text
stringlengths
4
1.02M
meta
dict
import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._notebook_workspaces_operations import ( build_create_or_update_request, build_delete_request, build_get_request, build_list_by_database_account_request, build_list_connection_info_request, build_regenerate_auth_token_request, build_start_request, ) if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class NotebookWorkspacesOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.cosmosdb.aio.CosmosDBManagementClient`'s :attr:`notebook_workspaces` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_database_account( self, resource_group_name: str, account_name: str, **kwargs: Any ) -> AsyncIterable["_models.NotebookWorkspace"]: """Gets the notebook workspace resources of an existing Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NotebookWorkspace or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.cosmosdb.models.NotebookWorkspace] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[_models.NotebookWorkspaceListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_database_account_request( resource_group_name=resource_group_name, account_name=account_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_database_account.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("NotebookWorkspaceListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_database_account.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces"} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> _models.NotebookWorkspace: """Gets the notebook workspace for a Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :keyword callable cls: A custom type or function that will be passed the direct response :return: NotebookWorkspace or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.NotebookWorkspace :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[_models.NotebookWorkspace] request = build_get_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("NotebookWorkspace", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}"} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], notebook_create_update_parameters: Union[_models.NotebookWorkspaceCreateUpdateParameters, IO], **kwargs: Any ) -> _models.NotebookWorkspace: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[_models.NotebookWorkspace] content_type = content_type or "application/json" _json = None _content = None if isinstance(notebook_create_update_parameters, (IO, bytes)): _content = notebook_create_update_parameters else: _json = self._serialize.body(notebook_create_update_parameters, "NotebookWorkspaceCreateUpdateParameters") request = build_create_or_update_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_or_update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("NotebookWorkspace", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}"} # type: ignore @overload async def begin_create_or_update( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], notebook_create_update_parameters: _models.NotebookWorkspaceCreateUpdateParameters, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.NotebookWorkspace]: """Creates the notebook workspace for a Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :param notebook_create_update_parameters: The notebook workspace to create for the current database account. Required. :type notebook_create_update_parameters: ~azure.mgmt.cosmosdb.models.NotebookWorkspaceCreateUpdateParameters :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either NotebookWorkspace or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.cosmosdb.models.NotebookWorkspace] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_create_or_update( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], notebook_create_update_parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.NotebookWorkspace]: """Creates the notebook workspace for a Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :param notebook_create_update_parameters: The notebook workspace to create for the current database account. Required. :type notebook_create_update_parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either NotebookWorkspace or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.cosmosdb.models.NotebookWorkspace] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_create_or_update( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], notebook_create_update_parameters: Union[_models.NotebookWorkspaceCreateUpdateParameters, IO], **kwargs: Any ) -> AsyncLROPoller[_models.NotebookWorkspace]: """Creates the notebook workspace for a Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :param notebook_create_update_parameters: The notebook workspace to create for the current database account. Is either a model type or a IO type. Required. :type notebook_create_update_parameters: ~azure.mgmt.cosmosdb.models.NotebookWorkspaceCreateUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either NotebookWorkspace or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.cosmosdb.models.NotebookWorkspace] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[_models.NotebookWorkspace] polling = kwargs.pop("polling", True) # type: Union[bool, AsyncPollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( # type: ignore resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, notebook_create_update_parameters=notebook_create_update_parameters, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("NotebookWorkspace", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) # type: AsyncPollingMethod elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}"} # type: ignore async def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_delete_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}"} # type: ignore @distributed_trace_async async def begin_delete( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the notebook workspace for a Cosmos DB account. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] polling = kwargs.pop("polling", True) # type: Union[bool, AsyncPollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( # type: ignore resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) # type: AsyncPollingMethod elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}"} # type: ignore @distributed_trace_async async def list_connection_info( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> _models.NotebookWorkspaceConnectionInfoResult: """Retrieves the connection info for the notebook workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :keyword callable cls: A custom type or function that will be passed the direct response :return: NotebookWorkspaceConnectionInfoResult or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.NotebookWorkspaceConnectionInfoResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[_models.NotebookWorkspaceConnectionInfoResult] request = build_list_connection_info_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_connection_info.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("NotebookWorkspaceConnectionInfoResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_connection_info.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}/listConnectionInfo"} # type: ignore async def _regenerate_auth_token_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_regenerate_auth_token_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._regenerate_auth_token_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _regenerate_auth_token_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}/regenerateAuthToken"} # type: ignore @distributed_trace_async async def begin_regenerate_auth_token( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> AsyncLROPoller[None]: """Regenerates the auth token for the notebook workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] polling = kwargs.pop("polling", True) # type: Union[bool, AsyncPollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = await self._regenerate_auth_token_initial( # type: ignore resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) # type: AsyncPollingMethod elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_regenerate_auth_token.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}/regenerateAuthToken"} # type: ignore async def _start_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_start_request( resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._start_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _start_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}/start"} # type: ignore @distributed_trace_async async def begin_start( self, resource_group_name: str, account_name: str, notebook_workspace_name: Union[str, _models.NotebookWorkspaceName], **kwargs: Any ) -> AsyncLROPoller[None]: """Starts the notebook workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param notebook_workspace_name: The name of the notebook workspace resource. "default" Required. :type notebook_workspace_name: str or ~azure.mgmt.cosmosdb.models.NotebookWorkspaceName :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2022-08-15-preview"] cls = kwargs.pop("cls", None) # type: ClsType[None] polling = kwargs.pop("polling", True) # type: Union[bool, AsyncPollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = await self._start_initial( # type: ignore resource_group_name=resource_group_name, account_name=account_name, notebook_workspace_name=notebook_workspace_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) # type: AsyncPollingMethod elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/notebookWorkspaces/{notebookWorkspaceName}/start"} # type: ignore
{ "content_hash": "d488a232e49deb6acc819af0e043e6ef", "timestamp": "", "source": "github", "line_count": 914, "max_line_length": 264, "avg_line_length": 48.7691466083151, "alnum_prop": 0.6522938867077959, "repo_name": "Azure/azure-sdk-for-python", "id": "28205c6250ea568f9de842ccabac2c6375097994", "size": "45075", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/aio/operations/_notebook_workspaces_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
from frappe.model.document import Document class WorkflowActionMaster(Document): pass
{ "content_hash": "5c2af89d8bf97a11530c6a4e018f7fe1", "timestamp": "", "source": "github", "line_count": 5, "max_line_length": 42, "avg_line_length": 17.8, "alnum_prop": 0.8314606741573034, "repo_name": "frappe/frappe", "id": "95c7aa7cee704624e0a3a5385e1c832bcce4252f", "size": "177", "binary": false, "copies": "3", "ref": "refs/heads/develop", "path": "frappe/workflow/doctype/workflow_action_master/workflow_action_master.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "65093" }, { "name": "HTML", "bytes": "250850" }, { "name": "JavaScript", "bytes": "2523337" }, { "name": "Less", "bytes": "10921" }, { "name": "Python", "bytes": "3618097" }, { "name": "SCSS", "bytes": "261690" }, { "name": "Vue", "bytes": "98456" } ], "symlink_target": "" }
''' DEMONYMS FUNCTIONS OF MAI-ANLP DEMONYM PROJECT AUTHORS: DAVID SANCHEZ & ALEX PARDO ''' # IMPORTS import csv import re from string import * import sys from nltk import * import locale from wikitools import wiki from wikitools import api from wikitools import page from wikitools import category import numpy as np from matplotlib import pyplot as plt # FUNCTIONS ''' EXTRACT PAIRS OF COUNTRY-DEMONYM FROM WP ''' def demonyms_downloadDemonymsWP(filename, skip=False): locale.setlocale(locale.LC_ALL, '') lang = 'en' demonymPages = {'en':u'Demonym'} wikiAPI = {'en': "http://en.wikipedia.org/w/api.php"} extractionRules = [ re.compile(u'^\*\[\[([\w]+)\]\] \u2192 ([\w]+)$',re.L), re.compile(u'^\*\[\[([\w]+)\]\] \u2192 ([\w]+) \([\w]+ \"\'\'[\w]+\'\'\"\)$',re.L), re.compile(u'^\*\[\[([\w]+)\]\] \u2192 ([\w]+) \([\w|\W]+\)$',re.L), re.compile(u'^\*\[\[([\w]+)\]\] \u2192 ([\w]+) ([\w|\W]+)$',re.L), re.compile(u'^\*\[\[([\w]+ [\w]+)\]\] \u2192 ([\w]+ [\w]+)$',re.L), re.compile(u'^\*\[\[([\w]+ [\w]+)\]\] \u2192 ([\w]+ [\w]+) ([\w|\W]+)$',re.L)] ##inicializing the list of triples to extract ##The elements of each triple are: ## location ## demonym ## identifier of the rule applied (just the index in the list) ##The identifier is useful for computing the coverage of each rule demonymTriples = [] # An object of the class Wiki associated to the WP is built site = wiki.Wiki(wikiAPI[lang]) ##An object of the class Page associated to the demonyms page pageDemonym = page.Page(site,demonymPages[lang]) ##The lines of the page are read and translated into Unicode ##We print the number of lines lines=pageDemonym.getWikiText().split('\n') lines = map(lambda x:demonyms_guessEncoding(x)[0],lines) len(lines) for linea in lines: if skip and ('==Irregular forms==' in linea.encode('utf-8')): break for ir in range(len(extractionRules)): r = extractionRules[ir] m = re.match(r,linea) if not m: #print linea.encode('utf-8') continue demonymTriples.append((m.group(1), m.group(2), ir)) break print len(demonymTriples), 'triples have been obtained ' with open(filename, 'w') as out_file: for demonym in demonymTriples: out_file.write(str(demonym[0] + ','+ demonym[1] + ',' + str(demonym[2])+'\n')) ''' PARSES THE RULE FILE AND EXTRACTS ADDING AND REPLACING RULES: EXAMPLE: adding rule: Italia + an = Italian (->an)// America + n = American (->n) replacing rule: Catalonia - onia + an = Catalan (onia->an) // Spain - in + nish = Spanish (in -> nish) ''' def demonyms_showHistogram(filename, THRESHOLD=1, quiet=True): count_rules_diff, count_rules_end, total_words, n_end = demonyms_parseFile(filename, quiet) with open('replace_rules.csv','w') as f: d1 = {} for rule in count_rules_diff: if count_rules_diff[rule] > THRESHOLD: d1[rule] = count_rules_diff[rule] tmp = rule.split("-->") f.write(tmp[0]+','+tmp[1]+'\n') with open('add_rules.csv','w') as f: d2 = {} for rule in count_rules_end: if count_rules_end[rule] > THRESHOLD: d2[rule] = count_rules_end[rule] tmp = rule.split("-->") f.write(tmp[0]+','+tmp[1]+'\n') if not quiet: print "\nFinal rules\n------------\n", 'DIFF:\n', sorted(count_rules_diff.items(), key=lambda x:x[1], reverse=True), 'ENDING:\n', sorted(count_rules_end.items(), key=lambda x:x[1], reverse=True) X = np.arange(len(d1)+len(d2)) plt.bar(X[:len(d1)], d1.values(), align='center', width=0.5, color='blue', label='SUBSTITUTION') plt.hold('on') plt.bar(X[len(d1):], d2.values(), align='center', width=0.5, color='green', label='ENDING->ADDING') plt.xticks(X, d1.keys()+d2.keys(), rotation='vertical') ymax = max(d1.values() + d2.values()) + 1 plt.ylim(0, ymax) plt.legend(loc=2) plt.savefig('rules.png', bbox_inches='tight') print '\n\n####################################' print 'Total number of rules: ', len(count_rules_diff)+len(count_rules_end) print 'Number of rules (occurences >', str(THRESHOLD)+') : ', len(d1)+len(d2), '\n\n' ''' PARSES THE DEMONYM FILE ''' def demonyms_parseFile(filename, quiet=True): count_rules_diff={} count_rules_end={} total_words = 0 n_end = 4 try: with open(filename, 'r') as csvfile: data = csv.reader(csvfile, delimiter=',') #Read csv lines for row in data: total_words += 1 count_rules_diff, count_rules_end, total_words, n_end = demonyms_generateRules(row, count_rules_diff, count_rules_end, total_words, n_end, quiet = quiet, method='diff') count_rules_diff, count_rules_end, total_words, n_end = demonyms_generateRules(row, count_rules_diff, count_rules_end, total_words, n_end, quiet = quiet, method='ending') except Exception as ex: print ex return count_rules_diff, count_rules_end, total_words, n_end ''' EXTRACTS THE RULE FOR A GIVEN PAIR COUNTRY,DEMONYM''' def demonyms_generateRules(row, count_rules_diff, count_rules_end, total_words, n_end, quiet=True, method='diff'): country = row[0] denomyn = row[1] addList = [] #List with the new letters in the denonym that you will need to add in the country word delList = [] #List with the letters that you will need to remove in your contry word rule = {} #Iterate over the bigger word (normally it is the denomym) for i in xrange(0,len(denomyn)): if i<len(country): if(country[i]!=denomyn[i]): delList.append(country[i]) #Letter that needs to be removed addList.append(denomyn[i]) #Letter that it is not appearing in the country #Case that your country word is finished but you have letters in the denonym yet else: addList.append(denomyn[i]) #Case that you is not needed to remove any letter of the country if len(delList)==0: if method == 'diff': delList.append(" ") #return else: #add a certain number of letters from the ending of the country for i in range(n_end): cnt = country[-i:] den = ''.join(addList) try: count_rules_end[cnt+"-->"+den] += 1 except: count_rules_end[cnt+"-->"+den] = 1 #Prints if not quiet: print country print denomyn print "Del list:"+str(delList) print "Add list:"+str(addList) if method == 'diff': key = ''.join(delList) value = ''.join(addList) if key+"-->"+value in count_rules_diff: count_rules_diff[key+"-->"+value] += 1 else: count_rules_diff[key+"-->"+value] = 1 return count_rules_diff, count_rules_end, total_words, n_end ''' DOWNLOADS A LIST OF CITIES AND A LIST OF COUNTRIES FROM WIKIPEDIA ''' def demonyms_parseCitiesAndCountries(): wikiAPI = {'en': "http://en.wikipedia.org/w/api.php"} site = wiki.Wiki(wikiAPI['en']) cities = [] countries = [] rule = re.compile(u'.*\[\[([\w\s]+)\]\].*',re.L) r1 = re.compile(r'.*\[\[((List of )([A-Za-z]{1,}[\s]?)+)\]\].*') r2 = re.compile(r'.*\[\[([A-Z]{1}([a-z]{1,}[\s]*)+)\]\].*') re_country = re.compile(r'in\ *t*h*e*\ ([A-Z][a-z]+)') lists = ['List_of_cities_in_Africa', 'List_of_cities_in_Asia', 'List_of_cities_in_Oceania', 'List_of_cities_in_Europe'] for l in lists: p = page.Page(site, l, sectionnumber='1') for line in p.getWikiText().split('\n'): tmp = r1.findall(line) if len(tmp) > 0: link = tmp[0][0] print link.encode('utf-8') try: if link.encode('utf-8').endswith(re_country.findall(link.encode('utf-8'))[0]): countries.append(re_country.findall(link.encode('utf-8'))[0]) except: pass sc = page.Page(site, link, sectionnumber='1') try: text = sc.getWikiText().split('\n') except: continue text = map(lambda x:demonyms_guessEncoding(x)[0],text) #print text for line in text: if 'ref' in line: continue try: tmp = rule.findall(line) if len(tmp) > 0: if tmp[0] not in cities: if len(tmp[0].split(' ')) < 2: cities.append(tmp[0]) except Exception, e: pass print len(cities) with open("cities.csv", 'w') as f: for city in cities: f.write(str(city + '\n')) with open("countries.csv", 'w') as f: for country in countries: f.write(str(country + '\n')) ''' GENERATES ALL THE POSSIBLE DEMONYMS FOR A GIVEN PLACE ''' def demonyms_generateDemonym(place, add, replace): candidates = [] for rule in replace: if len(rule[0]) > 0 and place.endswith(rule[0]): candidates.append(place[:-len(rule[0])]+rule[1]) for rule in add: if len(rule[0]) == 0 or place.endswith(rule[0]): candidates.append(place+rule[1]) return candidates ''' FINDS THE GIVEN DEMONYM CANDIDATES IN THE WP PAGE OF THE GIVEN PLACE ''' def demonyms_matchCandidates(link, candidates): wikiAPI = { 'en': "http://en.wikipedia.org/w/api.php"} site = wiki.Wiki(wikiAPI['en']) text = page.Page(site, link).getWikiText() score = 0 rules = [0]*len(candidates) pos = 0 for candidate in candidates: if demonyms_findWholeWord(candidate.lower())(text.lower()): score += 1 rules[pos] += 1 pos += 1 return score, rules ''' FINDS A WHOLE WORD ''' def demonyms_findWholeWord(w): return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search ''' EXTRACTS THE RULES FROM THE FILES, READS THE SAMPLES (i.e. PLACES) AND PERFORMS THE MATCHING ''' def demonyms_findDemonyms(filename): add = [] replace = [] with open('add_rules.csv', 'r') as f: for line in f.readlines(): line = line.replace('\n','') tmp = line.split(',') add.append((tmp[0],tmp[1])) with open('replace_rules.csv', 'r') as f: for line in f.readlines(): line = line.replace('\n','') tmp = line.split(',') replace.append((tmp[0],tmp[1])) print 'There are', len(add), 'add rules and ', len(replace), 'replace rules.' matchings = 0 test_len = 0 output_lines = [] f = open(filename, 'r') for line in f.readlines(): line = line.replace('\n','') try: candidates = demonyms_generateDemonym(line, add, replace) score, rules = demonyms_matchCandidates(line, candidates) if score > 0: matching_rules = [] for r in range(0, len(candidates)): if rules[r]: matching_rules.append(candidates[r]) output_lines.append(line + ',' + str(matching_rules)+'\n') if score > 0: matchings += 1 test_len += 1 except: pass f.close() with open(filename.replace('.csv', '_res.csv'),'w') as f: for line in output_lines: f.write(line) print '--> Results for', filename.replace('.csv', ''),':\n' print 'Number of matchings:', matchings, '; number of samples:', test_len, '(',np.round((matchings/float(test_len))*10000)/100.0,'%)' ##For detecting coding and transforming to Unicode ########################################################################## # Guess Character Encoding ########################################################################## # adapted from io.py in the docutils extension module (http://docutils.sourceforge.net) # http://www.pyzine.com/Issue008/Section_Articles/article_Encodings.html def demonyms_guessEncoding(data): """ Given a byte string, attempt to decode it. Tries the standard 'UTF8' and 'latin-1' encodings, Plus several gathered from locale information. The calling program *must* first call:: locale.setlocale(locale.LC_ALL, '') If successful it returns C{(decoded_unicode, successful_encoding)}. If unsuccessful it raises a C{UnicodeError}. """ successful_encoding = None # we make 'utf-8' the first encoding encodings = ['utf-8'] # # next we add anything we can learn from the locale try: encodings.append(locale.nl_langinfo(locale.CODESET)) except AttributeError: pass try: encodings.append(locale.getlocale()[1]) except (AttributeError, IndexError): pass try: encodings.append(locale.getdefaultlocale()[1]) except (AttributeError, IndexError): pass # # we try 'latin-1' last encodings.append('latin-1') for enc in encodings: # some of the locale calls # may have returned None if not enc: continue try: decoded = unicode(data, enc) successful_encoding = enc except (UnicodeError, LookupError): pass else: break if not successful_encoding: raise UnicodeError( 'Unable to decode input data. Tried the following encodings: %s.' % ', '.join([repr(enc) for enc in encodings if enc])) else: return (decoded, successful_encoding)
{ "content_hash": "1adc0d88f4efb509aa2676a5c01e2513", "timestamp": "", "source": "github", "line_count": 436, "max_line_length": 197, "avg_line_length": 29.889908256880734, "alnum_prop": 0.5950736648250461, "repo_name": "alex-pardo/ANLP-PROJECT", "id": "063c29df5f6be0f3323433e35ab05130f62366e5", "size": "13034", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/functions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "36843" }, { "name": "TeX", "bytes": "18370" } ], "symlink_target": "" }
import os import numpy as np import json import itertools from collections import defaultdict from scipy.optimize import linear_sum_assignment from ..utils import TrackEvalException from ._base_dataset import _BaseDataset from .. import utils from .. import _timing class TAO_OW(_BaseDataset): """Dataset class for TAO tracking""" @staticmethod def get_default_dataset_config(): """Default class config values""" code_path = utils.get_code_path() default_config = { 'GT_FOLDER': os.path.join(code_path, 'data/gt/tao/tao_training'), # Location of GT data 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/tao/tao_training'), # Trackers location 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) 'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes) 'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val' 'PRINT_CONFIG': True, # Whether to print current config 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL 'MAX_DETECTIONS': 300, # Number of maximal allowed detections per image (0 for unlimited) 'SUBSET': 'all' } return default_config def __init__(self, config=None): """Initialise dataset, checking that all required files are present""" super().__init__() # Fill non-given config values with defaults self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) self.gt_fol = self.config['GT_FOLDER'] self.tracker_fol = self.config['TRACKERS_FOLDER'] self.should_classes_combine = True self.use_super_categories = False self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] self.output_fol = self.config['OUTPUT_FOLDER'] if self.output_fol is None: self.output_fol = self.tracker_fol self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] gt_dir_files = [file for file in os.listdir(self.gt_fol) if file.endswith('.json')] if len(gt_dir_files) != 1: raise TrackEvalException(self.gt_fol + ' does not contain exactly one json file.') with open(os.path.join(self.gt_fol, gt_dir_files[0])) as f: self.gt_data = json.load(f) self.subset = self.config['SUBSET'] if self.subset != 'all': # Split GT data into `known`, `unknown` or `distractor` self._split_known_unknown_distractor() self.gt_data = self._filter_gt_data(self.gt_data) # merge categories marked with a merged tag in TAO dataset self._merge_categories(self.gt_data['annotations'] + self.gt_data['tracks']) # Get sequences to eval and sequence information self.seq_list = [vid['name'].replace('/', '-') for vid in self.gt_data['videos']] self.seq_name_to_seq_id = {vid['name'].replace('/', '-'): vid['id'] for vid in self.gt_data['videos']} # compute mappings from videos to annotation data self.videos_to_gt_tracks, self.videos_to_gt_images = self._compute_vid_mappings(self.gt_data['annotations']) # compute sequence lengths self.seq_lengths = {vid['id']: 0 for vid in self.gt_data['videos']} for img in self.gt_data['images']: self.seq_lengths[img['video_id']] += 1 self.seq_to_images_to_timestep = self._compute_image_to_timestep_mappings() self.seq_to_classes = {vid['id']: {'pos_cat_ids': list({track['category_id'] for track in self.videos_to_gt_tracks[vid['id']]}), 'neg_cat_ids': vid['neg_category_ids'], 'not_exhaustively_labeled_cat_ids': vid['not_exhaustive_category_ids']} for vid in self.gt_data['videos']} # Get classes to eval considered_vid_ids = [self.seq_name_to_seq_id[vid] for vid in self.seq_list] seen_cats = set([cat_id for vid_id in considered_vid_ids for cat_id in self.seq_to_classes[vid_id]['pos_cat_ids']]) # only classes with ground truth are evaluated in TAO self.valid_classes = [cls['name'] for cls in self.gt_data['categories'] if cls['id'] in seen_cats] # cls_name_to_cls_id_map = {cls['name']: cls['id'] for cls in self.gt_data['categories']} if self.config['CLASSES_TO_EVAL']: # self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None # for cls in self.config['CLASSES_TO_EVAL']] self.class_list = ["object"] # class-agnostic if not all(self.class_list): raise TrackEvalException('Attempted to evaluate an invalid class. Only classes ' + ', '.join(self.valid_classes) + ' are valid (classes present in ground truth data).') else: # self.class_list = [cls for cls in self.valid_classes] self.class_list = ["object"] # class-agnostic # self.class_name_to_class_id = {k: v for k, v in cls_name_to_cls_id_map.items() if k in self.class_list} self.class_name_to_class_id = {"object": 1} # class-agnostic # Get trackers to eval if self.config['TRACKERS_TO_EVAL'] is None: self.tracker_list = os.listdir(self.tracker_fol) else: self.tracker_list = self.config['TRACKERS_TO_EVAL'] if self.config['TRACKER_DISPLAY_NAMES'] is None: self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) else: raise TrackEvalException('List of tracker files and tracker display names do not match.') self.tracker_data = {tracker: dict() for tracker in self.tracker_list} for tracker in self.tracker_list: tr_dir_files = [file for file in os.listdir(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol)) if file.endswith('.json')] if len(tr_dir_files) != 1: raise TrackEvalException(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol) + ' does not contain exactly one json file.') with open(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, tr_dir_files[0])) as f: curr_data = json.load(f) # limit detections if MAX_DETECTIONS > 0 if self.config['MAX_DETECTIONS']: curr_data = self._limit_dets_per_image(curr_data) # fill missing video ids self._fill_video_ids_inplace(curr_data) # make track ids unique over whole evaluation set self._make_track_ids_unique(curr_data) # merge categories marked with a merged tag in TAO dataset self._merge_categories(curr_data) # get tracker sequence information curr_videos_to_tracker_tracks, curr_videos_to_tracker_images = self._compute_vid_mappings(curr_data) self.tracker_data[tracker]['vids_to_tracks'] = curr_videos_to_tracker_tracks self.tracker_data[tracker]['vids_to_images'] = curr_videos_to_tracker_images def get_display_name(self, tracker): return self.tracker_to_disp[tracker] def _load_raw_file(self, tracker, seq, is_gt): """Load a file (gt or tracker) in the TAO format If is_gt, this returns a dict which contains the fields: [gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). [gt_dets]: list (for each timestep) of lists of detections. [classes_to_gt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as keys and corresponding segmentations as values) for each track [classes_to_gt_track_ids, classes_to_gt_track_areas, classes_to_gt_track_lengths]: dictionary with class values as keys and lists (for each track) as values if not is_gt, this returns a dict which contains the fields: [tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). [tracker_dets]: list (for each timestep) of lists of detections. [classes_to_dt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as keys and corresponding segmentations as values) for each track [classes_to_dt_track_ids, classes_to_dt_track_areas, classes_to_dt_track_lengths]: dictionary with class values as keys and lists as values [classes_to_dt_track_scores]: dictionary with class values as keys and 1D numpy arrays as values """ seq_id = self.seq_name_to_seq_id[seq] # File location if is_gt: imgs = self.videos_to_gt_images[seq_id] else: imgs = self.tracker_data[tracker]['vids_to_images'][seq_id] # Convert data to required format num_timesteps = self.seq_lengths[seq_id] img_to_timestep = self.seq_to_images_to_timestep[seq_id] data_keys = ['ids', 'classes', 'dets'] if not is_gt: data_keys += ['tracker_confidences'] raw_data = {key: [None] * num_timesteps for key in data_keys} for img in imgs: # some tracker data contains images without any ground truth information, these are ignored try: t = img_to_timestep[img['id']] except KeyError: continue annotations = img['annotations'] raw_data['dets'][t] = np.atleast_2d([ann['bbox'] for ann in annotations]).astype(float) raw_data['ids'][t] = np.atleast_1d([ann['track_id'] for ann in annotations]).astype(int) raw_data['classes'][t] = np.atleast_1d([1 for _ in annotations]).astype(int) # class-agnostic if not is_gt: raw_data['tracker_confidences'][t] = np.atleast_1d([ann['score'] for ann in annotations]).astype(float) for t, d in enumerate(raw_data['dets']): if d is None: raw_data['dets'][t] = np.empty((0, 4)).astype(float) raw_data['ids'][t] = np.empty(0).astype(int) raw_data['classes'][t] = np.empty(0).astype(int) if not is_gt: raw_data['tracker_confidences'][t] = np.empty(0) if is_gt: key_map = {'ids': 'gt_ids', 'classes': 'gt_classes', 'dets': 'gt_dets'} else: key_map = {'ids': 'tracker_ids', 'classes': 'tracker_classes', 'dets': 'tracker_dets'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) # all_classes = [self.class_name_to_class_id[cls] for cls in self.class_list] all_classes = [1] # class-agnostic if is_gt: classes_to_consider = all_classes all_tracks = self.videos_to_gt_tracks[seq_id] else: # classes_to_consider = self.seq_to_classes[seq_id]['pos_cat_ids'] \ # + self.seq_to_classes[seq_id]['neg_cat_ids'] classes_to_consider = all_classes # class-agnostic all_tracks = self.tracker_data[tracker]['vids_to_tracks'][seq_id] # classes_to_tracks = {cls: [track for track in all_tracks if track['category_id'] == cls] # if cls in classes_to_consider else [] for cls in all_classes} classes_to_tracks = {cls: [track for track in all_tracks] if cls in classes_to_consider else [] for cls in all_classes} # class-agnostic # mapping from classes to track information raw_data['classes_to_tracks'] = {cls: [{det['image_id']: np.atleast_1d(det['bbox']) for det in track['annotations']} for track in tracks] for cls, tracks in classes_to_tracks.items()} raw_data['classes_to_track_ids'] = {cls: [track['id'] for track in tracks] for cls, tracks in classes_to_tracks.items()} raw_data['classes_to_track_areas'] = {cls: [track['area'] for track in tracks] for cls, tracks in classes_to_tracks.items()} raw_data['classes_to_track_lengths'] = {cls: [len(track['annotations']) for track in tracks] for cls, tracks in classes_to_tracks.items()} if not is_gt: raw_data['classes_to_dt_track_scores'] = {cls: np.array([np.mean([float(x['score']) for x in track['annotations']]) for track in tracks]) for cls, tracks in classes_to_tracks.items()} if is_gt: key_map = {'classes_to_tracks': 'classes_to_gt_tracks', 'classes_to_track_ids': 'classes_to_gt_track_ids', 'classes_to_track_lengths': 'classes_to_gt_track_lengths', 'classes_to_track_areas': 'classes_to_gt_track_areas'} else: key_map = {'classes_to_tracks': 'classes_to_dt_tracks', 'classes_to_track_ids': 'classes_to_dt_track_ids', 'classes_to_track_lengths': 'classes_to_dt_track_lengths', 'classes_to_track_areas': 'classes_to_dt_track_areas'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) raw_data['num_timesteps'] = num_timesteps raw_data['neg_cat_ids'] = self.seq_to_classes[seq_id]['neg_cat_ids'] raw_data['not_exhaustively_labeled_cls'] = self.seq_to_classes[seq_id]['not_exhaustively_labeled_cat_ids'] raw_data['seq'] = seq return raw_data @_timing.time def get_preprocessed_seq_data(self, raw_data, cls): """ Preprocess data for a single sequence for a single class ready for evaluation. Inputs: - raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). - cls is the class to be evaluated. Outputs: - data is a dict containing all of the information that metrics need to perform evaluation. It contains the following fields: [num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. [gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). [gt_dets, tracker_dets]: list (for each timestep) of lists of detections. [similarity_scores]: list (for each timestep) of 2D NDArrays. Notes: General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. 1) Extract only detections relevant for the class to be evaluated (including distractor detections). 2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a distractor class, or otherwise marked as to be removed. 3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain other criteria (e.g. are too small). 4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. After the above preprocessing steps, this function also calculates the number of gt and tracker detections and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are unique within each timestep. TAO: In TAO, the 4 preproc steps are as follow: 1) All classes present in the ground truth data are evaluated separately. 2) No matched tracker detections are removed. 3) Unmatched tracker detections are removed if there is not ground truth data and the class does not belong to the categories marked as negative for this sequence. Additionally, unmatched tracker detections for classes which are marked as not exhaustively labeled are removed. 4) No gt detections are removed. Further, for TrackMAP computation track representations for the given class are accessed from a dictionary and the tracks from the tracker data are sorted according to the tracker confidence. """ cls_id = self.class_name_to_class_id[cls] is_not_exhaustively_labeled = cls_id in raw_data['not_exhaustively_labeled_cls'] is_neg_category = cls_id in raw_data['neg_cat_ids'] data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores'] data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} unique_gt_ids = [] unique_tracker_ids = [] num_gt_dets = 0 num_tracker_dets = 0 for t in range(raw_data['num_timesteps']): # Only extract relevant dets for this class for preproc and eval (cls) gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id) gt_class_mask = gt_class_mask.astype(np.bool) gt_ids = raw_data['gt_ids'][t][gt_class_mask] gt_dets = raw_data['gt_dets'][t][gt_class_mask] tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) tracker_class_mask = tracker_class_mask.astype(np.bool) tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask] tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask] similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] # Match tracker and gt dets (with hungarian algorithm). unmatched_indices = np.arange(tracker_ids.shape[0]) if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: matching_scores = similarity_scores.copy() matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0 match_rows, match_cols = linear_sum_assignment(-matching_scores) actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps match_cols = match_cols[actually_matched_mask] unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0) if gt_ids.shape[0] == 0 and not is_neg_category: to_remove_tracker = unmatched_indices elif is_not_exhaustively_labeled: to_remove_tracker = unmatched_indices else: to_remove_tracker = np.array([], dtype=np.int) # remove all unwanted unmatched tracker detections data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0) similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) data['gt_ids'][t] = gt_ids data['gt_dets'][t] = gt_dets data['similarity_scores'][t] = similarity_scores unique_gt_ids += list(np.unique(data['gt_ids'][t])) unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) num_tracker_dets += len(data['tracker_ids'][t]) num_gt_dets += len(data['gt_ids'][t]) # Re-label IDs such that there are no empty IDs if len(unique_gt_ids) > 0: unique_gt_ids = np.unique(unique_gt_ids) gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) for t in range(raw_data['num_timesteps']): if len(data['gt_ids'][t]) > 0: data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) if len(unique_tracker_ids) > 0: unique_tracker_ids = np.unique(unique_tracker_ids) tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) for t in range(raw_data['num_timesteps']): if len(data['tracker_ids'][t]) > 0: data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) # Record overview statistics. data['num_tracker_dets'] = num_tracker_dets data['num_gt_dets'] = num_gt_dets data['num_tracker_ids'] = len(unique_tracker_ids) data['num_gt_ids'] = len(unique_gt_ids) data['num_timesteps'] = raw_data['num_timesteps'] data['seq'] = raw_data['seq'] # get track representations data['gt_tracks'] = raw_data['classes_to_gt_tracks'][cls_id] data['gt_track_ids'] = raw_data['classes_to_gt_track_ids'][cls_id] data['gt_track_lengths'] = raw_data['classes_to_gt_track_lengths'][cls_id] data['gt_track_areas'] = raw_data['classes_to_gt_track_areas'][cls_id] data['dt_tracks'] = raw_data['classes_to_dt_tracks'][cls_id] data['dt_track_ids'] = raw_data['classes_to_dt_track_ids'][cls_id] data['dt_track_lengths'] = raw_data['classes_to_dt_track_lengths'][cls_id] data['dt_track_areas'] = raw_data['classes_to_dt_track_areas'][cls_id] data['dt_track_scores'] = raw_data['classes_to_dt_track_scores'][cls_id] data['not_exhaustively_labeled'] = is_not_exhaustively_labeled data['iou_type'] = 'bbox' # sort tracker data tracks by tracker confidence scores if data['dt_tracks']: idx = np.argsort([-score for score in data['dt_track_scores']], kind="mergesort") data['dt_track_scores'] = [data['dt_track_scores'][i] for i in idx] data['dt_tracks'] = [data['dt_tracks'][i] for i in idx] data['dt_track_ids'] = [data['dt_track_ids'][i] for i in idx] data['dt_track_lengths'] = [data['dt_track_lengths'][i] for i in idx] data['dt_track_areas'] = [data['dt_track_areas'][i] for i in idx] # Ensure that ids are unique per timestep. self._check_unique_ids(data) return data def _calculate_similarities(self, gt_dets_t, tracker_dets_t): similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t) return similarity_scores def _merge_categories(self, annotations): """ Merges categories with a merged tag. Adapted from https://github.com/TAO-Dataset :param annotations: the annotations in which the classes should be merged :return: None """ merge_map = {} for category in self.gt_data['categories']: if 'merged' in category: for to_merge in category['merged']: merge_map[to_merge['id']] = category['id'] for ann in annotations: ann['category_id'] = merge_map.get(ann['category_id'], ann['category_id']) def _compute_vid_mappings(self, annotations): """ Computes mappings from Videos to corresponding tracks and images. :param annotations: the annotations for which the mapping should be generated :return: the video-to-track-mapping, the video-to-image-mapping """ vids_to_tracks = {} vids_to_imgs = {} vid_ids = [vid['id'] for vid in self.gt_data['videos']] # compute an mapping from image IDs to images images = {} for image in self.gt_data['images']: images[image['id']] = image for ann in annotations: ann["area"] = ann["bbox"][2] * ann["bbox"][3] vid = ann["video_id"] if ann["video_id"] not in vids_to_tracks.keys(): vids_to_tracks[ann["video_id"]] = list() if ann["video_id"] not in vids_to_imgs.keys(): vids_to_imgs[ann["video_id"]] = list() # Fill in vids_to_tracks tid = ann["track_id"] exist_tids = [track["id"] for track in vids_to_tracks[vid]] try: index1 = exist_tids.index(tid) except ValueError: index1 = -1 if tid not in exist_tids: curr_track = {"id": tid, "category_id": ann['category_id'], "video_id": vid, "annotations": [ann]} vids_to_tracks[vid].append(curr_track) else: vids_to_tracks[vid][index1]["annotations"].append(ann) # Fill in vids_to_imgs img_id = ann['image_id'] exist_img_ids = [img["id"] for img in vids_to_imgs[vid]] try: index2 = exist_img_ids.index(img_id) except ValueError: index2 = -1 if index2 == -1: curr_img = {"id": img_id, "annotations": [ann]} vids_to_imgs[vid].append(curr_img) else: vids_to_imgs[vid][index2]["annotations"].append(ann) # sort annotations by frame index and compute track area for vid, tracks in vids_to_tracks.items(): for track in tracks: track["annotations"] = sorted( track['annotations'], key=lambda x: images[x['image_id']]['frame_index']) # Computer average area track["area"] = (sum(x['area'] for x in track['annotations']) / len(track['annotations'])) # Ensure all videos are present for vid_id in vid_ids: if vid_id not in vids_to_tracks.keys(): vids_to_tracks[vid_id] = [] if vid_id not in vids_to_imgs.keys(): vids_to_imgs[vid_id] = [] return vids_to_tracks, vids_to_imgs def _compute_image_to_timestep_mappings(self): """ Computes a mapping from images to the corresponding timestep in the sequence. :return: the image-to-timestep-mapping """ images = {} for image in self.gt_data['images']: images[image['id']] = image seq_to_imgs_to_timestep = {vid['id']: dict() for vid in self.gt_data['videos']} for vid in seq_to_imgs_to_timestep: curr_imgs = [img['id'] for img in self.videos_to_gt_images[vid]] curr_imgs = sorted(curr_imgs, key=lambda x: images[x]['frame_index']) seq_to_imgs_to_timestep[vid] = {curr_imgs[i]: i for i in range(len(curr_imgs))} return seq_to_imgs_to_timestep def _limit_dets_per_image(self, annotations): """ Limits the number of detections for each image to config['MAX_DETECTIONS']. Adapted from https://github.com/TAO-Dataset/ :param annotations: the annotations in which the detections should be limited :return: the annotations with limited detections """ max_dets = self.config['MAX_DETECTIONS'] img_ann = defaultdict(list) for ann in annotations: img_ann[ann["image_id"]].append(ann) for img_id, _anns in img_ann.items(): if len(_anns) <= max_dets: continue _anns = sorted(_anns, key=lambda x: x["score"], reverse=True) img_ann[img_id] = _anns[:max_dets] return [ann for anns in img_ann.values() for ann in anns] def _fill_video_ids_inplace(self, annotations): """ Fills in missing video IDs inplace. Adapted from https://github.com/TAO-Dataset/ :param annotations: the annotations for which the videos IDs should be filled inplace :return: None """ missing_video_id = [x for x in annotations if 'video_id' not in x] if missing_video_id: image_id_to_video_id = { x['id']: x['video_id'] for x in self.gt_data['images'] } for x in missing_video_id: x['video_id'] = image_id_to_video_id[x['image_id']] @staticmethod def _make_track_ids_unique(annotations): """ Makes the track IDs unqiue over the whole annotation set. Adapted from https://github.com/TAO-Dataset/ :param annotations: the annotation set :return: the number of updated IDs """ track_id_videos = {} track_ids_to_update = set() max_track_id = 0 for ann in annotations: t = ann['track_id'] if t not in track_id_videos: track_id_videos[t] = ann['video_id'] if ann['video_id'] != track_id_videos[t]: # Track id is assigned to multiple videos track_ids_to_update.add(t) max_track_id = max(max_track_id, t) if track_ids_to_update: print('true') next_id = itertools.count(max_track_id + 1) new_track_ids = defaultdict(lambda: next(next_id)) for ann in annotations: t = ann['track_id'] v = ann['video_id'] if t in track_ids_to_update: ann['track_id'] = new_track_ids[t, v] return len(track_ids_to_update) def _split_known_unknown_distractor(self): all_ids = set([i for i in range(1, 2000)]) # 2000 is larger than the max category id in TAO-OW. # `knowns` includes 78 TAO_category_ids that corresponds to 78 COCO classes. # (The other 2 COCO classes do not have corresponding classes in TAO). self.knowns = {4, 13, 1038, 544, 1057, 34, 35, 36, 41, 45, 58, 60, 579, 1091, 1097, 1099, 78, 79, 81, 91, 1115, 1117, 95, 1122, 99, 1132, 621, 1135, 625, 118, 1144, 126, 642, 1155, 133, 1162, 139, 154, 174, 185, 699, 1215, 714, 717, 1229, 211, 729, 221, 229, 747, 235, 237, 779, 276, 805, 299, 829, 852, 347, 371, 382, 896, 392, 926, 937, 428, 429, 961, 452, 979, 980, 982, 475, 480, 993, 1001, 502, 1018} # `distractors` is defined as in the paper "Opening up Open-World Tracking" self.distractors = {20, 63, 108, 180, 188, 204, 212, 247, 303, 403, 407, 415, 490, 504, 507, 513, 529, 567, 569, 588, 672, 691, 702, 708, 711, 720, 736, 737, 798, 813, 815, 827, 831, 851, 877, 883, 912, 971, 976, 1130, 1133, 1134, 1169, 1184, 1220} self.unknowns = all_ids.difference(self.knowns.union(self.distractors)) def _filter_gt_data(self, raw_gt_data): """ Filter out irrelevant data in the raw_gt_data Args: raw_gt_data: directly loaded from json. Returns: filtered gt_data """ valid_cat_ids = list() if self.subset == "known": valid_cat_ids = self.knowns elif self.subset == "distractor": valid_cat_ids = self.distractors elif self.subset == "unknown": valid_cat_ids = self.unknowns # elif self.subset == "test_only_unknowns": # valid_cat_ids = test_only_unknowns else: raise Exception("The parameter `SUBSET` is incorrect") filtered = dict() filtered["videos"] = raw_gt_data["videos"] # filtered["videos"] = list() unwanted_vid = set() # for video in raw_gt_data["videos"]: # datasrc = video["name"].split('/')[1] # if datasrc in data_srcs: # filtered["videos"].append(video) # else: # unwanted_vid.add(video["id"]) filtered["annotations"] = list() for ann in raw_gt_data["annotations"]: if (ann["video_id"] not in unwanted_vid) and (ann["category_id"] in valid_cat_ids): filtered["annotations"].append(ann) filtered["tracks"] = list() for track in raw_gt_data["tracks"]: if (track["video_id"] not in unwanted_vid) and (track["category_id"] in valid_cat_ids): filtered["tracks"].append(track) filtered["images"] = list() for image in raw_gt_data["images"]: if image["video_id"] not in unwanted_vid: filtered["images"].append(image) filtered["categories"] = list() for cat in raw_gt_data["categories"]: if cat["id"] in valid_cat_ids: filtered["categories"].append(cat) filtered["info"] = raw_gt_data["info"] filtered["licenses"] = raw_gt_data["licenses"] return filtered
{ "content_hash": "8f0d67030a40cea6590374d529fdbcfe", "timestamp": "", "source": "github", "line_count": 652, "max_line_length": 120, "avg_line_length": 52.035276073619634, "alnum_prop": 0.5707548560143838, "repo_name": "JonathonLuiten/TrackEval", "id": "40f80d7876ed9f27fb108b732315c4f8c6fc0984", "size": "33927", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "trackeval/datasets/tao_ow.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "625196" } ], "symlink_target": "" }
import os hostname = "www.google.com" #example response = os.system("ping -c 1 " + hostname) #and then check the response... if response == 0: print (hostname, 'is up!') else: print (hostname, 'is down!')
{ "content_hash": "478d0cfacf65a142a317e4b28e021f33", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 45, "avg_line_length": 21.1, "alnum_prop": 0.6587677725118484, "repo_name": "mikestebbins/openapsdev", "id": "e17754fa2e89e952fdaaa2b8af14dbf738d6278a", "size": "439", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Scripts/ping_test.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "17852" }, { "name": "Shell", "bytes": "4439" } ], "symlink_target": "" }
from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest import sys sys.exit(pytest.main(self.test_args)) setup( name='disqus-python', version='0.4.2', author='DISQUS', author_email='[email protected]', url='https://github.com/disqus/disqus-python', description='Disqus API Bindings', packages=find_packages(), zip_safe=False, license='Apache License 2.0', install_requires=[], setup_requires=[], tests_require=[ 'pytest', 'mock', ], cmdclass={'test': PyTest}, include_package_data=True, classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python', 'Topic :: Software Development', ], )
{ "content_hash": "43f191bf4cc5294d1ed731939db8233c", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 55, "avg_line_length": 29.224489795918366, "alnum_prop": 0.6075418994413407, "repo_name": "disqus/disqus-python", "id": "61dfdd89ee6ed944cf64c9b004fb8bf3fbc95c9c", "size": "1455", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "238" }, { "name": "Python", "bytes": "23832" } ], "symlink_target": "" }
from __future__ import annotations import datetime as dt import html import random import re import typing as t import aiosql import bbcode from htmlslacker import HTMLSlacker from psycopg2.extensions import connection from gargbot_3000 import config forum_queries = aiosql.from_path("sql/post.sql", "psycopg2") msn_queries = aiosql.from_path("sql/message.sql", "psycopg2") def _sanitize_post(inp, bbcode_uid: str): smls = re.compile( r'<!-- s.*? --><img src=\\?"\{SMILIES_PATH\}/.*?\\?" ' 'alt=\\?"(.*?)\\?" title=\\?".*?" /><!-- s.*? -->' ) inp = re.sub(smls, r"\1", inp) inp = html.unescape(inp) inp = inp.replace(":" + bbcode_uid, "") img_tags = re.compile(r"\[/?img\]") inp = re.sub(img_tags, "", inp) youtube_embeds = re.compile( r'\[html\]<iframe width="\d+" height="\d+" ' 'src="//www.youtube.com/embed/([^"]+)" frameborder=' r'"0" allowfullscreen></iframe>\[/html\]' ) inp = re.sub(youtube_embeds, r"https://www.youtube.com/watch?v=\1", inp) inp = bbcode.render_html( inp, drop_unrecognized=True, escape_html=False, replace_links=False ) inp = inp.replace('rel="nofollow"', "") inp = HTMLSlacker(inp).get_output() return inp def forum( conn: connection, args: t.Optional[list[str]] ) -> tuple[str, str, str, dt.datetime, str, str]: user = args[0] if args else None desc = " " post = None if user: post = forum_queries.post_for_user(conn, slack_nick=user) if not post: desc = ( f"Gargling not found: {user}. Husk å bruke slack nick. " "Her er et tilfeldig quote i stedet." ) if not post: post = forum_queries.random_post(conn) text = _sanitize_post(post["content"], post["bbcode_uid"]) avatarurl = f"{config.forum_url}/download/file.php?avatar={post['avatar']}".strip() url = f"{config.forum_url}/viewtopic.php?p={post['id']}#p{post['id']}" return (text, post["slack_nick"], avatarurl, post["posted_at"], url, desc) def msn( conn: connection, args: t.Optional[list[str]] ) -> tuple[dt.datetime, list, t.Optional[str]]: user = args[0] if args else None desc = None messages = None if user: messages = msn_queries.message_session_for_user_id(conn, slack_nick=user) if messages: first = next(i for i, message in enumerate(messages) if message["is_user"]) else: desc = ( f"Gargling not found: {user}. Husk å bruke slack nick. " "Her er en tilfeldig samtale i stedet." ) if not messages: messages = msn_queries.random_message_session(conn) if len(messages) <= 10: first = 0 else: # no test coverage first = random.randint(0, len(messages) - 10) conversation = messages[first : first + 10] date = conversation[0]["sent_at"].strftime("%d.%m.%y %H:%M") squashed: list[list[str]] = [] for message in conversation: if squashed: prev_from_user, prev_content, prev_color = squashed[-1] if message["from_user"] == prev_from_user: # no test coverage squashed[-1][1] = "\n".join([prev_content, message["content"]]) continue squashed.append([message["from_user"], message["content"], message["color"]]) return date, squashed, desc
{ "content_hash": "2850635700b4d97e8d881cdf834d813a", "timestamp": "", "source": "github", "line_count": 103, "max_line_length": 87, "avg_line_length": 33.262135922330096, "alnum_prop": 0.5846468184471687, "repo_name": "eirki/gargbot_3000", "id": "b704c2179ef54c74b3da924e6f2bec891b8839a9", "size": "3468", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gargbot_3000/quotes.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "2800" }, { "name": "Dockerfile", "bytes": "1039" }, { "name": "HTML", "bytes": "6032" }, { "name": "JavaScript", "bytes": "36277" }, { "name": "Python", "bytes": "254223" }, { "name": "Shell", "bytes": "994" } ], "symlink_target": "" }
import BaseHTTPServer import json import urlparse __author__ = 'umairghani' class SimpleTCPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): """ Base class for HTTP request handler """ def do_GET(self): """ Handle the HTTP GET request :return: Serve a GET request """ url = urlparse.urlparse(self.path) method = url.path.split("/")[1] try: result = self.server._dispatch(method, url.params) response = self._dump(method, result) self._send(response) except TypeError, e: self.send_error(400, str(e)) except NameError, e: self.send_error(405, str(e)) except ValueError, e: self.send_error(500, str(e)) def do_POST(self): """ Handles the HTTP Post request :return: """ if self.headers.has_key("content-length"): max_chunk_size = 10*1024*1024 size_remaining = int(self.headers["content-length"]) L = [] while size_remaining: chunk_size = min(size_remaining, max_chunk_size) chunk = self.rfile.read(chunk_size) if not chunk: break L.append(chunk) size_remaining -= len(L[-1]) data = ''.join(L) else: self.send_error(411) try: method, params = self._load(data) #params = [params] if params else "" result = self.server._dispatch(method, params) response = self._dump(method, result) self._send(response) except ValueError, e: self.send_error(500, str(e)) except NameError, e: self.send_error(405, str(e)) def _send(self, data): """ Writes data to the response :param data: :return: Nothing """ self.send_response(200, str(data)) self.send_header("Content-type", "application/json") self.send_header("Accept", "application/json") self.send_header("Content-length", str(len(data))) self.end_headers() self.wfile.write(data) def _load(self, data): """ Parses the data :param data: :return: key, value """ r = json.loads(data) return r.items()[0] def _dump(self, method_name, data): """ converts it to json :param data: :return: json object """ result = {method_name: data} return json.dumps(result) def log_request(self, code='-', size='-'): """ Logging function :param code: :param size: """ if self.server.logging: BaseHTTPServer.BaseHTTPRequestHandler.log_request(self, code, size)
{ "content_hash": "b5c8c31ca587cd43d9050e19b70afb05", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 79, "avg_line_length": 28.95959595959596, "alnum_prop": 0.5235437739797698, "repo_name": "umairghani/py-jrpc", "id": "d0f2a51af665dd2c30b43137d71879d0276660ac", "size": "2867", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "build/lib/jrpc/jrpcServer/SimpleTCPRequestHandler.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "35594" } ], "symlink_target": "" }
''' Created on 10 nov 2014 @author: rogerlarsson The MIT License (MIT) Copyright (c) 2014 rogerlarsson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import string, random class PasswordGenerator: def __init__(self): random.seed() self.symbols = [str(i) for i in range(10)] + list(string.ascii_letters) def generate(self, length = 8): password = "" for i in range(length): password += random.choice(self.symbols) return password if __name__ == '__main__': pwg = PasswordGenerator() print pwg.generate()
{ "content_hash": "4fee8c1ff7563691edbdb19fef4029eb", "timestamp": "", "source": "github", "line_count": 46, "max_line_length": 79, "avg_line_length": 34.26086956521739, "alnum_prop": 0.7315989847715736, "repo_name": "rogerlarsson/passwordGenerator", "id": "a5e5729b1bdca696b8421547e4cd5cdaf57eab9f", "size": "1576", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/passwordGenerator.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1576" } ], "symlink_target": "" }
from __future__ import absolute_import from collections import OrderedDict from re import compile as re_compile from sys import version_info from unicodedata import category from .compat import ustr if version_info >= (3,): number = (int, float) string = (bytes, str) unicode = str unichr = chr else: number = (int, long, float) string = (str, unicode) unicode = unicode unichr = unichr NULL = u"null" TRUE = u"true" FALSE = u"false" ID_START = {u"_"} | {unichr(x) for x in range(0xFFFF) if category(unichr(x)) in ("LC", "Ll", "Lm", "Lo", "Lt", "Lu", "Nl")} ID_CONTINUE = ID_START | {unichr(x) for x in range(0xFFFF) if category(unichr(x)) in ("Mn", "Mc", "Nd", "Pc", "Sc")} DOUBLE_QUOTE = u'"' SINGLE_QUOTE = u"'" ESCAPED_DOUBLE_QUOTE = u'\\"' ESCAPED_SINGLE_QUOTE = u"\\'" X_ESCAPE = re_compile(r"(\\x([0-9a-f]{2}))") DOUBLE_QUOTED_SAFE = re_compile(r"([ -!#-\[\]-~]+)") SINGLE_QUOTED_SAFE = re_compile(r"([ -&(-\[\]-~]+)") class LabelSetView(object): def __init__(self, elements=(), selected=(), **kwargs): self.__elements = frozenset(elements) self.__selected = tuple(selected) self.__kwargs = kwargs def __repr__(self): if self.__selected: return "".join(":%s" % cypher_escape(e, **self.__kwargs) for e in self.__selected if e in self.__elements) else: return "".join(":%s" % cypher_escape(e, **self.__kwargs) for e in sorted(self.__elements)) def __getattr__(self, element): if element in self.__selected: return self.__class__(self.__elements, self.__selected) else: return self.__class__(self.__elements, self.__selected + (element,)) def __len__(self): return len(self.__elements) def __iter__(self): return iter(self.__elements) def __contains__(self, element): return element in self.__elements def __and__(self, other): return self.__elements & set(other) def __or__(self, other): return self.__elements | set(other) def __sub__(self, other): return self.__elements - set(other) def __xor__(self, other): return self.__elements ^ set(other) class PropertyDictView(object): def __init__(self, items=(), selected=(), **kwargs): self.__items = dict(items) self.__selected = tuple(selected) self.__kwargs = kwargs def __repr__(self): if self.__selected: properties = OrderedDict((key, self.__items[key]) for key in self.__selected if key in self.__items) else: properties = OrderedDict((key, self.__items[key]) for key in sorted(self.__items)) return cypher_repr(properties, **self.__kwargs) def __getattr__(self, key): if key in self.__selected: return self.__class__(self.__items, self.__selected) else: return self.__class__(self.__items, self.__selected + (key,)) def __len__(self): return len(self.__items) def __iter__(self): return iter(self.__items) def __contains__(self, key): return key in self.__items class PropertySelector(object): def __init__(self, items=(), default_value=None, **kwargs): self.__items = dict(items) self.__default_value = default_value self.__kwargs = kwargs def __getattr__(self, key): return cypher_str(self.__items.get(key, self.__default_value), **self.__kwargs) class CypherEncoder(object): __default_instance = None def __new__(cls, *args, **kwargs): if not kwargs: if cls.__default_instance is None: cls.__default_instance = super(CypherEncoder, cls).__new__(cls) return cls.__default_instance return super(CypherEncoder, cls).__new__(cls) encoding = "utf-8" quote = None sequence_separator = u", " key_value_separator = u": " node_template = u"#{id}{labels} {properties}" related_node_template = u"#{id}" relationship_template = u"{type} {properties}" def __init__(self, encoding=None, quote=None, sequence_separator=None, key_value_separator=None, node_template=None, related_node_template=None, relationship_template=None): if encoding: self.encoding = encoding if quote: self.quote = quote if sequence_separator: self.sequence_separator = sequence_separator if key_value_separator: self.key_value_separator = key_value_separator if node_template: self.node_template = node_template if related_node_template: self.related_node_template = related_node_template if relationship_template: self.relationship_template = relationship_template def encode_key(self, key): if isinstance(key, bytes): key = key.decode(self.encoding) assert isinstance(key, unicode) if not key: raise ValueError("Keys cannot be empty") if key[0] in ID_START and all(key[i] in ID_CONTINUE for i in range(1, len(key))): return key else: return u"`" + key.replace(u"`", u"``") + u"`" def encode_value(self, value): if value is None: return NULL if value is True: return TRUE if value is False: return FALSE if isinstance(value, number): return unicode(value) if isinstance(value, string): return self.encode_string(value) if hasattr(value, "nodes"): if hasattr(value, "relationships"): return self.encode_path(value) else: return self.encode_relationship(value) if hasattr(value, "labels"): return self.encode_node(value) if isinstance(value, list): return self.encode_list(value) if isinstance(value, dict): return self.encode_map(value) raise TypeError("Values of type %s are not supported" % value.__class__.__name__) def encode_string(self, value): if isinstance(value, bytes): value = value.decode(self.encoding) assert isinstance(value, unicode) quote = self.quote if quote is None: num_single = value.count(u"'") num_double = value.count(u'"') quote = SINGLE_QUOTE if num_single <= num_double else DOUBLE_QUOTE if quote == SINGLE_QUOTE: escaped_quote = ESCAPED_SINGLE_QUOTE safe = SINGLE_QUOTED_SAFE elif quote == DOUBLE_QUOTE: escaped_quote = ESCAPED_DOUBLE_QUOTE safe = DOUBLE_QUOTED_SAFE else: raise ValueError("Unsupported quote character %r" % quote) if not value: return quote + quote parts = safe.split(value) for i in range(0, len(parts), 2): parts[i] = (X_ESCAPE.sub(u"\\\\u00\\2", parts[i].encode("unicode-escape").decode("utf-8")). replace(quote, escaped_quote).replace(u"\\u0008", u"\\b").replace(u"\\u000c", u"\\f")) return quote + u"".join(parts) + quote def encode_list(self, values): return u"[" + self.sequence_separator.join(map(self.encode_value, values)) + u"]" def encode_map(self, values): return u"{" + self.sequence_separator.join(self.encode_key(key) + self.key_value_separator + self.encode_value(value) for key, value in values.items()) + u"}" def encode_node(self, node): return self._encode_node(node, self.node_template) def encode_relationship(self, relationship): nodes = relationship.nodes() return u"{}-{}->{}".format( self._encode_node(nodes[0], self.related_node_template), self._encode_relationship_detail(relationship, self.relationship_template), self._encode_node(nodes[-1], self.related_node_template), ) def encode_path(self, path): encoded = [] append = encoded.append nodes = path.nodes() for i, relationship in enumerate(path.relationships()): append(self._encode_node(nodes[i], self.related_node_template)) related_nodes = relationship.nodes() if self._node_id(related_nodes[0]) == self._node_id(nodes[i]): append(u"-") append(self._encode_relationship_detail(relationship, self.relationship_template)) append(u"->") else: append(u"<-") append(self._encode_relationship_detail(relationship, self.relationship_template)) append(u"-") append(self._encode_node(nodes[-1], self.related_node_template)) return u"".join(encoded) @classmethod def _node_id(cls, node): return node.id if hasattr(node, "id") else node def _encode_node(self, node, template): return u"(" + template.format( id=node.id, labels=LabelSetView(node.labels(), encoding=self.encoding, quote=self.quote), properties=PropertyDictView(node, encoding=self.encoding, quote=self.quote), property=PropertySelector(node, u""), ).strip() + u")" def _encode_relationship_detail(self, relationship, template): return u"[" + template.format( id=relationship.id, type=u":" + ustr(type(relationship).__name__), properties=PropertyDictView(relationship, encoding=self.encoding, quote=self.quote), property=PropertySelector(relationship, u""), ).strip() + u"]" def cypher_escape(identifier, **kwargs): """ Escape a Cypher identifier in backticks. :: >>> cypher_escape("simple_identifier") 'simple_identifier' >>> cypher_escape("identifier with spaces") '`identifier with spaces`' >>> cypher_escape("identifier with `backticks`") '`identifier with ``backticks```' :arg identifier: any non-empty string """ if not isinstance(identifier, string): raise TypeError(type(identifier).__name__) encoder = CypherEncoder(**kwargs) return encoder.encode_key(identifier) def cypher_repr(value, **kwargs): """ Return the Cypher representation of a value. """ encoder = CypherEncoder(**kwargs) return encoder.encode_value(value) def cypher_str(value, **kwargs): """ Convert a Cypher value to a Python Unicode string. """ if isinstance(value, unicode): return value elif isinstance(value, bytes): return value.decode(kwargs.get("encoding", "utf-8")) else: return cypher_repr(value, **kwargs)
{ "content_hash": "160c911240c538fa1d9e8b61821e3a41", "timestamp": "", "source": "github", "line_count": 316, "max_line_length": 125, "avg_line_length": 34.2246835443038, "alnum_prop": 0.5815071659731854, "repo_name": "technige/cypy", "id": "95fa772c12f483931bf5849c83d4a515f3daa509", "size": "11441", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "cypy/encoding.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "164557" }, { "name": "Shell", "bytes": "254" } ], "symlink_target": "" }
import m5 from m5.objects import * from m5.defines import buildEnv from .Ruby import create_topology def define_options(parser): parser.add_argument("--chi-config", action="store", type=str, default=None, help="NoC config. parameters and bindings. " "Required for CustomMesh topology") parser.add_argument("--enable-dvm", default=False, action="store_true") def read_config_file(file): ''' Read file as a module and return it ''' import types import importlib.machinery loader = importlib.machinery.SourceFileLoader('chi_configs', file) chi_configs = types.ModuleType(loader.name) loader.exec_module(chi_configs) return chi_configs def create_system(options, full_system, system, dma_ports, bootmem, ruby_system, cpus): if buildEnv['PROTOCOL'] != 'CHI': m5.panic("This script requires the CHI build") if options.num_dirs < 1: m5.fatal('--num-dirs must be at least 1') if options.num_l3caches < 1: m5.fatal('--num-l3caches must be at least 1') if full_system and options.enable_dvm: if len(cpus) <= 1: m5.fatal("--enable-dvm can't be used with a single CPU") for cpu in cpus: for decoder in cpu.decoder: decoder.dvm_enabled = True # read specialized classes from config file if provided if options.chi_config: chi_defs = read_config_file(options.chi_config) elif options.topology == 'CustomMesh': m5.fatal('--noc-config must be provided if topology is CustomMesh') else: # Use the defaults from CHI_config from . import CHI_config as chi_defs # NoC params params = chi_defs.NoC_Params # Node types CHI_RNF = chi_defs.CHI_RNF CHI_HNF = chi_defs.CHI_HNF CHI_MN = chi_defs.CHI_MN CHI_SNF_MainMem = chi_defs.CHI_SNF_MainMem CHI_SNF_BootMem = chi_defs.CHI_SNF_BootMem CHI_RNI_DMA = chi_defs.CHI_RNI_DMA CHI_RNI_IO = chi_defs.CHI_RNI_IO # Declare caches and controller types used by the protocol # Notice tag and data accesses are not concurrent, so the a cache hit # latency = tag + data + response latencies. # Default response latencies are 1 cy for all controllers. # For L1 controllers the mandatoryQueue enqueue latency is always 1 cy and # this is deducted from the initial tag read latency for sequencer requests # dataAccessLatency may be set to 0 if one wants to consider parallel # data and tag lookups class L1ICache(RubyCache): dataAccessLatency = 1 tagAccessLatency = 1 size = options.l1i_size assoc = options.l1i_assoc class L1DCache(RubyCache): dataAccessLatency = 2 tagAccessLatency = 1 size = options.l1d_size assoc = options.l1d_assoc class L2Cache(RubyCache): dataAccessLatency = 6 tagAccessLatency = 2 size = options.l2_size assoc = options.l2_assoc class HNFCache(RubyCache): dataAccessLatency = 10 tagAccessLatency = 2 size = options.l3_size assoc = options.l3_assoc # other functions use system.cache_line_size assuming it has been set assert(system.cache_line_size.value == options.cacheline_size) cpu_sequencers = [] mem_cntrls = [] mem_dests = [] network_nodes = [] network_cntrls = [] hnf_dests = [] all_cntrls = [] # Creates on RNF per cpu with priv l2 caches assert(len(cpus) == options.num_cpus) ruby_system.rnf = [ CHI_RNF([cpu], ruby_system, L1ICache, L1DCache, system.cache_line_size.value) for cpu in cpus ] for rnf in ruby_system.rnf: rnf.addPrivL2Cache(L2Cache) cpu_sequencers.extend(rnf.getSequencers()) all_cntrls.extend(rnf.getAllControllers()) network_nodes.append(rnf) network_cntrls.extend(rnf.getNetworkSideControllers()) # Creates one Misc Node ruby_system.mn = [ CHI_MN(ruby_system, [cpu.l1d for cpu in cpus]) ] for mn in ruby_system.mn: all_cntrls.extend(mn.getAllControllers()) network_nodes.append(mn) network_cntrls.extend(mn.getNetworkSideControllers()) assert(mn.getAllControllers() == mn.getNetworkSideControllers()) # Look for other memories other_memories = [] if bootmem: other_memories.append(bootmem) if getattr(system, 'sram', None): other_memories.append(getattr(system, 'sram', None)) on_chip_mem_ports = getattr(system, '_on_chip_mem_ports', None) if on_chip_mem_ports: other_memories.extend([p.simobj for p in on_chip_mem_ports]) # Create the LLCs cntrls sysranges = [] + system.mem_ranges for m in other_memories: sysranges.append(m.range) hnf_list = [i for i in range(options.num_l3caches)] CHI_HNF.createAddrRanges(sysranges, system.cache_line_size.value, hnf_list) ruby_system.hnf = [ CHI_HNF(i, ruby_system, HNFCache, None) for i in range(options.num_l3caches) ] for hnf in ruby_system.hnf: network_nodes.append(hnf) network_cntrls.extend(hnf.getNetworkSideControllers()) assert(hnf.getAllControllers() == hnf.getNetworkSideControllers()) all_cntrls.extend(hnf.getAllControllers()) hnf_dests.extend(hnf.getAllControllers()) # Create the memory controllers # Notice we don't define a Directory_Controller type so we don't use # create_directories shared by other protocols. ruby_system.snf = [ CHI_SNF_MainMem(ruby_system, None, None) for i in range(options.num_dirs) ] for snf in ruby_system.snf: network_nodes.append(snf) network_cntrls.extend(snf.getNetworkSideControllers()) assert(snf.getAllControllers() == snf.getNetworkSideControllers()) mem_cntrls.extend(snf.getAllControllers()) all_cntrls.extend(snf.getAllControllers()) mem_dests.extend(snf.getAllControllers()) if len(other_memories) > 0: ruby_system.rom_snf = [ CHI_SNF_BootMem(ruby_system, None, m) for m in other_memories ] for snf in ruby_system.rom_snf: network_nodes.append(snf) network_cntrls.extend(snf.getNetworkSideControllers()) all_cntrls.extend(snf.getAllControllers()) mem_dests.extend(snf.getAllControllers()) # Creates the controller for dma ports and io if len(dma_ports) > 0: ruby_system.dma_rni = [ CHI_RNI_DMA(ruby_system, dma_port, None) for dma_port in dma_ports ] for rni in ruby_system.dma_rni: network_nodes.append(rni) network_cntrls.extend(rni.getNetworkSideControllers()) all_cntrls.extend(rni.getAllControllers()) if full_system: ruby_system.io_rni = CHI_RNI_IO(ruby_system, None) network_nodes.append(ruby_system.io_rni) network_cntrls.extend(ruby_system.io_rni.getNetworkSideControllers()) all_cntrls.extend(ruby_system.io_rni.getAllControllers()) # Assign downstream destinations for rnf in ruby_system.rnf: rnf.setDownstream(hnf_dests) if len(dma_ports) > 0: for rni in ruby_system.dma_rni: rni.setDownstream(hnf_dests) if full_system: ruby_system.io_rni.setDownstream(hnf_dests) for hnf in ruby_system.hnf: hnf.setDownstream(mem_dests) # Setup data message size for all controllers for cntrl in all_cntrls: cntrl.data_channel_size = params.data_width # Network configurations # virtual networks: 0=request, 1=snoop, 2=response, 3=data ruby_system.network.number_of_virtual_networks = 4 ruby_system.network.control_msg_size = params.cntrl_msg_size ruby_system.network.data_msg_size = params.data_width ruby_system.network.buffer_size = params.router_buffer_size # Incorporate the params into options so it's propagated to # makeTopology and create_topology the parent scripts for k in dir(params): if not k.startswith('__'): setattr(options, k, getattr(params, k)) if options.topology == 'CustomMesh': topology = create_topology(network_nodes, options) elif options.topology in ['Crossbar', 'Pt2Pt']: topology = create_topology(network_cntrls, options) else: m5.fatal("%s not supported!" % options.topology) return (cpu_sequencers, mem_cntrls, topology)
{ "content_hash": "05edff0657b3f887aa163cfa3434dc9a", "timestamp": "", "source": "github", "line_count": 231, "max_line_length": 79, "avg_line_length": 37.24242424242424, "alnum_prop": 0.643728931767988, "repo_name": "gem5/gem5", "id": "c94dc943f9ea424660435c815a3a57cd888d8ba3", "size": "10673", "binary": false, "copies": "1", "ref": "refs/heads/stable", "path": "configs/ruby/CHI.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Assembly", "bytes": "145626" }, { "name": "Awk", "bytes": "3386" }, { "name": "BASIC", "bytes": "2884" }, { "name": "C", "bytes": "3927153" }, { "name": "C++", "bytes": "42960484" }, { "name": "CMake", "bytes": "133888" }, { "name": "Dockerfile", "bytes": "34102" }, { "name": "Emacs Lisp", "bytes": "1914" }, { "name": "Forth", "bytes": "354" }, { "name": "Fortran", "bytes": "15436" }, { "name": "HTML", "bytes": "146414" }, { "name": "Hack", "bytes": "139769" }, { "name": "Java", "bytes": "6966" }, { "name": "M4", "bytes": "42624" }, { "name": "Makefile", "bytes": "39573" }, { "name": "Perl", "bytes": "23784" }, { "name": "Python", "bytes": "8079781" }, { "name": "Roff", "bytes": "8754" }, { "name": "SCSS", "bytes": "2971" }, { "name": "SWIG", "bytes": "173" }, { "name": "Scala", "bytes": "5328" }, { "name": "Shell", "bytes": "95638" }, { "name": "Starlark", "bytes": "25668" }, { "name": "SuperCollider", "bytes": "8869" }, { "name": "Vim Script", "bytes": "4343" }, { "name": "sed", "bytes": "3897" } ], "symlink_target": "" }
from django.conf.urls import * from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), url(r'^fake-login$', 'tests.views.fake_login', name='sentry-fake-login'), url(r'^trigger-500$', 'tests.views.raise_exc', name='sentry-raise-exc'), url(r'^trigger-500-decorated$', 'tests.views.decorated_raise_exc', name='sentry-raise-exc-decor'), url(r'^trigger-500-django$', 'tests.views.django_exc', name='sentry-django-exc'), url(r'^trigger-500-template$', 'tests.views.template_exc', name='sentry-template-exc'), url(r'^trigger-500-log-request$', 'tests.views.logging_request_exc', name='sentry-log-request-exc'), url(r'', include('sentry.web.urls')), )
{ "content_hash": "42ba748e9f11ec6bf23eb7e1a83b24e1", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 104, "avg_line_length": 49.666666666666664, "alnum_prop": 0.6859060402684564, "repo_name": "primepix/django-sentry", "id": "2a45d69b6b8b8530923f49d336468fc8426dfdf8", "size": "745", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/urls.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "20952" }, { "name": "JavaScript", "bytes": "10544" }, { "name": "Python", "bytes": "300510" }, { "name": "Shell", "bytes": "4106" } ], "symlink_target": "" }
r"""Infers detections on a TFRecord of TFExamples given an inference graph. Example usage: ./infer_detections \ --input_tfrecord_paths=/path/to/input/tfrecord1,/path/to/input/tfrecord2 \ --output_tfrecord_path_prefix=/path/to/output/detections.tfrecord \ --inference_graph=/path/to/frozen_weights_inference_graph.pb The output is a TFRecord of TFExamples. Each TFExample from the input is first augmented with detections from the inference graph and then copied to the output. The input and output nodes of the inference graph are expected to have the same types, shapes, and semantics, as the input and output nodes of graphs produced by export_inference_graph.py, when run with --input_type=image_tensor. The script can also discard the image pixels in the output. This greatly reduces the output size and can potentially accelerate reading data in subsequent processing steps that don't require the images (e.g. computing metrics). """ import itertools import tensorflow as tf from object_detection.inference import detection_inference tf.flags.DEFINE_string('input_tfrecord_paths', None, 'A comma separated list of paths to input TFRecords.') tf.flags.DEFINE_string('output_tfrecord_path', None, 'Path to the output TFRecord.') tf.flags.DEFINE_string('inference_graph', None, 'Path to the inference graph with embedded weights.') tf.flags.DEFINE_boolean('discard_image_pixels', False, 'Discards the images in the output TFExamples. This' ' significantly reduces the output size and is useful' ' if the subsequent tools don\'t need access to the' ' images (e.g. when computing evaluation measures).') FLAGS = tf.flags.FLAGS def main(_): tf.logging.set_verbosity(tf.logging.INFO) required_flags = ['input_tfrecord_paths', 'output_tfrecord_path', 'inference_graph'] for flag_name in required_flags: if not getattr(FLAGS, flag_name): raise ValueError('Flag --{} is required'.format(flag_name)) with tf.Session() as sess: input_tfrecord_paths = [ v for v in FLAGS.input_tfrecord_paths.split(',') if v] tf.logging.info('Reading input from %d files', len(input_tfrecord_paths)) serialized_example_tensor, image_tensor = detection_inference.build_input( input_tfrecord_paths) tf.logging.info('Reading graph and building model...') (detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor) = detection_inference.build_inference_graph( image_tensor, FLAGS.inference_graph) tf.logging.info('Running inference and writing output to {}'.format( FLAGS.output_tfrecord_path)) sess.run(tf.local_variables_initializer()) tf.train.start_queue_runners() with tf.python_io.TFRecordWriter( FLAGS.output_tfrecord_path) as tf_record_writer: try: for counter in itertools.count(): tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 10, counter) tf_example = detection_inference.infer_detections_and_add_to_example( serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor, FLAGS.discard_image_pixels) tf_record_writer.write(tf_example.SerializeToString()) except tf.errors.OutOfRangeError: tf.logging.info('Finished processing records') if __name__ == '__main__': tf.app.run()
{ "content_hash": "648cdafc4c4ce1cd4d7ee838ae25817f", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 79, "avg_line_length": 43.58536585365854, "alnum_prop": 0.682988248461108, "repo_name": "cshallue/models", "id": "a251009ef0d415e08395be038dbc4ed42d804ff7", "size": "4263", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "research/object_detection/inference/infer_detections.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "1523636" }, { "name": "Dockerfile", "bytes": "9821" }, { "name": "GLSL", "bytes": "976" }, { "name": "HTML", "bytes": "147010" }, { "name": "JavaScript", "bytes": "33208" }, { "name": "Jupyter Notebook", "bytes": "2829707" }, { "name": "Makefile", "bytes": "4933" }, { "name": "Python", "bytes": "13149300" }, { "name": "Shell", "bytes": "146035" } ], "symlink_target": "" }
import numpy as np def load(fileno, training=True): """ takes the training file no and return training and test data Ex. fileno = 1 for u1.base and u1.test fileno = 5 for u5.base and u5.test """ # userid songid user-rating basedir = "ml-100k/u%s." % (fileno) with open(basedir + 'base') as f: training = np.loadtxt(f) with open(basedir + 'test') as f: test = np.loadtxt(f) with open('ml-100k/u.info') as f: metafile = np.genfromtxt(f) metafile = np.delete(metafile, len(metafile[0])-1, 1) metadata = {} metadata['users'] = metafile[0][0] metadata['items'] = metafile[1][0] metadata['ratings'] = metafile[2][0] return training[:, :-1], test[:, :-1], metadata
{ "content_hash": "10f6e4e4a12112b3a62a35e1eb6d0aea", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 64, "avg_line_length": 34.31818181818182, "alnum_prop": 0.5947019867549669, "repo_name": "chandan5/Music-Recommendation-System", "id": "cc928a49d6fcaec0d7c9bef8876f3cb8a7e5b10c", "size": "755", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parse.py", "mode": "33188", "license": "mit", "language": [ { "name": "Perl", "bytes": "716" }, { "name": "Python", "bytes": "4547" }, { "name": "Shell", "bytes": "643" } ], "symlink_target": "" }
import hackarena.constants from hackarena.constants import Classes from hackarena.game_objects import BaseGameObject class Player(BaseGameObject): def __init__( self, username, character_class, team, hp=0, last_death=0, ): self.MAX_HP = Classes.MAX_HP[character_class] self.username = username self.character_class = character_class self.available_spells = Classes.AVAILABLE_SPELLS[character_class] self.spell_cast_times = dict((spell, 0) for spell in self.available_spells) self.team = team self.reset() self.last_death = last_death def reset(self): self.hp = Classes.MAX_HP[self.character_class] self.position = { 'x': 7 if self.team == 'blue' else hackarena.constants.MAP_TILES_WIDTH - 8, 'y': 8 if self.team == 'blue' else hackarena.constants.MAP_TILES_HEIGHT - 9, }
{ "content_hash": "709383255985cde0704662dba94cdacc", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 88, "avg_line_length": 30.580645161290324, "alnum_prop": 0.6170886075949367, "repo_name": "verekia/hackarena", "id": "8ea08fd6b1ed9b9ae2942e6f142e280e71f6bc8b", "size": "972", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hackarena/player.py", "mode": "33188", "license": "mit", "language": [ { "name": "ApacheConf", "bytes": "36" }, { "name": "CSS", "bytes": "2815" }, { "name": "HTML", "bytes": "3430" }, { "name": "JavaScript", "bytes": "2809068" }, { "name": "Python", "bytes": "46304" }, { "name": "Shell", "bytes": "35" } ], "symlink_target": "" }
import logging import numpy as np import paddle __all__ = [] def _simple_network(): """ Define a simple network composed by a single linear layer. """ input = paddle.static.data( name="input", shape=[None, 2, 2], dtype="float32" ) weight = paddle.create_parameter( shape=[2, 3], dtype="float32", attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.1)), ) bias = paddle.create_parameter(shape=[3], dtype="float32") linear_out = paddle.nn.functional.linear(x=input, weight=weight, bias=bias) out = paddle.tensor.sum(linear_out) return input, out, weight def _prepare_data(device_count): """ Prepare feeding data for simple network. The shape is [device_count, 2, 2]. Args: device_count (int): The number of devices. """ # Prepare the feeding data. np_input_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) if device_count == 1: return np_input_single.reshape(device_count, 2, 2) else: input_list = [] for i in range(device_count): input_list.append(np_input_single) np_input_muti = np.array(input_list) np_input_muti = np_input_muti.reshape(device_count, 2, 2) return np_input_muti def _is_cuda_available(): """ Check whether CUDA is avaiable. """ try: assert len(paddle.static.cuda_places()) > 0 return True except Exception as e: logging.warning( "You are using GPU version PaddlePaddle, but there is no GPU " "detected on your machine. Maybe CUDA devices is not set properly." "\n Original Error is {}".format(e) ) return False def _is_npu_available(): """ Check whether NPU is avaiable. """ try: assert len(paddle.static.npu_places()) > 0 return True except Exception as e: logging.warning( "You are using NPU version PaddlePaddle, but there is no NPU " "detected on your machine. Maybe NPU devices is not set properly." "\n Original Error is {}".format(e) ) return False def _is_xpu_available(): """ Check whether XPU is avaiable. """ try: assert len(paddle.static.xpu_places()) > 0 return True except Exception as e: logging.warning( "You are using XPU version PaddlePaddle, but there is no XPU " "detected on your machine. Maybe XPU devices is not set properly." "\n Original Error is {}".format(e) ) return False def _run_dygraph_single(use_cuda, use_xpu, use_npu): """ Testing the simple network in dygraph mode using one CPU/GPU/XPU/NPU. Args: use_cuda (bool): Whether running with CUDA. use_xpu (bool): Whether running with XPU. use_npu (bool): Whether running with NPU. """ paddle.disable_static() if use_cuda: paddle.set_device('gpu') elif use_xpu: paddle.set_device('xpu') elif use_npu: paddle.set_device('npu') else: paddle.set_device('cpu') weight_attr = paddle.ParamAttr( name="weight", initializer=paddle.nn.initializer.Constant(value=0.5) ) bias_attr = paddle.ParamAttr( name="bias", initializer=paddle.nn.initializer.Constant(value=1.0) ) linear = paddle.nn.Linear( 2, 4, weight_attr=weight_attr, bias_attr=bias_attr ) input_np = _prepare_data(1) input_tensor = paddle.to_tensor(input_np) linear_out = linear(input_tensor) out = paddle.tensor.sum(linear_out) out.backward() opt = paddle.optimizer.Adam( learning_rate=0.001, parameters=linear.parameters() ) opt.step() def _run_static_single(use_cuda, use_xpu, use_npu): """ Testing the simple network with executor running directly, using one CPU/GPU/XPU/NPU. Args: use_cuda (bool): Whether running with CUDA. use_xpu (bool): Whether running with XPU. use_npu (bool): Whether running with NPU. """ paddle.enable_static() with paddle.static.scope_guard(paddle.static.Scope()): train_prog = paddle.static.Program() startup_prog = paddle.static.Program() startup_prog.random_seed = 1 with paddle.static.program_guard(train_prog, startup_prog): input, out, weight = _simple_network() param_grads = paddle.static.append_backward( out, parameter_list=[weight.name] )[0] if use_cuda: place = paddle.CUDAPlace(0) elif use_xpu: place = paddle.XPUPlace(0) elif use_npu: place = paddle.NPUPlace(0) else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) exe.run( train_prog, feed={input.name: _prepare_data(1)}, fetch_list=[out.name, param_grads[1].name], ) paddle.disable_static() def _run_static_parallel(use_cuda, use_xpu, use_npu, device_list): """ Testing the simple network in data parallel mode, using multiple CPU/GPU. Args: use_cuda (bool): Whether running with CUDA. use_xpu (bool): Whether running with XPU. use_npu (bool): Whether running with NPU. device_list (int): The specified devices. """ paddle.enable_static() with paddle.static.scope_guard(paddle.static.Scope()): train_prog = paddle.static.Program() startup_prog = paddle.static.Program() with paddle.static.program_guard(train_prog, startup_prog): input, out, _ = _simple_network() loss = paddle.tensor.mean(out) loss.persistable = True paddle.optimizer.SGD(learning_rate=0.01).minimize(loss) compiled_prog = paddle.static.CompiledProgram( train_prog ).with_data_parallel(loss_name=loss.name, places=device_list) if use_cuda: place = paddle.CUDAPlace(0) elif use_xpu: place = paddle.XPUPlace(0) compiled_prog = train_prog elif use_npu: place = paddle.NPUPlace(0) compiled_prog = train_prog else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) exe.run( compiled_prog, feed={input.name: _prepare_data(len(device_list))}, fetch_list=[loss.name], ) paddle.disable_static() def run_check(): """ Check whether PaddlePaddle is installed correctly and running successfully on your system. Examples: .. code-block:: python import paddle paddle.utils.run_check() # Running verify PaddlePaddle program ... # W1010 07:21:14.972093 8321 device_context.cc:338] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 11.0, Runtime API Version: 10.1 # W1010 07:21:14.979770 8321 device_context.cc:346] device: 0, cuDNN Version: 7.6. # PaddlePaddle works well on 1 GPU. # PaddlePaddle works well on 8 GPUs. # PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now. """ print("Running verify PaddlePaddle program ... ") use_cuda = False use_xpu = False use_npu = False if paddle.is_compiled_with_cuda(): use_cuda = _is_cuda_available() elif paddle.is_compiled_with_xpu(): use_xpu = _is_xpu_available() elif paddle.is_compiled_with_npu(): use_npu = _is_npu_available() if use_cuda: device_str = "GPU" device_list = paddle.static.cuda_places() elif use_xpu: device_str = "XPU" device_list = paddle.static.xpu_places() elif use_npu: device_str = "NPU" device_list = paddle.static.npu_places() else: device_str = "CPU" device_list = paddle.static.cpu_places(device_count=2) device_count = len(device_list) _run_static_single(use_cuda, use_xpu, use_npu) _run_dygraph_single(use_cuda, use_xpu, use_npu) print("PaddlePaddle works well on 1 {}.".format(device_str)) try: _run_static_parallel(use_cuda, use_xpu, use_npu, device_list) print( "PaddlePaddle works well on {} {}s.".format( device_count, device_str ) ) print( "PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now." ) except Exception as e: logging.warning( "PaddlePaddle meets some problem with {} {}s. This may be caused by:" "\n 1. There is not enough GPUs visible on your system" "\n 2. Some GPUs are occupied by other process now" "\n 3. NVIDIA-NCCL2 is not installed correctly on your system. Please follow instruction on https://github.com/NVIDIA/nccl-tests " "\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html".format( device_count, device_str ) ) logging.warning("\n Original Error is: {}".format(e)) print( "PaddlePaddle is installed successfully ONLY for single {}! " "Let's start deep learning with PaddlePaddle now.".format( device_str ) )
{ "content_hash": "e40a57985bf2ec5ef6a601f049c4d888", "timestamp": "", "source": "github", "line_count": 294, "max_line_length": 161, "avg_line_length": 32.37074829931973, "alnum_prop": 0.5953556793107072, "repo_name": "luotao1/Paddle", "id": "c9cc1bb7a49e274e45f4ed07803ea21e6f416ada", "size": "10128", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "python/paddle/utils/install_check.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "58544" }, { "name": "C", "bytes": "210300" }, { "name": "C++", "bytes": "36771446" }, { "name": "CMake", "bytes": "903079" }, { "name": "Cuda", "bytes": "5200715" }, { "name": "Dockerfile", "bytes": "4361" }, { "name": "Go", "bytes": "49796" }, { "name": "Java", "bytes": "16630" }, { "name": "Jinja", "bytes": "23852" }, { "name": "MLIR", "bytes": "39982" }, { "name": "Python", "bytes": "36248258" }, { "name": "R", "bytes": "1332" }, { "name": "Shell", "bytes": "553175" } ], "symlink_target": "" }
from __future__ import unicode_literals import frappe import os, base64, re import hashlib import mimetypes from frappe.utils import get_hook_method, get_files_path, random_string, encode, cstr, call_hook_method, cint from frappe import _ from frappe import conf from copy import copy from six.moves.urllib.parse import unquote from six import text_type class MaxFileSizeReachedError(frappe.ValidationError): pass def get_file_url(file_data_name): data = frappe.db.get_value("File", file_data_name, ["file_name", "file_url"], as_dict=True) return data.file_url or data.file_name def upload(): # get record details dt = frappe.form_dict.doctype dn = frappe.form_dict.docname file_url = frappe.form_dict.file_url filename = frappe.form_dict.filename frappe.form_dict.is_private = cint(frappe.form_dict.is_private) if not filename and not file_url: frappe.msgprint(_("Please select a file or url"), raise_exception=True) file_doc = get_file_doc() comment = {} if dt and dn: comment = frappe.get_doc(dt, dn).add_comment("Attachment", _("added {0}").format("<a href='{file_url}' target='_blank'>{file_name}</a>{icon}".format(**{ "icon": ' <i class="fa fa-lock text-warning"></i>' \ if file_doc.is_private else "", "file_url": file_doc.file_url.replace("#", "%23") \ if file_doc.file_name else file_doc.file_url, "file_name": file_doc.file_name or file_doc.file_url }))) return { "name": file_doc.name, "file_name": file_doc.file_name, "file_url": file_doc.file_url, "is_private": file_doc.is_private, "comment": comment.as_dict() if comment else {} } def get_file_doc(dt=None, dn=None, folder=None, is_private=None): '''returns File object (Document) from given parameters or form_dict''' r = frappe.form_dict if dt is None: dt = r.doctype if dn is None: dn = r.docname if folder is None: folder = r.folder if is_private is None: is_private = r.is_private if r.filedata: file_doc = save_uploaded(dt, dn, folder, is_private) elif r.file_url: file_doc = save_url(r.file_url, r.filename, dt, dn, folder, is_private) return file_doc def save_uploaded(dt, dn, folder, is_private): fname, content = get_uploaded_content() if content: return save_file(fname, content, dt, dn, folder, is_private=is_private); else: raise Exception def save_url(file_url, filename, dt, dn, folder, is_private): # if not (file_url.startswith("http://") or file_url.startswith("https://")): # frappe.msgprint("URL must start with 'http://' or 'https://'") # return None, None file_url = unquote(file_url) f = frappe.get_doc({ "doctype": "File", "file_url": file_url, "file_name": filename, "attached_to_doctype": dt, "attached_to_name": dn, "folder": folder, "is_private": is_private }) f.flags.ignore_permissions = True try: f.insert(); except frappe.DuplicateEntryError: return frappe.get_doc("File", f.duplicate_entry) return f def get_uploaded_content(): # should not be unicode when reading a file, hence using frappe.form if 'filedata' in frappe.form_dict: if "," in frappe.form_dict.filedata: frappe.form_dict.filedata = frappe.form_dict.filedata.rsplit(",", 1)[1] frappe.uploaded_content = base64.b64decode(frappe.form_dict.filedata) frappe.uploaded_filename = frappe.form_dict.filename return frappe.uploaded_filename, frappe.uploaded_content else: frappe.msgprint(_('No file attached')) return None, None def save_file(fname, content, dt, dn, folder=None, decode=False, is_private=0): if decode: if isinstance(content, text_type): content = content.encode("utf-8") if "," in content: content = content.split(",")[1] content = base64.b64decode(content) file_size = check_max_file_size(content) content_hash = get_content_hash(content) content_type = mimetypes.guess_type(fname)[0] fname = get_file_name(fname, content_hash[-6:]) file_data = get_file_data_from_hash(content_hash, is_private=is_private) if not file_data: call_hook_method("before_write_file", file_size=file_size) write_file_method = get_hook_method('write_file', fallback=save_file_on_filesystem) file_data = write_file_method(fname, content, content_type=content_type, is_private=is_private) file_data = copy(file_data) file_data.update({ "doctype": "File", "attached_to_doctype": dt, "attached_to_name": dn, "folder": folder, "file_size": file_size, "content_hash": content_hash, "is_private": is_private }) f = frappe.get_doc(file_data) f.flags.ignore_permissions = True try: f.insert() except frappe.DuplicateEntryError: return frappe.get_doc("File", f.duplicate_entry) return f def get_file_data_from_hash(content_hash, is_private=0): for name in frappe.db.sql_list("select name from `tabFile` where content_hash=%s and is_private=%s", (content_hash, is_private)): b = frappe.get_doc('File', name) return {k:b.get(k) for k in frappe.get_hooks()['write_file_keys']} return False def save_file_on_filesystem(fname, content, content_type=None, is_private=0): fpath = write_file(content, fname, is_private) if is_private: file_url = "/private/files/{0}".format(fname) else: file_url = "/files/{0}".format(fname) return { 'file_name': os.path.basename(fpath), 'file_url': file_url } def get_max_file_size(): return conf.get('max_file_size') or 10485760 def check_max_file_size(content): max_file_size = get_max_file_size() file_size = len(content) if file_size > max_file_size: frappe.msgprint(_("File size exceeded the maximum allowed size of {0} MB").format( max_file_size / 1048576), raise_exception=MaxFileSizeReachedError) return file_size def write_file(content, fname, is_private=0): """write file to disk with a random name (to compare)""" file_path = get_files_path(is_private=is_private) # create directory (if not exists) frappe.create_folder(file_path) # write the file with open(os.path.join(file_path.encode('utf-8'), fname.encode('utf-8')), 'w+') as f: f.write(content) return get_files_path(fname, is_private=is_private) def remove_all(dt, dn, from_delete=False): """remove all files in a transaction""" try: for fid in frappe.db.sql_list("""select name from `tabFile` where attached_to_doctype=%s and attached_to_name=%s""", (dt, dn)): remove_file(fid, dt, dn, from_delete) except Exception as e: if e.args[0]!=1054: raise # (temp till for patched) def remove_file_by_url(file_url, doctype=None, name=None): if doctype and name: fid = frappe.db.get_value("File", {"file_url": file_url, "attached_to_doctype": doctype, "attached_to_name": name}) else: fid = frappe.db.get_value("File", {"file_url": file_url}) if fid: return remove_file(fid) def remove_file(fid, attached_to_doctype=None, attached_to_name=None, from_delete=False): """Remove file and File entry""" file_name = None if not (attached_to_doctype and attached_to_name): attached = frappe.db.get_value("File", fid, ["attached_to_doctype", "attached_to_name", "file_name"]) if attached: attached_to_doctype, attached_to_name, file_name = attached ignore_permissions, comment = False, None if attached_to_doctype and attached_to_name and not from_delete: doc = frappe.get_doc(attached_to_doctype, attached_to_name) ignore_permissions = doc.has_permission("write") or False if frappe.flags.in_web_form: ignore_permissions = True if not file_name: file_name = frappe.db.get_value("File", fid, "file_name") comment = doc.add_comment("Attachment Removed", _("Removed {0}").format(file_name)) frappe.delete_doc("File", fid, ignore_permissions=ignore_permissions) return comment def delete_file_data_content(doc, only_thumbnail=False): method = get_hook_method('delete_file_data_content', fallback=delete_file_from_filesystem) method(doc, only_thumbnail=only_thumbnail) def delete_file_from_filesystem(doc, only_thumbnail=False): """Delete file, thumbnail from File document""" if only_thumbnail: delete_file(doc.thumbnail_url) else: delete_file(doc.file_url) delete_file(doc.thumbnail_url) def delete_file(path): """Delete file from `public folder`""" if path: if ".." in path.split("/"): frappe.msgprint(_("It is risky to delete this file: {0}. Please contact your System Manager.").format(path)) parts = os.path.split(path.strip("/")) if parts[0]=="files": path = frappe.utils.get_site_path("public", "files", parts[-1]) else: path = frappe.utils.get_site_path("private", "files", parts[-1]) path = encode(path) if os.path.exists(path): os.remove(path) def get_file(fname): """Returns [`file_name`, `content`] for given file name `fname`""" file_path = get_file_path(fname) # read the file with open(encode(file_path), 'r') as f: content = f.read() return [file_path.rsplit("/", 1)[-1], content] def get_file_path(file_name): """Returns file path from given file name""" f = frappe.db.sql("""select file_url from `tabFile` where name=%s or file_name=%s""", (file_name, file_name)) if f: file_name = f[0][0] file_path = file_name if "/" not in file_path: file_path = "/files/" + file_path if file_path.startswith("/private/files/"): file_path = get_files_path(*file_path.split("/private/files/", 1)[1].split("/"), is_private=1) elif file_path.startswith("/files/"): file_path = get_files_path(*file_path.split("/files/", 1)[1].split("/")) else: frappe.throw(_("There is some problem with the file url: {0}").format(file_path)) return file_path def get_content_hash(content): if isinstance(content, text_type): content = content.encode() return hashlib.md5(content).hexdigest() def get_file_name(fname, optional_suffix): # convert to unicode fname = cstr(fname) n_records = frappe.db.sql("select name from `tabFile` where file_name=%s", fname) if len(n_records) > 0 or os.path.exists(encode(get_files_path(fname))): f = fname.rsplit('.', 1) if len(f) == 1: partial, extn = f[0], "" else: partial, extn = f[0], "." + f[1] return '{partial}{suffix}{extn}'.format(partial=partial, extn=extn, suffix=optional_suffix) return fname @frappe.whitelist() def download_file(file_url): """ Download file using token and REST API. Valid session or token is required to download private files. Method : GET Endpoint : frappe.utils.file_manager.download_file URL Params : file_name = /path/to/file relative to site path """ file_doc = frappe.get_doc("File", {"file_url":file_url}) file_doc.check_permission("read") with open(getattr(frappe.local, "site_path", None) + file_url, "rb") as fileobj: filedata = fileobj.read() frappe.local.response.filename = file_url[file_url.rfind("/")+1:] frappe.local.response.filecontent = filedata frappe.local.response.type = "download" def extract_images_from_doc(doc, fieldname): content = doc.get(fieldname) content = extract_images_from_html(doc, content) if frappe.flags.has_dataurl: doc.set(fieldname, content) def extract_images_from_html(doc, content): frappe.flags.has_dataurl = False def _save_file(match): data = match.group(1) data = data.split("data:")[1] headers, content = data.split(",") if "filename=" in headers: filename = headers.split("filename=")[-1] # decode filename if not isinstance(filename, text_type): filename = text_type(filename, 'utf-8') else: mtype = headers.split(";")[0] filename = get_random_filename(content_type=mtype) doctype = doc.parenttype if doc.parent else doc.doctype name = doc.parent or doc.name # TODO fix this file_url = save_file(filename, content, doctype, name, decode=True).get("file_url") if not frappe.flags.has_dataurl: frappe.flags.has_dataurl = True return '<img src="{file_url}"'.format(file_url=file_url) if content: content = re.sub('<img[^>]*src\s*=\s*["\'](?=data:)(.*?)["\']', _save_file, content) return content def get_random_filename(extn=None, content_type=None): if extn: if not extn.startswith("."): extn = "." + extn elif content_type: extn = mimetypes.guess_extension(content_type) return random_string(7) + (extn or "")
{ "content_hash": "e85369653effb60a34e3692da77f85d2", "timestamp": "", "source": "github", "line_count": 385, "max_line_length": 130, "avg_line_length": 31.303896103896104, "alnum_prop": 0.6913375373382011, "repo_name": "maxtorete/frappe", "id": "822b63e240ca96384eda2c04dbdb633e95977b26", "size": "12153", "binary": false, "copies": "3", "ref": "refs/heads/develop", "path": "frappe/utils/file_manager.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "406441" }, { "name": "HTML", "bytes": "213724" }, { "name": "JavaScript", "bytes": "1742788" }, { "name": "Makefile", "bytes": "29" }, { "name": "Python", "bytes": "1966420" }, { "name": "Shell", "bytes": "517" } ], "symlink_target": "" }
"""Tests for normalization layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import keras from tensorflow.python.keras import testing_utils from tensorflow.python.platform import test class NormalizationLayersTest(test.TestCase): def test_basic_batchnorm(self): with self.cached_session(): testing_utils.layer_test( keras.layers.BatchNormalization, kwargs={ 'momentum': 0.9, 'epsilon': 0.1, 'gamma_regularizer': keras.regularizers.l2(0.01), 'beta_regularizer': keras.regularizers.l2(0.01) }, input_shape=(3, 4, 2)) testing_utils.layer_test( keras.layers.BatchNormalization, kwargs={ 'gamma_initializer': 'ones', 'beta_initializer': 'ones', 'moving_mean_initializer': 'zeros', 'moving_variance_initializer': 'ones' }, input_shape=(3, 4, 2)) testing_utils.layer_test( keras.layers.BatchNormalization, kwargs={'scale': False, 'center': False}, input_shape=(3, 3)) def test_batchnorm_weights(self): with self.cached_session(): layer = keras.layers.BatchNormalization(scale=False, center=False) layer.build((None, 3, 4)) self.assertEqual(len(layer.trainable_weights), 0) self.assertEqual(len(layer.weights), 2) layer = keras.layers.BatchNormalization() layer.build((None, 3, 4)) self.assertEqual(len(layer.trainable_weights), 2) self.assertEqual(len(layer.weights), 4) def test_batchnorm_regularization(self): with self.cached_session(): layer = keras.layers.BatchNormalization( gamma_regularizer='l1', beta_regularizer='l1') layer.build((None, 3, 4)) self.assertEqual(len(layer.losses), 2) max_norm = keras.constraints.max_norm layer = keras.layers.BatchNormalization( gamma_constraint=max_norm, beta_constraint=max_norm) layer.build((None, 3, 4)) self.assertEqual(layer.gamma.constraint, max_norm) self.assertEqual(layer.beta.constraint, max_norm) def test_batchnorm_correctness(self): with self.cached_session(): model = keras.models.Sequential() norm = keras.layers.BatchNormalization(input_shape=(10,), momentum=0.8) model.add(norm) model.compile(loss='mse', optimizer='sgd') # centered on 5.0, variance 10.0 x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 10)) model.fit(x, x, epochs=4, verbose=0) out = model.predict(x) out -= keras.backend.eval(norm.beta) out /= keras.backend.eval(norm.gamma) np.testing.assert_allclose(out.mean(), 0.0, atol=1e-1) np.testing.assert_allclose(out.std(), 1.0, atol=1e-1) def test_batchnorm_mixed_precision(self): with self.cached_session(): model = keras.models.Sequential() norm = keras.layers.BatchNormalization(input_shape=(10,), momentum=0.8) model.add(norm) model.compile(loss='mse', optimizer='sgd') # centered on 5.0, variance 10.0 x = np.random.normal( loc=5.0, scale=10.0, size=(1000, 10)).astype(np.float16) model.fit(x, x, epochs=4, verbose=0) out = model.predict(x) out -= keras.backend.eval(norm.beta) out /= keras.backend.eval(norm.gamma) np.testing.assert_allclose(out.mean(), 0.0, atol=1e-1) np.testing.assert_allclose(out.std(), 1.0, atol=1e-1) def test_batchnorm_convnet(self): if test.is_gpu_available(cuda_only=True): with self.session(use_gpu=True): model = keras.models.Sequential() norm = keras.layers.BatchNormalization( axis=1, input_shape=(3, 4, 4), momentum=0.8) model.add(norm) model.compile(loss='mse', optimizer='sgd') # centered on 5.0, variance 10.0 x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 3, 4, 4)) model.fit(x, x, epochs=4, verbose=0) out = model.predict(x) out -= np.reshape(keras.backend.eval(norm.beta), (1, 3, 1, 1)) out /= np.reshape(keras.backend.eval(norm.gamma), (1, 3, 1, 1)) np.testing.assert_allclose(np.mean(out, axis=(0, 2, 3)), 0.0, atol=1e-1) np.testing.assert_allclose(np.std(out, axis=(0, 2, 3)), 1.0, atol=1e-1) def test_batchnorm_convnet_channel_last(self): with self.cached_session(): # keras.backend.set_learning_phase(True) model = keras.models.Sequential() norm = keras.layers.BatchNormalization( axis=-1, input_shape=(4, 4, 3), momentum=0.8) model.add(norm) model.compile(loss='mse', optimizer='sgd') # centered on 5.0, variance 10.0 x = np.random.normal(loc=5.0, scale=10.0, size=(1000, 4, 4, 3)) model.fit(x, x, epochs=4, verbose=0) out = model.predict(x) out -= np.reshape(keras.backend.eval(norm.beta), (1, 1, 1, 3)) out /= np.reshape(keras.backend.eval(norm.gamma), (1, 1, 1, 3)) np.testing.assert_allclose(np.mean(out, axis=(0, 1, 2)), 0.0, atol=1e-1) np.testing.assert_allclose(np.std(out, axis=(0, 1, 2)), 1.0, atol=1e-1) def test_shared_batchnorm(self): """Test that a BN layer can be shared across different data streams. """ with self.cached_session(): # Test single layer reuse bn = keras.layers.BatchNormalization() x1 = keras.layers.Input(shape=(10,)) _ = bn(x1) x2 = keras.layers.Input(shape=(10,)) y2 = bn(x2) x = np.random.normal(loc=5.0, scale=10.0, size=(2, 10)) model = keras.models.Model(x2, y2) model.compile('sgd', 'mse') model.train_on_batch(x, x) self.assertEqual(len(bn.updates), 4) self.assertEqual(len(model.updates), 2) self.assertEqual(len(model.get_updates_for(x1)), 0) self.assertEqual(len(model.get_updates_for(x2)), 2) # Test model-level reuse x3 = keras.layers.Input(shape=(10,)) y3 = model(x3) new_model = keras.models.Model(x3, y3, name='new_model') self.assertEqual(len(new_model.updates), 2) self.assertEqual(len(model.updates), 4) self.assertEqual(len(new_model.get_updates_for(x3)), 2) new_model.compile('sgd', 'mse') new_model.train_on_batch(x, x) def test_that_trainable_disables_updates(self): with self.cached_session(): val_a = np.random.random((10, 4)) val_out = np.random.random((10, 4)) a = keras.layers.Input(shape=(4,)) layer = keras.layers.BatchNormalization(input_shape=(4,)) b = layer(a) model = keras.models.Model(a, b) model.trainable = False assert not model.updates model.compile('sgd', 'mse') assert not model.updates x1 = model.predict(val_a) model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) self.assertAllClose(x1, x2, atol=1e-7) model.trainable = True model.compile('sgd', 'mse') assert model.updates model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) assert np.abs(np.sum(x1 - x2)) > 1e-5 layer.trainable = False model.compile('sgd', 'mse') assert not model.updates x1 = model.predict(val_a) model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) self.assertAllClose(x1, x2, atol=1e-7) def test_batchnorm_trainable(self): """Tests that batchnorm layer is trainable when learning phase is enabled. Computes mean and std for current inputs then applies batch normalization using them. """ with self.cached_session(): bn_mean = 0.5 bn_std = 10. val_a = np.expand_dims(np.arange(10.), axis=1) def get_model(bn_mean, bn_std): inp = keras.layers.Input(shape=(1,)) x = keras.layers.BatchNormalization()(inp) model1 = keras.models.Model(inp, x) model1.set_weights([ np.array([1.]), np.array([0.]), np.array([bn_mean]), np.array([bn_std**2]) ]) return model1 # Simulates training-mode with trainable layer. # Should use mini-batch statistics. keras.backend.set_learning_phase(1) model = get_model(bn_mean, bn_std) model.compile(loss='mse', optimizer='rmsprop') out = model.predict(val_a) self.assertAllClose( (val_a - np.mean(val_a)) / np.std(val_a), out, atol=1e-3) if __name__ == '__main__': test.main()
{ "content_hash": "e5e0ce9ebe66608892b9a741271e958b", "timestamp": "", "source": "github", "line_count": 247, "max_line_length": 80, "avg_line_length": 34.61943319838057, "alnum_prop": 0.6123260437375746, "repo_name": "girving/tensorflow", "id": "ff705183ef1aa5298030c0dbd630c23baffb4203", "size": "9240", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tensorflow/python/keras/layers/normalization_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "3325" }, { "name": "Batchfile", "bytes": "10132" }, { "name": "C", "bytes": "343258" }, { "name": "C#", "bytes": "8446" }, { "name": "C++", "bytes": "50036869" }, { "name": "CMake", "bytes": "196127" }, { "name": "Dockerfile", "bytes": "36386" }, { "name": "Go", "bytes": "1254086" }, { "name": "HTML", "bytes": "4681865" }, { "name": "Java", "bytes": "867313" }, { "name": "Jupyter Notebook", "bytes": "2604735" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "58787" }, { "name": "Objective-C", "bytes": "15650" }, { "name": "Objective-C++", "bytes": "99243" }, { "name": "PHP", "bytes": "1357" }, { "name": "Perl", "bytes": "7536" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "42041620" }, { "name": "Ruby", "bytes": "553" }, { "name": "Shell", "bytes": "477299" }, { "name": "Smarty", "bytes": "6976" } ], "symlink_target": "" }
from nose.tools import * # flake8: noqa from urlparse import urlparse from framework.auth.core import Auth from website.models import NodeLog from api.base.settings.defaults import API_BASE from tests.base import ApiTestCase from tests.factories import ( ProjectFactory, RegistrationFactory, AuthUserFactory ) from tests.utils import assert_logs node_url_for = lambda n_id: '/{}nodes/{}/'.format(API_BASE, n_id) class TestNodeLinksList(ApiTestCase): def setUp(self): super(TestNodeLinksList, self).setUp() self.user = AuthUserFactory() self.project = ProjectFactory(is_public=False, creator=self.user) self.pointer_project = ProjectFactory(is_public=False, creator=self.user) self.project.add_pointer(self.pointer_project, auth=Auth(self.user)) self.private_url = '/{}nodes/{}/node_links/'.format(API_BASE, self.project._id) self.public_project = ProjectFactory(is_public=True, creator=self.user) self.public_pointer_project = ProjectFactory(is_public=True, creator=self.user) self.public_project.add_pointer(self.public_pointer_project, auth=Auth(self.user)) self.public_url = '/{}nodes/{}/node_links/'.format(API_BASE, self.public_project._id) self.user_two = AuthUserFactory() def test_return_public_node_pointers_logged_out(self): res = self.app.get(self.public_url) res_json = res.json['data'] assert_equal(len(res_json), 1) assert_equal(res.status_code, 200) assert_equal(res.content_type, 'application/vnd.api+json') expected_path = node_url_for(self.public_pointer_project._id) actual_path = urlparse(res_json[0]['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_return_public_node_pointers_logged_in(self): res = self.app.get(self.public_url, auth=self.user_two.auth) res_json = res.json['data'] assert_equal(len(res_json), 1) assert_equal(res.status_code, 200) assert_equal(res.content_type, 'application/vnd.api+json') expected_path = node_url_for(self.public_pointer_project._id) actual_path = urlparse(res_json[0]['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_return_private_node_pointers_logged_out(self): res = self.app.get(self.private_url, expect_errors=True) assert_equal(res.status_code, 401) assert_in('detail', res.json['errors'][0]) def test_return_private_node_pointers_logged_in_contributor(self): res = self.app.get(self.private_url, auth=self.user.auth) res_json = res.json['data'] assert_equal(res.status_code, 200) assert_equal(res.content_type, 'application/vnd.api+json') assert_equal(len(res_json), 1) expected_path = node_url_for(self.pointer_project._id) actual_path = urlparse(res_json[0]['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_return_private_node_pointers_logged_in_non_contributor(self): res = self.app.get(self.private_url, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) def test_deleted_links_not_returned(self): res = self.app.get(self.public_url, expect_errors=True) res_json = res.json['data'] original_length = len(res_json) self.public_pointer_project.is_deleted = True self.public_pointer_project.save() res = self.app.get(self.public_url) res_json = res.json['data'] assert_equal(len(res_json), original_length - 1) class TestNodeLinkCreate(ApiTestCase): def setUp(self): super(TestNodeLinkCreate, self).setUp() self.user = AuthUserFactory() self.project = ProjectFactory(is_public=False, creator=self.user) self.pointer_project = ProjectFactory(is_public=False, creator=self.user) self.private_url = '/{}nodes/{}/node_links/'.format(API_BASE, self.project._id) self.private_payload = { 'data': { "type": "node_links", "relationships": { 'nodes': { 'data': { 'id': self.pointer_project._id, 'type': 'nodes' } } } } } self.public_project = ProjectFactory(is_public=True, creator=self.user) self.public_pointer_project = ProjectFactory(is_public=True, creator=self.user) self.public_url = '/{}nodes/{}/node_links/'.format(API_BASE, self.public_project._id) self.public_payload = { 'data': { "type": "node_links", "relationships": { 'nodes': { 'data': { 'id': self.public_pointer_project._id, 'type': 'nodes' } } } } } self.fake_url = '/{}nodes/{}/node_links/'.format(API_BASE, 'fdxlq') self.fake_payload = { 'data': { "type": "node_links", "relationships": { 'nodes': { 'data': { 'id': 'fdxlq', 'type': 'nodes' } } } } } self.point_to_itself_payload = { 'data': { "type": "node_links", "relationships": { 'nodes': { 'data': { 'id': self.public_project._id, 'type': 'nodes' } } } } } self.user_two = AuthUserFactory() self.user_two_project = ProjectFactory(is_public=True, creator=self.user_two) self.user_two_url = '/{}nodes/{}/node_links/'.format(API_BASE, self.user_two_project._id) self.user_two_payload = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'data': { 'id': self.user_two_project._id, 'type': 'nodes' } } } } } def test_add_node_link_relationships_is_a_list(self): data = { 'data': { 'type': 'node_links', 'relationships': [{'target_node_id': self.public_pointer_project._id}] } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], "Malformed request.") def test_create_node_link_invalid_data(self): res = self.app.post_json_api(self.public_url, "Incorrect data", auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], "Malformed request.") def test_add_node_link_no_relationships(self): data = { 'data': { 'type': 'node_links', 'attributes': { 'id': self.public_pointer_project._id } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['source']['pointer'], '/data/relationships') def test_add_node_links_empty_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': {} } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.json['errors'][0]['source']['pointer'], '/data/relationships') def test_add_node_links_no_nodes_key_in_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': { 'data': { 'id': self.public_pointer_project._id, 'type': 'nodes' } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], 'Malformed request.') def test_add_node_links_no_data_in_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'id': self.public_pointer_project._id, 'type': 'nodes' } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], 'Request must include /data.') def test_add_node_links_no_target_type_in_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'data': { 'id': self.public_pointer_project._id } } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], 'Request must include /type.') def test_add_node_links_no_target_id_in_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'data': { 'type': 'nodes' } } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['source']['pointer'], '/data/id') def test_add_node_links_incorrect_target_id_in_relationships(self): data = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'data': { 'type': 'nodes', 'id': '12345' } } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 404) def test_add_node_links_incorrect_target_type_in_relationships(self): data = { 'data': { 'type': 'nodes', 'relationships': { 'nodes': { 'data': { 'type': 'Incorrect!', 'id': self.public_pointer_project._id } } } } } res = self.app.post_json_api(self.public_url, data, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 409) def test_creates_node_link_target_not_nested(self): payload = { 'data': { 'type': 'node_links', 'id': self.pointer_project._id } } res = self.app.post_json_api(self.public_url, payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['source']['pointer'], '/data/relationships') assert_equal(res.json['errors'][0]['detail'], 'Request must include /data/relationships.') def test_creates_public_node_pointer_logged_out(self): res = self.app.post_json_api(self.public_url, self.public_payload, expect_errors=True) assert_equal(res.status_code, 401) assert_in('detail', res.json['errors'][0]) @assert_logs(NodeLog.POINTER_CREATED, 'public_project') def test_creates_public_node_pointer_logged_in(self): res = self.app.post_json_api(self.public_url, self.public_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) res = self.app.post_json_api(self.public_url, self.public_payload, auth=self.user.auth) assert_equal(res.status_code, 201) assert_equal(res.content_type, 'application/vnd.api+json') res_json = res.json['data'] expected_path = node_url_for(self.public_pointer_project._id) actual_path = urlparse(res_json['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_creates_private_node_pointer_logged_out(self): res = self.app.post_json_api(self.private_url, self.private_payload, expect_errors=True) assert_equal(res.status_code, 401) assert_in('detail', res.json['errors'][0]) def test_creates_private_node_pointer_logged_in_contributor(self): res = self.app.post_json_api(self.private_url, self.private_payload, auth=self.user.auth) assert_equal(res.status_code, 201) res_json = res.json['data'] expected_path = node_url_for(self.pointer_project._id) actual_path = urlparse(res_json['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) assert_equal(res.content_type, 'application/vnd.api+json') def test_creates_private_node_pointer_logged_in_non_contributor(self): res = self.app.post_json_api(self.private_url, self.private_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) def test_create_node_pointer_non_contributing_node_to_contributing_node(self): res = self.app.post_json_api(self.private_url, self.user_two_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) @assert_logs(NodeLog.POINTER_CREATED, 'project') def test_create_node_pointer_contributing_node_to_non_contributing_node(self): res = self.app.post_json_api(self.private_url, self.user_two_payload, auth=self.user.auth) assert_equal(res.status_code, 201) assert_equal(res.content_type, 'application/vnd.api+json') res_json = res.json['data'] expected_path = node_url_for(self.user_two_project._id) actual_path = urlparse(res_json['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_create_pointer_non_contributing_node_to_fake_node(self): res = self.app.post_json_api(self.private_url, self.fake_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) def test_create_pointer_contributing_node_to_fake_node(self): res = self.app.post_json_api(self.private_url, self.fake_payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 404) assert_in('detail', res.json['errors'][0]) def test_create_fake_node_pointing_to_contributing_node(self): res = self.app.post_json_api(self.fake_url, self.private_payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 404) assert_in('detail', res.json['errors'][0]) res = self.app.post_json_api(self.fake_url, self.private_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 404) assert_in('detail', res.json['errors'][0]) @assert_logs(NodeLog.POINTER_CREATED, 'public_project') def test_create_node_pointer_to_itself(self): res = self.app.post_json_api(self.public_url, self.point_to_itself_payload, auth=self.user.auth) res_json = res.json['data'] assert_equal(res.status_code, 201) assert_equal(res.content_type, 'application/vnd.api+json') expected_path = node_url_for(self.public_project._id) actual_path = urlparse(res_json['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) def test_create_node_pointer_to_itself_unauthorized(self): res = self.app.post_json_api(self.public_url, self.point_to_itself_payload, auth=self.user_two.auth, expect_errors=True) assert_equal(res.status_code, 403) assert_in('detail', res.json['errors'][0]) @assert_logs(NodeLog.POINTER_CREATED, 'public_project') def test_create_node_pointer_already_connected(self): res = self.app.post_json_api(self.public_url, self.public_payload, auth=self.user.auth) assert_equal(res.status_code, 201) assert_equal(res.content_type, 'application/vnd.api+json') res_json = res.json['data'] expected_path = node_url_for(self.public_pointer_project._id) actual_path = urlparse(res_json['relationships']['target_node']['links']['related']['href']).path assert_equal(expected_path, actual_path) res = self.app.post_json_api(self.public_url, self.public_payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_in('detail', res.json['errors'][0]) def test_cannot_add_link_to_registration(self): registration = RegistrationFactory(creator=self.user) url = '/{}nodes/{}/node_links/'.format(API_BASE, registration._id) payload = { 'data': { 'type': 'node_links', 'relationships': { 'nodes': { 'data': { 'id': self.public_pointer_project._id, 'type': 'nodes' } } } } } res = self.app.post_json_api(url, payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 403) def test_create_node_pointer_no_type(self): payload = { 'data': { 'relationships': { 'nodes': { 'data': { 'id': self.user_two_project._id, 'type': 'nodes' } } } } } res = self.app.post_json_api(self.private_url, payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['errors'][0]['detail'], 'This field may not be null.') assert_equal(res.json['errors'][0]['source']['pointer'], '/data/type') def test_create_node_pointer_incorrect_type(self): payload = { 'data': { 'type': 'Wrong type.', 'relationships': { 'nodes': { 'data': { 'id': self.user_two_project._id, 'type': 'nodes' } } } } } res = self.app.post_json_api(self.private_url, payload, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 409) assert_equal(res.json['errors'][0]['detail'], 'Resource identifier does not match server endpoint.')
{ "content_hash": "51f41fc56df5d55d724115c5f21d6f50", "timestamp": "", "source": "github", "line_count": 483, "max_line_length": 128, "avg_line_length": 42.01449275362319, "alnum_prop": 0.5458532498891243, "repo_name": "haoyuchen1992/osf.io", "id": "34ac186da35bf571f0edf28ccbf40eb530ffdfc2", "size": "20317", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "api_tests/nodes/views/test_node_links_list.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "119433" }, { "name": "HTML", "bytes": "34310" }, { "name": "JavaScript", "bytes": "1214045" }, { "name": "Mako", "bytes": "542037" }, { "name": "Python", "bytes": "3730523" }, { "name": "Shell", "bytes": "1927" } ], "symlink_target": "" }
import sys import os import shlex from sphinx.highlighting import lexers from pygments.lexers.web import PhpLexer from pygments.lexers.data import YamlLexer from pygments.lexers.data import JsonLexer from pygments.lexers.templates import TwigHtmlLexer from pygments.lexers.templates import CheetahHtmlLexer lexers['php'] = PhpLexer(startinline=True, linenos=1) lexers['php-annotations'] = PhpLexer(startinline=True, linenos=1) lexers['yaml'] = YamlLexer() lexers['twig'] = TwigHtmlLexer() lexers['html'] = CheetahHtmlLexer() lexers['json'] = JsonLexer() extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.ifconfig', 'sphinxcontrib.inlinesyntaxhighlight' ] project = u'Polyphonic Polymer Bundle' copyright = u'2015, Sean Hickey' author = u'Sean Hickey' version = '0.0.4' release = '0.0.4' language = "en" templates_path = ['_templates'] exclude_patterns = ['_build'] source_suffix = '.rst' master_doc = 'index' pygments_style = 'sphinx' html_title = "Polyphonic Polymer Bundle" html_short_title = "Polyphonic" html_static_path = ['_static'] htmlhelp_basename = 'PolyphonicPolymerBundledoc' latex_documents = [ (master_doc, 'PolyphonicPolymerBundle.tex', u'Polyphonic Polymer Bundle Documentation', u'Sean Hickey', 'manual'), ] man_pages = [ (master_doc, 'polyphonicpolymerbundle', u'Polyphonic Polymer Bundle Documentation', [u'Sean Hickey'], 1) ] on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
{ "content_hash": "34fed612f46fcd67b67f308b3f368665", "timestamp": "", "source": "github", "line_count": 58, "max_line_length": 89, "avg_line_length": 28.362068965517242, "alnum_prop": 0.7319148936170212, "repo_name": "robfrawley/polymer-bundle", "id": "7da22bf619b5608c583f53d332be0216bd9ba372", "size": "1645", "binary": false, "copies": "3", "ref": "refs/heads/polymer_1", "path": "Resources/doc/conf.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1790" }, { "name": "Makefile", "bytes": "7477" }, { "name": "PHP", "bytes": "73696" }, { "name": "Python", "bytes": "1645" } ], "symlink_target": "" }
from django.conf import settings FTS_BACKEND = getattr(settings, 'FTS_BACKEND', 'simple://')
{ "content_hash": "810708f051cff3e91a8414f00f3deb9f", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 59, "avg_line_length": 32.333333333333336, "alnum_prop": 0.711340206185567, "repo_name": "ryszard/django-fts", "id": "04c854fa63a903de2272fa4df8aa7c642b16d8bc", "size": "97", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "fts/settings.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "59297" } ], "symlink_target": "" }
import collections import time import pytest import requests import verta from verta.dataset import Path class TestMetadata: def test_description(self, client, created_entities, strs): first_desc, second_desc = strs[:2] dataset = client.create_dataset(desc=first_desc) created_entities.append(dataset) assert dataset.get_description() == first_desc dataset.set_description(second_desc) assert dataset.get_description() == second_desc assert client.get_dataset(id=dataset.id).get_description() == second_desc def test_tags(self, client, created_entities, strs): tag1, tag2, tag3, tag4 = strs[:4] dataset = client.create_dataset(tags=[tag1]) created_entities.append(dataset) assert set(dataset.get_tags()) == {tag1} dataset.add_tag(tag2) assert set(dataset.get_tags()) == {tag1, tag2} dataset.add_tags([tag3, tag4]) assert set(dataset.get_tags()) == {tag1, tag2, tag3, tag4} dataset.del_tag(tag3) dataset.del_tag(tag3) # no error if nonexistent assert set(dataset.get_tags()) == {tag1, tag2, tag4} assert set(client.get_dataset(id=dataset.id).get_tags()) == {tag1, tag2, tag4} def test_attributes(self, client, created_entities): Attr = collections.namedtuple('Attr', ['key', 'value']) attr1 = Attr('key1', {'a': 1}) attr2 = Attr('key2', ['a', 1]) attr3 = Attr('key3', 'a') attr4 = Attr('key4', 1) dataset = client.create_dataset(attrs=dict([attr1])) created_entities.append(dataset) assert dataset.get_attributes() == dict([attr1]) dataset.add_attribute(*attr2) assert dataset.get_attributes() == dict([attr1, attr2]) dataset.add_attributes(dict([attr3, attr4])) assert dataset.get_attributes() == dict([attr1, attr2, attr3, attr4]) dataset.del_attribute(attr3.key) dataset.del_attribute(attr3.key) # no error if nonexistent assert dataset.get_attributes() == dict([attr1, attr2, attr4]) assert client.get_dataset(id=dataset.id).get_attributes() == dict([attr1, attr2, attr4]) for attr in [attr1, attr2, attr4]: assert dataset.get_attribute(attr.key) == attr.value # overwrite new_val = 'b' dataset.add_attribute(attr1.key, new_val) assert dataset.get_attribute(attr1.key) == new_val class TestCreateGet: def test_creation_updates_dataset_timestamp(self, client, dataset): """Version creation should update its dataset's time_updated field.""" time_updated = dataset._msg.time_updated dataset_version = dataset.create_version(Path(["conftest.py"])) time.sleep(60) # wait for reconciler dataset._fetch_with_no_cache() assert dataset._msg.time_updated > time_updated assert dataset._msg.time_updated == dataset_version._msg.time_logged def test_create(self, client, created_entities): dataset = client.set_dataset() assert dataset created_entities.append(dataset) name = verta._internal_utils._utils.generate_default_name() dataset = client.create_dataset(name) assert dataset created_entities.append(dataset) with pytest.raises(requests.HTTPError, match="already exists"): assert client.create_dataset(name) with pytest.warns(UserWarning, match="already exists"): client.set_dataset(name=dataset.name, time_created=123) def test_get(self, client, created_entities): name = verta._internal_utils._utils.generate_default_name() with pytest.raises(ValueError): client.get_dataset(name) dataset = client.set_dataset(name) created_entities.append(dataset) assert dataset.id == client.get_dataset(dataset.name).id assert dataset.id == client.get_dataset(id=dataset.id).id # Deleting non-existing key: dataset.del_attribute("non-existing") def test_find(self, client, created_entities, strs): name1, name2, name3, name4, tag1, tag2 = ( s + str(verta._internal_utils._utils.now()) for s in strs[:6] ) dataset1 = client.create_dataset(name1, tags=[tag1]) dataset2 = client.create_dataset(name2, tags=[tag1]) dataset3 = client.create_dataset(name3, tags=[tag2]) dataset4 = client.create_dataset(name4, tags=[tag2]) created_entities.extend([dataset1, dataset2, dataset3, dataset4]) datasets = client.datasets.find("name == {}".format(name3)) assert len(datasets) == 1 assert datasets[0].id == dataset3.id datasets = client.datasets.find("tags ~= {}".format(tag1)) assert len(datasets) == 2 assert set(dataset.id for dataset in datasets) == {dataset1.id, dataset2.id} def test_repr(self, client, created_entities): description = "this is a cool dataset" tags = [u"tag1", u"tag2"] dataset = client.set_dataset(desc=description, tags=tags) created_entities.append(dataset) str_repr = repr(dataset) assert "name: {}".format(dataset.name) in str_repr assert "id: {}".format(dataset.id) in str_repr assert "time created" in str_repr assert "time updated" in str_repr assert "description: {}".format(description) in str_repr assert "tags: {}".format(tags) in str_repr
{ "content_hash": "999998957b9f97a2110c3656871036ef", "timestamp": "", "source": "github", "line_count": 150, "max_line_length": 96, "avg_line_length": 36.66, "alnum_prop": 0.6330241862156756, "repo_name": "mitdbg/modeldb", "id": "713fa6f362ce22bb3f16ed91021229b10f14ef82", "size": "5499", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "client/verta/tests/test_dataset_versioning/test_dataset.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "43352" }, { "name": "Dockerfile", "bytes": "235" }, { "name": "HTML", "bytes": "30924" }, { "name": "Java", "bytes": "393927" }, { "name": "JavaScript", "bytes": "1017682" }, { "name": "Python", "bytes": "178774" }, { "name": "Scala", "bytes": "251259" }, { "name": "Shell", "bytes": "16870" }, { "name": "Thrift", "bytes": "55683" } ], "symlink_target": "" }
import logging import logging.handlers import os import shutil import sys import time import traceback from argparse import ArgumentParser from collections import defaultdict from Bio import Entrez, SeqIO # Parse command-line def parse_cmdline(args): """Parse command-line arguments""" parser = ArgumentParser(prog="genbacnk_get_genomes_by_taxon.py") parser.add_argument("-o", "--outdir", dest="outdirname", action="store", default=None, help="Output directory") parser.add_argument("-t", "--taxon", dest="taxon", action="store", default=None, help="NCBI taxonomy ID") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", default=False, help="Give verbose output") parser.add_argument("-f", "--force", dest="force", action="store_true", default=False, help="Force file overwriting") parser.add_argument("--noclobber", dest="noclobber", action="store_true", default=False, help="Don't nuke existing files") parser.add_argument("-l", "--logfile", dest="logfile", action="store", default=None, help="Logfile location") parser.add_argument("--format", dest="format", action="store", default="gbk,fasta", help="Output file format [gbk|fasta]") parser.add_argument("--email", dest="email", action="store", default=None, help="Email associated with NCBI queries") return parser.parse_args() # Set contact email for NCBI def set_ncbi_email(): """Set contact email for NCBI.""" Entrez.email = args.email logger.info("Set NCBI contact email to %s" % args.email) Entrez.tool = "genbank_get_genomes_by_taxon.py" # Create output directory if it doesn't exist def make_outdir(): """Make the output directory, if required. This is a little involved. If the output directory already exists, we take the safe option by default, and stop with an error. We can, however, choose to force the program to go on, in which case we can either clobber the existing directory, or not. The options turn out as the following, if the directory exists: DEFAULT: stop and report the collision FORCE: continue, and remove the existing output directory NOCLOBBER+FORCE: continue, but do not remove the existing output """ if os.path.exists(args.outdirname): if not args.force: logger.error("Output directory %s would " % args.outdirname + "overwrite existing files (exiting)") sys.exit(1) else: logger.info("--force output directory use") if args.noclobber: logger.warning("--noclobber: existing output directory kept") else: logger.info("Removing directory %s and everything below it" % args.outdirname) shutil.rmtree(args.outdirname) logger.info("Creating directory %s" % args.outdirname) try: os.makedirs(args.outdirname) # We make the directory recursively except OSError: # This gets thrown if the directory exists. If we've forced overwrite/ # delete and we're not clobbering, we let things slide if args.noclobber and args.force: logger.info("NOCLOBBER+FORCE: not creating directory") else: logger.error(last_exception) sys.exit(1) # Get assembly UIDs for the root taxon def get_asm_uids(taxon_uid): """Returns a set of NCBI UIDs associated with the passed taxon. This query at NCBI returns all assemblies for the taxon subtree rooted at the passed taxon_uid. """ asm_ids = set() # Holds unique assembly UIDs query = "txid%s[Organism:exp]" % taxon_uid logger.info("ESearch for %s" % query) # Perform initial search with usehistory handle = Entrez.esearch(db="assembly", term=query, format="xml", usehistory="y") record = Entrez.read(handle) result_count = int(record['Count']) logger.info("Entrez ESearch returns %d assembly IDs" % result_count) # Recover all child nodes batch_size = 250 for start in range(0, result_count, batch_size): tries, success = 0, False while not success and tries < 20: try: batch_handle = Entrez.efetch(db="assembly", retmode="xml", retstart=start, retmax=batch_size, webenv=record["WebEnv"], query_key=record["QueryKey"]) batch_record = Entrez.read(batch_handle) asm_ids = asm_ids.union(set(batch_record)) success = True except: tries += 1 logger.warning("Entrez batch query failed (#%d)" % tries) if not success: logger.error("Too many download attempt failures (exiting)") sys.exit(1) logger.info("Identified %d unique assemblies" % len(asm_ids)) return asm_ids # Get contig UIDs for a specified assembly UID def get_contig_uids(asm_uid): """Returns a set of NCBI UIDs associated with the passed assembly. The UIDs returns are for assembly_nuccore_insdc sequences - the assembly contigs.""" logger.info("Finding contig UIDs for assembly %s" % asm_uid) contig_ids = set() # Holds unique contig UIDs links = Entrez.read(Entrez.elink(dbfrom="assembly", db="nucleotide", retmode="gb", from_uid=asm_uid)) contigs = [l for l in links[0]['LinkSetDb'] \ if l['LinkName'] == 'assembly_nuccore_insdc'][0] contig_uids = set([e['Id'] for e in contigs['Link']]) logger.info("Identified %d contig UIDs" % len(contig_uids)) return contig_uids # Write contigs for a single assembly out to file def write_contigs(asm_uid, contig_uids): """Writes assembly contigs out to a single FASTA file in the script's designated output directory. FASTA records are returned, as GenBank and even GenBankWithParts format records don't reliably give correct sequence in all cases. The script returns two strings for each assembly, a 'class' and a 'label' string - this is for use with, e.g. pyani. """ logger.info("Collecting contig data for %s" % asm_uid) # Assembly record - get binomial and strain names asm_record = Entrez.read(Entrez.esummary(db='assembly', id=asm_uid, rettype='text')) asm_organism = asm_record['DocumentSummarySet']['DocumentSummary']\ [0]['SpeciesName'] try: asm_strain = asm_record['DocumentSummarySet']['DocumentSummary']\ [0]['Biosource']['InfraspeciesList'][0]['Sub_value'] except: asm_strain = "" # Assembly UID (long form) for the output filename gname = asm_record['DocumentSummarySet']['DocumentSummary']\ [0]['AssemblyAccession'].split('.')[0] outfilename = "%s.fasta" % os.path.join(args.outdirname, gname) # Create label and class strings genus, species = asm_organism.split(' ', 1) ginit = genus[0] + '.' labeltxt = "%s\t%s %s %s" % (gname, ginit, species, asm_strain) classtxt = "%s\t%s" % (gname, asm_organism) # Get FASTA records for contigs logger.info("Downloading FASTA records for assembly %s (%s)" % (asm_uid, ' '.join([ginit, species, asm_strain]))) query_uids = ','.join(contig_uids) tries, success = 0, False while not success and tries < 20: try: tries += 1 records = list(SeqIO.parse(Entrez.efetch(db='nucleotide', id=query_uids, rettype='fasta', retmode='text'), 'fasta')) # Check only that correct number of records returned. if len(records) == len(contig_uids): success = True else: logger.warning("FASTA download for assembly %s failed" % asm_uid) logger.warning("try %d/20" % tries) # Could also check expected assembly sequence length? totlen = sum([len(r) for r in records]) logger.info("Downloaded genome size: %d" % totlen) except: logger.warning("FASTA download for assembly %s failed" % asm_uid) logger.warning("try %d/20" % tries) if not success: logger.error("Failed to download records for %s (exiting)" % asm_uid) sys.exit(1) # Write contigs to file retval = SeqIO.write(records, outfilename, 'fasta') logger.info("Wrote %d contigs to %s" % (retval, outfilename)) # Return labels for this genome return classtxt, labeltxt # Run as script if __name__ == '__main__': # Parse command-line args = parse_cmdline(sys.argv) # Set up logging logger = logging.getLogger('genbank_get_genomes_by_taxon.py') logger.setLevel(logging.DEBUG) err_handler = logging.StreamHandler(sys.stderr) err_formatter = logging.Formatter('%(levelname)s: %(message)s') err_handler.setFormatter(err_formatter) # Was a logfile specified? If so, use it if args.logfile is not None: try: logstream = open(args.logfile, 'w') err_handler_file = logging.StreamHandler(logstream) err_handler_file.setFormatter(err_formatter) err_handler_file.setLevel(logging.INFO) logger.addHandler(err_handler_file) except: logger.error("Could not open %s for logging" % args.logfile) sys.exit(1) # Do we need verbosity? if args.verbose: err_handler.setLevel(logging.INFO) else: err_handler.setLevel(logging.WARNING) logger.addHandler(err_handler) # Report arguments, if verbose logger.info("genbank_get_genomes_by_taxon.py: %s" % time.asctime()) logger.info("command-line: %s" % ' '.join(sys.argv)) logger.info(args) # Have we got an output directory? If not, exit. if args.email is None: logger.error("No email contact address provided (exiting)") sys.exit(1) set_ncbi_email() # Have we got an output directory? If not, exit. if args.outdirname is None: logger.error("No output directory name (exiting)") sys.exit(1) make_outdir() logger.info("Output directory: %s" % args.outdirname) # We might have more than one taxon in a comma-separated list taxon_ids = args.taxon.split(',') logger.info("Passed taxon IDs: %s" % ', '.join(taxon_ids)) # Get all NCBI assemblies for each taxon UID asm_dict = defaultdict(set) for tid in taxon_ids: asm_dict[tid] = get_asm_uids(tid) for tid, asm_uids in asm_dict.items(): logger.info("Taxon %s: %d assemblies" % (tid, len(asm_uids))) # Get links to the nucleotide database for each assembly UID contig_dict = defaultdict(set) for tid, asm_uids in asm_dict.items(): for asm_uid in asm_uids: contig_dict[asm_uid] = get_contig_uids(asm_uid) for asm_uid, contig_uids in contig_dict.items(): logger.info("Assembly %s: %d contigs" % (asm_uid, len(contig_uids))) # Write each recovered assembly's contig set to a file in the # specified output directory, and collect string labels to write in # class and label files (e.g. for use with pyani). classes, labels = [], [] for asm_uid, contig_uids in contig_dict.items(): classtxt, labeltxt = write_contigs(asm_uid, contig_uids) classes.append(classtxt) labels.append(labeltxt) # Write class and label files classfilename = os.path.join(args.outdirname, 'classes.txt') labelfilename = os.path.join(args.outdirname, 'labels.txt') logger.info("Writing classes file to %s" % classfilename) with open(classfilename, 'w') as fh: fh.write('\n'.join(classes)) logger.info("Writing labels file to %s" % labelfilename) with open(labelfilename, 'w') as fh: fh.write('\n'.join(labels))
{ "content_hash": "0521a6aa33c6b0b688e858d1ba579611", "timestamp": "", "source": "github", "line_count": 307, "max_line_length": 79, "avg_line_length": 41.11400651465798, "alnum_prop": 0.5964189510378703, "repo_name": "widdowquinn/scripts", "id": "7979ea142a14815de65c8cb0bf02470194a6079f", "size": "12998", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bioinformatics/genbank_get_genomes_by_taxon.py", "mode": "33261", "license": "mit", "language": [ { "name": "AppleScript", "bytes": "3147" }, { "name": "Gnuplot", "bytes": "1911" }, { "name": "Python", "bytes": "226696" }, { "name": "Shell", "bytes": "9491" } ], "symlink_target": "" }
from oslo_config import cfg from dragonflow._i18n import _ df_snat_app_opts = [ cfg.BoolOpt('enable_goto_flows', default=True, help=_("Enable install of common goto flows to ingress/egress " "NAT tables or re-use goto flows installed by " "other DF application"), deprecated_for_removal=True), cfg.StrOpt('external_network_bridge', default='br-ex', help=_("Name of bridge used for external network traffic")), ] def register_opts(): cfg.CONF.register_opts(df_snat_app_opts, group='df_snat_app') def list_opts(): return {'df_snat_app': df_snat_app_opts}
{ "content_hash": "69ed4ae0afbc19ac151a396951b99dc2", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 79, "avg_line_length": 30.391304347826086, "alnum_prop": 0.5851216022889842, "repo_name": "openstack/dragonflow", "id": "a6ae786baf3aa54b3a264e50166fb915825bb75e", "size": "1340", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dragonflow/conf/df_snat.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Awk", "bytes": "2386" }, { "name": "Dockerfile", "bytes": "690" }, { "name": "Mako", "bytes": "1053" }, { "name": "Python", "bytes": "1740942" }, { "name": "Ruby", "bytes": "4449" }, { "name": "Shell", "bytes": "70410" } ], "symlink_target": "" }
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import Normalizer from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .imputation import Imputer from ._weights import balance_weights __all__ = [ 'Binarizer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MinMaxScaler', 'Normalizer', 'OneHotEncoder', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'balance_weights', 'binarize', 'normalize', 'scale', 'label_binarize', ]
{ "content_hash": "85a0777d22506f7a0e84cfda60e908b6", "timestamp": "", "source": "github", "line_count": 43, "max_line_length": 68, "avg_line_length": 22.674418604651162, "alnum_prop": 0.7323076923076923, "repo_name": "treycausey/scikit-learn", "id": "5585a976a83a30e4544e28e6db56525c4954bafd", "size": "975", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "sklearn/preprocessing/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "18150950" }, { "name": "C++", "bytes": "1807769" }, { "name": "JavaScript", "bytes": "20564" }, { "name": "Python", "bytes": "5083789" }, { "name": "Shell", "bytes": "3768" } ], "symlink_target": "" }
""" Todoist to Airmail """ #!/usr/bin/python # encoding: utf8 import sys import os from workflow import Workflow3 from Foundation import * from ScriptingBridge import * __version__ = '1.0.0' LOG = None API_KEY = None def create_task(content): """ """ todo = todoist.TodoistAPI(API_KEY) if not wf.settings.get('inbox_id', None): todo.sync() inbox = [p for p in todo.state['projects'] if p['name'] == 'Inbox'][0] wf.settings['inbox_id'] = inbox['id'] task = todo.items.add(content, wf.settings['inbox_id']) # print task airmail = SBApplication.applicationWithBundleIdentifier_("it.bloop.airmail2") # Format note text from message subject task_note_text = airmail.selectedMessageUrl() + " (" + airmail.selectedMessage().subject() + ")" # print airmail.selectedMessage().subject() todo.notes.add(task['id'], task_note_text) todo.commit() def main(wf): """ """ if len(wf.args): query = wf.args[0] LOG.debug(query) else: query = None LOG.debug(query) create_task(query) if __name__ == u"__main__": wf = Workflow3(libraries=['./lib'], update_settings={ # Github repo 'github_slug': 'markgrovs/alfred-airmail-to-todoist', 'version': __version__, 'frequency': 7 }) if wf.update_available: # Download new version and tell Alfred to install it wf.start_update() import todoist LOG = wf.logger API_KEY = os.environ['API_KEY'] sys.exit(wf.run(main))
{ "content_hash": "f40ca278baad650a981e04e668326cc8", "timestamp": "", "source": "github", "line_count": 72, "max_line_length": 100, "avg_line_length": 21.625, "alnum_prop": 0.6017983301220295, "repo_name": "markgrovs/alfred-airmail-to-todoist", "id": "1d276de26e8cbdd346565361f40d6cf60243ec4f", "size": "1557", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "src/airmail-to-todoist.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1306242" } ], "symlink_target": "" }
from datetime import datetime import pytest import sqlalchemy as sa from sqlalchemy import ForeignKey from sqlalchemy.orm import relationship, backref from sqlalchemy_norm import Normalizable @pytest.fixture def User(Base): class User(Base, Normalizable): __tablename__ = 'users' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) nickname = sa.Column(sa.String) point = sa.Column(sa.Integer) created_at = sa.Column(sa.DateTime) primary_address = relationship("Address", uselist=False) __includes__ = ['addresses'] @property def display_name(self): return "%s (%s)" % (self.nickname, self.name) def __init__(self, name, created_at): self.name = name self.created_at = created_at return User @pytest.fixture def Address(Base): class Address(Base, Normalizable): __tablename__ = 'addresses' id = sa.Column(sa.Integer, primary_key=True) street = sa.Column(sa.String) suburb = sa.Column(sa.String) state = sa.Column(sa.String) country = sa.Column(sa.String) postcode = sa.Column(sa.String) phone = sa.Column(sa.String) user_id = sa.Column(sa.Integer, ForeignKey('users.id')) user = relationship("User", backref=backref('addresses', order_by=id)) __excludes__ = ['phone'] def __init__(self, street=None, suburb=None, state=None, country=None, postcode=None, phone=None): self.street = street self.suburb = suburb self.state = state self.country = country self.postcode = postcode self.phone = phone return Address @pytest.fixture def UserWithinAddresses(User, Address): me = User("Edward", datetime.now()) addr1 = Address( street = '100 Flinders Ave', suburb = 'Melburne', state = 'Victoria', country = 'Australia', postcode = '3000', phone = '0400000001' ) addr2 = Address( street = '20 Albert Ave', suburb = 'South Melbourne', state = 'Victoria', country = 'Australia', postcode = '3205', phone = '0400000002' ) me.addresses = [ addr1, addr2 ] me.primary_address = addr1 return me class TestDotNotation(): def test_type(self, UserWithinAddresses): norm = UserWithinAddresses.vars() assert isinstance(norm, dict) def test_dot_notation_includes(self, UserWithinAddresses): norm = UserWithinAddresses.vars(includes=[ 'addresses.phone' ]) assert "addresses" in norm assert isinstance(norm["addresses"], list) assert len(norm["addresses"]) == len(UserWithinAddresses.addresses) assert "phone" in norm["addresses"][0] assert "country" in norm["addresses"][0] assert "postcode" in norm["addresses"][0] assert "suburb" in norm["addresses"][0] assert "state" in norm["addresses"][0] def test_dot_notation_excludes(self, UserWithinAddresses): norm = UserWithinAddresses.vars(excludes=[ 'addresses.suburb', 'addresses.state' ]) assert "addresses" in norm assert isinstance(norm["addresses"], list) assert len(norm["addresses"]) == len(UserWithinAddresses.addresses) assert "street" in norm["addresses"][0] assert "country" in norm["addresses"][0] assert "postcode" in norm["addresses"][0] assert "suburb" not in norm["addresses"][0] assert "state" not in norm["addresses"][0] assert "phone" not in norm["addresses"][0] def test_dot_notation_complex(self, UserWithinAddresses): norm = UserWithinAddresses.vars( includes=['primary_address'], excludes=[ 'primary_address.suburb', 'primary_address.state' ] ) assert "primary_address" in norm assert isinstance(norm["primary_address"], dict) assert "street" in norm["primary_address"] assert "country" in norm["primary_address"] assert "postcode" in norm["primary_address"] assert "suburb" not in norm["primary_address"] assert "state" not in norm["primary_address"] assert "phone" not in norm["primary_address"] def test_dot_notation_complex_includes_only(self, UserWithinAddresses): norm = UserWithinAddresses.vars( includes_only=[ 'name', 'primary_address', 'primary_address.suburb', 'primary_address.state' ] ) assert "name" in norm assert "id" not in norm assert "nickname" not in norm assert "point" not in norm assert "primary_address" in norm assert isinstance(norm["primary_address"], dict) assert "street" not in norm["primary_address"] assert "country" not in norm["primary_address"] assert "postcode" not in norm["primary_address"] assert "suburb" in norm["primary_address"] assert "state" in norm["primary_address"] assert "phone" not in norm["primary_address"]
{ "content_hash": "4f388a9144049c63d4ef36c283098543", "timestamp": "", "source": "github", "line_count": 170, "max_line_length": 78, "avg_line_length": 31.21764705882353, "alnum_prop": 0.5939325419257584, "repo_name": "haruair/sqlalchemy-norm", "id": "1920aa8a699f9383aabcfe9ea2d062cfb434ab2d", "size": "5307", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_dotnotation.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "18270" } ], "symlink_target": "" }
import amazon from setuptools import setup, find_packages try: long_description=open('READMxE.md', 'r').read() except IOError: long_description="" setup(name='python-amazon-simple-product-api', version=amazon.__version__, description="A simple Python wrapper for the Amazon.com Product Advertising API", long_description=long_description, # http://pypi.python.org/pypi?:action=list_classifiers classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Internet :: WWW/HTTP :: Dynamic Content :: CGI Tools/Libraries", "Topic :: Utilities", "License :: OSI Approved :: Apache Software License", ], keywords='amazon, product advertising, api', author='Yoav Aviram', author_email='[email protected]', url='https://github.com/yoavaviram/python-amazon-simple-product-api', license='Apache 2.0', packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), include_package_data=True, zip_safe=True, install_requires=["bottlenose", "lxml", "python-dateutil"], )
{ "content_hash": "57fb54c2fe8b019ed5962eb3c8441da8", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 87, "avg_line_length": 38.38095238095238, "alnum_prop": 0.6228287841191067, "repo_name": "yoavaviram/python-amazon-simple-product-api", "id": "1b77dcd42797aa31c63b1e84f34607a75c0aca57", "size": "1612", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "66850" } ], "symlink_target": "" }
import os import random import string from ..models import ServerListResult from ..models import Server from ..models import MailosaurException class ServersOperations(object): """ServersOperations operations. """ def __init__(self, session, base_url, handle_http_error): self.session = session self.base_url = base_url self.handle_http_error = handle_http_error def generate_email_address(self, server): host = os.getenv('MAILOSAUR_SMTP_HOST', 'mailosaur.net') randomString = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) return "%s@%s.%s" % (randomString, server, host) def list(self): """List all servers. Returns a list of your virtual SMTP servers. Servers are returned sorted in alphabetical order. :return: ServerListResult :rtype: ~mailosaur.models.ServerListResult :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers" % (self.base_url) response = self.session.get(url) if response.status_code not in [200]: self.handle_http_error(response) return data = response.json() return ServerListResult(data) def create(self, server_create_options): """Create a server. Creates a new virtual SMTP server and returns it. :param server_create_options: :type server_create_options: ~mailosaur.models.ServerCreateOptions :return: Server :rtype: ~mailosaur.models.Server :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers" % (self.base_url) response = self.session.post(url, json=server_create_options.to_json()) if response.status_code not in [200]: self.handle_http_error(response) return data = response.json() return Server(data) def get(self, id): """Retrieve a server. Retrieves the detail for a single server. Simply supply the unique identifier for the required server. :param id: The identifier of the server to be retrieved. :type id: str :return: Server :rtype: ~mailosaur.models.Server :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers/%s" % (self.base_url, id) response = self.session.get(url) if response.status_code not in [200]: self.handle_http_error(response) return data = response.json() return Server(data) def get_password(self, id): """Retrieve server password. Retrieves the password for use with SMTP and POP3 for a single server. Simply supply the unique identifier for the required server. :param id: The identifier of the server. :type id: str :return: str :rtype: str :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers/%s/password" % (self.base_url, id) response = self.session.get(url) if response.status_code not in [200]: self.handle_http_error(response) return data = response.json() return data.get('value', None) def update( self, id, server): """Update a server. Updats a single server and returns it. :param id: The identifier of the server to be updated. :type id: str :param server: :type server: ~mailosaur.models.Server :param dict custom_headers: headers that will be added to the request :return: Server :rtype: ~mailosaur.models.Server :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers/%s" % (self.base_url, id) response = self.session.put(url, json=server.to_json()) if response.status_code not in [200]: self.handle_http_error(response) return data = response.json() return Server(data) def delete( self, id): """Delete a server. Permanently deletes a server. This operation cannot be undone. Also deletes all messages and associated attachments within the server. :param id: The identifier of the server to be deleted. :type id: str :return: None :rtype: None :raises: :class:`MailosaurException<mailosaur.models.MailosaurException>` """ url = "%sapi/servers/%s" % (self.base_url, id) response = self.session.delete(url) if response.status_code not in [204]: self.handle_http_error(response) return
{ "content_hash": "8efddeef663223e9cdf1d6951b42b2e2", "timestamp": "", "source": "github", "line_count": 161, "max_line_length": 104, "avg_line_length": 30.869565217391305, "alnum_prop": 0.6004024144869216, "repo_name": "mailosaur/mailosaur-python", "id": "123277310be6a2a875336772aaf668dbb9578e1b", "size": "4970", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mailosaur/operations/servers_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1246" }, { "name": "Python", "bytes": "80050" } ], "symlink_target": "" }
import datetime from time import sleep from flask import Flask import model from model import db EXECUTOR_TIMEOUT_MINS = 1 def reset_overdue_runs(): """give overdue runs another chance""" runs = model.Run.query.filter(model.Run.finished_execing_time == None)\ .filter(model.Run.started_execing_time != None)\ .filter((datetime.datetime.utcnow() - datetime.timedelta(minutes=EXECUTOR_TIMEOUT_MINS)) > model.Run.started_execing_time).all() for run in runs: print("Returning overdue run: ", run.id) run.started_execing_time = None model.db.session.commit() def event_loop(): """loop to reset overdue runs""" app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = "sqlite:////tmp/code_court.db" app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['model'] = model db.init_app(app) with app.app_context(): try: while True: reset_overdue_runs() sleep(30) except KeyboardInterrupt: print("Event loop shutting down") if __name__ == "__main__": event_loop()
{ "content_hash": "6331c23e351e9de44a4ea346993958f4", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 76, "avg_line_length": 27.113636363636363, "alnum_prop": 0.597652975691534, "repo_name": "spacetag/code_court", "id": "c7674665871390a5660b3a7fbbd1c16a612d90fc", "size": "1193", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "code_court/courthouse/event_loop.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "119040" }, { "name": "HTML", "bytes": "523403" }, { "name": "JavaScript", "bytes": "1912233" }, { "name": "Python", "bytes": "160002" }, { "name": "Shell", "bytes": "399" }, { "name": "Vue", "bytes": "19720" } ], "symlink_target": "" }
import os import shlex from oslo_config import cfg from oslo_privsep import priv_context from neutron._i18n import _ from neutron.common import config EXTERNAL_PROCESS_OPTS = [ cfg.StrOpt('external_pids', default='$state_path/external/pids', help=_('Location to store child pid files')), ] PD_OPTS = [ cfg.StrOpt('pd_dhcp_driver', default='dibbler', help=_('Service to handle DHCPv6 Prefix delegation.')), ] PD_DRIVER_OPTS = [ cfg.StrOpt('pd_confs', default='$state_path/pd', help=_('Location to store IPv6 PD files.')), cfg.StrOpt('vendor_pen', default='8888', help=_("A decimal value as Vendor's Registered Private " "Enterprise Number as required by RFC3315 DUID-EN.")), ] INTERFACE_OPTS = [ cfg.StrOpt('ovs_integration_bridge', default='br-int', help=_('Name of Open vSwitch bridge to use')), cfg.BoolOpt('ovs_use_veth', default=False, help=_("Uses veth for an OVS interface or not. " "Support kernels with limited namespace support " "(e.g. RHEL 6.5) and rate limiting on router's gateway " "port so long as ovs_use_veth is set to " "True.")), ] RA_OPTS = [ cfg.StrOpt('ra_confs', default='$state_path/ra', help=_('Location to store IPv6 RA config files')), cfg.IntOpt('min_rtr_adv_interval', default=30, help=_('MinRtrAdvInterval setting for radvd.conf')), cfg.IntOpt('max_rtr_adv_interval', default=100, help=_('MaxRtrAdvInterval setting for radvd.conf')), ] ROOT_HELPER_OPTS = [ cfg.StrOpt('root_helper', default='sudo', help=_("Root helper application. " "Use 'sudo neutron-rootwrap /etc/neutron/rootwrap.conf' " "to use the real root filter facility. Change to 'sudo' " "to skip the filtering and just run the command " "directly.")), cfg.BoolOpt('use_helper_for_ns_read', default=True, help=_("Use the root helper when listing the namespaces on a " "system. This may not be required depending on the " "security configuration. If the root helper is " "not required, set this to False for a performance " "improvement.")), # We can't just use root_helper=sudo neutron-rootwrap-daemon $cfg because # it isn't appropriate for long-lived processes spawned with create_process # Having a bool use_rootwrap_daemon option precludes specifying the # rootwrap daemon command, which may be necessary for Xen? cfg.StrOpt('root_helper_daemon', help=_(""" Root helper daemon application to use when possible. Use 'sudo neutron-rootwrap-daemon /etc/neutron/rootwrap.conf' to run rootwrap in "daemon mode" which has been reported to improve performance at scale. For more information on running rootwrap in "daemon mode", see: https://docs.openstack.org/oslo.rootwrap/latest/user/usage.html#daemon-mode For the agent which needs to execute commands in Dom0 in the hypervisor of XenServer, this option should be set to 'xenapi_root_helper', so that it will keep a XenAPI session to pass commands to Dom0. """)), ] AGENT_STATE_OPTS = [ cfg.FloatOpt('report_interval', default=30, help=_('Seconds between nodes reporting state to server; ' 'should be less than agent_down_time, best if it ' 'is half or less than agent_down_time.')), cfg.BoolOpt('log_agent_heartbeats', default=False, help=_('Log agent heartbeats')), ] INTERFACE_DRIVER_OPTS = [ cfg.StrOpt('interface_driver', help=_("The driver used to manage the virtual interface.")), ] IPTABLES_OPTS = [ cfg.BoolOpt('comment_iptables_rules', default=True, help=_("Add comments to iptables rules. " "Set to false to disallow the addition of comments to " "generated iptables rules that describe each rule's " "purpose. System must support the iptables comments " "module for addition of comments.")), cfg.BoolOpt('debug_iptables_rules', default=False, help=_("Duplicate every iptables difference calculation to " "ensure the format being generated matches the format " "of iptables-save. This option should not be turned " "on for production systems because it imposes a " "performance penalty.")), ] PROCESS_MONITOR_OPTS = [ cfg.StrOpt('check_child_processes_action', default='respawn', choices=['respawn', 'exit'], help=_('Action to be executed when a child process dies')), cfg.IntOpt('check_child_processes_interval', default=60, help=_('Interval between checks of child process liveness ' '(seconds), use 0 to disable')), ] AVAILABILITY_ZONE_OPTS = [ # The default AZ name "nova" is selected to match the default # AZ name in Nova and Cinder. cfg.StrOpt('availability_zone', max_length=255, default='nova', help=_("Availability zone of this node")), ] EXT_NET_BRIDGE_OPTS = [ cfg.StrOpt('external_network_bridge', default='', deprecated_for_removal=True, help=_("Name of bridge used for external network " "traffic. When this parameter is set, the L3 agent will " "plug an interface directly into an external bridge " "which will not allow any wiring by the L2 agent. Using " "this will result in incorrect port statuses. This " "option is deprecated and will be removed in Ocata.")) ] def get_log_args(conf, log_file_name, **kwargs): cmd_args = [] if conf.debug: cmd_args.append('--debug') if (conf.log_dir or conf.log_file): cmd_args.append('--log-file=%s' % log_file_name) log_dir = None if conf.log_dir and conf.log_file: log_dir = os.path.dirname( os.path.join(conf.log_dir, conf.log_file)) elif conf.log_dir: log_dir = conf.log_dir elif conf.log_file: log_dir = os.path.dirname(conf.log_file) if log_dir: cmd_args.append('--log-dir=%s' % log_dir) else: if conf.use_syslog: cmd_args.append('--use-syslog') if conf.syslog_log_facility: cmd_args.append( '--syslog-log-facility=%s' % conf.syslog_log_facility) return cmd_args def register_external_process_opts(cfg=cfg.CONF): cfg.register_opts(EXTERNAL_PROCESS_OPTS) def register_pd_opts(cfg=cfg.CONF): cfg.register_opts(PD_OPTS) def register_pddriver_opts(cfg=cfg.CONF): cfg.register_opts(PD_DRIVER_OPTS) def register_interface_opts(cfg=cfg.CONF): cfg.register_opts(INTERFACE_OPTS) def register_ra_opts(cfg=cfg.CONF): cfg.register_opts(RA_OPTS) def register_root_helper(conf=cfg.CONF): conf.register_opts(ROOT_HELPER_OPTS, 'AGENT') def register_agent_state_opts_helper(conf): conf.register_opts(AGENT_STATE_OPTS, 'AGENT') def register_interface_driver_opts_helper(conf): conf.register_opts(INTERFACE_DRIVER_OPTS) def register_iptables_opts(conf): conf.register_opts(IPTABLES_OPTS, 'AGENT') def register_process_monitor_opts(conf): conf.register_opts(PROCESS_MONITOR_OPTS, 'AGENT') def register_availability_zone_opts_helper(conf): conf.register_opts(AVAILABILITY_ZONE_OPTS, 'AGENT') def get_root_helper(conf): return conf.AGENT.root_helper def setup_conf(): bind_opts = [ cfg.StrOpt('state_path', default='/var/lib/neutron', help=_("Where to store Neutron state files. " "This directory must be writable by the agent.")), ] conf = cfg.ConfigOpts() conf.register_opts(bind_opts) return conf # add a logging setup method here for convenience setup_logging = config.setup_logging def setup_privsep(): priv_context.init(root_helper=shlex.split(get_root_helper(cfg.CONF)))
{ "content_hash": "a0876a0f85474ff28fc43433f2214a48", "timestamp": "", "source": "github", "line_count": 245, "max_line_length": 79, "avg_line_length": 34.89795918367347, "alnum_prop": 0.6004678362573099, "repo_name": "huntxu/neutron", "id": "34027f99366ff019a8a5ed6051fa8a57e0366f2f", "size": "9186", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "neutron/conf/agent/common.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "1047" }, { "name": "Python", "bytes": "11111676" }, { "name": "Shell", "bytes": "37514" } ], "symlink_target": "" }
import pandas as pd import numpy as np import os from a02a_word_count_evaluation import clean_text from a01c_feature_engineering import tokenize_and_stem from unidecode import unidecode from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from gensim.models.tfidfmodel import TfidfModel def get_kernel_types(): return [ 'cosine_similarity', 'linear', 'polynomial', 'sigmoid', 'rbf', 'laplacian', ] def get_terms_from_tf_idf(tfidf_vectorizer): terms = tfidf_vectorizer.get_feature_names() return terms def get_kernel(kernel_name): options = { 'cosine_similarity': cosine_similarity, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'sigmoid': sigmoid_kernel, 'rbf': rbf_kernel, 'laplacian': laplacian_kernel } return options[kernel_name] def get_similarity_matrix(tfidf_matr, kernel): dist = 1 - get_kernel(kernel)(tfidf_matr) return dist def perform_tf_idf(debug=False): bow_matrix = pd.read_pickle('../../dataset/bow_per_product_tst.pickle') max_features = None # define vectorizer parameters print("Setup TF-IDF Vectorizer") tfidf_vectorizer = TfidfVectorizer(max_df=0.7, max_features=max_features, min_df=0.2, stop_words=None, use_idf=True, tokenizer=None) print("Perform TF-IDF on the search results -- Max features = " + str(max_features)) kernel_type = 'rbf' training_data = pd.read_csv('../../dataset/preprocessed_training_data_t.csv') # # debug prints # print("Bag of words matrix: ") # print(bow_matrix) # print("") # print("Training Data: ") # print(training_data) all_feature_names = ['title_rate', 'desc_rate', 'attr_rate'] score_df = pd.DataFrame( columns=all_feature_names, index=training_data['id'].tolist() ) counter = 0 for isearch in training_data.iterrows(): # get p_id, search_id and relevance from tr_data p_id = isearch[1].product_uid search_id = isearch[1].id search_term_tokens = isearch[1].search_term # # debug # print search_term_set test_matrix = [ search_term_tokens, " ".join(bow_matrix.ix[np.int64(p_id), 'title']), " ".join(bow_matrix.ix[np.int64(p_id), 'description']), " ".join(bow_matrix.ix[np.int64(p_id), 'attributes']), ] try: tfidf_matrix = tfidf_vectorizer.fit_transform(test_matrix) # fit the vectorizer to books except: test_matrix = map(clean_text, test_matrix) tfidf_matrix = tfidf_vectorizer.fit_transform(test_matrix) # fit the vectorizer to books #print("ERROR!!!!! " + str(p_id)) #print(test_matrix) # exit() # Run all kernels for debug reasons (see print below) # # for kernel_type in get_kernel_types(): # print("Calculate similarity with - " + kernel_type + " kernel") # sim_matrix = get_similarity_matrix(tfidf_matrix, kernel_type)[0] # print(sim_matrix) # break # # Debug # print("Calculate similarity with - " + kernel_type + " kernel") sim_matrix = get_similarity_matrix(tfidf_matrix, kernel_type)[0] title_score = sim_matrix[1] desc_score = sim_matrix[2] attr_score = sim_matrix[3] # # Debug # print(sim_matrix) # print("Title score - " + str(title_score)) # print("Desc score - " + str(desc_score)) # print("Attrs score - " + str(attr_score)) score_row = { 'title_rate': title_score, 'desc_rate': desc_score, 'attr_rate': attr_score, } score_df.loc[search_id] = pd.Series(score_row) counter += 1 if (counter is not 0 and counter % 1000 == 0): print(str(counter) + " searches processed") # # Stop execution for debug reasons # if counter == 1000: # break score_df.to_pickle('../../dataset/score_df_tfidf_tst.pickle') if debug: print(score_df) print("Score Dataframe succesfully saved!") return None if __name__ == "__main__": perform_tf_idf(debug=True) # Calculate similarity with - cosine_similarity kernel # [[ 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00] # Calculate similarity with - linear kernel # [[ 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00] # Calculate similarity with - polynomial kernel # [[-0.03946922 0. 0. 0. ] # Calculate similarity with - sigmoid kernel # [[ 0.23300535 0.23840584 0.23840584 0.23840584] # Calculate similarity with - rbf kernel # [[ 0. 0.01290305 0.0256396 0.0256396 ] # Calculate similarity with - laplacian kernel # [[ 0. 0.01290305 0.10028499 0.07684025]
{ "content_hash": "260512a4c02f2791d3df0156e5b27abc", "timestamp": "", "source": "github", "line_count": 175, "max_line_length": 101, "avg_line_length": 30.548571428571428, "alnum_prop": 0.6041900486344931, "repo_name": "Iolaum/Phi1337", "id": "a1bc515ecbe89b7955e2cd5d86af456ac50758e7", "size": "5346", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/pipeline/a05b_tst_tf_idf.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Jupyter Notebook", "bytes": "9714" }, { "name": "Python", "bytes": "452804" } ], "symlink_target": "" }
''' Created on 13.07.2015 @author: Aaron Klein ''' import DIRECT import numpy as np from robo.maximizers.base_maximizer import BaseMaximizer class Direct(BaseMaximizer): def __init__(self, objective_function, X_lower, X_upper, n_func_evals=400, n_iters=200): """ Interface for the DIRECT algorithm by D. R. Jones, C. D. Perttunen and B. E. Stuckmann Parameters ---------- objective_function: acquisition function The acquisition function which will be maximized X_lower: np.ndarray (D) Lower bounds of the input space X_upper: np.ndarray (D) Upper bounds of the input space n_func_evals: int The maximum number of function evaluations n_iters: int The maximum number of iterations """ self.n_func_evals = n_func_evals self.n_iters = n_iters super(Direct, self).__init__(objective_function, X_lower, X_upper) def _direct_acquisition_fkt_wrapper(self, acq_f): def _l(x, user_data): return -acq_f(np.array([x])), 0 return _l def maximize(self): """ Maximizes the given acquisition function. Returns ------- np.ndarray(N,D) Point with highest acquisition value. """ x, _, _ = DIRECT.solve( self._direct_acquisition_fkt_wrapper(self.objective_func), l=[self.X_lower], u=[self.X_upper], maxT=self.n_iters, maxf=self.n_func_evals) return np.array([x])
{ "content_hash": "192326a01a0af5d8423d1685d0a5ffb7", "timestamp": "", "source": "github", "line_count": 59, "max_line_length": 74, "avg_line_length": 28.76271186440678, "alnum_prop": 0.5380082498526813, "repo_name": "aaronkl/RoBO", "id": "584f30679f663076ad0657fdf7f29a7abc8de86a", "size": "1697", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "robo/maximizers/direct.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Matlab", "bytes": "2054" }, { "name": "Python", "bytes": "402978" }, { "name": "Shell", "bytes": "318" } ], "symlink_target": "" }
"""mod_vnflcm_subscription Revision ID: d25c7c865ce8 Revises: 2c5211036579 Create Date: 2020-10-15 14:27:04.946002 """ # revision identifiers, used by Alembic. revision = 'd25c7c865ce8' down_revision = '2c5211036579' from alembic import op import sqlalchemy as sa from tacker.db import types from tacker.db import migration def upgrade(active_plugins=None, options=None): op.alter_column('vnf_lcm_filters', 'subscription_uuid', type_=types.Uuid(length=36), existing_type=sa.String(length=255), nullable=False) sta_str = "json_unquote(json_extract('filter','$.operationTypes'))" op.add_column( 'vnf_lcm_filters', sa.Column('operation_types', sa.LargeBinary(length=65536), sa.Computed(sta_str))) op.add_column( 'vnf_lcm_filters', sa.Column('operation_types_len', sa.Integer, sa.Computed("ifnull(json_length('operation_types'),0)"))) op.drop_column('vnf_lcm_filters', 'operation_states') op.drop_column('vnf_lcm_filters', 'operation_states_len') op.alter_column('vnf_lcm_op_occs', 'operation_state', type_=sa.String(length=16), existing_type=sa.String(length=255)) op.alter_column('vnf_lcm_op_occs', 'operation', type_=sa.String(length=16),existing_type=sa.String(length=255)) op.add_column('vnf_lcm_op_occs', sa.Column('is_cancel_pending', sa.Boolean, nullable=False)), op.add_column('vnf_lcm_op_occs', sa.Column('resource_changes', sa.JSON(), nullable=True)) op.add_column('vnf_lcm_op_occs', sa.Column('error_point', sa.Integer, nullable=True)) op.add_column('vnf_lcm_op_occs', sa.Column('changed_info', sa.JSON(), nullable=True)) op.add_column('vnf_lcm_op_occs', sa.Column('created_at', sa.DateTime(), nullable=False)) op.add_column('vnf_lcm_op_occs', sa.Column('updated_at', sa.DateTime(), nullable=True)) op.add_column('vnf_lcm_op_occs', sa.Column('deleted_at', sa.DateTime(), nullable=True))
{ "content_hash": "ae47a4d33c73dfc2d8b37da8b3e478bf", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 75, "avg_line_length": 31.28787878787879, "alnum_prop": 0.6430992736077482, "repo_name": "openstack/tacker", "id": "ff144d75fe38a914cf18608dc3bc2141d7fb1094", "size": "2702", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tacker/db/migration/alembic_migrations/versions/d25c7c865ce8_mod_vnflcm_subscription.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Jinja", "bytes": "10809" }, { "name": "Mako", "bytes": "1046" }, { "name": "Python", "bytes": "7648075" }, { "name": "Ruby", "bytes": "2841" }, { "name": "Shell", "bytes": "61750" }, { "name": "Smarty", "bytes": "3624" } ], "symlink_target": "" }
""" Views which allow users to create and activate accounts. """ from django.shortcuts import redirect from django.shortcuts import render_to_response from django.template import RequestContext from registration.backends import get_backend def activate(request, backend, template_name='registration/activate.html', success_url=None, extra_context=None, **kwargs): """ Activate a user's account. The actual activation of the account will be delegated to the backend specified by the ``backend`` keyword argument (see below); the backend's ``activate()`` method will be called, passing any keyword arguments captured from the URL, and will be assumed to return a ``User`` if activation was successful, or a value which evaluates to ``False`` in boolean context if not. Upon successful activation, the backend's ``post_activation_redirect()`` method will be called, passing the ``HttpRequest`` and the activated ``User`` to determine the URL to redirect the user to. To override this, pass the argument ``success_url`` (see below). On unsuccessful activation, will render the template ``registration/activate.html`` to display an error message; to override thise, pass the argument ``template_name`` (see below). **Arguments** ``backend`` The dotted Python import path to the backend class to use. Required. ``extra_context`` A dictionary of variables to add to the template context. Any callable object in this dictionary will be called to produce the end result which appears in the context. Optional. ``success_url`` The name of a URL pattern to redirect to on successful acivation. This is optional; if not specified, this will be obtained by calling the backend's ``post_activation_redirect()`` method. ``template_name`` A custom template to use. This is optional; if not specified, this will default to ``registration/activate.html``. ``\*\*kwargs`` Any keyword arguments captured from the URL, such as an activation key, which will be passed to the backend's ``activate()`` method. **Context:** The context will be populated from the keyword arguments captured in the URL, and any extra variables supplied in the ``extra_context`` argument (see above). **Template:** registration/activate.html or ``template_name`` keyword argument. """ backend = get_backend(backend) account = backend.activate(request, **kwargs) if account and not account.activated: if success_url is None: to, args, kwargs = backend.post_activation_redirect(request, account) return redirect(to, *args, **kwargs) else: return redirect(success_url) if extra_context is None: extra_context = {} context = RequestContext(request) context['already_activated'] = account and account.activated or False for key, value in extra_context.items(): context[key] = callable(value) and value() or value return render_to_response(template_name, kwargs, context_instance=context) def register(request, backend, success_url=None, form_class=None, disallowed_url='registration_disallowed', template_name='registration/registration_form.html', extra_context=None): """ Allow a new user to register an account. The actual registration of the account will be delegated to the backend specified by the ``backend`` keyword argument (see below); it will be used as follows: 1. The backend's ``registration_allowed()`` method will be called, passing the ``HttpRequest``, to determine whether registration of an account is to be allowed; if not, a redirect is issued to the view corresponding to the named URL pattern ``registration_disallowed``. To override this, see the list of optional arguments for this view (below). 2. The form to use for account registration will be obtained by calling the backend's ``get_form_class()`` method, passing the ``HttpRequest``. To override this, see the list of optional arguments for this view (below). 3. If valid, the form's ``cleaned_data`` will be passed (as keyword arguments, and along with the ``HttpRequest``) to the backend's ``register()`` method, which should return the new ``User`` object. 4. Upon successful registration, the backend's ``post_registration_redirect()`` method will be called, passing the ``HttpRequest`` and the new ``User``, to determine the URL to redirect the user to. To override this, see the list of optional arguments for this view (below). **Required arguments** None. **Optional arguments** ``backend`` The dotted Python import path to the backend class to use. ``disallowed_url`` URL to redirect to if registration is not permitted for the current ``HttpRequest``. Must be a value which can legally be passed to ``django.shortcuts.redirect``. If not supplied, this will be whatever URL corresponds to the named URL pattern ``registration_disallowed``. ``form_class`` The form class to use for registration. If not supplied, this will be retrieved from the registration backend. ``extra_context`` A dictionary of variables to add to the template context. Any callable object in this dictionary will be called to produce the end result which appears in the context. ``success_url`` URL to redirect to after successful registration. Must be a value which can legally be passed to ``django.shortcuts.redirect``. If not supplied, this will be retrieved from the registration backend. ``template_name`` A custom template to use. If not supplied, this will default to ``registration/registration_form.html``. **Context:** ``form`` The registration form. Any extra variables supplied in the ``extra_context`` argument (see above). **Template:** registration/registration_form.html or ``template_name`` keyword argument. """ backend = get_backend(backend) if not backend.registration_allowed(request): return redirect(disallowed_url) if form_class is None: form_class = backend.get_form_class(request) if request.method == 'POST': form = form_class(data=request.POST, files=request.FILES) if form.is_valid(): new_user = backend.register(request, **form.cleaned_data) if success_url is None: to, args, kwargs = backend.post_registration_redirect(request, new_user) return redirect(to, *args, **kwargs) else: return redirect(success_url) else: form = form_class() if extra_context is None: extra_context = {} context = RequestContext(request) for key, value in extra_context.items(): context[key] = callable(value) and value() or value return render_to_response(template_name, {'form': form}, context_instance=context)
{ "content_hash": "22b0b73886cc6f1859143a69d52f3c59", "timestamp": "", "source": "github", "line_count": 205, "max_line_length": 88, "avg_line_length": 36.229268292682924, "alnum_prop": 0.6562542076208429, "repo_name": "jnns/django-registration", "id": "9fef172b36733833e03c7ab65fdf127b13c28cd7", "size": "7427", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "registration/views.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "101077" } ], "symlink_target": "" }
def not_a_filter(data): return data
{ "content_hash": "2049b59de7619e190690bcb68eeb749e", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 23, "avg_line_length": 10.5, "alnum_prop": 0.6428571428571429, "repo_name": "jstacoder/flask-manage", "id": "abc718f2cf8b02e8ece9d995c9f3db0f38202b3a", "size": "97", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "flask_mrbob/templates/blueprint/+blueprint.name+/filters.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "18183" } ], "symlink_target": "" }
from tests.providers.google.cloud.utils.gcp_authenticator import GCP_AUTOML_KEY from tests.test_utils.gcp_system_helpers import CLOUD_DAG_FOLDER, provide_gcp_context, skip_gcp_system from tests.test_utils.system_tests_class import SystemTest @skip_gcp_system(GCP_AUTOML_KEY, require_local_executor=True, long_lasting=True) class AutoMLDatasetOperationsSystemTest(SystemTest): @provide_gcp_context(GCP_AUTOML_KEY) def test_run_example_dag(self): self.run_dag('example_automl_dataset', CLOUD_DAG_FOLDER) @skip_gcp_system(GCP_AUTOML_KEY, require_local_executor=True, long_lasting=True) class AutoMLModelOperationsSystemTest(SystemTest): @provide_gcp_context(GCP_AUTOML_KEY) def test_run_example_dag(self): self.run_dag('example_create_and_deploy', CLOUD_DAG_FOLDER)
{ "content_hash": "0d7257b78be5e580adc8fc3813b66a67", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 102, "avg_line_length": 47, "alnum_prop": 0.7759699624530664, "repo_name": "wileeam/airflow", "id": "e54f7f694888d7b23b5cfaf33f479db9c2f48dd9", "size": "1588", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tests/providers/google/cloud/operators/test_automl_system.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "13715" }, { "name": "Dockerfile", "bytes": "17179" }, { "name": "HTML", "bytes": "148281" }, { "name": "JavaScript", "bytes": "25233" }, { "name": "Jupyter Notebook", "bytes": "2933" }, { "name": "Mako", "bytes": "1339" }, { "name": "Python", "bytes": "9763694" }, { "name": "Shell", "bytes": "221331" }, { "name": "TSQL", "bytes": "879" } ], "symlink_target": "" }
"""GATK variant calling -- HaplotypeCaller and UnifiedGenotyper. """ from distutils.version import LooseVersion import toolz as tz from bcbio import bam, broad, utils from bcbio.distributed.transaction import file_transaction from bcbio.pipeline import config_utils from bcbio.pipeline.shared import subset_variant_regions from bcbio.pipeline import datadict as dd from bcbio.variation import annotation, bamprep, ploidy def _shared_gatk_call_prep(align_bams, items, ref_file, dbsnp, region, out_file): """Shared preparation work for GATK variant calling. """ data = items[0] config = data["config"] broad_runner = broad.runner_from_config(config) broad_runner.run_fn("picard_index_ref", ref_file) for x in align_bams: bam.index(x, config) params = ["-R", ref_file] coverage_depth_min = tz.get_in(["algorithm", "coverage_depth_min"], config) if coverage_depth_min and coverage_depth_min < 4: confidence = "4.0" params += ["--standard_min_confidence_threshold_for_calling", confidence, "--standard_min_confidence_threshold_for_emitting", confidence] for a in annotation.get_gatk_annotations(config): params += ["--annotation", a] for x in align_bams: params += ["-I", x] if dbsnp: params += ["--dbsnp", dbsnp] variant_regions = tz.get_in(["algorithm", "variant_regions"], config) region = subset_variant_regions(variant_regions, region, out_file, items) if region: params += ["-L", bamprep.region_to_gatk(region), "--interval_set_rule", "INTERSECTION"] return broad_runner, params def unified_genotyper(align_bams, items, ref_file, assoc_files, region=None, out_file=None): """Perform SNP genotyping on the given alignment file. """ if out_file is None: out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0] if not utils.file_exists(out_file): broad_runner, params = \ _shared_gatk_call_prep(align_bams, items, ref_file, assoc_files.get("dbsnp"), region, out_file) with file_transaction(items[0], out_file) as tx_out_file: params += ["-T", "UnifiedGenotyper", "-o", tx_out_file, "-ploidy", (str(ploidy.get_ploidy(items, region)) if broad_runner.gatk_type() == "restricted" else "2"), "--genotype_likelihoods_model", "BOTH"] broad_runner.run_gatk(params) return out_file def _joint_calling(items): """Determine if this call feeds downstream into joint calls. """ jointcaller = tz.get_in(("config", "algorithm", "jointcaller"), items[0]) if jointcaller: assert len(items) == 1, "Can only do joint calling preparation with GATK with single samples" assert tz.get_in(("metadata", "batch"), items[0]) is not None, \ "Joint calling requires batched samples, %s has no metadata batch." % dd.get_sample_name(items[0]) return jointcaller def haplotype_caller(align_bams, items, ref_file, assoc_files, region=None, out_file=None): """Call variation with GATK's HaplotypeCaller. This requires the full non open-source version of GATK. """ if out_file is None: out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0] if not utils.file_exists(out_file): broad_runner, params = \ _shared_gatk_call_prep(align_bams, items, ref_file, assoc_files.get("dbsnp"), region, out_file) assert broad_runner.gatk_type() == "restricted", \ "Require full version of GATK 2.4+ for haplotype calling" with file_transaction(items[0], out_file) as tx_out_file: params += ["-T", "HaplotypeCaller", "-o", tx_out_file, "--annotation", "ClippingRankSumTest", "--annotation", "DepthPerSampleHC"] # Enable hardware based optimizations in GATK 3.1+ if LooseVersion(broad_runner.gatk_major_version()) >= LooseVersion("3.1"): params += ["--pair_hmm_implementation", "VECTOR_LOGLESS_CACHING"] # Enable non-diploid calling in GATK 3.3+ if LooseVersion(broad_runner.gatk_major_version()) >= LooseVersion("3.3"): params += ["-ploidy", str(ploidy.get_ploidy(items, region))] if _joint_calling(items): # Prepare gVCFs if doing joint calling params += ["--emitRefConfidence", "GVCF", "--variant_index_type", "LINEAR", "--variant_index_parameter", "128000"] resources = config_utils.get_resources("gatk-haplotype", items[0]["config"]) if "options" in resources: params += [str(x) for x in resources.get("options", [])] broad_runner.new_resources("gatk-haplotype") broad_runner.run_gatk(params) return out_file
{ "content_hash": "7f402d3defdf1adfd8c85406b2e8372c", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 110, "avg_line_length": 48.79047619047619, "alnum_prop": 0.5988678508686317, "repo_name": "guillermo-carrasco/bcbio-nextgen", "id": "fdee8fe6b9101a89ffaebdd22d2d335c3a723de3", "size": "5123", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "bcbio/variation/gatk.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1482215" }, { "name": "Ruby", "bytes": "624" }, { "name": "Shell", "bytes": "13852" } ], "symlink_target": "" }
""" __built_traceability_for_rule_MDL.py_____________________________________________________ Automatically generated AToM3 Model File (Do not modify directly) Author: levi Modified: Sat Aug 24 20:49:41 2013 _________________________________________________________________________________________ """ from stickylink import * from widthXfillXdecoration import * from MT_post__MetaModelElement_S import * from MT_post__MetaModelElement_T import * from MT_post__trace_link import * from MT_pre__MetaModelElement_T import * from MT_pre__MetaModelElement_S import * from RHS import * from LHS import * from graph_MT_post__MetaModelElement_S import * from graph_MT_post__MetaModelElement_T import * from graph_LHS import * from graph_MT_pre__MetaModelElement_S import * from graph_MT_pre__MetaModelElement_T import * from graph_RHS import * from graph_MT_post__trace_link import * from ATOM3Enum import * from ATOM3String import * from ATOM3BottomType import * from ATOM3Constraint import * from ATOM3Attribute import * from ATOM3Float import * from ATOM3List import * from ATOM3Link import * from ATOM3Connection import * from ATOM3Boolean import * from ATOM3Appearance import * from ATOM3Text import * from ATOM3Action import * from ATOM3Integer import * from ATOM3Port import * from ATOM3MSEnum import * def built_traceability_for_rule_MDL(self, rootNode, MT_post__GM2AUTOSAR_MMRootNode=None, MT_pre__GM2AUTOSAR_MMRootNode=None, MoTifRuleRootNode=None): # --- Generating attributes code for ASG MT_post__GM2AUTOSAR_MM --- if( MT_post__GM2AUTOSAR_MMRootNode ): # author MT_post__GM2AUTOSAR_MMRootNode.author.setValue('Annonymous') # description MT_post__GM2AUTOSAR_MMRootNode.description.setValue('\n') MT_post__GM2AUTOSAR_MMRootNode.description.setHeight(15) # name MT_post__GM2AUTOSAR_MMRootNode.name.setValue('') MT_post__GM2AUTOSAR_MMRootNode.name.setNone() # --- ASG attributes over --- # --- Generating attributes code for ASG MT_pre__GM2AUTOSAR_MM --- if( MT_pre__GM2AUTOSAR_MMRootNode ): # author MT_pre__GM2AUTOSAR_MMRootNode.author.setValue('Annonymous') # description MT_pre__GM2AUTOSAR_MMRootNode.description.setValue('\n') MT_pre__GM2AUTOSAR_MMRootNode.description.setHeight(15) # name MT_pre__GM2AUTOSAR_MMRootNode.name.setValue('') MT_pre__GM2AUTOSAR_MMRootNode.name.setNone() # --- ASG attributes over --- # --- Generating attributes code for ASG MoTifRule --- if( MoTifRuleRootNode ): # author MoTifRuleRootNode.author.setValue('Annonymous') # description MoTifRuleRootNode.description.setValue('\n') MoTifRuleRootNode.description.setHeight(15) # name MoTifRuleRootNode.name.setValue('BuildTraceabilityForRule') # --- ASG attributes over --- self.obj71=MT_post__MetaModelElement_S(self) self.obj71.isGraphObjectVisual = True if(hasattr(self.obj71, '_setHierarchicalLink')): self.obj71._setHierarchicalLink(False) # MT_label__ self.obj71.MT_label__.setValue('1') # MT_pivotOut__ self.obj71.MT_pivotOut__.setValue('') self.obj71.MT_pivotOut__.setNone() # MT_post__cardinality self.obj71.MT_post__cardinality.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj71.MT_post__cardinality.setHeight(15) # MT_post__classtype self.obj71.MT_post__classtype.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj71.MT_post__classtype.setHeight(15) # MT_post__name self.obj71.MT_post__name.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj71.MT_post__name.setHeight(15) self.obj71.graphClass_= graph_MT_post__MetaModelElement_S if self.genGraphics: new_obj = graph_MT_post__MetaModelElement_S(763.0,226.0,self.obj71) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_post__MetaModelElement_S", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj71.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj71) self.globalAndLocalPostcondition(self.obj71, rootNode) self.obj71.postAction( rootNode.CREATE ) self.obj72=MT_post__MetaModelElement_T(self) self.obj72.isGraphObjectVisual = True if(hasattr(self.obj72, '_setHierarchicalLink')): self.obj72._setHierarchicalLink(False) # MT_label__ self.obj72.MT_label__.setValue('2') # MT_pivotOut__ self.obj72.MT_pivotOut__.setValue('') self.obj72.MT_pivotOut__.setNone() # MT_post__cardinality self.obj72.MT_post__cardinality.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj72.MT_post__cardinality.setHeight(15) # MT_post__classtype self.obj72.MT_post__classtype.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj72.MT_post__classtype.setHeight(15) # MT_post__name self.obj72.MT_post__name.setValue('\n#===============================================================================\n# You can access the value of the current node\'s attribute value by: attr_value.\n# If the current node shall be created you MUST initialize it here!\n# You can access a node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# Note that the attribute values are those before the match is rewritten.\n# The order in which this code is executed depends on the label value\n# of the encapsulating node.\n# The given action must return the new value of the attribute.\n#===============================================================================\n\nreturn attr_value\n') self.obj72.MT_post__name.setHeight(15) self.obj72.graphClass_= graph_MT_post__MetaModelElement_T if self.genGraphics: new_obj = graph_MT_post__MetaModelElement_T(763.0,406.0,self.obj72) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_post__MetaModelElement_T", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj72.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj72) self.globalAndLocalPostcondition(self.obj72, rootNode) self.obj72.postAction( rootNode.CREATE ) self.obj73=MT_post__trace_link(self) self.obj73.isGraphObjectVisual = True if(hasattr(self.obj73, '_setHierarchicalLink')): self.obj73._setHierarchicalLink(False) # MT_label__ self.obj73.MT_label__.setValue('3') # MT_pivotOut__ self.obj73.MT_pivotOut__.setValue('') self.obj73.MT_pivotOut__.setNone() self.obj73.graphClass_= graph_MT_post__trace_link if self.genGraphics: new_obj = graph_MT_post__trace_link(932.0,389.5,self.obj73) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_post__trace_link", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj73.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj73) self.globalAndLocalPostcondition(self.obj73, rootNode) self.obj73.postAction( rootNode.CREATE ) self.obj75=MT_pre__MetaModelElement_T(self) self.obj75.isGraphObjectVisual = True if(hasattr(self.obj75, '_setHierarchicalLink')): self.obj75._setHierarchicalLink(False) # MT_pivotOut__ self.obj75.MT_pivotOut__.setValue('') self.obj75.MT_pivotOut__.setNone() # MT_subtypeMatching__ self.obj75.MT_subtypeMatching__.setValue(('True', 1)) self.obj75.MT_subtypeMatching__.config = 0 # MT_pre__classtype self.obj75.MT_pre__classtype.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj75.MT_pre__classtype.setHeight(15) # MT_pivotIn__ self.obj75.MT_pivotIn__.setValue('') self.obj75.MT_pivotIn__.setNone() # MT_label__ self.obj75.MT_label__.setValue('2') # MT_pre__cardinality self.obj75.MT_pre__cardinality.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj75.MT_pre__cardinality.setHeight(15) # MT_pre__name self.obj75.MT_pre__name.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj75.MT_pre__name.setHeight(15) self.obj75.graphClass_= graph_MT_pre__MetaModelElement_T if self.genGraphics: new_obj = graph_MT_pre__MetaModelElement_T(263.0,406.0,self.obj75) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__MetaModelElement_T", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj75.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj75) self.globalAndLocalPostcondition(self.obj75, rootNode) self.obj75.postAction( rootNode.CREATE ) self.obj77=MT_pre__MetaModelElement_S(self) self.obj77.isGraphObjectVisual = True if(hasattr(self.obj77, '_setHierarchicalLink')): self.obj77._setHierarchicalLink(False) # MT_pivotOut__ self.obj77.MT_pivotOut__.setValue('') self.obj77.MT_pivotOut__.setNone() # MT_subtypeMatching__ self.obj77.MT_subtypeMatching__.setValue(('True', 1)) self.obj77.MT_subtypeMatching__.config = 0 # MT_pre__classtype self.obj77.MT_pre__classtype.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj77.MT_pre__classtype.setHeight(15) # MT_pivotIn__ self.obj77.MT_pivotIn__.setValue('') self.obj77.MT_pivotIn__.setNone() # MT_label__ self.obj77.MT_label__.setValue('1') # MT_pre__cardinality self.obj77.MT_pre__cardinality.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj77.MT_pre__cardinality.setHeight(15) # MT_pre__name self.obj77.MT_pre__name.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj77.MT_pre__name.setHeight(15) self.obj77.graphClass_= graph_MT_pre__MetaModelElement_S if self.genGraphics: new_obj = graph_MT_pre__MetaModelElement_S(263.0,226.0,self.obj77) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__MetaModelElement_S", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj77.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj77) self.globalAndLocalPostcondition(self.obj77, rootNode) self.obj77.postAction( rootNode.CREATE ) self.obj80=RHS(self) self.obj80.isGraphObjectVisual = True if(hasattr(self.obj80, '_setHierarchicalLink')): self.obj80._setHierarchicalLink(False) # action self.obj80.action.setValue('#===============================================================================\n# This code is executed after the rule has been applied.\n# You can access a node labelled n matched by this rule by: PostNode(\'n\').\n# To access attribute x of node n, use: PostNode(\'n\')[\'x\'].\n#===============================================================================\n\npass\n') self.obj80.action.setHeight(15) self.obj80.graphClass_= graph_RHS if self.genGraphics: new_obj = graph_RHS(583.0,166.0,self.obj80) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("RHS", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj80.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj80) self.globalAndLocalPostcondition(self.obj80, rootNode) self.obj80.postAction( rootNode.CREATE ) self.obj81=LHS(self) self.obj81.isGraphObjectVisual = True if(hasattr(self.obj81, '_setHierarchicalLink')): self.obj81._setHierarchicalLink(False) # constraint self.obj81.constraint.setValue('#===============================================================================\n# This code is executed after the nodes in the LHS have been matched.\n# You can access a matched node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# The given constraint must evaluate to a boolean expression:\n# returning True enables the rule to be applied,\n# returning False forbids the rule from being applied.\n#===============================================================================\n\nreturn True\n') self.obj81.constraint.setHeight(15) self.obj81.graphClass_= graph_LHS if self.genGraphics: new_obj = graph_LHS(143.0,166.0,self.obj81) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("LHS", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj81.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj81) self.globalAndLocalPostcondition(self.obj81, rootNode) self.obj81.postAction( rootNode.CREATE ) # Connections for obj71 (graphObject_: Obj0) of type MT_post__MetaModelElement_S self.drawConnections( ) # Connections for obj72 (graphObject_: Obj1) of type MT_post__MetaModelElement_T self.drawConnections( (self.obj72,self.obj73,[931.0, 479.0, 932.0, 389.5],"true", 2) ) # Connections for obj73 (graphObject_: Obj2) of type MT_post__trace_link self.drawConnections( (self.obj73,self.obj71,[932.0, 389.5, 933.0, 300.0],"true", 2) ) # Connections for obj75 (graphObject_: Obj4) of type MT_pre__MetaModelElement_T self.drawConnections( ) # Connections for obj77 (graphObject_: Obj6) of type MT_pre__MetaModelElement_S self.drawConnections( ) # Connections for obj80 (graphObject_: Obj9) of type RHS self.drawConnections( ) # Connections for obj81 (graphObject_: Obj10) of type LHS self.drawConnections( ) newfunction = built_traceability_for_rule_MDL loadedMMName = ['MT_post__GM2AUTOSAR_MM_META', 'MT_pre__GM2AUTOSAR_MM_META', 'MoTifRule_META'] atom3version = '0.3'
{ "content_hash": "ff3a493f4132d7239e0d240cf6b645b2", "timestamp": "", "source": "github", "line_count": 367, "max_line_length": 747, "avg_line_length": 57.01634877384196, "alnum_prop": 0.6277180406212665, "repo_name": "levilucio/SyVOLT", "id": "4b2c91a4546fce4c0c68363d4eee1062089b1aa8", "size": "20925", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "UMLRT2Kiltera_MM/traceability_construction/models/built_traceability_for_rule_MDL.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "166159" }, { "name": "Python", "bytes": "34207588" }, { "name": "Shell", "bytes": "1118" } ], "symlink_target": "" }
a = r'''this is some more stuff
{ "content_hash": "8aa2b57bf9c3ae1893560aab09e39edf", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 20, "avg_line_length": 11, "alnum_prop": 0.6363636363636364, "repo_name": "ArcherSys/ArcherSys", "id": "f0df304376c361c0f0250b0449b8c580d4eacf2b", "size": "33", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "skulpt/test/tokenize/t40.py", "mode": "33188", "license": "mit", "language": [], "symlink_target": "" }
from flask import Flask, render_template app = Flask(__name__) @app.route('/') def template_test(): return render_template("template.html", my_string="Wheeee!", my_list=[0, 1, 2, 3, 4, 5], my_dict=dict(name="Nitin", age=32)) if __name__ == '__main__': app.run(debug=True)
{ "content_hash": "0d3a553800d490297cca550694d2e857", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 119, "avg_line_length": 27.928571428571427, "alnum_prop": 0.45012787723785164, "repo_name": "nitin-cherian/LifeLongLearning", "id": "37ac079237fec14c672e5adf35f12dd8d17163d7", "size": "391", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Python/Experiments/JINJA/RealPython/Examples/run.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "32365" }, { "name": "CSS", "bytes": "10259" }, { "name": "HTML", "bytes": "55977" }, { "name": "JavaScript", "bytes": "7368910" }, { "name": "Jupyter Notebook", "bytes": "768879" }, { "name": "Mako", "bytes": "494" }, { "name": "Python", "bytes": "17502534" }, { "name": "Shell", "bytes": "7751" }, { "name": "Smarty", "bytes": "30663" } ], "symlink_target": "" }
"""Serves content for "script" handlers using the Java runtime.""" import google import os import os.path import threading from google.appengine.api import appinfo from google.appengine.tools.devappserver2 import http_runtime from google.appengine.tools.devappserver2 import instance from google.appengine.tools.devappserver2 import java_application # TODO: figure out what's needed to react to file changes class JavaRuntimeInstanceFactory(instance.InstanceFactory): """A factory that creates new Java runtime Instances.""" START_URL_MAP = appinfo.URLMap( url='/_ah/start', script='_java_app', login='admin') WARMUP_URL_MAP = appinfo.URLMap( url='/_ah/warmup', script='_java_app', login='admin') FILE_CHANGE_INSTANCE_RESTART_POLICY = instance.ALWAYS def __init__(self, request_data, runtime_config_getter, module_configuration): """Initializer for JavaRuntimeInstanceFactory. Args: request_data: A wsgi_request_info.WSGIRequestInfo that will be provided with request information for use by API stubs. runtime_config_getter: A function that can be called without arguments and returns the runtime_config_pb2.RuntimeConfig containing the configuration for the runtime. module_configuration: An application_configuration.ModuleConfiguration instance respresenting the configuration of the module that owns the runtime. """ super(JavaRuntimeInstanceFactory, self).__init__(request_data, 1) self._runtime_config_getter = runtime_config_getter self._module_configuration = module_configuration self._application_lock = threading.Lock() self._java_application = java_application.JavaApplication( self._module_configuration) def get_restart_directories(self): """Returns a list of directories where changes trigger a restart. Returns: A list of directories where changes trigger a restart. """ # TODO: implement return [] def files_changed(self): """Called when a file relevant to the factory *might* have changed.""" # TODO: implement def configuration_changed(self, config_changes): """Called when the configuration of the module has changed. Args: config_changes: A set containing the changes that occured. See the *_CHANGED constants in the application_configuration module. """ # TODO: implement def new_instance(self, instance_id, expect_ready_request=False): """Create and return a new Instance. Args: instance_id: A string or integer representing the unique (per module) id of the instance. expect_ready_request: If True then the instance will be sent a special request (i.e. /_ah/warmup or /_ah/start) before it can handle external requests. Returns: The newly created instance.Instance. """ def instance_config_getter(): runtime_config = self._runtime_config_getter() runtime_config.instance_id = str(instance_id) return runtime_config env = self._java_application.get_environment() instance_jar = os.path.abspath(os.path.join( os.path.dirname(google.__file__), 'appengine/tools/devappserver2/java/lib/StandaloneInstance_deploy.jar')) assert os.path.exists(instance_jar), instance_jar # TODO: replace this with something smaller and releasable with self._application_lock: proxy = http_runtime.HttpRuntimeProxy( ['java', '-jar', instance_jar], instance_config_getter, self._module_configuration, env=env, start_process_flavor=http_runtime.START_PROCESS_FILE) return instance.Instance(self.request_data, instance_id, proxy, self.max_concurrent_requests, self.max_background_threads, expect_ready_request)
{ "content_hash": "dc5fd0b12c704ca9717c17603083864f", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 80, "avg_line_length": 35.57142857142857, "alnum_prop": 0.6772088353413654, "repo_name": "yencarnacion/jaikuengine", "id": "6b4d31965e4b12438e2bc700a064b782b2f94ca4", "size": "4585", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": ".google_appengine/google/appengine/tools/devappserver2/java_runtime.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "407860" }, { "name": "C++", "bytes": "20" }, { "name": "CSS", "bytes": "330328" }, { "name": "Emacs Lisp", "bytes": "4733" }, { "name": "JavaScript", "bytes": "751903" }, { "name": "PHP", "bytes": "1808240" }, { "name": "Python", "bytes": "50134630" }, { "name": "R", "bytes": "1277" }, { "name": "Shell", "bytes": "39632" }, { "name": "VimL", "bytes": "5645" } ], "symlink_target": "" }
import os, sys from django.core.management import execute_manager # dirty hack to get the backend working. #sys.path.insert(0, os.path.abspath('./..')) #sys.path.insert(0, os.path.abspath('./../..')) #example_dir = os.path.dirname(__file__) #sys.path.insert(0, os.path.join(example_dir, '..')) try: import settings # Assumed to be in the same directory. except ImportError: import sys sys.stderr.write("Error: Can't find the file 'settings.py' in the directory containing %r. It appears you've customized things.\nYou'll have to run django-admin.py, passing it your settings module.\n(If the file settings.py does indeed exist, it's causing an ImportError somehow.)\n" % __file__) sys.exit(1) if __name__ == "__main__": execute_manager(settings)
{ "content_hash": "182d4a51fe559fa3098b95c5fb2e80e5", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 299, "avg_line_length": 47.9375, "alnum_prop": 0.7001303780964798, "repo_name": "aparo/django-elasticsearch", "id": "fb48d9fbcdcd240f56e16fff13999be742d0e8c5", "size": "789", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/testproj/manage.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "94880" } ], "symlink_target": "" }
import unittest import numpy import chainer from chainer.backends import cuda from chainer import gradient_check from chainer import links from chainer import testing from chainer.testing import attr from chainer.testing import condition @testing.parameterize( {'learn_W': True, 'bias_term': False, 'bias_shape': None}, {'learn_W': True, 'bias_term': True, 'bias_shape': None}, {'learn_W': False, 'bias_term': False, 'bias_shape': None}, {'learn_W': False, 'bias_term': True, 'bias_shape': (2,)} ) class TestScale(unittest.TestCase): def setUp(self): self.x = numpy.random.uniform(-1, 1, (3, 2, 3)).astype(numpy.float32) self.W = numpy.random.uniform(-1, 1, (2)).astype(numpy.float32) self.b = numpy.random.uniform(-1, 1, (2)).astype(numpy.float32) self.y_expected = numpy.copy(self.x) for i, j, k in numpy.ndindex(self.y_expected.shape): self.y_expected[i, j, k] *= self.W[j] if self.bias_term: self.y_expected[i, j, k] += self.b[j] self.gy = numpy.random.uniform(-1, 1, (3, 2, 3)).astype(numpy.float32) bias_term = self.bias_term bias_shape = self.bias_shape axis = 1 if self.learn_W: self.link = links.Scale( axis, self.W.shape, bias_term, bias_shape) self.link.W.data = self.W if bias_term: self.link.bias.b.data = self.b else: self.link = links.Scale( axis, None, bias_term, bias_shape) if bias_term: self.link.bias.b.data = self.b self.link.cleargrads() def test_attribute_presence(self): self.assertEqual(self.learn_W, hasattr(self.link, 'W')) self.assertEqual(self.bias_term, hasattr(self.link, 'bias')) def check_forward(self, x_data, W_data, y_expected): x = chainer.Variable(x_data) if W_data is None: y = self.link(x) testing.assert_allclose(y_expected, y.data) else: W = chainer.Variable(W_data) y = self.link(x, W) testing.assert_allclose(y_expected, y.data) def test_forward_cpu(self): if self.learn_W: W = None else: W = self.W self.check_forward(self.x, W, self.y_expected) @attr.gpu def test_forward_gpu(self): with testing.assert_warns(DeprecationWarning): self.link.to_gpu() x = cuda.to_gpu(self.x) if self.learn_W: W = None else: W = cuda.to_gpu(self.W) self.check_forward(x, W, self.y_expected) def check_backward(self, x_data, W_data, y_grad): if W_data is None: params = [self.link.W] gradient_check.check_backward( self.link, x_data, y_grad, params, atol=1e-2) else: gradient_check.check_backward( self.link, (x_data, W_data), y_grad, atol=1e-2) @condition.retry(3) def test_backward_cpu(self): if self.learn_W: W = None else: W = self.W self.check_backward(self.x, W, self.gy) @attr.gpu @condition.retry(3) def test_backward_gpu(self): with testing.assert_warns(DeprecationWarning): self.link.to_gpu() x = cuda.to_gpu(self.x) if self.learn_W: W = None else: W = cuda.to_gpu(self.W) gy = cuda.to_gpu(self.gy) self.check_backward(x, W, gy) class TestScaleInvalidArgc(unittest.TestCase): def setUp(self): x_data = numpy.random.uniform(-1, 1, (3, 2, 3)).astype(numpy.float32) W_data = numpy.random.uniform(-1, 1, (2)).astype(numpy.float32) self.axis = 1 self.x = chainer.Variable(x_data) self.W = chainer.Variable(W_data) def test_scale_invalid_argc1(self): func = links.Scale(self.axis, self.W.data.shape) with chainer.using_config('debug', True): with self.assertRaises(AssertionError): func(self.x, self.W) def test_scale_invalid_argc2(self): func = links.Scale(self.axis, None) with chainer.using_config('debug', True): with self.assertRaises(AssertionError): func(self.x) class TestScaleNoBiasShape(unittest.TestCase): def test_scale_no_bias_shape(self): axis = 1 with self.assertRaises(ValueError): links.Scale(axis, None, True, None) testing.run_module(__name__, __file__)
{ "content_hash": "d1b1620bff13887073ce1bef308c49c7", "timestamp": "", "source": "github", "line_count": 142, "max_line_length": 78, "avg_line_length": 32.11971830985915, "alnum_prop": 0.5698311773733831, "repo_name": "pfnet/chainer", "id": "bd75690deedaff8fc647fa51a433fbc4d029e534", "size": "4561", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "tests/chainer_tests/links_tests/connection_tests/test_scale.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "3366" }, { "name": "PowerShell", "bytes": "7195" }, { "name": "Python", "bytes": "2564338" } ], "symlink_target": "" }
import pytest import numpy as np import sklearn.datasets as datasets import sklearn.cluster as cluster import sklearn.preprocessing as pp import sklearn.metrics as m import pandas_ml as pdml import pandas_ml.util.testing as tm class TestCluster(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.cluster.AffinityPropagation, cluster.AffinityPropagation) self.assertIs(df.cluster.AgglomerativeClustering, cluster.AgglomerativeClustering) self.assertIs(df.cluster.Birch, cluster.Birch) self.assertIs(df.cluster.DBSCAN, cluster.DBSCAN) self.assertIs(df.cluster.FeatureAgglomeration, cluster.FeatureAgglomeration) self.assertIs(df.cluster.KMeans, cluster.KMeans) self.assertIs(df.cluster.MiniBatchKMeans, cluster.MiniBatchKMeans) self.assertIs(df.cluster.MeanShift, cluster.MeanShift) self.assertIs(df.cluster.SpectralClustering, cluster.SpectralClustering) self.assertIs(df.cluster.bicluster.SpectralBiclustering, cluster.bicluster.SpectralBiclustering) self.assertIs(df.cluster.bicluster.SpectralCoclustering, cluster.bicluster.SpectralCoclustering) def test_estimate_bandwidth(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.cluster.estimate_bandwidth(random_state=self.random_state) expected = cluster.estimate_bandwidth(iris.data, random_state=self.random_state) self.assertEqual(result, expected) def test_k_means(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.cluster.k_means(3, random_state=self.random_state) expected = cluster.k_means(iris.data, 3, random_state=self.random_state) self.assertEqual(len(result), 3) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertIsInstance(result[1], pdml.ModelSeries) tm.assert_index_equal(result[1].index, df.index) tm.assert_numpy_array_equal(result[1].values, expected[1]) self.assertAlmostEqual(result[2], expected[2]) def test_ward_tree(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.cluster.ward_tree() expected = cluster.ward_tree(iris.data) self.assertEqual(len(result), 4) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertEqual(result[1], expected[1]) self.assertEqual(result[2], expected[2]) self.assertEqual(result[3], expected[3]) connectivity = np.ones((len(df), len(df))) result = df.cluster.ward_tree(connectivity) expected = cluster.ward_tree(iris.data, connectivity) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertEqual(result[1], expected[1]) self.assertEqual(result[2], expected[2]) self.assert_numpy_array_almost_equal(result[3], expected[3]) def test_affinity_propagation(self): iris = datasets.load_iris() similality = np.cov(iris.data) df = pdml.ModelFrame(similality) result = df.cluster.affinity_propagation() expected = cluster.affinity_propagation(similality) self.assertEqual(len(result), 2) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertIsInstance(result[1], pdml.ModelSeries) tm.assert_index_equal(result[1].index, df.index) tm.assert_numpy_array_equal(result[1].values, expected[1]) def test_affinity_propagation_class(self): from sklearn.datasets.samples_generator import make_blobs centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) df = pdml.ModelFrame(data=X, target=labels_true) af = df.cluster.AffinityPropagation(preference=-50) df.fit(af) af2 = cluster.AffinityPropagation(preference=-50).fit(X) tm.assert_numpy_array_equal(af.cluster_centers_indices_, af2.cluster_centers_indices_) tm.assert_numpy_array_equal(af.labels_, af2.labels_) def test_dbscan(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.cluster.dbscan() expected = cluster.dbscan(iris.data) self.assertEqual(len(result), 2) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertIsInstance(result[1], pdml.ModelSeries) tm.assert_index_equal(result[1].index, df.index) tm.assert_numpy_array_equal(result[1].values, expected[1]) def test_mean_shift(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.cluster.mean_shift() expected = cluster.mean_shift(iris.data) self.assertEqual(len(result), 2) self.assert_numpy_array_almost_equal(result[0], expected[0]) self.assertIsInstance(result[1], pdml.ModelSeries) tm.assert_index_equal(result[1].index, df.index) tm.assert_numpy_array_equal(result[1].values, expected[1]) def test_spectral_clustering(self): N = 50 m = np.random.random_integers(1, 200, size=(N, N)) m = (m + m.T) / 2 df = pdml.ModelFrame(m) result = df.cluster.spectral_clustering(random_state=self.random_state) expected = cluster.spectral_clustering(m, random_state=self.random_state) self.assertIsInstance(result, pdml.ModelSeries) tm.assert_index_equal(result.index, df.index) tm.assert_numpy_array_equal(result.values, expected) @pytest.mark.parametrize("algo", ['KMeans', 'MiniBatchKMeans']) def test_KMeans(self, algo): iris = datasets.load_iris() df = pdml.ModelFrame(iris) mod1 = getattr(df.cluster, algo)(3, random_state=self.random_state) mod2 = getattr(cluster, algo)(3, random_state=self.random_state) df.fit(mod1) mod2.fit(iris.data) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) def test_KMeans_scores(self): digits = datasets.load_digits() df = pdml.ModelFrame(digits) scaled = pp.scale(digits.data) df.data = df.data.pp.scale() self.assert_numpy_array_almost_equal(df.data.values, scaled) clf1 = cluster.KMeans(init='k-means++', n_clusters=10, n_init=10, random_state=self.random_state) clf2 = df.cluster.KMeans(init='k-means++', n_clusters=10, n_init=10, random_state=self.random_state) clf1.fit(scaled) df.fit_predict(clf2) expected = m.homogeneity_score(digits.target, clf1.labels_) self.assertEqual(df.metrics.homogeneity_score(), expected) expected = m.completeness_score(digits.target, clf1.labels_) self.assertEqual(df.metrics.completeness_score(), expected) expected = m.v_measure_score(digits.target, clf1.labels_) self.assertEqual(df.metrics.v_measure_score(), expected) expected = m.adjusted_rand_score(digits.target, clf1.labels_) self.assertEqual(df.metrics.adjusted_rand_score(), expected) expected = m.homogeneity_score(digits.target, clf1.labels_) self.assertEqual(df.metrics.homogeneity_score(), expected) expected = m.silhouette_score(scaled, clf1.labels_, metric='euclidean', sample_size=300, random_state=self.random_state) result = df.metrics.silhouette_score(metric='euclidean', sample_size=300, random_state=self.random_state) self.assertAlmostEqual(result, expected) def test_Classifications(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) models = ['AffinityPropagation', 'MeanShift'] for model in models: mod1 = getattr(df.cluster, model)() mod2 = getattr(cluster, model)() df.fit(mod1) mod2.fit(iris.data) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) @pytest.mark.parametrize("algo", ['KMeans', 'MiniBatchKMeans']) def test_fit_predict(self, algo): iris = datasets.load_iris() df = pdml.ModelFrame(iris) mod1 = getattr(df.cluster, algo)(3, random_state=self.random_state) mod2 = getattr(cluster, algo)(3, random_state=self.random_state) result = df.fit_predict(mod1) expected = mod2.fit_predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) result = df.score(mod1) expected = mod2.score(iris.data) self.assert_numpy_array_almost_equal(result, expected) @pytest.mark.parametrize("algo", ['SpectralBiclustering', 'SpectralCoclustering']) def test_Bicluster(self, algo): data, rows, columns = datasets.make_checkerboard( shape=(300, 300), n_clusters=5, noise=10, shuffle=True, random_state=self.random_state) df = pdml.ModelFrame(data) mod1 = getattr(df.cluster.bicluster, algo)(3, random_state=self.random_state) mod2 = getattr(cluster.bicluster, algo)(3, random_state=self.random_state) df.fit(mod1) mod2.fit(data) self.assert_numpy_array_almost_equal(mod1.biclusters_, mod2.biclusters_)
{ "content_hash": "c828ccc8b27d48a488e343648cf25905", "timestamp": "", "source": "github", "line_count": 252, "max_line_length": 90, "avg_line_length": 40.18650793650794, "alnum_prop": 0.6283203317863139, "repo_name": "sinhrks/expandas", "id": "c992a8f45baf5fa92a8cce1b73b9321c2751f3c3", "size": "10150", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pandas_ml/skaccessors/test/test_cluster.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "387987" }, { "name": "Shell", "bytes": "816" } ], "symlink_target": "" }
import json from django.contrib.auth.models import Group from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import get_object_or_404 from django.template.response import TemplateResponse from . import models from .utils import Form def form(request, form_slug, data=None): form_spec = get_object_or_404(models.FormSpec, slug=form_slug) if request.method == 'POST': form = Form(request.user, form_spec, request.POST) if form.is_valid(): form.save() return HttpResponseRedirect('.') else: form = Form(request.user, form_spec, data=data) return TemplateResponse( request, 'dittoforms/form.html', {'form': form} ) # @login_required def response(request, form_slug): form_spec = get_object_or_404(models.FormSpec, slug=form_slug) # TODO need to configure if multiple submissions are required submissions = models.FormSubmission.objects.filter( form=form_spec, user=request.user ) return HttpResponse(submissions[0].data) def edit(request, form_slug): form_spec = get_object_or_404(models.FormSpec, slug=form_slug) # TODO need to configure if multiple submissions are required submissions = models.FormSubmission.objects.filter( form=form_spec, user=request.user ) data = json.loads(submissions[0].data) return form(request, form_slug, data) # TODO full rest_framework goodness here, just hacking this together for now from django.views.decorators.csrf import csrf_exempt @csrf_exempt # TODO remove this when remembered how to add token to ajax requests def api(request, role_name): form_spec = get_object_or_404( models.FormSpec, regform__role__name=role_name ) if request.method == 'GET': return HttpResponse( form_spec.spec, content_type='application/json' ) else: form_spec.spec = request.body form_spec.save() return HttpResponse() # 200 ok
{ "content_hash": "538386da80390e21e57a44adea05ffd7", "timestamp": "", "source": "github", "line_count": 65, "max_line_length": 82, "avg_line_length": 31.353846153846153, "alnum_prop": 0.6766437684003925, "repo_name": "Kvoti/ditto", "id": "509e9607471e43bbb4ac9d8ae039313bfabb0207", "size": "2038", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ditto/dittoforms/views.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "315024" }, { "name": "HTML", "bytes": "1012831" }, { "name": "JavaScript", "bytes": "539187" }, { "name": "Python", "bytes": "200035" }, { "name": "Ruby", "bytes": "1183" }, { "name": "Shell", "bytes": "895" } ], "symlink_target": "" }
from __future__ import print_function import os from django.db.models.fields import SlugField import re from django.template.loader import get_template from django.template import Context class Baker(object): """ Given a dictionary of apps and models, Baker will bake up a bunch of files that will help get your new app up and running quickly. """ def bake(self, apps_and_models): """ Iterates a dictionary of apps and models and creates all the necessary files to get up and running quickly. """ for app_label, models in apps_and_models.iteritems(): model_names = {model.__name__: self.get_field_names_for_model(model) for model in models} self.create_directories(app_label) self.create_init_files(app_label, model_names.keys(), models) self.remove_empty_startapp_files(app_label) for file_name in ["forms", "admin"]: file_path = "%s/%s.py" % (app_label, file_name) template_path = "django_baker/%s" % (file_name) self.create_file_from_template(file_path, template_path, {"model_names": model_names}) for model in models: model_attributes = self.model_attributes(app_label, model) self.create_files_from_templates(model_attributes) def get_field_names_for_model(self, model): """ Returns fields other than id and uneditable fields (DateTimeField where auto_now or auto_now_add is True) """ return [field.name for field in model._meta.fields if field.name != "id" and not (field.get_internal_type() == "DateTimeField" and (field.auto_now is True or field.auto_now_add is True))] def create_directories(self, app_label): """ If not already there, adds a directory for views, urls and templates. """ for folder_name in ["views", "urls", "templates/%s" % app_label]: directory_path = "%s/%s" % (app_label, folder_name) if not os.path.exists(directory_path): os.makedirs(directory_path) def create_init_files(self, app_label, model_names, models): """ If not already there, creates a new init file in views and urls directory. Init file imports from all of the files within the directory. """ model_name_slugs = ["%s_views" % (self.camel_to_slug(model_name)) for model_name in model_names] model_names_dict = {self.camel_to_slug(model.__name__): self.camel_to_slug(self.model_name_plural(model)) for model in models} for folder_name in ["views", "urls"]: file_path = "%s/%s/__init__.py" % (app_label, folder_name) template_path = "django_baker/__init__%s" % folder_name self.create_file_from_template(file_path, template_path, {"app_label": app_label, "model_name_slugs": model_name_slugs, "model_names_dict": model_names_dict }) def model_attributes(self, app_label, model): """ Creates a dictionary of model attributes that will be used in the templates. """ model_name = model.__name__ model_name_plural = self.model_name_plural(model) slug_field = self.get_unique_slug_field_name(model) slug_field_name = slug_field.name if slug_field else "slug" lookup_field = slug_field_name if slug_field else "pk" return { 'app_label': app_label, 'model': model, 'model_name': model_name, 'model_name_slug': self.camel_to_slug(model_name), 'model_name_plural': model_name_plural, 'model_name_plural_slug': self.camel_to_slug(model_name_plural), 'model_fields': self.get_field_names_for_model(model), 'slug_field': slug_field, 'slug_field_name': slug_field_name, 'lookup_field': lookup_field } def create_files_from_templates(self, model_attributes): """ Determines the correct path to put each file and then calls create file method. """ for folder_name in ["views", "urls"]: file_path = "%s/%s/%s_%s.py" % (model_attributes['app_label'], folder_name, model_attributes['model_name_slug'], folder_name) template_path = "django_baker/%s" % (folder_name) self.create_file_from_template(file_path, template_path, model_attributes) for file_name in ["base", "list", "detail", "create", "update", "delete"]: file_path = "%s/templates/%s/%s_%s.html" % (model_attributes['app_label'], model_attributes['app_label'], model_attributes['model_name_slug'], file_name) template_path = "django_baker/%s.html" % (file_name) self.create_file_from_template(file_path, template_path, model_attributes) def create_file_from_template(self, file_path, template_path, context_variables): """ Takes template file and context variables and uses django's render method to create new file. """ if os.path.exists(file_path): print("\033[91m" + file_path + " already exists. Skipping." + "\033[0m") return with open(file_path, 'w') as new_file: new_file.write(get_template(template_path).render(Context(context_variables))) print("\033[92m" + "successfully baked " + file_path + "\033[0m") def remove_empty_startapp_files(self, app_label): """ Removes 'empty' (less than or equal to 4 lines, as that is what they begin with) views, admin, and tests files. """ for file_name in ["views", "admin", "tests"]: file_path = "%s/%s.py" % (app_label, file_name) if os.path.exists(file_path): num_lines = sum(1 for line in open(file_path)) if num_lines <= 4: os.remove(file_path) def camel_to_slug(self, name): """ Helper method to convert camel case string (PumpernickelBread) to slug string (pumpernickel_bread) """ name = re.sub(r'([a-z])([A-Z])', r'\1 \2', name).title().replace(" ", "").replace("_", "") s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) slug = re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() return slug def model_name_plural(self, model): """ Gets the pluralized version of a model. Simply adds an 's' to model name if verbose_name_plural isn't set. """ if isinstance(model._meta.verbose_name_plural, str): return model._meta.verbose_name_plural return "%ss" % model.__name__ def get_unique_slug_field_name(self, model): """ Determines if model has exactly 1 SlugField that is unique. If so, returns it. Otherwise returns None. """ slug_fields = [] for field in model._meta.fields: if field.unique and isinstance(field, SlugField): slug_fields.append(field) if len(slug_fields) == 1: return slug_fields[0] return None
{ "content_hash": "2ebe5f5dfd17ea20eab8a4cfeb2859be", "timestamp": "", "source": "github", "line_count": 152, "max_line_length": 119, "avg_line_length": 49.348684210526315, "alnum_prop": 0.564591387814958, "repo_name": "ojengwa/django-baker", "id": "ff04ef3142f9cd91616e6d4b29563996ad52d04b", "size": "7501", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "django_baker/bakery.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "6016" }, { "name": "Python", "bytes": "19326" } ], "symlink_target": "" }
""" Created on Mon Dec 14 22:25:49 2016 Preprocessing Utilities for cleaning and processing of data @author: Rupak Chakraborty """ import pandas as pd from nltk.corpus import stopwords import string from nltk.stem import PorterStemmer stopword_list = set(stopwords.words("english")) punctuation_list = list(string.punctuation) ps = PorterStemmer() months_list = ["january","february","march","april","may","june","july","august", "september","october","november","december"] digit_list = ["0","1","2","3","4","5","6","7","8","9"] month_list_short = ["jan","feb","mar","apr","may","jun","jul","aug","sept","oct","nov","dec"] emoticon_list = [":)",":(","^_^","-_-","<3",":D",":P",":/"] html_tag_list = ["&nbsp","&lt","&gt","&amp",";","<strong>","<em>","[1]","</strong>","</em>","<div>","</div>","<b>","</b>","[2]","[3]","...","[img]","[/img]","<u>","</u>","<p>","</p>","\n","\\t","<span>", "</span>","[Moved]","<br/>","<a>","</a>","&quot","<br>","<br />","Â","<a rel=\"nofollow\" class=\"ot-hashtag\"","&#39","<a","’","&#39;"] extend_punct_list = [' ',',',':',';','\'','\t','\n','?','-','$',"!!","?","w/","!","!!!","w/","'","RT","rt","@","#","/",":)", ":(",":D","^_^","^","...","&","\\",":","?","<",">","$","%","*","`","~","-","_", "+","=","{","}","[","]","|","\"",",",";",")","(","r/","/u/","*","-"] punctuation_list.extend(extend_punct_list) #punctuation_list.remove(".") months_list.extend(month_list_short) """ Given a string normalizes it, i.e. converts it to lowercase and strips it of extra spaces Params: -------- s - String which is to be normalized Returns: --------- String in the normalized form """ def normalize_string(s): s = s.lower() s = s.strip() return s """ Given a list of strings normalizes the strings Params: ------- string_list - List containing the strings which are to be normalized Returns: --------- Returns a list containing the normalized string list """ def normalize_string_list(string_list): normalized_list = [] for sentence in string_list: normalized_list.append(normalize_string(sentence)) return normalized_list """ Given a string and a separator splits up the string in the tokens Params: -------- s - string which has to be tokenized separator - separator based on which the string is to be tokenized Returns: --------- A list of words in the sentence based on the separator """ def tokenize_string(s,separator): word_list = list([]) if isinstance(s,basestring): word_list = s.split(separator) return word_list """ Given a list of sentences tokenizes each sentence in the list Params: -------- string_list - List of sentences which have to be tokenized separator - Separator based on which the sentences have to be tokenized """ def tokenize_string_list(string_list,separator): tokenized_sentence_list = [] for sentence in string_list: sentence = sentence.encode("ascii","ignore") tokenized_sentence_list.append(tokenize_string(sentence,separator)) return tokenized_sentence_list """ Given a string containing stopwords removes all the stopwords Params: -------- s - String containing the stopwords which are to be removed Returns: --------- String sans the stopwords """ def remove_stopwords(s): s = s.lower() removed_string = '' words = s.split() for word in words: if word not in stopword_list: removed_string = removed_string + word.strip() + " " return removed_string.strip() """ Given a list of sentences and a filename, writes the sentences to the file Params: -------- sentence_list - List of sentences which have to be written to the file filename - File to which the sentences have to be written Returns: --------- Nothing quite just writes the sentences to the file """ def write_sentences_to_file(sentence_list,filename): write_file = open(filename,'w') for sentence in sentence_list: write_file.write(encode_ascii(sentence) + '\n') write_file.flush() write_file.close() """ Removes all the punctuations from a given string Params: -------- s - String containing the possible punctuations Returns: -------- String without the punctuations (including new lines and tabs) """ def remove_punctuations(s): s = s.lower() s = s.strip() for punctuation in punctuation_list: s = s.replace(punctuation,' ') return s.strip() """ Strips a given string of HTML tags Params: -------- s - String from which the HTML tags have to be removed Returns: --------- String sans the HTML tags """ def remove_html_tags(s): for tag in html_tag_list: s = s.replace(tag,' ') return s """ Given a string removes all the digits from them Params: ------- s - String from which the digits need to be removed Returns: --------- String without occurence of the digits """ def remove_digits(s): for digit in digit_list: s = s.replace(digit,'') return s """ Given a string returns all occurences of a month from it Params: -------- s - String containing possible month names Returns: -------- String wihtout the occurence of the months """ def remove_months(s): s = s.lower() words = s.split() without_month_list = [word for word in words if word not in months_list] month_clean_string = "" for word in without_month_list: month_clean_string = month_clean_string + word + " " return month_clean_string.strip() """ Checks if a given string contains all ASCII characters Params: ------- s - String which is to be checked for ASCII characters Returns: -------- True if the string contains all ASCII characters, False otherwise """ def is_ascii(s): if isinstance(s,basestring): return all(ord(c) < 128 for c in s) return False """ Given a string encodes it in ascii format Params: -------- s - String which is to be encoded Returns: -------- String encoded in ascii format """ def encode_ascii(s): return s.encode('ascii','ignore') """ Stems each word of a given sentence to it's root word using Porters Stemmer Params: -------- sentence - String containing the sentence which is to be stemmed Returns: --------- Sentence where each word has been stemmed to it's root word """ def stem_sentence(sentence): words = sentence.split() stemmed_sentence = "" for word in words: try: if is_ascii(word): stemmed_sentence = stemmed_sentence + ps.stem_word(word) + " " except: pass return stemmed_sentence.strip() """ Given a string removes urls from the string Params: -------- s - String containing urls which have to be removed Returns: -------- String without the occurence of the urls """ def remove_url(s): s = s.lower() words = s.split() without_url = "" for word in words: if word.count('http:') == 0 and word.count('https:') == 0 and word.count('ftp:') == 0 and word.count('www.') == 0 and word.count('.com') == 0 and word.count('.ly') == 0 and word.count('.st') == 0: without_url = without_url + word + " " return without_url.strip() """ Given a string removes all the words whose length is less than 3 Params: -------- s - String from which small words have to be removed. Returns: --------- Returns a string without occurence of small words """ def remove_small_words(s): words = s.split() clean_string = "" for word in words: if len(word) >= 3: clean_string = clean_string + word + " " return clean_string.strip() """ Defines the pipeline for cleaning and preprocessing of text Params: -------- s - String containing the text which has to be preprocessed Returns: --------- String which has been passed through the preprocessing pipeline """ def text_clean_pipeline(s): s = remove_url(s) s = remove_punctuations(s) s = remove_html_tags(s) s = remove_stopwords(s) s = remove_months(s) s = remove_digits(s) #s = stem_sentence(s) s = remove_small_words(s) return s """ Given a list of sentences processes the list through the pre-preprocessing pipeline and returns the list Params: -------- sentence_list - List of sentences which are to be cleaned Returns: --------- The cleaned and pre-processed sentence list """ def text_clean_pipeline_list(sentence_list): clean_sentence_list = list([]) for s in sentence_list: s = remove_digits(s) s = remove_punctuations(s) s = remove_stopwords(s) s = remove_months(s) s = remove_small_words(s) #s = encode_ascii(s) s = remove_url(s) s = stem_sentence(s) clean_sentence_list.append(s) return clean_sentence_list """ Given a excel filepath and a corresponding sheetname reads it and converts it into a dataframe Params: -------- filename - Filepath containing the location and name of the file sheetname - Name of the sheet containing the data Returns: --------- pandas dataframe containing the data from the excel file """ def get_dataframe_from_excel(filename,sheetname): xl_file = pd.ExcelFile(filename) data_frame = xl_file.parse(sheetname) return data_frame
{ "content_hash": "bcd5d1f1261ba323bb35532b8fc86126", "timestamp": "", "source": "github", "line_count": 418, "max_line_length": 204, "avg_line_length": 22.375598086124402, "alnum_prop": 0.61434833743184, "repo_name": "rupakc/Kaggle-Compendium", "id": "1e3f166073469fa7fb4a77b5a2aca897df8ad907", "size": "9383", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "Crowdflower Search Results Relevance/preprocess.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "24724" }, { "name": "Python", "bytes": "612030" } ], "symlink_target": "" }
import numpy as np from dipy.reconst.dti import (design_matrix, decompose_tensor, from_lower_triangular, lower_triangular) from dipy.reconst.vec_val_sum import vec_val_vect from dipy.core.ndindex import ndindex import scipy.optimize as opt # ------------------------------------------------------------------------- # Weigthed linear least squares fit procedure # ------------------------------------------------------------------------- def wls_iter(design_matrix, sig, S0, Diso=3e-3, mdreg=1.5e-3, min_signal=1.0e-6, piterations=3): """ Applies weighted linear least squares fit of the water free elimination model to single voxel signals. Parameters ---------- design_matrix : array (g, 7) Design matrix holding the covariants used to solve for the regression coefficients. sig : array (g, ) Diffusion-weighted signal for a single voxel data. S0 : float Non diffusion weighted signal (i.e. signal for b-value=0). Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. mdreg : float, optimal Tissue compartment mean diffusivity regularization threshold. If tissue's mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion parameters are set to zero). Default md_reg was set to 1.5e-3 $mm^{2}.s^{-1}$ according to [1]_. min_signal : float The minimum signal value. Needs to be a strictly positive number. Default: minimal signal in the data provided to `fit`. piterations : inter, optional Number of iterations used to refine the precision of f. Default is set to 3 corresponding to a precision of 0.01. Returns ------- All parameters estimated from the free water tensor model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment References ---------- .. [1] Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., Correia, M.M., 2017. Re: Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. ReScience """ W = design_matrix # Define weights S2 = np.diag(sig**2) # Defining matrix to solve fwDTI wls solution WTS2 = np.dot(W.T, S2) inv_WT_S2_W = np.linalg.pinv(np.dot(WTS2, W)) invWTS2W_WTS2 = np.dot(inv_WT_S2_W, WTS2) # Process voxel if it has significant signal from tissue if np.mean(sig) > min_signal and S0 > min_signal: # General free-water signal contribution fwsig = np.exp(np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, 0]))) df = 1 # initialize precision flow = 0 # lower f evaluated fhig = 1 # higher f evaluated ns = 9 # initial number of samples per iteration for p in range(piterations): df = df * 0.1 fs = np.linspace(flow+df, fhig-df, num=ns) # sampling f SFW = np.array([fwsig, ]*ns) # repeat contributions for all values FS, SI = np.meshgrid(fs, sig) SA = SI - FS*S0*SFW.T # SA < 0 means that the signal components from the free water # component is larger than the total fiber. This cases are present # for inapropriate large volume fractions (given the current S0 # value estimated). To overcome this issue negative SA are replaced # by data's min positive signal. SA[SA <= 0] = min_signal y = np.log(SA / (1-FS)) all_new_params = np.dot(invWTS2W_WTS2, y) # Select params for lower F2 SIpred = (1-FS)*np.exp(np.dot(W, all_new_params)) + FS*S0*SFW.T F2 = np.sum(np.square(SI - SIpred), axis=0) Mind = np.argmin(F2) params = all_new_params[:, Mind] f = fs[Mind] # Updated f flow = f - df # refining precision fhig = f + df ns = 19 if mdreg is None: evals, evecs = decompose_tensor(from_lower_triangular(params)) fw_params = np.concatenate((evals, evecs[0], evecs[1], evecs[2], np.array([f])), axis=0) else: # MD regularization - if tissue's md is larger than mdreg, # the voxel will be classified as containing only free water md = (params[0] + params[2] + params[5]) / 3 if md > mdreg: fw_params = np.zeros(13) fw_params[12] = 1.0 else: evals, evecs = decompose_tensor(from_lower_triangular(params)) fw_params = np.concatenate((evals, evecs[0], evecs[1], evecs[2], np.array([f])), axis=0) else: fw_params = np.zeros(13) return fw_params def wls_fit_tensor(gtab, data, Diso=3e-3, mask=None, min_signal=1.0e-6, piterations=3, mdreg=1.5e-3): r""" Computes weighted least squares (WLS) fit to calculate self-diffusion tensor using a linear regression model [1]_. Parameters ---------- gtab : a GradientTable class instance The gradient table containing diffusion acquisition parameters. data : ndarray ([X, Y, Z, ...], g) Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data. Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. mask : array, optional A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1] min_signal : float The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6. piterations : inter, optional Number of iterations used to refine the precision of f. Default is set to 3 corresponding to a precision of 0.01. mdreg : float, optimal Tissue compartment mean diffusivity regularization threshold. If tissue's mean diffusivity is almost near the free water diffusion value, the diffusion signal is assumed to be only free water diffusion (i.e. volume fraction will be set to 1 and tissue's diffusion parameters are set to zero). Default md_reg was set to 1.5e-3 $mm^{2}.s^{-1}$ according to [1]_. Returns ------- fw_params : ndarray (x, y, z, 13) Matrix containing in the last dimension the free water model parameters in the following order: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment. References ---------- .. [1] Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., Correia, M.M., 2017. Re: Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. ReScience """ fw_params = np.zeros(data.shape[:-1] + (13,)) W = design_matrix(gtab) # Prepare mask if mask is None: mask = np.ones(data.shape[:-1], dtype=bool) else: if mask.shape != data.shape[:-1]: raise ValueError("Mask is not the same shape as data.") mask = np.array(mask, dtype=bool, copy=False) # Prepare S0 S0 = np.mean(data[..., gtab.b0s_mask], axis=-1) index = ndindex(mask.shape) for v in index: if mask[v]: params = wls_iter(W, data[v], S0[v], min_signal=min_signal, Diso=3e-3, piterations=piterations, mdreg=mdreg) fw_params[v] = params return fw_params # ------------------------------------------------------------------------- # non-linear least squares fit procedure # ------------------------------------------------------------------------- def _nls_err_func(tensor_elements, design_matrix, data, Diso=3e-3, cholesky=False, f_transform=False): """ Error function for the non-linear least-squares fit of the tensor water elimination model. Parameters ---------- tensor_elements : array (8, ) The six independent elements of the diffusion tensor followed by -log(S0) and the volume fraction f of the water elimination compartment. Note that if cholesky is set to true, tensor elements are assumed to be written as Cholesky's decomposition elements. If f_transform is true, volume fraction f has to be converted to ft = arcsin(2*f - 1) + pi/2 design_matrix : array The design matrix data : array The voxel signal in all gradient directions Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. cholesky : bool, optional If true, the diffusion tensor elements were decomposed using cholesky decomposition. See fwdti.nls_fit_tensor Default: False f_transform : bool, optional If true, the water volume fraction was converted to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. See fwdti.nls_fit_tensor Default: True """ tensor = np.copy(tensor_elements) if cholesky: tensor[:6] = cholesky_to_lower_triangular(tensor[:6]) if f_transform: f = 0.5 * (1 + np.sin(tensor[7] - np.pi/2)) else: f = tensor[7] # This is the predicted signal given the params: y = (1-f) * np.exp(np.dot(design_matrix, tensor[:7])) + \ f * np.exp(np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, tensor[6]]))) # Compute the residuals return data - y def _nls_jacobian_func(tensor_elements, design_matrix, data, Diso=3e-3, cholesky=False, f_transform=False): """The Jacobian is the first derivative of the least squares error function. Parameters ---------- tensor_elements : array (8, ) The six independent elements of the diffusion tensor followed by -log(S0) and the volume fraction f of the water elimination compartment. Note that if f_transform is true, volume fraction f is converted to ft = arcsin(2*f - 1) + pi/2 design_matrix : array The design matrix Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. f_transform : bool, optional If true, the water volume fraction was converted to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. See fwdti.nls_fit_tensor Default: True """ tensor = np.copy(tensor_elements) if f_transform: f = 0.5 * (1 + np.sin(tensor[7] - np.pi/2)) else: f = tensor[7] t = np.exp(np.dot(design_matrix, tensor[:7])) s = np.exp(np.dot(design_matrix, np.array([Diso, 0, Diso, 0, 0, Diso, tensor[6]]))) T = (f-1.0) * t[:, None] * design_matrix S = np.zeros(design_matrix.shape) S[:, 6] = f * s if f_transform: df = (t-s) * (0.5*np.cos(tensor[7]-np.pi/2)) else: df = (t-s) return np.concatenate((T - S, df[:, None]), axis=1) def nls_iter(design_matrix, sig, S0, Diso=3e-3, mdreg=2.7e-3, min_signal=1.0e-6, cholesky=False, f_transform=True, jac=True): """ Applies non linear least squares fit of the water free elimination model to single voxel signals. Parameters ---------- design_matrix : array (g, 7) Design matrix holding the covariants used to solve for the regression coefficients. sig : array (g, ) Diffusion-weighted signal for a single voxel data. S0 : float Non diffusion weighted signal (i.e. signal for b-value=0). Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. min_signal : float The minimum signal value. Needs to be a strictly positive number. cholesky : bool, optional If true it uses cholesky decomposition to insure that diffusion tensor is positive define. Default: False f_transform : bool, optional If true, the water volume fractions is converted during the convergence procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. Default: True jac : bool Use the Jacobian? Default: False Returns ------- All parameters estimated from the free water tensor model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment. """ # Initial guess params = wls_iter(design_matrix, sig, S0, min_signal=min_signal, Diso=Diso) # Process voxel if it has significant signal from tissue if np.mean(sig) > min_signal and S0 > min_signal: # converting evals and evecs to diffusion tensor elements evals = params[:3] evecs = params[3:12].reshape((3, 3)) dt = lower_triangular(vec_val_vect(evecs, evals)) # Cholesky decomposition if requested if cholesky: dt = lower_triangular_to_cholesky(dt) # f transformation if requested if f_transform: f = np.arcsin(2*params[12] - 1) + np.pi/2 else: f = params[12] # Use the Levenberg-Marquardt algorithm wrapped in opt.leastsq start_params = np.concatenate((dt, [-np.log(S0), f]), axis=0) if jac: this_tensor, status = opt.leastsq(_nls_err_func, start_params[:8], args=(design_matrix, sig, Diso, cholesky, f_transform), Dfun=_nls_jacobian_func) else: this_tensor, status = opt.leastsq(_nls_err_func, start_params[:8], args=(design_matrix, sig, Diso, cholesky, f_transform)) # Invert the cholesky decomposition if this was requested if cholesky: this_tensor[:6] = cholesky_to_lower_triangular(this_tensor[:6]) # Invert f transformation if this was requested if f_transform: this_tensor[7] = 0.5 * (1 + np.sin(this_tensor[7] - np.pi/2)) # The parameters are the evals and the evecs: evals, evecs = decompose_tensor(from_lower_triangular(this_tensor[:6])) params = np.concatenate((evals, evecs[0], evecs[1], evecs[2], np.array([this_tensor[7]])), axis=0) return params def nls_fit_tensor(gtab, data, mask=None, Diso=3e-3, min_signal=1.0e-6, f_transform=True, cholesky=False, jac=True): """ Fit the water elimination tensor model using the non-linear least-squares. Parameters ---------- gtab : a GradientTable class instance The gradient table containing diffusion acquisition parameters. data : ndarray ([X, Y, Z, ...], g) Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data. mask : array, optional A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1] Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. min_signal : float The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6. f_transform : bool, optional If true, the water volume fractions is converted during the convergence procedure to ft = arcsin(2*f - 1) + pi/2, insuring f estimates between 0 and 1. Default: True cholesky : bool, optional If true it uses cholesky decomposition to insure that diffusion tensor is positive define. Default: False jac : bool Use the Jacobian? Default: False Returns ------- fw_params : ndarray (x, y, z, 13) Matrix containing in the last dimension the free water model parameters in the following order: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment References ---------- .. [1] Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., Correia, M.M., 2017. Re: Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. ReScience """ # Analyse compatible input cases if jac is True and cholesky is True: raise ValueError("Cholesky decomposition is not compatible with jac.") fw_params = np.zeros(data.shape[:-1] + (13,)) W = design_matrix(gtab) # Prepare mask if mask is None: mask = np.ones(data.shape[:-1], dtype=bool) else: if mask.shape != data.shape[:-1]: raise ValueError("Mask is not the same shape as data.") mask = np.array(mask, dtype=bool, copy=False) # Prepare S0 S0 = np.mean(data[..., gtab.b0s_mask], axis=-1) # Loop data fitting through all voxels index = ndindex(mask.shape) for v in index: if mask[v]: params = nls_iter(W, data[v], S0[v], Diso=Diso, min_signal=min_signal, f_transform=f_transform, cholesky=cholesky, jac=jac) fw_params[v] = params return fw_params def lower_triangular_to_cholesky(tensor_elements): """ Perfoms Cholesky decompostion of the diffusion tensor Parameters ---------- tensor_elements : array (6,) Array containing the six elements of diffusion tensor's lower triangular. Returns ------- cholesky_elements : array (6,) Array containing the six Cholesky's decomposition elements (R0, R1, R2, R3, R4, R5) [1]_. References ---------- .. [1] Koay, C.G., Carew, J.D., Alexander, A.L., Basser, P.J., Meyerand, M.E., 2006. Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic Resonance in Medicine, 55(4), 930-936. doi:10.1002/mrm.20832 """ R0 = np.sqrt(tensor_elements[0]) R3 = tensor_elements[1] / R0 R1 = np.sqrt(tensor_elements[2] - R3**2) R5 = tensor_elements[3] / R0 R4 = (tensor_elements[4] - R3*R5) / R1 R2 = np.sqrt(tensor_elements[5] - R4**2 - R5**2) return np.array([R0, R1, R2, R3, R4, R5]) def cholesky_to_lower_triangular(R): """ Convert Cholesky decompostion elements to the diffusion tensor elements Parameters ---------- R : array (6,) Array containing the six Cholesky's decomposition elements (R0, R1, R2, R3, R4, R5) [1]_. Returns ------- tensor_elements : array (6,) Array containing the six elements of diffusion tensor's lower triangular. References ---------- .. [1] Koay, C.G., Carew, J.D., Alexander, A.L., Basser, P.J., Meyerand, M.E., 2006. Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic Resonance in Medicine, 55(4), 930-936. doi:10.1002/mrm.20832 """ Dxx = R[0]**2 Dxy = R[0]*R[3] Dyy = R[1]**2 + R[3]**2 Dxz = R[0]*R[5] Dyz = R[1]*R[4] + R[3]*R[5] Dzz = R[2]**2 + R[4]**2 + R[5]**2 return np.array([Dxx, Dxy, Dyy, Dxz, Dyz, Dzz]) # ------------------------------------------------------------------------- # Supplementary function # ------------------------------------------------------------------------- def nls_iter_bounds(design_matrix, sig, S0, Diso=3e-3, min_signal=1.0e-6, bounds=None, jac=True): """ Applies non-linear least-squares fit with constraints of the water free elimination model to single voxel signals. Parameters ---------- design_matrix : array (g, 7) Design matrix holding the covariants used to solve for the regression coefficients. sig : array (g, ) Diffusion-weighted signal for a single voxel data. S0 : float Non diffusion weighted signal (i.e. signal for b-value=0). Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. min_signal : float The minimum signal value. Needs to be a strictly positive number. bounds : 2-tuple of arrays with 14 elements, optional Lower and upper bounds on fwdti model variables and the log of non-diffusion signal S0. Use np.inf with an appropriate sign to disable bounds on all or some variables. When bounds is set to None the following default variable bounds is used: ([0., -Diso, 0., -Diso, -Diso, 0., 0., np.exp(-10.)], [Diso, Diso, Diso, Diso, Diso, Diso, 1., np.exp(10.)]) jac : bool Use the Jacobian? Default: False Returns ------- All parameters estimated from the free water tensor model. Parameters are ordered as follows: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment. References ---------- .. [1] Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., Correia, M.M., 2017. Re: Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. ReScience """ # Initial guess params = wls_iter(design_matrix, sig, S0, min_signal=min_signal, Diso=Diso) # Set bounds if bounds is None: bounds = ([0., -Diso, 0., -Diso, -Diso, 0., -10., 0], [Diso, Diso, Diso, Diso, Diso, Diso, 10., 1]) else: # In the helper subfunctions it was easier to have log(S0) first than # the water volume. Therefore, we have to reorder the boundaries if # specified by the user S0low = np.log(bounds[0][7]) S0hig = np.log(bounds[1][7]) bounds[0][7] = bounds[0][6] bounds[1][7] = bounds[1][6] bounds[0][6] = S0low bounds[1][6] = S0hig # Process voxel if it has significant signal from tissue if np.mean(sig) > min_signal and S0 > min_signal: # converting evals and evecs to diffusion tensor elements evals = params[:3] evecs = params[3:12].reshape((3, 3)) dt = lower_triangular(vec_val_vect(evecs, evals)) f = params[12] # Use the Levenberg-Marquardt algorithm wrapped in opt.leastsq start_params = np.concatenate((dt, [-np.log(S0), f]), axis=0) lb = np.array(bounds[0]) ub = np.array(bounds[1]) start_params[start_params < lb] = lb[start_params < lb] start_params[start_params > ub] = ub[start_params > ub] if jac: out = opt.least_squares(_nls_err_func, start_params[:8], args=(design_matrix, sig, Diso, False, False), jac=_nls_jacobian_func, bounds=bounds) else: out = opt.least_squares(_nls_err_func, start_params[:8], args=(design_matrix, sig, Diso, False, False), bounds=bounds) this_tensor = out.x # The parameters are the evals and the evecs: evals, evecs = decompose_tensor(from_lower_triangular(this_tensor[:6])) params = np.concatenate((evals, evecs[0], evecs[1], evecs[2], np.array([this_tensor[7]])), axis=0) return params def nls_fit_tensor_bounds(gtab, data, mask=None, Diso=3e-3, min_signal=1.0e-6, bounds=None, jac=True): """ Fit the water elimination tensor model using the non-linear least-squares with constraints gtab : a GradientTable class instance The gradient table containing diffusion acquisition parameters. data : ndarray ([X, Y, Z, ...], g) Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data. mask : array, optional A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1] Diso : float, optional Value of the free water isotropic diffusion. Default is set to 3e-3 $mm^{2}.s^{-1}$. Please ajust this value if you are assuming different units of diffusion. min_signal : float The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6. bounds : 2-tuple of arrays with 14 elements, optional Lower and upper bounds on fwdti model variables and the log of non-diffusion signal S0. Use np.inf with an appropriate sign to disable bounds on all or some variables. When bounds is set to None the following default variable bounds is used: ([0., -Diso, 0., -Diso, -Diso, 0., 0., np.exp(-10.)], [Diso, Diso, Diso, Diso, Diso, Diso, 1., np.exp(10.)]) jac : bool Use the Jacobian? Default: False Returns ------- fw_params : ndarray (x, y, z, 13) Matrix containing in the last dimension the free water model parameters in the following order: 1) Three diffusion tensor's eigenvalues 2) Three lines of the eigenvector matrix each containing the first, second and third coordinates of the eigenvector 3) The volume fraction of the free water compartment References ---------- .. [1] Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., Correia, M.M., 2017. Re: Optimization of a free water elimination two-compartmental model for diffusion tensor imaging. ReScience """ fw_params = np.zeros(data.shape[:-1] + (13,)) W = design_matrix(gtab) # Prepare mask if mask is None: mask = np.ones(data.shape[:-1], dtype=bool) else: if mask.shape != data.shape[:-1]: raise ValueError("Mask is not the same shape as data.") mask = np.array(mask, dtype=bool, copy=False) # Prepare S0 S0 = np.mean(data[:, :, :, gtab.b0s_mask], axis=-1) index = ndindex(mask.shape) for v in index: if mask[v]: params = nls_iter_bounds(W, data[v], S0[v], Diso=Diso, min_signal=min_signal, bounds=bounds, jac=jac) fw_params[v] = params return fw_params
{ "content_hash": "d7fd9bf8b36e9e461130085bf0e559ae", "timestamp": "", "source": "github", "line_count": 709, "max_line_length": 79, "avg_line_length": 40.44428772919605, "alnum_prop": 0.5873757628596338, "repo_name": "RafaelNH/Reproduce-Hoy-et-al-2014", "id": "f9f395aa27445a09952db3646778c14cd1254c01", "size": "29304", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "code/functions.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "87864" }, { "name": "Python", "bytes": "18447" } ], "symlink_target": "" }
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/ipv4-internal-reachability/prefixes/prefixes/delay-metric/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State parameters of delay-metric. """ __slots__ = ("_path_helper", "_extmethods", "__metric", "__flags") _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__metric = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) self.__flags = YANGDynClass( base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "ipv4-internal-reachability", "prefixes", "prefixes", "delay-metric", "state", ] def _get_metric(self): """ Getter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/metric (oc-isis-types:narrow-metric) YANG Description: ISIS delay metric value. This metric measures the transit delay of the associated circuit. It is an optional metric, which if assigned to a circuit shall have a positive integral value. Higher values indicate a longer transit delay. """ return self.__metric def _set_metric(self, v, load=False): """ Setter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/metric (oc-isis-types:narrow-metric) If this variable is read-only (config: false) in the source YANG file, then _set_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_metric() directly. YANG Description: ISIS delay metric value. This metric measures the transit delay of the associated circuit. It is an optional metric, which if assigned to a circuit shall have a positive integral value. Higher values indicate a longer transit delay. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8, ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """metric must be of a type compatible with oc-isis-types:narrow-metric""", "defined-type": "oc-isis-types:narrow-metric", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..63']}), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-isis-types:narrow-metric', is_config=False)""", } ) self.__metric = t if hasattr(self, "_set"): self._set() def _unset_metric(self): self.__metric = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) def _get_flags(self): """ Getter method for flags, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/flags (isis-metric-flags) YANG Description: ISIS Delay Metric Flags. """ return self.__flags def _set_flags(self, v, load=False): """ Setter method for flags, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/flags (isis-metric-flags) If this variable is read-only (config: false) in the source YANG file, then _set_flags is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_flags() directly. YANG Description: ISIS Delay Metric Flags. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """flags must be of a type compatible with isis-metric-flags""", "defined-type": "openconfig-network-instance:isis-metric-flags", "generated-type": """YANGDynClass(base=TypedListType(allowed_type=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'INTERNAL': {}, 'UNSUPPORTED': {}},)), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='isis-metric-flags', is_config=False)""", } ) self.__flags = t if hasattr(self, "_set"): self._set() def _unset_flags(self): self.__flags = YANGDynClass( base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) metric = __builtin__.property(_get_metric) flags = __builtin__.property(_get_flags) _pyangbind_elements = OrderedDict([("metric", metric), ("flags", flags)]) class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/ipv4-internal-reachability/prefixes/prefixes/delay-metric/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State parameters of delay-metric. """ __slots__ = ("_path_helper", "_extmethods", "__metric", "__flags") _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__metric = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) self.__flags = YANGDynClass( base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "ipv4-internal-reachability", "prefixes", "prefixes", "delay-metric", "state", ] def _get_metric(self): """ Getter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/metric (oc-isis-types:narrow-metric) YANG Description: ISIS delay metric value. This metric measures the transit delay of the associated circuit. It is an optional metric, which if assigned to a circuit shall have a positive integral value. Higher values indicate a longer transit delay. """ return self.__metric def _set_metric(self, v, load=False): """ Setter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/metric (oc-isis-types:narrow-metric) If this variable is read-only (config: false) in the source YANG file, then _set_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_metric() directly. YANG Description: ISIS delay metric value. This metric measures the transit delay of the associated circuit. It is an optional metric, which if assigned to a circuit shall have a positive integral value. Higher values indicate a longer transit delay. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8, ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """metric must be of a type compatible with oc-isis-types:narrow-metric""", "defined-type": "oc-isis-types:narrow-metric", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..63']}), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-isis-types:narrow-metric', is_config=False)""", } ) self.__metric = t if hasattr(self, "_set"): self._set() def _unset_metric(self): self.__metric = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["1..63"]}, ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:narrow-metric", is_config=False, ) def _get_flags(self): """ Getter method for flags, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/flags (isis-metric-flags) YANG Description: ISIS Delay Metric Flags. """ return self.__flags def _set_flags(self, v, load=False): """ Setter method for flags, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes/delay_metric/state/flags (isis-metric-flags) If this variable is read-only (config: false) in the source YANG file, then _set_flags is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_flags() directly. YANG Description: ISIS Delay Metric Flags. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """flags must be of a type compatible with isis-metric-flags""", "defined-type": "openconfig-network-instance:isis-metric-flags", "generated-type": """YANGDynClass(base=TypedListType(allowed_type=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'INTERNAL': {}, 'UNSUPPORTED': {}},)), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='isis-metric-flags', is_config=False)""", } ) self.__flags = t if hasattr(self, "_set"): self._set() def _unset_flags(self): self.__flags = YANGDynClass( base=TypedListType( allowed_type=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"INTERNAL": {}, "UNSUPPORTED": {}}, ) ), is_leaf=False, yang_name="flags", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="isis-metric-flags", is_config=False, ) metric = __builtin__.property(_get_metric) flags = __builtin__.property(_get_flags) _pyangbind_elements = OrderedDict([("metric", metric), ("flags", flags)])
{ "content_hash": "2b57cf15c04978f125bdee9f27c3e383", "timestamp": "", "source": "github", "line_count": 549, "max_line_length": 571, "avg_line_length": 42.92714025500911, "alnum_prop": 0.5671489795052403, "repo_name": "napalm-automation/napalm-yang", "id": "9fe7cf3e42e99b8c3d8d9c7d3f48467d68dad8e1", "size": "23591", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/ipv4_internal_reachability/prefixes/prefixes_/delay_metric/state/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "370237" }, { "name": "Jupyter Notebook", "bytes": "152135" }, { "name": "Makefile", "bytes": "1965" }, { "name": "Python", "bytes": "105688785" }, { "name": "Roff", "bytes": "1632" } ], "symlink_target": "" }
import Command import recalboxFiles from generators.Generator import Generator import advMameControllers import shutil import os.path class AdvMameGenerator(Generator): # Main entry of the module def generate(self, system, rom, playersControllers): romName = os.path.basename(os.path.splitext(rom)[0]) commandArray = [recalboxFiles.recalboxBins[system.config['emulator']]] if not system.config['configfile']: # Using recalbox config file system.config['configfile'] = recalboxFiles.advancemameConfig advMameControllers.writeControllersConfig(system, playersControllers) if 'args' in system.config and system.config['args'] is not None: commandArray.extend(system.config['args']) commandArray.extend( ['-cfg', system.config['configfile']] ) commandArray.append(romName) #~ return Command.Command(videomode=system.config['videomode'], array=commandArray, env={"TERM":"linux"}) return Command.Command(videomode='default', array=commandArray, env={"TERM":"linux"})
{ "content_hash": "630b910b498d79708ea4de4ad81a67a9", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 113, "avg_line_length": 41.592592592592595, "alnum_prop": 0.6821015138023152, "repo_name": "digitalLumberjack/recalbox-configgen", "id": "7e149daa574f9f023a9de8fbd2491bf5dcddda1f", "size": "1145", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "configgen/generators/advancemame/advMameGenerator.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "131403" } ], "symlink_target": "" }
import dork_compose.plugin import os from compose.config.config import VolumeSpec from docker.api.client import APIClient import logging log = logging.getLogger(__name__) import time from docker.errors import APIError class Plugin(dork_compose.plugin.Plugin): def get_hotcode_volumes(self, service): root = None source = '.' hotcode = '' try: image = service.client.inspect_image(service.image_name) if image.get('Config', {}).get('Labels'): root = image.get('Config', {}).get('Labels', {}).get('dork.root') source = image.get('Config', {}).get('Labels', {}).get('dork.source', '.') hotcode = image.get('Config', {}).get('Labels', {}).get('dork.hotcode', '') except APIError: pass if isinstance(service.options.get('labels'), dict): root = service.options.get('labels', {}).get('dork.root', root) source = service.options.get('labels', {}).get('dork.source', source) hotcode = service.options.get('labels').get('dork.hotcode', hotcode) if hotcode and not root: log.warn('Service %s has no dork.root information, can\'t apply hot code directories.' % service.name) return [] paths = filter(lambda x: x, hotcode.split(';')) return [VolumeSpec.parse(':'.join([ '%s/%s/%s' % (self.env['DORK_SOURCE'], source, path), '%s/%s' % (root.rstrip('/'), path), 'cached' ])) for path in paths] def creating_container(self, service): """ Inject volumes for all hot code paths. """ self.sync_code(service=service) externals = [v.external for v in service.options['volumes']] for v in self.get_hotcode_volumes(service): if v.external not in externals: service.options['volumes'].append(v) def sync_code(self, service): client = APIClient() root = None source = '.' hotcode = '' try: image = service.client.inspect_image(service.image_name) if image.get('Config', {}).get('Labels'): root = image.get('Config', {}).get('Labels', {}).get('dork.root') source = image.get('Config', {}).get('Labels', {}).get('dork.source', '.') hotcode = image.get('Config', {}).get('Labels', {}).get('dork.hotcode', '') except APIError: pass if isinstance(service.options.get('labels'), dict): root = service.options.get('labels', {}).get('dork.root', root) source = service.options.get('labels', {}).get('dork.source', source) hotcode = service.options.get('labels').get('dork.hotcode', hotcode) skip = filter(lambda x: x, hotcode.split(';')) if hotcode else [] # Don't sync if there are no hotcode directories. if not skip or '.' in skip: return skip.append('.git') skip.append('.auth') skip.append('.no_auth') skip.append('.no_auth.*') skip.append('.env') skip.append('.dork.env') skip.append('.dockerignore') skip.append('Dockerfile') skip.append('.dork.dockerignore') skip.append('.dork.Dockerfile') lib = '/'.join(filter(lambda x: len(x), [ os.path.expanduser(self.env.get('DORK_LIBRARY_PATH', '')), os.path.expanduser(self.env.get('DORK_LIBRARY', '')), ])) # Ignore all files, that docker and dork ignore. ignore_files = [ '%s/.dockerignore' % lib, '.dockerignore', '%s/.dork.dockerignore' % lib, '.dork.dockerignore', ] for ignore_file in ignore_files: if os.path.isfile(ignore_file): with open(ignore_file) as f: skip += f.read().splitlines() if not (source and root): return try: client.inspect_image('iamdork/rsync') except APIError: client.pull('iamdork/rsync') container = client.create_container( image=service.image_name, volumes=[root], )['Id'] try: dork_source = self.env.get('DORK_SOURCE') src = '/'.join([root, source]) dst = '/'.join([dork_source, source]) log.info("Synching %s to %s." % (src, dst)) sync = client.create_container( image='iamdork/rsync', volumes=['/destination'], cpu_shares=256, host_config=client.create_host_config( binds=['%s:/destination' % dst], volumes_from=container ), environment={ 'SOURCE': src, 'EXCLUDE': ' '.join(skip) } )['Id'] try: client.start(sync) while client.inspect_container(sync)['State']['Running']: time.sleep(0.5) finally: client.remove_container(sync) finally: client.remove_container(container)
{ "content_hash": "c7d3d93164b381fde6f3bbd2d517f944", "timestamp": "", "source": "github", "line_count": 151, "max_line_length": 114, "avg_line_length": 34.71523178807947, "alnum_prop": 0.520030522701259, "repo_name": "iamdork/compose", "id": "843b9020ec1a1758f7856f08c723a14a76809a20", "size": "5242", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dork_compose/plugins/hotcode.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "228" }, { "name": "Nginx", "bytes": "710" }, { "name": "PHP", "bytes": "51" }, { "name": "Python", "bytes": "67396" }, { "name": "Shell", "bytes": "14433" } ], "symlink_target": "" }
from distutils.core import setup DESCRIPTION = "General tools for Astronomical Time Series in Python" LONG_DESCRIPTION = """ gatspy: General tools for Astronomical Time Series in Python ============================================================ Gatspy (pronounced as F. Scott Fitzgerald might pronounce it) is a collection of tools for analyzing astronomical time series in Python. For more information, visit http://github.com/astroml/gatspy/ """ NAME = "gatspy" AUTHOR = "Jake VanderPlas" AUTHOR_EMAIL = "[email protected]" MAINTAINER = "Jake VanderPlas" MAINTAINER_EMAIL = "[email protected]" URL = 'http://github.com/astroml/gatspy' DOWNLOAD_URL = 'http://github.com/astroml/gatspy' LICENSE = 'BSD 3-clause' import gatspy VERSION = gatspy.__version__ setup(name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, author=AUTHOR, author_email=AUTHOR_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, url=URL, download_url=DOWNLOAD_URL, license=LICENSE, packages=['gatspy', 'gatspy.tests', 'gatspy.periodic', 'gatspy.periodic.tests', 'gatspy.datasets', 'gatspy.datasets.tests', ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4'], )
{ "content_hash": "b6917824a3abc82c503984ead07233e4", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 136, "avg_line_length": 33.19230769230769, "alnum_prop": 0.6176129779837776, "repo_name": "bsipocz/gatspy", "id": "4667c11240f4356dba86ca8790231558b420cf7e", "size": "1726", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Makefile", "bytes": "217" }, { "name": "Python", "bytes": "112915" } ], "symlink_target": "" }
import mock from neutron.agent.common import ovs_lib from neutron.agent.linux import ovsdb_monitor from neutron.tests import base class TestOvsdbMonitor(base.BaseTestCase): def test___init__(self): ovsdb_monitor.OvsdbMonitor('Interface') def test___init___with_columns(self): columns = ['col1', 'col2'] with mock.patch( 'neutron.agent.linux.async_process.AsyncProcess.__init__') as init: ovsdb_monitor.OvsdbMonitor('Interface', columns=columns) cmd = init.call_args_list[0][0][0] self.assertEqual('col1,col2', cmd[-1]) def test___init___with_format(self): with mock.patch( 'neutron.agent.linux.async_process.AsyncProcess.__init__') as init: ovsdb_monitor.OvsdbMonitor('Interface', format='blob') cmd = init.call_args_list[0][0][0] self.assertEqual('--format=blob', cmd[-1]) class TestSimpleInterfaceMonitor(base.BaseTestCase): def setUp(self): super(TestSimpleInterfaceMonitor, self).setUp() self.monitor = ovsdb_monitor.SimpleInterfaceMonitor() def test_has_updates_is_false_if_active_with_no_output(self): target = ('neutron.agent.linux.ovsdb_monitor.SimpleInterfaceMonitor' '.is_active') with mock.patch(target, return_value=True): self.assertFalse(self.monitor.has_updates) def test__kill_sets_data_received_to_false(self): self.monitor.data_received = True with mock.patch( 'neutron.agent.linux.ovsdb_monitor.OvsdbMonitor._kill'): self.monitor._kill() self.assertFalse(self.monitor.data_received) def test__read_stdout_sets_data_received_and_returns_output(self): output = 'foo' with mock.patch( 'neutron.agent.linux.ovsdb_monitor.OvsdbMonitor._read_stdout', return_value=output): result = self.monitor._read_stdout() self.assertTrue(self.monitor.data_received) self.assertEqual(result, output) def test__read_stdout_does_not_set_data_received_for_empty_ouput(self): output = None with mock.patch( 'neutron.agent.linux.ovsdb_monitor.OvsdbMonitor._read_stdout', return_value=output): self.monitor._read_stdout() self.assertFalse(self.monitor.data_received) def test_has_updates_after_calling_get_events_is_false(self): with mock.patch.object( self.monitor, 'process_events') as process_events: self.monitor.new_events = {'added': ['foo'], 'removed': ['foo1']} self.assertTrue(self.monitor.has_updates) self.monitor.get_events() self.assertTrue(process_events.called) self.assertFalse(self.monitor.has_updates) def process_event_unassigned_of_port(self): output = '{"data":[["e040fbec-0579-4990-8324-d338da33ae88","insert",' output += '"m50",["set",[]],["map",[]]]],"headings":["row","action",' output += '"name","ofport","external_ids"]}' with mock.patch.object( self.monitor, 'iter_stdout', return_value=[output]): self.monitor.process_events() self.assertEqual(self.monitor.new_events['added'][0]['ofport'], ovs_lib.UNASSIGNED_OFPORT)
{ "content_hash": "b2cdecef9d2a6ca8e41b63288244329c", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 79, "avg_line_length": 41.0609756097561, "alnum_prop": 0.6186516186516187, "repo_name": "JianyuWang/neutron", "id": "dc41c96e009f5a93d102735be1bbba015ec38163", "size": "3973", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "neutron/tests/unit/agent/linux/test_ovsdb_monitor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "1047" }, { "name": "Python", "bytes": "7680418" }, { "name": "Shell", "bytes": "14690" } ], "symlink_target": "" }
from selenium import webdriver from pages.admin_panel_login_page import AdminPanelLoginPage from pages.add_to_cart_page import AddToCartPage from pages.main_page import MainPage from pages.select_product_page import SelectProductPage from pages.shopping_page import ShoppingPage from pages.add_to_user_page import AddToUserPage from pages.check_price_page import CheckPricePage from pages.check_price_yd_page import CheckPriceYDPage from pages.create_new_product_page import CreateNewProductPage from pages.add_new_product_page import AddNewProductPage from pages.add_new_products_in_basket_page import AddNewProductsInBasketPage from pages.check_true_page import CheckTruePage from pages.login_page import LoginPage from pages.country_zone_page import CountryZone class Application: def __init__(self): options = webdriver.ChromeOptions() options.add_argument("--start-maximized") self.driver = webdriver.Chrome(chrome_options=options) self.driver.implicitly_wait(10) self.admin_panel_login_page = AdminPanelLoginPage(self.driver) self.add_to_cart_page = AddToCartPage(self.driver) self.main_page = MainPage(self.driver) self.select_product_page = SelectProductPage(self.driver) self.shopping_page = ShoppingPage(self.driver) self.add_to_user_page = AddToUserPage(self.driver) self.check_price_page = CheckPricePage(self.driver) self.check_price_yd_page = CheckPriceYDPage(self.driver) self.create_new_product_page = CreateNewProductPage(self.driver) self.add_new_product_page = AddNewProductPage(self.driver) self.add_new_products_in_basket_page = AddNewProductsInBasketPage(self.driver) self.check_true_page = CheckTruePage(self.driver) self.login_page = LoginPage(self.driver) self.country_zone_page = CountryZone(self.driver) def quit(self): self.driver.quit() def login(self, username, password): self.admin_panel_login_page.open() self.admin_panel_login_page.enter_username(username) self.admin_panel_login_page.enter_password(password) self.admin_panel_login_page.submit_login()
{ "content_hash": "88a78a3680b5f47b2f493f6b6453db6f", "timestamp": "", "source": "github", "line_count": 47, "max_line_length": 86, "avg_line_length": 46.5531914893617, "alnum_prop": 0.746800731261426, "repo_name": "skostya64/Selenium_tasks", "id": "4a6c56030fc4f3b84c79e7a58f8da0df6bd639f9", "size": "2188", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/application.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "25896" } ], "symlink_target": "" }
import smtplib import pystache import os import html.parser from email.mime.text import MIMEText from werkzeug.utils import secure_filename from flask import url_for from truecraft.database import db from truecraft.objects import User from truecraft.config import _cfg, _cfgi def send_confirmation(user): if _cfg("smtp-host") == "": return smtp = smtplib.SMTP(_cfg("smtp-host"), _cfgi("smtp-port")) smtp.login(_cfg("smtp-user"), _cfg("smtp-password")) with open("emails/confirm-account") as f: message = MIMEText(html.parser.HTMLParser().unescape(\ pystache.render(f.read(), { 'user': user, "domain": _cfg("domain"), 'confirmation': user.confirmation }))) message['X-MC-Important'] = "true" message['X-MC-PreserveRecipients'] = "false" message['Subject'] = "Confirm your TrueCraft account" message['From'] = "[email protected]" message['To'] = user.email smtp.sendmail("[email protected]", [ user.email ], message.as_string()) smtp.quit() def send_reset(user): if _cfg("smtp-host") == "": return smtp = smtplib.SMTP(_cfg("smtp-host"), _cfgi("smtp-port")) smtp.login(_cfg("smtp-user"), _cfg("smtp-password")) with open("emails/reset") as f: message = MIMEText(html.parser.HTMLParser().unescape(\ pystache.render(f.read(), { 'user': user, "domain": _cfg("domain"), "protocol": _cfg("protocol"), 'confirmation': user.passwordReset }))) message['X-MC-Important'] = "true" message['X-MC-PreserveRecipients'] = "false" message['Subject'] = "Reset your TrueCraft password" message['From'] = "[email protected]" message['To'] = user.email smtp.sendmail("[email protected]", [ user.email ], message.as_string()) smtp.quit()
{ "content_hash": "a9d1de6633a8cae7018e6f26f14eaf9a", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 118, "avg_line_length": 38.458333333333336, "alnum_prop": 0.628385698808234, "repo_name": "MaxLeiter/truecraft.io", "id": "04b7eabd87cd527cbba9b59e423887aaf62c4518", "size": "1846", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "truecraft/email.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "2676" }, { "name": "HTML", "bytes": "25694" }, { "name": "Makefile", "bytes": "1117" }, { "name": "Mako", "bytes": "412" }, { "name": "Python", "bytes": "25831" } ], "symlink_target": "" }
import ujson as json from peachbox.task import Task """Copyright 2015 D. Britzger, P. Pahl, S. Schubert Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class ImportProperties(Task): """ Import attributes to define an edge. An edge (or also called `relationship`) relates two nodes (also called entity) with each other. Abstract class. Edged must implement functions: `rh_side`, `lh_side` and `partition_key`. """ def __init__(self): """Model defines schema of edge and must inhert from `peachbox.model.MasterDataSet`.""" self.ms = None def set_master_schema(self, master_schema): self.ms = master_schema def execute(self, rdd): if not self.ms: raise AttributeError return self.ms.fill_properties(rdd) # return rdd.map(lambda row: self.fill_properties(row))
{ "content_hash": "1a1b1b6b5bdb4a70ed23c1ad3904f16a", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 99, "avg_line_length": 34.35897435897436, "alnum_prop": 0.7082089552238806, "repo_name": "PeachstoneIO/peachbox", "id": "58353db8480274ea7d8a598be2063bdcce78cf4c", "size": "1340", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "peachbox/task/import_properties.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "125688" }, { "name": "Shell", "bytes": "655" } ], "symlink_target": "" }
from moto.core.responses import BaseResponse from moto.core.utils import tags_from_query_string from .models import eb_backends from .exceptions import InvalidParameterValueError class EBResponse(BaseResponse): def __init__(self): super().__init__(service_name="elasticbeanstalk") @property def backend(self): """ :rtype: EBBackend """ return eb_backends[self.current_account][self.region] def create_application(self): app = self.backend.create_application( application_name=self._get_param("ApplicationName") ) template = self.response_template(EB_CREATE_APPLICATION) return template.render(region_name=self.backend.region_name, application=app) def describe_applications(self): template = self.response_template(EB_DESCRIBE_APPLICATIONS) return template.render(applications=self.backend.applications.values()) def create_environment(self): application_name = self._get_param("ApplicationName") try: app = self.backend.applications[application_name] except KeyError: raise InvalidParameterValueError( f"No Application named '{application_name}' found." ) tags = tags_from_query_string(self.querystring, prefix="Tags.member") env = self.backend.create_environment( app, environment_name=self._get_param("EnvironmentName"), stack_name=self._get_param("SolutionStackName"), tags=tags, ) template = self.response_template(EB_CREATE_ENVIRONMENT) return template.render(environment=env, region=self.backend.region_name) def describe_environments(self): envs = self.backend.describe_environments() template = self.response_template(EB_DESCRIBE_ENVIRONMENTS) return template.render(environments=envs) def list_available_solution_stacks(self): return EB_LIST_AVAILABLE_SOLUTION_STACKS def update_tags_for_resource(self): resource_arn = self._get_param("ResourceArn") tags_to_add = tags_from_query_string( self.querystring, prefix="TagsToAdd.member" ) tags_to_remove = self._get_multi_param("TagsToRemove.member") self.backend.update_tags_for_resource(resource_arn, tags_to_add, tags_to_remove) return EB_UPDATE_TAGS_FOR_RESOURCE def list_tags_for_resource(self): resource_arn = self._get_param("ResourceArn") tags = self.backend.list_tags_for_resource(resource_arn) template = self.response_template(EB_LIST_TAGS_FOR_RESOURCE) return template.render(tags=tags, arn=resource_arn) EB_CREATE_APPLICATION = """ <CreateApplicationResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <CreateApplicationResult> <Application> <ConfigurationTemplates/> <DateCreated>2019-09-03T13:08:29.049Z</DateCreated> <ResourceLifecycleConfig> <VersionLifecycleConfig> <MaxAgeRule> <DeleteSourceFromS3>false</DeleteSourceFromS3> <MaxAgeInDays>180</MaxAgeInDays> <Enabled>false</Enabled> </MaxAgeRule> <MaxCountRule> <DeleteSourceFromS3>false</DeleteSourceFromS3> <MaxCount>200</MaxCount> <Enabled>false</Enabled> </MaxCountRule> </VersionLifecycleConfig> </ResourceLifecycleConfig> <ApplicationArn>{{ application.arn }}</ApplicationArn> <ApplicationName>{{ application.application_name }}</ApplicationName> <DateUpdated>2019-09-03T13:08:29.049Z</DateUpdated> </Application> </CreateApplicationResult> <ResponseMetadata> <RequestId>1b6173c8-13aa-4b0a-99e9-eb36a1fb2778</RequestId> </ResponseMetadata> </CreateApplicationResponse> """ EB_DESCRIBE_APPLICATIONS = """ <DescribeApplicationsResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <DescribeApplicationsResult> <Applications> {% for application in applications %} <member> <ConfigurationTemplates/> <DateCreated>2019-09-03T13:08:29.049Z</DateCreated> <ResourceLifecycleConfig> <VersionLifecycleConfig> <MaxAgeRule> <MaxAgeInDays>180</MaxAgeInDays> <DeleteSourceFromS3>false</DeleteSourceFromS3> <Enabled>false</Enabled> </MaxAgeRule> <MaxCountRule> <DeleteSourceFromS3>false</DeleteSourceFromS3> <MaxCount>200</MaxCount> <Enabled>false</Enabled> </MaxCountRule> </VersionLifecycleConfig> </ResourceLifecycleConfig> <ApplicationArn>{{ application.arn }}</ApplicationArn> <ApplicationName>{{ application.application_name }}</ApplicationName> <DateUpdated>2019-09-03T13:08:29.049Z</DateUpdated> </member> {% endfor %} </Applications> </DescribeApplicationsResult> <ResponseMetadata> <RequestId>015a05eb-282e-4b76-bd18-663fdfaf42e4</RequestId> </ResponseMetadata> </DescribeApplicationsResponse> """ EB_CREATE_ENVIRONMENT = """ <CreateEnvironmentResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <CreateEnvironmentResult> <SolutionStackName>{{ environment.solution_stack_name }}</SolutionStackName> <Health>Grey</Health> <EnvironmentArn>{{ environment.environment_arn }}</EnvironmentArn> <DateUpdated>2019-09-04T09:41:24.222Z</DateUpdated> <DateCreated>2019-09-04T09:41:24.222Z</DateCreated> <EnvironmentId>{{ environment_id }}</EnvironmentId> <PlatformArn>{{ environment.platform_arn }}</PlatformArn> <Tier> <Name>WebServer</Name> <Type>Standard</Type> <Version>1.0</Version> </Tier> <EnvironmentName>{{ environment.environment_name }}</EnvironmentName> <ApplicationName>{{ environment.application_name }}</ApplicationName> <Status>Launching</Status> </CreateEnvironmentResult> <ResponseMetadata> <RequestId>18dc8158-f5d7-4d5a-82ef-07fcaadf81c6</RequestId> </ResponseMetadata> </CreateEnvironmentResponse> """ EB_DESCRIBE_ENVIRONMENTS = """ <DescribeEnvironmentsResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <DescribeEnvironmentsResult> <Environments> {% for env in environments %} <member> <SolutionStackName>{{ env.solution_stack_name }}</SolutionStackName> <Health>Grey</Health> <EnvironmentArn>{{ env.environment_arn }}</EnvironmentArn> <MinCapacityEnabled>false</MinCapacityEnabled> <DateUpdated>2019-08-30T09:35:10.913Z</DateUpdated> <AbortableOperationInProgress>false</AbortableOperationInProgress> <Alerts/> <DateCreated>2019-08-22T07:02:47.332Z</DateCreated> <EnvironmentId>{{ env.environment_id }}</EnvironmentId> <VersionLabel>1</VersionLabel> <PlatformArn>{{ env.platform_arn }}</PlatformArn> <Tier> <Name>WebServer</Name> <Type>Standard</Type> <Version>1.0</Version> </Tier> <HealthStatus>No Data</HealthStatus> <EnvironmentName>{{ env.environment_name }}</EnvironmentName> <EndpointURL></EndpointURL> <CNAME></CNAME> <EnvironmentLinks/> <ApplicationName>{{ env.application_name }}</ApplicationName> <Status>Ready</Status> </member> {% endfor %} </Environments> </DescribeEnvironmentsResult> <ResponseMetadata> <RequestId>dd56b215-01a0-40b2-bd1e-57589c39424f</RequestId> </ResponseMetadata> </DescribeEnvironmentsResponse> """ # Current list as of 2019-09-04 EB_LIST_AVAILABLE_SOLUTION_STACKS = """ <ListAvailableSolutionStacksResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <ListAvailableSolutionStacksResult> <SolutionStacks> <member>64bit Amazon Linux 2018.03 v4.10.1 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.9.2 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.8.0 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.6.0 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.5.3 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.5.1 running Node.js</member> <member>64bit Amazon Linux 2018.03 v4.5.0 running Node.js</member> <member>64bit Amazon Linux 2017.09 v4.4.6 running Node.js</member> <member>64bit Amazon Linux 2017.09 v4.4.5 running Node.js</member> <member>64bit Amazon Linux 2017.09 v4.4.4 running Node.js</member> <member>64bit Amazon Linux 2017.09 v4.4.2 running Node.js</member> <member>64bit Amazon Linux 2017.09 v4.4.0 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.3.0 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.2.2 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.2.1 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.2.0 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.1.1 running Node.js</member> <member>64bit Amazon Linux 2017.03 v4.1.0 running Node.js</member> <member>64bit Amazon Linux 2016.09 v4.0.1 running Node.js</member> <member>64bit Amazon Linux 2016.09 v4.0.0 running Node.js</member> <member>64bit Amazon Linux 2016.09 v3.3.1 running Node.js</member> <member>64bit Amazon Linux 2016.09 v3.1.0 running Node.js</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.4</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.5</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.6</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.0</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.1</member> <member>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.12 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.7 running PHP 7.1</member> <member>64bit Amazon Linux 2018.03 v2.8.6 running PHP 7.1</member> <member>64bit Amazon Linux 2018.03 v2.8.6 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.5 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.4 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.3 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.2 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.1 running PHP 7.2</member> <member>64bit Amazon Linux 2018.03 v2.8.0 running PHP 7.1</member> <member>64bit Amazon Linux 2018.03 v2.7.1 running PHP 5.6</member> <member>64bit Amazon Linux 2018.03 v2.7.1 running PHP 7.0</member> <member>64bit Amazon Linux 2018.03 v2.7.1 running PHP 7.1</member> <member>64bit Amazon Linux 2018.03 v2.7.0 running PHP 7.0</member> <member>64bit Amazon Linux 2018.03 v2.7.0 running PHP 7.1</member> <member>64bit Amazon Linux 2017.09 v2.6.6 running PHP 5.4</member> <member>64bit Amazon Linux 2017.09 v2.6.6 running PHP 5.6</member> <member>64bit Amazon Linux 2017.09 v2.6.6 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.5 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.4</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.5</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.6</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running PHP 7.1</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.4</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.5</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.6</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running PHP 7.1</member> <member>64bit Amazon Linux 2017.09 v2.6.2 running PHP 5.6</member> <member>64bit Amazon Linux 2017.09 v2.6.2 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.1 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.4</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.5</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.6</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running PHP 7.0</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running PHP 7.1</member> <member>64bit Amazon Linux 2017.03 v2.5.0 running PHP 7.0</member> <member>64bit Amazon Linux 2017.03 v2.5.0 running PHP 7.1</member> <member>64bit Amazon Linux 2017.03 v2.4.4 running PHP 5.5</member> <member>64bit Amazon Linux 2017.03 v2.4.4 running PHP 5.6</member> <member>64bit Amazon Linux 2017.03 v2.4.4 running PHP 7.0</member> <member>64bit Amazon Linux 2017.03 v2.4.3 running PHP 7.0</member> <member>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.4</member> <member>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.5</member> <member>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.6</member> <member>64bit Amazon Linux 2017.03 v2.4.2 running PHP 7.0</member> <member>64bit Amazon Linux 2017.03 v2.4.1 running PHP 7.0</member> <member>64bit Amazon Linux 2017.03 v2.4.0 running PHP 7.0</member> <member>64bit Amazon Linux 2016.09 v2.3.2 running PHP 7.0</member> <member>64bit Amazon Linux 2016.09 v2.3.1 running PHP 7.0</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Python 3.6</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Python 3.4</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Python</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Python 2.7</member> <member>64bit Amazon Linux 2018.03 v2.7.5 running Python 3.6</member> <member>64bit Amazon Linux 2018.03 v2.7.1 running Python 3.6</member> <member>64bit Amazon Linux 2018.03 v2.7.0 running Python 3.6</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running Python 3.6</member> <member>64bit Amazon Linux 2017.09 v2.6.1 running Python 3.6</member> <member>64bit Amazon Linux 2017.03 v2.4.0 running Python 3.4</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.6 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.5 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.4 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.3 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.2 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.1 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.0 (Puma)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.6 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.5 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.4 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.3 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.2 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.1 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.0 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 1.9.3</member> <member>64bit Amazon Linux 2018.03 v2.8.0 running Ruby 2.5 (Passenger Standalone)</member> <member>64bit Amazon Linux 2017.03 v2.4.4 running Ruby 2.3 (Puma)</member> <member>64bit Amazon Linux 2017.03 v2.4.4 running Ruby 2.3 (Passenger Standalone)</member> <member>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 8.5 Java 8</member> <member>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 7 Java 7</member> <member>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 7 Java 6</member> <member>64bit Amazon Linux 2018.03 v3.1.1 running Tomcat 8.5 Java 8</member> <member>64bit Amazon Linux 2017.03 v2.6.5 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2017.03 v2.6.2 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2017.03 v2.6.1 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2017.03 v2.6.0 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2016.09 v2.5.4 running Tomcat 8 Java 8</member> <member>64bit Amazon Linux 2016.03 v2.1.0 running Tomcat 8 Java 8</member> <member>64bit Windows Server Core 2016 v2.2.1 running IIS 10.0</member> <member>64bit Windows Server 2016 v2.2.1 running IIS 10.0</member> <member>64bit Windows Server Core 2012 R2 v2.2.1 running IIS 8.5</member> <member>64bit Windows Server 2012 R2 v2.2.1 running IIS 8.5</member> <member>64bit Windows Server Core 2016 v1.2.0 running IIS 10.0</member> <member>64bit Windows Server 2016 v1.2.0 running IIS 10.0</member> <member>64bit Windows Server Core 2012 R2 v1.2.0 running IIS 8.5</member> <member>64bit Windows Server 2012 R2 v1.2.0 running IIS 8.5</member> <member>64bit Windows Server 2012 v1.2.0 running IIS 8</member> <member>64bit Windows Server 2008 R2 v1.2.0 running IIS 7.5</member> <member>64bit Windows Server Core 2012 R2 running IIS 8.5</member> <member>64bit Windows Server 2012 R2 running IIS 8.5</member> <member>64bit Windows Server 2012 running IIS 8</member> <member>64bit Windows Server 2008 R2 running IIS 7.5</member> <member>64bit Amazon Linux 2018.03 v2.12.16 running Docker 18.06.1-ce</member> <member>64bit Amazon Linux 2016.09 v2.5.2 running Docker 1.12.6</member> <member>64bit Amazon Linux 2018.03 v2.15.2 running Multi-container Docker 18.06.1-ce (Generic)</member> <member>64bit Debian jessie v2.12.16 running Go 1.4 (Preconfigured - Docker)</member> <member>64bit Debian jessie v2.12.16 running Go 1.3 (Preconfigured - Docker)</member> <member>64bit Debian jessie v2.12.16 running Python 3.4 (Preconfigured - Docker)</member> <member>64bit Debian jessie v2.10.0 running Python 3.4 (Preconfigured - Docker)</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.9.1 running Java 7</member> <member>64bit Amazon Linux 2018.03 v2.8.0 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.7.6 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.7.5 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.7.4 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.7.2 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.7.1 running Java 8</member> <member>64bit Amazon Linux 2017.09 v2.6.8 running Java 8</member> <member>64bit Amazon Linux 2017.09 v2.6.5 running Java 8</member> <member>64bit Amazon Linux 2017.09 v2.6.4 running Java 8</member> <member>64bit Amazon Linux 2017.09 v2.6.3 running Java 8</member> <member>64bit Amazon Linux 2017.09 v2.6.0 running Java 8</member> <member>64bit Amazon Linux 2017.03 v2.5.4 running Java 8</member> <member>64bit Amazon Linux 2017.03 v2.5.3 running Java 8</member> <member>64bit Amazon Linux 2017.03 v2.5.2 running Java 8</member> <member>64bit Amazon Linux 2016.09 v2.4.4 running Java 8</member> <member>64bit Amazon Linux 2018.03 v2.12.1 running Go 1.12.7</member> <member>64bit Amazon Linux 2018.03 v2.6.14 running Packer 1.0.3</member> <member>64bit Amazon Linux 2018.03 v2.12.16 running GlassFish 5.0 Java 8 (Preconfigured - Docker)</member> </SolutionStacks> <SolutionStackDetails> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.10.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.9.2 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.8.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.6.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.5.3 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.5.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v4.5.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v4.4.6 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v4.4.5 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v4.4.4 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v4.4.2 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v4.4.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.3.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.2.2 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.2.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.2.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.1.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v4.1.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v4.0.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v4.0.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v3.3.1 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v3.1.0 running Node.js</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.14 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.12 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.7 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.6 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.6 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.5 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.4 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.3 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.2 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.1 running PHP 7.2</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.0 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.1 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.1 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.1 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.0 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.0 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.6 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.6 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.6 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.5 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.2 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.2 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.1 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.5.0 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.5.0 running PHP 7.1</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.4 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.4 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.4 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.3 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.2 running PHP 5.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.2 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.1 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.0 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v2.3.2 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v2.3.1 running PHP 7.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Python 3.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Python</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Python 2.7</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.5 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.1 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.0 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.1 running Python 3.6</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.0 running Python 3.4</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.6 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.5 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.4 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.3 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.2 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.1 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.0 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.6 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.5 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.4 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.3 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.2 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.1 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 2.0 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.10.1 running Ruby 1.9.3</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.0 running Ruby 2.5 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.4 running Ruby 2.3 (Puma)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.4.4 running Ruby 2.3 (Passenger Standalone)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 8.5 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 7 Java 7</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v3.2.1 running Tomcat 7 Java 6</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v3.1.1 running Tomcat 8.5 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.6.5 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.6.2 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.6.1 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.6.0 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v2.5.4 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.03 v2.1.0 running Tomcat 8 Java 8</SolutionStackName> <PermittedFileTypes> <member>war</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server Core 2016 v2.2.1 running IIS 10.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2016 v2.2.1 running IIS 10.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server Core 2012 R2 v2.2.1 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2012 R2 v2.2.1 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server Core 2016 v1.2.0 running IIS 10.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2016 v1.2.0 running IIS 10.0</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server Core 2012 R2 v1.2.0 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2012 R2 v1.2.0 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2012 v1.2.0 running IIS 8</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2008 R2 v1.2.0 running IIS 7.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server Core 2012 R2 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2012 R2 running IIS 8.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2012 running IIS 8</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Windows Server 2008 R2 running IIS 7.5</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.12.16 running Docker 18.06.1-ce</SolutionStackName> <PermittedFileTypes/> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v2.5.2 running Docker 1.12.6</SolutionStackName> <PermittedFileTypes/> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.15.2 running Multi-container Docker 18.06.1-ce (Generic)</SolutionStackName> <PermittedFileTypes> <member>zip</member> <member>json</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Debian jessie v2.12.16 running Go 1.4 (Preconfigured - Docker)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Debian jessie v2.12.16 running Go 1.3 (Preconfigured - Docker)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Debian jessie v2.12.16 running Python 3.4 (Preconfigured - Docker)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Debian jessie v2.10.0 running Python 3.4 (Preconfigured - Docker)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.9.1 running Java 7</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.8.0 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.6 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.5 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.4 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.2 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.7.1 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.8 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.5 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.4 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.3 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.09 v2.6.0 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.5.4 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.5.3 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2017.03 v2.5.2 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2016.09 v2.4.4 running Java 8</SolutionStackName> <PermittedFileTypes> <member>jar</member> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.12.1 running Go 1.12.7</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.6.14 running Packer 1.0.3</SolutionStackName> <PermittedFileTypes/> </member> <member> <SolutionStackName>64bit Amazon Linux 2018.03 v2.12.16 running GlassFish 5.0 Java 8 (Preconfigured - Docker)</SolutionStackName> <PermittedFileTypes> <member>zip</member> </PermittedFileTypes> </member> </SolutionStackDetails> </ListAvailableSolutionStacksResult> <ResponseMetadata> <RequestId>bd6bd2b2-9983-4845-b53b-fe53e8a5e1e7</RequestId> </ResponseMetadata> </ListAvailableSolutionStacksResponse> """ EB_UPDATE_TAGS_FOR_RESOURCE = """ <UpdateTagsForResourceResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <ResponseMetadata> <RequestId>f355d788-e67e-440f-b915-99e35254ffee</RequestId> </ResponseMetadata> </UpdateTagsForResourceResponse> """ EB_LIST_TAGS_FOR_RESOURCE = """ <ListTagsForResourceResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/"> <ListTagsForResourceResult> <ResourceTags> {% for key, value in tags.items() %} <member> <Key>{{ key }}</Key> <Value>{{ value }}</Value> </member> {% endfor %} </ResourceTags> <ResourceArn>{{ arn }}</ResourceArn> </ListTagsForResourceResult> <ResponseMetadata> <RequestId>178e410f-3b57-456f-a64c-a3b6a16da9ab</RequestId> </ResponseMetadata> </ListTagsForResourceResponse> """
{ "content_hash": "f9819596c6a9ba30da989ee60452f391", "timestamp": "", "source": "github", "line_count": 1389, "max_line_length": 136, "avg_line_length": 41.176385889128866, "alnum_prop": 0.645854460258069, "repo_name": "spulec/moto", "id": "74d345a6c6bd187b622bb6b068b05ead13ad6036", "size": "57194", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "moto/elasticbeanstalk/responses.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "255" }, { "name": "HTML", "bytes": "5983" }, { "name": "Java", "bytes": "1688" }, { "name": "JavaScript", "bytes": "1424" }, { "name": "Jinja", "bytes": "2502" }, { "name": "Makefile", "bytes": "2284" }, { "name": "Python", "bytes": "14737868" }, { "name": "Ruby", "bytes": "188" }, { "name": "Scala", "bytes": "782" }, { "name": "Shell", "bytes": "5515" } ], "symlink_target": "" }
from django.db import models from django.contrib.auth.models import User from django.core.exceptions import ImproperlyConfigured from django_odesk.conf import settings # DESIGN NOTE: # We could do something like this in the default settings: # ODESK_USER_MODEL = 'auth.User' # But we need to be sure that we are using `django.contrib.auth.models.User` # by default, which might not be the case if there is another 'auth' app # installed. That is why we use ODESK_CUSTOM_USER_MODEL, which is set to None # by default def get_user_model(): custom_model = settings.ODESK_CUSTOM_USER_MODEL if not custom_model: return User app_label, model_name = custom_model.split('.') model = models.get_model(app_label, model_name) if model is None: raise ImproperlyConfigured( 'Unable to load the user model' 'check ODESK_CUSTOM_USER_MODEL in your project settings') return model
{ "content_hash": "3195845dbc7d7dba0805fe53278ff216", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 77, "avg_line_length": 37.28, "alnum_prop": 0.7188841201716738, "repo_name": "reputation/django-odesk", "id": "2725935238d706fa5bd7c1dc6ad2d1af144e6bd0", "size": "932", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "django_odesk/auth/models.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "18946" } ], "symlink_target": "" }
from django.test import TestCase from django.urls import reverse from django.contrib import auth class ExtTestCase(TestCase): def create_and_log_in_user(self): user = auth.models.User.objects.create(username='test_user', email='[email protected]') user.set_password('password') user.save() self.client.post(reverse('account_login'), {'login': user.username, 'password': 'password'}) # html = response.content.decode('utf8') # print(html) return user
{ "content_hash": "8c9a4e3885198dd25231151accf5b941", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 100, "avg_line_length": 36.214285714285715, "alnum_prop": 0.6666666666666666, "repo_name": "jarnoln/cvdb", "id": "8d902d8af1d4451baefcaa172cebfa6b985f4648", "size": "507", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "users/tests/ext_test_case.py", "mode": "33188", "license": "mit", "language": [ { "name": "Gherkin", "bytes": "1482" }, { "name": "HTML", "bytes": "35209" }, { "name": "Jinja", "bytes": "2472" }, { "name": "Python", "bytes": "134639" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Static() result.template = "object/static/item/shared_item_tool_demagnetizer.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "4f147116962eec802e40d77d06ee369a", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 73, "avg_line_length": 23.23076923076923, "alnum_prop": 0.6920529801324503, "repo_name": "anhstudios/swganh", "id": "f4577dac4d1ef17ade96ea876f65cd6bdd7473f6", "size": "447", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "data/scripts/templates/object/static/item/shared_item_tool_demagnetizer.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11887" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2357839" }, { "name": "CMake", "bytes": "41264" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7503510" }, { "name": "SQLPL", "bytes": "42770" } ], "symlink_target": "" }
from linear_plot import linear_plot from scatter_plot import scatter_plot from dr_v_r import dr_v_r_plot from dr_r_v_r import dr_r_v_r_plot from semilog_plot import semilog_plot from semilogy_plot import semilogy_plot, semilogy_scatter
{ "content_hash": "fd1cf1876e97afa085c7deb02ddcc06c", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 57, "avg_line_length": 39.166666666666664, "alnum_prop": 0.8042553191489362, "repo_name": "chrisjdavie/ws_cross_project", "id": "1b693987f4f7dd917ae79efbe726ebbb482369f5", "size": "235", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "generic_plotting/linplots_cjd/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "88997" } ], "symlink_target": "" }
"""Tests for the step limit wrapper.""" from acme import wrappers from acme.testing import fakes import numpy as np from absl.testing import absltest ACTION = np.array(0, dtype=np.int32) class StepLimitWrapperTest(absltest.TestCase): def test_step(self): fake_env = fakes.DiscreteEnvironment(episode_length=5) env = wrappers.StepLimitWrapper(fake_env, step_limit=2) env.reset() env.step(ACTION) self.assertTrue(env.step(ACTION).last()) def test_step_on_new_env(self): fake_env = fakes.DiscreteEnvironment(episode_length=5) env = wrappers.StepLimitWrapper(fake_env, step_limit=2) self.assertTrue(env.step(ACTION).first()) self.assertFalse(env.step(ACTION).last()) self.assertTrue(env.step(ACTION).last()) def test_step_after_truncation(self): fake_env = fakes.DiscreteEnvironment(episode_length=5) env = wrappers.StepLimitWrapper(fake_env, step_limit=2) env.reset() env.step(ACTION) self.assertTrue(env.step(ACTION).last()) self.assertTrue(env.step(ACTION).first()) self.assertFalse(env.step(ACTION).last()) self.assertTrue(env.step(ACTION).last()) def test_step_after_termination(self): fake_env = fakes.DiscreteEnvironment(episode_length=5) fake_env.reset() fake_env.step(ACTION) fake_env.step(ACTION) fake_env.step(ACTION) fake_env.step(ACTION) self.assertTrue(fake_env.step(ACTION).last()) env = wrappers.StepLimitWrapper(fake_env, step_limit=2) self.assertTrue(env.step(ACTION).first()) self.assertFalse(env.step(ACTION).last()) self.assertTrue(env.step(ACTION).last()) if __name__ == '__main__': absltest.main()
{ "content_hash": "4cbd7b7763e6f26ffe94a7f015af469c", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 59, "avg_line_length": 27.683333333333334, "alnum_prop": 0.7025888019265503, "repo_name": "deepmind/acme", "id": "78fbc47856677e1ab3818220bdb6a0e2b444fd84", "size": "2277", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "acme/wrappers/step_limit_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "2182865" }, { "name": "Shell", "bytes": "2668" } ], "symlink_target": "" }
"""Downsample strategies. Contains all of the downsample strategies. Use downsample(), and secondary_downsample() for downsampling records stored in files. """ from math import ceil FLOAT_PRECISION = 4 SECOND_TO_MICROSECOND = 1E6 STRATEGIES = ['max', 'min', 'avg'] def _max_min_downsample(records, is_max, downsample_factor): """Downsamples records by maximum or minimum value. Args: records: A list of records ([time, power, channel]) in 1 second. is_max: A boolean indicating if using max or not. downsample_factor: Take one record per "downsample_factor" records. Returns: A list of records with lower sampling rate. Example: [ [time,power,channel1], [time,power,channel1], [time,power,channel1] ] """ if downsample_factor <= 1: return records number_records = ceil(len(records) / downsample_factor) result = list() for index in range(number_records): records_in_timespan = records[index * downsample_factor: (index+1)*downsample_factor] if is_max: result.append( max(records_in_timespan, key=lambda record: record[1])) else: result.append( min(records_in_timespan, key=lambda record: record[1])) return result def _average_downsample(records, downsample_factor): """Downsamples records by average value. Args: records: A list of records ([time, power, channel]) in 1 second. downsample_factor: Take one record per "downsample_factor" records. Returns: A list of downsampled records. Example: [ [time,power,channel1], [time,power,channel1], [time,power,channel1] ] """ if downsample_factor <= 1: return records number_records = ceil(len(records) / downsample_factor) result = list() for index in range(number_records): records_in_timespan = records[index * downsample_factor: (index+1)*downsample_factor] average = [0, 0, records_in_timespan[0][2]] for record in records_in_timespan: average[0] += record[0] average[1] += record[1] average[0] /= len(records_in_timespan) average[1] /= len(records_in_timespan) average[0] = int(average[0]) average[1] = round(average[1], FLOAT_PRECISION) result.append(average) return result def strategy_reducer(records, strategy, downsample_factor): """Applies relative downsample function to the records, based on strategy string. Args: records: A list of records ([time, power, channel]). strategy: A string representing downsampling strategy. downsample_factor: Take one record per "downsample_factor" records. Returns: A list of downsampled records with number under max_records. Example: [ [time,power,channel1], [time,power,channel1], [time,power,channel1] ] Raises: TypeError: if strategy is undefined. """ if strategy == 'max': res = _max_min_downsample( records, is_max=True, downsample_factor=downsample_factor) elif strategy == 'min': res = _max_min_downsample( records, is_max=False, downsample_factor=downsample_factor) elif strategy == 'avg': res = _average_downsample( records, downsample_factor=downsample_factor) else: raise TypeError return res
{ "content_hash": "ae5ae6ab414977cd8538a010e725231f", "timestamp": "", "source": "github", "line_count": 118, "max_line_length": 85, "avg_line_length": 31.33050847457627, "alnum_prop": 0.5929131728428455, "repo_name": "googleinterns/power-data-graphing-intern-2020", "id": "ce05b79b57ae39cb833d4fe157bd497642f505d6", "size": "4351", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "backend/downsample.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "9694" }, { "name": "JavaScript", "bytes": "2499" }, { "name": "Python", "bytes": "86091" }, { "name": "SCSS", "bytes": "4921" }, { "name": "Shell", "bytes": "2122" }, { "name": "TypeScript", "bytes": "73299" } ], "symlink_target": "" }
def mapper(book): def checker(page, element): width=int(element.get('WIDTH')) height=int(element.get('HEIGHT')) x=int(element.get('HPOS')) y=int(element.get('VPOS')) area=width*height fracarea=area/(page.width*page.height) return page, [width, height, x, y, fracarea] reducer=merge_under(add) def shuffler(year, count): return year%count
{ "content_hash": "5cca3b794c5f69c386c675bbe43d368f", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 52, "avg_line_length": 27, "alnum_prop": 0.6172839506172839, "repo_name": "UCL-dataspring/cluster-code", "id": "576e8a572a418da8df6de95ed4b8bcdf32220a04", "size": "405", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "queries/find_figures.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "49104" }, { "name": "Shell", "bytes": "1186" } ], "symlink_target": "" }
""" TCP support for IOCP reactor """ from twisted.internet import interfaces, error, address, main, defer from twisted.internet.abstract import isIPAddress from twisted.internet.tcp import _SocketCloser, Connector as TCPConnector from twisted.persisted import styles from twisted.python import log, failure, reflect, util from zope.interface import implements import socket, operator, errno, struct from twisted.internet.iocpreactor import iocpsupport as _iocp, abstract from twisted.internet.iocpreactor.interfaces import IReadWriteHandle from twisted.internet.iocpreactor.const import ERROR_IO_PENDING from twisted.internet.iocpreactor.const import SO_UPDATE_CONNECT_CONTEXT from twisted.internet.iocpreactor.const import SO_UPDATE_ACCEPT_CONTEXT from twisted.internet.iocpreactor.const import ERROR_CONNECTION_REFUSED from twisted.internet.iocpreactor.const import ERROR_NETWORK_UNREACHABLE # ConnectEx returns these. XXX: find out what it does for timeout connectExErrors = { ERROR_CONNECTION_REFUSED: errno.WSAECONNREFUSED, ERROR_NETWORK_UNREACHABLE: errno.WSAENETUNREACH, } class Connection(abstract.FileHandle, _SocketCloser): implements(IReadWriteHandle, interfaces.ITCPTransport, interfaces.ISystemHandle) def __init__(self, sock, proto, reactor=None): abstract.FileHandle.__init__(self, reactor) self.socket = sock self.getFileHandle = sock.fileno self.protocol = proto def getHandle(self): return self.socket def dataReceived(self, rbuffer): # XXX: some day, we'll have protocols that can handle raw buffers self.protocol.dataReceived(str(rbuffer)) def readFromHandle(self, bufflist, evt): return _iocp.recv(self.getFileHandle(), bufflist, evt) def writeToHandle(self, buff, evt): return _iocp.send(self.getFileHandle(), buff, evt) def _closeWriteConnection(self): try: getattr(self.socket, self._socketShutdownMethod)(1) except socket.error: pass p = interfaces.IHalfCloseableProtocol(self.protocol, None) if p: try: p.writeConnectionLost() except: f = failure.Failure() log.err() self.connectionLost(f) def readConnectionLost(self, reason): p = interfaces.IHalfCloseableProtocol(self.protocol, None) if p: try: p.readConnectionLost() except: log.err() self.connectionLost(failure.Failure()) else: self.connectionLost(reason) def connectionLost(self, reason): abstract.FileHandle.connectionLost(self, reason) self._closeSocket() protocol = self.protocol del self.protocol del self.socket del self.getFileHandle protocol.connectionLost(reason) def logPrefix(self): """ Return the prefix to log with when I own the logging thread. """ return self.logstr def getTcpNoDelay(self): return operator.truth(self.socket.getsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY)) def setTcpNoDelay(self, enabled): self.socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, enabled) def getTcpKeepAlive(self): return operator.truth(self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE)) def setTcpKeepAlive(self, enabled): self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, enabled) class Client(Connection): addressFamily = socket.AF_INET socketType = socket.SOCK_STREAM def __init__(self, host, port, bindAddress, connector, reactor): self.connector = connector self.addr = (host, port) self.reactor = reactor # ConnectEx documentation says socket _has_ to be bound if bindAddress is None: bindAddress = ('', 0) try: try: skt = reactor.createSocket(self.addressFamily, self.socketType) except socket.error, se: raise error.ConnectBindError(se[0], se[1]) else: try: skt.bind(bindAddress) except socket.error, se: raise error.ConnectBindError(se[0], se[1]) self.socket = skt Connection.__init__(self, skt, None, reactor) reactor.callLater(0, self.resolveAddress) except error.ConnectBindError, err: reactor.callLater(0, self.failIfNotConnected, err) def resolveAddress(self): if isIPAddress(self.addr[0]): self._setRealAddress(self.addr[0]) else: d = self.reactor.resolve(self.addr[0]) d.addCallbacks(self._setRealAddress, self.failIfNotConnected) def _setRealAddress(self, address): self.realAddress = (address, self.addr[1]) self.doConnect() def failIfNotConnected(self, err): if (self.connected or self.disconnected or not hasattr(self, "connector")): return try: self._closeSocket() except AttributeError: pass else: del self.socket, self.getFileHandle self.reactor.removeActiveHandle(self) self.connector.connectionFailed(failure.Failure(err)) del self.connector def stopConnecting(self): """ Stop attempt to connect. """ self.failIfNotConnected(error.UserError()) def cbConnect(self, rc, bytes, evt): if rc: rc = connectExErrors.get(rc, rc) self.failIfNotConnected(error.getConnectError((rc, errno.errorcode.get(rc, 'Unknown error')))) else: self.socket.setsockopt(socket.SOL_SOCKET, SO_UPDATE_CONNECT_CONTEXT, struct.pack('I', self.socket.fileno())) self.protocol = self.connector.buildProtocol(self.getPeer()) self.connected = True self.logstr = self.protocol.__class__.__name__+",client" self.protocol.makeConnection(self) self.startReading() def doConnect(self): if not hasattr(self, "connector"): # this happens if we connector.stopConnecting in # factory.startedConnecting return assert _iocp.have_connectex self.reactor.addActiveHandle(self) evt = _iocp.Event(self.cbConnect, self) rc = _iocp.connect(self.socket.fileno(), self.realAddress, evt) if rc == ERROR_IO_PENDING: return else: evt.ignore = True self.cbConnect(rc, 0, 0, evt) def getHost(self): """ Returns an IPv4Address. This indicates the address from which I am connecting. """ return address.IPv4Address('TCP', *(self.socket.getsockname() + ('INET',))) def getPeer(self): """ Returns an IPv4Address. This indicates the address that I am connected to. """ return address.IPv4Address('TCP', *(self.realAddress + ('INET',))) def __repr__(self): s = ('<%s to %s at %x>' % (self.__class__, self.addr, util.unsignedID(self))) return s def connectionLost(self, reason): if not self.connected: self.failIfNotConnected(error.ConnectError(string=reason)) else: Connection.connectionLost(self, reason) self.connector.connectionLost(reason) class Server(Connection): """ Serverside socket-stream connection class. I am a serverside network connection transport; a socket which came from an accept() on a server. """ def __init__(self, sock, protocol, clientAddr, serverAddr, sessionno, reactor): """ Server(sock, protocol, client, server, sessionno) Initialize me with a socket, a protocol, a descriptor for my peer (a tuple of host, port describing the other end of the connection), an instance of Port, and a session number. """ Connection.__init__(self, sock, protocol, reactor) self.serverAddr = serverAddr self.clientAddr = clientAddr self.sessionno = sessionno self.logstr = "%s,%s,%s" % (self.protocol.__class__.__name__, sessionno, self.clientAddr.host) self.repstr = "<%s #%s on %s>" % (self.protocol.__class__.__name__, self.sessionno, self.serverAddr.port) self.connected = True self.startReading() def __repr__(self): """ A string representation of this connection. """ return self.repstr def getHost(self): """ Returns an IPv4Address. This indicates the server's address. """ return self.serverAddr def getPeer(self): """ Returns an IPv4Address. This indicates the client's address. """ return self.clientAddr class Connector(TCPConnector): def _makeTransport(self): return Client(self.host, self.port, self.bindAddress, self, self.reactor) class Port(styles.Ephemeral, _SocketCloser): implements(interfaces.IListeningPort) connected = False disconnected = False disconnecting = False addressFamily = socket.AF_INET socketType = socket.SOCK_STREAM sessionno = 0 maxAccepts = 100 # Actual port number being listened on, only set to a non-None # value when we are actually listening. _realPortNumber = None def __init__(self, port, factory, backlog=50, interface='', reactor=None): self.port = port self.factory = factory self.backlog = backlog self.interface = interface self.reactor = reactor def __repr__(self): if self._realPortNumber is not None: return "<%s of %s on %s>" % (self.__class__, self.factory.__class__, self._realPortNumber) else: return "<%s of %s (not listening)>" % (self.__class__, self.factory.__class__) def startListening(self): try: skt = self.reactor.createSocket(self.addressFamily, self.socketType) # TODO: resolve self.interface if necessary skt.bind((self.interface, self.port)) except socket.error, le: raise error.CannotListenError, (self.interface, self.port, le) self.addrLen = _iocp.maxAddrLen(skt.fileno()) # Make sure that if we listened on port 0, we update that to # reflect what the OS actually assigned us. self._realPortNumber = skt.getsockname()[1] log.msg("%s starting on %s" % (self.factory.__class__, self._realPortNumber)) self.factory.doStart() skt.listen(self.backlog) self.connected = True self.disconnected = False self.reactor.addActiveHandle(self) self.socket = skt self.getFileHandle = self.socket.fileno self.doAccept() def loseConnection(self, connDone=failure.Failure(main.CONNECTION_DONE)): """ Stop accepting connections on this port. This will shut down my socket and call self.connectionLost(). It returns a deferred which will fire successfully when the port is actually closed. """ self.disconnecting = True if self.connected: self.deferred = defer.Deferred() self.reactor.callLater(0, self.connectionLost, connDone) return self.deferred stopListening = loseConnection def connectionLost(self, reason): """ Cleans up the socket. """ log.msg('(Port %s Closed)' % self._realPortNumber) self._realPortNumber = None d = None if hasattr(self, "deferred"): d = self.deferred del self.deferred self.disconnected = True self.reactor.removeActiveHandle(self) self.connected = False self._closeSocket() del self.socket del self.getFileHandle try: self.factory.doStop() except: self.disconnecting = False if d is not None: d.errback(failure.Failure()) else: raise else: self.disconnecting = False if d is not None: d.callback(None) def logPrefix(self): """ Returns the name of my class, to prefix log entries with. """ return reflect.qual(self.factory.__class__) def getHost(self): """ Returns an IPv4Address. This indicates the server's address. """ return address.IPv4Address('TCP', *(self.socket.getsockname() + ('INET',))) def cbAccept(self, rc, bytes, evt): self.handleAccept(rc, evt) if not (self.disconnecting or self.disconnected): self.doAccept() def handleAccept(self, rc, evt): if self.disconnecting or self.disconnected: return False # possible errors: # (WSAEMFILE, WSAENOBUFS, WSAENFILE, WSAENOMEM, WSAECONNABORTED) if rc: log.msg("Could not accept new connection -- %s (%s)" % (errno.errorcode.get(rc, 'unknown error'), rc)) return False else: evt.newskt.setsockopt(socket.SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, struct.pack('I', self.socket.fileno())) family, lAddr, rAddr = _iocp.get_accept_addrs(evt.newskt.fileno(), evt.buff) assert family == self.addressFamily protocol = self.factory.buildProtocol( address._ServerFactoryIPv4Address('TCP', rAddr[0], rAddr[1])) if protocol is None: evt.newskt.close() else: s = self.sessionno self.sessionno = s+1 transport = Server(evt.newskt, protocol, address.IPv4Address('TCP', rAddr[0], rAddr[1], 'INET'), address.IPv4Address('TCP', lAddr[0], lAddr[1], 'INET'), s, self.reactor) protocol.makeConnection(transport) return True def doAccept(self): numAccepts = 0 while 1: evt = _iocp.Event(self.cbAccept, self) # see AcceptEx documentation evt.buff = buff = _iocp.AllocateReadBuffer(2 * (self.addrLen + 16)) evt.newskt = newskt = self.reactor.createSocket(self.addressFamily, self.socketType) rc = _iocp.accept(self.socket.fileno(), newskt.fileno(), buff, evt) if (rc == ERROR_IO_PENDING or (not rc and numAccepts >= self.maxAccepts)): break else: evt.ignore = True if not self.handleAccept(rc, evt): break numAccepts += 1
{ "content_hash": "a72fcce473f8738aa81b672e14176702", "timestamp": "", "source": "github", "line_count": 507, "max_line_length": 83, "avg_line_length": 31.007889546351084, "alnum_prop": 0.5729915399783729, "repo_name": "hortonworks/hortonworks-sandbox", "id": "d40a0919d8df4de36b568963111756ea9e615437", "size": "15800", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "desktop/core/ext-py/Twisted/twisted/internet/iocpreactor/tcp.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ActionScript", "bytes": "27264" }, { "name": "Assembly", "bytes": "207947" }, { "name": "C", "bytes": "10279874" }, { "name": "C++", "bytes": "208068" }, { "name": "CSS", "bytes": "356769" }, { "name": "Emacs Lisp", "bytes": "3171" }, { "name": "Java", "bytes": "3064179" }, { "name": "JavaScript", "bytes": "1532806" }, { "name": "PHP", "bytes": "4160" }, { "name": "Perl", "bytes": "139518" }, { "name": "Python", "bytes": "27735073" }, { "name": "R", "bytes": "12290" }, { "name": "Ruby", "bytes": "5050" }, { "name": "Shell", "bytes": "42062" }, { "name": "XSLT", "bytes": "585" } ], "symlink_target": "" }
from abc import ABCMeta, abstractmethod class CloudAdapter(metaclass=ABCMeta): """ defines an interface which should be used to implement functionality for a cloud provider """ class CloudConnectionException(Exception): """ raised if something goes wrong, while communicating with the cloud """ class InvalidCloudSettingsException(Exception): """ raised if the given cloud settings are not valid """ pass def __init__(self, settings): self._settings = settings @abstractmethod def create_target(self, name, bootstrapping_network_interface, network_interfaces, volumes, ram, cores): """ creates a target machine in the cloud :param bootstrapping_network_interface: :param name: the name of the target machine :type name: str :param bootstrapping_network_interface: the network interface which is used during the migration :type bootstrapping_network_interface: {'ip: str, 'network_id': str} :param network_interfaces: the network interfaces which should be created :type network_interfaces: [{'ip: str, 'network_id': str}] :param volumes: a list of volume sizes in gb, which should be created :type volumes: list[int] :param ram: the ram size in mb as a multiple of 256 :type ram: int :param cores: the number of cores the target machine should get :type cores: int :return: the created target :rtype: dict """ pass @abstractmethod def delete_target(self, server_id): """ deletes the target with the given id :param server_id: the cloud id of the target machine :type server_id: str """ pass @abstractmethod def start_target(self, server_id): """ starts the target with the given id and waits for it to be started :param server_id: the cloud id of the target machine :type server_id: str """ pass @abstractmethod def stop_target(self, server_id): """ stops the target with the given id and waits for it to be stopped :param server_id: the cloud id of the target machine :type server_id: str """ pass @abstractmethod def delete_volume(self, volume_id): """ deletes the volume with the given id :param volume_id: the volume id of the volume which should be deleted :type volume_id: str """ pass @abstractmethod def make_volume_boot(self, server_id, volume_id): """ changes which device a target machine should boot from and waits for the change to be finished :param server_id: the cloud id of the target machine :type server_id: str :param volume_id: the volume id of the volume which should become the new boot device :type volume_id: str :return: """ pass @abstractmethod def delete_nic(self, server_id, nic_id): """ deletes the network interface with the given id :param server_id: the cloud id of the target machine :type server_id: str :param nic_id: the volume id of the volume which should be deleted :type nic_id: str """ pass
{ "content_hash": "ad69af09261b59cc12b5a18b80e8099a", "timestamp": "", "source": "github", "line_count": 108, "max_line_length": 108, "avg_line_length": 31.583333333333332, "alnum_prop": 0.6115508648490179, "repo_name": "jdepoix/goto_cloud", "id": "2fbd5acb2767654e481f66b0900fb1189cba7f71", "size": "3411", "binary": false, "copies": "1", "ref": "refs/heads/development", "path": "goto_cloud/cloud_management/cloud_adapter.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "354421" }, { "name": "Shell", "bytes": "619" } ], "symlink_target": "" }
import os import datetime import re import codecs from south.db import db from south.v2 import DataMigration from django.db import models from django.conf import settings from sqp import models as sqp_models class Migration(DataMigration): def forwards(self, orm): try: sql = 'ALTER TABLE sqp_item DROP INDEX unique_name;' db.execute_many(sql) print "unique_name index dropped" except: print "unique_name index not dropped (most likely already deleted)" log_text = '' Q_BASE_DIR = settings.PROJECT_DIR + '/data/questions_omarti_20161212_2/' files = [] r,d,files = os.walk(Q_BASE_DIR).next() #looking for russian A and B chars item_regex = re.compile(ur'^(P\.)?[\u0041-\u005A\u0410\u0412\u0421]{1,2}[0-9]{1,3}([A-Za-z\u0410\u0412\u0421\u0430\u0432\u0441]{1,3})?(\.)?$') text_area_regex = re.compile(ur'\{[A-Z]+\}') q_regex = re.compile(ur'Q{1}[0-9]{1,4}') for file_name in sorted(files): file_log_text = [] CREATED_ITEMS = 0 CREATED_QUESTIONS = 0 EDITED_QUESTIONS = 0 NOT_EDITED = 0 SKIPPED_AREAS = 0 IMPORTED_LINES = 0 SKIPPED_LINES = [] #utf-8-sig to get rid of the utf-8 BOM /ufeff #http://stackoverflow.com/questions/9228202/tokenizing-unicode-using-nltk file = codecs.open(Q_BASE_DIR + file_name, "r", "utf-8-sig") if not '.txt' in file_name: continue print "NOW CHECKING file %s" % file.name params = file_name.replace('.txt', '').split('_') if len(params) > 3: round_name, country_iso, language_iso, supplemental = file_name.replace('.txt', '').split('_') else: round_name, country_iso, language_iso = file_name.replace('.txt', '').split('_') language = sqp_models.Language.objects.get(iso=language_iso) country = sqp_models.Country.objects.get(iso=country_iso) round_name = round_name.replace('ESS', 'ESS Round ') study = sqp_models.Study.objects.get(name=round_name) key = None questions = {} text_areas = ['INTRO', 'QUESTION', 'ANSWERS', 'TRASH'] line_number = 0 for line in file: line_number += 1 #Get rid of any Q13 Q12 crap if q_regex.match(line): line = re.sub(q_regex, '', line).strip() key = None if item_regex.match(line.strip()): key = item_regex.match(line.strip()).group(0) #russian chars key = key.replace(u'\u0410', 'A') key = key.replace(u'\u0412', 'B') key = key.replace(u'\u0421', 'C') key = key.replace(u'\u0430', 'a') key = key.replace(u'\u0432', 'b') key = key.replace(u'\u0441', 'c') #P. key = key.replace('P.', '') key = key.replace(' ', '') #Trailing . key = key.replace('.', '') questions[key] = {'INTRO' : '', 'QUESTION' : '', 'ANSWERS' : '', 'found_text_areas' : [] } current_text_area = 'QUESTION' continue elif key and text_area_regex.match(line): match = text_area_regex.match(line).group(0) current_text_area = match.replace('{', '').replace('}', '') if current_text_area == 'ANSWERS 1': current_text_area ='ANSWERS' elif current_text_area == 'ANSWERS 2': SKIPPED_AREAS += 1 continue if current_text_area in questions[key]['found_text_areas']: current_text_area = 'TRASH' else: questions[key]['found_text_areas'].append(current_text_area) if current_text_area not in text_areas: raise Exception('Unrecognized text area "%s"' % current_text_area) continue #Only take the first occurence of QUESTION / INTRO / ANSWERS if key and current_text_area != 'TRASH': questions[key][current_text_area] += line IMPORTED_LINES += 1 elif line.strip() != '': SKIPPED_LINES.append({'line_number' : line_number, 'content': line}) n = 0 for key in questions: n +=1 #if n > 10:break #print "NOW SAVING question %s" % key try: item, i_was_created = sqp_models.Item.objects.get_or_create(admin=key, study=study) if i_was_created: CREATED_ITEMS += 1 except Exception as ex: print '!!!!!!!!!!BAD KEY!!!!!!!!!!!!!!!%s' % key file_log_text.append('!!!!!!!!!!BAD KEY!!!!!!!!!!!!!!!%s' % key) #raise Exception() question, q_was_created = sqp_models.Question.objects.get_or_create(item=item, country=country, language=language) if q_was_created: CREATED_QUESTIONS += 1 if question.rfa_text or question.introduction_text or question.answer_text: NOT_EDITED += 1 else: question.introduction_text = questions[key]['INTRO'].strip() question.rfa_text = questions[key]['QUESTION'].strip() question.answer_text = questions[key]['ANSWERS'].strip() if q_was_created: question.imported_from = 'jorge-created' else: question.imported_from = 'jorge-existing' question.save(create_suggestions = False) EDITED_QUESTIONS += 1 file_log_text.append('%s %s %s new items:%s, total qs:%s, created qs:%s, edited qs:%s, not edited qs:%s, skipped keys:%s' %\ (country_iso, language_iso, round_name, CREATED_ITEMS, len(questions), CREATED_QUESTIONS, EDITED_QUESTIONS, NOT_EDITED, SKIPPED_AREAS)) file_log_text.append('LINES SKIPPED %s / IMPORTED %s' % (len(SKIPPED_LINES), IMPORTED_LINES)) if SKIPPED_LINES: file_log_text.append('SKIPPED_LINES') for l in SKIPPED_LINES: file_log_text.append(' %s: %s' % (l['line_number'], l['content'].replace('\n', ''))) file_log_text.append('IMPORTED ITEMS: %s' % ','.join(questions.keys())) file_log_text.append('------------------------------------------------------------------------') print '\n'.join(file_log_text) print log_text += '\n'.join(file_log_text) + '\n\n\n' log_file = codecs.open('/tmp/omarti_import_20161212_2.log', 'w', "utf-8-sig") log_file.write(log_text) log_file.close() print "LOG STORED AT '/tmp/omarti_import_20161212_2.log'" def backwards(self, orm): "Write your backwards methods here." models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sqp.branch': { 'Meta': {'ordering': "('label__characteristic__name', 'label__id')", 'object_name': 'Branch'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Label']"}), 'to_characteristic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Characteristic']"}) }, 'sqp.characteristic': { 'Meta': {'ordering': "['name']", 'object_name': 'Characteristic'}, 'auto_fill_suggestion': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'desc': ('django.db.models.fields.TextField', [], {'db_column': "'description'", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'suggestion': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'validation_rules': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['sqp.ValidationRule']", 'null': 'True', 'blank': 'True'}), 'widget': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Widget']"}) }, 'sqp.characteristicset': { 'Meta': {'ordering': "['id']", 'object_name': 'CharacteristicSet'}, 'branches': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sqp.Branch']", 'symmetrical': 'False'}), 'coders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sqp.coding': { 'Meta': {'ordering': "['user', 'characteristic']", 'object_name': 'Coding'}, 'characteristic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Characteristic']"}), 'choice': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Question']"}), 'seconds_taken': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}) }, 'sqp.codingchange': { 'Meta': {'object_name': 'CodingChange'}, 'change_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'change_by_user_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'change_type': ('django.db.models.fields.IntegerField', [], {}), 'characteristic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Characteristic']"}), 'coding_change_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.CodingChangeGroup']"}), 'coding_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'coding_user_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'error_occured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'new_value': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'new_value_by_related_country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Country']", 'null': 'True', 'blank': 'True'}), 'new_value_by_related_lang': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Language']", 'null': 'True', 'blank': 'True'}), 'processed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'processing_log': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'question_id': ('django.db.models.fields.IntegerField', [], {}) }, 'sqp.codingchangegroup': { 'Meta': {'ordering': "['id']", 'object_name': 'CodingChangeGroup'}, 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'sqp.codingsuggestion': { 'Meta': {'object_name': 'CodingSuggestion'}, 'characteristic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Characteristic']"}), 'explanation': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Question']"}), 'value': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'sqp.completion': { 'Meta': {'object_name': 'Completion'}, 'authorized': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'characteristic_set': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.CharacteristicSet']"}), 'complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'out_of_date': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'potential_improvements': ('sqp.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'predictions': ('sqp.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Question']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'sqp.country': { 'Meta': {'ordering': "['name']", 'object_name': 'Country'}, 'iso': ('django.db.models.fields.CharField', [], {'max_length': '2', 'primary_key': 'True'}), 'iso_three': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}) }, 'sqp.faq': { 'Meta': {'object_name': 'FAQ'}, 'answer': ('django.db.models.fields.TextField', [], {}), 'asker': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'date_added': ('django.db.models.fields.DateField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.TextField', [], {}) }, 'sqp.history': { 'Meta': {'object_name': 'History'}, 'action_description': ('django.db.models.fields.TextField', [], {}), 'action_type': ('django.db.models.fields.IntegerField', [], {}), 'actor': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.IntegerField', [], {}), 'object_model': ('django.db.models.fields.CharField', [], {'max_length': '90'}), 'object_name': ('django.db.models.fields.CharField', [], {'max_length': '170'}), 'previous_values': ('django.db.models.fields.TextField', [], {}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'sqp.item': { 'Meta': {'ordering': "('study', 'admin_letter', 'admin_number', 'id')", 'object_name': 'Item'}, 'admin': ('django.db.models.fields.CharField', [], {'max_length': '8'}), 'admin_letter': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'admin_number': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created_item_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'long_name': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '8'}), 'study': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Study']"}) }, 'sqp.itemgroup': { 'Meta': {'object_name': 'ItemGroup'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'items': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sqp.Item']", 'symmetrical': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}) }, 'sqp.label': { 'Meta': {'ordering': "('characteristic__name', 'id')", 'object_name': 'Label'}, 'characteristic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Characteristic']"}), 'code': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'compute': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': "'True'", 'max_length': '150'}) }, 'sqp.language': { 'Meta': {'ordering': "('name',)", 'object_name': 'Language'}, 'coders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'iso': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'iso2': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sqp.parameter': { 'Meta': {'ordering': "['order']", 'object_name': 'Parameter'}, 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'views': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sqp.View']", 'through': "orm['sqp.Prediction']", 'symmetrical': 'False'}) }, 'sqp.prediction': { 'Meta': {'object_name': 'Prediction'}, 'function_name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}), 'paramater': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Parameter']"}), 'view': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.View']"}) }, 'sqp.question': { 'Meta': {'ordering': "('item__study', 'country', 'language', 'item__admin_letter', 'item__admin_number', 'item__id')", 'object_name': 'Question'}, 'answer_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Country']"}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created_question_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'imported_from': ('django.db.models.fields.CharField', [], {'max_length': '120', 'null': 'True', 'blank': 'True'}), 'introduction_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'item': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Item']"}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Language']"}), 'rel': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'rel_hi': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'rel_lo': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'relz': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'relz_se': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'rfa_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'val': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'val_hi': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'val_lo': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'valz': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'valz_se': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, 'sqp.questionbulkassignments': { 'Meta': {'object_name': 'QuestionBulkAssignments'}, 'assignments': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sqp.UserQuestion']", 'symmetrical': 'False', 'blank': 'True'}), 'can_edit_details': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'can_edit_text': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Country']", 'null': 'True'}), 'has_been_run': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.ItemGroup']", 'null': 'True'}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Language']", 'null': 'True'}), 'last_run_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'users': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False'}) }, 'sqp.questionbulkcreation': { 'Meta': {'object_name': 'QuestionBulkCreation'}, 'copy_text_from_study': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Study']", 'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Country']"}), 'created_questions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sqp.Question']", 'symmetrical': 'False', 'blank': 'True'}), 'has_been_run': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.ItemGroup']"}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Language']"}), 'last_run_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}) }, 'sqp.study': { 'Meta': {'ordering': "('name',)", 'object_name': 'Study'}, 'coders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created_study_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '70'}) }, 'sqp.usedcountry': { 'Meta': {'ordering': "['name']", 'object_name': 'UsedCountry', 'db_table': "'vw_country_question'"}, 'iso': ('django.db.models.fields.CharField', [], {'max_length': '2', 'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}) }, 'sqp.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'default_characteristic_set': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.CharacteristicSet']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_trusted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'profile'", 'unique': 'True', 'to': "orm['auth.User']"}) }, 'sqp.userquestion': { 'Meta': {'object_name': 'UserQuestion'}, 'can_edit_details': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'can_edit_text': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sqp.Question']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'sqp.validationrule': { 'Meta': {'object_name': 'ValidationRule'}, 'failure_message': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'rule': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '7'}) }, 'sqp.view': { 'Meta': {'ordering': "['order']", 'object_name': 'View'}, 'expects': ('django.db.models.fields.CharField', [], {'default': "'tuple'", 'max_length': '20'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'template': ('django.db.models.fields.CharField', [], {'max_length': '140'}) }, 'sqp.widget': { 'Meta': {'object_name': 'Widget'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['sqp']
{ "content_hash": "e31ee7a9ac24c1dbb9e1d6b0ac06d4fe", "timestamp": "", "source": "github", "line_count": 480, "max_line_length": 182, "avg_line_length": 64.72916666666667, "alnum_prop": 0.5200193112327004, "repo_name": "recsm/SQP", "id": "13eb17bda92b9103a5650139181fcce2080844f3", "size": "31088", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sqp/migrations/0072_import_questions_omarti_20161212_2.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "284413" }, { "name": "HTML", "bytes": "581366" }, { "name": "JavaScript", "bytes": "583584" }, { "name": "Makefile", "bytes": "1104" }, { "name": "Python", "bytes": "2144259" }, { "name": "Shell", "bytes": "221" } ], "symlink_target": "" }
from django.db import models from .base import Pessoa, UF_SIGLA class Transportadora(Pessoa): class Meta: verbose_name = "Transportadora" class Veiculo(models.Model): transportadora_veiculo = models.ForeignKey( 'cadastro.Transportadora', related_name="veiculo", on_delete=models.CASCADE) descricao = models.CharField(max_length=255) placa = models.CharField(max_length=8, blank=True, null=True) uf = models.CharField(max_length=3, null=True, blank=True, choices=UF_SIGLA) def __unicode__(self): return u'%s / %s / %s' % (self.descricao, self.placa, self.uf) def __str__(self): return u'%s / %s / %s' % (self.descricao, self.placa, self.uf)
{ "content_hash": "a36803ad2523375225f06c4e6e618b91", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 84, "avg_line_length": 31.869565217391305, "alnum_prop": 0.6439290586630286, "repo_name": "thiagopena/djangoSIGE", "id": "835ebfd2ae304d5eee0cc2133c36f700c81e442e", "size": "758", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djangosige/apps/cadastro/models/transportadora.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "62842" }, { "name": "Dockerfile", "bytes": "400" }, { "name": "HTML", "bytes": "387328" }, { "name": "JavaScript", "bytes": "188596" }, { "name": "Makefile", "bytes": "313" }, { "name": "Python", "bytes": "805518" } ], "symlink_target": "" }
try: import textile except ImportError: pass try: import markdown2 except ImportError: pass from django import template from django.conf import settings from django.utils.safestring import mark_safe from ccgallery import settings as c_settings from ccgallery.models import get_model register = template.Library() class ItemNode(template.Node): def __init__(self, varname, categories=None): self.varname = varname self.categories = categories def render(self, context): items = get_model().objects\ .visible() if self.categories is not None: try: categories = self.categories.split(',') except AttributeError: categories = [self.categories] items = items.filter( categories__pk__in=categories) context[self.varname] = items return '' @register.tag def get_items(parser, token): bits = token.contents.split() try: categories = bits[4] except IndexError: categories = None return ItemNode(bits[2], categories) class RandomItemNode(template.Node): def __init__(self, display, varname): self.display = display self.varname = varname def render(self, context): items = get_model().objects\ .visible()\ .order_by('?')[:self.display] context[self.varname] = items return '' @register.tag def get_gallery_items(parser, token): bits = token.contents.split() return RandomItemNode(bits[1], bits[3]) @register.inclusion_tag('ccgallery/_js.html') def gallery_js(): return { 'STATIC_URL': settings.STATIC_URL, } @register.inclusion_tag('ccgallery/_css.html') def gallery_css(): return { 'STATIC_URL': settings.STATIC_URL, } @register.filter def markup(text): """output the description according to whatever markup language is set in the settings""" html = '' if c_settings.MARKUP_LANGUAGE == 'textile': html = textile.textile(text) if c_settings.MARKUP_LANGUAGE == 'markdown': html = markdown2.markdown(text) return mark_safe(html)
{ "content_hash": "14cb9a6923b79f528cf219f073df7847", "timestamp": "", "source": "github", "line_count": 89, "max_line_length": 58, "avg_line_length": 24.752808988764045, "alnum_prop": 0.6259645937358148, "repo_name": "designcc/django-ccgallery", "id": "7d65f897537770f0f8f93baf92e2bf133fe577a7", "size": "2203", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ccgallery/templatetags/ccgallery_tags.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "75754" }, { "name": "Python", "bytes": "32960" } ], "symlink_target": "" }
from lib.action import St2BaseAction import s3 __all__ = [ 'UploadToS3' ] class UploadToS3(St2BaseAction): def run(self, file_name, remote_file, bucket): remote_name = s3.S3Name(remote_file, bucket=bucket) connection = s3.S3Connection(**self.config['s3']) storage = s3.Storage(connection) storage.write(file_name, remote_name) payload = { "status": "ok", "uploaded_file": remote_file, } return payload
{ "content_hash": "cad2a7e1a75d2ffd65ec424f859ed4cd", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 59, "avg_line_length": 23.571428571428573, "alnum_prop": 0.6, "repo_name": "lmEshoo/st2contrib", "id": "66dc1d4bd57d041147794451e0d306f1934fa436", "size": "495", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "packs/st2/actions/upload_to_s3.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Groovy", "bytes": "8530" }, { "name": "Makefile", "bytes": "2262" }, { "name": "Python", "bytes": "444890" }, { "name": "Shell", "bytes": "3635" } ], "symlink_target": "" }
import time import datetime import traceback import multiprocessing import urllib2 import xml.sax import redis import random import pymongo import re import requests import dateutil.parser import isodate import urlparse from django.conf import settings from django.db import IntegrityError from django.core.cache import cache from apps.reader.models import UserSubscription from apps.rss_feeds.models import Feed, MStory from apps.rss_feeds.page_importer import PageImporter from apps.rss_feeds.icon_importer import IconImporter from apps.push.models import PushSubscription from apps.statistics.models import MAnalyticsFetcher # from utils import feedparser from utils import feedparser from utils.story_functions import pre_process_story, strip_tags, linkify from utils import log as logging from utils.feed_functions import timelimit, TimeoutError, utf8encode, cache_bust_url from BeautifulSoup import BeautifulSoup from django.utils import feedgenerator from django.utils.html import linebreaks from utils import json_functions as json # from utils.feed_functions import mail_feed_error_to_admin # Refresh feed code adapted from Feedjack. # http://feedjack.googlecode.com FEED_OK, FEED_SAME, FEED_ERRPARSE, FEED_ERRHTTP, FEED_ERREXC = range(5) def mtime(ttime): """ datetime auxiliar function. """ return datetime.datetime.fromtimestamp(time.mktime(ttime)) class FetchFeed: def __init__(self, feed_id, options): self.feed = Feed.get_by_id(feed_id) self.options = options self.fpf = None @timelimit(30) def fetch(self): """ Uses feedparser to download the feed. Will be parsed later. """ start = time.time() identity = self.get_identity() log_msg = u'%2s ---> [%-30s] ~FYFetching feed (~FB%d~FY), last update: %s' % (identity, self.feed.title[:30], self.feed.id, datetime.datetime.now() - self.feed.last_update) logging.debug(log_msg) etag=self.feed.etag modified = self.feed.last_modified.utctimetuple()[:7] if self.feed.last_modified else None address = self.feed.feed_address if (self.options.get('force') or random.random() <= .01): modified = None etag = None address = cache_bust_url(address) logging.debug(u' ---> [%-30s] ~FBForcing fetch: %s' % ( self.feed.title[:30], address)) elif (not self.feed.fetched_once or not self.feed.known_good): modified = None etag = None USER_AGENT = ('NewsBlur Feed Fetcher - %s subscriber%s - %s ' '(Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_1) ' 'AppleWebKit/534.48.3 (KHTML, like Gecko) Version/5.1 ' 'Safari/534.48.3)' % ( self.feed.num_subscribers, 's' if self.feed.num_subscribers != 1 else '', self.feed.permalink, )) if self.options.get('feed_xml'): logging.debug(u' ---> [%-30s] ~FM~BKFeed has been fat pinged. Ignoring fat: %s' % ( self.feed.title[:30], len(self.options.get('feed_xml')))) if self.options.get('fpf'): self.fpf = self.options.get('fpf') logging.debug(u' ---> [%-30s] ~FM~BKFeed fetched in real-time with fat ping.' % ( self.feed.title[:30])) return FEED_OK, self.fpf if 'youtube.com' in address: try: youtube_feed = self.fetch_youtube(address) except (requests.adapters.ConnectionError): youtube_feed = None if not youtube_feed: logging.debug(u' ***> [%-30s] ~FRYouTube fetch failed: %s.' % (self.feed.title[:30], address)) return FEED_ERRHTTP, None self.fpf = feedparser.parse(youtube_feed) if not self.fpf: try: self.fpf = feedparser.parse(address, agent=USER_AGENT, etag=etag, modified=modified) except (TypeError, ValueError, KeyError, EOFError), e: logging.debug(u' ***> [%-30s] ~FR%s, turning off headers.' % (self.feed.title[:30], e)) self.fpf = feedparser.parse(address, agent=USER_AGENT) except (TypeError, ValueError, KeyError, EOFError), e: logging.debug(u' ***> [%-30s] ~FR%s fetch failed: %s.' % (self.feed.title[:30], e)) return FEED_ERRHTTP, None logging.debug(u' ---> [%-30s] ~FYFeed fetch in ~FM%.4ss' % ( self.feed.title[:30], time.time() - start)) return FEED_OK, self.fpf def get_identity(self): identity = "X" current_process = multiprocessing.current_process() if current_process._identity: identity = current_process._identity[0] return identity def fetch_youtube(self, address): username = None channel_id = None list_id = None if 'gdata.youtube.com' in address: try: username_groups = re.search('gdata.youtube.com/feeds/\w+/users/(\w+)/', address) if not username_groups: return username = username_groups.group(1) except IndexError: return elif 'youtube.com/feeds/videos.xml?user=' in address: try: username = urlparse.parse_qs(urlparse.urlparse(address).query)['user'][0] except IndexError: return elif 'youtube.com/feeds/videos.xml?channel_id=' in address: try: channel_id = urlparse.parse_qs(urlparse.urlparse(address).query)['channel_id'][0] except IndexError: return elif 'youtube.com/playlist' in address: try: list_id = urlparse.parse_qs(urlparse.urlparse(address).query)['list'][0] except IndexError: return if channel_id: video_ids_xml = requests.get("https://www.youtube.com/feeds/videos.xml?channel_id=%s" % channel_id) channel_json = requests.get("https://www.googleapis.com/youtube/v3/channels?part=snippet&id=%s&key=%s" % (channel_id, settings.YOUTUBE_API_KEY)) channel = json.decode(channel_json.content) try: username = channel['items'][0]['snippet']['title'] description = channel['items'][0]['snippet']['description'] except IndexError: return elif list_id: playlist_json = requests.get("https://www.googleapis.com/youtube/v3/playlists?part=snippet&id=%s&key=%s" % (list_id, settings.YOUTUBE_API_KEY)) playlist = json.decode(playlist_json.content) try: username = playlist['items'][0]['snippet']['title'] description = playlist['items'][0]['snippet']['description'] except IndexError: return channel_url = "https://www.youtube.com/playlist?list=%s" % list_id elif username: video_ids_xml = requests.get("https://www.youtube.com/feeds/videos.xml?user=%s" % username) description = "YouTube videos uploaded by %s" % username else: return if list_id: playlist_json = requests.get("https://www.googleapis.com/youtube/v3/playlistItems?part=snippet&playlistId=%s&key=%s" % (list_id, settings.YOUTUBE_API_KEY)) playlist = json.decode(playlist_json.content) try: video_ids = [video['snippet']['resourceId']['videoId'] for video in playlist['items']] except IndexError: return else: if video_ids_xml.status_code != 200: return video_ids_soup = BeautifulSoup(video_ids_xml.content) channel_url = video_ids_soup.find('author').find('uri').getText() video_ids = [] for video_id in video_ids_soup.findAll('yt:videoid'): video_ids.append(video_id.getText()) videos_json = requests.get("https://www.googleapis.com/youtube/v3/videos?part=contentDetails%%2Csnippet&id=%s&key=%s" % (','.join(video_ids), settings.YOUTUBE_API_KEY)) videos = json.decode(videos_json.content) data = {} data['title'] = ("%s's YouTube Videos" % username if 'Uploads' not in username else username) data['link'] = channel_url data['description'] = description data['lastBuildDate'] = datetime.datetime.utcnow() data['generator'] = 'NewsBlur YouTube API v3 Decrapifier - %s' % settings.NEWSBLUR_URL data['docs'] = None data['feed_url'] = address rss = feedgenerator.Atom1Feed(**data) for video in videos['items']: thumbnail = video['snippet']['thumbnails'].get('maxres') if not thumbnail: thumbnail = video['snippet']['thumbnails'].get('high') if not thumbnail: thumbnail = video['snippet']['thumbnails'].get('medium') duration_sec = isodate.parse_duration(video['contentDetails']['duration']).seconds if duration_sec >= 3600: hours = (duration_sec / 3600) minutes = (duration_sec - (hours*3600)) / 60 seconds = duration_sec - (hours*3600) - (minutes*60) duration = "%s:%s:%s" % (hours, '{0:02d}'.format(minutes), '{0:02d}'.format(seconds)) else: minutes = duration_sec / 60 seconds = duration_sec - (minutes*60) duration = "%s:%s" % ('{0:02d}'.format(minutes), '{0:02d}'.format(seconds)) content = """<div class="NB-youtube-player"><iframe allowfullscreen="true" src="%s"></iframe></div> <div class="NB-youtube-stats"><small> <b>From:</b> <a href="%s">%s</a><br /> <b>Duration:</b> %s<br /> </small></div><hr> <div class="NB-youtube-description">%s</div> <img src="%s" style="display:none" />""" % ( ("https://www.youtube.com/embed/" + video['id']), channel_url, username, duration, linkify(linebreaks(video['snippet']['description'])), thumbnail['url'] if thumbnail else "", ) link = "http://www.youtube.com/watch?v=%s" % video['id'] story_data = { 'title': video['snippet']['title'], 'link': link, 'description': content, 'author_name': username, 'categories': [], 'unique_id': "tag:youtube.com,2008:video:%s" % video['id'], 'pubdate': dateutil.parser.parse(video['snippet']['publishedAt']), } rss.add_item(**story_data) return rss.writeString('utf-8') class ProcessFeed: def __init__(self, feed_id, fpf, options): self.feed_id = feed_id self.options = options self.fpf = fpf def refresh_feed(self): self.feed = Feed.get_by_id(self.feed_id) if self.feed_id != self.feed.pk: logging.debug(" ***> Feed has changed: from %s to %s" % (self.feed_id, self.feed.pk)) self.feed_id = self.feed.pk def process(self): """ Downloads and parses a feed. """ start = time.time() self.refresh_feed() ret_values = dict(new=0, updated=0, same=0, error=0) if hasattr(self.fpf, 'status'): if self.options['verbose']: if self.fpf.bozo and self.fpf.status != 304: logging.debug(u' ---> [%-30s] ~FRBOZO exception: %s ~SB(%s entries)' % ( self.feed.title[:30], self.fpf.bozo_exception, len(self.fpf.entries))) if self.fpf.status == 304: self.feed = self.feed.save() self.feed.save_feed_history(304, "Not modified") return FEED_SAME, ret_values # 302: Temporary redirect: ignore # 301: Permanent redirect: save it (after 20 tries) if self.fpf.status == 301: if self.fpf.href.endswith('feedburner.com/atom.xml'): return FEED_ERRHTTP, ret_values redirects, non_redirects = self.feed.count_redirects_in_history('feed') self.feed.save_feed_history(self.fpf.status, "HTTP Redirect (%d to go)" % (20-len(redirects))) if len(redirects) >= 20 or len(non_redirects) == 0: self.feed.feed_address = self.fpf.href if not self.feed.known_good: self.feed.fetched_once = True logging.debug(" ---> [%-30s] ~SB~SK~FRFeed is %s'ing. Refetching..." % (self.feed.title[:30], self.fpf.status)) self.feed = self.feed.schedule_feed_fetch_immediately() if not self.fpf.entries: self.feed = self.feed.save() self.feed.save_feed_history(self.fpf.status, "HTTP Redirect") return FEED_ERRHTTP, ret_values if self.fpf.status >= 400: logging.debug(" ---> [%-30s] ~SB~FRHTTP Status code: %s. Checking address..." % (self.feed.title[:30], self.fpf.status)) fixed_feed = None if not self.feed.known_good: fixed_feed, feed = self.feed.check_feed_link_for_feed_address() if not fixed_feed: self.feed.save_feed_history(self.fpf.status, "HTTP Error") else: self.feed = feed self.feed = self.feed.save() return FEED_ERRHTTP, ret_values if not self.fpf.entries: if self.fpf.bozo and isinstance(self.fpf.bozo_exception, feedparser.NonXMLContentType): logging.debug(" ---> [%-30s] ~SB~FRFeed is Non-XML. %s entries. Checking address..." % (self.feed.title[:30], len(self.fpf.entries))) fixed_feed = None if not self.feed.known_good: fixed_feed, feed = self.feed.check_feed_link_for_feed_address() if not fixed_feed: self.feed.save_feed_history(552, 'Non-xml feed', self.fpf.bozo_exception) else: self.feed = feed self.feed = self.feed.save() return FEED_ERRPARSE, ret_values elif self.fpf.bozo and isinstance(self.fpf.bozo_exception, xml.sax._exceptions.SAXException): logging.debug(" ---> [%-30s] ~SB~FRFeed has SAX/XML parsing issues. %s entries. Checking address..." % (self.feed.title[:30], len(self.fpf.entries))) fixed_feed = None if not self.feed.known_good: fixed_feed, feed = self.feed.check_feed_link_for_feed_address() if not fixed_feed: self.feed.save_feed_history(553, 'SAX Exception', self.fpf.bozo_exception) else: self.feed = feed self.feed = self.feed.save() return FEED_ERRPARSE, ret_values # the feed has changed (or it is the first time we parse it) # saving the etag and last_modified fields original_etag = self.feed.etag self.feed.etag = self.fpf.get('etag') if self.feed.etag: self.feed.etag = self.feed.etag[:255] # some times this is None (it never should) *sigh* if self.feed.etag is None: self.feed.etag = '' if self.feed.etag != original_etag: self.feed.save(update_fields=['etag']) original_last_modified = self.feed.last_modified try: self.feed.last_modified = mtime(self.fpf.modified) except: self.feed.last_modified = None pass if self.feed.last_modified != original_last_modified: self.feed.save(update_fields=['last_modified']) self.fpf.entries = self.fpf.entries[:100] original_title = self.feed.feed_title if self.fpf.feed.get('title'): self.feed.feed_title = strip_tags(self.fpf.feed.get('title')) if self.feed.feed_title != original_title: self.feed.save(update_fields=['feed_title']) tagline = self.fpf.feed.get('tagline', self.feed.data.feed_tagline) if tagline: original_tagline = self.feed.data.feed_tagline self.feed.data.feed_tagline = utf8encode(tagline) if self.feed.data.feed_tagline != original_tagline: self.feed.data.save(update_fields=['feed_tagline']) if not self.feed.feed_link_locked: new_feed_link = self.fpf.feed.get('link') or self.fpf.feed.get('id') or self.feed.feed_link if new_feed_link != self.feed.feed_link: logging.debug(" ---> [%-30s] ~SB~FRFeed's page is different: %s to %s" % (self.feed.title[:30], self.feed.feed_link, new_feed_link)) redirects, non_redirects = self.feed.count_redirects_in_history('page') self.feed.save_page_history(301, "HTTP Redirect (%s to go)" % (20-len(redirects))) if len(redirects) >= 20 or len(non_redirects) == 0: self.feed.feed_link = new_feed_link self.feed.save(update_fields=['feed_link']) # Determine if stories aren't valid and replace broken guids guids_seen = set() permalinks_seen = set() for entry in self.fpf.entries: guids_seen.add(entry.get('guid')) permalinks_seen.add(Feed.get_permalink(entry)) guid_difference = len(guids_seen) != len(self.fpf.entries) single_guid = len(guids_seen) == 1 replace_guids = single_guid and guid_difference permalink_difference = len(permalinks_seen) != len(self.fpf.entries) single_permalink = len(permalinks_seen) == 1 replace_permalinks = single_permalink and permalink_difference # Compare new stories to existing stories, adding and updating start_date = datetime.datetime.utcnow() story_hashes = [] stories = [] for entry in self.fpf.entries: story = pre_process_story(entry) if story.get('published') < start_date: start_date = story.get('published') if replace_guids: if replace_permalinks: new_story_guid = unicode(story.get('published')) if self.options['verbose']: logging.debug(u' ---> [%-30s] ~FBReplacing guid (%s) with timestamp: %s' % ( self.feed.title[:30], story.get('guid'), new_story_guid)) story['guid'] = new_story_guid else: new_story_guid = Feed.get_permalink(story) if self.options['verbose']: logging.debug(u' ---> [%-30s] ~FBReplacing guid (%s) with permalink: %s' % ( self.feed.title[:30], story.get('guid'), new_story_guid)) story['guid'] = new_story_guid story['story_hash'] = MStory.feed_guid_hash_unsaved(self.feed.pk, story.get('guid')) stories.append(story) story_hashes.append(story.get('story_hash')) existing_stories = dict((s.story_hash, s) for s in MStory.objects( story_hash__in=story_hashes, # story_date__gte=start_date, # story_feed_id=self.feed.pk )) ret_values = self.feed.add_update_stories(stories, existing_stories, verbose=self.options['verbose'], updates_off=self.options['updates_off']) if (hasattr(self.fpf, 'feed') and hasattr(self.fpf.feed, 'links') and self.fpf.feed.links): hub_url = None self_url = self.feed.feed_address for link in self.fpf.feed.links: if link['rel'] == 'hub' and not hub_url: hub_url = link['href'] elif link['rel'] == 'self': self_url = link['href'] push_expired = False if self.feed.is_push: try: push_expired = self.feed.push.lease_expires < datetime.datetime.now() except PushSubscription.DoesNotExist: self.feed.is_push = False if (hub_url and self_url and not settings.DEBUG and self.feed.active_subscribers > 0 and (push_expired or not self.feed.is_push or self.options.get('force'))): logging.debug(u' ---> [%-30s] ~BB~FW%sSubscribing to PuSH hub: %s' % ( self.feed.title[:30], "~SKRe-~SN" if push_expired else "", hub_url)) try: PushSubscription.objects.subscribe(self_url, feed=self.feed, hub=hub_url) except TimeoutError: logging.debug(u' ---> [%-30s] ~BB~FW~FRTimed out~FW subscribing to PuSH hub: %s' % ( self.feed.title[:30], hub_url)) elif (self.feed.is_push and (self.feed.active_subscribers <= 0 or not hub_url)): logging.debug(u' ---> [%-30s] ~BB~FWTurning off PuSH, no hub found' % ( self.feed.title[:30])) self.feed.is_push = False self.feed = self.feed.save() logging.debug(u' ---> [%-30s] ~FYParsed Feed: %snew=%s~SN~FY %sup=%s~SN same=%s%s~SN %serr=%s~SN~FY total=~SB%s' % ( self.feed.title[:30], '~FG~SB' if ret_values['new'] else '', ret_values['new'], '~FY~SB' if ret_values['updated'] else '', ret_values['updated'], '~SB' if ret_values['same'] else '', ret_values['same'], '~FR~SB' if ret_values['error'] else '', ret_values['error'], len(self.fpf.entries))) self.feed.update_all_statistics(full=bool(ret_values['new']), force=self.options['force']) if ret_values['new']: self.feed.trim_feed() self.feed.expire_redis() self.feed.save_feed_history(200, "OK") if self.options['verbose']: logging.debug(u' ---> [%-30s] ~FBTIME: feed parse in ~FM%.4ss' % ( self.feed.title[:30], time.time() - start)) return FEED_OK, ret_values class Dispatcher: def __init__(self, options, num_threads): self.options = options self.feed_stats = { FEED_OK:0, FEED_SAME:0, FEED_ERRPARSE:0, FEED_ERRHTTP:0, FEED_ERREXC:0} self.feed_trans = { FEED_OK:'ok', FEED_SAME:'unchanged', FEED_ERRPARSE:'cant_parse', FEED_ERRHTTP:'http_error', FEED_ERREXC:'exception'} self.feed_keys = sorted(self.feed_trans.keys()) self.num_threads = num_threads self.time_start = datetime.datetime.utcnow() self.workers = [] def refresh_feed(self, feed_id): """Update feed, since it may have changed""" return Feed.objects.using('default').get(pk=feed_id) def process_feed_wrapper(self, feed_queue): delta = None current_process = multiprocessing.current_process() identity = "X" feed = None if current_process._identity: identity = current_process._identity[0] for feed_id in feed_queue: start_duration = time.time() feed_fetch_duration = None feed_process_duration = None page_duration = None icon_duration = None feed_code = None ret_entries = None start_time = time.time() ret_feed = FEED_ERREXC try: feed = self.refresh_feed(feed_id) skip = False if self.options.get('fake'): skip = True weight = "-" quick = "-" rand = "-" elif (self.options.get('quick') and not self.options['force'] and feed.known_good and feed.fetched_once and not feed.is_push): weight = feed.stories_last_month * feed.num_subscribers random_weight = random.randint(1, max(weight, 1)) quick = float(self.options.get('quick', 0)) rand = random.random() if random_weight < 100 and rand < quick: skip = True elif False and feed.feed_address.startswith("http://news.google.com/news"): skip = True weight = "-" quick = "-" rand = "-" if skip: logging.debug(' ---> [%-30s] ~BGFaking fetch, skipping (%s/month, %s subs, %s < %s)...' % ( feed.title[:30], weight, feed.num_subscribers, rand, quick)) continue ffeed = FetchFeed(feed_id, self.options) ret_feed, fetched_feed = ffeed.fetch() feed_fetch_duration = time.time() - start_duration if ((fetched_feed and ret_feed == FEED_OK) or self.options['force']): pfeed = ProcessFeed(feed_id, fetched_feed, self.options) ret_feed, ret_entries = pfeed.process() feed = pfeed.feed feed_process_duration = time.time() - start_duration if (ret_entries and ret_entries['new']) or self.options['force']: start = time.time() if not feed.known_good or not feed.fetched_once: feed.known_good = True feed.fetched_once = True feed = feed.save() if self.options['force'] or random.random() <= 0.02: logging.debug(' ---> [%-30s] ~FBPerforming feed cleanup...' % (feed.title[:30],)) start_cleanup = time.time() feed.sync_redis() logging.debug(' ---> [%-30s] ~FBDone with feed cleanup. Took ~SB%.4s~SN sec.' % (feed.title[:30], time.time() - start_cleanup)) try: self.count_unreads_for_subscribers(feed) except TimeoutError: logging.debug(' ---> [%-30s] Unread count took too long...' % (feed.title[:30],)) if self.options['verbose']: logging.debug(u' ---> [%-30s] ~FBTIME: unread count in ~FM%.4ss' % ( feed.title[:30], time.time() - start)) except urllib2.HTTPError, e: logging.debug(' ---> [%-30s] ~FRFeed throws HTTP error: ~SB%s' % (unicode(feed_id)[:30], e.fp.read())) feed.save_feed_history(e.code, e.msg, e.fp.read()) fetched_feed = None except Feed.DoesNotExist, e: logging.debug(' ---> [%-30s] ~FRFeed is now gone...' % (unicode(feed_id)[:30])) continue except TimeoutError, e: logging.debug(' ---> [%-30s] ~FRFeed fetch timed out...' % (feed.title[:30])) feed.save_feed_history(505, 'Timeout', e) feed_code = 505 fetched_feed = None except Exception, e: logging.debug('[%d] ! -------------------------' % (feed_id,)) tb = traceback.format_exc() logging.error(tb) logging.debug('[%d] ! -------------------------' % (feed_id,)) ret_feed = FEED_ERREXC feed = Feed.get_by_id(getattr(feed, 'pk', feed_id)) if not feed: continue feed.save_feed_history(500, "Error", tb) feed_code = 500 fetched_feed = None # mail_feed_error_to_admin(feed, e, local_vars=locals()) if (not settings.DEBUG and hasattr(settings, 'RAVEN_CLIENT') and settings.RAVEN_CLIENT): settings.RAVEN_CLIENT.captureException() if not feed_code: if ret_feed == FEED_OK: feed_code = 200 elif ret_feed == FEED_SAME: feed_code = 304 elif ret_feed == FEED_ERRHTTP: feed_code = 400 if ret_feed == FEED_ERREXC: feed_code = 500 elif ret_feed == FEED_ERRPARSE: feed_code = 550 if not feed: continue feed = self.refresh_feed(feed.pk) if ((self.options['force']) or (random.random() > .9) or (fetched_feed and feed.feed_link and feed.has_page and (ret_feed == FEED_OK or (ret_feed == FEED_SAME and feed.stories_last_month > 10)))): logging.debug(u' ---> [%-30s] ~FYFetching page: %s' % (feed.title[:30], feed.feed_link)) page_importer = PageImporter(feed) try: page_data = page_importer.fetch_page() page_duration = time.time() - start_duration except TimeoutError, e: logging.debug(' ---> [%-30s] ~FRPage fetch timed out...' % (feed.title[:30])) page_data = None feed.save_page_history(555, 'Timeout', '') except Exception, e: logging.debug('[%d] ! -------------------------' % (feed_id,)) tb = traceback.format_exc() logging.error(tb) logging.debug('[%d] ! -------------------------' % (feed_id,)) feed.save_page_history(550, "Page Error", tb) fetched_feed = None page_data = None # mail_feed_error_to_admin(feed, e, local_vars=locals()) if (not settings.DEBUG and hasattr(settings, 'RAVEN_CLIENT') and settings.RAVEN_CLIENT): settings.RAVEN_CLIENT.captureException() feed = self.refresh_feed(feed.pk) logging.debug(u' ---> [%-30s] ~FYFetching icon: %s' % (feed.title[:30], feed.feed_link)) force = self.options['force'] if random.random() > .99: force = True icon_importer = IconImporter(feed, page_data=page_data, force=force) try: icon_importer.save() icon_duration = time.time() - start_duration except TimeoutError, e: logging.debug(' ---> [%-30s] ~FRIcon fetch timed out...' % (feed.title[:30])) feed.save_page_history(556, 'Timeout', '') except Exception, e: logging.debug('[%d] ! -------------------------' % (feed_id,)) tb = traceback.format_exc() logging.error(tb) logging.debug('[%d] ! -------------------------' % (feed_id,)) # feed.save_feed_history(560, "Icon Error", tb) # mail_feed_error_to_admin(feed, e, local_vars=locals()) if (not settings.DEBUG and hasattr(settings, 'RAVEN_CLIENT') and settings.RAVEN_CLIENT): settings.RAVEN_CLIENT.captureException() else: logging.debug(u' ---> [%-30s] ~FBSkipping page fetch: (%s on %s stories) %s' % (feed.title[:30], self.feed_trans[ret_feed], feed.stories_last_month, '' if feed.has_page else ' [HAS NO PAGE]')) feed = self.refresh_feed(feed.pk) delta = time.time() - start_time feed.last_load_time = round(delta) feed.fetched_once = True try: feed = feed.save(update_fields=['last_load_time', 'fetched_once']) except IntegrityError: logging.debug(" ---> [%-30s] ~FRIntegrityError on feed: %s" % (feed.title[:30], feed.feed_address,)) if ret_entries and ret_entries['new']: self.publish_to_subscribers(feed) done_msg = (u'%2s ---> [%-30s] ~FYProcessed in ~FM~SB%.4ss~FY~SN (~FB%s~FY) [%s]' % ( identity, feed.title[:30], delta, feed.pk, self.feed_trans[ret_feed],)) logging.debug(done_msg) total_duration = time.time() - start_duration MAnalyticsFetcher.add(feed_id=feed.pk, feed_fetch=feed_fetch_duration, feed_process=feed_process_duration, page=page_duration, icon=icon_duration, total=total_duration, feed_code=feed_code) self.feed_stats[ret_feed] += 1 if len(feed_queue) == 1: return feed # time_taken = datetime.datetime.utcnow() - self.time_start def publish_to_subscribers(self, feed): try: r = redis.Redis(connection_pool=settings.REDIS_PUBSUB_POOL) listeners_count = r.publish(str(feed.pk), 'story:new') if listeners_count: logging.debug(" ---> [%-30s] ~FMPublished to %s subscribers" % (feed.title[:30], listeners_count)) except redis.ConnectionError: logging.debug(" ***> [%-30s] ~BMRedis is unavailable for real-time." % (feed.title[:30],)) def count_unreads_for_subscribers(self, feed): user_subs = UserSubscription.objects.filter(feed=feed, active=True, user__profile__last_seen_on__gte=feed.unread_cutoff)\ .order_by('-last_read_date') if not user_subs.count(): return for sub in user_subs: if not sub.needs_unread_recalc: sub.needs_unread_recalc = True sub.save() if self.options['compute_scores']: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) stories = MStory.objects(story_feed_id=feed.pk, story_date__gte=feed.unread_cutoff) stories = Feed.format_stories(stories, feed.pk) story_hashes = r.zrangebyscore('zF:%s' % feed.pk, int(feed.unread_cutoff.strftime('%s')), int(time.time() + 60*60*24)) missing_story_hashes = set(story_hashes) - set([s['story_hash'] for s in stories]) if missing_story_hashes: missing_stories = MStory.objects(story_feed_id=feed.pk, story_hash__in=missing_story_hashes)\ .read_preference(pymongo.ReadPreference.PRIMARY) missing_stories = Feed.format_stories(missing_stories, feed.pk) stories = missing_stories + stories logging.debug(u' ---> [%-30s] ~FYFound ~SB~FC%s(of %s)/%s~FY~SN un-secondaried stories while computing scores' % (feed.title[:30], len(missing_stories), len(missing_story_hashes), len(stories))) cache.set("S:%s" % feed.pk, stories, 60) logging.debug(u' ---> [%-30s] ~FYComputing scores: ~SB%s stories~SN with ~SB%s subscribers ~SN(%s/%s/%s)' % ( feed.title[:30], len(stories), user_subs.count(), feed.num_subscribers, feed.active_subscribers, feed.premium_subscribers)) self.calculate_feed_scores_with_stories(user_subs, stories) elif self.options.get('mongodb_replication_lag'): logging.debug(u' ---> [%-30s] ~BR~FYSkipping computing scores: ~SB%s seconds~SN of mongodb lag' % ( feed.title[:30], self.options.get('mongodb_replication_lag'))) @timelimit(10) def calculate_feed_scores_with_stories(self, user_subs, stories): for sub in user_subs: silent = False if self.options['verbose'] >= 2 else True sub.calculate_feed_scores(silent=silent, stories=stories) def add_jobs(self, feeds_queue, feeds_count=1): """ adds a feed processing job to the pool """ self.feeds_queue = feeds_queue self.feeds_count = feeds_count def run_jobs(self): if self.options['single_threaded']: return self.process_feed_wrapper(self.feeds_queue[0]) else: for i in range(self.num_threads): feed_queue = self.feeds_queue[i] self.workers.append(multiprocessing.Process(target=self.process_feed_wrapper, args=(feed_queue,))) for i in range(self.num_threads): self.workers[i].start()
{ "content_hash": "0ecb49d9b7a44bfdf4f879a7f8b32e79", "timestamp": "", "source": "github", "line_count": 802, "max_line_length": 212, "avg_line_length": 48.84538653366584, "alnum_prop": 0.50298667483535, "repo_name": "Suninus/NewsBlur", "id": "1be57bf69e65d885822f1afb2377b4b9f6c8769b", "size": "39174", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "utils/feed_fetcher.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "4431" }, { "name": "C++", "bytes": "2926" }, { "name": "CSS", "bytes": "674585" }, { "name": "CoffeeScript", "bytes": "6451" }, { "name": "HTML", "bytes": "266332" }, { "name": "Java", "bytes": "700898" }, { "name": "JavaScript", "bytes": "1561448" }, { "name": "M", "bytes": "47696" }, { "name": "Nginx", "bytes": "897" }, { "name": "Objective-C", "bytes": "3716549" }, { "name": "Perl", "bytes": "55598" }, { "name": "Python", "bytes": "2385592" }, { "name": "R", "bytes": "527" }, { "name": "Ruby", "bytes": "870" }, { "name": "Shell", "bytes": "40018" } ], "symlink_target": "" }
#!/usr/bin/env python """ Show Botan module dependencies as a list or graph. Requires graphviz from pip when graphical output is selected: https://pypi.python.org/pypi/graphviz (C) 2015 Simon Warta (Kullo GmbH) Botan is released under the Simplified BSD License (see license.txt) """ # global import argparse import copy import sys import subprocess from collections import OrderedDict import glob import os # Assume this script is in botan/src/scripts botan_root = os.path.join(os.path.dirname(sys.argv[0]), "..", "..") # locale sys.path.append(botan_root) from configure import ModuleInfo parser = argparse.ArgumentParser(description= 'Show Botan module dependencies. ' 'The output is reduced by indirect dependencies, ' 'i.e. you must look at the result recursively to get all dependencies.') parser.add_argument('mode', choices=["list", "draw"], help='The output mode') parser.add_argument('--format', nargs='?', choices=["pdf", "png"], default="pdf", help='The file format (drawing mode only)') parser.add_argument('--engine', nargs='?', choices=["fdp", "dot"], default="fdp", help='The graph engine (drawing mode only)') parser.add_argument('--all', dest='all', action='store_const', const=True, default=False, help='Show all dependencies. Default: direct dependencies only. (list mode only)') parser.add_argument('--verbose', dest='verbose', action='store_const', const=True, default=False, help='Verbose output (default: false)') args = parser.parse_args() files = [] files += glob.glob(botan_root + '/src/lib/*/*/*/*/*/*/info.txt') files += glob.glob(botan_root + '/src/lib/*/*/*/*/*/info.txt') files += glob.glob(botan_root + '/src/lib/*/*/*/*/info.txt') files += glob.glob(botan_root + '/src/lib/*/*/*/info.txt') files += glob.glob(botan_root + '/src/lib/*/*/info.txt') files += glob.glob(botan_root + '/src/lib/*/info.txt') files += glob.glob(botan_root + '/src/lib/info.txt') files.sort() if len(files) == 0: print("No info.txt files found.") sys.exit(1) modules = [] def dicts(t): return {k: dicts(t[k]) for k in t} def paths(t, path = [], level=0): ret = [] for key in t: ret.append(path + [key]) ret += paths(t[key], path + [key], level+1) return ret if args.verbose: print("Getting dependencies from into.txt files ...") for filename in files: (rest, info_txt) = os.path.split(filename) (rest, modname) = os.path.split(rest) module = ModuleInfo(filename) modules.append(module) if args.verbose: print(module.basename) print("\t" + str(set(module.dependencies()))) if args.verbose: print(str(len(modules)) + " modules:") names=[m.basename for m in modules] names.sort() print(names) print("") if args.verbose: print("resolving dependencies ...") def cartinality(depdict): return sum([len(depdict[k]) for k in depdict]) registered_dependencies = dict() all_dependencies = dict() direct_dependencies = dict() for module in modules: lst = module.dependencies() registered_dependencies[module.basename] = set(lst) - set([module.basename]) # Get all_dependencies from registered_dependencies def add_dependency(): for key in all_dependencies: potentially_new_modules_for_key = None new_modules_for_key = None for currently_in in all_dependencies[key]: if currently_in in all_dependencies: potentially_new_modules_for_key = all_dependencies[currently_in] - set([key]) if not potentially_new_modules_for_key <= all_dependencies[key]: new_modules_for_key = potentially_new_modules_for_key.copy() break if new_modules_for_key: all_dependencies[key] |= new_modules_for_key return all_dependencies = copy.deepcopy(registered_dependencies) direct_dependencies = copy.deepcopy(registered_dependencies) # Sort all_dependencies = OrderedDict(sorted(all_dependencies.items())) direct_dependencies = OrderedDict(sorted(direct_dependencies.items())) #print(direct_dependencies) last_card = -1 while True: card = cartinality(all_dependencies) # print(card) if card == last_card: break; last_card = card add_dependency() # Return true iff a depends on b, # i.e. b is in the dependencies of a def depends_on(a, b): if not a in direct_dependencies: return False else: return b in direct_dependencies[a] def remove_indirect_dependencies(): for mod in direct_dependencies: for one in direct_dependencies[mod]: others = direct_dependencies[mod] - set([one]) for other in others: if depends_on(other, one): direct_dependencies[mod].remove(one) return # Go to next mod last_card = -1 while True: card = cartinality(direct_dependencies) # print(card) if card == last_card: break; last_card = card remove_indirect_dependencies() def openfile(f): if sys.platform.startswith('linux'): subprocess.call(["xdg-open", f]) else: os.startfile(f) if args.verbose: print("Done resolving dependencies.") if args.mode == "list": if args.all: for key in all_dependencies: print(key.ljust(17) + " : " + ", ".join(sorted(all_dependencies[key]))) else: for key in direct_dependencies: print(key.ljust(17) + " : " + ", ".join(sorted(direct_dependencies[key]))) if args.mode == "draw": import graphviz as gv import tempfile tmpdir = tempfile.mkdtemp(prefix="botan-") g2 = gv.Digraph(format=args.format, engine=args.engine) for key in direct_dependencies: g2.node(key) for dep in direct_dependencies[key]: g2.edge(key, dep) if args.verbose: print("Rendering graph ...") filename = g2.render(filename='graph', directory=tmpdir) if args.verbose: print("Opening " + filename + " ...") openfile(filename)
{ "content_hash": "895922c15154fc788779065a2a86c553", "timestamp": "", "source": "github", "line_count": 211, "max_line_length": 102, "avg_line_length": 29.881516587677726, "alnum_prop": 0.6177636796193497, "repo_name": "Rohde-Schwarz-Cybersecurity/botan", "id": "937626a8640628aa56ff619d80a6c1684032cb21", "size": "6305", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/scripts/show_dependencies.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "543" }, { "name": "C", "bytes": "122862" }, { "name": "C++", "bytes": "5400646" }, { "name": "Emacs Lisp", "bytes": "1445" }, { "name": "HTML", "bytes": "184" }, { "name": "Perl", "bytes": "22545" }, { "name": "Python", "bytes": "292335" }, { "name": "Shell", "bytes": "5564" }, { "name": "XS", "bytes": "16219" } ], "symlink_target": "" }
from setuptools import setup setup ( name = 'HoverSpace', version = '1.0,' description = '', long_description = '', author = 'HoverSpace Developers', author_email = '', maintainer = 'Shubham Gupta, Vidhan Jain, Prashant Sharma, Shashwat Shalvi, Mohit Kumar', maintainer_email = '[email protected], [email protected]', url = '', download_url = '', packagrs = [], classifiers = [], platforms = [], license = '', zip_safe = False, )
{ "content_hash": "27581d6756f1ecc048abedd69e2ef848", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 97, "avg_line_length": 31.055555555555557, "alnum_prop": 0.5366726296958855, "repo_name": "LNM-HoverSpace/HoverSpace", "id": "c2e3266d6f78fe86a6c74fc52961c80d4e01b5bd", "size": "559", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "20801" }, { "name": "HTML", "bytes": "22234" }, { "name": "JavaScript", "bytes": "4606" }, { "name": "Python", "bytes": "42898" } ], "symlink_target": "" }
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' from config import DEFAULT_CONFIG as CONFIG from metric_mock import MetricMock # metrics libraries import mixpanel import librato import Queue import logging import os import platform import pprint import threading import uuid import copy as _copy import requests as _requests import sys import urllib as _urllib __ALL__ = [ 'MetricTracker' ] try: from .. import minipsutil TOTAL_PHYMEM = minipsutil.total_memory() NUM_CPUS = minipsutil.cpu_count() except ImportError: TOTAL_PHYMEM = 0 NUM_CPUS = 0 # global objects for producer/consumer for background metrics publishing METRICS_QUEUE = Queue.Queue(maxsize=100) METRICS_THREAD = None SHUTDOWN_MESSAGE = 'SHUTTING_DOWN' class _MetricsWorkerThread(threading.Thread): """Worker Thread for publishing metrics in the background.""" def __init__(self, mode, source): threading.Thread.__init__(self, name='metrics-worker') if CONFIG.version.endswith('.gpu'): self._version = CONFIG.version.split('.gpu')[0] self._isgpu = True else: self._version = CONFIG.version self._isgpu = False self._mode = mode self._source = source try: # product key from .. import product_key self._product_key = product_key.get_product_key() except Exception, e: self._product_key = None self.queue = METRICS_QUEUE root_package_name = __import__(__name__.split('.')[0]).__name__ self.logger = logging.getLogger(root_package_name + '.metrics') self._tracker = None # librato metrics tracker self._mixpanel = None # Mixpanel metrics tracker buffer_size = 5 offline_buffer_size = 25 self._sys_info_set = False self._usable = False try: self._metrics_url = CONFIG.metrics_url self._requests = _requests # support mocking out requests library in unit-tests if self._mode != 'PROD': self.logger.info("Using MetricMock instead of real metrics, mode is: %s" % self._mode) self._tracker = MetricMock() self._mixpanel = MetricMock() else: self._tracker = librato.connect(CONFIG.librato_user, CONFIG.librato_token) self._mixpanel = mixpanel.Mixpanel(CONFIG.mixpanel_user) except Exception, e: self.logger.warning("Unexpected exception connecting to Metrics service, disabling metrics, exception %s" % e) else: self._usable = True self._distinct_id = 'unknown' self._distinct_id = self._get_distinct_id() def run(self): while True: try: metric = self.queue.get() # block until something received if (metric['event_name'] == SHUTDOWN_MESSAGE): # shutting down self.queue.task_done() break self._track(metric['event_name'], metric['value'], metric['type'], metric['properties'], metric['meta'], metric['send_sys_info']) self.queue.task_done() except Exception as e: pass def _get_distinct_id(self): if self._distinct_id == 'unknown': poss_id = 'unknown' gldir = os.path.join(os.path.expanduser('~'),'.graphlab') try: if not os.path.isdir(gldir): os.makedirs(gldir) except: pass id_file_path = os.path.join(gldir, "id") if os.path.isfile(id_file_path): try: with open(id_file_path, 'r') as f: poss_id = f.readline() except: return "session-" + str(uuid.uuid4()) else: # no distinct id found from installation, # try to create one and write it to the appropriate location # if not able to write to appropriate location, then create temp one new_id = str(uuid.uuid4()) try: with open(id_file_path, "w") as id_file: id_file.write(new_id) except: return "session-" + str(uuid.uuid4()) return new_id return poss_id.strip() else: return self._distinct_id @staticmethod def _get_bucket_name_suffix(buckets, value): """ Given a list of buckets and a value, generate a suffix for the bucket name, corresponding to either one of the buckets given, or the largest bucket with "+" appended. """ suffix = None for bucket in buckets: if value <= bucket: suffix = str(bucket) break # if we get here and suffix is None, value must be > the largest bucket if suffix is None: suffix = '%d+' % buckets[-1] return suffix @staticmethod def _bucketize_mixpanel(event_name, value): """ Take events that we would like to bucketize and bucketize them before sending to mixpanel @param event_name current event name, used to assess if bucketization is required @param value value used to decide which bucket for event @return event_name if updated then will have bucket appended as suffix, otherwise original returned """ if value == 1: return event_name bucket_events = { 'col.size': [ 5, 10, 20 ], 'row.size': [ 100000, 1000000, 10000000, 100000000 ], 'duration.secs': [ 300, 1800, 3600, 7200 ], 'duration.ms': [ 10, 100, 1000, 10000, 100000 ] } for (event_suffix, buckets) in bucket_events.iteritems(): if event_name.endswith(event_suffix): # if the suffix matches one we expect, bucketize using the buckets defined above return '%s.%s' % (event_name, _MetricsWorkerThread._get_bucket_name_suffix(buckets, value)) # if there was no suffix match, just use the original event name return event_name def _set_sys_info(self): # Don't do this if system info has been set if self._sys_info_set: return self._sys_info = {} # Get OS-specific info self._sys_info['system'] = platform.system() if self._sys_info['system'] == 'Linux': self._sys_info['os_version'] = self._tup_to_flat_str(platform.linux_distribution()) self._sys_info['libc_version'] = self._tup_to_flat_str(platform.libc_ver()) elif self._sys_info['system'] == 'Darwin': self._sys_info['os_version'] = self._tup_to_flat_str(platform.mac_ver()) elif self._sys_info['system'] == 'Windows': self._sys_info['os_version'] = self._tup_to_flat_str(platform.win32_ver()) elif self._sys_info['system'] == 'Java': self._sys_info['os_version'] = self._tup_to_flat_str(platform.java_ver()) # Python specific stuff self._sys_info['python_implementation'] = platform.python_implementation() self._sys_info['python_version'] = platform.python_version() self._sys_info['python_build'] = self._tup_to_flat_str(platform.python_build()) self._sys_info['python_executable'] = sys.executable # Dato specific stuff self._sys_info['dato_launcher'] = 'DATO_LAUNCHER' in os.environ # Get architecture info self._sys_info['architecture'] = self._tup_to_flat_str(platform.architecture()) self._sys_info['platform'] = platform.platform() self._sys_info['num_cpus'] = NUM_CPUS # Get RAM size self._sys_info['total_mem'] = TOTAL_PHYMEM self._sys_info_set = True def _print_sys_info(self): pp = pprint.PrettyPrinter(indent=2) pp.pprint(self._sys_info) def _tup_to_flat_str(self, tup): tmp_list = [] for t in tup: if isinstance(t, tuple): tmp_str =self._tup_to_flat_str(t) tmp_list.append(tmp_str) elif isinstance(t, str): tmp_list.append(t) else: # UNEXPECTED! Just don't crash try: tmp_list.append(str(t)) except: pass return " ".join(tmp_list) def _send_mixpanel(self, event_name, value, properties, meta): # Only send 'engine-started' events to Mixpanel. All other events are not sent to Mixpanel. if 'engine-started' in event_name: try: # since mixpanel cannot send sizes or numbers, just tracks events, bucketize these here if value != 1: event_name = self._bucketize_mixpanel(event_name, value) properties['value'] = value properties['source'] = self._source self._mixpanel.track(self._distinct_id, event_name, properties=properties, meta=meta) except Exception as e: pass def _track(self, event_name, value=1, type="gauge", properties={}, meta={}, send_sys_info=False): """ Internal method to actually send metrics, expected to be called from background thread only. """ if not self._usable: return the_properties = {} if send_sys_info: if not self._sys_info_set: self._set_sys_info() the_properties.update(self._sys_info) the_properties.update(properties) try: # librato self._tracker.submit(name=event_name, value=value, type="gauge", source=self._source, attributes=the_properties) except Exception as e: pass self._send_mixpanel(event_name=event_name, value=value, properties=the_properties, meta=meta) try: # homebrew metrics - cloudfront if self._metrics_url != '': cloudfront_props = {} props = _copy.deepcopy(the_properties) props.update(meta) cloudfront_props['event_name'] = event_name cloudfront_props['value'] = value cloudfront_props['distinct_id'] = self._distinct_id cloudfront_props['version'] = self._version cloudfront_props['isgpu'] = self._isgpu cloudfront_props['properties'] = _urllib.quote_plus(str(props)) # if product key is not set, then try to get it now when submitting if not self._product_key: try: # product key from .. import product_key self._product_key = product_key.get_product_key() except Exception, e: self._product_key = 'Unknown' pass cloudfront_props['product_key'] = self._product_key # self.logger.debug("SENDING '%s' to %s" % (cloudfront_props, self._metrics_url)) logging.getLogger('requests').setLevel(logging.CRITICAL) self._requests.get(self._metrics_url, params=cloudfront_props) except Exception as e: pass class MetricTracker: def __init__(self, mode='UNIT', background_thread=True): # setup logging root_package_name = __import__(__name__.split('.')[0]).__name__ self.logger = logging.getLogger(root_package_name + '.metrics') self._mode = mode self._queue = METRICS_QUEUE self._source = ("%s-%s" % (self._mode, CONFIG.version)) self.logger.debug("Running with metric source: %s" % self._source) # background thread for metrics self._thread = None if background_thread: self._start_queue_thread() def __del__(self): try: self._stop_queue_thread() except: # Lot of strange exceptions can happen when destructing, not really anything we can do... pass def _stop_queue_thread(self): # send the shutting down message, wait for thread to exit if self._thread is not None: self.track(SHUTDOWN_MESSAGE) self._thread.join(2.0) def track(self, event_name, value=1, type="gauge", properties={}, meta={}, send_sys_info=False): """ Publishes event / metric to metrics providers. This method is a facade / proxy, queuing up this metric for a background thread to process. """ if self._mode != 'PROD' and (not (isinstance(value, int) or isinstance(value, float))): raise Exception("Metrics attempted with value being not a number, unsupported.") try: item = dict(event_name=event_name, value=value, type=type, properties=properties, meta=meta, send_sys_info=send_sys_info) self._queue.put_nowait(item) # don't wait if Queue is full, just silently ignore except Queue.Full: if not self._thread or not self._thread.is_alive(): self.logger.debug("Queue is full and background thread is no longer alive, trying to restart") self._restart_queue_thread() else: self.logger.debug("Queue is full, doing nothing.") except Exception as e: self.logger.debug("Unexpected exception in queueing metrics, %s" % e) def _start_queue_thread(self): global METRICS_THREAD if (self._thread is None): self.logger.debug("Starting background thread") self._thread = _MetricsWorkerThread(self._mode, self._source) METRICS_THREAD = self._thread self._thread.daemon = True self._thread.start() def _restart_queue_thread(self): global METRICS_THREAD if (self._thread is not None and self._thread.is_alive()): self._stop_queue_thread() METRICS_THREAD = None del self._thread self._thread = None self._start_queue_thread()
{ "content_hash": "19392f5d976eff1448bbcb23c807bdca", "timestamp": "", "source": "github", "line_count": 396, "max_line_length": 137, "avg_line_length": 32.464646464646464, "alnum_prop": 0.6369788425637835, "repo_name": "nkhuyu/SFrame", "id": "f66341e6757fa515f909c99fab01d7571c8f7f92", "size": "12856", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "oss_src/unity/python/sframe/util/metric_tracker.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "144591" }, { "name": "C++", "bytes": "11412408" }, { "name": "CMake", "bytes": "102271" }, { "name": "CSS", "bytes": "127000" }, { "name": "HTML", "bytes": "24575" }, { "name": "Hack", "bytes": "277" }, { "name": "JavaScript", "bytes": "20909" }, { "name": "Makefile", "bytes": "9614" }, { "name": "Perl", "bytes": "9663" }, { "name": "Python", "bytes": "1947961" }, { "name": "R", "bytes": "86286" }, { "name": "Scala", "bytes": "5232" }, { "name": "Shell", "bytes": "48586" }, { "name": "Smarty", "bytes": "966" }, { "name": "XSLT", "bytes": "74068" } ], "symlink_target": "" }
""" Call NRL MSISE-00 using f2py from Python Michael Hirsch, Ph.D. Original fortran code from http://nssdcftp.gsfc.nasa.gov/models/atmospheric/msis/nrlmsise00/ """ from __future__ import annotations import typing as T import os import logging import importlib.resources from datetime import datetime, date import xarray import numpy as np import subprocess import shutil from .timeutils import todatetime import geomagindices as gi species = ["He", "O", "N2", "O2", "Ar", "Total", "H", "N", "AnomalousO"] ttypes = ["Texo", "Tn"] first = True def build(): """ attempt to build using CMake """ cmake = shutil.which("cmake") if not cmake: raise FileNotFoundError("CMake not available") with importlib.resources.path(__package__, "CMakeLists.txt") as f: s = f.parent b = s / "build" g = [] if os.name == "nt" and not os.environ.get("CMAKE_GENERATOR"): g = ["-G", "MinGW Makefiles"] subprocess.check_call([cmake, f"-S{s}", f"-B{b}"] + g) subprocess.check_call([cmake, "--build", str(b), "--parallel"]) def run( time: datetime, altkm: float, glat: float, glon: float, indices: dict[str, T.Any] = None, ) -> xarray.Dataset: """ loops the rungtd1d function below. Figure it's easier to troubleshoot in Python than Fortran. """ glat = np.atleast_2d(glat) glon = np.atleast_2d(glon) # has to be here # %% altitude 1-D if glat.size == 1 and glon.size == 1 and isinstance(time, (str, date, datetime, np.datetime64)): atmos = rungtd1d(time, altkm, glat.squeeze()[()], glon.squeeze()[()], indices) # %% lat/lon grid at 1 altitude else: atmos = loopalt_gtd(time, glat, glon, altkm, indices) return atmos def loopalt_gtd( time: datetime, glat: float | np.ndarray, glon: float | np.ndarray, altkm: float, indices: dict[str, T.Any] = None, ) -> xarray.Dataset: """ loop over location and time time: datetime or numpy.datetime64 or list of datetime or ndarray of datetime glat: float or 2-D ndarray glon: float or 2-D ndarray altkm: float or list or 1-D ndarray """ glat = np.atleast_2d(glat) glon = np.atleast_2d(glon) assert glat.ndim == glon.ndim == 2 times = np.atleast_1d(time) # type: ignore assert times.ndim == 1 atmos = xarray.Dataset() for t in times: print("computing", t) for i in range(glat.shape[0]): for j in range(glat.shape[1]): # atmos = xarray.concat((atmos, rungtd1d(t, altkm, glat[i,j], glon[i,j])), # data_vars='minimal',coords='minimal',dim='lon') atm = rungtd1d(t, altkm, glat[i, j], glon[i, j], indices) atmos = xarray.merge((atmos, atm)) atmos.attrs = atm.attrs return atmos def rungtd1d( time: datetime, altkm: float, glat: float, glon: float, indices: dict[str, T.Any] = None ) -> xarray.Dataset: """ This is the "atomic" function looped by other functions """ time = todatetime(time) # %% get solar parameters for date if not indices: indices = gi.get_indices(time, smoothdays=81).squeeze().to_dict() assert isinstance(indices, dict) # %% dimensions altkm = np.atleast_1d(altkm) if altkm.ndim != 1: raise ValueError("altitude read incorrectly") if not isinstance(glon, (int, float, np.int32, np.int64)): raise TypeError("single longitude only") if not isinstance(glat, (int, float, np.int32, np.int64)): raise TypeError("single latitude only") # %% doy = time.strftime("%j") altkm = np.atleast_1d(altkm) # %% dens = np.empty((altkm.size, len(species))) temp = np.empty((altkm.size, len(ttypes))) # %% build on run exe_name = "msise00_driver" if os.name == "nt": exe_name += ".exe" # check inputs for error, especially unavailable indices if not np.isfinite(glat).all(): raise ValueError("glat is not finite.") if not np.isfinite(glon).all(): raise ValueError("glon is not finite.") f107s = indices["f107s"] if not np.isfinite(f107s): raise ValueError("f107s is not finite.") f107s = indices["f107s"] if not np.isfinite(f107s): raise ValueError("f107s is not finite.") f107 = indices["f107"] if not np.isfinite(f107): raise ValueError("f107 is not finite.") Ap = indices["Ap"] if not np.isfinite(Ap): raise ValueError("Ap is not finite.") try: with importlib.resources.path(__package__, exe_name) as exe: pass except FileNotFoundError: build() with importlib.resources.path(__package__, exe_name) as exe: for i, a in enumerate(altkm): cmd = [ str(exe), doy, str(time.hour), str(time.minute), str(time.second), str(glat), str(glon), str(f107s), str(f107), str(Ap), str(a), ] logging.info(" ".join(cmd)) ret = subprocess.check_output(cmd, text=True) # different compilers throw in extra \n raw = list(map(float, ret.split())) if not len(raw) == 9 + 2: raise ValueError(ret) dens[i, :] = raw[:9] temp[i, :] = raw[9:] dsf = { k: (("time", "alt_km", "lat", "lon"), v[None, :, None, None]) for (k, v) in zip(species, dens.T) } dsf.update( { "Tn": (("time", "alt_km", "lat", "lon"), temp[:, 1][None, :, None, None]), "Texo": (("time", "alt_km", "lat", "lon"), temp[:, 0][None, :, None, None]), } ) atmos = xarray.Dataset( dsf, # type: ignore coords={"time": [time], "alt_km": altkm, "lat": [glat], "lon": [glon]}, attrs={ "species": species, "f107s": indices["f107s"], "f107": indices["f107"], "Ap": indices["Ap"], }, ) return atmos
{ "content_hash": "42a259802620c0f77370b8e1d1571727", "timestamp": "", "source": "github", "line_count": 219, "max_line_length": 100, "avg_line_length": 28.19178082191781, "alnum_prop": 0.5573372206025268, "repo_name": "scienceopen/msise00", "id": "97b1bad899e576253e11305cb2b5d74c8d8794e9", "size": "6174", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "src/msise00/base.py", "mode": "33188", "license": "mit", "language": [ { "name": "Fortran", "bytes": "255159" }, { "name": "Makefile", "bytes": "673" }, { "name": "Python", "bytes": "12600" } ], "symlink_target": "" }
"""Tests for tensor2tensor.data_generators.algorithmic_math.""" # TODO(rsepassi): This test is flaky. Disable, remove, or update. from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import sympy from tensor2tensor.data_generators import algorithmic_math import tensorflow.compat.v1 as tf class AlgorithmicMathTest(tf.test.TestCase): def testAlgebraInverse(self): dataset_objects = algorithmic_math.math_dataset_init(26) counter = 0 for d in algorithmic_math.algebra_inverse(26, 0, 3, 10): counter += 1 decoded_input = dataset_objects.int_decoder(d["inputs"]) solve_var, expression = decoded_input.split(":") lhs, rhs = expression.split("=") # Solve for the solve-var. result = sympy.solve("%s-(%s)" % (lhs, rhs), solve_var) target_expression = dataset_objects.int_decoder(d["targets"]) # Check that the target and sympy's solutions are equivalent. self.assertEqual( 0, sympy.simplify(str(result[0]) + "-(%s)" % target_expression)) self.assertEqual(counter, 10) def testAlgebraSimplify(self): dataset_objects = algorithmic_math.math_dataset_init(8, digits=5) counter = 0 for d in algorithmic_math.algebra_simplify(8, 0, 3, 10): counter += 1 expression = dataset_objects.int_decoder(d["inputs"]) target = dataset_objects.int_decoder(d["targets"]) # Check that the input and output are equivalent expressions. self.assertEqual(0, sympy.simplify("%s-(%s)" % (expression, target))) self.assertEqual(counter, 10) def testCalculusIntegrate(self): dataset_objects = algorithmic_math.math_dataset_init( 8, digits=5, functions={"log": "L"}) counter = 0 for d in algorithmic_math.calculus_integrate(8, 0, 3, 10): counter += 1 decoded_input = dataset_objects.int_decoder(d["inputs"]) var, expression = decoded_input.split(":") target = dataset_objects.int_decoder(d["targets"]) for fn_name, fn_char in six.iteritems(dataset_objects.functions): target = target.replace(fn_char, fn_name) # Take the derivative of the target. derivative = str(sympy.diff(target, var)) # Check that the derivative of the integral equals the input. self.assertEqual(0, sympy.simplify("%s-(%s)" % (expression, derivative))) self.assertEqual(counter, 10) if __name__ == "__main__": tf.test.main()
{ "content_hash": "8b69ce11309c6df20b97fc6ef236ead6", "timestamp": "", "source": "github", "line_count": 68, "max_line_length": 79, "avg_line_length": 36.23529411764706, "alnum_prop": 0.6728896103896104, "repo_name": "tensorflow/tensor2tensor", "id": "b9d89a575a267574026767a1de6cc4612de3d39d", "size": "3070", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tensor2tensor/data_generators/algorithmic_math_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "32015" }, { "name": "HTML", "bytes": "34684" }, { "name": "JavaScript", "bytes": "78408" }, { "name": "Jupyter Notebook", "bytes": "2859453" }, { "name": "Python", "bytes": "5109255" }, { "name": "Shell", "bytes": "11941" } ], "symlink_target": "" }
from piston.handler import BaseHandler, rc from systems.models import SystemRack import re try: import json except: from django.utils import simplejson as json from django.test.client import Client from settings import API_ACCESS class SystemRackHandler(BaseHandler): #allowed_methods = API_ACCESS allowed_methods = ('GET') #exclude = ('name','id', ('location', ('name', 'id') ) ) fields = ( ('id'), ('name'), ('site', ('id', 'full_name')), ) model = SystemRack def create(self, request, network_adapter_id=None): n = NetworkAdapter() if 'system_id' in request.POST: n.system_id = request.POST['system_id'] if 'mac_address' in request.POST: n.mac_address = request.POST['mac_address'] if 'ip_address' in request.POST: n.ip_address = request.POST['ip_address'] if 'adapter_name' in request.POST: n.adapter_name = request.POST['adapter_name'] if 'option_file_name' in request.POST: n.option_file_name = request.POST['option_file_name'] if 'option_domain_name' in request.POST: n.option_domain_name = request.POST['option_domain_name'] if 'option_host_name' in request.POST: n.option_domain_name = request.POST['option_host_name'] if 'dhcp_scope' in request.POST: try: n.dhcp_scope = DHCP.objects.get(scope_name=request.POST['dhcp_scope']) except: pass try: n.save() resp = rc.ALL_OK resp.write('json = {"id":%i}' % (n.id)) except: resp = rc.NOT_FOUND resp.write('Unable to Create Host') return resp def read(self, request, system_rack_id=None): base = SystemRack.objects if system_rack_id: try: return base.order_by('id').get(id=system_rack_id) except: resp = rc.NOT_FOUND resp.write('Unable to find System Rack') return resp else: return base.order_by('id').all() def update(self, request, network_adapter_id=None): if request.method == 'PUT': try: n = NetworkAdapter.objects.get(pk=network_adapter_id) if 'system_id' in request.POST: n.system_id = request.POST['system_id'] if 'mac_address' in request.POST: n.mac_address = request.POST['mac_address'] if 'ip_address' in request.POST: n.ip_address = request.POST['ip_address'] if 'adapter_name' in request.POST: n.adapter_name = request.POST['adapter_name'] if 'option_file_name' in request.POST: n.file_name = request.POST['option_file_name'] else: n.file_name = '' if 'option_domain_name' in request.POST: n.option_domain_name = request.POST['option_domain_name'] else: n.option_domain_name = '' if 'option_host_name' in request.POST: n.option_host_name = request.POST['option_host_name'] else: n.option_host_name = '' if 'dhcp_scope' in request.POST: try: n.dhcp_scope = DHCP.objects.get(scope_name=request.POST['dhcp_scope']) except: pass n.save() resp = rc.ALL_OK resp.write('json = {"id":%i, "mac_address":"%s", "ip_address":"%s", "dhcp_scope":"%s", "system_id":"%s","option_file_name":"%s"}' % (n.id, n.mac_address, n.ip_address, n.dhcp_scope, n.system_id, n.file_name)) except: resp = rc.NOT_FOUND else: resp = rc.NOT_FOUND return resp def delete(self, request, network_adapter_id=None): try: n = NetworkAdapter.objects.get(id=network_adapter_id) n.delete() network_adapter_id = str(network_adapter_id) resp = rc.ALL_OK resp.write('json = {"id":%s}' % (network_adapter_id)) except: resp = rc.NOT_FOUND return resp
{ "content_hash": "cb4cb8cde56eb57c721154ed7944e427", "timestamp": "", "source": "github", "line_count": 115, "max_line_length": 224, "avg_line_length": 38.417391304347824, "alnum_prop": 0.5135808057944772, "repo_name": "rtucker-mozilla/inventory", "id": "93bde49a638cca44a39a29ec6d83b20bc0cfcd76", "size": "4418", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "api_v2/system_rack_handler.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "5104" }, { "name": "CSS", "bytes": "362837" }, { "name": "CoffeeScript", "bytes": "9538" }, { "name": "HTML", "bytes": "1195738" }, { "name": "JavaScript", "bytes": "1530665" }, { "name": "Makefile", "bytes": "14421" }, { "name": "PHP", "bytes": "27273" }, { "name": "Python", "bytes": "3642241" }, { "name": "Shell", "bytes": "1783" } ], "symlink_target": "" }
"""Echo WebSocket handler for real time collaboration with Yjs""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import uuid import time from tornado.ioloop import IOLoop from tornado.websocket import WebSocketHandler from enum import IntEnum ## The y-protocol defines messages types that just need to be propagated to all other peers. ## Here, we define some additional messageTypes that the server can interpret. ## Messages that the server can't interpret should be broadcasted to all other clients. class ServerMessageType(IntEnum): # The client is asking for a lock. Should return a lock-identifier if one is available. ACQUIRE_LOCK = 127 # The client is asking to release a lock to make it available to other users again. RELEASE_LOCK = 126 # The client is asking to retrieve the initial state of the Yjs document. Return an empty buffer when nothing is available. REQUEST_INITIALIZED_CONTENT = 125 # The client retrieved an empty "initial content" and generated the initial state of the document after acquiring a lock. Store this. PUT_INITIALIZED_CONTENT = 124 # The client moved the document to a different location. After receiving this message, we make the current document available under a different url. # The other clients are automatically notified of this change because the path is shared through the Yjs document as well. RENAME_SESSION = 123 class YjsRoom: def __init__(self): self.lock = None self.timeout = None self.lock_holder = None self.clients = {} self.content = bytes([]) class YjsEchoWebSocket(WebSocketHandler): rooms = {} # Override max_message size to 1GB @property def max_message_size(self): return 1024 * 1024 * 1024 def open(self, guid): #print("[YJSEchoWS]: open", guid) cls = self.__class__ self.id = str(uuid.uuid4()) self.room_id = guid room = cls.rooms.get(self.room_id) if room is None: room = YjsRoom() cls.rooms[self.room_id] = room room.clients[self.id] = ( IOLoop.current(), self.hook_send_message, self ) # Send SyncStep1 message (based on y-protocols) self.write_message(bytes([0, 0, 1, 0]), binary=True) def on_message(self, message): #print("[YJSEchoWS]: message, ", message) cls = self.__class__ room_id = self.room_id room = cls.rooms.get(room_id) if message[0] == ServerMessageType.ACQUIRE_LOCK: now = int(time.time()) if room.lock is None or now - room.timeout > (10 * len(room.clients)) : # no lock or timeout room.lock = now room.timeout = now room.lock_holder = self.id # print('Acquired new lock: ', room.lock) # return acquired lock self.write_message(bytes([ServerMessageType.ACQUIRE_LOCK]) + room.lock.to_bytes(4, byteorder = 'little'), binary=True) elif room.lock_holder == self.id : # print('Update lock: ', room.timeout) room.timeout = now elif message[0] == ServerMessageType.RELEASE_LOCK: releasedLock = int.from_bytes(message[1:], byteorder = 'little') # print("trying release lock: ", releasedLock) if room.lock == releasedLock: # print('released lock: ', room.lock) room.lock = None room.timeout = None room.lock_holder = None elif message[0] == ServerMessageType.REQUEST_INITIALIZED_CONTENT: # print("client requested initial content") self.write_message(bytes([ServerMessageType.REQUEST_INITIALIZED_CONTENT]) + room.content, binary=True) elif message[0] == ServerMessageType.PUT_INITIALIZED_CONTENT: # print("client put initialized content") room.content = message[1:] elif message[0] == ServerMessageType.RENAME_SESSION: # We move the room to a different entry and also change the room_id property of each connected client new_room_id = message[1:].decode("utf-8") for client_id, (loop, hook_send_message, client) in room.clients.items() : client.room_id = new_room_id cls.rooms.pop(room_id) cls.rooms[new_room_id] = room # print("renamed room to " + new_room_id + ". Old room name was " + room_id) elif room: for client_id, (loop, hook_send_message, client) in room.clients.items() : if self.id != client_id : loop.add_callback(hook_send_message, message) def on_close(self): # print("[YJSEchoWS]: close") cls = self.__class__ room = cls.rooms.get(self.room_id) room.clients.pop(self.id) if len(room.clients) == 0 : cls.rooms.pop(self.room_id) # print("[YJSEchoWS]: close room " + self.room_id) return True def check_origin(self, origin): #print("[YJSEchoWS]: check origin") return True def hook_send_message(self, msg): self.write_message(msg, binary=True)
{ "content_hash": "644b71b8b8f5b037c98aa00ca397e000", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 152, "avg_line_length": 43.52892561983471, "alnum_prop": 0.6217960888551357, "repo_name": "jupyter/jupyterlab", "id": "a9bbd7b90a1c14873029dcdb7c38f470f61e9556", "size": "5267", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "jupyterlab/handlers/yjs_echo_ws.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "7475" }, { "name": "CSS", "bytes": "94068" }, { "name": "HTML", "bytes": "1493" }, { "name": "JavaScript", "bytes": "9240" }, { "name": "Makefile", "bytes": "7654" }, { "name": "Python", "bytes": "74649" }, { "name": "Shell", "bytes": "2344" }, { "name": "TypeScript", "bytes": "1090669" } ], "symlink_target": "" }
from diasporapy.engine import handlers import firenado.core class PodComponent(firenado.core.TornadoComponent): def get_handlers(self): return [ (r'/', handlers.IndexHandler), (r'/stream', handlers.StreamHandler), ] def install(self): import diasporapy.pod.models as models from firenado.util.sqlalchemy_util import Base import uuid import datetime print 'Installing Diasporapy Pod...' print 'Creating Pod ...' print self.application.get_data_source('pod').get_connection() engine = self.application.get_data_source('pod').get_connection()['engine'] engine.echo = True # Dropping all # TODO Not to drop all if something is installed right? Base.metadata.drop_all(engine) # Creating database Base.metadata.create_all(engine) #session = self.__get_connection_handler().get_connection()['session'] #session.commit() #print 'Colony %s created at %s' % ( #base_colony.name, base_colony.created_at) if __name__ == '__main__': import firenado.conf from firenado.core import TornadoApplication app = TornadoApplication() app.components['pod'].install()
{ "content_hash": "9bd869121063cdda9cd9f7bb8e354534", "timestamp": "", "source": "github", "line_count": 47, "max_line_length": 83, "avg_line_length": 27.04255319148936, "alnum_prop": 0.6270653029110936, "repo_name": "candango/socialspider", "id": "5181f605d6ac42c018a3d9b1f40aa02373e8a72a", "size": "1933", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "diasporapy/engine/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "3151" }, { "name": "HTML", "bytes": "13743" }, { "name": "JavaScript", "bytes": "5895" }, { "name": "Python", "bytes": "91435" } ], "symlink_target": "" }
"""Implementation of Inspector abstraction for Hyper-V""" import collections import functools import sys from os_win import exceptions as os_win_exc from os_win import utilsfactory from oslo_utils import units import six from ceilometer.compute.pollsters import util from ceilometer.compute.virt import inspector as virt_inspector def convert_exceptions(function, exception_map): expected_exceptions = tuple(exception_map.keys()) @functools.wraps(function) def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except expected_exceptions as ex: # exception might be a subclass of an expected exception. for expected in expected_exceptions: if isinstance(ex, expected): raised_exception = exception_map[expected] break exc_info = sys.exc_info() # NOTE(claudiub): Python 3 raises the exception object given as # the second argument in six.reraise. # The original message will be maintained by passing the original # exception. exc = raised_exception(six.text_type(exc_info[1])) six.reraise(raised_exception, exc, exc_info[2]) return wrapper def decorate_all_methods(decorator, *args, **kwargs): def decorate(cls): for attr in cls.__dict__: class_member = getattr(cls, attr) if callable(class_member): setattr(cls, attr, decorator(class_member, *args, **kwargs)) return cls return decorate exception_conversion_map = collections.OrderedDict([ # NOTE(claudiub): order should be from the most specialized exception type # to the most generic exception type. # (expected_exception, converted_exception) (os_win_exc.NotFound, virt_inspector.InstanceNotFoundException), (os_win_exc.OSWinException, virt_inspector.InspectorException), ]) # NOTE(claudiub): the purpose of the decorator below is to prevent any # os_win exceptions (subclasses of OSWinException) to leak outside of the # HyperVInspector. @decorate_all_methods(convert_exceptions, exception_conversion_map) class HyperVInspector(virt_inspector.Inspector): def __init__(self): super(HyperVInspector, self).__init__() self._utils = utilsfactory.get_metricsutils() self._host_max_cpu_clock = self._compute_host_max_cpu_clock() def _compute_host_max_cpu_clock(self): hostutils = utilsfactory.get_hostutils() # host's number of CPUs and CPU clock speed will not change. cpu_info = hostutils.get_cpus_info() host_cpu_count = len(cpu_info) host_cpu_clock = cpu_info[0]['MaxClockSpeed'] return float(host_cpu_clock * host_cpu_count) def inspect_cpus(self, instance): instance_name = util.instance_name(instance) (cpu_clock_used, cpu_count, uptime) = self._utils.get_cpu_metrics(instance_name) cpu_percent_used = cpu_clock_used / self._host_max_cpu_clock # Nanoseconds cpu_time = (int(uptime * cpu_percent_used) * units.k) return virt_inspector.CPUStats(number=cpu_count, time=cpu_time) def inspect_memory_usage(self, instance, duration=None): instance_name = util.instance_name(instance) usage = self._utils.get_memory_metrics(instance_name) return virt_inspector.MemoryUsageStats(usage=usage) def inspect_vnics(self, instance): instance_name = util.instance_name(instance) for vnic_metrics in self._utils.get_vnic_metrics(instance_name): interface = virt_inspector.Interface( name=vnic_metrics["element_name"], mac=vnic_metrics["address"], fref=None, parameters=None) stats = virt_inspector.InterfaceStats( rx_bytes=vnic_metrics['rx_mb'] * units.Mi, rx_packets=0, tx_bytes=vnic_metrics['tx_mb'] * units.Mi, tx_packets=0) yield (interface, stats) def inspect_disks(self, instance): instance_name = util.instance_name(instance) for disk_metrics in self._utils.get_disk_metrics(instance_name): disk = virt_inspector.Disk(device=disk_metrics['instance_id']) stats = virt_inspector.DiskStats( read_requests=0, # Return bytes read_bytes=disk_metrics['read_mb'] * units.Mi, write_requests=0, write_bytes=disk_metrics['write_mb'] * units.Mi, errors=0) yield (disk, stats) def inspect_disk_latency(self, instance): instance_name = util.instance_name(instance) for disk_metrics in self._utils.get_disk_latency_metrics( instance_name): disk = virt_inspector.Disk(device=disk_metrics['instance_id']) stats = virt_inspector.DiskLatencyStats( disk_latency=disk_metrics['disk_latency']) yield (disk, stats) def inspect_disk_iops(self, instance): instance_name = util.instance_name(instance) for disk_metrics in self._utils.get_disk_iops_count(instance_name): disk = virt_inspector.Disk(device=disk_metrics['instance_id']) stats = virt_inspector.DiskIOPSStats( iops_count=disk_metrics['iops_count']) yield (disk, stats)
{ "content_hash": "ee4582d70ca62624773a29af93846b70", "timestamp": "", "source": "github", "line_count": 146, "max_line_length": 78, "avg_line_length": 37.35616438356164, "alnum_prop": 0.6338467180051338, "repo_name": "idegtiarov/ceilometer", "id": "38409295405d7fc566986d2d06ce949283944553", "size": "6042", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ceilometer/compute/virt/hyperv/inspector.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "2506039" }, { "name": "Shell", "bytes": "33383" } ], "symlink_target": "" }
import os import csv import bz2 import gzip import re import urllib2 import socket from apache_reader import ApacheLogReader # dictionary key structure: filename, user_agent, package_name class LocalStats(object): """Base class that writes the log file """ def _get_logs(self, logfile, file_urls): """Needs to return an iterator. Each entry should be a dictionary""" if callable(logfile): return logfile(file_urls) raise NotImplementedError def _get_file_obj(self, path, mode='r', compression=None): """returns a file object""" if compression == 'bz2': return bz2.BZ2File(path, mode) elif compression == 'gz': return gzip.open(path, mode) return open(path, mode) def _build_stats(self, logfile, fileobj, files_url='/packages', filter=None, compression=None): """Builds a stats file - logfile: path to the original log file, or callable - fileobj : a file object or a path to create a file - files_url : a filter that define the beginnin of package urls - filter: if given, a callable that receives the current line. if the callable returns True, the line is not included """ downloads = {} for log in self._get_logs(logfile, files_url): if filter is not None: if filter(log): continue filename = log['filename'] user_agent = log['useragent'] package_name = log['packagename'] key = (filename, user_agent, package_name) count = log.get('count', 1) if key in downloads: downloads[key] += count else: downloads[key] = count self._write_stats(fileobj, downloads, compression=compression) def _write_stats(self, fileobj, downloads, compression=None): if isinstance(fileobj, str): fileobj = self._get_file_obj(fileobj, 'w', compression) file_created = True else: file_created = False writer = csv.writer(fileobj) filenames = downloads.keys() filenames.sort() for key in filenames: filename, user_agent, package_name = key count = downloads[key] writer.writerow((package_name, filename, user_agent, count)) if file_created: fileobj.close() def build_daily_stats(self, year, month, day, logfile, fileobj, files_url='/packages', compression=None): """creates a daily stats file using an apache log file. - year, month, day: values for the day - logfile : path to the log file, or callable - fileobj : a file object or a path to create a file - files_url : a filter that define the beginning of package urls """ def _filter(log): return (day != log['day'] or month != log['month'] or year != log['year']) self._build_stats(logfile, fileobj, files_url, _filter, compression) def build_monthly_stats(self, year, month, logfile, fileobj, files_url='/packages', compression=None): """creates a monthly stats file using an apache log file. - year, month: values for the month - logfile : path to the log file - fileobj : a file object or a path to create a file - files_url : a filter that define the beginnin of package urls """ def _filter(log): return (month != log['month'] or year != log['year']) self._build_stats(logfile, fileobj, files_url, _filter, compression) def read_stats(self, stats_file): """Returns an iterator over a stats file""" if isinstance(stats_file, str): ext = os.path.splitext(stats_file)[-1][1:] stats_file = self._get_file_obj(stats_file, 'r', ext) reader = csv.reader(stats_file) for line in reader: yield {'packagename': line[0], 'filename': line[1], 'useragent': line[2], 'count': int(line[3])} #reader.close() def read_stats_dict(self, stats_file): res = {} for r in self.read_stats(stats_file): key = (r['filename'], r['useragent'], r['packagename']) value = r['count'] res[key] = value return res def build_local_stats(self, year, month, day, logfile, directory=None): """builds local stats with default values""" filename = '%d-%.2d-%.2d.bz2' % (year, month, day) if directory is not None: filename = os.path.join(directory, filename) self.build_daily_stats(year, month, day, logfile, filename, compression='bz2') def integrate_stats(self, targetdir, year, month, day, fd): new = self.read_stats_dict(fd) oldpath = "%s/days/%s-%.2s-%.2s.bz2" % (targetdir, year, month, day) if os.path.exists(oldpath): old = self.read_stats_dict(oldpath) for k, v in new.items(): old[k] = old.get(k, 0) + v else: old = new self._write_stats(oldpath, old, 'bz2') monthpath = "%s/months/%s-%.2s.bz2" % (targetdir, year, month) if os.path.exists(monthpath): old = self.read_stats_dict(monthpath) for k, v in new.items(): old[k] = old.get(k, 0) + v else: old = new self._write_stats(monthpath, old, 'bz2') return new class ApacheLocalStats(LocalStats): """concrete class that uses the ApacheLogReader""" def _get_logs(self, logfile, files_url): return ApacheLogReader(logfile, files_url) class ApacheDistantLocalStats(ApacheLocalStats): """Concrete class that gets the data from a distant file""" is_url = re.compile(r'^http://') def __init__(self, cache_folder='', timeout=5): self.cache_folder = cache_folder if not os.path.exists(cache_folder): os.makedirs(cache_folder) self.timeout = timeout def get_and_cache(self, url): """retrieve the distant file and add it in the local cache""" basename = url.split('/')[-1] filename = os.path.join(self.cache_folder, basename) if os.path.exists(filename): # in cache, let's return it return filename, open(filename) # not in cache, we need to retrieve it # and store it oldtimeout = socket.getdefaulttimeout() socket.setdefaulttimeout(self.timeout) try: try: content = urllib2.urlopen(url).read() except (urllib2.URLError, socket.timeout): return '', None finally: socket.setdefaulttimeout(oldtimeout) f = open(filename, 'w') try: f.write(content) finally: f.close() return filename, open(filename) def read_stats(self, stats_file): """retrieve a distant file and works with it""" if self.is_url.search(stats_file) is not None: path, fileobj = self.get_and_cache(stats_file) if path == '': return iter([]) return ApacheLocalStats.read_stats(self, path)
{ "content_hash": "bbbbf3ea9d24a80cb631e0168bd7fe9a", "timestamp": "", "source": "github", "line_count": 207, "max_line_length": 76, "avg_line_length": 36.2512077294686, "alnum_prop": 0.5611673773987207, "repo_name": "techtonik/pydotorg.pypi", "id": "1142fcee0f8407974a87e4743f85f6657c5cdca3", "size": "7504", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tools/apache_stats.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "195" }, { "name": "CSS", "bytes": "52191" }, { "name": "Makefile", "bytes": "208" }, { "name": "PLpgSQL", "bytes": "10792" }, { "name": "Python", "bytes": "397864" } ], "symlink_target": "" }
""" Make REST API requests """ from typing import Any, Dict, Iterable, Optional, Protocol import aiohttp from gcpdiag.queries import apis_utils class Creds(Protocol): def update_headers(self, headers: Dict[str, str]) -> None: pass class Sleeper(Protocol): async def sleep(self, seconds: float) -> None: pass class RetryStrategy(Protocol): def get_sleep_intervals(self) -> Iterable[float]: pass class API: """ Class abstracting aspects of REST API requests """ def __init__(self, creds: Creds, retry_strategy: RetryStrategy, sleeper: Sleeper) -> None: self._creds = creds self._retry_strategy = retry_strategy self._sleeper = sleeper async def call(self, method: str, url: str, json: Optional[Any] = None) -> Any: for timeout in self._retry_strategy.get_sleep_intervals(): async with aiohttp.request(method, url, headers=self._get_headers(), json=json) as resp: if resp.status == 200: return await resp.json() if not apis_utils.should_retry(resp.status): raise RuntimeError( f'http status {resp.status} calling {method} {url}') await self._sleeper.sleep(timeout) raise RuntimeError('failed to get an API response') def _get_headers(self) -> Dict[str, str]: headers: Dict[str, str] = {} self._creds.update_headers(headers) return headers
{ "content_hash": "a4641f3966392ed74b35b395b118992d", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 66, "avg_line_length": 27.446428571428573, "alnum_prop": 0.5972674040338322, "repo_name": "GoogleCloudPlatform/gcpdiag", "id": "d11db9a1b1abf61fa86091816f9a568547ec8a49", "size": "1537", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "gcpdiag/async_queries/api/api.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "4610" }, { "name": "HCL", "bytes": "90111" }, { "name": "HTML", "bytes": "8149" }, { "name": "Jinja", "bytes": "1231" }, { "name": "Makefile", "bytes": "51860" }, { "name": "Python", "bytes": "792739" }, { "name": "SCSS", "bytes": "1435" }, { "name": "Shell", "bytes": "10973" }, { "name": "Smarty", "bytes": "726" } ], "symlink_target": "" }
""" The Pygments reStructuredText directive ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This fragment is a Docutils_ 0.5 directive that renders source code (to HTML only, currently) via Pygments. To use it, adjust the options below and copy the code into a module that you import on initialization. The code then automatically registers a ``sourcecode`` directive that you can use instead of normal code blocks like this:: .. sourcecode:: python My code goes here. If you want to have different code styles, e.g. one with line numbers and one without, add formatters with their names in the VARIANTS dict below. You can invoke them instead of the DEFAULT one by using a directive option:: .. sourcecode:: python :linenos: My code goes here. Look at the `directive documentation`_ to get all the gory details. .. _Docutils: http://docutils.sf.net/ .. _directive documentation: http://docutils.sourceforge.net/docs/howto/rst-directives.html :copyright: Copyright 2006-2010 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ # Options # ~~~~~~~ # Set to True if you want inline CSS styles instead of classes INLINESTYLES = False from pygments.formatters import HtmlFormatter # The default formatter DEFAULT = HtmlFormatter(noclasses=INLINESTYLES) # Add name -> formatter pairs for every variant you want to use VARIANTS = { 'linenos': HtmlFormatter(noclasses=INLINESTYLES, linenos=True), } from docutils import nodes from docutils.parsers.rst import directives, Directive from pygments import highlight from pygments.lexers import get_lexer_by_name, TextLexer class Pygments(Directive): """ Source code syntax hightlighting. """ required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = dict([(key, directives.flag) for key in VARIANTS]) has_content = True def run(self): """Pygmentize text.""" self.assert_has_content() try: lexer = get_lexer_by_name(self.arguments[0]) except ValueError: # no lexer found - use the text one instead of an exception lexer = TextLexer() formatter = DEFAULT if self.options: # take an arbitrary option if more than one is given key = list(self.options.keys())[0] formatter = VARIANTS[key] parsed = highlight(u'\n'.join(self.content), lexer, formatter) return [nodes.raw('', parsed, format='html')] directives.register_directive('sourcecode', Pygments)
{ "content_hash": "b55288bbac20b10f32fac3c72a9d5245", "timestamp": "", "source": "github", "line_count": 85, "max_line_length": 73, "avg_line_length": 31.31764705882353, "alnum_prop": 0.6652892561983471, "repo_name": "wummel/wok", "id": "de0a03f360ca8996164e08701f76922648d65fb9", "size": "2691", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "woklib/rst_pygments.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "3896" }, { "name": "HTML", "bytes": "3784" }, { "name": "Makefile", "bytes": "1003" }, { "name": "Python", "bytes": "76114" } ], "symlink_target": "" }
""" Wicked hack to get .pyc files to do bytecode tracing instead of line tracing. """ import marshal, new, opcode, sys, types from lnotab import lnotab_numbers, lnotab_string class PycFile: def read(self, f): if isinstance(f, basestring): f = open(f, "rb") self.magic = f.read(4) self.modtime = f.read(4) self.code = marshal.load(f) def write(self, f): if isinstance(f, basestring): f = open(f, "wb") f.write(self.magic) f.write(self.modtime) marshal.dump(self.code, f) def hack_line_numbers(self): self.code = hack_line_numbers(self.code) def hack_line_numbers(code): """ Replace a code object's line number information to claim that every byte of the bytecode is a new source line. Returns a new code object. Also recurses to hack the line numbers in nested code objects. """ # Create a new lnotab table. Each opcode is claimed to be at # 1000*lineno + (opcode number within line), so for example, the opcodes on # source line 12 will be given new line numbers 12000, 12001, 12002, etc. old_num = list(lnotab_numbers(code.co_lnotab, code.co_firstlineno)) n_bytes = len(code.co_code) new_num = [] line = 0 opnum_in_line = 0 i_byte = 0 while i_byte < n_bytes: if old_num and i_byte == old_num[0][0]: line = old_num.pop(0)[1] opnum_in_line = 0 new_num.append((i_byte, 100000000 + 1000*line + opnum_in_line)) if ord(code.co_code[i_byte]) >= opcode.HAVE_ARGUMENT: i_byte += 3 else: i_byte += 1 opnum_in_line += 1 # new_num is a list of pairs, (byteoff, lineoff). Turn it into an lnotab. new_firstlineno = new_num[0][1]-1 new_lnotab = lnotab_string(new_num, new_firstlineno) # Recurse into code constants in this code object. new_consts = [] for const in code.co_consts: if type(const) == types.CodeType: new_consts.append(hack_line_numbers(const)) else: new_consts.append(const) # Create a new code object, just like the old one, except with new # line numbers. new_code = new.code( code.co_argcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, tuple(new_consts), code.co_names, code.co_varnames, code.co_filename, code.co_name, new_firstlineno, new_lnotab ) return new_code def hack_file(f): pyc = PycFile() pyc.read(f) pyc.hack_line_numbers() pyc.write(f) if __name__ == '__main__': hack_file(sys.argv[1])
{ "content_hash": "225552112df47a8c0a1e64227362d985", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 79, "avg_line_length": 32.13414634146341, "alnum_prop": 0.6060721062618596, "repo_name": "nedbat/coveragepy", "id": "60b8459b54bfa7b189cbbc3ea668e2d96e70bd5f", "size": "2791", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "lab/hack_pyc.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "48728" }, { "name": "CSS", "bytes": "37343" }, { "name": "HTML", "bytes": "213879" }, { "name": "JavaScript", "bytes": "48668" }, { "name": "Makefile", "bytes": "9529" }, { "name": "Python", "bytes": "1324579" }, { "name": "SCSS", "bytes": "17425" }, { "name": "Shell", "bytes": "2240" } ], "symlink_target": "" }
import scrapy from scrapy.linkextractors import LinkExtractor from scrapy_splash import SplashRequest class QuotesSpider(scrapy.Spider): name = "quotes" allowed_domains = ["toscrape.com"] start_urls = ['http://quotes.toscrape.com/'] # http_user = 'splash-user' # http_pass = 'splash-password' def parse(self, response): le = LinkExtractor() for link in le.extract_links(response): yield SplashRequest( link.url, self.parse_link, endpoint='render.json', args={ 'har': 1, 'html': 1, } ) def parse_link(self, response): print("PARSED", response.real_url, response.url) print(response.css("title").extract()) print(response.data["har"]["log"]["pages"]) print(response.headers.get('Content-Type'))
{ "content_hash": "8351d73cbb63d8215333691a31d699bb", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 56, "avg_line_length": 28.6875, "alnum_prop": 0.5555555555555556, "repo_name": "Ertinfagor/ScrapySplash", "id": "ed8fb65f5c294b1aa80fa30bddf3b0fbdfc12631", "size": "942", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "templateproject/templateproject/spiders/quotes.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "7135" } ], "symlink_target": "" }
from django.conf import settings from django.db.models.signals import post_save from django.dispatch import receiver from babik_shadow_accounts import get_shadow_account_model @receiver(post_save, sender=settings.AUTH_USER_MODEL) def user_created(sender, instance, created, raw, using, update_fields, **kwargs): """ When a user is created this searches for an Account object and adds the user to the account if an account is found """ if created: AccountModel = get_shadow_account_model() fields = getattr(settings, 'BABIK_SHADOW_ACCOUNT_GLUE_FIELDS', None) if not fields: fields = {'email': 'email'} kwargs = {f1: getattr(instance, f2) for f1, f2 in fields.items()} try: account = AccountModel.objects.get(**kwargs) account.user = instance account.save() except AccountModel.DoesNotExist: kwargs['user'] = instance account = AccountModel.objects.create(**kwargs)
{ "content_hash": "95aa02187be7b217ff08aa9f6421186d", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 76, "avg_line_length": 36.607142857142854, "alnum_prop": 0.6497560975609756, "repo_name": "aubreystarktoller/django-babik-shadow-accounts", "id": "6d55c0b45ca74ff2f7e30ddbe90207f1fc977916", "size": "1025", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "babik_shadow_accounts/signals/handlers.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1053" }, { "name": "Python", "bytes": "10549" } ], "symlink_target": "" }
""" Overview ======== The multiprocess plugin enables you to distribute your test run among a set of worker processes that run tests in parallel. This can speed up CPU-bound test runs (as long as the number of work processeses is around the number of processors or cores available), but is mainly useful for IO-bound tests that spend most of their time waiting for data to arrive from someplace else. .. note :: See :doc:`../doc_tests/test_multiprocess/multiprocess` for additional documentation and examples. Use of this plugin on python 2.5 or earlier requires the multiprocessing_ module, also available from PyPI. .. _multiprocessing : http://code.google.com/p/python-multiprocessing/ How tests are distributed ========================= The ideal case would be to dispatch each test to a worker process separately. This ideal is not attainable in all cases, however, because many test suites depend on context (class, module or package) fixtures. The plugin can't know (unless you tell it -- see below!) if a context fixture can be called many times concurrently (is re-entrant), or if it can be shared among tests running in different processes. Therefore, if a context has fixtures, the default behavior is to dispatch the entire suite to a worker as a unit. Controlling distribution ^^^^^^^^^^^^^^^^^^^^^^^^ There are two context-level variables that you can use to control this default behavior. If a context's fixtures are re-entrant, set ``_multiprocess_can_split_ = True`` in the context, and the plugin will dispatch tests in suites bound to that context as if the context had no fixtures. This means that the fixtures will execute concurrently and multiple times, typically once per test. If a context's fixtures can be shared by tests running in different processes -- such as a package-level fixture that starts an external http server or initializes a shared database -- then set ``_multiprocess_shared_ = True`` in the context. These fixtures will then execute in the primary nose process, and tests in those contexts will be individually dispatched to run in parallel. How results are collected and reported ====================================== As each test or suite executes in a worker process, results (failures, errors, and specially handled exceptions like SkipTest) are collected in that process. When the worker process finishes, it returns results to the main nose process. There, any progress output is printed (dots!), and the results from the test run are combined into a consolidated result set. When results have been received for all dispatched tests, or all workers have died, the result summary is output as normal. Beware! ======= Not all test suites will benefit from, or even operate correctly using, this plugin. For example, CPU-bound tests will run more slowly if you don't have multiple processors. There are also some differences in plugin interactions and behaviors due to the way in which tests are dispatched and loaded. In general, test loading under this plugin operates as if it were always in directed mode instead of discovered mode. For instance, doctests in test modules will always be found when using this plugin with the doctest plugin. But the biggest issue you will face is probably concurrency. Unless you have kept your tests as religiously pure unit tests, with no side-effects, no ordering issues, and no external dependencies, chances are you will experience odd, intermittent and unexplainable failures and errors when using this plugin. This doesn't necessarily mean the plugin is broken; it may mean that your test suite is not safe for concurrency. New Features in 1.0.1 ===================== * functions generated by test generators are now added to the worker queue making them multi-threaded. * fixed timeout functionality, now functions will be terminated with a TimedOutException exception when they exceed their execution time. The worker processes are not terminated. * added ``--process-restartworker`` option to restart workers once they are done, this helps control memory usage. Sometimes memory leaks can accumulate making long runs very difficult. * added global _instantiate_plugins to configure which plugins are started on the worker processes. """ import logging import os import sys import time import traceback import unittest import pickle import signal import nose.case from nose.core import TextTestRunner from nose import failure from nose import loader from nose.plugins.base import Plugin #from nose.pyversion import bytes_ from nose.result import TextTestResult from nose.suite import ContextSuite from nose.util import test_address try: # 2.7+ from unittest.runner import _WritelnDecorator except ImportError: from unittest import _WritelnDecorator from Queue import Empty from warnings import warn try: from cStringIO import StringIO except ImportError: import StringIO if sys.version_info >= (3, 0): def bytes_(s, encoding='utf8'): return bytes(s, encoding) else: def bytes_(s, encoding=None): return str(s) # this is a list of plugin classes that will be checked for and created inside # each worker process _instantiate_plugins = None log = logging.getLogger(__name__) Process = Queue = Pool = Event = Value = Array = None class TimedOutException(Exception): def __init__(self, value = "Timed Out"): self.value = value def __str__(self): return repr(self.value) class UnknownTerminationException(Exception): def __init__(self, value = "Unknown termination"): self.value = value def __str__(self): return repr(self.value) class ForceErrorClass(object): failedaddr=None failedargs=None def __init__(self,failedaddr,failedargs): self.failedaddr=failedaddr self.failedargs=failedargs def __str__(self): return '' def __unicode__(self): return u'' def _import_mp(): global Process, Queue, Pool, Event, Value, Array try: from multiprocessing import (Process as Process_, Queue as Queue_, Pool as Pool_, Event as Event_, Value as Value_, Array as Array_) Process, Queue, Pool, Event, Value, Array = (Process_, Queue_, Pool_, Event_, Value_, Array_) except ImportError: warn("multiprocessing module is not available, multiprocess plugin " "cannot be used", RuntimeWarning) class TestLet: def __init__(self, case): try: self._id = case.id() except AttributeError: pass try: self._short_description = case.shortDescription() self._str = str(case) except AttributeError: self._short_description = '' self._str = '' def id(self): return self._id def shortDescription(self): return self._short_description def __str__(self): return self._str class MultiProcess(Plugin): """ Run tests in multiple processes. Requires processing module. """ score = 1000 status = {} def options(self, parser, env): """ Register command-line options. """ parser.add_option("--processes", action="store", default=env.get('NOSE_PROCESSES', 0), dest="multiprocess_workers", metavar="NUM", help="Spread test run among this many processes. " "Set a number equal to the number of processors " "or cores in your machine for best results. " "[NOSE_PROCESSES]") parser.add_option("--process-timeout", action="store", default=env.get('NOSE_PROCESS_TIMEOUT', 10), dest="multiprocess_timeout", metavar="SECONDS", help="Set timeout for return of results from each " "test runner process. [NOSE_PROCESS_TIMEOUT]") parser.add_option("--process-restartworker", action="store_true", default=env.get('NOSE_PROCESS_RESTARTWORKER', False), dest="multiprocess_restartworker", help="If set, will restart each worker process once" " their tests are done, this helps control memory " "leaks from killing the system. " "[NOSE_PROCESS_RESTARTWORKER]") def configure(self, options, config): """ Configure plugin. """ try: self.status.pop('active') except KeyError: pass if not hasattr(options, 'multiprocess_workers'): self.enabled = False return # don't start inside of a worker process if config.worker: return self.config = config try: workers = int(options.multiprocess_workers) except (TypeError, ValueError): workers = 0 if workers: _import_mp() if Process is None: self.enabled = False return self.enabled = True self.config.multiprocess_workers = workers t = float(options.multiprocess_timeout) self.config.multiprocess_timeout = t r = int(options.multiprocess_restartworker) self.config.multiprocess_restartworker = r self.status['active'] = True def prepareTestLoader(self, loader): """Remember loader class so MultiProcessTestRunner can instantiate the right loader. """ self.loaderClass = loader.__class__ def prepareTestRunner(self, runner): """Replace test runner with MultiProcessTestRunner. """ # replace with our runner class return MultiProcessTestRunner(stream=runner.stream, verbosity=self.config.verbosity, config=self.config, loaderClass=self.loaderClass) class MultiProcessTestRunner(TextTestRunner): waitkilltime = 10.0 # max time to wait to terminate a process that does not respond to SIGINT def __init__(self, **kw): self.loaderClass = kw.pop('loaderClass', loader.defaultTestLoader) super(MultiProcessTestRunner, self).__init__(**kw) def run(self, test): """ Execute the test (which may be a test suite). If the test is a suite, distribute it out among as many processes as have been configured, at as fine a level as is possible given the context fixtures defined in the suite or any sub-suites. """ log.debug("%s.run(%s) (%s)", self, test, os.getpid()) wrapper = self.config.plugins.prepareTest(test) if wrapper is not None: test = wrapper # plugins can decorate or capture the output stream wrapped = self.config.plugins.setOutputStream(self.stream) if wrapped is not None: self.stream = wrapped testQueue = Queue() resultQueue = Queue() tasks = [] completed = [] workers = [] to_teardown = [] shouldStop = Event() result = self._makeResult() start = time.time() # dispatch and collect results # put indexes only on queue because tests aren't picklable for case in self.nextBatch(test): log.debug("Next batch %s (%s)", case, type(case)) if (isinstance(case, nose.case.Test) and isinstance(case.test, failure.Failure)): log.debug("Case is a Failure") case(result) # run here to capture the failure continue # handle shared fixtures if isinstance(case, ContextSuite) and case.context is failure.Failure: log.debug("Case is a Failure") case(result) # run here to capture the failure continue elif isinstance(case, ContextSuite) and self.sharedFixtures(case): log.debug("%s has shared fixtures", case) try: case.setUp() except (KeyboardInterrupt, SystemExit): raise except: log.debug("%s setup failed", sys.exc_info()) result.addError(case, sys.exc_info()) else: to_teardown.append(case) for _t in case: test_addr = self.addtask(testQueue,tasks,_t) log.debug("Queued shared-fixture test %s (%s) to %s", len(tasks), test_addr, testQueue) else: test_addr = self.addtask(testQueue,tasks,case) log.debug("Queued test %s (%s) to %s", len(tasks), test_addr, testQueue) log.debug("Starting %s workers", self.config.multiprocess_workers) for i in range(self.config.multiprocess_workers): currentaddr = Array('c',1000) currentaddr.value = bytes_('') currentargs = Array('c',1000) currentargs.value = bytes_('') currentstart = Value('d') keyboardCaught = Event() p = Process(target=runner, args=(i, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, self.loaderClass, result.__class__, pickle.dumps(self.config))) p.currentaddr = currentaddr p.currentargs = currentargs p.currentstart = currentstart p.keyboardCaught = keyboardCaught # p.setDaemon(True) p.start() workers.append(p) log.debug("Started worker process %s", i+1) total_tasks = len(tasks) # need to keep track of the next time to check for timeouts in case # more than one process times out at the same time. nexttimeout=self.config.multiprocess_timeout while tasks: log.debug("Waiting for results (%s/%s tasks), next timeout=%.3fs", len(completed), total_tasks,nexttimeout) try: # should periodically check for timeouts with a min of 10s since processes can terminate sporadically iworker, addr, newtask_addrs, batch_result = resultQueue.get(timeout=min(10,nexttimeout)) log.debug('Results received for worker %d , %s, new tasks: %d', iworker,addr,len(newtask_addrs)) try: try: tasks.remove(addr) except ValueError: log.warn('worker %s failed to remove from tasks: %s', iworker,addr) total_tasks += len(newtask_addrs) for newaddr in newtask_addrs: tasks.append(newaddr) except KeyError: log.debug("Got result for unknown task? %s", addr) log.debug("current: %s",str(list(tasks)[0])) else: completed.append([addr,batch_result]) self.consolidate(result, batch_result) if (self.config.stopOnError and not result.wasSuccessful()): # set the stop condition shouldStop.set() break if self.config.multiprocess_restartworker: log.debug('joining worker %s',iworker) # wait for working, but not that important if worker # cannot be joined in fact, for workers that add to # testQueue, they will not terminate until all their # items are read workers[iworker].join(timeout=1) if not shouldStop.is_set() and not testQueue.empty(): log.debug('starting new process on worker %s',iworker) currentaddr = Array('c',1000) currentaddr.value = bytes_('') currentargs = Array('c',1000) currentargs.value = bytes_('') currentstart = Value('d') currentstart.value = time.time() keyboardCaught = Event() workers[iworker] = Process(target=runner, args=(iworker, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, self.loaderClass, result.__class__, pickle.dumps(self.config))) workers[iworker].currentaddr = currentaddr workers[iworker].currentargs = currentargs workers[iworker].currentstart = currentstart workers[iworker].keyboardCaught = keyboardCaught workers[iworker].start() except Empty: log.debug("Timed out with %s tasks pending (empty testQueue=%d): %s", len(tasks),testQueue.empty(),str(tasks)) any_alive = False for iworker, w in enumerate(workers): worker_addr = bytes_(w.currentaddr.value,'ascii') worker_args = '' try: if len(w.currentargs.value) > 0: worker_args = pickle.loads(bytes_(w.currentargs.value,'ascii')) except EOFError,e: log.warn('worker %d: exception in getting worker args (%s): %s',iworker, w.currentargs.value, str(e)) test_addr = worker_addr if worker_args is not None: test_addr += str(worker_args) if not w.is_alive(): # it could have segmented with the last job assigned if len(worker_addr) > 0: foundtask = [task for task in tasks if task==test_addr] log.debug('dead worker %d currentaddr: %s, currentargs: %s, found %d matching tasks', iworker, worker_addr,str(worker_args), len(foundtask)) if len(foundtask) > 0: tasks.remove(foundtask[0]) testQueue.put((worker_addr,ForceErrorClass(worker_addr,worker_args)),block=False) tasks.append(worker_addr) # restart the worker currentaddr = Array('c',1000) currentaddr.value = bytes_('') currentargs = Array('c',1000) currentargs.value = bytes_('') currentstart = Value('d') currentstart.value = time.time() keyboardCaught = Event() workers[iworker] = Process(target=runner, args=(iworker, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, self.loaderClass, result.__class__, pickle.dumps(self.config))) workers[iworker].currentaddr = currentaddr workers[iworker].currentargs = currentargs workers[iworker].currentstart = currentstart workers[iworker].keyboardCaught = keyboardCaught workers[iworker].start() any_alive = True # force continuation else: timeprocessing = time.time()-w.currentstart.value if len(worker_addr) == 0 and timeprocessing > self.config.multiprocess_timeout-0.1: log.debug('worker %d has finished its work item, but is not exiting? do we wait for it?', iworker) if timeprocessing > self.config.multiprocess_timeout+30: log.error('worker %d force kill', iworker) os.kill(w.pid, signal.SIGINT) time.sleep(0.1) else: any_alive = True else: any_alive = True if len(worker_addr) > 0 and timeprocessing > self.config.multiprocess_timeout-0.1: log.debug('timed out worker %s: %s', iworker,worker_addr) w.currentaddr.value = bytes_('') # If the process is in C++ code, sending a SIGINT # might not send a python KeybordInterrupt exception # therefore, send multiple signals until an # exception is caught. If this takes too long, then # terminate the process w.keyboardCaught.clear() startkilltime = time.time() while not w.keyboardCaught.is_set() and w.is_alive(): if time.time()-startkilltime > self.waitkilltime: # have to terminate... log.error("terminating worker %s",iworker) w.terminate() foundtask = [task for task in tasks if task==test_addr] log.debug('found %d matching tasks', len(foundtask)) if len(foundtask) > 0: tasks.remove(foundtask[0]) testQueue.put((worker_addr,ForceErrorClass(worker_addr,worker_args)),block=False) tasks.append(worker_addr) currentaddr = Array('c',1000) currentaddr.value = bytes_('') currentargs = Array('c',1000) currentargs.value = bytes_('') currentstart = Value('d') currentstart.value = time.time() keyboardCaught = Event() workers[iworker] = Process(target=runner, args=(iworker, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, self.loaderClass, result.__class__, pickle.dumps(self.config))) workers[iworker].currentaddr = currentaddr workers[iworker].currentargs = currentargs workers[iworker].currentstart = currentstart workers[iworker].keyboardCaught = keyboardCaught workers[iworker].start() # there is a small probability that the # terminated process might send a result, # which has to be specially handled or # else processes might get orphaned. w = workers[iworker] break os.kill(w.pid, signal.SIGINT) time.sleep(0.1) if not any_alive and testQueue.empty(): log.debug("All workers dead") break nexttimeout=self.config.multiprocess_timeout for w in workers: if w.is_alive() and len(w.currentaddr.value) > 0: timeprocessing = time.time()-w.currentstart.value if timeprocessing <= self.config.multiprocess_timeout: nexttimeout = min(nexttimeout, self.config.multiprocess_timeout-timeprocessing) log.debug("Completed %s tasks (%s remain)", len(completed), len(tasks)) for case in to_teardown: log.debug("Tearing down shared fixtures for %s", case) try: case.tearDown() except (KeyboardInterrupt, SystemExit): raise except: result.addError(case, sys.exc_info()) stop = time.time() # first write since can freeze on shutting down processes result.printErrors() result.printSummary(start, stop) self.config.plugins.finalize(result) log.debug("Tell all workers to stop") for w in workers: if w.is_alive(): testQueue.put('STOP', block=False) # wait for the workers to end try: for iworker,worker in enumerate(workers): if worker.is_alive(): log.debug('joining worker %s',iworker) worker.join()#10) if worker.is_alive(): log.debug('failed to join worker %s',iworker) except KeyboardInterrupt: log.info('parent received ctrl-c') for worker in workers: worker.terminate() worker.join() return result def addtask(testQueue,tasks,case): arg = None if isinstance(case,nose.case.Test) and hasattr(case.test,'arg'): # this removes the top level descriptor and allows real function # name to be returned case.test.descriptor = None arg = case.test.arg test_addr = MultiProcessTestRunner.address(case) testQueue.put((test_addr,arg), block=False) if arg is not None: test_addr += str(arg) if tasks is not None: tasks.append(test_addr) return test_addr addtask = staticmethod(addtask) def address(case): if hasattr(case, 'address'): file, mod, call = case.address() elif hasattr(case, 'context'): file, mod, call = test_address(case.context) else: raise Exception("Unable to convert %s to address" % case) parts = [] if file is None: if mod is None: raise Exception("Unaddressable case %s" % case) else: parts.append(mod) else: # strip __init__.py(c) from end of file part # if present, having it there confuses loader dirname, basename = os.path.split(file) if basename.startswith('__init__'): file = dirname parts.append(file) if call is not None: parts.append(call) return ':'.join(map(str, parts)) address = staticmethod(address) def nextBatch(self, test): # allows tests or suites to mark themselves as not safe # for multiprocess execution if hasattr(test, 'context'): if not getattr(test.context, '_multiprocess_', True): return if ((isinstance(test, ContextSuite) and test.hasFixtures(self.checkCanSplit)) or not getattr(test, 'can_split', True) or not isinstance(test, unittest.TestSuite)): # regular test case, or a suite with context fixtures # special case: when run like nosetests path/to/module.py # the top-level suite has only one item, and it shares # the same context as that item. In that case, we want the # item, not the top-level suite if isinstance(test, ContextSuite): contained = list(test) if (len(contained) == 1 and getattr(contained[0], 'context', None) == test.context): test = contained[0] yield test else: # Suite is without fixtures at this level; but it may have # fixtures at any deeper level, so we need to examine it all # the way down to the case level for case in test: for batch in self.nextBatch(case): yield batch def checkCanSplit(self, context, fixt): """ Callback that we use to check whether the fixtures found in a context or ancestor are ones we care about. Contexts can tell us that their fixtures are reentrant by setting _multiprocess_can_split_. So if we see that, we return False to disregard those fixtures. """ if not fixt: return False if getattr(context, '_multiprocess_can_split_', False): return False return True def sharedFixtures(self, case): context = getattr(case, 'context', None) if not context: return False return getattr(context, '_multiprocess_shared_', False) def consolidate(self, result, batch_result): log.debug("batch result is %s" , batch_result) try: output, testsRun, failures, errors, errorClasses = batch_result except ValueError: log.debug("result in unexpected format %s", batch_result) failure.Failure(*sys.exc_info())(result) return self.stream.write(output) result.testsRun += testsRun result.failures.extend(failures) result.errors.extend(errors) for key, (storage, label, isfail) in errorClasses.items(): if key not in result.errorClasses: # Ordinarily storage is result attribute # but it's only processed through the errorClasses # dict, so it's ok to fake it here result.errorClasses[key] = ([], label, isfail) mystorage, _junk, _junk = result.errorClasses[key] mystorage.extend(storage) log.debug("Ran %s tests (total: %s)", testsRun, result.testsRun) def runner(ix, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, loaderClass, resultClass, config): try: try: try: return __runner(ix, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, loaderClass, resultClass, config) except KeyboardInterrupt: keyboardCaught.set() log.debug('Worker %s keyboard interrupt, stopping',ix) except Empty: log.debug("Worker %s timed out waiting for tasks", ix) finally: testQueue.close() resultQueue.close() def __runner(ix, testQueue, resultQueue, currentaddr, currentargs, currentstart, keyboardCaught, shouldStop, loaderClass, resultClass, config): config = pickle.loads(config) dummy_parser = config.parserClass() if _instantiate_plugins is not None: for pluginclass in _instantiate_plugins: plugin = pluginclass() plugin.addOptions(dummy_parser,{}) config.plugins.addPlugin(plugin) config.plugins.configure(config.options,config) config.plugins.begin() log.debug("Worker %s executing, pid=%d", ix,os.getpid()) loader = loaderClass(config=config) loader.suiteClass.suiteClass = NoSharedFixtureContextSuite def get(): return testQueue.get(timeout=config.multiprocess_timeout) def makeResult(): stream = _WritelnDecorator(StringIO()) result = resultClass(stream, descriptions=1, verbosity=config.verbosity, config=config) plug_result = config.plugins.prepareTestResult(result) if plug_result: return plug_result return result def batch(result): failures = [(TestLet(c), err) for c, err in result.failures] errors = [(TestLet(c), err) for c, err in result.errors] errorClasses = {} for key, (storage, label, isfail) in result.errorClasses.items(): errorClasses[key] = ([(TestLet(c), err) for c, err in storage], label, isfail) return ( result.stream.getvalue(), result.testsRun, failures, errors, errorClasses) for test_addr, arg in iter(get, 'STOP'): if shouldStop.is_set(): log.exception('Worker %d STOPPED',ix) break result = makeResult() test = loader.loadTestsFromNames([test_addr]) test.testQueue = testQueue test.tasks = [] test.arg = arg log.debug("Worker %s Test is %s (%s), args: %s", ix, test_addr, test, str(arg)) try: task_addr = test_addr if arg is not None: task_addr += str(arg) currentaddr.value = bytes_(test_addr) currentargs.value = bytes_(pickle.dumps(arg)) currentstart.value = time.time() result.currentaddr = currentaddr test(result) currentaddr.value = bytes_('') resultQueue.put((ix, task_addr, test.tasks, batch(result))) except KeyboardInterrupt: keyboardCaught.set() if len(currentaddr.value) > 0: log.exception('Worker %s keyboard interrupt, failing current test %s', ix,test_addr ) currentaddr.value = bytes_('') failure.Failure(*sys.exc_info())(result) resultQueue.put((ix, test_addr, test.tasks, batch(result))) else: log.exception('Worker %s test %s timed out',ix,test_addr) resultQueue.put((ix, test_addr, test.tasks, batch(result))) except SystemExit: currentaddr.value = bytes_('') log.exception('Worker %s system exit',ix) raise except: log.exception("Worker %s error running test or returning results",ix) currentaddr.value = bytes_('') failure.Failure(*sys.exc_info())(result) resultQueue.put((ix, test_addr, test.tasks, batch(result))) if config.multiprocess_restartworker: break log.debug("Worker %s ending", ix) class NoSharedFixtureContextSuite(ContextSuite): """ Context suite that never fires shared fixtures. When a context sets _multiprocess_shared_, fixtures in that context are executed by the main process. Using this suite class prevents them from executing in the runner process as well. """ testQueue = None tasks = None arg = None def setupContext(self, context): if getattr(context, '_multiprocess_shared_', False): return super(NoSharedFixtureContextSuite, self).setupContext(context) def teardownContext(self, context): if getattr(context, '_multiprocess_shared_', False): return super(NoSharedFixtureContextSuite, self).teardownContext(context) def run(self, result): """Run tests in suite inside of suite fixtures. """ # proxy the result for myself log.debug("suite %s (%s) run called, tests: %s", id(self), self, self._tests) if self.resultProxy: result, orig = self.resultProxy(result, self), result else: result, orig = result, result try: self.setUp() except KeyboardInterrupt: raise except: self.error_context = 'setup' result.addError(self, self._exc_info()) return try: localtests = [test for test in self._tests] if len(localtests) > 1 and self.testQueue is not None: log.debug("queue %d tests"%len(localtests)) for test in localtests: if not isinstance(test,NoSharedFixtureContextSuite) and isinstance(test.test,nose.failure.Failure): log.debug('test %s proably failed in the generator, so execute directly to get the exception'%str(test)) test(orig) else: MultiProcessTestRunner.addtask(self.testQueue, self.tasks, test) else: for test in localtests: if isinstance(test,nose.case.Test) and self.arg is not None: test.test.arg = self.arg else: test.arg = self.arg test.testQueue = self.testQueue test.tasks = self.tasks if result.shouldStop: log.debug("stopping") break test_addr = MultiProcessTestRunner.address(test) orig.currentaddr.value = bytes_(test_addr) if isinstance(self.arg, ForceErrorClass) and self.arg.failedaddr == test_addr: if isinstance(test,nose.case.Test) and self.arg is not None: test.test.arg = self.arg.failedargs else: test.arg = self.arg.failedargs test.capturedOutput = None err = (UnknownTerminationException,UnknownTerminationException(str(test)), None) test.config.plugins.addError(test,err) orig.addError(test,err) return # each nose.case.Test will create its own result proxy # so the cases need the original result, to avoid proxy # chains try: test(orig) except KeyboardInterrupt,e: err = (TimedOutException,TimedOutException(str(test)), sys.exc_info()[2]) test.config.plugins.addError(test,err) orig.addError(test,err) finally: self.has_run = True try: self.tearDown() except KeyboardInterrupt: raise except: self.error_context = 'teardown' result.addError(self, self._exc_info())
{ "content_hash": "0e3d3fdb9991bc06f95090f5ae79f70d", "timestamp": "", "source": "github", "line_count": 909, "max_line_length": 168, "avg_line_length": 44.34983498349835, "alnum_prop": 0.5366870069950885, "repo_name": "jdsika/TUM_HOly", "id": "02833c30528c127146f1643065f559dc562ec6d1", "size": "40314", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "openrave/test/noseplugins/multiprocess.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "361" }, { "name": "C", "bytes": "111973" }, { "name": "C#", "bytes": "24641" }, { "name": "C++", "bytes": "11966748" }, { "name": "CMake", "bytes": "212392" }, { "name": "CSS", "bytes": "2102" }, { "name": "HTML", "bytes": "16213" }, { "name": "Makefile", "bytes": "41" }, { "name": "Matlab", "bytes": "198171" }, { "name": "Modelica", "bytes": "621" }, { "name": "Objective-C", "bytes": "51576" }, { "name": "Python", "bytes": "10053508" }, { "name": "Shell", "bytes": "11963" }, { "name": "XSLT", "bytes": "471726" } ], "symlink_target": "" }
import abc from enum import Enum from .method import wrap_method from .base import weak_method from .device import Device from .stateMachine import StateMachine from .attribute import Attribute class DState(Enum): # These are the states that our machine supports Fault, Idle, Configuring, Ready, Running, Pausing, Paused, Aborting,\ Aborted, Resetting = range(10) @classmethod def rest(cls): return [cls.Fault, cls.Idle, cls.Ready, cls.Aborted] @classmethod def pausedone(cls): return [cls.Fault, cls.Aborted, cls.Paused] @classmethod def abortable(cls): return [cls.Configuring, cls.Ready, cls.Running, cls.Pausing, cls.Paused, cls.Resetting] @classmethod def configurable(cls): return [cls.Idle, cls.Ready] @classmethod def runnable(cls): return [cls.Ready, cls.Paused] @classmethod def resettable(cls): return [cls.Fault, cls.Aborted] def to_dict(self): choices = [e.name for e in self.__class__] d = dict(index=self.value, choices=choices) return d class DEvent(Enum): # These are the messages that we will respond to Error, Reset, ResetSta, Config, ConfigSta, Run, RunSta, Abort, AbortSta, \ Pause, PauseSta = range(11) class RunnableDevice(Device): def __init__(self, name, timeout=None): # superclass init super(RunnableDevice, self).__init__(name, timeout=timeout) # Make a statemachine sm = StateMachine(name + ".stateMachine", DState.Idle, DState.Fault) self.add_stateMachine(sm) # some shortcuts for the state table do, t, s, e = self.shortcuts() # Error condition generated by device t(s, e.Error, do.error, s.Fault) # Normal operations t(s.resettable(), e.Reset, do.reset, s.Resetting) t(s.Resetting, e.ResetSta, do.resetsta, s.Resetting, s.Idle) t(s.Idle, e.Config, do.config, s.Configuring) t(s.Configuring, e.ConfigSta, do.configsta, s.Configuring, s.Ready) t(s.Ready, e.Config, do.config, s.Configuring) t(s.Ready, e.Run, do.run, s.Running) t(s.Running, e.RunSta, do.runsta, s.Running, s.Idle, s.Ready) # Abort t(s.abortable(), e.Abort, do.abort, s.Aborting) t(s.Aborting, e.AbortSta, do.abortsta, s.Aborting, s.Aborted) # Timeout for functions self.add_attributes( timeout=Attribute(float, "Time in seconds to wait for function")) # Override the error handler of the stateMachine sm.do_error = weak_method(self.do_error) def shortcuts(self): # Shortcut to all the self.do_ functions class do: pass for fname in dir(self): if fname.startswith("do_"): setattr(do, fname[3:], getattr(self, fname)) # Shortcut to transition function, state list and event list t = self.stateMachine.transition s = DState e = DEvent return (do, t, s, e) def do_error(self, error): """Handle an error""" return DState.Fault, str(error) @abc.abstractmethod def do_reset(self): """Check and attempt to clear any error state, arranging for a callback doing self.post(DEvent.ResetSta, resetsta) when progress has been made, where resetsta is any device specific reset status """ @abc.abstractmethod def do_resetsta(self, resetsta): """Examine configsta for configuration progress, returning DState.Resetting if still in progress, or DState.Idle if done. """ @abc.abstractmethod def do_config(self, **config_params): """Start doing a configuration using config_params, arranging for a callback doing self.post(DEvent.ConfigSta, configsta) when progress has been made, where configsta is any device specific configuration status """ @abc.abstractmethod def do_configsta(self, configsta): """Examine configsta for configuration progress, returning DState.Configuring if still in progress, or DState.Ready if done. """ @abc.abstractmethod def do_run(self): """Start doing a run, arranging for a callback doing self.post(DEvent.RunSta, runsta) when progress has been made, where runsta is any device specific run status """ @abc.abstractmethod def do_runsta(self, runsta): """Examine runsta for run progress, returning DState.Running if still in progress, DState.Ready if done and another run can be started without reconfiguration, or DState.Idle if done and configuration is needed before another run can be started. """ @abc.abstractmethod def do_abort(self): """Start doing an abort, arranging for a callback doing self.post(DEvent.AbortSta, runsta) when progress has been made, where abortsta is any device specific abort status """ @abc.abstractmethod def do_abortsta(self, abortsta): """Examine abortsta for abort progress, returning DState.Aborting if still in progress or DState.Aborted if done. """ @abc.abstractmethod def assert_valid(self, arg1, arg2="arg2default"): """Check whether a set of configuration parameters is valid or not. Each parameter name must match one of the names in self.attributes. This set of parameters should be checked in isolation, no device state should be taken into account. It is allowed from any DState and raises an error if the set of configuration parameters is invalid. """ @wrap_method(only_in=DState.abortable()) def abort(self, timeout=None): """Abort configuration or abandon the current run whether it is running or paused. It blocks until the device is in a rest state: * Normally it will return a DState.Aborted Status * If something goes wrong it will return a DState.Fault Status """ timeout = timeout or self.timeout self.stateMachine.post(DEvent.Abort) self.wait_until(DState.rest(), timeout=timeout) @wrap_method(only_in=DState.resettable()) def reset(self, timeout=None): """Try and reset the device into DState.Idle. It blocks until the device is in a rest state: * Normally it will return a DState.Idle Status * If something goes wrong it will return a DState.Fault Status """ timeout = timeout or self.timeout self.stateMachine.post(DEvent.Reset) self.wait_until(DState.rest(), timeout=timeout) @wrap_method(only_in=DState.configurable(), args_from=assert_valid) def configure(self, timeout=None, **params): """Assert params are valid, then use them to configure a device for a run. It blocks until the device is in a rest state: * Normally it will return a DState.Configured Status * If the user aborts then it will return a DState.Aborted Status * If something goes wrong it will return a DState.Fault Status """ timeout = timeout or self.timeout self.assert_valid(**params) self.stateMachine.post(DEvent.Config, **params) self.wait_until(DState.rest(), timeout=timeout) @wrap_method(only_in=DState.runnable()) def run(self, timeout=None): """Start a configured device running. It blocks until the device is in a rest state: * Normally it will return a DState.Idle Status * If the device allows many runs from a single configure the it will return a DState.Ready Status * If the user aborts then it will return a DState.Aborted Status * If something goes wrong it will return a DState.Fault Status """ timeout = timeout or self.timeout self.stateMachine.post(DEvent.Run) self.wait_until(DState.rest(), timeout=timeout) @wrap_method(only_in=DState, args_from=assert_valid) def configure_run(self, timeout=None, **params): """Try and configure and run a device in one step. It blocks until the device is in a rest state: * Normally it will return a DState.Idle Status * If the device allows many runs from a single configure then it will return a DState.Ready Status * If the user aborts then it will return a DState.Aborted Status * If something goes wrong it will return a DState.Fault Status """ timeout = timeout or self.timeout # If we can't configure from our current state if self.state not in DState.configurable(): # If we are abortable then abort if self.state in DState.abortable(): self.abort(timeout=timeout) # Now try a reset to bring us back to idle if self.state in DState.resettable(): self.reset(timeout=timeout) # Now if we are configurable then do so if self.state in DState.configurable(): self.configure(timeout=timeout, **params) # And now if we are ready then do a run if self.state == DState.Ready: self.run(timeout=timeout)
{ "content_hash": "838a1618512fc537bf4ca2007f9301eb", "timestamp": "", "source": "github", "line_count": 242, "max_line_length": 82, "avg_line_length": 38.82231404958678, "alnum_prop": 0.6373602980308675, "repo_name": "ulrikpedersen/malcolm", "id": "6e9383fb1d0ae694b95b303ea727ccb45cd41bcf", "size": "9395", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "malcolm/core/runnableDevice.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "1000" }, { "name": "Python", "bytes": "150960" }, { "name": "Shell", "bytes": "75" } ], "symlink_target": "" }
from tests.testcase import TestCase from edmunds.globals import _request_ctx_stack from edmunds.http.visitor import Visitor class TestHttpServiceProvider(TestCase): """ Test the Http Service Provider """ def test_visitor(self): """ Test visitor :return: void """ rule = '/' + self.rand_str(20) # No context self.assert_is_none(_request_ctx_stack.top) # Call route with self.app.test_request_context(rule): # Before pre-processing self.assert_is_not_none(_request_ctx_stack.top) self.assert_false(hasattr(_request_ctx_stack.top, 'edmunds.visitor')) # Pre-processing self.app.preprocess_request() # After pre-processing self.assert_is_not_none(_request_ctx_stack.top) self.assert_true(hasattr(_request_ctx_stack.top, 'edmunds.visitor')) self.assert_is_instance(getattr(_request_ctx_stack.top, 'edmunds.visitor'), Visitor)
{ "content_hash": "65e1fe9e0f57813eb0beeaef072fe853", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 96, "avg_line_length": 30.205882352941178, "alnum_prop": 0.6124634858812074, "repo_name": "LowieHuyghe/edmunds", "id": "8657f5a6d28901f0810eaab8d59d84ce6794425b", "size": "1028", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/http/providers/testhttpserviceprovider.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "570304" } ], "symlink_target": "" }
"""Module for working with EOS VRRP resources The Vrrp resource provides configuration management of interface specific vrrp resources on and EOS node. It provides the following class implementations: * Vrrp - Configure vrrps in EOS Vrrp Attributes: - enable (boolean): The shutdown state of the vrrp - primary_ip (string): The ip address of the vrrp - secondary_ip (dict): The secondary ip addresses configured for the vrrp This is a dictionary in the format:: { key: [ list of ip addresses ] } where key is 'add', 'remove', or 'exists'. 'add' is used to add the list of secondary ip addresses to the vrrp. 'remove' will remove the list of secondary ip addresses from the vrrp. 'exists' is a report only key for retrieving the current secondary ip addresses on a vrrp. - priority (int): The priority rank of the vrrp - description (string): The description for the vrrp - ip_version (int): The ip version value for the vrrp - timers_advertise (int): The timers advertise setting for the vrrp - mac_addr_adv_interval (int): The mac-address advertisement-interval setting for the vrrp - preempt (boolean): The preempt state of the vrrp - preempt_delay_min (int): The preempt delay minimum setting for the vrrp - preempt_delay_reload (int): The preempt delay reload setting for the vrrp - delay_reload (int): The delay reload setting for the vrrp - track (list): The object tracking settings for the vrrp - bfd_ip (string): The bfd ip set for the vrrp Notes: The get method will return a dictionary of all the currently configured vrrps on a single interface, with the VRID of each vrrp as the keys in the dictionary:: { vrrp1: { data }, vrrp2: { data }, } The getall method will return a dictionary of all the currently configured vrrps on the node, with the interface name as the top-level keys, with the VRIDs for each vrrp on an interface as a sub-key of that interface:: { interface1: { vrrp1: { data }, vrrp2: { data }, }, interface2: { vrrp1: { data }, vrrp2: { data }, } } The data for a configured vrrp is a dictionary with the following format:: { enable: <True|False> primary_ip: <string> priority: <int> description: <string|None> secondary_ip: { exists: [ <ip string1>, <ip string2> ] } ip_version: <int> timers_advertise: <int> mac_addr_adv_interval: <int> preempt: <True|False> preempt_delay_min: <int> preempt_delay_reload: <int> delay_reload: <int> track: [ { name: <string> action: <shutdown|decrement> amount: <int>|default|no|None }, { name: <string> action: <shutdown|decrement> amount: <int>|default|no|None }, ] bfd_ip: <string> } The create and method accepts a kwargs dictionary which defines the properties to be applied to the new or existing vrrp configuration. The available keywords and values are as follows: - enable: True to enable (no shutdown)|False to disable (shutdown) - primary_ip: <ip_string>|no|default|None - priority: <int>|no|default|None - description: <string>|no|default|None - secondary_ip: <dict> may include the following - add: <list of ip address strings> - remove: <list of ip address strings> - ip_version: <int>|no|default|None - timers_advertise: <int>|no|default|None - mac_addr_adv_interval: <int>|no|default|None - preempt: True to enable (preempt)|False to disable (no preempt) - preempt_delay_min: <int>|no|default|None - preempt_delay_reload: <int>|no|default|None - delay_reload: <int>|no|default|None - track: <list> of dicts in the following format:: { name: <string> action: <shutdown|decrement> amount: <int>|default|no|None } - bfd_ip: <ip string>|no|default|None """ import re from pyeapi.api import EntityCollection PROPERTIES = ['primary_ip', 'priority', 'description', 'secondary_ip', 'ip_version', 'enable', 'timers_advertise', 'mac_addr_adv_interval', 'preempt', 'preempt_delay_min', 'preempt_delay_reload', 'delay_reload', 'track', 'bfd_ip'] class Vrrp(EntityCollection): """The Vrrp class provides management of the VRRP configuration The Vrrp class is derived from EntityCollection and provides an API for working with the node's vrrp configurations. """ def get(self, name): """Get the vrrp configurations for a single node interface Args: name (string): The name of the interface for which vrrp configurations will be retrieved. Returns: A dictionary containing the vrrp configurations on the interface. Returns None if no vrrp configurations are defined or if the interface is not configured. """ # Validate the interface and vrid are specified interface = name if not interface: raise ValueError("Vrrp.get(): interface must contain a value.") # Get the config for the interface. Return None if the # interface is not defined config = self.get_block('interface %s' % interface) if config is None: return config # Find all occurrences of vrids in this interface and make # a set of the unique vrid numbers match = set(re.findall(r'^\s+(?:no |)vrrp (\d+)', config, re.M)) if not match: return None # Initialize the result dict result = dict() for vrid in match: subd = dict() # Parse the vrrp configuration for the vrid(s) in the list subd.update(self._parse_delay_reload(config, vrid)) subd.update(self._parse_description(config, vrid)) subd.update(self._parse_enable(config, vrid)) subd.update(self._parse_ip_version(config, vrid)) subd.update(self._parse_mac_addr_adv_interval(config, vrid)) subd.update(self._parse_preempt(config, vrid)) subd.update(self._parse_preempt_delay_min(config, vrid)) subd.update(self._parse_preempt_delay_reload(config, vrid)) subd.update(self._parse_primary_ip(config, vrid)) subd.update(self._parse_priority(config, vrid)) subd.update(self._parse_secondary_ip(config, vrid)) subd.update(self._parse_timers_advertise(config, vrid)) subd.update(self._parse_track(config, vrid)) subd.update(self._parse_bfd_ip(config, vrid)) result.update({int(vrid): subd}) # If result dict is empty, return None, otherwise return result return result if result else None def getall(self): """Get the vrrp configurations for all interfaces on a node Returns: A dictionary containing the vrrp configurations on the node, keyed by interface. """ vrrps = dict() # Find the available interfaces interfaces = re.findall(r'^interface\s(\S+)', self.config, re.M) # Get the vrrps defined for each interface for interface in interfaces: vrrp = self.get(interface) # Only add those interfaces that have vrrps defined if vrrp: vrrps.update({interface: vrrp}) return vrrps def _parse_enable(self, config, vrid): match = re.search(r'^\s+vrrp %s shutdown$' % vrid, config, re.M) if match: return dict(enable=False) return dict(enable=True) def _parse_primary_ip(self, config, vrid): match = re.search(r'^\s+vrrp %s ip (\d+\.\d+\.\d+\.\d+)$' % vrid, config, re.M) value = match.group(1) if match else None return dict(primary_ip=value) def _parse_priority(self, config, vrid): match = re.search(r'^\s+vrrp %s priority (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(priority=value) def _parse_timers_advertise(self, config, vrid): match = re.search(r'^\s+vrrp %s timers advertise (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(timers_advertise=value) def _parse_preempt(self, config, vrid): match = re.search(r'^\s+vrrp %s preempt$' % vrid, config, re.M) if match: return dict(preempt=True) return dict(preempt=False) def _parse_secondary_ip(self, config, vrid): matches = re.findall(r'^\s+vrrp %s ip (\d+\.\d+\.\d+\.\d+) ' r'secondary$' % vrid, config, re.M) value = matches if matches else [] return dict(secondary_ip=value) def _parse_description(self, config, vrid): match = re.search(r'^\s+vrrp %s description(.*)$' % vrid, config, re.M) if match: return dict(description=match.group(1).lstrip()) return dict(description='') def _parse_mac_addr_adv_interval(self, config, vrid): match = re.search(r'^\s+vrrp %s mac-address advertisement-interval ' r'(\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(mac_addr_adv_interval=value) def _parse_preempt_delay_min(self, config, vrid): match = re.search(r'^\s+vrrp %s preempt delay minimum (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(preempt_delay_min=value) def _parse_preempt_delay_reload(self, config, vrid): match = re.search(r'^\s+vrrp %s preempt delay reload (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(preempt_delay_reload=value) def _parse_bfd_ip(self, config, vrid): match = re.search(r'^\s+vrrp %s bfd ip' r'(?: (\d+\.\d+\.\d+\.\d+)|)$' % vrid, config, re.M) if match: return dict(bfd_ip=match.group(1)) return dict(bfd_ip='') def _parse_ip_version(self, config, vrid): match = re.search(r'^\s+vrrp %s ip version (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(ip_version=value) def _parse_delay_reload(self, config, vrid): match = re.search(r'^\s+vrrp %s delay reload (\d+)$' % vrid, config, re.M) value = int(match.group(1)) if match else None return dict(delay_reload=value) def _parse_track(self, config, vrid): matches = re.findall(r'^\s+vrrp %s track (\S+) ' r'(decrement|shutdown)(?:( \d+$|$))' % vrid, config, re.M) value = [] for match in matches: tr_obj = match[0] action = match[1] amount = None if match[2] == '' else int(match[2]) entry = { 'name': tr_obj, 'action': action, } if amount: entry.update({'amount': amount}) value.append(entry) # Return the list, sorted for easier comparison track_list = sorted(value, key=lambda k: (k['name'], k['action'])) return dict(track=track_list) def create(self, interface, vrid, **kwargs): """Creates a vrrp instance from an interface Note: This method will attempt to create a vrrp in the node's operational config. If the vrrp already exists on the interface, then this method will set the properties of the existing vrrp to those that have been passed in, if possible. Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be created. kwargs (dict): A dictionary specifying the properties to be applied to the new vrrp instance. See library documentation for available keys and values. Returns: True if the vrrp could be created otherwise False (see Node) """ if 'enable' not in kwargs: kwargs['enable'] = False return self._vrrp_set(interface, vrid, **kwargs) def delete(self, interface, vrid): """Deletes a vrrp instance from an interface Note: This method will attempt to delete the vrrp from the node's operational config. If the vrrp does not exist on the interface then this method will not perform any changes but still return True Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be deleted. Returns: True if the vrrp could be deleted otherwise False (see Node) """ vrrp_str = "no vrrp %d" % vrid return self.configure_interface(interface, vrrp_str) def default(self, interface, vrid): """Defaults a vrrp instance from an interface Note: This method will attempt to default the vrrp on the node's operational config. Default results in the deletion of the specified vrrp . If the vrrp does not exist on the interface then this method will not perform any changes but still return True Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be defaulted. Returns: True if the vrrp could be defaulted otherwise False (see Node) """ vrrp_str = "default vrrp %d" % vrid return self.configure_interface(interface, vrrp_str) def set_enable(self, name, vrid, value=False, run=True): """Set the enable property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (boolean): True to enable the vrrp, False to disable. run (boolean): True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure If run is False, returns the formatted command string which can be passed to the node """ if value is False: cmd = "vrrp %d shutdown" % vrid elif value is True: cmd = "no vrrp %d shutdown" % vrid else: raise ValueError("vrrp property 'enable' must be " "True or False") # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_primary_ip(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the primary_ip property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (string): IP address to be set. disable (boolean): Unset primary ip if True. default (boolean): Set primary ip to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if default is True: vrrps = self.get(name) primary_ip = vrrps[vrid]['primary_ip'] cmd = "default vrrp %d ip %s" % (vrid, primary_ip) elif disable is True or value is None: vrrps = self.get(name) primary_ip = vrrps[vrid]['primary_ip'] cmd = "no vrrp %d ip %s" % (vrid, primary_ip) elif re.match(r'^\d+\.\d+\.\d+\.\d+$', str(value)): cmd = "vrrp %d ip %s" % (vrid, value) else: raise ValueError("vrrp property 'primary_ip' must be " "a properly formatted IP address") # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_priority(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the primary_ip property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): Priority to assign to the vrrp. disable (boolean): Unset priority if True. default (boolean): Set priority to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not str(value).isdigit() or value < 1 or value > 254: raise ValueError("vrrp property 'priority' must be " "an integer in the range 1-254") cmd = self.command_builder('vrrp %d priority' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_description(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the description property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (string): Description to assign to the vrrp. disable (boolean): Unset description if True. default (boolean): Set description to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ cmd = self.command_builder('vrrp %d description' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_ip_version(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the ip_version property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): IP version to assign to the vrrp. disable (boolean): Unset ip_version if True. default (boolean): Set ip_version to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if value not in (2, 3): raise ValueError("vrrp property 'ip_version' must be 2 or 3") cmd = self.command_builder('vrrp %d ip version' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_secondary_ips(self, name, vrid, secondary_ips, run=True): """Configure the secondary_ip property of the vrrp Notes: set_secondary_ips takes a list of secondary ip addresses which are to be set on the virtal router. An empty list will remove any existing secondary ip addresses from the vrrp. A list containing addresses will configure the virtual router with only the addresses specified in the list - any existing addresses not included in the list will be removed. Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. secondary_ips (list): A list of secondary ip addresses to be assigned to the virtual router. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ cmds = [] # Get the current set of tracks defined for the vrrp curr_sec_ips = [] vrrps = self.get(name) if vrrps and vrid in vrrps: curr_sec_ips = vrrps[vrid]['secondary_ip'] # Validate the list of ip addresses for sec_ip in secondary_ips: if type(sec_ip) is not str or \ not re.match(r'^\d+\.\d+\.\d+\.\d+$', sec_ip): raise ValueError("vrrp property 'secondary_ip' must be a list " "of properly formatted ip address strings") intersection = list(set(curr_sec_ips) & set(secondary_ips)) # Delete the intersection from both lists to determine which # addresses need to be added or removed from the vrrp remove = list(set(curr_sec_ips) - set(intersection)) add = list(set(secondary_ips) - set(intersection)) # Build the commands to add and remove the secondary ip addresses for sec_ip in remove: cmds.append("no vrrp %d ip %s secondary" % (vrid, sec_ip)) for sec_ip in add: cmds.append("vrrp %d ip %s secondary" % (vrid, sec_ip)) cmds = sorted(cmds) # Run the command if requested if run: result = self.configure_interface(name, cmds) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmds def set_timers_advertise(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the ip_version property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): Timers advertise value to assign to the vrrp. disable (boolean): Unset timers advertise if True. default (boolean): Set timers advertise to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not int(value) or int(value) < 1 or int(value) > 255: raise ValueError("vrrp property 'timers_advertise' must be" "in the range 1-255") cmd = self.command_builder('vrrp %d timers advertise' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_mac_addr_adv_interval(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the mac_addr_adv_interval property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): mac-address advertisement-interval value to assign to the vrrp. disable (boolean): Unset mac-address advertisement-interval if True. default (boolean): Set mac-address advertisement-interval to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not int(value) or int(value) < 1 or int(value) > 3600: raise ValueError("vrrp property 'mac_addr_adv_interval' must " "be in the range 1-3600") cmd = self.command_builder('vrrp %d mac-address advertisement-interval' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_preempt(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the preempt property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (boolean): True to enable preempt, False to disable preempt on the vrrp. disable (boolean): Unset preempt if True. default (boolean): Set preempt to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if value is not True and value is not False: raise ValueError("vrrp property 'preempt' must be True " "or False") cmd = self.command_builder('vrrp %d preempt' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_preempt_delay_min(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the preempt_delay_min property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): Preempt delay minimum value to set on the vrrp. disable (boolean): Unset preempt delay minimum if True. default (boolean): Set preempt delay minimum to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not int(value) or int(value) < 1 or int(value) > 3600: raise ValueError("vrrp property 'preempt_delay_min' must be" "in the range 0-3600 %r" % value) cmd = self.command_builder('vrrp %d preempt delay minimum' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_preempt_delay_reload(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the preempt_delay_min property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): Preempt delay reload value to set on the vrrp. disable (boolean): Unset preempt delay reload if True. default (boolean): Set preempt delay reload to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not int(value) or int(value) < 1 or int(value) > 3600: raise ValueError("vrrp property 'preempt_delay_reload' must be" "in the range 0-3600 %r" % value) cmd = self.command_builder('vrrp %d preempt delay reload' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_delay_reload(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the preempt_delay_min property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (integer): Preempt delay reload value to set on the vrrp. disable (boolean): Unset preempt delay reload if True. default (boolean): Set preempt delay reload to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not int(value) or int(value) < 1 or int(value) > 3600: raise ValueError("vrrp property 'delay_reload' must be" "in the range 0-3600 %r" % value) cmd = self.command_builder('vrrp %d delay reload' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def set_tracks(self, name, vrid, tracks, run=True): """Configure the track property of the vrrp Notes: set_tracks takes a list of tracked objects which are to be set on the virtual router. An empty list will remove any existing tracked objects from the vrrp. A list containing track entries configures the virtual router to track only the objects specified in the list - any existing tracked objects on the vrrp not included in the list will be removed. Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. tracks (list): A list of track definition dictionaries. Each dictionary is a definition of a tracked object in one of the two formats:: {'name': tracked_object_name, 'action': 'shutdown'} {'name': tracked_object_name, 'action': 'decrement', 'amount': amount_of_decrement} run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ cmds = [] # Get the current set of tracks defined for the vrrp curr_tracks = [] vrrps = self.get(name) if vrrps and vrid in vrrps: curr_tracks = vrrps[vrid]['track'] # Determine which tracked objects are in both lists using # sets of temporary strings built from the track specifications unset = '_none_' tracks_set = [] for track in tracks: keys = track.keys() # Validate no extraneous keys in track definition err_keys = set(keys).difference(('name', 'action', 'amount')) if err_keys: err_keys = ', '.join(err_keys) raise ValueError("Error found in vrrp property 'track': " "unknown key(s) '%s' found. Valid keys are " "name, action, and amount" % err_keys) # Validate required keys in track definition if not set(keys).issuperset(('name', 'action')): raise ValueError("Error found in vrrp property 'track': " "track definition must contain 'name' and " "'action' keys") tr_obj = track['name'] action = track['action'] amount = track['amount'] if 'amount' in track else unset # Validate values in track definition error = False if action not in ('shutdown', 'decrement'): error = True if action == 'shutdown' and amount != unset: error = True if amount != unset and not str(amount).isdigit(): error = True if error: raise ValueError("Error found in vrrp property 'track'. " "See documentation for format specification.") tid = "%s %s %s" % (tr_obj, action, amount) tracks_set.append(tid) curr_set = [] for track in curr_tracks: tr_obj = track['name'] action = track['action'] amount = track['amount'] if 'amount' in track else unset # Validate track definition error = False if action not in ('shutdown', 'decrement'): error = True if action == 'shutdown' and amount != unset: error = True if amount != unset and not str(amount).isdigit(): error = True if error: raise ValueError("Error found in vrrp property 'track'. " "See documentation for format specification.") tid = "%s %s %s" % (tr_obj, action, amount) curr_set.append(tid) intersection = list(set(tracks_set) & set(curr_set)) # Delete the intersection from both lists to determine which # track definitions need to be added or removed from the vrrp remove = list(set(curr_set) - set(intersection)) add = list(set(tracks_set) - set(intersection)) # Build the commands to add and remove the tracked objects for track in remove: match = re.match(r'(\S+)\s+(\S+)\s+(\S+)', track) if match: (tr_obj, action, amount) = \ (match.group(1), match.group(2), match.group(3)) if amount == unset: amount = '' t_cmd = ("no vrrp %d track %s %s %s" % (vrid, tr_obj, action, amount)) cmds.append(t_cmd.rstrip()) for track in add: match = re.match(r'(\S+)\s+(\S+)\s+(\S+)', track) if match: (tr_obj, action, amount) = \ (match.group(1), match.group(2), match.group(3)) if amount == unset: amount = '' t_cmd = ("vrrp %d track %s %s %s" % (vrid, tr_obj, action, amount)) cmds.append(t_cmd.rstrip()) cmds = sorted(cmds) # Run the command if requested if run: result = self.configure_interface(name, cmds) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmds def set_bfd_ip(self, name, vrid, value=None, disable=False, default=False, run=True): """Set the bfd_ip property of the vrrp Args: name (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be managed. value (string): The bfd ip address to be set. disable (boolean): Unset bfd ip if True. default (boolean): Set bfd ip to default if True. run (boolean): Set to True to execute the command, False to return a string with the formatted command. Returns: If run is True, returns True if the command executed successfully, error if failure. If run is False, returns the formatted command string which can be passed to the node """ if not default and not disable: if not re.match(r'^\d+\.\d+\.\d+\.\d+$', str(value)): raise ValueError("vrrp property 'bfd_ip' must be " "a properly formatted IP address") cmd = self.command_builder('vrrp %d bfd ip' % vrid, value=value, default=default, disable=disable) # Run the command if requested if run: result = self.configure_interface(name, cmd) # And verify the command succeeded if result is False: return self.error return result # Otherwise return the formatted command return cmd def _vrrp_set(self, name, vrid, **kwargs): # Configure the commands to create or update a vrrp # configuration, and send the commands to the node. vrconf = kwargs # step through the individual vrrp properties and # set those that need to be changed commands = [] enable = vrconf.get('enable', '__NONE__') if enable != '__NONE__': cmd = self.set_enable(name, vrid, value=enable, run=False) commands.append(cmd) primary_ip = vrconf.get('primary_ip', '__NONE__') if primary_ip != '__NONE__': if primary_ip in ('no', None): cmd = self.set_primary_ip(name, vrid, value=None, disable=True, run=False) elif primary_ip is 'default': cmd = self.set_primary_ip(name, vrid, value=None, default=True, run=False) else: cmd = self.set_primary_ip(name, vrid, value=primary_ip, run=False) commands.append(cmd) priority = vrconf.get('priority', '__NONE__') if priority != '__NONE__': if priority in ('no', None): cmd = self.set_priority(name, vrid, value=priority, disable=True, run=False) elif priority == 'default': cmd = self.set_priority(name, vrid, value=priority, default=True, run=False) else: cmd = self.set_priority(name, vrid, value=priority, run=False) commands.append(cmd) description = vrconf.get('description', '__NONE__') if description != '__NONE__': if description in ('no', None): cmd = self.set_description(name, vrid, value=description, disable=True, run=False) elif description == 'default': cmd = self.set_description(name, vrid, value=description, default=True, run=False) else: cmd = self.set_description(name, vrid, value=description, run=False) commands.append(cmd) ip_version = vrconf.get('ip_version', '__NONE__') if ip_version != '__NONE__': if ip_version in ('no', None): cmd = self.set_ip_version(name, vrid, value=ip_version, disable=True, run=False) elif ip_version == 'default': cmd = self.set_ip_version(name, vrid, value=ip_version, default=True, run=False) else: cmd = self.set_ip_version(name, vrid, value=ip_version, run=False) commands.append(cmd) secondary_ip = vrconf.get('secondary_ip', '__NONE__') if secondary_ip != '__NONE__': cmds = self.set_secondary_ips(name, vrid, secondary_ip, run=False) for cmd in cmds: commands.append(cmd) timers_advertise = vrconf.get('timers_advertise', '__NONE__') if timers_advertise != '__NONE__': if timers_advertise in ('no', None): cmd = self.set_timers_advertise(name, vrid, value=timers_advertise, disable=True, run=False) elif timers_advertise == 'default': cmd = self.set_timers_advertise(name, vrid, value=timers_advertise, default=True, run=False) else: cmd = self.set_timers_advertise(name, vrid, value=timers_advertise, run=False) commands.append(cmd) mac_addr_adv_interval = \ vrconf.get('mac_addr_adv_interval', '__NONE__') if mac_addr_adv_interval != '__NONE__': if mac_addr_adv_interval in ('no', None): cmd = \ self.set_mac_addr_adv_interval(name, vrid, value=mac_addr_adv_interval, disable=True, run=False) elif mac_addr_adv_interval == 'default': cmd = \ self.set_mac_addr_adv_interval(name, vrid, value=mac_addr_adv_interval, default=True, run=False) else: cmd = \ self.set_mac_addr_adv_interval(name, vrid, value=mac_addr_adv_interval, run=False) commands.append(cmd) preempt = vrconf.get('preempt', '__NONE__') if preempt != '__NONE__': if preempt in ('no', False): cmd = self.set_preempt(name, vrid, value=preempt, disable=True, run=False) elif preempt == 'default': cmd = self.set_preempt(name, vrid, value=preempt, default=True, run=False) else: cmd = self.set_preempt(name, vrid, value=preempt, run=False) commands.append(cmd) preempt_delay_min = vrconf.get('preempt_delay_min', '__NONE__') if preempt_delay_min != '__NONE__': if preempt_delay_min in ('no', None): cmd = self.set_preempt_delay_min(name, vrid, value=preempt_delay_min, disable=True, run=False) elif preempt_delay_min == 'default': cmd = self.set_preempt_delay_min(name, vrid, value=preempt_delay_min, default=True, run=False) else: cmd = self.set_preempt_delay_min(name, vrid, value=preempt_delay_min, run=False) commands.append(cmd) preempt_delay_reload = vrconf.get('preempt_delay_reload', '__NONE__') if preempt_delay_reload != '__NONE__': if preempt_delay_reload in ('no', None): cmd = self.set_preempt_delay_reload(name, vrid, value=preempt_delay_reload, disable=True, run=False) elif preempt_delay_reload == 'default': cmd = self.set_preempt_delay_reload(name, vrid, value=preempt_delay_reload, default=True, run=False) else: cmd = self.set_preempt_delay_reload(name, vrid, value=preempt_delay_reload, run=False) commands.append(cmd) delay_reload = vrconf.get('delay_reload', '__NONE__') if delay_reload != '__NONE__': if delay_reload in ('no', None): cmd = self.set_delay_reload(name, vrid, value=delay_reload, disable=True, run=False) elif delay_reload == 'default': cmd = self.set_delay_reload(name, vrid, value=delay_reload, default=True, run=False) else: cmd = self.set_delay_reload(name, vrid, value=delay_reload, run=False) commands.append(cmd) track = vrconf.get('track', '__NONE__') if track != '__NONE__': cmds = self.set_tracks(name, vrid, track, run=False) for cmd in cmds: commands.append(cmd) bfd_ip = vrconf.get('bfd_ip', '__NONE__') if bfd_ip != '__NONE__': if bfd_ip in ('no', None): cmd = self.set_bfd_ip(name, vrid, value=bfd_ip, disable=True, run=False) elif bfd_ip == 'default': cmd = self.set_bfd_ip(name, vrid, value=bfd_ip, default=True, run=False) else: cmd = self.set_bfd_ip(name, vrid, value=bfd_ip, run=False) commands.append(cmd) # Send the commands to the requested interface result = self.configure_interface(name, commands) # And verify the commands succeeded if result is False: return self.error return result def vrconf_format(self, vrconfig): """Formats a vrrp configuration dictionary to match the information as presented from the get and getall methods. vrrp configuration dictionaries passed to the create method may contain data for setting properties which results in a default value on the node. In these instances, the data for setting or changing the property is replaced with the value that would be returned from the get and getall methods. Intended for validating updated vrrp configurations. """ fixed = dict(vrconfig) # primary_ip: default, no, None results in address of 0.0.0.0 if fixed['primary_ip'] in ('no', 'default', None): fixed['primary_ip'] = '0.0.0.0' # priority: default, no, None results in priority of 100 if fixed['priority'] in ('no', 'default', None): fixed['priority'] = 100 # description: default, no, None results in None if fixed['description'] in ('no', 'default', None): fixed['description'] = None # secondary_ip: list should be exactly what is required, # just sort it for easier comparison if 'secondary_ip' in fixed: fixed['secondary_ip'] = sorted(fixed['secondary_ip']) # ip_version: default, no, None results in value of 2 if fixed['ip_version'] in ('no', 'default', None): fixed['ip_version'] = 2 # timers_advertise: default, no, None results in value of 1 if fixed['timers_advertise'] in ('no', 'default', None): fixed['timers_advertise'] = 1 # mac_address_advertisement_interaval: # default, no, None results in value of 30 if fixed['mac_addr_adv_interval'] in \ ('no', 'default', None): fixed['mac_addr_adv_interval'] = 30 # preempt: default, no results in value of False if fixed['preempt'] in ('no', 'default'): fixed['preempt'] = False # preempt_delay_min: default, no, None results in value of 0 if fixed['preempt_delay_min'] in ('no', 'default', None): fixed['preempt_delay_min'] = 0 # preempt_delay_reload: default, no, None results in value of 0 if fixed['preempt_delay_reload'] in ('no', 'default', None): fixed['preempt_delay_reload'] = 0 # delay_reload: default, no, None results in value of 0 if fixed['delay_reload'] in ('no', 'default', None): fixed['delay_reload'] = 0 # track: list should be exactly what is required, # just sort it for easier comparison if 'track' in fixed: fixed['track'] = \ sorted(fixed['track'], key=lambda k: (k['name'], k['action'])) # bfd_ip: default, no, None results in '' if fixed['bfd_ip'] in ('no', 'default', None): fixed['bfd_ip'] = '' return fixed def instance(node): """Returns an instance of Vrrp Args: node (Node): The node argument passes an instance of Node to the resource Returns: object: An instance of Vrrp """ return Vrrp(node)
{ "content_hash": "f60fbf830f3d0835d15cd4812203c89c", "timestamp": "", "source": "github", "line_count": 1370, "max_line_length": 79, "avg_line_length": 39.9978102189781, "alnum_prop": 0.542383707137252, "repo_name": "mith1979/ansible_automation", "id": "a63af216d794e31bdc6c8c14b165d59ad8f4d927", "size": "56327", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "applied_python/applied_python/lib/python2.7/site-packages/pyeapi/api/vrrp.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1005" }, { "name": "C", "bytes": "84868" }, { "name": "CSS", "bytes": "50289" }, { "name": "HTML", "bytes": "70428" }, { "name": "JavaScript", "bytes": "105262" }, { "name": "PowerShell", "bytes": "51840" }, { "name": "Python", "bytes": "19073705" }, { "name": "Shell", "bytes": "3747" }, { "name": "XSLT", "bytes": "152770" } ], "symlink_target": "" }
import numbers from collections import defaultdict import numpy as np from astropy.utils import isiterable from astropy.utils.decorators import lazyproperty from ..low_level_api import BaseLowLevelWCS from .base import BaseWCSWrapper __all__ = ['sanitize_slices', 'SlicedLowLevelWCS'] def sanitize_slices(slices, ndim): """ Given a slice as input sanitise it to an easier to parse format.format This function returns a list ``ndim`` long containing slice objects (or ints). """ if not isinstance(slices, (tuple, list)): # We just have a single int slices = (slices,) if len(slices) > ndim: raise ValueError( f"The dimensionality of the specified slice {slices} can not be greater " f"than the dimensionality ({ndim}) of the wcs.") if any((isiterable(s) for s in slices)): raise IndexError("This slice is invalid, only integer or range slices are supported.") slices = list(slices) if Ellipsis in slices: if slices.count(Ellipsis) > 1: raise IndexError("an index can only have a single ellipsis ('...')") # Replace the Ellipsis with the correct number of slice(None)s e_ind = slices.index(Ellipsis) slices.remove(Ellipsis) n_e = ndim - len(slices) for i in range(n_e): ind = e_ind + i slices.insert(ind, slice(None)) for i in range(ndim): if i < len(slices): slc = slices[i] if isinstance(slc, slice): if slc.step and slc.step != 1: raise IndexError("Slicing WCS with a step is not supported.") elif not isinstance(slc, numbers.Integral): raise IndexError("Only integer or range slices are accepted.") else: slices.append(slice(None)) return slices def combine_slices(slice1, slice2): """ Given two slices that can be applied to a 1-d array, find the resulting slice that corresponds to the combination of both slices. We assume that slice2 can be an integer, but slice1 cannot. """ if isinstance(slice1, slice) and slice1.step is not None: raise ValueError('Only slices with steps of 1 are supported') if isinstance(slice2, slice) and slice2.step is not None: raise ValueError('Only slices with steps of 1 are supported') if isinstance(slice2, numbers.Integral): if slice1.start is None: return slice2 else: return slice2 + slice1.start if slice1.start is None: if slice1.stop is None: return slice2 else: if slice2.stop is None: return slice(slice2.start, slice1.stop) else: return slice(slice2.start, min(slice1.stop, slice2.stop)) else: if slice2.start is None: start = slice1.start else: start = slice1.start + slice2.start if slice2.stop is None: stop = slice1.stop else: if slice1.start is None: stop = slice2.stop else: stop = slice2.stop + slice1.start if slice1.stop is not None: stop = min(slice1.stop, stop) return slice(start, stop) class SlicedLowLevelWCS(BaseWCSWrapper): """ A Low Level WCS wrapper which applies an array slice to a WCS. This class does not modify the underlying WCS object and can therefore drop coupled dimensions as it stores which pixel and world dimensions have been sliced out (or modified) in the underlying WCS and returns the modified results on all the Low Level WCS methods. Parameters ---------- wcs : `~astropy.wcs.wcsapi.BaseLowLevelWCS` The WCS to slice. slices : `slice` or `tuple` or `int` A valid array slice to apply to the WCS. """ def __init__(self, wcs, slices): slices = sanitize_slices(slices, wcs.pixel_n_dim) if isinstance(wcs, SlicedLowLevelWCS): # Here we combine the current slices with the previous slices # to avoid ending up with many nested WCSes self._wcs = wcs._wcs slices_original = wcs._slices_array.copy() for ipixel in range(wcs.pixel_n_dim): ipixel_orig = wcs._wcs.pixel_n_dim - 1 - wcs._pixel_keep[ipixel] ipixel_new = wcs.pixel_n_dim - 1 - ipixel slices_original[ipixel_orig] = combine_slices(slices_original[ipixel_orig], slices[ipixel_new]) self._slices_array = slices_original else: self._wcs = wcs self._slices_array = slices self._slices_pixel = self._slices_array[::-1] # figure out which pixel dimensions have been kept, then use axis correlation # matrix to figure out which world dims are kept self._pixel_keep = np.nonzero([not isinstance(self._slices_pixel[ip], numbers.Integral) for ip in range(self._wcs.pixel_n_dim)])[0] # axis_correlation_matrix[world, pixel] self._world_keep = np.nonzero( self._wcs.axis_correlation_matrix[:, self._pixel_keep].any(axis=1))[0] if len(self._pixel_keep) == 0 or len(self._world_keep) == 0: raise ValueError("Cannot slice WCS: the resulting WCS should have " "at least one pixel and one world dimension.") @lazyproperty def dropped_world_dimensions(self): """ Information describing the dropped world dimensions. """ world_coords = self._pixel_to_world_values_all(*[0]*len(self._pixel_keep)) dropped_info = defaultdict(list) for i in range(self._wcs.world_n_dim): if i in self._world_keep: continue if "world_axis_object_classes" not in dropped_info: dropped_info["world_axis_object_classes"] = dict() wao_classes = self._wcs.world_axis_object_classes wao_components = self._wcs.world_axis_object_components dropped_info["value"].append(world_coords[i]) dropped_info["world_axis_names"].append(self._wcs.world_axis_names[i]) dropped_info["world_axis_physical_types"].append(self._wcs.world_axis_physical_types[i]) dropped_info["world_axis_units"].append(self._wcs.world_axis_units[i]) dropped_info["world_axis_object_components"].append(wao_components[i]) dropped_info["world_axis_object_classes"].update(dict( filter( lambda x: x[0] == wao_components[i][0], wao_classes.items() ) )) dropped_info["serialized_classes"] = self.serialized_classes return dict(dropped_info) @property def pixel_n_dim(self): return len(self._pixel_keep) @property def world_n_dim(self): return len(self._world_keep) @property def world_axis_physical_types(self): return [self._wcs.world_axis_physical_types[i] for i in self._world_keep] @property def world_axis_units(self): return [self._wcs.world_axis_units[i] for i in self._world_keep] @property def pixel_axis_names(self): return [self._wcs.pixel_axis_names[i] for i in self._pixel_keep] @property def world_axis_names(self): return [self._wcs.world_axis_names[i] for i in self._world_keep] def _pixel_to_world_values_all(self, *pixel_arrays): pixel_arrays = tuple(map(np.asanyarray, pixel_arrays)) pixel_arrays_new = [] ipix_curr = -1 for ipix in range(self._wcs.pixel_n_dim): if isinstance(self._slices_pixel[ipix], numbers.Integral): pixel_arrays_new.append(self._slices_pixel[ipix]) else: ipix_curr += 1 if self._slices_pixel[ipix].start is not None: pixel_arrays_new.append(pixel_arrays[ipix_curr] + self._slices_pixel[ipix].start) else: pixel_arrays_new.append(pixel_arrays[ipix_curr]) pixel_arrays_new = np.broadcast_arrays(*pixel_arrays_new) return self._wcs.pixel_to_world_values(*pixel_arrays_new) def pixel_to_world_values(self, *pixel_arrays): world_arrays = self._pixel_to_world_values_all(*pixel_arrays) # Detect the case of a length 0 array if isinstance(world_arrays, np.ndarray) and not world_arrays.shape: return world_arrays if self._wcs.world_n_dim > 1: # Select the dimensions of the original WCS we are keeping. world_arrays = [world_arrays[iw] for iw in self._world_keep] # If there is only one world dimension (after slicing) we shouldn't return a tuple. if self.world_n_dim == 1: world_arrays = world_arrays[0] return world_arrays def world_to_pixel_values(self, *world_arrays): world_arrays = tuple(map(np.asanyarray, world_arrays)) world_arrays_new = [] iworld_curr = -1 for iworld in range(self._wcs.world_n_dim): if iworld in self._world_keep: iworld_curr += 1 world_arrays_new.append(world_arrays[iworld_curr]) else: world_arrays_new.append(1.) world_arrays_new = np.broadcast_arrays(*world_arrays_new) pixel_arrays = list(self._wcs.world_to_pixel_values(*world_arrays_new)) for ipixel in range(self._wcs.pixel_n_dim): if isinstance(self._slices_pixel[ipixel], slice) and self._slices_pixel[ipixel].start is not None: pixel_arrays[ipixel] -= self._slices_pixel[ipixel].start # Detect the case of a length 0 array if isinstance(pixel_arrays, np.ndarray) and not pixel_arrays.shape: return pixel_arrays pixel = tuple(pixel_arrays[ip] for ip in self._pixel_keep) if self.pixel_n_dim == 1 and self._wcs.pixel_n_dim > 1: pixel = pixel[0] return pixel @property def world_axis_object_components(self): return [self._wcs.world_axis_object_components[idx] for idx in self._world_keep] @property def world_axis_object_classes(self): keys_keep = [item[0] for item in self.world_axis_object_components] return dict([item for item in self._wcs.world_axis_object_classes.items() if item[0] in keys_keep]) @property def array_shape(self): if self._wcs.array_shape: return np.broadcast_to(0, self._wcs.array_shape)[tuple(self._slices_array)].shape @property def pixel_shape(self): if self.array_shape: return tuple(self.array_shape[::-1]) @property def pixel_bounds(self): if self._wcs.pixel_bounds is None: return bounds = [] for idx in self._pixel_keep: if self._slices_pixel[idx].start is None: bounds.append(self._wcs.pixel_bounds[idx]) else: imin, imax = self._wcs.pixel_bounds[idx] start = self._slices_pixel[idx].start bounds.append((imin - start, imax - start)) return tuple(bounds) @property def axis_correlation_matrix(self): return self._wcs.axis_correlation_matrix[self._world_keep][:, self._pixel_keep]
{ "content_hash": "c67db95b0d1fd3b2399f7d8efaf9d69f", "timestamp": "", "source": "github", "line_count": 308, "max_line_length": 110, "avg_line_length": 37.282467532467535, "alnum_prop": 0.6007140991030219, "repo_name": "saimn/astropy", "id": "21169377f0015e5a4676248da7e5bf4dffd3030d", "size": "11483", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "astropy/wcs/wcsapi/wrappers/sliced_wcs.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "11034753" }, { "name": "C++", "bytes": "47001" }, { "name": "Cython", "bytes": "78631" }, { "name": "HTML", "bytes": "1172" }, { "name": "Lex", "bytes": "183333" }, { "name": "M4", "bytes": "18757" }, { "name": "Makefile", "bytes": "52457" }, { "name": "Python", "bytes": "12214998" }, { "name": "Shell", "bytes": "17024" }, { "name": "TeX", "bytes": "853" } ], "symlink_target": "" }
from cosmo_tester.framework.testenv import bootstrap, teardown def setUp(): bootstrap() def tearDown(): teardown()
{ "content_hash": "884f98bb1c977d688e02d942f5611980", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 62, "avg_line_length": 14.11111111111111, "alnum_prop": 0.7086614173228346, "repo_name": "isaac-s/cloudify-system-tests", "id": "ee6fe3f6146737d2a80f26a2cabfd6974bc2146c", "size": "772", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "cosmo_tester/test_suites/ec2_test_blueprints/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "441" }, { "name": "Clojure", "bytes": "290" }, { "name": "Puppet", "bytes": "154" }, { "name": "Python", "bytes": "336635" }, { "name": "Ruby", "bytes": "1104" }, { "name": "Shell", "bytes": "3795" } ], "symlink_target": "" }
from django.test import TestCase from hnotebook.accounts.factories import ProfileFactory from .factories import NotebookFactory, HousingFactory from .models import Notebook, Housing, Review, Note class NotebookModelTestCase(TestCase): def setUp(self): pass def test_notebook_private_field_is_false_as_default(self): notebook = Notebook.objects.create(name='testnotebook') self.assertEqual(notebook.private, False) def test_notebook_string_representation_shows_name(self): notebook = Notebook.objects.create(name='testnotebook') self.assertIn("testnotebook", str(notebook)) class HousingModelTestCase(TestCase): def setUp(self): pass def test_housing_instantiation(self): notebook = NotebookFactory() housing = Housing( notebook=notebook, category=Housing.RENT, property_type=Housing.FLAT, description="example description", town="Some city", address="Some address", price="700", currency="$", surface=50, num_rooms=2, ) self.assertIn("Rent", str(housing)) self.assertIn("Flat", str(housing)) self.assertIn("$", str(housing)) self.assertIn("700", str(housing)) class ReviewModelTestCase(TestCase): def setUp(self): self.profile = ProfileFactory() self.commenter_profile = ProfileFactory() self.notebook = NotebookFactory(name="testenotebook") self.profile.notebooks.add(self.notebook) self.housing = HousingFactory() def test_add_review_to_housing(self): review = Review.objects.create( housing=self.housing, commenter=self.commenter_profile.user, rating=5, text='Awesome flat' ) self.assertEqual(review.text, 'Awesome flat') self.assertIn(review.commenter.username, str(review)) self.assertIn(str(review.rating), str(review)) self.assertIn(str(review.datetime), str(review)) class NoteModelTestCase(TestCase): def setUp(self): self.profile = ProfileFactory() self.commenter_profile = ProfileFactory() self.notebook = NotebookFactory(name="testenotebook") self.profile.notebooks.add(self.notebook) self.housing = HousingFactory() def test_add_review_to_housing(self): note = Note.objects.create( housing=self.housing, text='contacted owner' ) self.assertEqual(note.text, 'contacted owner') self.assertIn(str(note.datetime), str(note))
{ "content_hash": "930e18a36f634697e0aca0ce4eda3a0b", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 63, "avg_line_length": 31.476190476190474, "alnum_prop": 0.6388048411497731, "repo_name": "marcwebbie/hnotebook", "id": "0cb4b3f4b3e3a905ddac43d6b4b34a44e822fc8c", "size": "2644", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hnotebook/notebooks/tests.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "26675" } ], "symlink_target": "" }
"""This app contains the views and models for expression data Expression Objects ------------------ For microarray results (metadata in :class:`~experiments.models.MicroArrayExperiment`) there is only *gene* level data, as specified by the specific probe used. For RNAseq results (metadata in :class:`~experiments.models.mRNASeqExperiment`), there is aggregated data at the level of the *gene*, *transcript*, *exon*, *promoter* and *splice site*. Currently we are only able to work with gene level data. Types of Data ------------- The database can contain two types of data: * SampleData level data, such as how many (hopefully normalized) counts are in each sample for each gene. * ExperimentData, which includes the average counts for each group as well as statistical tests for differential expression. """
{ "content_hash": "319d67e09d583ad0e0dd36d037f0c745", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 185, "avg_line_length": 47.94117647058823, "alnum_prop": 0.7521472392638037, "repo_name": "davebridges/expression-data-server", "id": "24fa6daee42e83a11bfb3a089f57778b3b32c239", "size": "815", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "expression_data/data/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "50811" } ], "symlink_target": "" }
from __future__ import print_function import sys if sys.version >= '3': long = int from pyspark.sql import SparkSession # $example on$ from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.recommendation import ALS from pyspark.sql import Row # $example off$ if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("ALSExample")\ .getOrCreate() # $example on$ lines = spark.read.text("data/mllib/als/sample_movielens_ratings.txt").rdd parts = lines.map(lambda row: row.value.split("::")) ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]), rating=float(p[2]), timestamp=long(p[3]))) ratings = spark.createDataFrame(ratingsRDD) (training, test) = ratings.randomSplit([0.8, 0.2]) # Build the recommendation model using ALS on the training data # Note we set cold start strategy to 'drop' to ensure we don't get NaN evaluation metrics als = ALS(maxIter=5, regParam=0.01, userCol="userId", itemCol="movieId", ratingCol="rating", coldStartStrategy="drop") model = als.fit(training) # Evaluate the model by computing the RMSE on the test data predictions = model.transform(test) evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction") rmse = evaluator.evaluate(predictions) print("Root-mean-square error = " + str(rmse)) # Generate top 10 movie recommendations for each user userRecs = model.recommendForAllUsers(10) # Generate top 10 user recommendations for each movie movieRecs = model.recommendForAllItems(10) # $example off$ userRecs.show() movieRecs.show() spark.stop()
{ "content_hash": "20c23214d5d748889df8b8f8c1e0dc75", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 96, "avg_line_length": 36.03921568627451, "alnum_prop": 0.6414581066376496, "repo_name": "wangyixiaohuihui/spark2-annotation", "id": "dede3f39431678277ddefa853c1efdc84d603616", "size": "2638", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/src/main/python/ml/als_example.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ANTLR", "bytes": "33815" }, { "name": "Batchfile", "bytes": "24294" }, { "name": "C", "bytes": "1542" }, { "name": "CSS", "bytes": "23957" }, { "name": "HTML", "bytes": "10012" }, { "name": "HiveQL", "bytes": "1828674" }, { "name": "Java", "bytes": "3737029" }, { "name": "JavaScript", "bytes": "143063" }, { "name": "Makefile", "bytes": "7980" }, { "name": "PLpgSQL", "bytes": "9666" }, { "name": "PowerShell", "bytes": "3751" }, { "name": "Python", "bytes": "2248750" }, { "name": "R", "bytes": "1027534" }, { "name": "Roff", "bytes": "14420" }, { "name": "SQLPL", "bytes": "3603" }, { "name": "Scala", "bytes": "22897473" }, { "name": "Shell", "bytes": "156941" }, { "name": "Thrift", "bytes": "33665" }, { "name": "q", "bytes": "147332" } ], "symlink_target": "" }
from flask_restful_swagger import swagger from sqlalchemy import bindparam from manager_rest import manager_exceptions from manager_rest.rest import ( resources_v1, rest_decorators, ) from manager_rest.storage.models_base import db from manager_rest.storage.resource_models import ( Deployment, Execution, Event, Log, ) from manager_rest.storage import ListResult class Events(resources_v1.Events): """Events resource. Through the events endpoint a user can retrieve both events and logs as stored in the SQL database. """ @swagger.operation( responseclass='List[Event]', nickname="list events", notes='Returns a list of events for optionally provided filters' ) @rest_decorators.exceptions_handled @rest_decorators.marshal_events @rest_decorators.create_filters() @rest_decorators.paginate @rest_decorators.rangeable @rest_decorators.projection @rest_decorators.sortable() def get(self, _include=None, filters=None, pagination=None, sort=None, range_filters=None, **kwargs): """List events using a SQL backend. :param _include: Projection used to get records from database (not currently used) :type _include: list(str) :param filters: Filter selection. It's used to decide if events: {'type': ['cloudify_event']} or both events and logs should be returned: {'type': ['cloudify_event', 'cloudify_log']} Also it's used to get only events for a particular execution: {'execution_id': '<some uuid>'} :type filters: dict(str, str) :param pagination: Parameters used to limit results returned in a single query. Expected values `size` and `offset` are mapped into SQL as `LIMIT` and `OFFSET`. :type pagination: dict(str, int) :param sort: Result sorting order. The only allowed and expected value is to sort by timestamp in ascending order: {'timestamp': 'asc'} :type sort: dict(str, str) :returns: Events that match the conditions passed as arguments :rtype: :class:`manager_rest.storage.storage_manager.ListResult` :param range_filters: Apparently was used to select a timestamp interval. It's not currently used. :type range_filters: dict(str) :returns: Events found in the SQL backend :rtype: :class:`manager_rest.storage.storage_manager.ListResult` """ size = pagination.get('size', self.DEFAULT_SEARCH_SIZE) offset = pagination.get('offset', 0) params = { 'limit': size, 'offset': offset, } count_query = self._build_count_query(filters, range_filters, self.current_tenant.id) total = count_query.params(**params).scalar() select_query = self._build_select_query(filters, sort, range_filters, self.current_tenant.id) results = [ self._map_event_to_dict(_include, event) for event in select_query.params(**params).all() ] metadata = { 'pagination': { 'size': size, 'offset': offset, 'total': total, } } return ListResult(results, metadata) @rest_decorators.exceptions_handled def post(self): raise manager_exceptions.MethodNotAllowedError() @swagger.operation( responseclass='List[Event]', nickname="delete events", notes='Deletes events according to a passed Deployment ID' ) @rest_decorators.exceptions_handled @rest_decorators.marshal_events @rest_decorators.create_filters() @rest_decorators.paginate @rest_decorators.rangeable @rest_decorators.projection @rest_decorators.sortable() def delete(self, filters=None, pagination=None, sort=None, range_filters=None, **kwargs): """Delete events/logs connected to a certain Deployment ID.""" if not isinstance(filters, dict) or 'type' not in filters: raise manager_exceptions.BadParametersError( 'Filter by type is expected') if 'cloudify_event' not in filters['type']: raise manager_exceptions.BadParametersError( 'At least `type=cloudify_event` filter is expected') executions_query = ( db.session.query(Execution._storage_id) .filter( Execution._deployment_fk == Deployment._storage_id, Deployment.id == bindparam('deployment_id'), Execution._tenant_id == bindparam('tenant_id') ) ) params = { 'deployment_id': filters['deployment_id'][0], 'tenant_id': self.current_tenant.id } delete_event_query = ( db.session.query(Event) .filter( Event._execution_fk.in_(executions_query), Event._tenant_id == bindparam('tenant_id') ) .params(**params) ) total = delete_event_query.delete(synchronize_session=False) if 'cloudify_log' in filters['type']: delete_log_query = ( db.session.query(Log) .filter( Log._execution_fk.in_(executions_query), Log._tenant_id == bindparam('tenant_id') ) .params(**params) ) total += delete_log_query.delete('fetch') metadata = { 'pagination': dict(pagination, total=total) } # Commit bulk row deletions to database db.session.commit() # We don't really want to return all of the deleted events, # so it's a bit of a hack to return the deleted element count. return ListResult([total], metadata)
{ "content_hash": "c44a0b1a3c14179b0bea356da0c7d9b4", "timestamp": "", "source": "github", "line_count": 176, "max_line_length": 78, "avg_line_length": 34.61363636363637, "alnum_prop": 0.5838804990151018, "repo_name": "isaac-s/cloudify-manager", "id": "a44b77a2fd7bdad054b33bb1f2ad95bf50fdab7a", "size": "6732", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rest-service/manager_rest/rest/resources_v2/events.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Clojure", "bytes": "4067" }, { "name": "Mako", "bytes": "541" }, { "name": "Python", "bytes": "1793118" }, { "name": "Ruby", "bytes": "40193" }, { "name": "Shell", "bytes": "41526" } ], "symlink_target": "" }
from threading import Thread, Lock, Semaphore # current_thread for python 2.6, currentThread for python 2.5 try: from threading import current_thread except ImportError: from threading import currentThread as current_thread # Queue for python 2, queue for python 3 try: from Queue import Queue, Empty except ImportError: from queue import Queue, Empty import struct import socket import types import sys import time # use normal tuples instead of namedtuples in python version below 2.6 if sys.hexversion < 0x02060000: def namedtuple(typename, field_names, verbose=False, rename=False): def ntuple(*args): return args return ntuple else: from collections import namedtuple def get_uid_from_data(data): return struct.unpack('<I', data[0:4])[0] def get_length_from_data(data): return struct.unpack('<B', data[4:5])[0] def get_function_id_from_data(data): return struct.unpack('<B', data[5:6])[0] def get_sequence_number_from_data(data): return (struct.unpack('<B', data[6:7])[0] >> 4) & 0x0F def get_error_code_from_data(data): return (struct.unpack('<B', data[7:8])[0] >> 6) & 0x03 BASE58 = '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' def base58encode(value): encoded = '' while value >= 58: div, mod = divmod(value, 58) encoded = BASE58[mod] + encoded value = div encoded = BASE58[value] + encoded return encoded def base58decode(encoded): value = 0 column_multiplier = 1 for c in encoded[::-1]: column = BASE58.index(c) value += column * column_multiplier column_multiplier *= 58 return value def uid64_to_uid32(uid64): value1 = uid64 & 0xFFFFFFFF value2 = (uid64 >> 32) & 0xFFFFFFFF uid32 = (value1 & 0x00000FFF) uid32 |= (value1 & 0x0F000000) >> 12 uid32 |= (value2 & 0x0000003F) << 16 uid32 |= (value2 & 0x000F0000) << 6 uid32 |= (value2 & 0x3F000000) << 2 return uid32 class Error(Exception): TIMEOUT = -1 NOT_ADDED = -6 # obsolete since v2.0 ALREADY_CONNECTED = -7 NOT_CONNECTED = -8 INVALID_PARAMETER = -9 NOT_SUPPORTED = -10 UNKNOWN_ERROR_CODE = -11 def __init__(self, value, description): self.value = value self.description = description def __str__(self): return str(self.value) + ': ' + str(self.description) class Device: RESPONSE_EXPECTED_INVALID_FUNCTION_ID = 0 RESPONSE_EXPECTED_ALWAYS_TRUE = 1 # getter RESPONSE_EXPECTED_ALWAYS_FALSE = 2 # callback RESPONSE_EXPECTED_TRUE = 3 # setter RESPONSE_EXPECTED_FALSE = 4 # setter, default def __init__(self, uid, ipcon): """ Creates the device object with the unique device ID *uid* and adds it to the IPConnection *ipcon*. """ uid_ = base58decode(uid) if uid_ > 0xFFFFFFFF: uid_ = uid64_to_uid32(uid_) self.uid = uid_ self.ipcon = ipcon self.api_version = (0, 0, 0) self.registered_callbacks = {} self.callback_formats = {} self.expected_response_function_id = None # protected by request_lock self.expected_response_sequence_number = None # protected by request_lock self.response_queue = Queue() self.request_lock = Lock() self.auth_key = None self.response_expected = [Device.RESPONSE_EXPECTED_INVALID_FUNCTION_ID] * 256 self.response_expected[IPConnection.FUNCTION_ENUMERATE] = Device.RESPONSE_EXPECTED_ALWAYS_FALSE self.response_expected[IPConnection.FUNCTION_ADC_CALIBRATE] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.FUNCTION_GET_ADC_CALIBRATION] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.FUNCTION_READ_BRICKLET_UID] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.FUNCTION_WRITE_BRICKLET_UID] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.FUNCTION_READ_BRICKLET_PLUGIN] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.FUNCTION_WRITE_BRICKLET_PLUGIN] = Device.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[IPConnection.CALLBACK_ENUMERATE] = Device.RESPONSE_EXPECTED_ALWAYS_FALSE ipcon.devices[self.uid] = self # FIXME: maybe use a weakref here def get_api_version(self): """ Returns the API version (major, minor, revision) of the bindings for this device. """ return self.api_version def get_response_expected(self, function_id): """ Returns the response expected flag for the function specified by the *function_id* parameter. It is *true* if the function is expected to send a response, *false* otherwise. For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled via the set_response_expected function. For setter functions it is disabled by default and can be enabled. Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected. """ if function_id < 0 or function_id >= len(self.response_expected): raise ValueError('Function ID {0} out of range'.format(function_id)) flag = self.response_expected[function_id] if flag == Device.RESPONSE_EXPECTED_INVALID_FUNCTION_ID: raise ValueError('Invalid function ID {0}'.format(function_id)) return flag in [Device.RESPONSE_EXPECTED_ALWAYS_TRUE, Device.RESPONSE_EXPECTED_TRUE] def set_response_expected(self, function_id, response_expected): """ Changes the response expected flag of the function specified by the *function_id* parameter. This flag can only be changed for setter (default value: *false*) and callback configuration functions (default value: *true*). For getter functions it is always enabled and callbacks it is always disabled. Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected. """ if function_id < 0 or function_id >= len(self.response_expected): raise ValueError('Function ID {0} out of range'.format(function_id)) flag = self.response_expected[function_id] if flag == Device.RESPONSE_EXPECTED_INVALID_FUNCTION_ID: raise ValueError('Invalid function ID {0}'.format(function_id)) if flag in [Device.RESPONSE_EXPECTED_ALWAYS_TRUE, Device.RESPONSE_EXPECTED_ALWAYS_FALSE]: raise ValueError('Response Expected flag cannot be changed for function ID {0}'.format(function_id)) if bool(response_expected): self.response_expected[function_id] = Device.RESPONSE_EXPECTED_TRUE else: self.response_expected[function_id] = Device.RESPONSE_EXPECTED_FALSE def set_response_expected_all(self, response_expected): """ Changes the response expected flag for all setter and callback configuration functions of this device at once. """ if bool(response_expected): flag = Device.RESPONSE_EXPECTED_TRUE else: flag = Device.RESPONSE_EXPECTED_FALSE for i in range(len(self.response_expected)): if self.response_expected[i] in [Device.RESPONSE_EXPECTED_TRUE, Device.RESPONSE_EXPECTED_FALSE]: self.response_expected[i] = flag class IPConnection: FUNCTION_ENUMERATE = 254 FUNCTION_ADC_CALIBRATE = 251 FUNCTION_GET_ADC_CALIBRATION = 250 FUNCTION_READ_BRICKLET_UID = 249 FUNCTION_WRITE_BRICKLET_UID = 248 FUNCTION_READ_BRICKLET_PLUGIN = 247 FUNCTION_WRITE_BRICKLET_PLUGIN = 246 FUNCTION_DISCONNECT_PROBE = 128 CALLBACK_ENUMERATE = 253 CALLBACK_CONNECTED = 0 CALLBACK_DISCONNECTED = 1 BROADCAST_UID = 0 PLUGIN_CHUNK_SIZE = 32 # enumeration_type parameter to the enumerate callback ENUMERATION_TYPE_AVAILABLE = 0 ENUMERATION_TYPE_CONNECTED = 1 ENUMERATION_TYPE_DISCONNECTED = 2 # connect_reason parameter to the connected callback CONNECT_REASON_REQUEST = 0 CONNECT_REASON_AUTO_RECONNECT = 1 # disconnect_reason parameter to the disconnected callback DISCONNECT_REASON_REQUEST = 0 DISCONNECT_REASON_ERROR = 1 DISCONNECT_REASON_SHUTDOWN = 2 # returned by get_connection_state CONNECTION_STATE_DISCONNECTED = 0 CONNECTION_STATE_CONNECTED = 1 CONNECTION_STATE_PENDING = 2 # auto-reconnect in process QUEUE_EXIT = 0 QUEUE_META = 1 QUEUE_PACKET = 2 DISCONNECT_PROBE_INTERVAL = 5 class CallbackContext: def __init__(self): self.queue = None self.thread = None self.packet_dispatch_allowed = False self.lock = None def __init__(self): """ Creates an IP Connection object that can be used to enumerate the available devices. It is also required for the constructor of Bricks and Bricklets. """ self.host = None self.port = None self.timeout = 2.5 self.auto_reconnect = True self.auto_reconnect_allowed = False self.auto_reconnect_pending = False self.sequence_number_lock = Lock() self.next_sequence_number = 0 # protected by sequence_number_lock self.auth_key = None self.devices = {} self.registered_callbacks = {} self.socket = None # protected by socket_lock self.socket_id = 0 # protected by socket_lock self.socket_lock = Lock() self.receive_flag = False self.receive_thread = None self.callback = None self.disconnect_probe_flag = False self.disconnect_probe_queue = None self.disconnect_probe_thread = None self.waiter = Semaphore() def connect(self, host, port): """ Creates a TCP/IP connection to the given *host* and *port*. The host and port can point to a Brick Daemon or to a WIFI/Ethernet Extension. Devices can only be controlled when the connection was established successfully. Blocks until the connection is established and throws an exception if there is no Brick Daemon or WIFI/Ethernet Extension listening at the given host and port. """ with self.socket_lock: if self.socket is not None: raise Error(Error.ALREADY_CONNECTED, 'Already connected to {0}:{1}'.format(self.host, self.port)) self.host = host self.port = port self.connect_unlocked(False) def disconnect(self): """ Disconnects the TCP/IP connection from the Brick Daemon or the WIFI/Ethernet Extension. """ with self.socket_lock: self.auto_reconnect_allowed = False if self.auto_reconnect_pending: # abort potentially pending auto reconnect self.auto_reconnect_pending = False else: if self.socket is None: raise Error(Error.NOT_CONNECTED, 'Not connected') self.disconnect_unlocked() # end callback thread callback = self.callback self.callback = None # do this outside of socket_lock to allow calling (dis-)connect from # the callbacks while blocking on the join call here callback.queue.put((IPConnection.QUEUE_META, (IPConnection.CALLBACK_DISCONNECTED, IPConnection.DISCONNECT_REASON_REQUEST, None))) callback.queue.put((IPConnection.QUEUE_EXIT, None)) if current_thread() is not callback.thread: callback.thread.join() def get_connection_state(self): """ Can return the following states: - CONNECTION_STATE_DISCONNECTED: No connection is established. - CONNECTION_STATE_CONNECTED: A connection to the Brick Daemon or the WIFI/Ethernet Extension is established. - CONNECTION_STATE_PENDING: IP Connection is currently trying to connect. """ if self.socket is not None: return IPConnection.CONNECTION_STATE_CONNECTED elif self.auto_reconnect_pending: return IPConnection.CONNECTION_STATE_PENDING else: return IPConnection.CONNECTION_STATE_DISCONNECTED def set_auto_reconnect(self, auto_reconnect): """ Enables or disables auto-reconnect. If auto-reconnect is enabled, the IP Connection will try to reconnect to the previously given host and port, if the connection is lost. Default value is *True*. """ self.auto_reconnect = bool(auto_reconnect) if not self.auto_reconnect: # abort potentially pending auto reconnect self.auto_reconnect_allowed = False def get_auto_reconnect(self): """ Returns *true* if auto-reconnect is enabled, *false* otherwise. """ return self.auto_reconnect def set_timeout(self, timeout): """ Sets the timeout in seconds for getters and for setters for which the response expected flag is activated. Default timeout is 2.5. """ timeout = float(timeout) if timeout < 0: raise ValueError('Timeout cannot be negative') self.timeout = timeout def get_timeout(self): """ Returns the timeout as set by set_timeout. """ return self.timeout def enumerate(self): """ Broadcasts an enumerate request. All devices will respond with an enumerate callback. """ request, _, _ = self.create_packet_header(None, 8, IPConnection.FUNCTION_ENUMERATE) self.send(request) def wait(self): """ Stops the current thread until unwait is called. This is useful if you rely solely on callbacks for events, if you want to wait for a specific callback or if the IP Connection was created in a thread. Wait and unwait act in the same way as "acquire" and "release" of a semaphore. """ self.waiter.acquire() def unwait(self): """ Unwaits the thread previously stopped by wait. Wait and unwait act in the same way as "acquire" and "release" of a semaphore. """ self.waiter.release() def register_callback(self, id, callback): """ Registers a callback with ID *id* to the function *callback*. """ self.registered_callbacks[id] = callback def connect_unlocked(self, is_auto_reconnect): # NOTE: assumes that socket_lock is locked # create callback thread and queue if self.callback is None: try: self.callback = IPConnection.CallbackContext() self.callback.queue = Queue() self.callback.packet_dispatch_allowed = False self.callback.lock = Lock() self.callback.thread = Thread(name='Callback-Processor', target=self.callback_loop, args=(self.callback, )) self.callback.thread.daemon = True self.callback.thread.start() except: self.callback = None raise # create and connect socket try: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) self.socket.connect((self.host, self.port)) self.socket_id += 1 except: def cleanup(): self.socket = None # end callback thread if not is_auto_reconnect: self.callback.queue.put((IPConnection.QUEUE_EXIT, None)) if current_thread() is not self.callback.thread: self.callback.thread.join() self.callback = None cleanup() raise # create disconnect probe thread try: self.disconnect_probe_flag = True self.disconnect_probe_queue = Queue() self.disconnect_probe_thread = Thread(name='Disconnect-Prober', target=self.disconnect_probe_loop, args=(self.disconnect_probe_queue, )) self.disconnect_probe_thread.daemon = True self.disconnect_probe_thread.start() except: def cleanup(): self.disconnect_probe_thread = None # close socket self.socket.close() self.socket = None # end callback thread if not is_auto_reconnect: self.callback.queue.put((IPConnection.QUEUE_EXIT, None)) if current_thread() is not self.callback.thread: self.callback.thread.join() self.callback = None cleanup() raise # create receive thread self.callback.packet_dispatch_allowed = True try: self.receive_flag = True self.receive_thread = Thread(name='Brickd-Receiver', target=self.receive_loop, args=(self.socket_id, )) self.receive_thread.daemon = True self.receive_thread.start() except: def cleanup(): self.disconnect_unlocked() # end callback thread if not is_auto_reconnect: self.callback.queue.put((IPConnection.QUEUE_EXIT, None)) if current_thread() is not self.callback.thread: self.callback.thread.join() self.callback = None cleanup() raise self.auto_reconnect_allowed = False self.auto_reconnect_pending = False if is_auto_reconnect: connect_reason = IPConnection.CONNECT_REASON_AUTO_RECONNECT else: connect_reason = IPConnection.CONNECT_REASON_REQUEST self.callback.queue.put((IPConnection.QUEUE_META, (IPConnection.CALLBACK_CONNECTED, connect_reason, None))) def disconnect_unlocked(self): # NOTE: assumes that socket_lock is locked # end disconnect probe thread self.disconnect_probe_queue.put(True) self.disconnect_probe_thread.join() # FIXME: use a timeout? self.disconnect_probe_thread = None # stop dispatching packet callbacks before ending the receive # thread to avoid timeout exceptions due to callback functions # trying to call getters if current_thread() is not self.callback.thread: # FIXME: cannot hold callback lock here because this can # deadlock due to an ordering problem with the socket lock #with self.callback.lock: if True: self.callback.packet_dispatch_allowed = False else: self.callback.packet_dispatch_allowed = False # end receive thread self.receive_flag = False try: self.socket.shutdown(socket.SHUT_RDWR) except socket.error: pass if self.receive_thread is not None: self.receive_thread.join() # FIXME: use a timeout? self.receive_thread = None # close socket self.socket.close() self.socket = None def receive_loop(self, socket_id): if sys.hexversion < 0x03000000: pending_data = '' else: pending_data = bytes() while self.receive_flag: try: data = self.socket.recv(8192) except socket.error: if self.receive_flag: self.handle_disconnect_by_peer(IPConnection.DISCONNECT_REASON_ERROR, socket_id, False) break if len(data) == 0: if self.receive_flag: self.handle_disconnect_by_peer(IPConnection.DISCONNECT_REASON_SHUTDOWN, socket_id, False) break pending_data += data while True: if len(pending_data) < 8: # Wait for complete header break length = get_length_from_data(pending_data) if len(pending_data) < length: # Wait for complete packet break packet = pending_data[0:length] pending_data = pending_data[length:] self.handle_response(packet) def dispatch_meta(self, function_id, parameter, socket_id): if function_id == IPConnection.CALLBACK_CONNECTED: if IPConnection.CALLBACK_CONNECTED in self.registered_callbacks and \ self.registered_callbacks[IPConnection.CALLBACK_CONNECTED] is not None: self.registered_callbacks[IPConnection.CALLBACK_CONNECTED](parameter) elif function_id == IPConnection.CALLBACK_DISCONNECTED: if parameter != IPConnection.DISCONNECT_REASON_REQUEST: # need to do this here, the receive_loop is not allowed to # hold the socket_lock because this could cause a deadlock # with a concurrent call to the (dis-)connect function with self.socket_lock: # don't close the socket if it got disconnected or # reconnected in the meantime if self.socket is not None and self.socket_id == socket_id: # end disconnect probe thread self.disconnect_probe_queue.put(True) self.disconnect_probe_thread.join() # FIXME: use a timeout? self.disconnect_probe_thread = None # close socket self.socket.close() self.socket = None # FIXME: wait a moment here, otherwise the next connect # attempt will succeed, even if there is no open server # socket. the first receive will then fail directly time.sleep(0.1) if IPConnection.CALLBACK_DISCONNECTED in self.registered_callbacks and \ self.registered_callbacks[IPConnection.CALLBACK_DISCONNECTED] is not None: self.registered_callbacks[IPConnection.CALLBACK_DISCONNECTED](parameter) if parameter != IPConnection.DISCONNECT_REASON_REQUEST and \ self.auto_reconnect and self.auto_reconnect_allowed: self.auto_reconnect_pending = True retry = True # block here until reconnect. this is okay, there is no # callback to deliver when there is no connection while retry: retry = False with self.socket_lock: if self.auto_reconnect_allowed and self.socket is None: try: self.connect_unlocked(True) except: retry = True else: self.auto_reconnect_pending = False if retry: time.sleep(0.1) def dispatch_packet(self, packet): uid = get_uid_from_data(packet) length = get_length_from_data(packet) function_id = get_function_id_from_data(packet) payload = packet[8:] if function_id == IPConnection.CALLBACK_ENUMERATE and \ IPConnection.CALLBACK_ENUMERATE in self.registered_callbacks: uid, connected_uid, position, hardware_version, \ firmware_version, device_identifier, enumeration_type = \ self.deserialize_data(payload, '8s 8s c 3B 3B H B') cb = self.registered_callbacks[IPConnection.CALLBACK_ENUMERATE] cb(uid, connected_uid, position, hardware_version, firmware_version, device_identifier, enumeration_type) return if uid not in self.devices: return device = self.devices[uid] if function_id in device.registered_callbacks and \ device.registered_callbacks[function_id] is not None: cb = device.registered_callbacks[function_id] form = device.callback_formats[function_id] if len(form) == 0: cb() elif len(form) == 1: cb(self.deserialize_data(payload, form)) else: cb(*self.deserialize_data(payload, form)) def callback_loop(self, callback): while True: kind, data = callback.queue.get() # FIXME: cannot hold callback lock here because this can # deadlock due to an ordering problem with the socket lock #with callback.lock: if True: if kind == IPConnection.QUEUE_EXIT: break elif kind == IPConnection.QUEUE_META: self.dispatch_meta(*data) elif kind == IPConnection.QUEUE_PACKET: # don't dispatch callbacks when the receive thread isn't running if callback.packet_dispatch_allowed: self.dispatch_packet(data) def disconnect_probe_loop(self, disconnect_probe_queue): request, _, _ = self.create_packet_header(None, 8, IPConnection.FUNCTION_DISCONNECT_PROBE) while True: try: disconnect_probe_queue.get(True, IPConnection.DISCONNECT_PROBE_INTERVAL) break except Empty: pass if self.disconnect_probe_flag: with self.socket_lock: try: self.socket.send(request) except socket.error: self.handle_disconnect_by_peer(IPConnection.DISCONNECT_REASON_ERROR, self.socket_id, False) break else: self.disconnect_probe_flag = True def deserialize_data(self, data, form): ret = [] for f in form.split(' '): f = '<' + f length = struct.calcsize(f) x = struct.unpack(f, data[:length]) if len(x) > 1: if 'c' in f: x = tuple([self.handle_deserialized_char(c) for c in x]) ret.append(x) elif 'c' in f: ret.append(self.handle_deserialized_char(x[0])) elif 's' in f: ret.append(self.handle_deserialized_string(x[0])) else: ret.append(x[0]) data = data[length:] if len(ret) == 1: return ret[0] else: return ret def handle_deserialized_char(self, c): if sys.hexversion >= 0x03000000: c = c.decode('ascii') return c def handle_deserialized_string(self, s): if sys.hexversion >= 0x03000000: s = s.decode('ascii') i = s.find(chr(0)) if i >= 0: s = s[:i] return s def send(self, packet): with self.socket_lock: if self.socket is None: raise Error(Error.NOT_CONNECTED, 'Not connected') try: self.socket.send(packet) except socket.error: self.handle_disconnect_by_peer(IPConnection.DISCONNECT_REASON_ERROR, None, True) raise Error(Error.NOT_CONNECTED, 'Not connected') self.disconnect_probe_flag = False def send_request(self, device, function_id, data, form, form_ret): length = 8 + struct.calcsize('<' + form) request, response_expected, sequence_number = \ self.create_packet_header(device, length, function_id) def pack_string(f, d): if sys.hexversion < 0x03000000: if type(d) == types.UnicodeType: f = f.replace('s', 'B') l = map(ord, d) l += [0] * (int(f.replace('B', '')) - len(l)) return struct.pack('<' + f, *l) else: return struct.pack('<' + f, d) else: if isinstance(d, str): return struct.pack('<' + f, bytes(map(ord, d))) else: return struct.pack('<' + f, d) for f, d in zip(form.split(' '), data): if len(f) > 1 and not 's' in f and not 'c' in f: request += struct.pack('<' + f, *d) elif 's' in f: request += pack_string(f, d) elif 'c' in f: if len(f) > 1: if int(f.replace('c', '')) != len(d): raise ValueError('Incorrect char list length'); for k in d: request += pack_string('c', k) else: request += pack_string(f, d) else: request += struct.pack('<' + f, d) if response_expected: with device.request_lock: device.expected_response_function_id = function_id device.expected_response_sequence_number = sequence_number try: self.send(request) while True: response = device.response_queue.get(True, self.timeout) if function_id == get_function_id_from_data(response) and \ sequence_number == get_sequence_number_from_data(response): # ignore old responses that arrived after the timeout expired, but before setting # expected_response_function_id and expected_response_sequence_number back to None break except Empty: msg = 'Did not receive response for function {0} in time'.format(function_id) raise Error(Error.TIMEOUT, msg) finally: device.expected_response_function_id = None device.expected_response_sequence_number = None error_code = get_error_code_from_data(response) if error_code == 0: # no error pass elif error_code == 1: msg = 'Got invalid parameter for function {0}'.format(function_id) raise Error(Error.INVALID_PARAMETER, msg) elif error_code == 2: msg = 'Function {0} is not supported'.format(function_id) raise Error(Error.NOT_SUPPORTED, msg) else: msg = 'Function {0} returned an unknown error'.format(function_id) raise Error(Error.UNKNOWN_ERROR_CODE, msg) if len(form_ret) > 0: return self.deserialize_data(response[8:], form_ret) else: self.send(request) def get_next_sequence_number(self): with self.sequence_number_lock: sequence_number = self.next_sequence_number + 1 self.next_sequence_number = sequence_number % 15 return sequence_number def handle_response(self, packet): self.disconnect_probe_flag = False function_id = get_function_id_from_data(packet) sequence_number = get_sequence_number_from_data(packet) if sequence_number == 0 and function_id == IPConnection.CALLBACK_ENUMERATE: if IPConnection.CALLBACK_ENUMERATE in self.registered_callbacks: self.callback.queue.put((IPConnection.QUEUE_PACKET, packet)) return uid = get_uid_from_data(packet) if not uid in self.devices: # Response from an unknown device, ignoring it return device = self.devices[uid] if sequence_number == 0: if function_id in device.registered_callbacks: self.callback.queue.put((IPConnection.QUEUE_PACKET, packet)) return if device.expected_response_function_id == function_id and \ device.expected_response_sequence_number == sequence_number: device.response_queue.put(packet) return # Response seems to be OK, but can't be handled, most likely # a callback without registered function def handle_disconnect_by_peer(self, disconnect_reason, socket_id, disconnect_immediately): # NOTE: assumes that socket_lock is locked if disconnect_immediately is true self.auto_reconnect_allowed = True if disconnect_immediately: self.disconnect_unlocked() self.callback.queue.put((IPConnection.QUEUE_META, (IPConnection.CALLBACK_DISCONNECTED, disconnect_reason, socket_id))) def create_packet_header(self, device, length, function_id): uid = IPConnection.BROADCAST_UID sequence_number = self.get_next_sequence_number() r_bit = 0 a_bit = 0 if device is not None: uid = device.uid if device.get_response_expected(function_id): r_bit = 1 if device.auth_key is not None: a_bit = 1 else: if self.auth_key is not None: a_bit = 1 sequence_number_and_options = \ (sequence_number << 4) | (r_bit << 3) | (a_bit << 2) return (struct.pack('<IBBBB', uid, length, function_id, sequence_number_and_options, 0), bool(r_bit), sequence_number) def write_bricklet_plugin(self, device, port, position, plugin_chunk): self.send_request(device, IPConnection.FUNCTION_WRITE_BRICKLET_PLUGIN, (port, position, plugin_chunk), 'c B 32B', '') def read_bricklet_plugin(self, device, port, position): return self.send_request(device, IPConnection.FUNCTION_READ_BRICKLET_PLUGIN, (port, position), 'c B', '32B') def get_adc_calibration(self, device): return self.send_request(device, IPConnection.FUNCTION_GET_ADC_CALIBRATION, (), '', 'h h') def adc_calibrate(self, device, port): self.send_request(device, IPConnection.FUNCTION_ADC_CALIBRATE, (port,), 'c', '') def write_bricklet_uid(self, device, port, uid): uid_int = base58decode(uid) self.send_request(device, IPConnection.FUNCTION_WRITE_BRICKLET_UID, (port, uid_int), 'c I', '') def read_bricklet_uid(self, device, port): uid_int = self.send_request(device, IPConnection.FUNCTION_READ_BRICKLET_UID, (port,), 'c', 'I') return base58encode(uid_int)
{ "content_hash": "1ce2f55db01776b51046e9d5885e40a6", "timestamp": "", "source": "github", "line_count": 1012, "max_line_length": 114, "avg_line_length": 36.45059288537549, "alnum_prop": 0.570212535241813, "repo_name": "DeathPoison/tinker-cnc", "id": "f2535ce580bc6bf7e6e9efb0a57f8d54889c2453", "size": "37156", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tinkerforge/ip_connection.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "515489" } ], "symlink_target": "" }
""" Throughout my travels I've discovered that most people, including myself, do not realise many things about our Planet's size. For example, the latitude and longitude of certain regions (South America is much further east than the US) or the relative size of countries (Japan is surprisingly long). Thus, I've created this script to understand such things a bit better. It compares the sizes of Japan and Europe, which is the most recent surprise I came across. The shape data were aquired from [Global Administrative Areas](http://www.gadm.org/country) website. Thus, their **redistribution, or commercial use is not allowed without prior permission**. Created on Sun May 7 14:13:47 2017 @author: Alek """ from mpl_toolkits.basemap import Basemap import numpy, shapefile, os, matplotlib.pyplot matplotlib.pyplot.xkcd() # Here we go. def plotPrefecture(*,shp,colour,bMap,axes,latOff=0,longOff=0,lwdth=0.5): """ Plot a prefecture from a shapefile. Kwargs ------- * shp - shape as returned by :func:`shapefile.Reader.shapes`, * colour - colour accepted by :func:`matplotlib.pyplot.Axes.plot', * bMap - instance of :class:`mpl_toolkits.basemap.Basemap` used to project the shape onto a map, * axes - :class:`matplotlib.pyplot.Axes` instance where to plot, * latOff,longOff - deg, by how much to offset the `shp` lattitudes and longitudes before plotting, * lwdth - line width as accepted by :func:`matplotlib.pyplot.Axes.plot'. """ if len(shp.parts)==1: # Only one region in this shape. vertices=numpy.array(shp.points) bMap.plot(vertices[:,0]+longOff,vertices[:,1]+latOff,color=colour, lw=lwdth,ls='-',latlon=True,ax=axes) else: # This shape has islands, disjoint regions and what-not. for ip in range(len(shp.parts)): # For every part of the shape. # Indices that get the slice with this part of the shape. lower=shp.parts[ip] if ip==len(shp.parts)-1: upper=len(shp.points) # Last part. else: upper=shp.parts[ip+1] # Next part starts at idx parts[ip+1] partVertices=numpy.array(shp.points[lower:upper]) bMap.plot(partVertices[:,0]+longOff,partVertices[:,1]+latOff, color=colour,lw=lwdth,ls='-',latlon=True,ax=axes) # Various font sizes. ticksFontSize=18 labelsFontSizeSmall=20 labelsFontSize=30 titleFontSize=34 legendFontSize=20 matplotlib.rc('xtick',labelsize=ticksFontSize) matplotlib.rc('ytick',labelsize=ticksFontSize) cm=matplotlib.pyplot.cm.get_cmap('viridis') # Read a shapefile with Japan's cartography data. shapeRdr0=shapefile.Reader(os.path.join('borders','JPN_adm0')) # Country. shapeRdr1=shapefile.Reader(os.path.join('borders','JPN_adm1')) # Prefectures. shapeRdr2=shapefile.Reader(os.path.join('borders','JPN_adm2')) # Towns. shape=shapeRdr0.shapes()[0] if shape.shapeType != shapefile.POLYGON: raise ValueError('Shape not polygon with shapeType={}'.format(shape.shapeType )) vertices=numpy.array(shape.points) # 2D array of coordinates. # Where to centre different maps and where to translate Japan to. latJpn=37 # Where to centre one map, i.e. over Japan. Lat/lon in degrees. lonJpn=138 latCtr=40 # Where to centre the Europe's map. Lat/lon in degrees. lonCtr=10 dLonJ=10 # Plot Japan at these coordinates over the map of Europe. dLatJ=50 ' Mercator projection, a.k.a. "the things you learn in schools".' fig,ax=matplotlib.pyplot.subplots(1,2,figsize=(16,8)) # The whole Planet. mercMapP=Basemap(projection='merc',llcrnrlat=-80,urcrnrlat=80,llcrnrlon=-180, urcrnrlon=180,lat_ts=10,ax=ax[0],resolution='c') mercMapP.drawcoastlines(linewidth=0.5) mercMapP.drawcountries(linewidth=0.25) mercMapP.drawparallels(numpy.arange(-90.,91.,30.)) mercMapP.drawmeridians(numpy.arange(-180.,181.,60.)) ax[0].set_title(r'$Our\ Planet$',fontsize=titleFontSize) plotPrefecture(shp=shape,colour='gold',lwdth=1,bMap=mercMapP,axes=ax[0]) # Only Europe. mercMapE=Basemap(projection='merc',llcrnrlat=30,urcrnrlat=75,llcrnrlon=-25, urcrnrlon=40,lat_ts=10,ax=ax[1],resolution='l') mercMapE.drawcoastlines(linewidth=0.5) mercMapE.drawcountries(linewidth=0.25) mercMapE.drawparallels(numpy.arange(mercMapE.latmin,mercMapE.latmax,10.)) mercMapE.drawmeridians(numpy.arange(mercMapE.lonmin,mercMapE.lonmax,15.)) ax[1].set_title(r'$Europe$',fontsize=titleFontSize) plotPrefecture(shp=shape,colour='gold',lwdth=2,bMap=mercMapE,axes=ax[1], latOff=dLatJ-latJpn,longOff=dLonJ-lonJpn) fig.show() ' One figure with orthonormal maps centred on Japan and Europe.' fig,ax=matplotlib.pyplot.subplots(1,2,figsize=(16,8)) # Centred on Japan. ortnMapJ=Basemap(projection='ortho',lat_0=latJpn,lon_0=lonJpn,resolution='c', ax=ax[0]) ortnMapJ.drawcoastlines(linewidth=0.5) ortnMapJ.drawcountries(linewidth=0.25) ortnMapJ.drawmeridians(numpy.arange(0,360,30)) ortnMapJ.drawparallels(numpy.arange(-90,90,30)) ax[0].set_title(r'${}$'.format(shapeRdr0.records()[0][4]),fontsize=titleFontSize) plotPrefecture(shp=shape,colour='gold',lwdth=2,bMap=ortnMapJ,axes=ax[0]) # Plot all the prefectures. cNorm=matplotlib.colors.Normalize(vmin=0,vmax=shapeRdr1.numRecords) scalarMap=matplotlib.cm.ScalarMappable(norm=cNorm,cmap=cm) prefectures=shapeRdr1.shapes() prefRecords=shapeRdr1.records() for i in range(shapeRdr1.numRecords): if prefRecords[i][9]=='Prefecture': plotPrefecture(shp=prefectures[i],colour=scalarMap.to_rgba(i), lwdth=0.5,bMap=ortnMapJ,axes=ax[0]) # Centred on Europe. ortnMapE=Basemap(projection='ortho',lat_0=latCtr,lon_0=lonCtr,resolution='c', ax=ax[1]) ortnMapE.drawcoastlines(linewidth=0.5) ortnMapE.drawcountries(linewidth=0.25) ortnMapE.drawmeridians(numpy.arange(0,360,30)) ortnMapE.drawparallels(numpy.arange(-90,90,30)) ax[1].set_title(r'${}\ over\ Europe$'.format(shapeRdr0.records()[0][4]), fontsize=titleFontSize) plotPrefecture(shp=shape,colour='gold',lwdth=2,bMap=ortnMapE,axes=ax[1], latOff=dLatJ-latJpn,longOff=dLonJ-lonJpn) fig.show() ' Japan and Kitakyushu overlaid on Europe.' fig,ax=matplotlib.pyplot.subplots(1,1,figsize=(16,8)) mercMapE=Basemap(projection='merc',llcrnrlat=30,urcrnrlat=75,llcrnrlon=-25, urcrnrlon=40,lat_ts=10,ax=ax,resolution='l') mercMapE.drawcoastlines(linewidth=0.5) mercMapE.drawcountries(linewidth=0.25) mercMapE.drawparallels(numpy.arange(mercMapE.latmin,mercMapE.latmax,10.)) mercMapE.drawmeridians(numpy.arange(mercMapE.lonmin,mercMapE.lonmax,15.)) ax.set_title(r'$Europe,\ true\ lat.$',fontsize=titleFontSize) plotPrefecture(shp=shape,colour='gold',lwdth=2,bMap=mercMapE,axes=ax, latOff=0,longOff=dLonJ-lonJpn) # Show annotation at the true latitude. xKIT,yKIT=mercMapE.projtran(130.834730+dLonJ-lonJpn,33.8924837) xTXT,yTXT=mercMapE.projtran(110.834730+dLonJ-lonJpn,45.8924837) ax.scatter([xKIT],[yKIT],s=50,c='crimson') ax.annotate('Here', xy=(xKIT,yKIT),xytext=(xTXT,yTXT),color='crimson', arrowprops=dict(facecolor='crimson', shrink=0.05)) fig.show()
{ "content_hash": "6704ad1ba64763207c1effd94ce0fbb2", "timestamp": "", "source": "github", "line_count": 163, "max_line_length": 91, "avg_line_length": 43.61349693251534, "alnum_prop": 0.7266844844563229, "repo_name": "AleksanderLidtke/XKCD", "id": "0289963af258cded39c2b0dcfaad0d26f59c24b0", "size": "7133", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "JapanSize.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "17635" } ], "symlink_target": "" }
import logging from .base import BaseResource from .map import MapCollection from .layer import LayerCollection class User(BaseResource): def __init__(self, *args): super(User, self).__init__(*args) self.username = None self.maps = MapCollection() self.layers = LayerCollection() def on_get(self, resource): if 'username' in resource: self.username = resource['username'] if 'resources' in resource: rs = resource['resources'] if 'maps' in rs and 'url' in rs['maps']: self.maps.set_resource_url(rs['maps']['url']) if 'layers' in rs and 'url' in rs['layers']: self.layers.set_resource_url(rs['layers']['url'])
{ "content_hash": "90f2228f74332eb4afe04eb9dcbaca14", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 65, "avg_line_length": 32.56521739130435, "alnum_prop": 0.5874499332443258, "repo_name": "rjw57/foldbeam", "id": "27cbd6ea71aecca7e14fc2423354cc1c16871509", "size": "749", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "webui/client/user.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "7278" }, { "name": "CSS", "bytes": "309998" }, { "name": "JavaScript", "bytes": "480923" }, { "name": "Python", "bytes": "286208" }, { "name": "Shell", "bytes": "4783" } ], "symlink_target": "" }