = [] for ind, value in enumerate(input_sets): if ind in positions: idx_contract |= value else: remaining.append(value) idx_remain |= value new_result = idx_remain & idx_contract idx_removed = (idx_contract - new_result) remaining.append(new_result) return (new_result, remaining, idx_removed, idx_contract) def _optimal_path(input_sets, output_set, idx_dict, memory_limit): """ Computes all possible pair contractions, sieves the results based on ``memory_limit`` and returns the lowest cost path. This algorithm scales factorial with respect to the elements in the list ``input_sets``. Parameters ---------- input_sets : list List of sets that represent the lhs side of the einsum subscript output_set : set Set that represents the rhs side of the overall einsum subscript idx_dict : dictionary Dictionary of index sizes memory_limit : int The maximum number of elements in a temporary array Returns ------- path : list The optimal contraction order within the memory limit constraint. Examples -------- >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set() >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} >>> _optimal_path(isets, oset, idx_sizes, 5000) [(0, 2), (0, 1)] """ full_results = [(0, [], input_sets)] for iteration in range(len(input_sets) - 1): iter_results = [] # Compute all unique pairs for curr in full_results: cost, positions, remaining = curr for con in itertools.combinations(range(len(input_sets) - iteration), 2): # Find the contraction cont = _find_contraction(con, remaining, output_set) new_result, new_input_sets, idx_removed, idx_contract = cont # Sieve the results based on memory_limit new_size = _compute_size_by_dict(new_result, idx_dict) if new_size > memory_limit: continue # Build (total_cost, positions, indices_remaining) total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict) new_pos = positions + [con] iter_results.append((total_cost, new_pos, new_input_sets)) # Update combinatorial list, if we did not find anything return best # path + remaining contractions if iter_results: full_results = iter_results else: path = min(full_results, key=lambda x: x[0])[1] path += [tuple(range(len(input_sets) - iteration))] return path # If we have not found anything return single einsum contraction if len(full_results) == 0: return [tuple(range(len(input_sets)))] path = min(full_results, key=lambda x: x[0])[1] return path def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost): """Compute the cost (removed size + flops) and resultant indices for performing the contraction specified by ``positions``. Parameters ---------- positions : tuple of int The locations of the proposed tensors to contract. input_sets : list of sets The indices found on each tensors. output_set : set The output indices of the expression. idx_dict : dict Mapping of each index to its size. memory_limit : int The total allowed size for an intermediary tensor. path_cost : int The contraction cost so far. naive_cost : int The cost of the unoptimized expression. Returns ------- cost : (int, int) A tuple containing the size of any indices removed, and the flop cost. positions : tuple of int The locations of the proposed tensors to contract. new_input_sets : list of sets The resulting new list of indices if this proposed contraction is performed. """ # Find the contraction contract = _find_contraction(positions, input_sets, output_set) idx_result, new_input_sets, idx_removed, idx_contract = contract # Sieve the results based on memory_limit new_size = _compute_size_by_dict(idx_result, idx_dict) if new_size > memory_limit: return None # Build sort tuple old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions) removed_size = sum(old_sizes) - new_size # NB: removed_size used to be just the size of any removed indices i.e.: # helpers.compute_size_by_dict(idx_removed, idx_dict) cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict) sort = (-removed_size, cost) # Sieve based on total cost as well if (path_cost + cost) > naive_cost: return None # Add contraction to possible choices return [sort, positions, new_input_sets] def _update_other_results(results, best): """Update the positions and provisional input_sets of ``results`` based on performing the contraction result ``best``. Remove any involving the tensors contracted. Parameters ---------- results : list List of contraction results produced by ``_parse_possible_contraction``. best : list The best contraction of ``results`` i.e. the one that will be performed. Returns ------- mod_results : list The list of modified results, updated with outcome of ``best`` contraction. """ best_con = best[1] bx, by = best_con mod_results = [] for cost, (x, y), con_sets in results: # Ignore results involving tensors just contracted if x in best_con or y in best_con: continue # Update the input_sets del con_sets[by - int(by > x) - int(by > y)] del con_sets[bx - int(bx > x) - int(bx > y)] con_sets.insert(-1, best[2][-1]) # Update the position indices mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by) mod_results.append((cost, mod_con, con_sets)) return mod_results def _greedy_path(input_sets, output_set, idx_dict, memory_limit): """ Finds the path by contracting the best pair until the input list is exhausted. The best pair is found by minimizing the tuple ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing matrix multiplication or inner product operations, then Hadamard like operations, and finally outer operations. Outer products are limited by ``memory_limit``. This algorithm scales cubically with respect to the number of elements in the list ``input_sets``. Parameters ---------- input_sets : list List of sets that represent the lhs side of the einsum subscript output_set : set Set that represents the rhs side of the overall einsum subscript idx_dict : dictionary Dictionary of index sizes memory_limit_limit : int The maximum number of elements in a temporary array Returns ------- path : list The greedy contraction order within the memory limit constraint. Examples -------- >>> isets = [set('abd'), set('ac'), set('bdc')] >>> oset = set() >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} >>> _greedy_path(isets, oset, idx_sizes, 5000) [(0, 2), (0, 1)] """ # Handle trivial cases that leaked through if len(input_sets) == 1: return [(0,)] elif len(input_sets) == 2: return [(0, 1)] # Build up a naive cost contract = _find_contraction(range(len(input_sets)), input_sets, output_set) idx_result, new_input_sets, idx_removed, idx_contract = contract naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict) # Initially iterate over all pairs comb_iter = itertools.combinations(range(len(input_sets)), 2) known_contractions = [] path_cost = 0 path = [] for iteration in range(len(input_sets) - 1): # Iterate over all pairs on first step, only previously found pairs on subsequent steps for positions in comb_iter: # Always initially ignore outer products if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]): continue result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost) if result is not None: known_contractions.append(result) # If we do not have a inner contraction, rescan pairs including outer products if len(known_contractions) == 0: # Then check the outer products for positions in itertools.combinations(range(len(input_sets)), 2): result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost) if result is not None: known_contractions.append(result) # If we still did not find any remaining contractions, default back to einsum like behavior if len(known_contractions) == 0: path.append(tuple(range(len(input_sets)))) break # Sort based on first index best = min(known_contractions, key=lambda x: x[0]) # Now propagate as many unused contractions as possible to next iteration known_contractions = _update_other_results(known_contractions, best) # Next iteration only compute contractions with the new tensor # All other contractions have been accounted for input_sets = best[2] new_tensor_pos = len(input_sets) - 1 comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos)) # Update path and total cost path.append(best[1]) path_cost += best[0][1] return path def _can_dot(inputs, result, idx_removed): """ Checks if we can use BLAS (np.tensordot) call and its beneficial to do so. Parameters ---------- inputs : list of str Specifies the subscripts for summation. result : str Resulting summation. idx_removed : set Indices that are removed in the summation Returns ------- type : bool Returns true if BLAS should and can be used, else False Notes ----- If the operations is BLAS level 1 or 2 and is not already aligned we default back to einsum as the memory movement to copy is more costly than the operation itself. Examples -------- # Standard GEMM operation >>> _can_dot(['ij', 'jk'], 'ik', set('j')) True # Can use the standard BLAS, but requires odd data movement >>> _can_dot(['ijj', 'jk'], 'ik', set('j')) False # DDOT where the memory is not aligned >>> _can_dot(['ijk', 'ikj'], '', set('ijk')) False """ # All `dot` calls remove indices if len(idx_removed) == 0: return False # BLAS can only handle two operands if len(inputs) != 2: return False input_left, input_right = inputs for c in set(input_left + input_right): # can't deal with repeated indices on same input or more than 2 total nl, nr = input_left.count(c), input_right.count(c) if (nl > 1) or (nr > 1) or (nl + nr > 2): return False # can't do implicit summation or dimension collapse e.g. # "ab,bc->c" (implicitly sum over 'a') # "ab,ca->ca" (take diagonal of 'a') if nl + nr - 1 == int(c in result): return False # Build a few temporaries set_left = set(input_left) set_right = set(input_right) keep_left = set_left - idx_removed keep_right = set_right - idx_removed rs = len(idx_removed) # At this point we are a DOT, GEMV, or GEMM operation # Handle inner products # DDOT with aligned data if input_left == input_right: return True # DDOT without aligned data (better to use einsum) if set_left == set_right: return False # Handle the 4 possible (aligned) GEMV or GEMM cases # GEMM or GEMV no transpose if input_left[-rs:] == input_right[:rs]: return True # GEMM or GEMV transpose both if input_left[:rs] == input_right[-rs:]: return True # GEMM or GEMV transpose right if input_left[-rs:] == input_right[-rs:]: return True # GEMM or GEMV transpose left if input_left[:rs] == input_right[:rs]: return True # Einsum is faster than GEMV if we have to copy data if not keep_left or not keep_right: return False # We are a matrix-matrix product, but we need to copy data return True def _parse_einsum_input(operands): """ A reproduction of einsum c side einsum parsing in python. Returns ------- input_strings : str Parsed input strings output_string : str Parsed output string operands : list of array_like The operands to use in the numpy contraction Examples -------- The operand list is simplified to reduce printing: >>> np.random.seed(123) >>> a = np.random.rand(4, 4) >>> b = np.random.rand(4, 4, 4) >>> _parse_einsum_input(('...a,...a->...', a, b)) ('za,xza', 'xz', [a, b]) # may vary >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) ('za,xza', 'xz', [a, b]) # may vary """ if len(operands) == 0: raise ValueError("No input operands") if isinstance(operands[0], basestring): subscripts = operands[0].replace(" ", "") operands = [asanyarray(v) for v in operands[1:]] # Ensure all characters are valid for s in subscripts: if s in '.,->': continue if s not in einsum_symbols: raise ValueError("Character %s is not a valid symbol." % s) else: tmp_operands = list(operands) operand_list = [] subscript_list = [] for p in range(len(operands) // 2): operand_list.append(tmp_operands.pop(0)) subscript_list.append(tmp_operands.pop(0)) output_list = tmp_operands[-1] if len(tmp_operands) else None operands = [asanyarray(v) for v in operand_list] subscripts = "" last = len(subscript_list) - 1 for num, sub in enumerate(subscript_list): for s in sub: if s is Ellipsis: subscripts += "..." elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError("For this input type lists must contain " "either int or Ellipsis") if num != last: subscripts += "," if output_list is not None: subscripts += "->" for s in output_list: if s is Ellipsis: subscripts += "..." elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError("For this input type lists must contain " "either int or Ellipsis") # Check for proper "->" if ("-" in subscripts) or (">" in subscripts): invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) if invalid or (subscripts.count("->") != 1): raise ValueError("Subscripts can only contain one '->'.") # Parse ellipses if "." in subscripts: used = subscripts.replace(".", "").replace(",", "").replace("->", "") unused = list(einsum_symbols_set - set(used)) ellipse_inds = "".join(unused) longest = 0 if "->" in subscripts: input_tmp, output_sub = subscripts.split("->") split_subscripts = input_tmp.split(",") out_sub = True else: split_subscripts = subscripts.split(',') out_sub = False for num, sub in enumerate(split_subscripts): if "." in sub: if (sub.count(".") != 3) or (sub.count("...") != 1): raise ValueError("Invalid Ellipses.") # Take into account numerical values if operands[num].shape == (): ellipse_count = 0 else: ellipse_count = max(operands[num].ndim, 1) ellipse_count -= (len(sub) - 3) if ellipse_count > longest: longest = ellipse_count if ellipse_count < 0: raise ValueError("Ellipses lengths do not match.") elif ellipse_count == 0: split_subscripts[num] = sub.replace('...', '') else: rep_inds = ellipse_inds[-ellipse_count:] split_subscripts[num] = sub.replace('...', rep_inds) subscripts = ",".join(split_subscripts) if longest == 0: out_ellipse = "" else: out_ellipse = ellipse_inds[-longest:] if out_sub: subscripts += "->" + output_sub.replace("...", out_ellipse) else: # Special care for outputless ellipses output_subscript = "" tmp_subscripts = subscripts.replace(",", "") for s in sorted(set(tmp_subscripts)): if s not in (einsum_symbols): raise ValueError("Character %s is not a valid symbol." % s) if tmp_subscripts.count(s) == 1: output_subscript += s normal_inds = ''.join(sorted(set(output_subscript) - set(out_ellipse))) subscripts += "->" + out_ellipse + normal_inds # Build output string if does not exist if "->" in subscripts: input_subscripts, output_subscript = subscripts.split("->") else: input_subscripts = subscripts # Build output subscripts tmp_subscripts = subscripts.replace(",", "") output_subscript = "" for s in sorted(set(tmp_subscripts)): if s not in einsum_symbols: raise ValueError("Character %s is not a valid symbol." % s) if tmp_subscripts.count(s) == 1: output_subscript += s # Make sure output subscripts are in the input for char in output_subscript: if char not in input_subscripts: raise ValueError("Output character %s did not appear in the input" % char) # Make sure number operands is equivalent to the number of terms if len(input_subscripts.split(',')) != len(operands): raise ValueError("Number of einsum subscripts must be equal to the " "number of operands.") return (input_subscripts, output_subscript, operands) def _einsum_path_dispatcher(*operands, **kwargs): # NOTE: technically, we should only dispatch on array-like arguments, not # subscripts (given as strings). But separating operands into # arrays/subscripts is a little tricky/slow (given einsum's two supported # signatures), so as a practical shortcut we dispatch on everything. # Strings will be ignored for dispatching since they don't define # __array_function__. return operands @array_function_dispatch(_einsum_path_dispatcher, module='numpy') def einsum_path(*operands, **kwargs): """ einsum_path(subscripts, *operands, optimize='greedy') Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate arrays. Parameters ---------- subscripts : str Specifies the subscripts for summation. *operands : list of array_like These are the arrays for the operation. optimize : {bool, list, tuple, 'greedy', 'optimal'} Choose the type of path. If a tuple is provided, the second argument is assumed to be the maximum intermediate size created. If only a single argument is provided the largest input or output array size is used as a maximum intermediate size. * if a list is given that starts with ``einsum_path``, uses this as the contraction path * if False no optimization is taken * if True defaults to the 'greedy' algorithm * 'optimal' An algorithm that combinatorially explores all possible ways of contracting the listed tensors and choosest the least costly path. Scales exponentially with the number of terms in the contraction. * 'greedy' An algorithm that chooses the best pair contraction at each step. Effectively, this algorithm searches the largest inner, Hadamard, and then outer products at each step. Scales cubically with the number of terms in the contraction. Equivalent to the 'optimal' path for most contractions. Default is 'greedy'. Returns ------- path : list of tuples A list representation of the einsum path. string_repr : str A printable representation of the einsum path. Notes ----- The resulting path indicates which terms of the input contraction should be contracted first, the result of this contraction is then appended to the end of the contraction list. This list can then be iterated over until all intermediate contractions are complete. See Also -------- einsum, linalg.multi_dot Examples -------- We can begin with a chain dot example. In this case, it is optimal to contract the ``b`` and ``c`` tensors first as represented by the first element of the path ``(1, 2)``. The resulting tensor is added to the end of the contraction and the remaining contraction ``(0, 1)`` is then completed. >>> np.random.seed(123) >>> a = np.random.rand(2, 2) >>> b = np.random.rand(2, 5) >>> c = np.random.rand(5, 2) >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy') >>> print(path_info[0]) ['einsum_path', (1, 2), (0, 1)] >>> print(path_info[1]) Complete contraction: ij,jk,kl->il # may vary Naive scaling: 4 Optimized scaling: 3 Naive FLOP count: 1.600e+02 Optimized FLOP count: 5.600e+01 Theoretical speedup: 2.857 Largest intermediate: 4.000e+00 elements ------------------------------------------------------------------------- scaling current remaining ------------------------------------------------------------------------- 3 kl,jk->jl ij,jl->il 3 jl,ij->il il->il A more complex index transformation example. >>> I = np.random.rand(10, 10, 10, 10) >>> C = np.random.rand(10, 10) >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C, ... optimize='greedy') >>> print(path_info[0]) ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)] >>> print(path_info[1]) Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary Naive scaling: 8 Optimized scaling: 5 Naive FLOP count: 8.000e+08 Optimized FLOP count: 8.000e+05 Theoretical speedup: 1000.000 Largest intermediate: 1.000e+04 elements -------------------------------------------------------------------------- scaling current remaining -------------------------------------------------------------------------- 5 abcd,ea->bcde fb,gc,hd,bcde->efgh 5 bcde,fb->cdef gc,hd,cdef->efgh 5 cdef,gc->defg hd,defg->efgh 5 defg,hd->efgh efgh->efgh """ # Make sure all keywords are valid valid_contract_kwargs = ['optimize', 'einsum_call'] unknown_kwargs = [k for (k, v) in kwargs.items() if k not in valid_contract_kwargs] if len(unknown_kwargs): raise TypeError("Did not understand the following kwargs:" " %s" % unknown_kwargs) # Figure out what the path really is path_type = kwargs.pop('optimize', True) if path_type is True: path_type = 'greedy' if path_type is None: path_type = False memory_limit = None # No optimization or a named path algorithm if (path_type is False) or isinstance(path_type, basestring): pass # Given an explicit path elif len(path_type) and (path_type[0] == 'einsum_path'): pass # Path tuple with memory limit elif ((len(path_type) == 2) and isinstance(path_type[0], basestring) and isinstance(path_type[1], (int, float))): memory_limit = int(path_type[1]) path_type = path_type[0] else: raise TypeError("Did not understand the path: %s" % str(path_type)) # Hidden option, only einsum should call this einsum_call_arg = kwargs.pop("einsum_call", False) # Python side parsing input_subscripts, output_subscript, operands = _parse_einsum_input(operands) # Build a few useful list and sets input_list = input_subscripts.split(',') input_sets = [set(x) for x in input_list] output_set = set(output_subscript) indices = set(input_subscripts.replace(',', '')) # Get length of each unique dimension and ensure all dimensions are correct dimension_dict = {} broadcast_indices = [[] for x in range(len(input_list))] for tnum, term in enumerate(input_list): sh = operands[tnum].shape if len(sh) != len(term): raise ValueError("Einstein sum subscript %s does not contain the " "correct number of indices for operand %d." % (input_subscripts[tnum], tnum)) for cnum, char in enumerate(term): dim = sh[cnum] # Build out broadcast indices if dim == 1: broadcast_indices[tnum].append(char) if char in dimension_dict.keys(): # For broadcasting cases we always want the largest dim size if dimension_dict[char] == 1: dimension_dict[char] = dim elif dim not in (1, dimension_dict[char]): raise ValueError("Size of label '%s' for operand %d (%d) " "does not match previous terms (%d)." % (char, tnum, dimension_dict[char], dim)) else: dimension_dict[char] = dim # Convert broadcast inds to sets broadcast_indices = [set(x) for x in broadcast_indices] # Compute size of each input array plus the output array size_list = [_compute_size_by_dict(term, dimension_dict) for term in input_list + [output_subscript]] max_size = max(size_list) if memory_limit is None: memory_arg = max_size else: memory_arg = memory_limit # Compute naive cost # This isn't quite right, need to look into exactly how einsum does this inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0 naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict) # Compute the path if (path_type is False) or (len(input_list) in [1, 2]) or (indices == output_set): # Nothing to be optimized, leave it to einsum path = [tuple(range(len(input_list)))] elif path_type == "greedy": path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg) elif path_type == "optimal": path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg) elif path_type[0] == 'einsum_path': path = path_type[1:] else: raise KeyError("Path name %s not found", path_type) cost_list, scale_list, size_list, contraction_list = [], [], [], [] # Build contraction tuple (positions, gemm, einsum_str, remaining) for cnum, contract_inds in enumerate(path): # Make sure we remove inds from right to left contract_inds = tuple(sorted(list(contract_inds), reverse=True)) contract = _find_contraction(contract_inds, input_sets, output_set) out_inds, input_sets, idx_removed, idx_contract = contract cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict) cost_list.append(cost) scale_list.append(len(idx_contract)) size_list.append(_compute_size_by_dict(out_inds, dimension_dict)) bcast = set() tmp_inputs = [] for x in contract_inds: tmp_inputs.append(input_list.pop(x)) bcast |= broadcast_indices.pop(x) new_bcast_inds = bcast - idx_removed # If we're broadcasting, nix blas if not len(idx_removed & bcast): do_blas = _can_dot(tmp_inputs, out_inds, idx_removed) else: do_blas = False # Last contraction if (cnum - len(path)) == -1: idx_result = output_subscript else: sort_result = [(dimension_dict[ind], ind) for ind in out_inds] idx_result = "".join([x[1] for x in sorted(sort_result)]) input_list.append(idx_result) broadcast_indices.append(new_bcast_inds) einsum_str = ",".join(tmp_inputs) + "->" + idx_result contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas) contraction_list.append(contraction) opt_cost = sum(cost_list) + 1 if einsum_call_arg: return (operands, contraction_list) # Return the path along with a nice string representation overall_contraction = input_subscripts + "->" + output_subscript header = ("scaling", "current", "remaining") speedup = naive_cost / opt_cost max_i = max(size_list) path_print = " Complete contraction: %s\n" % overall_contraction path_print += " Naive scaling: %d\n" % len(indices) path_print += " Optimized scaling: %d\n" % max(scale_list) path_print += " Naive FLOP count: %.3e\n" % naive_cost path_print += " Optimized FLOP count: %.3e\n" % opt_cost path_print += " Theoretical speedup: %3.3f\n" % speedup path_print += " Largest intermediate: %.3e elements\n" % max_i path_print += "-" * 74 + "\n" path_print += "%6s %24s %40s\n" % header path_print += "-" * 74 for n, contraction in enumerate(contraction_list): inds, idx_rm, einsum_str, remaining, blas = contraction remaining_str = ",".join(remaining) + "->" + output_subscript path_run = (scale_list[n], einsum_str, remaining_str) path_print += "\n%4d %24s %40s" % path_run path = ['einsum_path'] + path return (path, path_print) def _einsum_dispatcher(*operands, **kwargs): # Arguably we dispatch on more arguments that we really should; see note in # _einsum_path_dispatcher for why. for op in operands: yield op yield kwargs.get('out') # Rewrite einsum to handle different cases @array_function_dispatch(_einsum_dispatcher, module='numpy') def einsum(*operands, **kwargs): """ einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe', optimize=False) Evaluates the Einstein summation convention on the operands. Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion. In *implicit* mode `einsum` computes these values. In *explicit* mode, `einsum` provides further flexibility to compute other array operations that might not be considered classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels. See the notes and examples for clarification. Parameters ---------- subscripts : str Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical Einstein summation) calculation is performed unless the explicit indicator '->' is included as well as subscript labels of the precise output form. operands : list of array_like These are the arrays for the operation. out : ndarray, optional If provided, the calculation is done into this array. dtype : {data-type, None}, optional If provided, forces the calculation to use the data type specified. Note that you may have to also give a more liberal `casting` parameter to allow the conversions. Default is None. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the output. 'C' means it should be C contiguous. 'F' means it should be Fortran contiguous, 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. 'K' means it should be as close to the layout as the inputs as is possible, including arbitrarily permuted axes. Default is 'K'. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. Setting this to 'unsafe' is not recommended, as it can adversely affect accumulations. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. Default is 'safe'. optimize : {False, True, 'greedy', 'optimal'}, optional Controls if intermediate optimization should occur. No optimization will occur if False and True will default to the 'greedy' algorithm. Also accepts an explicit contraction list from the ``np.einsum_path`` function. See ``np.einsum_path`` for more details. Defaults to False. Returns ------- output : ndarray The calculation based on the Einstein summation convention. See Also -------- einsum_path, dot, inner, outer, tensordot, linalg.multi_dot Notes ----- .. versionadded:: 1.6.0 The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array operations. `einsum` provides a succinct way of representing these. A non-exhaustive list of these operations, which can be computed by `einsum`, is shown below along with examples: * Trace of an array, :py:func:`numpy.trace`. * Return a diagonal, :py:func:`numpy.diag`. * Array axis summations, :py:func:`numpy.sum`. * Transpositions and permutations, :py:func:`numpy.transpose`. * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. * Tensor contractions, :py:func:`numpy.tensordot`. * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label appears only once, it is not summed, so ``np.einsum('i', a)`` produces a view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication and is equivalent to :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent to :py:func:`np.trace(a) <numpy.trace>`. In *implicit mode*, the chosen subscripts are important since the axes of the output are reordered alphabetically. This means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while ``np.einsum('ji', a)`` takes its transpose. Additionally, ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, ``np.einsum('ij,jh', a, b)`` returns the transpose of the multiplication since subscript 'h' precedes subscript 'i'. In *explicit mode* the output can be directly controlled by specifying output subscript labels. This requires the identifier '->' as well as the list of output subscript labels. This feature increases the flexibility of the function since summing can be disabled or forced when required. The call ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`, and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`. The difference is that `einsum` does not allow broadcasting by default. Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example above in implicit mode. To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis to the left of each term, like ``np.einsum('...ii->...i', a)``. To take the trace along the first and last axes, you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix product with the left-most indices instead of rightmost, one can do ``np.einsum('ij...,jk...->ik...', a, b)``. When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand is returned instead of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` produces a view (changed in version 1.10.0). `einsum` also provides an alternative way to provide the subscripts and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. If the output shape is not provided in this format `einsum` will be calculated in implicit mode, otherwise it will be performed explicitly. The examples below have corresponding `einsum` calls with the two parameter methods. .. versionadded:: 1.10.0 Views returned from einsum are now writeable whenever the input array is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>` and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal of a 2D array. .. versionadded:: 1.12.0 Added the ``optimize`` argument which will optimize the contraction order of an einsum expression. For a contraction with three or more operands this can greatly increase the computational efficiency at the cost of a larger memory footprint during computation. Typically a 'greedy' algorithm is applied which empirical tests have shown returns the optimal path in the majority of cases. In some cases 'optimal' will return the superlative path through a more expensive, exhaustive search. For iterative calculations it may be advisable to calculate the optimal path once and reuse that path by supplying it as an argument. An example is given below. See :py:func:`numpy.einsum_path` for more details. Examples -------- >>> a = np.arange(25).reshape(5,5) >>> b = np.arange(5) >>> c = np.arange(6).reshape(2,3) Trace of a matrix: >>> np.einsum('ii', a) 60 >>> np.einsum(a, [0,0]) 60 >>> np.trace(a) 60 Extract the diagonal (requires explicit form): >>> np.einsum('ii->i', a) array([ 0, 6, 12, 18, 24]) >>> np.einsum(a, [0,0], [0]) array([ 0, 6, 12, 18, 24]) >>> np.diag(a) array([ 0, 6, 12, 18, 24]) Sum over an axis (requires explicit form): >>> np.einsum('ij->i', a) array([ 10, 35, 60, 85, 110]) >>> np.einsum(a, [0,1], [0]) array([ 10, 35, 60, 85, 110]) >>> np.sum(a, axis=1) array([ 10, 35, 60, 85, 110]) For higher dimensional arrays summing a single axis can be done with ellipsis: >>> np.einsum('...j->...', a) array([ 10, 35, 60, 85, 110]) >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) array([ 10, 35, 60, 85, 110]) Compute a matrix transpose, or reorder any number of axes: >>> np.einsum('ji', c) array([[0, 3], [1, 4], [2, 5]]) >>> np.einsum('ij->ji', c) array([[0, 3], [1, 4], [2, 5]]) >>> np.einsum(c, [1,0]) array([[0, 3], [1, 4], [2, 5]]) >>> np.transpose(c) array([[0, 3], [1, 4], [2, 5]]) Vector inner products: >>> np.einsum('i,i', b, b) 30 >>> np.einsum(b, [0], b, [0]) 30 >>> np.inner(b,b) 30 Matrix vector multiplication: >>> np.einsum('ij,j', a, b) array([ 30, 80, 130, 180, 230]) >>> np.einsum(a, [0,1], b, [1]) array([ 30, 80, 130, 180, 230]) >>> np.dot(a, b) array([ 30, 80, 130, 180, 230]) >>> np.einsum('...j,j', a, b) array([ 30, 80, 130, 180, 230]) Broadcasting and scalar multiplication: >>> np.einsum('..., ...', 3, c) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.einsum(',ij', 3, c) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.multiply(3, c) array([[ 0, 3, 6], [ 9, 12, 15]]) Vector outer product: >>> np.einsum('i,j', np.arange(2)+1, b) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> np.einsum(np.arange(2)+1, [0], b, [1]) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> np.outer(np.arange(2)+1, b) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) Tensor contraction: >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> np.einsum('ijk,jil->kl', a, b) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> np.tensordot(a,b, axes=([1,0],[0,1])) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) Writeable returned arrays (since version 1.10.0): >>> a = np.zeros((3, 3)) >>> np.einsum('ii->i', a)[:] = 1 >>> a array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) Example of ellipsis use: >>> a = np.arange(6).reshape((3,2)) >>> b = np.arange(12).reshape((4,3)) >>> np.einsum('ki,jk->ij', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> np.einsum('ki,...k->i...', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> np.einsum('k...,jk', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]]) Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly computing a 'greedy' path or pre-computing the 'optimal' path and repeatedly applying it, using an `einsum_path` insertion (since version 1.12.0). Performance improvements can be particularly significant with larger arrays: >>> a = np.ones(64).reshape(2,4,8) Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.) >>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) Sub-optimal `einsum` (due to repeated path calculation time): ~330ms >>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal') Greedy `einsum` (faster optimal path approximation): ~160ms >>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy') Optimal `einsum` (best usage pattern in some use cases): ~110ms >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0] >>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path) """ # Grab non-einsum kwargs; do not optimize by default. optimize_arg = kwargs.pop('optimize', False) # If no optimization, run pure einsum if optimize_arg is False: return c_einsum(*operands, **kwargs) valid_einsum_kwargs = ['out', 'dtype', 'order', 'casting'] einsum_kwargs = {k: v for (k, v) in kwargs.items() if k in valid_einsum_kwargs} # Make sure all keywords are valid valid_contract_kwargs = ['optimize'] + valid_einsum_kwargs unknown_kwargs = [k for (k, v) in kwargs.items() if k not in valid_contract_kwargs] if len(unknown_kwargs): raise TypeError("Did not understand the following kwargs: %s" % unknown_kwargs) # Special handeling if out is specified specified_out = False out_array = einsum_kwargs.pop('out', None) if out_array is not None: specified_out = True # Build the contraction list and operand operands, contraction_list = einsum_path(*operands, optimize=optimize_arg, einsum_call=True) handle_out = False # Start contraction loop for num, contraction in enumerate(contraction_list): inds, idx_rm, einsum_str, remaining, blas = contraction tmp_operands = [operands.pop(x) for x in inds] # Do we need to deal with the output? handle_out = specified_out and ((num + 1) == len(contraction_list)) # Call tensordot if still possible if blas: # Checks have already been handled input_str, results_index = einsum_str.split('->') input_left, input_right = input_str.split(',') tensor_result = input_left + input_right for s in idx_rm: tensor_result = tensor_result.replace(s, "") # Find indices to contract over left_pos, right_pos = [], [] for s in sorted(idx_rm): left_pos.append(input_left.find(s)) right_pos.append(input_right.find(s)) # Contract! new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos))) # Build a new view if needed if (tensor_result != results_index) or handle_out: if handle_out: einsum_kwargs["out"] = out_array new_view = c_einsum(tensor_result + '->' + results_index, new_view, **einsum_kwargs) # Call einsum else: # If out was specified if handle_out: einsum_kwargs["out"] = out_array # Do the contraction new_view = c_einsum(einsum_str, *tmp_operands, **einsum_kwargs) # Append new items and dereference what we can operands.append(new_view) del tmp_operands, new_view if specified_out: return out_array else: return operands[0]
{ "content_hash": "7d3ccbd56d4c2d74f6c252e5f47c6e10", "timestamp": "", "source": "github", "line_count": 1432, "max_line_length": 118, "avg_line_length": 35.80377094972067, "alnum_prop": 0.5862963468627489, "repo_name": "MSeifert04/numpy", "id": "3412c3fd5a7e16cebd666e8cef4aee59fd58c986", "size": "51271", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "numpy/core/einsumfunc.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "9050105" }, { "name": "C++", "bytes": "189464" }, { "name": "Fortran", "bytes": "10884" }, { "name": "JavaScript", "bytes": "16928" }, { "name": "Makefile", "bytes": "4290" }, { "name": "Python", "bytes": "8251054" }, { "name": "Shell", "bytes": "8345" }, { "name": "sed", "bytes": "5741" } ], "symlink_target": "" }
import os import unittest from quickbooks.client import QuickBooks from quickbooks.objects.taxrate import TaxRate class TaxRateTest(unittest.TestCase): def setUp(self): self.qb_client = QuickBooks( sandbox=True, consumer_key=os.environ.get('CONSUMER_KEY'), consumer_secret=os.environ.get('CONSUMER_SECRET'), access_token=os.environ.get('ACCESS_TOKEN'), access_token_secret=os.environ.get('ACCESS_TOKEN_SECRET'), company_id=os.environ.get('COMPANY_ID') ) def test_read(self): tax_rates = TaxRate.all(max_results=1, qb=self.qb_client) self.assertEquals(len(tax_rates), 1)
{ "content_hash": "165d3b74e46e9c31c4ae4333ebc111b7", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 70, "avg_line_length": 29.91304347826087, "alnum_prop": 0.6482558139534884, "repo_name": "porn/python-quickbooks", "id": "30da1ff4413104562e0a921b425eac5932aa6dc3", "size": "688", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/integration/test_taxrate.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "164" }, { "name": "Python", "bytes": "208523" } ], "symlink_target": "" }
from pybind11_tests import chrono as m import datetime def test_chrono_system_clock(): # Get the time from both c++ and datetime date1 = m.test_chrono1() date2 = datetime.datetime.today() # The returned value should be a datetime assert isinstance(date1, datetime.datetime) # The numbers should vary by a very small amount (time it took to execute) diff = abs(date1 - date2) # There should never be a days/seconds difference assert diff.days == 0 assert diff.seconds == 0 # We test that no more than about 0.5 seconds passes here # This makes sure that the dates created are very close to the same # but if the testing system is incredibly overloaded this should still pass assert diff.microseconds < 500000 def test_chrono_system_clock_roundtrip(): date1 = datetime.datetime.today() # Roundtrip the time date2 = m.test_chrono2(date1) # The returned value should be a datetime assert isinstance(date2, datetime.datetime) # They should be identical (no information lost on roundtrip) diff = abs(date1 - date2) assert diff.days == 0 assert diff.seconds == 0 assert diff.microseconds == 0 def test_chrono_system_clock_roundtrip_date(): date1 = datetime.date.today() # Roundtrip the time datetime2 = m.test_chrono2(date1) date2 = datetime2.date() time2 = datetime2.time() # The returned value should be a datetime assert isinstance(datetime2, datetime.datetime) assert isinstance(date2, datetime.date) assert isinstance(time2, datetime.time) # They should be identical (no information lost on roundtrip) diff = abs(date1 - date2) assert diff.days == 0 assert diff.seconds == 0 assert diff.microseconds == 0 # Year, Month & Day should be the same after the round trip assert date1.year == date2.year assert date1.month == date2.month assert date1.day == date2.day # There should be no time information assert time2.hour == 0 assert time2.minute == 0 assert time2.second == 0 assert time2.microsecond == 0 def test_chrono_system_clock_roundtrip_time(): time1 = datetime.datetime.today().time() # Roundtrip the time datetime2 = m.test_chrono2(time1) date2 = datetime2.date() time2 = datetime2.time() # The returned value should be a datetime assert isinstance(datetime2, datetime.datetime) assert isinstance(date2, datetime.date) assert isinstance(time2, datetime.time) # Hour, Minute, Second & Microsecond should be the same after the round trip assert time1.hour == time2.hour assert time1.minute == time2.minute assert time1.second == time2.second assert time1.microsecond == time2.microsecond # There should be no date information (i.e. date = python base date) assert date2.year == 1970 assert date2.month == 1 assert date2.day == 1 def test_chrono_duration_roundtrip(): # Get the difference between two times (a timedelta) date1 = datetime.datetime.today() date2 = datetime.datetime.today() diff = date2 - date1 # Make sure this is a timedelta assert isinstance(diff, datetime.timedelta) cpp_diff = m.test_chrono3(diff) assert cpp_diff.days == diff.days assert cpp_diff.seconds == diff.seconds assert cpp_diff.microseconds == diff.microseconds def test_chrono_duration_subtraction_equivalence(): date1 = datetime.datetime.today() date2 = datetime.datetime.today() diff = date2 - date1 cpp_diff = m.test_chrono4(date2, date1) assert cpp_diff.days == diff.days assert cpp_diff.seconds == diff.seconds assert cpp_diff.microseconds == diff.microseconds def test_chrono_duration_subtraction_equivalence_date(): date1 = datetime.date.today() date2 = datetime.date.today() diff = date2 - date1 cpp_diff = m.test_chrono4(date2, date1) assert cpp_diff.days == diff.days assert cpp_diff.seconds == diff.seconds assert cpp_diff.microseconds == diff.microseconds def test_chrono_steady_clock(): time1 = m.test_chrono5() assert isinstance(time1, datetime.timedelta) def test_chrono_steady_clock_roundtrip(): time1 = datetime.timedelta(days=10, seconds=10, microseconds=100) time2 = m.test_chrono6(time1) assert isinstance(time2, datetime.timedelta) # They should be identical (no information lost on roundtrip) assert time1.days == time2.days assert time1.seconds == time2.seconds assert time1.microseconds == time2.microseconds def test_floating_point_duration(): # Test using a floating point number in seconds time = m.test_chrono7(35.525123) assert isinstance(time, datetime.timedelta) assert time.seconds == 35 assert 525122 <= time.microseconds <= 525123 diff = m.test_chrono_float_diff(43.789012, 1.123456) assert diff.seconds == 42 assert 665556 <= diff.microseconds <= 665557 def test_nano_timepoint(): time = datetime.datetime.now() time1 = m.test_nano_timepoint(time, datetime.timedelta(seconds=60)) assert(time1 == time + datetime.timedelta(seconds=60))
{ "content_hash": "de874944e9bfef6a29ae37111b4a22d1", "timestamp": "", "source": "github", "line_count": 176, "max_line_length": 80, "avg_line_length": 29.21590909090909, "alnum_prop": 0.6960326721120187, "repo_name": "BYVoid/OpenCC", "id": "55c95440655145f9b3c0c77d9e2d878a29f7fb45", "size": "5142", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "deps/pybind11-2.5.0/tests/test_chrono.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1195" }, { "name": "C", "bytes": "689" }, { "name": "C++", "bytes": "215008" }, { "name": "CMake", "bytes": "15826" }, { "name": "JavaScript", "bytes": "7133" }, { "name": "Makefile", "bytes": "2528" }, { "name": "Python", "bytes": "21569" }, { "name": "Shell", "bytes": "2247" }, { "name": "TypeScript", "bytes": "912" } ], "symlink_target": "" }
from lib.ConfigLoader import ConfigLoader from resources.MySql import MySql class Resources(object): @staticmethod def configs(): return [MySql.config()] def __init__(self, logger, configs): self.logger = logger mysql_config = ConfigLoader.get_config_by_type(configs, type(MySql.config())) self.db_loader = lambda : MySql(logger, mysql_config)
{ "content_hash": "3fe03a2648a788dc8a22ebbe26f66aed", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 85, "avg_line_length": 32.5, "alnum_prop": 0.6794871794871795, "repo_name": "JimboMonkey1234/pushserver", "id": "99db3828e0f5e571cb8f47b1244079c01f7541b9", "size": "413", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "resources/Resources.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "24373" }, { "name": "Shell", "bytes": "42" } ], "symlink_target": "" }
import ctypes import faulthandler import io import itertools import logging import multiprocessing import os import pickle import sys import textwrap import unittest from importlib import import_module from io import StringIO from django.core.management import call_command from django.db import connections from django.test import SimpleTestCase, TestCase from django.test.utils import ( NullTimeKeeper, TimeKeeper, setup_databases as _setup_databases, setup_test_environment, teardown_databases as _teardown_databases, teardown_test_environment, ) from django.utils.datastructures import OrderedSet from django.utils.version import PY37 try: import ipdb as pdb except ImportError: import pdb try: import tblib.pickling_support except ImportError: tblib = None class DebugSQLTextTestResult(unittest.TextTestResult): def __init__(self, stream, descriptions, verbosity): self.logger = logging.getLogger('django.db.backends') self.logger.setLevel(logging.DEBUG) super().__init__(stream, descriptions, verbosity) def startTest(self, test): self.debug_sql_stream = StringIO() self.handler = logging.StreamHandler(self.debug_sql_stream) self.logger.addHandler(self.handler) super().startTest(test) def stopTest(self, test): super().stopTest(test) self.logger.removeHandler(self.handler) if self.showAll: self.debug_sql_stream.seek(0) self.stream.write(self.debug_sql_stream.read()) self.stream.writeln(self.separator2) def addError(self, test, err): super().addError(test, err) self.debug_sql_stream.seek(0) self.errors[-1] = self.errors[-1] + (self.debug_sql_stream.read(),) def addFailure(self, test, err): super().addFailure(test, err) self.debug_sql_stream.seek(0) self.failures[-1] = self.failures[-1] + (self.debug_sql_stream.read(),) def addSubTest(self, test, subtest, err): super().addSubTest(test, subtest, err) if err is not None: self.debug_sql_stream.seek(0) errors = self.failures if issubclass(err[0], test.failureException) else self.errors errors[-1] = errors[-1] + (self.debug_sql_stream.read(),) def printErrorList(self, flavour, errors): for test, err, sql_debug in errors: self.stream.writeln(self.separator1) self.stream.writeln("%s: %s" % (flavour, self.getDescription(test))) self.stream.writeln(self.separator2) self.stream.writeln(err) self.stream.writeln(self.separator2) self.stream.writeln(sql_debug) class PDBDebugResult(unittest.TextTestResult): """ Custom result class that triggers a PDB session when an error or failure occurs. """ def addError(self, test, err): super().addError(test, err) self.debug(err) def addFailure(self, test, err): super().addFailure(test, err) self.debug(err) def debug(self, error): exc_type, exc_value, traceback = error print("\nOpening PDB: %r" % exc_value) pdb.post_mortem(traceback) class RemoteTestResult: """ Record information about which tests have succeeded and which have failed. The sole purpose of this class is to record events in the child processes so they can be replayed in the master process. As a consequence it doesn't inherit unittest.TestResult and doesn't attempt to implement all its API. The implementation matches the unpythonic coding style of unittest2. """ def __init__(self): if tblib is not None: tblib.pickling_support.install() self.events = [] self.failfast = False self.shouldStop = False self.testsRun = 0 @property def test_index(self): return self.testsRun - 1 def _confirm_picklable(self, obj): """ Confirm that obj can be pickled and unpickled as multiprocessing will need to pickle the exception in the child process and unpickle it in the parent process. Let the exception rise, if not. """ pickle.loads(pickle.dumps(obj)) def _print_unpicklable_subtest(self, test, subtest, pickle_exc): print(""" Subtest failed: test: {} subtest: {} Unfortunately, the subtest that failed cannot be pickled, so the parallel test runner cannot handle it cleanly. Here is the pickling error: > {} You should re-run this test with --parallel=1 to reproduce the failure with a cleaner failure message. """.format(test, subtest, pickle_exc)) def check_picklable(self, test, err): # Ensure that sys.exc_info() tuples are picklable. This displays a # clear multiprocessing.pool.RemoteTraceback generated in the child # process instead of a multiprocessing.pool.MaybeEncodingError, making # the root cause easier to figure out for users who aren't familiar # with the multiprocessing module. Since we're in a forked process, # our best chance to communicate with them is to print to stdout. try: self._confirm_picklable(err) except Exception as exc: original_exc_txt = repr(err[1]) original_exc_txt = textwrap.fill(original_exc_txt, 75, initial_indent=' ', subsequent_indent=' ') pickle_exc_txt = repr(exc) pickle_exc_txt = textwrap.fill(pickle_exc_txt, 75, initial_indent=' ', subsequent_indent=' ') if tblib is None: print(""" {} failed: {} Unfortunately, tracebacks cannot be pickled, making it impossible for the parallel test runner to handle this exception cleanly. In order to see the traceback, you should install tblib: python -m pip install tblib """.format(test, original_exc_txt)) else: print(""" {} failed: {} Unfortunately, the exception it raised cannot be pickled, making it impossible for the parallel test runner to handle it cleanly. Here's the error encountered while trying to pickle the exception: {} You should re-run this test with the --parallel=1 option to reproduce the failure and get a correct traceback. """.format(test, original_exc_txt, pickle_exc_txt)) raise def check_subtest_picklable(self, test, subtest): try: self._confirm_picklable(subtest) except Exception as exc: self._print_unpicklable_subtest(test, subtest, exc) raise def stop_if_failfast(self): if self.failfast: self.stop() def stop(self): self.shouldStop = True def startTestRun(self): self.events.append(('startTestRun',)) def stopTestRun(self): self.events.append(('stopTestRun',)) def startTest(self, test): self.testsRun += 1 self.events.append(('startTest', self.test_index)) def stopTest(self, test): self.events.append(('stopTest', self.test_index)) def addError(self, test, err): self.check_picklable(test, err) self.events.append(('addError', self.test_index, err)) self.stop_if_failfast() def addFailure(self, test, err): self.check_picklable(test, err) self.events.append(('addFailure', self.test_index, err)) self.stop_if_failfast() def addSubTest(self, test, subtest, err): # Follow Python 3.5's implementation of unittest.TestResult.addSubTest() # by not doing anything when a subtest is successful. if err is not None: # Call check_picklable() before check_subtest_picklable() since # check_picklable() performs the tblib check. self.check_picklable(test, err) self.check_subtest_picklable(test, subtest) self.events.append(('addSubTest', self.test_index, subtest, err)) self.stop_if_failfast() def addSuccess(self, test): self.events.append(('addSuccess', self.test_index)) def addSkip(self, test, reason): self.events.append(('addSkip', self.test_index, reason)) def addExpectedFailure(self, test, err): # If tblib isn't installed, pickling the traceback will always fail. # However we don't want tblib to be required for running the tests # when they pass or fail as expected. Drop the traceback when an # expected failure occurs. if tblib is None: err = err[0], err[1], None self.check_picklable(test, err) self.events.append(('addExpectedFailure', self.test_index, err)) def addUnexpectedSuccess(self, test): self.events.append(('addUnexpectedSuccess', self.test_index)) self.stop_if_failfast() class RemoteTestRunner: """ Run tests and record everything but don't display anything. The implementation matches the unpythonic coding style of unittest2. """ resultclass = RemoteTestResult def __init__(self, failfast=False, resultclass=None): self.failfast = failfast if resultclass is not None: self.resultclass = resultclass def run(self, test): result = self.resultclass() unittest.registerResult(result) result.failfast = self.failfast test(result) return result def default_test_processes(): """Default number of test processes when using the --parallel option.""" # The current implementation of the parallel test runner requires # multiprocessing to start subprocesses with fork(). if multiprocessing.get_start_method() != 'fork': return 1 try: return int(os.environ['DJANGO_TEST_PROCESSES']) except KeyError: return multiprocessing.cpu_count() _worker_id = 0 def _init_worker(counter): """ Switch to databases dedicated to this worker. This helper lives at module-level because of the multiprocessing module's requirements. """ global _worker_id with counter.get_lock(): counter.value += 1 _worker_id = counter.value for alias in connections: connection = connections[alias] settings_dict = connection.creation.get_test_db_clone_settings(str(_worker_id)) # connection.settings_dict must be updated in place for changes to be # reflected in django.db.connections. If the following line assigned # connection.settings_dict = settings_dict, new threads would connect # to the default database instead of the appropriate clone. connection.settings_dict.update(settings_dict) connection.close() def _run_subsuite(args): """ Run a suite of tests with a RemoteTestRunner and return a RemoteTestResult. This helper lives at module-level and its arguments are wrapped in a tuple because of the multiprocessing module's requirements. """ runner_class, subsuite_index, subsuite, failfast = args runner = runner_class(failfast=failfast) result = runner.run(subsuite) return subsuite_index, result.events class ParallelTestSuite(unittest.TestSuite): """ Run a series of tests in parallel in several processes. While the unittest module's documentation implies that orchestrating the execution of tests is the responsibility of the test runner, in practice, it appears that TestRunner classes are more concerned with formatting and displaying test results. Since there are fewer use cases for customizing TestSuite than TestRunner, implementing parallelization at the level of the TestSuite improves interoperability with existing custom test runners. A single instance of a test runner can still collect results from all tests without being aware that they have been run in parallel. """ # In case someone wants to modify these in a subclass. init_worker = _init_worker run_subsuite = _run_subsuite runner_class = RemoteTestRunner def __init__(self, suite, processes, failfast=False): self.subsuites = partition_suite_by_case(suite) self.processes = processes self.failfast = failfast super().__init__() def run(self, result): """ Distribute test cases across workers. Return an identifier of each test case with its result in order to use imap_unordered to show results as soon as they're available. To minimize pickling errors when getting results from workers: - pass back numeric indexes in self.subsuites instead of tests - make tracebacks picklable with tblib, if available Even with tblib, errors may still occur for dynamically created exception classes which cannot be unpickled. """ counter = multiprocessing.Value(ctypes.c_int, 0) pool = multiprocessing.Pool( processes=self.processes, initializer=self.init_worker.__func__, initargs=[counter], ) args = [ (self.runner_class, index, subsuite, self.failfast) for index, subsuite in enumerate(self.subsuites) ] test_results = pool.imap_unordered(self.run_subsuite.__func__, args) while True: if result.shouldStop: pool.terminate() break try: subsuite_index, events = test_results.next(timeout=0.1) except multiprocessing.TimeoutError: continue except StopIteration: pool.close() break tests = list(self.subsuites[subsuite_index]) for event in events: event_name = event[0] handler = getattr(result, event_name, None) if handler is None: continue test = tests[event[1]] args = event[2:] handler(test, *args) pool.join() return result def __iter__(self): return iter(self.subsuites) class DiscoverRunner: """A Django test runner that uses unittest2 test discovery.""" test_suite = unittest.TestSuite parallel_test_suite = ParallelTestSuite test_runner = unittest.TextTestRunner test_loader = unittest.defaultTestLoader reorder_by = (TestCase, SimpleTestCase) def __init__(self, pattern=None, top_level=None, verbosity=1, interactive=True, failfast=False, keepdb=False, reverse=False, debug_mode=False, debug_sql=False, parallel=0, tags=None, exclude_tags=None, test_name_patterns=None, pdb=False, buffer=False, enable_faulthandler=True, timing=False, **kwargs): self.pattern = pattern self.top_level = top_level self.verbosity = verbosity self.interactive = interactive self.failfast = failfast self.keepdb = keepdb self.reverse = reverse self.debug_mode = debug_mode self.debug_sql = debug_sql self.parallel = parallel self.tags = set(tags or []) self.exclude_tags = set(exclude_tags or []) if not faulthandler.is_enabled() and enable_faulthandler: try: faulthandler.enable(file=sys.stderr.fileno()) except (AttributeError, io.UnsupportedOperation): faulthandler.enable(file=sys.__stderr__.fileno()) self.pdb = pdb if self.pdb and self.parallel > 1: raise ValueError('You cannot use --pdb with parallel tests; pass --parallel=1 to use it.') self.buffer = buffer if self.buffer and self.parallel > 1: raise ValueError( 'You cannot use -b/--buffer with parallel tests; pass ' '--parallel=1 to use it.' ) self.test_name_patterns = None self.time_keeper = TimeKeeper() if timing else NullTimeKeeper() if test_name_patterns: # unittest does not export the _convert_select_pattern function # that converts command-line arguments to patterns. self.test_name_patterns = { pattern if '*' in pattern else '*%s*' % pattern for pattern in test_name_patterns } @classmethod def add_arguments(cls, parser): parser.add_argument( '-t', '--top-level-directory', dest='top_level', help='Top level of project for unittest discovery.', ) parser.add_argument( '-p', '--pattern', default="test*.py", help='The test matching pattern. Defaults to test*.py.', ) parser.add_argument( '--keepdb', action='store_true', help='Preserves the test DB between runs.' ) parser.add_argument( '-r', '--reverse', action='store_true', help='Reverses test cases order.', ) parser.add_argument( '--debug-mode', action='store_true', help='Sets settings.DEBUG to True.', ) parser.add_argument( '-d', '--debug-sql', action='store_true', help='Prints logged SQL queries on failure.', ) parser.add_argument( '--parallel', nargs='?', default=1, type=int, const=default_test_processes(), metavar='N', help='Run tests using up to N parallel processes.', ) parser.add_argument( '--tag', action='append', dest='tags', help='Run only tests with the specified tag. Can be used multiple times.', ) parser.add_argument( '--exclude-tag', action='append', dest='exclude_tags', help='Do not run tests with the specified tag. Can be used multiple times.', ) parser.add_argument( '--pdb', action='store_true', help='Runs a debugger (pdb, or ipdb if installed) on error or failure.' ) parser.add_argument( '-b', '--buffer', action='store_true', help='Discard output from passing tests.', ) parser.add_argument( '--no-faulthandler', action='store_false', dest='enable_faulthandler', help='Disables the Python faulthandler module during tests.', ) parser.add_argument( '--timing', action='store_true', help=( 'Output timings, including database set up and total run time.' ), ) if PY37: parser.add_argument( '-k', action='append', dest='test_name_patterns', help=( 'Only run test methods and classes that match the pattern ' 'or substring. Can be used multiple times. Same as ' 'unittest -k option.' ), ) def setup_test_environment(self, **kwargs): setup_test_environment(debug=self.debug_mode) unittest.installHandler() def build_suite(self, test_labels=None, extra_tests=None, **kwargs): suite = self.test_suite() test_labels = test_labels or ['.'] extra_tests = extra_tests or [] self.test_loader.testNamePatterns = self.test_name_patterns discover_kwargs = {} if self.pattern is not None: discover_kwargs['pattern'] = self.pattern if self.top_level is not None: discover_kwargs['top_level_dir'] = self.top_level for label in test_labels: kwargs = discover_kwargs.copy() tests = None label_as_path = os.path.abspath(label) # if a module, or "module.ClassName[.method_name]", just run those if not os.path.exists(label_as_path): tests = self.test_loader.loadTestsFromName(label) elif os.path.isdir(label_as_path) and not self.top_level: # Try to be a bit smarter than unittest about finding the # default top-level for a given directory path, to avoid # breaking relative imports. (Unittest's default is to set # top-level equal to the path, which means relative imports # will result in "Attempted relative import in non-package."). # We'd be happy to skip this and require dotted module paths # (which don't cause this problem) instead of file paths (which # do), but in the case of a directory in the cwd, which would # be equally valid if considered as a top-level module or as a # directory path, unittest unfortunately prefers the latter. top_level = label_as_path while True: init_py = os.path.join(top_level, '__init__.py') if os.path.exists(init_py): try_next = os.path.dirname(top_level) if try_next == top_level: # __init__.py all the way down? give up. break top_level = try_next continue break kwargs['top_level_dir'] = top_level if not (tests and tests.countTestCases()) and is_discoverable(label): # Try discovery if path is a package or directory tests = self.test_loader.discover(start_dir=label, **kwargs) # Make unittest forget the top-level dir it calculated from this # run, to support running tests from two different top-levels. self.test_loader._top_level_dir = None suite.addTests(tests) for test in extra_tests: suite.addTest(test) if self.tags or self.exclude_tags: if self.verbosity >= 2: if self.tags: print('Including test tag(s): %s.' % ', '.join(sorted(self.tags))) if self.exclude_tags: print('Excluding test tag(s): %s.' % ', '.join(sorted(self.exclude_tags))) suite = filter_tests_by_tags(suite, self.tags, self.exclude_tags) suite = reorder_suite(suite, self.reorder_by, self.reverse) if self.parallel > 1: parallel_suite = self.parallel_test_suite(suite, self.parallel, self.failfast) # Since tests are distributed across processes on a per-TestCase # basis, there's no need for more processes than TestCases. parallel_units = len(parallel_suite.subsuites) self.parallel = min(self.parallel, parallel_units) # If there's only one TestCase, parallelization isn't needed. if self.parallel > 1: suite = parallel_suite return suite def setup_databases(self, **kwargs): return _setup_databases( self.verbosity, self.interactive, time_keeper=self.time_keeper, keepdb=self.keepdb, debug_sql=self.debug_sql, parallel=self.parallel, **kwargs ) def get_resultclass(self): if self.debug_sql: return DebugSQLTextTestResult elif self.pdb: return PDBDebugResult def get_test_runner_kwargs(self): return { 'failfast': self.failfast, 'resultclass': self.get_resultclass(), 'verbosity': self.verbosity, 'buffer': self.buffer, } def run_checks(self, databases): # Checks are run after database creation since some checks require # database access. call_command('check', verbosity=self.verbosity, databases=databases) def run_suite(self, suite, **kwargs): kwargs = self.get_test_runner_kwargs() runner = self.test_runner(**kwargs) return runner.run(suite) def teardown_databases(self, old_config, **kwargs): """Destroy all the non-mirror databases.""" _teardown_databases( old_config, verbosity=self.verbosity, parallel=self.parallel, keepdb=self.keepdb, ) def teardown_test_environment(self, **kwargs): unittest.removeHandler() teardown_test_environment() def suite_result(self, suite, result, **kwargs): return len(result.failures) + len(result.errors) def _get_databases(self, suite): databases = set() for test in suite: if isinstance(test, unittest.TestCase): test_databases = getattr(test, 'databases', None) if test_databases == '__all__': return set(connections) if test_databases: databases.update(test_databases) else: databases.update(self._get_databases(test)) return databases def get_databases(self, suite): databases = self._get_databases(suite) if self.verbosity >= 2: unused_databases = [alias for alias in connections if alias not in databases] if unused_databases: print('Skipping setup of unused database(s): %s.' % ', '.join(sorted(unused_databases))) return databases def run_tests(self, test_labels, extra_tests=None, **kwargs): """ Run the unit tests for all the test labels in the provided list. Test labels should be dotted Python paths to test modules, test classes, or test methods. A list of 'extra' tests may also be provided; these tests will be added to the test suite. Return the number of tests that failed. """ self.setup_test_environment() suite = self.build_suite(test_labels, extra_tests) databases = self.get_databases(suite) with self.time_keeper.timed('Total database setup'): old_config = self.setup_databases(aliases=databases) run_failed = False try: self.run_checks(databases) result = self.run_suite(suite) except Exception: run_failed = True raise finally: try: with self.time_keeper.timed('Total database teardown'): self.teardown_databases(old_config) self.teardown_test_environment() except Exception: # Silence teardown exceptions if an exception was raised during # runs to avoid shadowing it. if not run_failed: raise self.time_keeper.print_results() return self.suite_result(suite, result) def is_discoverable(label): """ Check if a test label points to a Python package or file directory. Relative labels like "." and ".." are seen as directories. """ try: mod = import_module(label) except (ImportError, TypeError): pass else: return hasattr(mod, '__path__') return os.path.isdir(os.path.abspath(label)) def reorder_suite(suite, classes, reverse=False): """ Reorder a test suite by test type. `classes` is a sequence of types All tests of type classes[0] are placed first, then tests of type classes[1], etc. Tests with no match in classes are placed last. If `reverse` is True, sort tests within classes in opposite order but don't reverse test classes. """ class_count = len(classes) suite_class = type(suite) bins = [OrderedSet() for i in range(class_count + 1)] partition_suite_by_type(suite, classes, bins, reverse=reverse) reordered_suite = suite_class() for i in range(class_count + 1): reordered_suite.addTests(bins[i]) return reordered_suite def partition_suite_by_type(suite, classes, bins, reverse=False): """ Partition a test suite by test type. Also prevent duplicated tests. classes is a sequence of types bins is a sequence of TestSuites, one more than classes reverse changes the ordering of tests within bins Tests of type classes[i] are added to bins[i], tests with no match found in classes are place in bins[-1] """ suite_class = type(suite) if reverse: suite = reversed(tuple(suite)) for test in suite: if isinstance(test, suite_class): partition_suite_by_type(test, classes, bins, reverse=reverse) else: for i in range(len(classes)): if isinstance(test, classes[i]): bins[i].add(test) break else: bins[-1].add(test) def partition_suite_by_case(suite): """Partition a test suite by test case, preserving the order of tests.""" groups = [] suite_class = type(suite) for test_type, test_group in itertools.groupby(suite, type): if issubclass(test_type, unittest.TestCase): groups.append(suite_class(test_group)) else: for item in test_group: groups.extend(partition_suite_by_case(item)) return groups def filter_tests_by_tags(suite, tags, exclude_tags): suite_class = type(suite) filtered_suite = suite_class() for test in suite: if isinstance(test, suite_class): filtered_suite.addTests(filter_tests_by_tags(test, tags, exclude_tags)) else: test_tags = set(getattr(test, 'tags', set())) test_fn_name = getattr(test, '_testMethodName', str(test)) test_fn = getattr(test, test_fn_name, test) test_fn_tags = set(getattr(test_fn, 'tags', set())) all_tags = test_tags.union(test_fn_tags) matched_tags = all_tags.intersection(tags) if (matched_tags or not tags) and not all_tags.intersection(exclude_tags): filtered_suite.addTest(test) return filtered_suite
{ "content_hash": "17839f5d99e2cd18909f9aae2d8cb8e9", "timestamp": "", "source": "github", "line_count": 833, "max_line_length": 115, "avg_line_length": 35.88475390156062, "alnum_prop": 0.6136089923725412, "repo_name": "googleinterns/django", "id": "83f06c72f307d284a26676870c4a2743c09d4eac", "size": "29892", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "django/test/runner.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "79183" }, { "name": "HTML", "bytes": "228941" }, { "name": "JavaScript", "bytes": "136792" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "14076970" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "142" } ], "symlink_target": "" }
import os import os.path as op import warnings import numpy as np from scipy import sparse from ..externals.six import string_types from ..utils import verbose, logger from ..io.pick import (channel_type, pick_info, pick_types, _check_excludes_includes) from ..io.constants import FIFF def _get_meg_system(info): """Educated guess for the helmet type based on channels""" system = '306m' for ch in info['chs']: if ch['kind'] == FIFF.FIFFV_MEG_CH: coil_type = ch['coil_type'] & 0xFFFF if coil_type == FIFF.FIFFV_COIL_NM_122: system = '122m' break elif coil_type // 1000 == 3: # All Vectorview coils are 30xx system = '306m' break elif (coil_type == FIFF.FIFFV_COIL_MAGNES_MAG or coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD): nmag = np.sum([c['kind'] == FIFF.FIFFV_MEG_CH for c in info['chs']]) system = 'Magnes_3600wh' if nmag > 150 else 'Magnes_2500wh' break elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD: system = 'CTF_275' break elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD: system = 'KIT' break elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD: system = 'BabySQUID' break return system def _contains_ch_type(info, ch_type): """Check whether a certain channel type is in an info object Parameters --------- info : instance of mne.io.meas_info.Info The measurement information. ch_type : str the channel type to be checked for Returns ------- has_ch_type : bool Whether the channel type is present or not. """ if not isinstance(ch_type, string_types): raise ValueError('`ch_type` is of class {actual_class}. It must be ' '`str`'.format(actual_class=type(ch_type))) valid_channel_types = ['grad', 'mag', 'planar1', 'planar2', 'eeg', 'stim', 'eog', 'emg', 'ecg', 'ref_meg', 'resp', 'exci', 'ias', 'syst', 'seeg', 'misc'] if ch_type not in valid_channel_types: raise ValueError('ch_type must be one of %s, not "%s"' % (valid_channel_types, ch_type)) if info is None: raise ValueError('Cannot check for channels of type "%s" because info ' 'is None' % (ch_type,)) return ch_type in [channel_type(info, ii) for ii in range(info['nchan'])] def _get_ch_type(inst, ch_type): """Helper to choose a single channel type (usually for plotting) Usually used in plotting to plot a single datatype, e.g. look for mags, then grads, then ... to plot. """ if ch_type is None: for type_ in ['mag', 'grad', 'planar1', 'planar2', 'eeg']: if type_ in inst: ch_type = type_ break else: raise RuntimeError('No plottable channel types found') return ch_type @verbose def equalize_channels(candidates, verbose=None): """Equalize channel picks for a collection of MNE-Python objects Parameters ---------- candidates : list list Raw | Epochs | Evoked. verbose : None | bool whether to be verbose or not. Notes ----- This function operates inplace. """ from ..io.base import _BaseRaw from ..epochs import _BaseEpochs from ..evoked import Evoked from ..time_frequency import AverageTFR if not all(isinstance(c, (_BaseRaw, _BaseEpochs, Evoked, AverageTFR)) for c in candidates): valid = ['Raw', 'Epochs', 'Evoked', 'AverageTFR'] raise ValueError('candidates must be ' + ' or '.join(valid)) chan_max_idx = np.argmax([c.info['nchan'] for c in candidates]) chan_template = candidates[chan_max_idx].ch_names logger.info('Identiying common channels ...') channels = [set(c.ch_names) for c in candidates] common_channels = set(chan_template).intersection(*channels) dropped = list() for c in candidates: drop_them = list(set(c.ch_names) - common_channels) if drop_them: c.drop_channels(drop_them) dropped.extend(drop_them) if dropped: dropped = list(set(dropped)) logger.info('Dropped the following channels:\n%s' % dropped) else: logger.info('all channels are corresponding, nothing to do.') class ContainsMixin(object): """Mixin class for Raw, Evoked, Epochs """ def __contains__(self, ch_type): """Check channel type membership""" if ch_type == 'meg': has_ch_type = (_contains_ch_type(self.info, 'mag') or _contains_ch_type(self.info, 'grad')) else: has_ch_type = _contains_ch_type(self.info, ch_type) return has_ch_type class SetChannelsMixin(object): """Mixin class for Raw, Evoked, Epochs """ def _get_channel_positions(self, picks=None): """Gets channel locations from info Parameters ---------- picks : array-like of int | None Indices of channels to include. If None (default), all meg and eeg channels that are available are returned (bad channels excluded). Notes ----- .. versionadded:: 0.9.0 """ if picks is None: picks = pick_types(self.info, meg=True, eeg=True) chs = self.info['chs'] pos = np.array([chs[k]['loc'][:3] for k in picks]) n_zero = np.sum(np.sum(np.abs(pos), axis=1) == 0) if n_zero > 1: # XXX some systems have origin (0, 0, 0) raise ValueError('Could not extract channel positions for ' '{} channels'.format(n_zero)) return pos def _set_channel_positions(self, pos, names): """Update channel locations in info Parameters ---------- pos : array-like | np.ndarray, shape (n_points, 3) The channel positions to be set. names : list of str The names of the channels to be set. Notes ----- .. versionadded:: 0.9.0 """ if len(pos) != len(names): raise ValueError('Number of channel positions not equal to ' 'the number of names given.') pos = np.asarray(pos, dtype=np.float) if pos.shape[-1] != 3 or pos.ndim != 2: msg = ('Channel positions must have the shape (n_points, 3) ' 'not %s.' % (pos.shape,)) raise ValueError(msg) for name, p in zip(names, pos): if name in self.ch_names: idx = self.ch_names.index(name) self.info['chs'][idx]['loc'][:3] = p else: msg = ('%s was not found in the info. Cannot be updated.' % name) raise ValueError(msg) def set_channel_types(self, mapping): """Define the sensor type of channels. Note: The following sensor types are accepted: ecg, eeg, emg, eog, exci, ias, misc, resp, seeg, stim, syst Parameters ---------- mapping : dict a dictionary mapping a channel to a sensor type (str) {'EEG061': 'eog'}. Notes ----- .. versionadded:: 0.9.0 """ human2fiff = {'ecg': FIFF.FIFFV_ECG_CH, 'eeg': FIFF.FIFFV_EEG_CH, 'emg': FIFF.FIFFV_EMG_CH, 'eog': FIFF.FIFFV_EOG_CH, 'exci': FIFF.FIFFV_EXCI_CH, 'ias': FIFF.FIFFV_IAS_CH, 'misc': FIFF.FIFFV_MISC_CH, 'resp': FIFF.FIFFV_RESP_CH, 'seeg': FIFF.FIFFV_SEEG_CH, 'stim': FIFF.FIFFV_STIM_CH, 'syst': FIFF.FIFFV_SYST_CH} human2unit = {'ecg': FIFF.FIFF_UNIT_V, 'eeg': FIFF.FIFF_UNIT_V, 'emg': FIFF.FIFF_UNIT_V, 'eog': FIFF.FIFF_UNIT_V, 'exci': FIFF.FIFF_UNIT_NONE, 'ias': FIFF.FIFF_UNIT_NONE, 'misc': FIFF.FIFF_UNIT_V, 'resp': FIFF.FIFF_UNIT_NONE, 'seeg': FIFF.FIFF_UNIT_V, 'stim': FIFF.FIFF_UNIT_NONE, 'syst': FIFF.FIFF_UNIT_NONE} unit2human = {FIFF.FIFF_UNIT_V: 'V', FIFF.FIFF_UNIT_NONE: 'NA'} ch_names = self.info['ch_names'] # first check and assemble clean mappings of index and name for ch_name, ch_type in mapping.items(): if ch_name not in ch_names: raise ValueError("This channel name (%s) doesn't exist in " "info." % ch_name) c_ind = ch_names.index(ch_name) if ch_type not in human2fiff: raise ValueError('This function cannot change to this ' 'channel type: %s. Accepted channel types ' 'are %s.' % (ch_type, ", ".join(human2unit.keys()))) # Set sensor type self.info['chs'][c_ind]['kind'] = human2fiff[ch_type] unit_old = self.info['chs'][c_ind]['unit'] unit_new = human2unit[ch_type] if unit_old != human2unit[ch_type]: warnings.warn("The unit for Channel %s has changed " "from %s to %s." % (ch_name, unit2human[unit_old], unit2human[unit_new])) self.info['chs'][c_ind]['unit'] = human2unit[ch_type] if ch_type in ['eeg', 'seeg']: self.info['chs'][c_ind]['coil_type'] = FIFF.FIFFV_COIL_EEG else: self.info['chs'][c_ind]['coil_type'] = FIFF.FIFFV_COIL_NONE def rename_channels(self, mapping): """Rename channels. Parameters ---------- mapping : dict | callable a dictionary mapping the old channel to a new channel name e.g. {'EEG061' : 'EEG161'}. Can also be a callable function that takes and returns a string (new in version 0.10.0). Notes ----- .. versionadded:: 0.9.0 """ rename_channels(self.info, mapping) def set_montage(self, montage): """Set EEG sensor configuration Parameters ---------- montage : instance of Montage or DigMontage Notes ----- Operates in place. .. versionadded:: 0.9.0 """ from .montage import _set_montage _set_montage(self.info, montage) class UpdateChannelsMixin(object): """Mixin class for Raw, Evoked, Epochs, AverageTFR """ def pick_types(self, meg=True, eeg=False, stim=False, eog=False, ecg=False, emg=False, ref_meg='auto', misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False, seeg=False, include=[], exclude='bads', selection=None, copy=False): """Pick some channels by type and names Parameters ---------- meg : bool | str If True include all MEG channels. If False include None If string it can be 'mag', 'grad', 'planar1' or 'planar2' to select only magnetometers, all gradiometers, or a specific type of gradiometer. eeg : bool If True include EEG channels. stim : bool If True include stimulus channels. eog : bool If True include EOG channels. ecg : bool If True include ECG channels. emg : bool If True include EMG channels. ref_meg: bool | str If True include CTF / 4D reference channels. If 'auto', the reference channels are only included if compensations are present. misc : bool If True include miscellaneous analog channels. resp : bool If True include response-trigger channel. For some MEG systems this is separate from the stim channel. chpi : bool If True include continuous HPI coil channels. exci : bool Flux excitation channel used to be a stimulus channel. ias : bool Internal Active Shielding data (maybe on Triux only). syst : bool System status channel information (on Triux systems only). seeg : bool Stereotactic EEG channels. include : list of string List of additional channels to include. If empty do not include any. exclude : list of string | str List of channels to exclude. If 'bads' (default), exclude channels in ``info['bads']``. selection : list of string Restrict sensor channels (MEG, EEG) to this list of channel names. copy : bool If True, returns new instance. Else, modifies in place. Defaults to False. Notes ----- .. versionadded:: 0.9.0 """ inst = self.copy() if copy else self idx = pick_types( self.info, meg=meg, eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg, ref_meg=ref_meg, misc=misc, resp=resp, chpi=chpi, exci=exci, ias=ias, syst=syst, seeg=seeg, include=include, exclude=exclude, selection=selection) inst._pick_drop_channels(idx) return inst def pick_channels(self, ch_names, copy=False): """Pick some channels Parameters ---------- ch_names : list The list of channels to select. copy : bool If True, returns new instance. Else, modifies in place. Defaults to False. See Also -------- drop_channels Notes ----- .. versionadded:: 0.9.0 """ inst = self.copy() if copy else self _check_excludes_includes(ch_names) idx = [inst.ch_names.index(c) for c in ch_names if c in inst.ch_names] inst._pick_drop_channels(idx) return inst def drop_channels(self, ch_names, copy=False): """Drop some channels Parameters ---------- ch_names : list The list of channels to remove. copy : bool If True, returns new instance. Else, modifies in place. Defaults to False. See Also -------- pick_channels Notes ----- .. versionadded:: 0.9.0 """ inst = self.copy() if copy else self bad_idx = [inst.ch_names.index(c) for c in ch_names if c in inst.ch_names] idx = np.setdiff1d(np.arange(len(inst.ch_names)), bad_idx) inst._pick_drop_channels(idx) return inst def _pick_drop_channels(self, idx): # avoid circular imports from ..io.base import _BaseRaw from ..epochs import _BaseEpochs from ..evoked import Evoked from ..time_frequency import AverageTFR if isinstance(self, (_BaseRaw, _BaseEpochs)): if not self.preload: raise RuntimeError('If Raw or Epochs, data must be preloaded ' 'to drop or pick channels') def inst_has(attr): return getattr(self, attr, None) is not None if inst_has('picks'): self.picks = self.picks[idx] if inst_has('_cals'): self._cals = self._cals[idx] self.info = pick_info(self.info, idx, copy=False) if inst_has('_projector'): self._projector = self._projector[idx][:, idx] if isinstance(self, _BaseRaw) and inst_has('_data'): self._data = self._data.take(idx, axis=0) elif isinstance(self, _BaseEpochs) and inst_has('_data'): self._data = self._data.take(idx, axis=1) elif isinstance(self, AverageTFR) and inst_has('data'): self.data = self.data.take(idx, axis=0) elif isinstance(self, Evoked): self.data = self.data.take(idx, axis=0) def add_channels(self, add_list, copy=False): """Append new channels to the instance. Parameters ---------- add_list : list A list of objects to append to self. Must contain all the same type as the current object copy : bool Whether to return a new instance or modify in place Returns ------- out : MNE object of type(self) An object with new channels appended (will be the same object if copy==False) """ # avoid circular imports from ..io.base import _BaseRaw from ..epochs import _BaseEpochs from ..io.meas_info import _merge_info if not isinstance(add_list, (list, tuple)): raise AssertionError('Input must be a list or tuple of objs') # Object-specific checks if isinstance(self, (_BaseRaw, _BaseEpochs)): if not all([inst.preload for inst in add_list] + [self.preload]): raise AssertionError('All data must be preloaded') data_name = '_data' if isinstance(self, _BaseRaw): con_axis = 0 comp_class = _BaseRaw elif isinstance(self, _BaseEpochs): con_axis = 1 comp_class = _BaseEpochs else: data_name = 'data' con_axis = 0 comp_class = type(self) if not all(isinstance(inst, comp_class) for inst in add_list): raise AssertionError('All input data must be of same type') data = [getattr(inst, data_name) for inst in [self] + add_list] # Make sure that all dimensions other than channel axis are the same compare_axes = [i for i in range(data[0].ndim) if i != con_axis] shapes = np.array([dat.shape for dat in data])[:, compare_axes] if not ((shapes[0] - shapes) == 0).all(): raise AssertionError('All dimensions except channels must match') # Create final data / info objects data = np.concatenate(data, axis=con_axis) infos = [self.info] + [inst.info for inst in add_list] new_info = _merge_info(infos) # Now update the attributes if copy is True: out = self.copy() else: out = self setattr(out, data_name, data) out.info = new_info if isinstance(self, _BaseRaw): out._cals = np.concatenate([getattr(inst, '_cals') for inst in [self] + add_list]) return out class InterpolationMixin(object): """Mixin class for Raw, Evoked, Epochs """ def interpolate_bads(self, reset_bads=True, mode='accurate'): """Interpolate bad MEG and EEG channels. Operates in place. Parameters ---------- reset_bads : bool If True, remove the bads from info. mode : str Either `'accurate'` or `'fast'`, determines the quality of the Legendre polynomial expansion used for interpolation of MEG channels. Returns ------- self : mne.io.Raw, mne.Epochs or mne.Evoked The interpolated data. Notes ----- .. versionadded:: 0.9.0 """ from .interpolation import _interpolate_bads_eeg, _interpolate_bads_meg if getattr(self, 'preload', None) is False: raise ValueError('Data must be preloaded.') _interpolate_bads_eeg(self) _interpolate_bads_meg(self, mode=mode) if reset_bads is True: self.info['bads'] = [] return self def rename_channels(info, mapping): """Rename channels. Parameters ---------- info : dict Measurement info. mapping : dict | callable a dictionary mapping the old channel to a new channel name e.g. {'EEG061' : 'EEG161'}. Can also be a callable function that takes and returns a string (new in version 0.10.0). """ info._check_consistency() bads = list(info['bads']) # make our own local copies ch_names = list(info['ch_names']) # first check and assemble clean mappings of index and name if isinstance(mapping, dict): orig_names = sorted(list(mapping.keys())) missing = [orig_name not in ch_names for orig_name in orig_names] if any(missing): raise ValueError("Channel name(s) in mapping missing from info: " "%s" % np.array(orig_names)[np.array(missing)]) new_names = [(ch_names.index(ch_name), new_name) for ch_name, new_name in mapping.items()] elif callable(mapping): new_names = [(ci, mapping(ch_name)) for ci, ch_name in enumerate(ch_names)] else: raise ValueError('mapping must be callable or dict, not %s' % (type(mapping),)) # check we got all strings out of the mapping if any(not isinstance(new_name[1], string_types) for new_name in new_names): raise ValueError('New channel mapping must only be to strings') # do the remapping locally for c_ind, new_name in new_names: for bi, bad in enumerate(bads): if bad == ch_names[c_ind]: bads[bi] = new_name ch_names[c_ind] = new_name # check that all the channel names are unique if len(ch_names) != len(np.unique(ch_names)): raise ValueError('New channel names are not unique, renaming failed') # do the reampping in info info['bads'] = bads info['ch_names'] = ch_names for ch, ch_name in zip(info['chs'], ch_names): ch['ch_name'] = ch_name info._check_consistency() def _recursive_flatten(cell, dtype): """Helper to unpack mat files in Python""" while not isinstance(cell[0], dtype): cell = [c for d in cell for c in d] return cell def read_ch_connectivity(fname, picks=None): """Parse FieldTrip neighbors .mat file More information on these neighbor definitions can be found on the related FieldTrip documentation pages: http://fieldtrip.fcdonders.nl/template/neighbours Parameters ---------- fname : str The file name. Example: 'neuromag306mag', 'neuromag306planar', 'ctf275', 'biosemi64', etc. picks : array-like of int, shape (n_channels,) The indices of the channels to include. Must match the template. Defaults to None. Returns ------- ch_connectivity : scipy.sparse matrix The connectivity matrix. ch_names : list The list of channel names present in connectivity matrix. """ from scipy.io import loadmat if not op.isabs(fname): templates_dir = op.realpath(op.join(op.dirname(__file__), 'data', 'neighbors')) templates = os.listdir(templates_dir) for f in templates: if f == fname: break if f == fname + '_neighb.mat': fname += '_neighb.mat' break else: raise ValueError('I do not know about this neighbor ' 'template: "{}"'.format(fname)) fname = op.join(templates_dir, fname) nb = loadmat(fname)['neighbours'] ch_names = _recursive_flatten(nb['label'], string_types) neighbors = [_recursive_flatten(c, string_types) for c in nb['neighblabel'].flatten()] assert len(ch_names) == len(neighbors) if picks is not None: if max(picks) >= len(ch_names): raise ValueError('The picks must be compatible with ' 'channels. Found a pick ({}) which exceeds ' 'the channel range ({})' .format(max(picks), len(ch_names))) connectivity = _ch_neighbor_connectivity(ch_names, neighbors) if picks is not None: # picking before constructing matrix is buggy connectivity = connectivity[picks][:, picks] ch_names = [ch_names[p] for p in picks] return connectivity, ch_names def _ch_neighbor_connectivity(ch_names, neighbors): """Compute sensor connectivity matrix Parameters ---------- ch_names : list of str The channel names. neighbors : list of list A list of list of channel names. The neighbors to which the channels in ch_names are connected with. Must be of the same length as ch_names. Returns ------- ch_connectivity : scipy.sparse matrix The connectivity matrix. """ if len(ch_names) != len(neighbors): raise ValueError('`ch_names` and `neighbors` must ' 'have the same length') set_neighbors = set([c for d in neighbors for c in d]) rest = set(ch_names) - set_neighbors if len(rest) > 0: raise ValueError('Some of your neighbors are not present in the ' 'list of channel names') for neigh in neighbors: if (not isinstance(neigh, list) and not all(isinstance(c, string_types) for c in neigh)): raise ValueError('`neighbors` must be a list of lists of str') ch_connectivity = np.eye(len(ch_names), dtype=bool) for ii, neigbs in enumerate(neighbors): ch_connectivity[ii, [ch_names.index(i) for i in neigbs]] = True ch_connectivity = sparse.csr_matrix(ch_connectivity) return ch_connectivity
{ "content_hash": "21ff9671c78570cb208c40f541feab20", "timestamp": "", "source": "github", "line_count": 738, "max_line_length": 79, "avg_line_length": 35.356368563685635, "alnum_prop": 0.544897098838769, "repo_name": "lorenzo-desantis/mne-python", "id": "aae1a48597e0542298d359e9db324afb77a19994", "size": "26403", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "mne/channels/channels.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "3117" }, { "name": "PowerShell", "bytes": "2988" }, { "name": "Python", "bytes": "4322690" }, { "name": "Shell", "bytes": "936" } ], "symlink_target": "" }