repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
ruipgil/TrackToTrip | tracktotrip/segment.py | Segment.slice | def slice(self, start, end):
""" Creates a copy of the current segment between indexes. If end > start,
points are reverted
Args:
start (int): Start index
end (int): End index
Returns:
:obj:`Segment`
"""
reverse = False
if start > end:
temp = start
start = end
end = temp
reverse = True
seg = self.copy()
seg.points = seg.points[start:end+1]
if reverse:
seg.points = list(reversed(seg.points))
return seg | python | def slice(self, start, end):
""" Creates a copy of the current segment between indexes. If end > start,
points are reverted
Args:
start (int): Start index
end (int): End index
Returns:
:obj:`Segment`
"""
reverse = False
if start > end:
temp = start
start = end
end = temp
reverse = True
seg = self.copy()
seg.points = seg.points[start:end+1]
if reverse:
seg.points = list(reversed(seg.points))
return seg | Creates a copy of the current segment between indexes. If end > start,
points are reverted
Args:
start (int): Start index
end (int): End index
Returns:
:obj:`Segment` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L257-L280 |
ruipgil/TrackToTrip | tracktotrip/segment.py | Segment.to_json | def to_json(self):
""" Converts segment to a JSON serializable format
Returns:
:obj:`dict`
"""
points = [point.to_json() for point in self.points]
return {
'points': points,
'transportationModes': self.transportation_modes,
'locationFrom': self.location_from.to_json() if self.location_from != None else None,
'locationTo': self.location_to.to_json() if self.location_to != None else None
} | python | def to_json(self):
""" Converts segment to a JSON serializable format
Returns:
:obj:`dict`
"""
points = [point.to_json() for point in self.points]
return {
'points': points,
'transportationModes': self.transportation_modes,
'locationFrom': self.location_from.to_json() if self.location_from != None else None,
'locationTo': self.location_to.to_json() if self.location_to != None else None
} | Converts segment to a JSON serializable format
Returns:
:obj:`dict` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L290-L302 |
ruipgil/TrackToTrip | tracktotrip/segment.py | Segment.from_gpx | def from_gpx(gpx_segment):
""" Creates a segment from a GPX format.
No preprocessing is done.
Arguments:
gpx_segment (:obj:`gpxpy.GPXTrackSegment`)
Return:
:obj:`Segment`
"""
points = []
for point in gpx_segment.points:
points.append(Point.from_gpx(point))
return Segment(points) | python | def from_gpx(gpx_segment):
""" Creates a segment from a GPX format.
No preprocessing is done.
Arguments:
gpx_segment (:obj:`gpxpy.GPXTrackSegment`)
Return:
:obj:`Segment`
"""
points = []
for point in gpx_segment.points:
points.append(Point.from_gpx(point))
return Segment(points) | Creates a segment from a GPX format.
No preprocessing is done.
Arguments:
gpx_segment (:obj:`gpxpy.GPXTrackSegment`)
Return:
:obj:`Segment` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L305-L318 |
ruipgil/TrackToTrip | tracktotrip/segment.py | Segment.from_json | def from_json(json):
""" Creates a segment from a JSON file.
No preprocessing is done.
Arguments:
json (:obj:`dict`): JSON representation. See to_json.
Return:
:obj:`Segment`
"""
points = []
for point in json['points']:
points.append(Point.from_json(point))
return Segment(points) | python | def from_json(json):
""" Creates a segment from a JSON file.
No preprocessing is done.
Arguments:
json (:obj:`dict`): JSON representation. See to_json.
Return:
:obj:`Segment`
"""
points = []
for point in json['points']:
points.append(Point.from_json(point))
return Segment(points) | Creates a segment from a JSON file.
No preprocessing is done.
Arguments:
json (:obj:`dict`): JSON representation. See to_json.
Return:
:obj:`Segment` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L321-L334 |
ruipgil/TrackToTrip | tracktotrip/smooth.py | extrapolate_points | def extrapolate_points(points, n_points):
""" Extrapolate a number of points, based on the first ones
Args:
points (:obj:`list` of :obj:`Point`)
n_points (int): number of points to extrapolate
Returns:
:obj:`list` of :obj:`Point`
"""
points = points[:n_points]
lat = []
lon = []
last = None
for point in points:
if last is not None:
lat.append(last.lat-point.lat)
lon.append(last.lon-point.lon)
last = point
dts = np.mean([p.dt for p in points])
lons = np.mean(lon)
lats = np.mean(lat)
gen_sample = []
last = points[0]
for _ in range(n_points):
point = Point(last.lat+lats, last.lon+lons, None)
point.dt = dts
# point.compute_metrics(last)
gen_sample.append(point)
last = point
return gen_sample | python | def extrapolate_points(points, n_points):
""" Extrapolate a number of points, based on the first ones
Args:
points (:obj:`list` of :obj:`Point`)
n_points (int): number of points to extrapolate
Returns:
:obj:`list` of :obj:`Point`
"""
points = points[:n_points]
lat = []
lon = []
last = None
for point in points:
if last is not None:
lat.append(last.lat-point.lat)
lon.append(last.lon-point.lon)
last = point
dts = np.mean([p.dt for p in points])
lons = np.mean(lon)
lats = np.mean(lat)
gen_sample = []
last = points[0]
for _ in range(n_points):
point = Point(last.lat+lats, last.lon+lons, None)
point.dt = dts
# point.compute_metrics(last)
gen_sample.append(point)
last = point
return gen_sample | Extrapolate a number of points, based on the first ones
Args:
points (:obj:`list` of :obj:`Point`)
n_points (int): number of points to extrapolate
Returns:
:obj:`list` of :obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L13-L45 |
ruipgil/TrackToTrip | tracktotrip/smooth.py | with_extrapolation | def with_extrapolation(points, noise, n_points):
""" Smooths a set of points, but it extrapolates some points at the beginning
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point`
"""
n_points = 10
return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:] | python | def with_extrapolation(points, noise, n_points):
""" Smooths a set of points, but it extrapolates some points at the beginning
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point`
"""
n_points = 10
return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:] | Smooths a set of points, but it extrapolates some points at the beginning
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L47-L58 |
ruipgil/TrackToTrip | tracktotrip/smooth.py | with_inverse | def with_inverse(points, noise):
""" Smooths a set of points
It smooths them twice, once in given order, another one in the reverse order.
The the first half of the results will be taken from the reverse order and
the second half from the normal order.
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point`
"""
# noise_sample = 20
n_points = len(points)/2
break_point = n_points
points_part = copy.deepcopy(points)
points_part = list(reversed(points_part))
part = kalman_filter(points_part, noise)
total = kalman_filter(points, noise)
result = list(reversed(part))[:break_point] + total[break_point:]
result[break_point] = point_mean(part[break_point], total[break_point])
return result | python | def with_inverse(points, noise):
""" Smooths a set of points
It smooths them twice, once in given order, another one in the reverse order.
The the first half of the results will be taken from the reverse order and
the second half from the normal order.
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point`
"""
# noise_sample = 20
n_points = len(points)/2
break_point = n_points
points_part = copy.deepcopy(points)
points_part = list(reversed(points_part))
part = kalman_filter(points_part, noise)
total = kalman_filter(points, noise)
result = list(reversed(part))[:break_point] + total[break_point:]
result[break_point] = point_mean(part[break_point], total[break_point])
return result | Smooths a set of points
It smooths them twice, once in given order, another one in the reverse order.
The the first half of the results will be taken from the reverse order and
the second half from the normal order.
Args:
points (:obj:`list` of :obj:`Point`)
noise (float): Expected noise, the higher it is the more the path will
be smoothed.
Returns:
:obj:`list` of :obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L76-L102 |
ruipgil/TrackToTrip | tracktotrip/spatiotemporal_segmentation.py | temporal_segmentation | def temporal_segmentation(segments, min_time):
""" Segments based on time distant points
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points
min_time (int): minimum required time for segmentation
"""
final_segments = []
for segment in segments:
final_segments.append([])
for point in segment:
if point.dt > min_time:
final_segments.append([])
final_segments[-1].append(point)
return final_segments | python | def temporal_segmentation(segments, min_time):
""" Segments based on time distant points
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points
min_time (int): minimum required time for segmentation
"""
final_segments = []
for segment in segments:
final_segments.append([])
for point in segment:
if point.dt > min_time:
final_segments.append([])
final_segments[-1].append(point)
return final_segments | Segments based on time distant points
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points
min_time (int): minimum required time for segmentation | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L8-L23 |
ruipgil/TrackToTrip | tracktotrip/spatiotemporal_segmentation.py | correct_segmentation | def correct_segmentation(segments, clusters, min_time):
""" Corrects the predicted segmentation
This process prevents over segmentation
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`):
segments to correct
min_time (int): minimum required time for segmentation
"""
# segments = [points for points in segments if len(points) > 1]
result_segments = []
prev_segment = None
for i, segment in enumerate(segments):
if len(segment) >= 1:
continue
cluster = clusters[i]
if prev_segment is None:
prev_segment = segment
else:
cluster_dt = 0
if len(cluster) > 0:
cluster_dt = abs(cluster[0].time_difference(cluster[-1]))
if cluster_dt <= min_time:
prev_segment.extend(segment)
else:
prev_segment.append(segment[0])
result_segments.append(prev_segment)
prev_segment = segment
if prev_segment is not None:
result_segments.append(prev_segment)
return result_segments | python | def correct_segmentation(segments, clusters, min_time):
""" Corrects the predicted segmentation
This process prevents over segmentation
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`):
segments to correct
min_time (int): minimum required time for segmentation
"""
# segments = [points for points in segments if len(points) > 1]
result_segments = []
prev_segment = None
for i, segment in enumerate(segments):
if len(segment) >= 1:
continue
cluster = clusters[i]
if prev_segment is None:
prev_segment = segment
else:
cluster_dt = 0
if len(cluster) > 0:
cluster_dt = abs(cluster[0].time_difference(cluster[-1]))
if cluster_dt <= min_time:
prev_segment.extend(segment)
else:
prev_segment.append(segment[0])
result_segments.append(prev_segment)
prev_segment = segment
if prev_segment is not None:
result_segments.append(prev_segment)
return result_segments | Corrects the predicted segmentation
This process prevents over segmentation
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`):
segments to correct
min_time (int): minimum required time for segmentation | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L25-L59 |
ruipgil/TrackToTrip | tracktotrip/spatiotemporal_segmentation.py | spatiotemporal_segmentation | def spatiotemporal_segmentation(points, eps, min_time):
""" Splits a set of points into multiple sets of points based on
spatio-temporal stays
DBSCAN is used to predict possible segmentations,
furthermore we check to see if each clusters is big enough in
time (>=min_time). If that's the case than the segmentation is
considered valid.
When segmenting, the last point of the ith segment will be the same
of the (i-1)th segment.
Segments are identified through clusters.
The last point of a clusters, that comes after a sub-segment A, will
be present on the sub-segment A.
Args:
points (:obj:`list` of :obj:`Point`): segment's points
eps (float): Epsilon to feed to the DBSCAN algorithm.
Maximum distance between two samples, to be considered in
the same cluster.
min_time (float): Minimum time of a stay
Returns:
:obj:`list` of :obj:`list` of :obj:`Point`: Initial set of
points in different segments
"""
# min time / sample rate
dt_average = np.median([point.dt for point in points])
min_samples = min_time / dt_average
data = [point.gen3arr() for point in points]
data = StandardScaler().fit_transform(data)
print 'min_samples: %f' % min_samples
db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data)
labels = db_cluster.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
segments = [[] for _ in range(n_clusters_+1)]
clusters = [[] for _ in range(n_clusters_+1)]
current_segment = 0
print 'clusters'
print n_clusters_
if n_clusters_ == 1:
segments = temporal_segmentation([points], min_time)
return [segment for segment in segments if len(segment) > 1]
# split segments identified with dbscan
for i, label in enumerate(labels):
if label != -1 and label + 1 != current_segment:
current_segment = label + 1
point = points[i]
if label == -1:
segments[current_segment].append(point)
else:
clusters[label + 1].append(point)
if len(segments) == 0 or sum([len(s) for s in segments]):
segments = [points]
segments = temporal_segmentation(segments, min_time)
# segments = temporal_segmentation(correct_segmentation(segments, clusters, min_time), min_time)
return [segment for segment in segments if len(segment) > 1] | python | def spatiotemporal_segmentation(points, eps, min_time):
""" Splits a set of points into multiple sets of points based on
spatio-temporal stays
DBSCAN is used to predict possible segmentations,
furthermore we check to see if each clusters is big enough in
time (>=min_time). If that's the case than the segmentation is
considered valid.
When segmenting, the last point of the ith segment will be the same
of the (i-1)th segment.
Segments are identified through clusters.
The last point of a clusters, that comes after a sub-segment A, will
be present on the sub-segment A.
Args:
points (:obj:`list` of :obj:`Point`): segment's points
eps (float): Epsilon to feed to the DBSCAN algorithm.
Maximum distance between two samples, to be considered in
the same cluster.
min_time (float): Minimum time of a stay
Returns:
:obj:`list` of :obj:`list` of :obj:`Point`: Initial set of
points in different segments
"""
# min time / sample rate
dt_average = np.median([point.dt for point in points])
min_samples = min_time / dt_average
data = [point.gen3arr() for point in points]
data = StandardScaler().fit_transform(data)
print 'min_samples: %f' % min_samples
db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data)
labels = db_cluster.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
segments = [[] for _ in range(n_clusters_+1)]
clusters = [[] for _ in range(n_clusters_+1)]
current_segment = 0
print 'clusters'
print n_clusters_
if n_clusters_ == 1:
segments = temporal_segmentation([points], min_time)
return [segment for segment in segments if len(segment) > 1]
# split segments identified with dbscan
for i, label in enumerate(labels):
if label != -1 and label + 1 != current_segment:
current_segment = label + 1
point = points[i]
if label == -1:
segments[current_segment].append(point)
else:
clusters[label + 1].append(point)
if len(segments) == 0 or sum([len(s) for s in segments]):
segments = [points]
segments = temporal_segmentation(segments, min_time)
# segments = temporal_segmentation(correct_segmentation(segments, clusters, min_time), min_time)
return [segment for segment in segments if len(segment) > 1] | Splits a set of points into multiple sets of points based on
spatio-temporal stays
DBSCAN is used to predict possible segmentations,
furthermore we check to see if each clusters is big enough in
time (>=min_time). If that's the case than the segmentation is
considered valid.
When segmenting, the last point of the ith segment will be the same
of the (i-1)th segment.
Segments are identified through clusters.
The last point of a clusters, that comes after a sub-segment A, will
be present on the sub-segment A.
Args:
points (:obj:`list` of :obj:`Point`): segment's points
eps (float): Epsilon to feed to the DBSCAN algorithm.
Maximum distance between two samples, to be considered in
the same cluster.
min_time (float): Minimum time of a stay
Returns:
:obj:`list` of :obj:`list` of :obj:`Point`: Initial set of
points in different segments | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L61-L124 |
ruipgil/TrackToTrip | tracktotrip/kalman.py | kalman_filter | def kalman_filter(points, noise):
""" Smooths points with kalman filter
See https://github.com/open-city/ikalman
Args:
points (:obj:`list` of :obj:`Point`): points to smooth
noise (float): expected noise
"""
kalman = ikalman.filter(noise)
for point in points:
kalman.update_velocity2d(point.lat, point.lon, point.dt)
(lat, lon) = kalman.get_lat_long()
point.lat = lat
point.lon = lon
return points | python | def kalman_filter(points, noise):
""" Smooths points with kalman filter
See https://github.com/open-city/ikalman
Args:
points (:obj:`list` of :obj:`Point`): points to smooth
noise (float): expected noise
"""
kalman = ikalman.filter(noise)
for point in points:
kalman.update_velocity2d(point.lat, point.lon, point.dt)
(lat, lon) = kalman.get_lat_long()
point.lat = lat
point.lon = lon
return points | Smooths points with kalman filter
See https://github.com/open-city/ikalman
Args:
points (:obj:`list` of :obj:`Point`): points to smooth
noise (float): expected noise | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/kalman.py#L7-L22 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | learn_transportation_mode | def learn_transportation_mode(track, clf):
""" Inserts transportation modes of a track into a classifier
Args:
track (:obj:`Track`)
clf (:obj:`Classifier`)
"""
for segment in track.segments:
tmodes = segment.transportation_modes
points = segment.points
features = []
labels = []
for tmode in tmodes:
points_part = points[tmode['from']:tmode['to']]
if len(points_part) > 0:
features.append(extract_features_2(points_part))
labels.append(tmode['label'])
clf.learn(features, labels) | python | def learn_transportation_mode(track, clf):
""" Inserts transportation modes of a track into a classifier
Args:
track (:obj:`Track`)
clf (:obj:`Classifier`)
"""
for segment in track.segments:
tmodes = segment.transportation_modes
points = segment.points
features = []
labels = []
for tmode in tmodes:
points_part = points[tmode['from']:tmode['to']]
if len(points_part) > 0:
features.append(extract_features_2(points_part))
labels.append(tmode['label'])
clf.learn(features, labels) | Inserts transportation modes of a track into a classifier
Args:
track (:obj:`Track`)
clf (:obj:`Classifier`) | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L57-L76 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | extract_features | def extract_features(points, n_tops):
""" Feature extractor
Args:
points (:obj:`list` of :obj:`Point`)
n_tops (int): Number of top speeds to extract
Returns:
:obj:`list` of float: with length (n_tops*2). Where the ith even element
is the ith top speed and the i+1 element is the percentage of time
spent on that speed
"""
max_bin = -1
for point in points:
max_bin = max(max_bin, point.vel)
max_bin = int(round(max_bin)) + 1
# inits histogram
histogram = [0] * max_bin
time = 0
# fills histogram
for point in points:
bin_index = int(round(point.vel))
histogram[bin_index] += point.dt
time += point.dt
result = []
if time == 0:
return result
for _ in range(n_tops):
max_index = np.argmax(histogram)
value = histogram[max_index] / time
result.extend([max_index, value])
histogram[max_index] = -1
return result | python | def extract_features(points, n_tops):
""" Feature extractor
Args:
points (:obj:`list` of :obj:`Point`)
n_tops (int): Number of top speeds to extract
Returns:
:obj:`list` of float: with length (n_tops*2). Where the ith even element
is the ith top speed and the i+1 element is the percentage of time
spent on that speed
"""
max_bin = -1
for point in points:
max_bin = max(max_bin, point.vel)
max_bin = int(round(max_bin)) + 1
# inits histogram
histogram = [0] * max_bin
time = 0
# fills histogram
for point in points:
bin_index = int(round(point.vel))
histogram[bin_index] += point.dt
time += point.dt
result = []
if time == 0:
return result
for _ in range(n_tops):
max_index = np.argmax(histogram)
value = histogram[max_index] / time
result.extend([max_index, value])
histogram[max_index] = -1
return result | Feature extractor
Args:
points (:obj:`list` of :obj:`Point`)
n_tops (int): Number of top speeds to extract
Returns:
:obj:`list` of float: with length (n_tops*2). Where the ith even element
is the ith top speed and the i+1 element is the percentage of time
spent on that speed | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L78-L114 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | speed_difference | def speed_difference(points):
""" Computes the speed difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = [0]
for before, after in pairwise(points):
data.append(before.vel - after.vel)
return data | python | def speed_difference(points):
""" Computes the speed difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = [0]
for before, after in pairwise(points):
data.append(before.vel - after.vel)
return data | Computes the speed difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L116-L127 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | acc_difference | def acc_difference(points):
""" Computes the accelaration difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = [0]
for before, after in pairwise(points):
data.append(before.acc - after.acc)
return data | python | def acc_difference(points):
""" Computes the accelaration difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = [0]
for before, after in pairwise(points):
data.append(before.acc - after.acc)
return data | Computes the accelaration difference between each adjacent point
Args:
points (:obj:`Point`)
Returns:
:obj:`list` of int: Indexes of changepoints | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L129-L140 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | detect_changepoints | def detect_changepoints(points, min_time, data_processor=acc_difference):
""" Detects changepoints on points that have at least a specific duration
Args:
points (:obj:`Point`)
min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have
data_processor (function): Function to extract data to feed to the changepoint algorithm.
Defaults to `speed_difference`
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = data_processor(points)
changepoints = pelt(normal_mean(data, np.std(data)), len(data))
changepoints.append(len(points) - 1)
result = []
for start, end in pairwise(changepoints):
time_diff = points[end].time_difference(points[start])
if time_diff > min_time:
result.append(start)
# adds the first point
result.append(0)
# adds the last changepoint detected
result.append(len(points) - 1)
return sorted(list(set(result))) | python | def detect_changepoints(points, min_time, data_processor=acc_difference):
""" Detects changepoints on points that have at least a specific duration
Args:
points (:obj:`Point`)
min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have
data_processor (function): Function to extract data to feed to the changepoint algorithm.
Defaults to `speed_difference`
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = data_processor(points)
changepoints = pelt(normal_mean(data, np.std(data)), len(data))
changepoints.append(len(points) - 1)
result = []
for start, end in pairwise(changepoints):
time_diff = points[end].time_difference(points[start])
if time_diff > min_time:
result.append(start)
# adds the first point
result.append(0)
# adds the last changepoint detected
result.append(len(points) - 1)
return sorted(list(set(result))) | Detects changepoints on points that have at least a specific duration
Args:
points (:obj:`Point`)
min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have
data_processor (function): Function to extract data to feed to the changepoint algorithm.
Defaults to `speed_difference`
Returns:
:obj:`list` of int: Indexes of changepoints | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L142-L167 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | group_modes | def group_modes(modes):
""" Groups consecutive transportation modes with same label, into one
Args:
modes (:obj:`list` of :obj:`dict`)
Returns:
:obj:`list` of :obj:`dict`
"""
if len(modes) > 0:
previous = modes[0]
grouped = []
for changep in modes[1:]:
if changep['label'] != previous['label']:
previous['to'] = changep['from']
grouped.append(previous)
previous = changep
previous['to'] = modes[-1]['to']
grouped.append(previous)
return grouped
else:
return modes | python | def group_modes(modes):
""" Groups consecutive transportation modes with same label, into one
Args:
modes (:obj:`list` of :obj:`dict`)
Returns:
:obj:`list` of :obj:`dict`
"""
if len(modes) > 0:
previous = modes[0]
grouped = []
for changep in modes[1:]:
if changep['label'] != previous['label']:
previous['to'] = changep['from']
grouped.append(previous)
previous = changep
previous['to'] = modes[-1]['to']
grouped.append(previous)
return grouped
else:
return modes | Groups consecutive transportation modes with same label, into one
Args:
modes (:obj:`list` of :obj:`dict`)
Returns:
:obj:`list` of :obj:`dict` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L169-L191 |
ruipgil/TrackToTrip | tracktotrip/transportation_mode.py | speed_clustering | def speed_clustering(clf, points, min_time):
""" Transportation mode infering, based on changepoint segmentation
Args:
clf (:obj:`Classifier`): Classifier to use
points (:obj:`list` of :obj:`Point`)
min_time (float): Min time, in seconds, before do another segmentation
Returns:
:obj:`list` of :obj:`dict`
"""
# get changepoint indexes
changepoints = detect_changepoints(points, min_time)
# info for each changepoint
cp_info = []
for i in range(0, len(changepoints) - 1):
from_index = changepoints[i]
to_index = changepoints[i+1]
info = classify(clf, points[from_index:to_index], min_time, from_index, to_index)
if info:
cp_info.append(info)
return group_modes(cp_info) | python | def speed_clustering(clf, points, min_time):
""" Transportation mode infering, based on changepoint segmentation
Args:
clf (:obj:`Classifier`): Classifier to use
points (:obj:`list` of :obj:`Point`)
min_time (float): Min time, in seconds, before do another segmentation
Returns:
:obj:`list` of :obj:`dict`
"""
# get changepoint indexes
changepoints = detect_changepoints(points, min_time)
# info for each changepoint
cp_info = []
for i in range(0, len(changepoints) - 1):
from_index = changepoints[i]
to_index = changepoints[i+1]
info = classify(clf, points[from_index:to_index], min_time, from_index, to_index)
if info:
cp_info.append(info)
return group_modes(cp_info) | Transportation mode infering, based on changepoint segmentation
Args:
clf (:obj:`Classifier`): Classifier to use
points (:obj:`list` of :obj:`Point`)
min_time (float): Min time, in seconds, before do another segmentation
Returns:
:obj:`list` of :obj:`dict` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L208-L231 |
ruipgil/TrackToTrip | tracktotrip/compression.py | distance | def distance(p_a, p_b):
""" Euclidean distance, between two points
Args:
p_a (:obj:`Point`)
p_b (:obj:`Point`)
Returns:
float: distance, in degrees
"""
return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2) | python | def distance(p_a, p_b):
""" Euclidean distance, between two points
Args:
p_a (:obj:`Point`)
p_b (:obj:`Point`)
Returns:
float: distance, in degrees
"""
return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2) | Euclidean distance, between two points
Args:
p_a (:obj:`Point`)
p_b (:obj:`Point`)
Returns:
float: distance, in degrees | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L40-L49 |
ruipgil/TrackToTrip | tracktotrip/compression.py | point_line_distance | def point_line_distance(point, start, end):
""" Distance from a point to a line, formed by two points
Args:
point (:obj:`Point`)
start (:obj:`Point`): line point
end (:obj:`Point`): line point
Returns:
float: distance to line, in degrees
"""
if start == end:
return distance(point, start)
else:
un_dist = abs(
(end.lat-start.lat)*(start.lon-point.lon) - (start.lat-point.lat)*(end.lon-start.lon)
)
n_dist = sqrt(
(end.lat-start.lat)**2 + (end.lon-start.lon)**2
)
if n_dist == 0:
return 0
else:
return un_dist / n_dist | python | def point_line_distance(point, start, end):
""" Distance from a point to a line, formed by two points
Args:
point (:obj:`Point`)
start (:obj:`Point`): line point
end (:obj:`Point`): line point
Returns:
float: distance to line, in degrees
"""
if start == end:
return distance(point, start)
else:
un_dist = abs(
(end.lat-start.lat)*(start.lon-point.lon) - (start.lat-point.lat)*(end.lon-start.lon)
)
n_dist = sqrt(
(end.lat-start.lat)**2 + (end.lon-start.lon)**2
)
if n_dist == 0:
return 0
else:
return un_dist / n_dist | Distance from a point to a line, formed by two points
Args:
point (:obj:`Point`)
start (:obj:`Point`): line point
end (:obj:`Point`): line point
Returns:
float: distance to line, in degrees | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L51-L73 |
ruipgil/TrackToTrip | tracktotrip/compression.py | drp | def drp(points, epsilon):
""" Douglas ramer peucker
Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
Args:
points (:obj:`list` of :obj:`Point`)
epsilon (float): drp threshold
Returns:
:obj:`list` of :obj:`Point`
"""
dmax = 0.0
index = 0
for i in range(1, len(points)-1):
dist = point_line_distance(points[i], points[0], points[-1])
if dist > dmax:
index = i
dmax = dist
if dmax > epsilon:
return drp(points[:index+1], epsilon)[:-1] + drp(points[index:], epsilon)
else:
return [points[0], points[-1]] | python | def drp(points, epsilon):
""" Douglas ramer peucker
Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
Args:
points (:obj:`list` of :obj:`Point`)
epsilon (float): drp threshold
Returns:
:obj:`list` of :obj:`Point`
"""
dmax = 0.0
index = 0
for i in range(1, len(points)-1):
dist = point_line_distance(points[i], points[0], points[-1])
if dist > dmax:
index = i
dmax = dist
if dmax > epsilon:
return drp(points[:index+1], epsilon)[:-1] + drp(points[index:], epsilon)
else:
return [points[0], points[-1]] | Douglas ramer peucker
Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
Args:
points (:obj:`list` of :obj:`Point`)
epsilon (float): drp threshold
Returns:
:obj:`list` of :obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L75-L98 |
ruipgil/TrackToTrip | tracktotrip/compression.py | td_sp | def td_sp(points, speed_threshold):
""" Top-Down Speed-Based Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
speed_threshold (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory
"""
if len(points) <= 2:
return points
else:
max_speed_threshold = 0
found_index = 0
for i in range(1, len(points)-1):
dt1 = time_dist(points[i], points[i-1])
if dt1 == 0:
dt1 = 0.000000001
vim = loc_dist(points[i], points[i-1]) / dt1
dt2 = time_dist(points[i+1], points[i])
if dt2 == 0:
dt2 = 0.000000001
vi_ = loc_dist(points[i+1], points[i]) / dt2
if abs(vi_ - vim) > max_speed_threshold:
max_speed_threshold = abs(vi_ - vim)
found_index = i
if max_speed_threshold > speed_threshold:
one = td_sp(points[:found_index], speed_threshold)
two = td_sp(points[found_index:], speed_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]] | python | def td_sp(points, speed_threshold):
""" Top-Down Speed-Based Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
speed_threshold (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory
"""
if len(points) <= 2:
return points
else:
max_speed_threshold = 0
found_index = 0
for i in range(1, len(points)-1):
dt1 = time_dist(points[i], points[i-1])
if dt1 == 0:
dt1 = 0.000000001
vim = loc_dist(points[i], points[i-1]) / dt1
dt2 = time_dist(points[i+1], points[i])
if dt2 == 0:
dt2 = 0.000000001
vi_ = loc_dist(points[i+1], points[i]) / dt2
if abs(vi_ - vim) > max_speed_threshold:
max_speed_threshold = abs(vi_ - vim)
found_index = i
if max_speed_threshold > speed_threshold:
one = td_sp(points[:found_index], speed_threshold)
two = td_sp(points[found_index:], speed_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]] | Top-Down Speed-Based Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
speed_threshold (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L100-L134 |
ruipgil/TrackToTrip | tracktotrip/compression.py | td_tr | def td_tr(points, dist_threshold):
""" Top-Down Time-Ratio Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
dist_threshold (float): max distance error, in meters
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory
"""
if len(points) <= 2:
return points
else:
max_dist_threshold = 0
found_index = 0
delta_e = time_dist(points[-1], points[0]) * I_3600
d_lat = points[-1].lat - points[0].lat
d_lon = points[-1].lon - points[0].lon
for i in range(1, len(points)-1):
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = delta_i / delta_e
point = Point(
points[0].lat + d_lat * di_de,
points[0].lon + d_lon * di_de,
None
)
dist = loc_dist(points[i], point)
if dist > max_dist_threshold:
max_dist_threshold = dist
found_index = i
if max_dist_threshold > dist_threshold:
one = td_tr(points[:found_index], dist_threshold)
two = td_tr(points[found_index:], dist_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]] | python | def td_tr(points, dist_threshold):
""" Top-Down Time-Ratio Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
dist_threshold (float): max distance error, in meters
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory
"""
if len(points) <= 2:
return points
else:
max_dist_threshold = 0
found_index = 0
delta_e = time_dist(points[-1], points[0]) * I_3600
d_lat = points[-1].lat - points[0].lat
d_lon = points[-1].lon - points[0].lon
for i in range(1, len(points)-1):
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = delta_i / delta_e
point = Point(
points[0].lat + d_lat * di_de,
points[0].lon + d_lon * di_de,
None
)
dist = loc_dist(points[i], point)
if dist > max_dist_threshold:
max_dist_threshold = dist
found_index = i
if max_dist_threshold > dist_threshold:
one = td_tr(points[:found_index], dist_threshold)
two = td_tr(points[found_index:], dist_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]] | Top-Down Time-Ratio Trajectory Compression Algorithm
Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf
Args:
points (:obj:`list` of :obj:`Point`): trajectory or part of it
dist_threshold (float): max distance error, in meters
Returns:
:obj:`list` of :obj:`Point`, compressed trajectory | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L136-L177 |
ruipgil/TrackToTrip | tracktotrip/compression.py | spt | def spt(points, max_dist_error, max_speed_error):
""" A combination of both `td_sp` and `td_tr`
Detailed in,
Spatiotemporal Compression Techniques for Moving Point Objects,
Nirvana Meratnia and Rolf A. de By, 2004,
in Advances in Database Technology - EDBT 2004: 9th
International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004
Args:
points (:obj:`list` of :obj:`Point`)
max_dist_error (float): max distance error, in meters
max_speed_error (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point`
"""
if len(points) <= 2:
return points
else:
is_error = False
e = 1
while e < len(points) and not is_error:
i = 1
while i < e and not is_error:
delta_e = time_dist(points[e], points[0]) * I_3600
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = 0
if delta_e != 0:
di_de = delta_i / delta_e
d_lat = points[e].lat - points[0].lat
d_lon = points[e].lon - points[0].lon
point = Point(
points[0].lat + d_lat * di_de,
points[0].lon + d_lon * di_de,
None
)
dt1 = time_dist(points[i], points[i-1])
if dt1 == 0:
dt1 = 0.000000001
dt2 = time_dist(points[i+1], points[i])
if dt2 == 0:
dt2 = 0.000000001
v_i_1 = loc_dist(points[i], points[i-1]) / dt1
v_i = loc_dist(points[i+1], points[i]) / dt2
if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error:
is_error = True
else:
i = i + 1
if is_error:
return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error)
e = e + 1
if not is_error:
return [points[0], points[len(points)-1]] | python | def spt(points, max_dist_error, max_speed_error):
""" A combination of both `td_sp` and `td_tr`
Detailed in,
Spatiotemporal Compression Techniques for Moving Point Objects,
Nirvana Meratnia and Rolf A. de By, 2004,
in Advances in Database Technology - EDBT 2004: 9th
International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004
Args:
points (:obj:`list` of :obj:`Point`)
max_dist_error (float): max distance error, in meters
max_speed_error (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point`
"""
if len(points) <= 2:
return points
else:
is_error = False
e = 1
while e < len(points) and not is_error:
i = 1
while i < e and not is_error:
delta_e = time_dist(points[e], points[0]) * I_3600
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = 0
if delta_e != 0:
di_de = delta_i / delta_e
d_lat = points[e].lat - points[0].lat
d_lon = points[e].lon - points[0].lon
point = Point(
points[0].lat + d_lat * di_de,
points[0].lon + d_lon * di_de,
None
)
dt1 = time_dist(points[i], points[i-1])
if dt1 == 0:
dt1 = 0.000000001
dt2 = time_dist(points[i+1], points[i])
if dt2 == 0:
dt2 = 0.000000001
v_i_1 = loc_dist(points[i], points[i-1]) / dt1
v_i = loc_dist(points[i+1], points[i]) / dt2
if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error:
is_error = True
else:
i = i + 1
if is_error:
return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error)
e = e + 1
if not is_error:
return [points[0], points[len(points)-1]] | A combination of both `td_sp` and `td_tr`
Detailed in,
Spatiotemporal Compression Techniques for Moving Point Objects,
Nirvana Meratnia and Rolf A. de By, 2004,
in Advances in Database Technology - EDBT 2004: 9th
International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004
Args:
points (:obj:`list` of :obj:`Point`)
max_dist_error (float): max distance error, in meters
max_speed_error (float): max speed error, in km/h
Returns:
:obj:`list` of :obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L179-L236 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.generate_name | def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT):
""" Generates a name for the track
The name is generated based on the date of the first point of the
track, or in case it doesn't exist, "EmptyTrack"
Args:
name_format (str, optional): Name formar to give to the track, based on
its start time. Defaults to DEFAULT_FILE_NAME_FORMAT
Returns:
str
"""
if len(self.segments) > 0:
return self.segments[0].points[0].time.strftime(name_format) + ".gpx"
else:
return "EmptyTrack" | python | def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT):
""" Generates a name for the track
The name is generated based on the date of the first point of the
track, or in case it doesn't exist, "EmptyTrack"
Args:
name_format (str, optional): Name formar to give to the track, based on
its start time. Defaults to DEFAULT_FILE_NAME_FORMAT
Returns:
str
"""
if len(self.segments) > 0:
return self.segments[0].points[0].time.strftime(name_format) + ".gpx"
else:
return "EmptyTrack" | Generates a name for the track
The name is generated based on the date of the first point of the
track, or in case it doesn't exist, "EmptyTrack"
Args:
name_format (str, optional): Name formar to give to the track, based on
its start time. Defaults to DEFAULT_FILE_NAME_FORMAT
Returns:
str | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L44-L59 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.smooth | def smooth(self, strategy, noise):
""" In-place smoothing of segments
Returns:
:obj:`Track`: self
"""
print noise
for segment in self.segments:
segment.smooth(noise, strategy)
return self | python | def smooth(self, strategy, noise):
""" In-place smoothing of segments
Returns:
:obj:`Track`: self
"""
print noise
for segment in self.segments:
segment.smooth(noise, strategy)
return self | In-place smoothing of segments
Returns:
:obj:`Track`: self | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L71-L80 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.segment | def segment(self, eps, min_time):
"""In-place segmentation of segments
Spatio-temporal segmentation of each segment
The number of segments may increse after this step
Returns:
This track
"""
new_segments = []
for segment in self.segments:
segmented = segment.segment(eps, min_time)
for seg in segmented:
new_segments.append(Segment(seg))
self.segments = new_segments
return self | python | def segment(self, eps, min_time):
"""In-place segmentation of segments
Spatio-temporal segmentation of each segment
The number of segments may increse after this step
Returns:
This track
"""
new_segments = []
for segment in self.segments:
segmented = segment.segment(eps, min_time)
for seg in segmented:
new_segments.append(Segment(seg))
self.segments = new_segments
return self | In-place segmentation of segments
Spatio-temporal segmentation of each segment
The number of segments may increse after this step
Returns:
This track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L82-L97 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.simplify | def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False):
""" In-place simplification of segments
Args:
max_dist_error (float): Min distance error, in meters
max_speed_error (float): Min speed error, in km/h
topology_only: Boolean, optional. True to keep
the topology, neglecting velocity and time
accuracy (use common Douglas-Ramen-Peucker).
False (default) to simplify segments keeping
the velocity between points.
Returns:
This track
"""
for segment in self.segments:
segment.simplify(eps, max_dist_error, max_speed_error, topology_only)
return self | python | def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False):
""" In-place simplification of segments
Args:
max_dist_error (float): Min distance error, in meters
max_speed_error (float): Min speed error, in km/h
topology_only: Boolean, optional. True to keep
the topology, neglecting velocity and time
accuracy (use common Douglas-Ramen-Peucker).
False (default) to simplify segments keeping
the velocity between points.
Returns:
This track
"""
for segment in self.segments:
segment.simplify(eps, max_dist_error, max_speed_error, topology_only)
return self | In-place simplification of segments
Args:
max_dist_error (float): Min distance error, in meters
max_speed_error (float): Min speed error, in km/h
topology_only: Boolean, optional. True to keep
the topology, neglecting velocity and time
accuracy (use common Douglas-Ramen-Peucker).
False (default) to simplify segments keeping
the velocity between points.
Returns:
This track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L99-L115 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.infer_transportation_mode | def infer_transportation_mode(self, clf, min_time):
"""In-place transportation mode inferring of segments
Returns:
This track
"""
for segment in self.segments:
segment.infer_transportation_mode(clf, min_time)
return self | python | def infer_transportation_mode(self, clf, min_time):
"""In-place transportation mode inferring of segments
Returns:
This track
"""
for segment in self.segments:
segment.infer_transportation_mode(clf, min_time)
return self | In-place transportation mode inferring of segments
Returns:
This track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L117-L125 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.to_trip | def to_trip(
self,
smooth,
smooth_strategy,
smooth_noise,
seg,
seg_eps,
seg_min_time,
simplify,
simplify_max_dist_error,
simplify_max_speed_error
):
"""In-place, transformation of a track into a trip
A trip is a more accurate depiction of reality than a
track.
For a track to become a trip it need to go through the
following steps:
+ noise removal
+ smoothing
+ spatio-temporal segmentation
+ simplification
At the end of these steps we have a less noisy, track
that has less points, but that holds the same information.
It's required that each segment has their metrics calculated
or has been preprocessed.
Args:
name: An optional string with the name of the trip. If
none is given, one will be generated by generateName
Returns:
This Track instance
"""
self.compute_metrics()
self.remove_noise()
print (smooth, seg, simplify)
if smooth:
self.compute_metrics()
self.smooth(smooth_strategy, smooth_noise)
if seg:
self.compute_metrics()
self.segment(seg_eps, seg_min_time)
if simplify:
self.compute_metrics()
self.simplify(0, simplify_max_dist_error, simplify_max_speed_error)
self.compute_metrics()
return self | python | def to_trip(
self,
smooth,
smooth_strategy,
smooth_noise,
seg,
seg_eps,
seg_min_time,
simplify,
simplify_max_dist_error,
simplify_max_speed_error
):
"""In-place, transformation of a track into a trip
A trip is a more accurate depiction of reality than a
track.
For a track to become a trip it need to go through the
following steps:
+ noise removal
+ smoothing
+ spatio-temporal segmentation
+ simplification
At the end of these steps we have a less noisy, track
that has less points, but that holds the same information.
It's required that each segment has their metrics calculated
or has been preprocessed.
Args:
name: An optional string with the name of the trip. If
none is given, one will be generated by generateName
Returns:
This Track instance
"""
self.compute_metrics()
self.remove_noise()
print (smooth, seg, simplify)
if smooth:
self.compute_metrics()
self.smooth(smooth_strategy, smooth_noise)
if seg:
self.compute_metrics()
self.segment(seg_eps, seg_min_time)
if simplify:
self.compute_metrics()
self.simplify(0, simplify_max_dist_error, simplify_max_speed_error)
self.compute_metrics()
return self | In-place, transformation of a track into a trip
A trip is a more accurate depiction of reality than a
track.
For a track to become a trip it need to go through the
following steps:
+ noise removal
+ smoothing
+ spatio-temporal segmentation
+ simplification
At the end of these steps we have a less noisy, track
that has less points, but that holds the same information.
It's required that each segment has their metrics calculated
or has been preprocessed.
Args:
name: An optional string with the name of the trip. If
none is given, one will be generated by generateName
Returns:
This Track instance | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L137-L189 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.infer_transportation_modes | def infer_transportation_modes(self, dt_threshold=10):
"""In-place transportation inferring of segments
Returns:
This track
"""
self.segments = [
segment.infer_transportation_mode(dt_threshold=dt_threshold)
for segment in self.segments
]
return self | python | def infer_transportation_modes(self, dt_threshold=10):
"""In-place transportation inferring of segments
Returns:
This track
"""
self.segments = [
segment.infer_transportation_mode(dt_threshold=dt_threshold)
for segment in self.segments
]
return self | In-place transportation inferring of segments
Returns:
This track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L191-L201 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.infer_location | def infer_location(
self,
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
):
"""In-place location inferring of segments
Returns:
This track
"""
self.segments = [
segment.infer_location(
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
)
for segment in self.segments
]
return self | python | def infer_location(
self,
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
):
"""In-place location inferring of segments
Returns:
This track
"""
self.segments = [
segment.infer_location(
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
)
for segment in self.segments
]
return self | In-place location inferring of segments
Returns:
This track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L204-L229 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.to_json | def to_json(self):
"""Converts track to a JSON serializable format
Returns:
Map with the name, and segments of the track.
"""
return {
'name': self.name,
'segments': [segment.to_json() for segment in self.segments],
'meta': self.meta
} | python | def to_json(self):
"""Converts track to a JSON serializable format
Returns:
Map with the name, and segments of the track.
"""
return {
'name': self.name,
'segments': [segment.to_json() for segment in self.segments],
'meta': self.meta
} | Converts track to a JSON serializable format
Returns:
Map with the name, and segments of the track. | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L231-L241 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.merge_and_fit | def merge_and_fit(self, track, pairings):
""" Merges another track with this one, ordering the points based on a
distance heuristic
Args:
track (:obj:`Track`): Track to merge with
pairings
Returns:
:obj:`Segment`: self
"""
for (self_seg_index, track_seg_index, _) in pairings:
self_s = self.segments[self_seg_index]
ss_start = self_s.points[0]
track_s = track.segments[track_seg_index]
tt_start = track_s.points[0]
tt_end = track_s.points[-1]
d_start = ss_start.distance(tt_start)
d_end = ss_start.distance(tt_end)
if d_start > d_end:
track_s = track_s.copy()
track_s.points = list(reversed(track_s.points))
self_s.merge_and_fit(track_s)
return self | python | def merge_and_fit(self, track, pairings):
""" Merges another track with this one, ordering the points based on a
distance heuristic
Args:
track (:obj:`Track`): Track to merge with
pairings
Returns:
:obj:`Segment`: self
"""
for (self_seg_index, track_seg_index, _) in pairings:
self_s = self.segments[self_seg_index]
ss_start = self_s.points[0]
track_s = track.segments[track_seg_index]
tt_start = track_s.points[0]
tt_end = track_s.points[-1]
d_start = ss_start.distance(tt_start)
d_end = ss_start.distance(tt_end)
if d_start > d_end:
track_s = track_s.copy()
track_s.points = list(reversed(track_s.points))
self_s.merge_and_fit(track_s)
return self | Merges another track with this one, ordering the points based on a
distance heuristic
Args:
track (:obj:`Track`): Track to merge with
pairings
Returns:
:obj:`Segment`: self | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L244-L270 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.get_point_index | def get_point_index(self, point):
""" Gets of the closest first point
Args:
point (:obj:`Point`)
Returns:
(int, int): Segment id and point index in that segment
"""
for i, segment in enumerate(self.segments):
idx = segment.getPointIndex(point)
if idx != -1:
return i, idx
return -1, -1 | python | def get_point_index(self, point):
""" Gets of the closest first point
Args:
point (:obj:`Point`)
Returns:
(int, int): Segment id and point index in that segment
"""
for i, segment in enumerate(self.segments):
idx = segment.getPointIndex(point)
if idx != -1:
return i, idx
return -1, -1 | Gets of the closest first point
Args:
point (:obj:`Point`)
Returns:
(int, int): Segment id and point index in that segment | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L272-L284 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.bounds | def bounds(self, thr=0):
""" Gets the bounds of this segment
Returns:
(float, float, float, float): Bounds, with min latitude, min longitude,
max latitude and max longitude
"""
min_lat = float("inf")
min_lon = float("inf")
max_lat = -float("inf")
max_lon = -float("inf")
for segment in self.segments:
milat, milon, malat, malon = segment.bounds(thr=thr)
min_lat = min(milat, min_lat)
min_lon = min(milon, min_lon)
max_lat = max(malat, max_lat)
max_lon = max(malon, max_lon)
return min_lat, min_lon, max_lat, max_lon | python | def bounds(self, thr=0):
""" Gets the bounds of this segment
Returns:
(float, float, float, float): Bounds, with min latitude, min longitude,
max latitude and max longitude
"""
min_lat = float("inf")
min_lon = float("inf")
max_lat = -float("inf")
max_lon = -float("inf")
for segment in self.segments:
milat, milon, malat, malon = segment.bounds(thr=thr)
min_lat = min(milat, min_lat)
min_lon = min(milon, min_lon)
max_lat = max(malat, max_lat)
max_lon = max(malon, max_lon)
return min_lat, min_lon, max_lat, max_lon | Gets the bounds of this segment
Returns:
(float, float, float, float): Bounds, with min latitude, min longitude,
max latitude and max longitude | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L286-L303 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.similarity | def similarity(self, track):
""" Compares two tracks based on their topology
This method compares the given track against this
instance. It only verifies if given track is close
to this one, not the other way arround
Args:
track (:obj:`Track`)
Returns:
Two-tuple with global similarity between tracks
and an array the similarity between segments
"""
idx = index.Index()
i = 0
for i, segment in enumerate(self.segments):
idx.insert(i, segment.bounds(), obj=segment)
final_siml = []
final_diff = []
for i, segment in enumerate(track.segments):
query = idx.intersection(segment.bounds(), objects=True)
res_siml = []
res_diff = []
for result in query:
siml, diff = segment_similarity(segment, result.object)
res_siml.append(siml)
res_diff.append((result.id, i, diff))
if len(res_siml) > 0:
final_siml.append(max(res_siml))
final_diff.append(res_diff[np.argmax(res_siml)])
else:
final_siml.append(0)
final_diff.append([])
return np.mean(final_siml), final_diff | python | def similarity(self, track):
""" Compares two tracks based on their topology
This method compares the given track against this
instance. It only verifies if given track is close
to this one, not the other way arround
Args:
track (:obj:`Track`)
Returns:
Two-tuple with global similarity between tracks
and an array the similarity between segments
"""
idx = index.Index()
i = 0
for i, segment in enumerate(self.segments):
idx.insert(i, segment.bounds(), obj=segment)
final_siml = []
final_diff = []
for i, segment in enumerate(track.segments):
query = idx.intersection(segment.bounds(), objects=True)
res_siml = []
res_diff = []
for result in query:
siml, diff = segment_similarity(segment, result.object)
res_siml.append(siml)
res_diff.append((result.id, i, diff))
if len(res_siml) > 0:
final_siml.append(max(res_siml))
final_diff.append(res_diff[np.argmax(res_siml)])
else:
final_siml.append(0)
final_diff.append([])
return np.mean(final_siml), final_diff | Compares two tracks based on their topology
This method compares the given track against this
instance. It only verifies if given track is close
to this one, not the other way arround
Args:
track (:obj:`Track`)
Returns:
Two-tuple with global similarity between tracks
and an array the similarity between segments | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L316-L353 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.to_gpx | def to_gpx(self):
"""Converts track to a GPX format
Uses GPXPY library as an intermediate format
Returns:
A string with the GPX/XML track
"""
gpx_segments = []
for segment in self.segments:
gpx_points = []
for point in segment.points:
time = ''
if point.time:
iso_time = point.time.isoformat().split('.')[0]
time = '<time>%s</time>' % iso_time
gpx_points.append(
u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time)
)
points = u'\n\t\t\t'.join(gpx_points)
gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points)
segments = u'\t\n'.join(gpx_segments)
content = [
u'<?xml version="1.0" encoding="UTF-8"?>',
u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">',
u'\t<trk>',
segments,
u'\t</trk>',
u'</gpx>'
]
return u'\n'.join(content) | python | def to_gpx(self):
"""Converts track to a GPX format
Uses GPXPY library as an intermediate format
Returns:
A string with the GPX/XML track
"""
gpx_segments = []
for segment in self.segments:
gpx_points = []
for point in segment.points:
time = ''
if point.time:
iso_time = point.time.isoformat().split('.')[0]
time = '<time>%s</time>' % iso_time
gpx_points.append(
u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time)
)
points = u'\n\t\t\t'.join(gpx_points)
gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points)
segments = u'\t\n'.join(gpx_segments)
content = [
u'<?xml version="1.0" encoding="UTF-8"?>',
u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">',
u'\t<trk>',
segments,
u'\t</trk>',
u'</gpx>'
]
return u'\n'.join(content) | Converts track to a GPX format
Uses GPXPY library as an intermediate format
Returns:
A string with the GPX/XML track | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L367-L398 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.timezone | def timezone(self, timezone=0):
""" Sets the timezone of the entire track
Args:
timezone (int): Timezone hour delta
"""
tz_dt = timedelta(hours=timezone)
for segment in self.segments:
for point in segment.points:
point.time = point.time + tz_dt
return self | python | def timezone(self, timezone=0):
""" Sets the timezone of the entire track
Args:
timezone (int): Timezone hour delta
"""
tz_dt = timedelta(hours=timezone)
for segment in self.segments:
for point in segment.points:
point.time = point.time + tz_dt
return self | Sets the timezone of the entire track
Args:
timezone (int): Timezone hour delta | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L400-L411 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.to_life | def to_life(self):
"""Converts track to LIFE format
"""
buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d")
# buff += "--" + day
# buff += "UTC+s" # if needed
def military_time(time):
""" Converts time to military time
Args:
time (:obj:`datetime.datetime`)
Returns:
str: Time in the format 1245 (12 hours and 45 minutes)
"""
return time.strftime("%H%M")
def stay(buff, start, end, place):
""" Creates a stay representation
Args:
start (:obj:`datetime.datetime` or str)
end (:obj:`datetime.datetime` or str)
place (:obj:`Location`)
Returns:
str
"""
if not isinstance(start, str):
start = military_time(start)
if not isinstance(end, str):
end = military_time(end)
return "%s\n%s-%s: %s" % (buff, start, end, place.label)
def trip(buff, segment):
""" Creates a trip representation
Args:
buff (str): buffer
segment (:obj:`Segment`)
Returns:
str: buffer and trip representation
"""
trip = "%s-%s: %s -> %s" % (
military_time(segment.points[0].time),
military_time(segment.points[-1].time),
segment.location_from.label,
segment.location_to.label
)
t_modes = segment.transportation_modes
if len(t_modes) == 1:
trip = "%s [%s]" % (trip, t_modes[0]['label'])
elif len(t_modes) > 1:
modes = []
for mode in t_modes:
trip_from = military_time(segment.points[mode['from']].time)
trip_to = military_time(segment.points[mode['to']].time)
modes.append(" %s-%s: [%s]" % (trip_from, trip_to, mode['label']))
trip = "%s\n%s" % (trip, "\n".join(modes))
return "%s\n%s" % (buff, trip)
last = len(self.segments) - 1
for i, segment in enumerate(self.segments):
if i == 0:
buff = stay(
buff,
"0000",
military_time(segment.points[0].time),
segment.location_from
)
buff = trip(buff, segment)
if i is last:
buff = stay(
buff,
military_time(segment.points[-1].time),
"2359",
segment.location_to
)
else:
next_seg = self.segments[i+1]
buff = stay(
buff,
military_time(segment.points[-1].time),
military_time(next_seg.points[0].time),
segment.location_to
)
return buff | python | def to_life(self):
"""Converts track to LIFE format
"""
buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d")
# buff += "--" + day
# buff += "UTC+s" # if needed
def military_time(time):
""" Converts time to military time
Args:
time (:obj:`datetime.datetime`)
Returns:
str: Time in the format 1245 (12 hours and 45 minutes)
"""
return time.strftime("%H%M")
def stay(buff, start, end, place):
""" Creates a stay representation
Args:
start (:obj:`datetime.datetime` or str)
end (:obj:`datetime.datetime` or str)
place (:obj:`Location`)
Returns:
str
"""
if not isinstance(start, str):
start = military_time(start)
if not isinstance(end, str):
end = military_time(end)
return "%s\n%s-%s: %s" % (buff, start, end, place.label)
def trip(buff, segment):
""" Creates a trip representation
Args:
buff (str): buffer
segment (:obj:`Segment`)
Returns:
str: buffer and trip representation
"""
trip = "%s-%s: %s -> %s" % (
military_time(segment.points[0].time),
military_time(segment.points[-1].time),
segment.location_from.label,
segment.location_to.label
)
t_modes = segment.transportation_modes
if len(t_modes) == 1:
trip = "%s [%s]" % (trip, t_modes[0]['label'])
elif len(t_modes) > 1:
modes = []
for mode in t_modes:
trip_from = military_time(segment.points[mode['from']].time)
trip_to = military_time(segment.points[mode['to']].time)
modes.append(" %s-%s: [%s]" % (trip_from, trip_to, mode['label']))
trip = "%s\n%s" % (trip, "\n".join(modes))
return "%s\n%s" % (buff, trip)
last = len(self.segments) - 1
for i, segment in enumerate(self.segments):
if i == 0:
buff = stay(
buff,
"0000",
military_time(segment.points[0].time),
segment.location_from
)
buff = trip(buff, segment)
if i is last:
buff = stay(
buff,
military_time(segment.points[-1].time),
"2359",
segment.location_to
)
else:
next_seg = self.segments[i+1]
buff = stay(
buff,
military_time(segment.points[-1].time),
military_time(next_seg.points[0].time),
segment.location_to
)
return buff | Converts track to LIFE format | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L413-L502 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.from_gpx | def from_gpx(file_path):
""" Creates a Track from a GPX file.
No preprocessing is done.
Arguments:
file_path (str): file path and name to the GPX file
Return:
:obj:`list` of :obj:`Track`
"""
gpx = gpxpy.parse(open(file_path, 'r'))
file_name = basename(file_path)
tracks = []
for i, track in enumerate(gpx.tracks):
segments = []
for segment in track.segments:
segments.append(Segment.from_gpx(segment))
if len(gpx.tracks) > 1:
name = file_name + "_" + str(i)
else:
name = file_name
tracks.append(Track(name, segments))
return tracks | python | def from_gpx(file_path):
""" Creates a Track from a GPX file.
No preprocessing is done.
Arguments:
file_path (str): file path and name to the GPX file
Return:
:obj:`list` of :obj:`Track`
"""
gpx = gpxpy.parse(open(file_path, 'r'))
file_name = basename(file_path)
tracks = []
for i, track in enumerate(gpx.tracks):
segments = []
for segment in track.segments:
segments.append(Segment.from_gpx(segment))
if len(gpx.tracks) > 1:
name = file_name + "_" + str(i)
else:
name = file_name
tracks.append(Track(name, segments))
return tracks | Creates a Track from a GPX file.
No preprocessing is done.
Arguments:
file_path (str): file path and name to the GPX file
Return:
:obj:`list` of :obj:`Track` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L505-L530 |
ruipgil/TrackToTrip | tracktotrip/track.py | Track.from_json | def from_json(json):
"""Creates a Track from a JSON file.
No preprocessing is done.
Arguments:
json: map with the keys: name (optional) and segments.
Return:
A track instance
"""
segments = [Segment.from_json(s) for s in json['segments']]
return Track(json['name'], segments).compute_metrics() | python | def from_json(json):
"""Creates a Track from a JSON file.
No preprocessing is done.
Arguments:
json: map with the keys: name (optional) and segments.
Return:
A track instance
"""
segments = [Segment.from_json(s) for s in json['segments']]
return Track(json['name'], segments).compute_metrics() | Creates a Track from a JSON file.
No preprocessing is done.
Arguments:
json: map with the keys: name (optional) and segments.
Return:
A track instance | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L533-L544 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | normalize | def normalize(p):
"""Normalizes a point/vector
Args:
p ([float, float]): x and y coordinates
Returns:
float
"""
l = math.sqrt(p[0]**2 + p[1]**2)
return [0.0, 0.0] if l == 0 else [p[0]/l, p[1]/l] | python | def normalize(p):
"""Normalizes a point/vector
Args:
p ([float, float]): x and y coordinates
Returns:
float
"""
l = math.sqrt(p[0]**2 + p[1]**2)
return [0.0, 0.0] if l == 0 else [p[0]/l, p[1]/l] | Normalizes a point/vector
Args:
p ([float, float]): x and y coordinates
Returns:
float | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L21-L30 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | line | def line(p1, p2):
"""Creates a line from two points
From http://stackoverflow.com/a/20679579
Args:
p1 ([float, float]): x and y coordinates
p2 ([float, float]): x and y coordinates
Returns:
(float, float, float): x, y and _
"""
A = (p1[1] - p2[1])
B = (p2[0] - p1[0])
C = (p1[0]*p2[1] - p2[0]*p1[1])
return A, B, -C | python | def line(p1, p2):
"""Creates a line from two points
From http://stackoverflow.com/a/20679579
Args:
p1 ([float, float]): x and y coordinates
p2 ([float, float]): x and y coordinates
Returns:
(float, float, float): x, y and _
"""
A = (p1[1] - p2[1])
B = (p2[0] - p1[0])
C = (p1[0]*p2[1] - p2[0]*p1[1])
return A, B, -C | Creates a line from two points
From http://stackoverflow.com/a/20679579
Args:
p1 ([float, float]): x and y coordinates
p2 ([float, float]): x and y coordinates
Returns:
(float, float, float): x, y and _ | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L55-L69 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | intersection | def intersection(L1, L2):
"""Intersects two line segments
Args:
L1 ([float, float]): x and y coordinates
L2 ([float, float]): x and y coordinates
Returns:
bool: if they intersect
(float, float): x and y of intersection, if they do
"""
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x, y
else:
return False | python | def intersection(L1, L2):
"""Intersects two line segments
Args:
L1 ([float, float]): x and y coordinates
L2 ([float, float]): x and y coordinates
Returns:
bool: if they intersect
(float, float): x and y of intersection, if they do
"""
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x, y
else:
return False | Intersects two line segments
Args:
L1 ([float, float]): x and y coordinates
L2 ([float, float]): x and y coordinates
Returns:
bool: if they intersect
(float, float): x and y of intersection, if they do | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L71-L89 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | distance_tt_point | def distance_tt_point(a, b):
""" Euclidean distance between two (tracktotrip) points
Args:
a (:obj:`Point`)
b (:obj:`Point`)
Returns:
float
"""
return math.sqrt((b.lat-a.lat)**2 + (b.lon-a.lon)**2) | python | def distance_tt_point(a, b):
""" Euclidean distance between two (tracktotrip) points
Args:
a (:obj:`Point`)
b (:obj:`Point`)
Returns:
float
"""
return math.sqrt((b.lat-a.lat)**2 + (b.lon-a.lon)**2) | Euclidean distance between two (tracktotrip) points
Args:
a (:obj:`Point`)
b (:obj:`Point`)
Returns:
float | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L102-L111 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | closest_point | def closest_point(a, b, p):
"""Finds closest point in a line segment
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to find in the segment
Returns:
(float, float): x and y coordinates of the closest point
"""
ap = [p[0]-a[0], p[1]-a[1]]
ab = [b[0]-a[0], b[1]-a[1]]
mag = float(ab[0]**2 + ab[1]**2)
proj = dot(ap, ab)
if mag ==0 :
dist = 0
else:
dist = proj / mag
if dist < 0:
return [a[0], a[1]]
elif dist > 1:
return [b[0], b[1]]
else:
return [a[0] + ab[0] * dist, a[1] + ab[1] * dist] | python | def closest_point(a, b, p):
"""Finds closest point in a line segment
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to find in the segment
Returns:
(float, float): x and y coordinates of the closest point
"""
ap = [p[0]-a[0], p[1]-a[1]]
ab = [b[0]-a[0], b[1]-a[1]]
mag = float(ab[0]**2 + ab[1]**2)
proj = dot(ap, ab)
if mag ==0 :
dist = 0
else:
dist = proj / mag
if dist < 0:
return [a[0], a[1]]
elif dist > 1:
return [b[0], b[1]]
else:
return [a[0] + ab[0] * dist, a[1] + ab[1] * dist] | Finds closest point in a line segment
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to find in the segment
Returns:
(float, float): x and y coordinates of the closest point | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L113-L136 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | distance_to_line | def distance_to_line(a, b, p):
"""Closest distance between a line segment and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float
"""
return distance(closest_point(a, b, p), p) | python | def distance_to_line(a, b, p):
"""Closest distance between a line segment and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float
"""
return distance(closest_point(a, b, p), p) | Closest distance between a line segment and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L138-L148 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | distance_similarity | def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD):
"""Computes the distance similarity between a line segment
and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d = distance_to_line(a, b, p)
r = (-1/float(T)) * abs(d) + 1
return r if r > 0 else 0 | python | def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD):
"""Computes the distance similarity between a line segment
and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d = distance_to_line(a, b, p)
r = (-1/float(T)) * abs(d) + 1
return r if r > 0 else 0 | Computes the distance similarity between a line segment
and a point
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to compute the distance
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L151-L165 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | line_distance_similarity | def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD):
"""Line distance similarity between two line segments
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d1 = distance_similarity(p1a, p1b, p2a, T=T)
d2 = distance_similarity(p1a, p1b, p2b, T=T)
return abs(d1 + d2) * 0.5 | python | def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD):
"""Line distance similarity between two line segments
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d1 = distance_similarity(p1a, p1b, p2a, T=T)
d2 = distance_similarity(p1a, p1b, p2b, T=T)
return abs(d1 + d2) * 0.5 | Line distance similarity between two line segments
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L167-L180 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | line_similarity | def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD):
"""Similarity between two lines
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d = line_distance_similarity(p1a, p1b, p2a, p2b, T=T)
a = abs(angle_similarity(normalize(line(p1a, p1b)), normalize(line(p2a, p2b))))
return d * a | python | def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD):
"""Similarity between two lines
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
d = line_distance_similarity(p1a, p1b, p2a, p2b, T=T)
a = abs(angle_similarity(normalize(line(p1a, p1b)), normalize(line(p2a, p2b))))
return d * a | Similarity between two lines
Args:
p1a ([float, float]): x and y coordinates. Line A start
p1b ([float, float]): x and y coordinates. Line A end
p2a ([float, float]): x and y coordinates. Line B start
p2b ([float, float]): x and y coordinates. Line B end
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L182-L195 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | bounding_box_from | def bounding_box_from(points, i, i1, thr):
"""Creates bounding box for a line segment
Args:
points (:obj:`list` of :obj:`Point`)
i (int): Line segment start, index in points array
i1 (int): Line segment end, index in points array
Returns:
(float, float, float, float): with bounding box min x, min y, max x and max y
"""
pi = points[i]
pi1 = points[i1]
min_lat = min(pi.lat, pi1.lat)
min_lon = min(pi.lon, pi1.lon)
max_lat = max(pi.lat, pi1.lat)
max_lon = max(pi.lon, pi1.lon)
return min_lat-thr, min_lon-thr, max_lat+thr, max_lon+thr | python | def bounding_box_from(points, i, i1, thr):
"""Creates bounding box for a line segment
Args:
points (:obj:`list` of :obj:`Point`)
i (int): Line segment start, index in points array
i1 (int): Line segment end, index in points array
Returns:
(float, float, float, float): with bounding box min x, min y, max x and max y
"""
pi = points[i]
pi1 = points[i1]
min_lat = min(pi.lat, pi1.lat)
min_lon = min(pi.lon, pi1.lon)
max_lat = max(pi.lat, pi1.lat)
max_lon = max(pi.lon, pi1.lon)
return min_lat-thr, min_lon-thr, max_lat+thr, max_lon+thr | Creates bounding box for a line segment
Args:
points (:obj:`list` of :obj:`Point`)
i (int): Line segment start, index in points array
i1 (int): Line segment end, index in points array
Returns:
(float, float, float, float): with bounding box min x, min y, max x and max y | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L197-L215 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | segment_similarity | def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD):
"""Computes the similarity between two segments
Args:
A (:obj:`Segment`)
B (:obj:`Segment`)
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
l_a = len(A.points)
l_b = len(B.points)
idx = index.Index()
dex = 0
for i in range(l_a-1):
idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]])
dex = dex + 1
prox_acc = []
for i in range(l_b-1):
ti = B.points[i].gen2arr()
ti1 = B.points[i+1].gen2arr()
bb = bounding_box_from(B.points, i, i+1, T)
intersects = idx.intersection(bb, objects=True)
n_prox = []
i_prox = 0
a = 0
for x in intersects:
a = a + 1
pi = x.object[0].gen2arr()
pi1 = x.object[1].gen2arr()
prox = line_similarity(ti, ti1, pi, pi1, T)
i_prox = i_prox + prox
n_prox.append(prox)
if a != 0:
prox_acc.append(i_prox / a)
# prox_acc.append(max(n_prox))
else:
prox_acc.append(0)
return np.mean(prox_acc), prox_acc | python | def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD):
"""Computes the similarity between two segments
Args:
A (:obj:`Segment`)
B (:obj:`Segment`)
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different
"""
l_a = len(A.points)
l_b = len(B.points)
idx = index.Index()
dex = 0
for i in range(l_a-1):
idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]])
dex = dex + 1
prox_acc = []
for i in range(l_b-1):
ti = B.points[i].gen2arr()
ti1 = B.points[i+1].gen2arr()
bb = bounding_box_from(B.points, i, i+1, T)
intersects = idx.intersection(bb, objects=True)
n_prox = []
i_prox = 0
a = 0
for x in intersects:
a = a + 1
pi = x.object[0].gen2arr()
pi1 = x.object[1].gen2arr()
prox = line_similarity(ti, ti1, pi, pi1, T)
i_prox = i_prox + prox
n_prox.append(prox)
if a != 0:
prox_acc.append(i_prox / a)
# prox_acc.append(max(n_prox))
else:
prox_acc.append(0)
return np.mean(prox_acc), prox_acc | Computes the similarity between two segments
Args:
A (:obj:`Segment`)
B (:obj:`Segment`)
Returns:
float: between 0 and 1. Where 1 is very similar and 0 is completely different | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L217-L259 |
ruipgil/TrackToTrip | tracktotrip/similarity.py | sort_segment_points | def sort_segment_points(Aps, Bps):
"""Takes two line segments and sorts all their points,
so that they form a continuous path
Args:
Aps: Array of tracktotrip.Point
Bps: Array of tracktotrip.Point
Returns:
Array with points ordered
"""
mid = []
j = 0
mid.append(Aps[0])
for i in range(len(Aps)-1):
dist = distance_tt_point(Aps[i], Aps[i+1])
for m in range(j, len(Bps)):
distm = distance_tt_point(Aps[i], Bps[m])
if dist > distm:
direction = dot(normalize(line(Aps[i].gen2arr(), Aps[i+1].gen2arr())), normalize(Bps[m].gen2arr()))
if direction > 0:
j = m + 1
mid.append(Bps[m])
break
mid.append(Aps[i+1])
for m in range(j, len(Bps)):
mid.append(Bps[m])
return mid | python | def sort_segment_points(Aps, Bps):
"""Takes two line segments and sorts all their points,
so that they form a continuous path
Args:
Aps: Array of tracktotrip.Point
Bps: Array of tracktotrip.Point
Returns:
Array with points ordered
"""
mid = []
j = 0
mid.append(Aps[0])
for i in range(len(Aps)-1):
dist = distance_tt_point(Aps[i], Aps[i+1])
for m in range(j, len(Bps)):
distm = distance_tt_point(Aps[i], Bps[m])
if dist > distm:
direction = dot(normalize(line(Aps[i].gen2arr(), Aps[i+1].gen2arr())), normalize(Bps[m].gen2arr()))
if direction > 0:
j = m + 1
mid.append(Bps[m])
break
mid.append(Aps[i+1])
for m in range(j, len(Bps)):
mid.append(Bps[m])
return mid | Takes two line segments and sorts all their points,
so that they form a continuous path
Args:
Aps: Array of tracktotrip.Point
Bps: Array of tracktotrip.Point
Returns:
Array with points ordered | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L261-L288 |
ruipgil/TrackToTrip | tracktotrip/point.py | haversine_distance | def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
"""
Haversine distance between two points, expressed in meters.
Implemented from http://www.movable-type.co.uk/scripts/latlong.html
"""
d_lat = to_rad(latitude_1 - latitude_2)
d_lon = to_rad(longitude_1 - longitude_2)
lat1 = to_rad(latitude_1)
lat2 = to_rad(latitude_2)
#pylint: disable=invalid-name
a = math.sin(d_lat/2) * math.sin(d_lat/2) + \
math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = EARTH_RADIUS * c
return d | python | def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
"""
Haversine distance between two points, expressed in meters.
Implemented from http://www.movable-type.co.uk/scripts/latlong.html
"""
d_lat = to_rad(latitude_1 - latitude_2)
d_lon = to_rad(longitude_1 - longitude_2)
lat1 = to_rad(latitude_1)
lat2 = to_rad(latitude_2)
#pylint: disable=invalid-name
a = math.sin(d_lat/2) * math.sin(d_lat/2) + \
math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = EARTH_RADIUS * c
return d | Haversine distance between two points, expressed in meters.
Implemented from http://www.movable-type.co.uk/scripts/latlong.html | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L165-L181 |
ruipgil/TrackToTrip | tracktotrip/point.py | distance | def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
haversine=None):
""" Distance between two points """
# If points too distant -- compute haversine distance:
if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
coef = math.cos(latitude_1 / 180. * math.pi)
#pylint: disable=invalid-name
x = latitude_1 - latitude_2
y = (longitude_1 - longitude_2) * coef
distance_2d = math.sqrt(x * x + y * y) * ONE_DEGREE
if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
return distance_2d
return math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2) | python | def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
haversine=None):
""" Distance between two points """
# If points too distant -- compute haversine distance:
if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
coef = math.cos(latitude_1 / 180. * math.pi)
#pylint: disable=invalid-name
x = latitude_1 - latitude_2
y = (longitude_1 - longitude_2) * coef
distance_2d = math.sqrt(x * x + y * y) * ONE_DEGREE
if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
return distance_2d
return math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2) | Distance between two points | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L184-L202 |
ruipgil/TrackToTrip | tracktotrip/point.py | Point.distance | def distance(self, other):
""" Distance between points
Args:
other (:obj:`Point`)
Returns:
float: Distance in km
"""
return distance(self.lat, self.lon, None, other.lat, other.lon, None) | python | def distance(self, other):
""" Distance between points
Args:
other (:obj:`Point`)
Returns:
float: Distance in km
"""
return distance(self.lat, self.lon, None, other.lat, other.lon, None) | Distance between points
Args:
other (:obj:`Point`)
Returns:
float: Distance in km | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L57-L65 |
ruipgil/TrackToTrip | tracktotrip/point.py | Point.compute_metrics | def compute_metrics(self, previous):
""" Computes the metrics of this point
Computes and updates the dt, vel and acc attributes.
Args:
previous (:obj:`Point`): Point before
Returns:
:obj:`Point`: Self
"""
delta_t = self.time_difference(previous)
delta_x = self.distance(previous)
vel = 0
delta_v = 0
acc = 0
if delta_t != 0:
vel = delta_x/delta_t
delta_v = vel - previous.vel
acc = delta_v/delta_t
self.dt = delta_t
self.dx = delta_x
self.acc = acc
self.vel = vel
return self | python | def compute_metrics(self, previous):
""" Computes the metrics of this point
Computes and updates the dt, vel and acc attributes.
Args:
previous (:obj:`Point`): Point before
Returns:
:obj:`Point`: Self
"""
delta_t = self.time_difference(previous)
delta_x = self.distance(previous)
vel = 0
delta_v = 0
acc = 0
if delta_t != 0:
vel = delta_x/delta_t
delta_v = vel - previous.vel
acc = delta_v/delta_t
self.dt = delta_t
self.dx = delta_x
self.acc = acc
self.vel = vel
return self | Computes the metrics of this point
Computes and updates the dt, vel and acc attributes.
Args:
previous (:obj:`Point`): Point before
Returns:
:obj:`Point`: Self | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L77-L101 |
ruipgil/TrackToTrip | tracktotrip/point.py | Point.from_gpx | def from_gpx(gpx_track_point):
""" Creates a point from GPX representation
Arguments:
gpx_track_point (:obj:`gpxpy.GPXTrackPoint`)
Returns:
:obj:`Point`
"""
return Point(
lat=gpx_track_point.latitude,
lon=gpx_track_point.longitude,
time=gpx_track_point.time
) | python | def from_gpx(gpx_track_point):
""" Creates a point from GPX representation
Arguments:
gpx_track_point (:obj:`gpxpy.GPXTrackPoint`)
Returns:
:obj:`Point`
"""
return Point(
lat=gpx_track_point.latitude,
lon=gpx_track_point.longitude,
time=gpx_track_point.time
) | Creates a point from GPX representation
Arguments:
gpx_track_point (:obj:`gpxpy.GPXTrackPoint`)
Returns:
:obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L104-L116 |
ruipgil/TrackToTrip | tracktotrip/point.py | Point.to_json | def to_json(self):
""" Creates a JSON serializable representation of this instance
Returns:
:obj:`dict`: For example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
"""
return {
'lat': self.lat,
'lon': self.lon,
'time': self.time.isoformat() if self.time is not None else None
} | python | def to_json(self):
""" Creates a JSON serializable representation of this instance
Returns:
:obj:`dict`: For example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
"""
return {
'lat': self.lat,
'lon': self.lon,
'time': self.time.isoformat() if self.time is not None else None
} | Creates a JSON serializable representation of this instance
Returns:
:obj:`dict`: For example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
} | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L118-L133 |
ruipgil/TrackToTrip | tracktotrip/point.py | Point.from_json | def from_json(json):
""" Creates Point instance from JSON representation
Args:
json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float),
time (string in iso format). Example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
json: map representation of Point instance
Returns:
:obj:`Point`
"""
return Point(
lat=json['lat'],
lon=json['lon'],
time=isostr_to_datetime(json['time'])
) | python | def from_json(json):
""" Creates Point instance from JSON representation
Args:
json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float),
time (string in iso format). Example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
json: map representation of Point instance
Returns:
:obj:`Point`
"""
return Point(
lat=json['lat'],
lon=json['lon'],
time=isostr_to_datetime(json['time'])
) | Creates Point instance from JSON representation
Args:
json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float),
time (string in iso format). Example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
json: map representation of Point instance
Returns:
:obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L136-L155 |
ruipgil/TrackToTrip | tracktotrip/location.py | compute_centroid | def compute_centroid(points):
""" Computes the centroid of set of points
Args:
points (:obj:`list` of :obj:`Point`)
Returns:
:obj:`Point`
"""
lats = [p[1] for p in points]
lons = [p[0] for p in points]
return Point(np.mean(lats), np.mean(lons), None) | python | def compute_centroid(points):
""" Computes the centroid of set of points
Args:
points (:obj:`list` of :obj:`Point`)
Returns:
:obj:`Point`
"""
lats = [p[1] for p in points]
lons = [p[0] for p in points]
return Point(np.mean(lats), np.mean(lons), None) | Computes the centroid of set of points
Args:
points (:obj:`list` of :obj:`Point`)
Returns:
:obj:`Point` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L37-L47 |
ruipgil/TrackToTrip | tracktotrip/location.py | update_location_centroid | def update_location_centroid(point, cluster, max_distance, min_samples):
""" Updates the centroid of a location cluster with another point
Args:
point (:obj:`Point`): Point to add to the cluster
cluster (:obj:`list` of :obj:`Point`): Location cluster
max_distance (float): Max neighbour distance
min_samples (int): Minimum number of samples
Returns:
(:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid
and new point cluster (given cluster + given point)
"""
cluster.append(point)
points = [p.gen2arr() for p in cluster]
# Estimates the epsilon
eps = estimate_meters_to_deg(max_distance, precision=6)
p_cluster = DBSCAN(eps=eps, min_samples=min_samples)
p_cluster.fit(points)
clusters = {}
for i, label in enumerate(p_cluster.labels_):
if label in clusters.keys():
clusters[label].append(points[i])
else:
clusters[label] = [points[i]]
centroids = []
biggest_centroid_l = -float("inf")
biggest_centroid = None
for label, n_cluster in clusters.items():
centroid = compute_centroid(n_cluster)
centroids.append(centroid)
if label >= 0 and len(n_cluster) >= biggest_centroid_l:
biggest_centroid_l = len(n_cluster)
biggest_centroid = centroid
if biggest_centroid is None:
biggest_centroid = compute_centroid(points)
return biggest_centroid, cluster | python | def update_location_centroid(point, cluster, max_distance, min_samples):
""" Updates the centroid of a location cluster with another point
Args:
point (:obj:`Point`): Point to add to the cluster
cluster (:obj:`list` of :obj:`Point`): Location cluster
max_distance (float): Max neighbour distance
min_samples (int): Minimum number of samples
Returns:
(:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid
and new point cluster (given cluster + given point)
"""
cluster.append(point)
points = [p.gen2arr() for p in cluster]
# Estimates the epsilon
eps = estimate_meters_to_deg(max_distance, precision=6)
p_cluster = DBSCAN(eps=eps, min_samples=min_samples)
p_cluster.fit(points)
clusters = {}
for i, label in enumerate(p_cluster.labels_):
if label in clusters.keys():
clusters[label].append(points[i])
else:
clusters[label] = [points[i]]
centroids = []
biggest_centroid_l = -float("inf")
biggest_centroid = None
for label, n_cluster in clusters.items():
centroid = compute_centroid(n_cluster)
centroids.append(centroid)
if label >= 0 and len(n_cluster) >= biggest_centroid_l:
biggest_centroid_l = len(n_cluster)
biggest_centroid = centroid
if biggest_centroid is None:
biggest_centroid = compute_centroid(points)
return biggest_centroid, cluster | Updates the centroid of a location cluster with another point
Args:
point (:obj:`Point`): Point to add to the cluster
cluster (:obj:`list` of :obj:`Point`): Location cluster
max_distance (float): Max neighbour distance
min_samples (int): Minimum number of samples
Returns:
(:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid
and new point cluster (given cluster + given point) | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L49-L92 |
ruipgil/TrackToTrip | tracktotrip/location.py | query_foursquare | def query_foursquare(point, max_distance, client_id, client_secret):
""" Queries Squarespace API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
client_id (str): Valid Foursquare client id
client_secret (str): Valid Foursquare client secret
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'distance': 19,
'types': 'Commerce',
'suggestion_type': 'FOURSQUARE'
}
"""
if not client_id:
return []
if not client_secret:
return []
if from_cache(FS_CACHE, point, max_distance):
return from_cache(FS_CACHE, point, max_distance)
url = FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance)
req = requests.get(url)
if req.status_code != 200:
return []
response = req.json()
result = []
venues = response['response']['venues']
for venue in venues:
name = venue['name']
distance = venue['location']['distance']
categories = [c['shortName'] for c in venue['categories']]
result.append({
'label': name,
'distance': distance,
'types': categories,
'suggestion_type': 'FOURSQUARE'
})
# final_results = sorted(result, key=lambda elm: elm['distance'])
foursquare_insert_cache(point, result)
return result | python | def query_foursquare(point, max_distance, client_id, client_secret):
""" Queries Squarespace API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
client_id (str): Valid Foursquare client id
client_secret (str): Valid Foursquare client secret
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'distance': 19,
'types': 'Commerce',
'suggestion_type': 'FOURSQUARE'
}
"""
if not client_id:
return []
if not client_secret:
return []
if from_cache(FS_CACHE, point, max_distance):
return from_cache(FS_CACHE, point, max_distance)
url = FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance)
req = requests.get(url)
if req.status_code != 200:
return []
response = req.json()
result = []
venues = response['response']['venues']
for venue in venues:
name = venue['name']
distance = venue['location']['distance']
categories = [c['shortName'] for c in venue['categories']]
result.append({
'label': name,
'distance': distance,
'types': categories,
'suggestion_type': 'FOURSQUARE'
})
# final_results = sorted(result, key=lambda elm: elm['distance'])
foursquare_insert_cache(point, result)
return result | Queries Squarespace API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
client_id (str): Valid Foursquare client id
client_secret (str): Valid Foursquare client secret
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'distance': 19,
'types': 'Commerce',
'suggestion_type': 'FOURSQUARE'
} | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L94-L142 |
ruipgil/TrackToTrip | tracktotrip/location.py | query_google | def query_google(point, max_distance, key):
""" Queries google maps API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
key (str): Valid google maps api key
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'types': 'Commerce',
'suggestion_type': 'GOOGLE'
}
"""
if not key:
return []
if from_cache(GG_CACHE, point, max_distance):
return from_cache(GG_CACHE, point, max_distance)
req = requests.get(GOOGLE_PLACES_URL % (
point.lat,
point.lon,
max_distance,
key
))
if req.status_code != 200:
return []
response = req.json()
results = response['results']
# l = len(results)
final_results = []
for local in results:
final_results.append({
'label': local['name'],
'distance': Point(local['geometry']['location']['lat'], local['geometry']['location']['lng'], None).distance(point),
# 'rank': (l-i)/float(l),
'types': local['types'],
'suggestion_type': 'GOOGLE'
})
google_insert_cache(point, final_results)
return final_results | python | def query_google(point, max_distance, key):
""" Queries google maps API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
key (str): Valid google maps api key
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'types': 'Commerce',
'suggestion_type': 'GOOGLE'
}
"""
if not key:
return []
if from_cache(GG_CACHE, point, max_distance):
return from_cache(GG_CACHE, point, max_distance)
req = requests.get(GOOGLE_PLACES_URL % (
point.lat,
point.lon,
max_distance,
key
))
if req.status_code != 200:
return []
response = req.json()
results = response['results']
# l = len(results)
final_results = []
for local in results:
final_results.append({
'label': local['name'],
'distance': Point(local['geometry']['location']['lat'], local['geometry']['location']['lng'], None).distance(point),
# 'rank': (l-i)/float(l),
'types': local['types'],
'suggestion_type': 'GOOGLE'
})
google_insert_cache(point, final_results)
return final_results | Queries google maps API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
key (str): Valid google maps api key
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'types': 'Commerce',
'suggestion_type': 'GOOGLE'
} | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L145-L189 |
ruipgil/TrackToTrip | tracktotrip/location.py | infer_location | def infer_location(
point,
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
):
""" Infers the semantic location of a (point) place.
Args:
points (:obj:`Point`): Point location to infer
location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...)
max_distance (float): Max distance to a position, in meters
google_key (str): Valid google maps api key
foursquare_client_id (str): Valid Foursquare client id
foursquare_client_secret (str): Valid Foursquare client secret
limit (int): Results limit
Returns:
:obj:`Location`: with top match, and alternatives
"""
locations = []
if location_query is not None:
queried_locations = location_query(point, max_distance)
for (label, centroid, _) in queried_locations:
locations.append({
'label': unicode(label, 'utf-8'),
'distance': centroid.distance(point),
# 'centroid': centroid,
'suggestion_type': 'KB'
})
api_locations = []
if len(locations) <= limit:
if google_key:
google_locs = query_google(point, max_distance, google_key)
api_locations.extend(google_locs)
if foursquare_client_id and foursquare_client_secret:
foursquare_locs = query_foursquare(
point,
max_distance,
foursquare_client_id,
foursquare_client_secret
)
api_locations.extend(foursquare_locs)
if len(locations) > 0 or len(api_locations) > 0:
locations = sorted(locations, key=lambda d: d['distance'])
api_locations = sorted(api_locations, key=lambda d: d['distance'])
locations = (locations + api_locations)[:limit]
return Location(locations[0]['label'], point, locations)
else:
return Location('#?', point, []) | python | def infer_location(
point,
location_query,
max_distance,
google_key,
foursquare_client_id,
foursquare_client_secret,
limit
):
""" Infers the semantic location of a (point) place.
Args:
points (:obj:`Point`): Point location to infer
location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...)
max_distance (float): Max distance to a position, in meters
google_key (str): Valid google maps api key
foursquare_client_id (str): Valid Foursquare client id
foursquare_client_secret (str): Valid Foursquare client secret
limit (int): Results limit
Returns:
:obj:`Location`: with top match, and alternatives
"""
locations = []
if location_query is not None:
queried_locations = location_query(point, max_distance)
for (label, centroid, _) in queried_locations:
locations.append({
'label': unicode(label, 'utf-8'),
'distance': centroid.distance(point),
# 'centroid': centroid,
'suggestion_type': 'KB'
})
api_locations = []
if len(locations) <= limit:
if google_key:
google_locs = query_google(point, max_distance, google_key)
api_locations.extend(google_locs)
if foursquare_client_id and foursquare_client_secret:
foursquare_locs = query_foursquare(
point,
max_distance,
foursquare_client_id,
foursquare_client_secret
)
api_locations.extend(foursquare_locs)
if len(locations) > 0 or len(api_locations) > 0:
locations = sorted(locations, key=lambda d: d['distance'])
api_locations = sorted(api_locations, key=lambda d: d['distance'])
locations = (locations + api_locations)[:limit]
return Location(locations[0]['label'], point, locations)
else:
return Location('#?', point, []) | Infers the semantic location of a (point) place.
Args:
points (:obj:`Point`): Point location to infer
location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...)
max_distance (float): Max distance to a position, in meters
google_key (str): Valid google maps api key
foursquare_client_id (str): Valid Foursquare client id
foursquare_client_secret (str): Valid Foursquare client secret
limit (int): Results limit
Returns:
:obj:`Location`: with top match, and alternatives | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L191-L245 |
ruipgil/TrackToTrip | tracktotrip/utils.py | estimate_meters_to_deg | def estimate_meters_to_deg(meters, precision=PRECISION_PERSON):
""" Meters to degrees estimation
See https://en.wikipedia.org/wiki/Decimal_degrees
Args:
meters (float)
precision (float)
Returns:
float: meters in degrees approximation
"""
line = PRECISION_TABLE[precision]
dec = 1/float(10 ** precision)
return meters / line[3] * dec | python | def estimate_meters_to_deg(meters, precision=PRECISION_PERSON):
""" Meters to degrees estimation
See https://en.wikipedia.org/wiki/Decimal_degrees
Args:
meters (float)
precision (float)
Returns:
float: meters in degrees approximation
"""
line = PRECISION_TABLE[precision]
dec = 1/float(10 ** precision)
return meters / line[3] * dec | Meters to degrees estimation
See https://en.wikipedia.org/wiki/Decimal_degrees
Args:
meters (float)
precision (float)
Returns:
float: meters in degrees approximation | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L21-L34 |
ruipgil/TrackToTrip | tracktotrip/utils.py | isostr_to_datetime | def isostr_to_datetime(dt_str):
""" Converts iso formated text string into a datetime object
Args:
dt_str (str): ISO formated text string
Returns:
:obj:`datetime.datetime`
"""
if len(dt_str) <= 20:
return datetime.datetime.strptime(dt_str, "%Y-%m-%dT%H:%M:%SZ")
else:
dt_str = dt_str.split(".")
return isostr_to_datetime("%sZ" % dt_str[0]) | python | def isostr_to_datetime(dt_str):
""" Converts iso formated text string into a datetime object
Args:
dt_str (str): ISO formated text string
Returns:
:obj:`datetime.datetime`
"""
if len(dt_str) <= 20:
return datetime.datetime.strptime(dt_str, "%Y-%m-%dT%H:%M:%SZ")
else:
dt_str = dt_str.split(".")
return isostr_to_datetime("%sZ" % dt_str[0]) | Converts iso formated text string into a datetime object
Args:
dt_str (str): ISO formated text string
Returns:
:obj:`datetime.datetime` | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L36-L48 |
ruipgil/TrackToTrip | tracktotrip/utils.py | pairwise | def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
now, nxt = tee(iterable)
next(nxt, None)
return izip(now, nxt) | python | def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
now, nxt = tee(iterable)
next(nxt, None)
return izip(now, nxt) | s -> (s0,s1), (s1,s2), (s2, s3), ... | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L50-L54 |
ruipgil/TrackToTrip | tracktotrip/classifier.py | Classifier.__learn_labels | def __learn_labels(self, labels):
""" Learns new labels, this method is intended for internal use
Args:
labels (:obj:`list` of :obj:`str`): Labels to learn
"""
if self.feature_length > 0:
result = list(self.labels.classes_)
else:
result = []
for label in labels:
result.append(label)
self.labels.fit(result) | python | def __learn_labels(self, labels):
""" Learns new labels, this method is intended for internal use
Args:
labels (:obj:`list` of :obj:`str`): Labels to learn
"""
if self.feature_length > 0:
result = list(self.labels.classes_)
else:
result = []
for label in labels:
result.append(label)
self.labels.fit(result) | Learns new labels, this method is intended for internal use
Args:
labels (:obj:`list` of :obj:`str`): Labels to learn | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L28-L41 |
ruipgil/TrackToTrip | tracktotrip/classifier.py | Classifier.learn | def learn(self, features, labels):
""" Fits the classifier
If it's state is empty, the classifier is fitted, if not
the classifier is partially fitted.
See sklearn's SGDClassifier fit and partial_fit methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
labels (:obj:`list` of :obj:`str`): Labels for each set of features.
New features are learnt.
"""
labels = np.ravel(labels)
self.__learn_labels(labels)
if len(labels) == 0:
return
labels = self.labels.transform(labels)
if self.feature_length > 0 and hasattr(self.clf, 'partial_fit'):
# FIXME? check docs, may need to pass class=[...]
self.clf = self.clf.partial_fit(features, labels)
else:
self.clf = self.clf.fit(features, labels)
self.feature_length = len(features[0]) | python | def learn(self, features, labels):
""" Fits the classifier
If it's state is empty, the classifier is fitted, if not
the classifier is partially fitted.
See sklearn's SGDClassifier fit and partial_fit methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
labels (:obj:`list` of :obj:`str`): Labels for each set of features.
New features are learnt.
"""
labels = np.ravel(labels)
self.__learn_labels(labels)
if len(labels) == 0:
return
labels = self.labels.transform(labels)
if self.feature_length > 0 and hasattr(self.clf, 'partial_fit'):
# FIXME? check docs, may need to pass class=[...]
self.clf = self.clf.partial_fit(features, labels)
else:
self.clf = self.clf.fit(features, labels)
self.feature_length = len(features[0]) | Fits the classifier
If it's state is empty, the classifier is fitted, if not
the classifier is partially fitted.
See sklearn's SGDClassifier fit and partial_fit methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
labels (:obj:`list` of :obj:`str`): Labels for each set of features.
New features are learnt. | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L43-L66 |
ruipgil/TrackToTrip | tracktotrip/classifier.py | Classifier.predict | def predict(self, features, verbose=False):
""" Probability estimates of each feature
See sklearn's SGDClassifier predict and predict_proba methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
verbose: Boolean, optional. If true returns an array where each
element is a dictionary, where keys are labels and values are
the respective probabilities. Defaults to False.
Returns:
Array of array of numbers, or array of dictionaries if verbose i
True
"""
probs = self.clf.predict_proba(features)
if verbose:
labels = self.labels.classes_
res = []
for prob in probs:
vals = {}
for i, val in enumerate(prob):
label = labels[i]
vals[label] = val
res.append(vals)
return res
else:
return probs | python | def predict(self, features, verbose=False):
""" Probability estimates of each feature
See sklearn's SGDClassifier predict and predict_proba methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
verbose: Boolean, optional. If true returns an array where each
element is a dictionary, where keys are labels and values are
the respective probabilities. Defaults to False.
Returns:
Array of array of numbers, or array of dictionaries if verbose i
True
"""
probs = self.clf.predict_proba(features)
if verbose:
labels = self.labels.classes_
res = []
for prob in probs:
vals = {}
for i, val in enumerate(prob):
label = labels[i]
vals[label] = val
res.append(vals)
return res
else:
return probs | Probability estimates of each feature
See sklearn's SGDClassifier predict and predict_proba methods.
Args:
features (:obj:`list` of :obj:`list` of :obj:`float`)
verbose: Boolean, optional. If true returns an array where each
element is a dictionary, where keys are labels and values are
the respective probabilities. Defaults to False.
Returns:
Array of array of numbers, or array of dictionaries if verbose i
True | https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L72-L98 |
the-tale/pynames | pynames/utils.py | is_file | def is_file(obj):
"""Retrun True is object has 'next', '__enter__' and '__exit__' methods.
Suitable to check both builtin ``file`` and ``django.core.file.File`` instances.
"""
return all(
[callable(getattr(obj, method_name, None)) for method_name in ('__enter__', '__exit__')]
+
[any([callable(getattr(obj, method_name, None)) for method_name in ('next', '__iter__')])]
) | python | def is_file(obj):
"""Retrun True is object has 'next', '__enter__' and '__exit__' methods.
Suitable to check both builtin ``file`` and ``django.core.file.File`` instances.
"""
return all(
[callable(getattr(obj, method_name, None)) for method_name in ('__enter__', '__exit__')]
+
[any([callable(getattr(obj, method_name, None)) for method_name in ('next', '__iter__')])]
) | Retrun True is object has 'next', '__enter__' and '__exit__' methods.
Suitable to check both builtin ``file`` and ``django.core.file.File`` instances. | https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/utils.py#L40-L50 |
the-tale/pynames | pynames/utils.py | file_adapter | def file_adapter(file_or_path):
"""Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects."""
if is_file(file_or_path):
file_obj = file_or_path
else:
file_obj = open(file_or_path, 'rb')
yield file_obj
file_obj.close() | python | def file_adapter(file_or_path):
"""Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects."""
if is_file(file_or_path):
file_obj = file_or_path
else:
file_obj = open(file_or_path, 'rb')
yield file_obj
file_obj.close() | Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects. | https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/utils.py#L54-L61 |
the-tale/pynames | pynames/from_tables_generator.py | FromCSVTablesGenerator.source_loader | def source_loader(self, source_paths, create_missing_tables=True):
"""Load source from 3 csv files.
First file should contain global settings:
* ``native_lagnauge,languages`` header on first row
* appropriate values on following rows
Example::
native_lagnauge,languages
ru,ru
,en
Second file should contain templates:
* ``template_name,probability,genders,template`` header on first row
* appropriate values on following rows (separate values with semicolon ";" in template column)
Example::
template_name,probability,genders,template
male_1,5,m,prefixes;male_suffixes
baby_1,1,m;f,prefixes;descriptive
Third file should contain tables with values for template slugs in all languages:
* first row should contain slugs with language code after colon for each
* appropriate values on following rows. Multiple forms may be specified using semicolon as separator
Example::
prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en
Бж,Bzh,пра,pra,быстряк;быстряку,fasty
дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov
Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language
If tables are missing for some slug then it is automatically created with values equeal to slug itself.
So you may use some slugs without specifying tables data for them. Example for apostrophe and space:
male_1,5,m,prefixes;';male_suffixes
male_full,5,m,first_name; ;last_name
"""
if not isinstance(source_paths, Iterable) or len(source_paths) < 3:
raise TypeError('FromCSVTablesGenerator.source_loader accepts list of 3 paths as argument. Got `%s` instead' % source_paths)
self.native_language = ''
self.languages = []
self.templates = []
self.tables = {}
self.load_settings(source_paths[0])
template_slugs = self.load_templates(source_paths[1])
self.load_tables(source_paths[2])
if create_missing_tables:
self.create_missing_tables(template_slugs)
self.full_forms_for_languages = set() | python | def source_loader(self, source_paths, create_missing_tables=True):
"""Load source from 3 csv files.
First file should contain global settings:
* ``native_lagnauge,languages`` header on first row
* appropriate values on following rows
Example::
native_lagnauge,languages
ru,ru
,en
Second file should contain templates:
* ``template_name,probability,genders,template`` header on first row
* appropriate values on following rows (separate values with semicolon ";" in template column)
Example::
template_name,probability,genders,template
male_1,5,m,prefixes;male_suffixes
baby_1,1,m;f,prefixes;descriptive
Third file should contain tables with values for template slugs in all languages:
* first row should contain slugs with language code after colon for each
* appropriate values on following rows. Multiple forms may be specified using semicolon as separator
Example::
prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en
Бж,Bzh,пра,pra,быстряк;быстряку,fasty
дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov
Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language
If tables are missing for some slug then it is automatically created with values equeal to slug itself.
So you may use some slugs without specifying tables data for them. Example for apostrophe and space:
male_1,5,m,prefixes;';male_suffixes
male_full,5,m,first_name; ;last_name
"""
if not isinstance(source_paths, Iterable) or len(source_paths) < 3:
raise TypeError('FromCSVTablesGenerator.source_loader accepts list of 3 paths as argument. Got `%s` instead' % source_paths)
self.native_language = ''
self.languages = []
self.templates = []
self.tables = {}
self.load_settings(source_paths[0])
template_slugs = self.load_templates(source_paths[1])
self.load_tables(source_paths[2])
if create_missing_tables:
self.create_missing_tables(template_slugs)
self.full_forms_for_languages = set() | Load source from 3 csv files.
First file should contain global settings:
* ``native_lagnauge,languages`` header on first row
* appropriate values on following rows
Example::
native_lagnauge,languages
ru,ru
,en
Second file should contain templates:
* ``template_name,probability,genders,template`` header on first row
* appropriate values on following rows (separate values with semicolon ";" in template column)
Example::
template_name,probability,genders,template
male_1,5,m,prefixes;male_suffixes
baby_1,1,m;f,prefixes;descriptive
Third file should contain tables with values for template slugs in all languages:
* first row should contain slugs with language code after colon for each
* appropriate values on following rows. Multiple forms may be specified using semicolon as separator
Example::
prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en
Бж,Bzh,пра,pra,быстряк;быстряку,fasty
дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov
Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language
If tables are missing for some slug then it is automatically created with values equeal to slug itself.
So you may use some slugs without specifying tables data for them. Example for apostrophe and space:
male_1,5,m,prefixes;';male_suffixes
male_full,5,m,first_name; ;last_name | https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/from_tables_generator.py#L179-L238 |
rtlee9/serveit | examples/pytorch_imagenet_resnet50.py | loader | def loader():
"""Load image from URL, and preprocess for Resnet."""
url = request.args.get('url') # read image URL as a request URL param
response = requests.get(url) # make request to static image file
return response.content | python | def loader():
"""Load image from URL, and preprocess for Resnet."""
url = request.args.get('url') # read image URL as a request URL param
response = requests.get(url) # make request to static image file
return response.content | Load image from URL, and preprocess for Resnet. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/pytorch_imagenet_resnet50.py#L32-L36 |
rtlee9/serveit | examples/pytorch_imagenet_resnet50.py | postprocessor | def postprocessor(prediction):
"""Map prediction tensor to labels."""
prediction = prediction.data.numpy()[0]
top_predictions = prediction.argsort()[-3:][::-1]
return [labels[prediction] for prediction in top_predictions] | python | def postprocessor(prediction):
"""Map prediction tensor to labels."""
prediction = prediction.data.numpy()[0]
top_predictions = prediction.argsort()[-3:][::-1]
return [labels[prediction] for prediction in top_predictions] | Map prediction tensor to labels. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/pytorch_imagenet_resnet50.py#L48-L52 |
rtlee9/serveit | serveit/log_utils.py | get_logger | def get_logger(name):
"""Get a logger with the specified name."""
logger = logging.getLogger(name)
logger.setLevel(getenv('LOGLEVEL', 'INFO'))
return logger | python | def get_logger(name):
"""Get a logger with the specified name."""
logger = logging.getLogger(name)
logger.setLevel(getenv('LOGLEVEL', 'INFO'))
return logger | Get a logger with the specified name. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/log_utils.py#L8-L12 |
rtlee9/serveit | serveit/utils.py | make_serializable | def make_serializable(data):
"""Ensure data is serializable."""
if is_serializable(data):
return data
# if numpy array convert to list
try:
return data.tolist()
except AttributeError:
pass
except Exception as e:
logger.debug('{} exception ({}): {}'.format(type(e).__name__, e, data))
# try serializing each child element
if isinstance(data, dict):
return {key: make_serializable(value) for key, value in data.items()}
try:
return [make_serializable(element) for element in data]
except TypeError: # not iterable
pass
except Exception:
logger.debug('Could not serialize {}; converting to string'.format(data))
# last resort: convert to string
return str(data) | python | def make_serializable(data):
"""Ensure data is serializable."""
if is_serializable(data):
return data
# if numpy array convert to list
try:
return data.tolist()
except AttributeError:
pass
except Exception as e:
logger.debug('{} exception ({}): {}'.format(type(e).__name__, e, data))
# try serializing each child element
if isinstance(data, dict):
return {key: make_serializable(value) for key, value in data.items()}
try:
return [make_serializable(element) for element in data]
except TypeError: # not iterable
pass
except Exception:
logger.debug('Could not serialize {}; converting to string'.format(data))
# last resort: convert to string
return str(data) | Ensure data is serializable. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L10-L34 |
rtlee9/serveit | serveit/utils.py | json_numpy_loader | def json_numpy_loader():
"""Load data from JSON request and convert to numpy array."""
data = request.get_json()
logger.debug('Received JSON data of length {:,}'.format(len(data)))
return data | python | def json_numpy_loader():
"""Load data from JSON request and convert to numpy array."""
data = request.get_json()
logger.debug('Received JSON data of length {:,}'.format(len(data)))
return data | Load data from JSON request and convert to numpy array. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L46-L50 |
rtlee9/serveit | serveit/utils.py | get_bytes_to_image_callback | def get_bytes_to_image_callback(image_dims=(224, 224)):
"""Return a callback to process image bytes for ImageNet."""
from keras.preprocessing import image
import numpy as np
from PIL import Image
from io import BytesIO
def preprocess_image_bytes(data_bytes):
"""Process image bytes for ImageNet."""
try:
img = Image.open(BytesIO(data_bytes)) # open image
except OSError as e:
raise ValueError('Please provide a raw image')
img = img.resize(image_dims, Image.ANTIALIAS) # model requires 224x224 pixels
x = image.img_to_array(img) # convert image to numpy array
x = np.expand_dims(x, axis=0) # model expects dim 0 to be iterable across images
return x
return preprocess_image_bytes | python | def get_bytes_to_image_callback(image_dims=(224, 224)):
"""Return a callback to process image bytes for ImageNet."""
from keras.preprocessing import image
import numpy as np
from PIL import Image
from io import BytesIO
def preprocess_image_bytes(data_bytes):
"""Process image bytes for ImageNet."""
try:
img = Image.open(BytesIO(data_bytes)) # open image
except OSError as e:
raise ValueError('Please provide a raw image')
img = img.resize(image_dims, Image.ANTIALIAS) # model requires 224x224 pixels
x = image.img_to_array(img) # convert image to numpy array
x = np.expand_dims(x, axis=0) # model expects dim 0 to be iterable across images
return x
return preprocess_image_bytes | Return a callback to process image bytes for ImageNet. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L53-L70 |
rtlee9/serveit | serveit/server.py | exception_log_and_respond | def exception_log_and_respond(exception, logger, message, status_code):
"""Log an error and send jsonified respond."""
logger.error(message, exc_info=True)
return make_response(
message,
status_code,
dict(exception_type=type(exception).__name__, exception_message=str(exception)),
) | python | def exception_log_and_respond(exception, logger, message, status_code):
"""Log an error and send jsonified respond."""
logger.error(message, exc_info=True)
return make_response(
message,
status_code,
dict(exception_type=type(exception).__name__, exception_message=str(exception)),
) | Log an error and send jsonified respond. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L12-L19 |
rtlee9/serveit | serveit/server.py | make_response | def make_response(message, status_code, details=None):
"""Make a jsonified response with specified message and status code."""
response_body = dict(message=message)
if details:
response_body['details'] = details
response = jsonify(response_body)
response.status_code = status_code
return response | python | def make_response(message, status_code, details=None):
"""Make a jsonified response with specified message and status code."""
response_body = dict(message=message)
if details:
response_body['details'] = details
response = jsonify(response_body)
response.status_code = status_code
return response | Make a jsonified response with specified message and status code. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L22-L29 |
rtlee9/serveit | serveit/server.py | ModelServer._create_prediction_endpoint | def _create_prediction_endpoint(
self,
to_numpy=True,
data_loader=json_numpy_loader,
preprocessor=lambda x: x,
input_validation=lambda data: (True, None),
postprocessor=lambda x: x,
make_serializable_post=True):
"""Create an endpoint to serve predictions.
Arguments:
- input_validation (fn): takes a numpy array as input;
returns True if validation passes and False otherwise
- data_loader (fn): reads flask request and returns data preprocessed to be
used in the `predict` method
- postprocessor (fn): transforms the predictions from the `predict` method
"""
# copy instance variables to local scope for resource class
predict = self.predict
logger = self.app.logger
# create restful resource
class Predictions(Resource):
@staticmethod
def post():
# read data from API request
try:
data = data_loader()
except Exception as e:
return exception_log_and_respond(e, logger, 'Unable to fetch data', 400)
try:
if hasattr(preprocessor, '__iter__'):
for preprocessor_step in preprocessor:
data = preprocessor_step(data)
else:
data = preprocessor(data) # preprocess data
data = np.array(data) if to_numpy else data # convert to numpy
except Exception as e:
return exception_log_and_respond(e, logger, 'Could not preprocess data', 400)
# sanity check using user defined callback (default is no check)
validation_pass, validation_reason = input_validation(data)
if not validation_pass:
# if validation fails, log the reason code, log the data, and send a 400 response
validation_message = 'Input validation failed with reason: {}'.format(validation_reason)
logger.error(validation_message)
logger.debug('Data: {}'.format(data))
return make_response(validation_message, 400)
try:
prediction = predict(data)
except Exception as e:
# log exception and return the message in a 500 response
logger.debug('Data: {}'.format(data))
return exception_log_and_respond(e, logger, 'Unable to make prediction', 500)
logger.debug(prediction)
try:
# preprocess data
if hasattr(postprocessor, '__iter__'):
for postprocessor_step in postprocessor:
prediction = postprocessor_step(prediction)
else:
prediction = postprocessor(prediction)
# cast to serializable types
if make_serializable_post:
return make_serializable(prediction)
else:
return prediction
except Exception as e:
return exception_log_and_respond(e, logger, 'Postprocessing failed', 500)
# map resource to endpoint
self.api.add_resource(Predictions, '/predictions') | python | def _create_prediction_endpoint(
self,
to_numpy=True,
data_loader=json_numpy_loader,
preprocessor=lambda x: x,
input_validation=lambda data: (True, None),
postprocessor=lambda x: x,
make_serializable_post=True):
"""Create an endpoint to serve predictions.
Arguments:
- input_validation (fn): takes a numpy array as input;
returns True if validation passes and False otherwise
- data_loader (fn): reads flask request and returns data preprocessed to be
used in the `predict` method
- postprocessor (fn): transforms the predictions from the `predict` method
"""
# copy instance variables to local scope for resource class
predict = self.predict
logger = self.app.logger
# create restful resource
class Predictions(Resource):
@staticmethod
def post():
# read data from API request
try:
data = data_loader()
except Exception as e:
return exception_log_and_respond(e, logger, 'Unable to fetch data', 400)
try:
if hasattr(preprocessor, '__iter__'):
for preprocessor_step in preprocessor:
data = preprocessor_step(data)
else:
data = preprocessor(data) # preprocess data
data = np.array(data) if to_numpy else data # convert to numpy
except Exception as e:
return exception_log_and_respond(e, logger, 'Could not preprocess data', 400)
# sanity check using user defined callback (default is no check)
validation_pass, validation_reason = input_validation(data)
if not validation_pass:
# if validation fails, log the reason code, log the data, and send a 400 response
validation_message = 'Input validation failed with reason: {}'.format(validation_reason)
logger.error(validation_message)
logger.debug('Data: {}'.format(data))
return make_response(validation_message, 400)
try:
prediction = predict(data)
except Exception as e:
# log exception and return the message in a 500 response
logger.debug('Data: {}'.format(data))
return exception_log_and_respond(e, logger, 'Unable to make prediction', 500)
logger.debug(prediction)
try:
# preprocess data
if hasattr(postprocessor, '__iter__'):
for postprocessor_step in postprocessor:
prediction = postprocessor_step(prediction)
else:
prediction = postprocessor(prediction)
# cast to serializable types
if make_serializable_post:
return make_serializable(prediction)
else:
return prediction
except Exception as e:
return exception_log_and_respond(e, logger, 'Postprocessing failed', 500)
# map resource to endpoint
self.api.add_resource(Predictions, '/predictions') | Create an endpoint to serve predictions.
Arguments:
- input_validation (fn): takes a numpy array as input;
returns True if validation passes and False otherwise
- data_loader (fn): reads flask request and returns data preprocessed to be
used in the `predict` method
- postprocessor (fn): transforms the predictions from the `predict` method | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L77-L152 |
rtlee9/serveit | serveit/server.py | ModelServer.create_info_endpoint | def create_info_endpoint(self, name, data):
"""Create an endpoint to serve info GET requests."""
# make sure data is serializable
data = make_serializable(data)
# create generic restful resource to serve static JSON data
class InfoBase(Resource):
@staticmethod
def get():
return data
def info_factory(name):
"""Return an Info derivative resource."""
class NewClass(InfoBase):
pass
NewClass.__name__ = "{}_{}".format(name, InfoBase.__name__)
return NewClass
path = '/info/{}'.format(name)
self.api.add_resource(info_factory(name), path)
logger.info('Regestered informational resource to {} (available via GET)'.format(path))
logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, data)) | python | def create_info_endpoint(self, name, data):
"""Create an endpoint to serve info GET requests."""
# make sure data is serializable
data = make_serializable(data)
# create generic restful resource to serve static JSON data
class InfoBase(Resource):
@staticmethod
def get():
return data
def info_factory(name):
"""Return an Info derivative resource."""
class NewClass(InfoBase):
pass
NewClass.__name__ = "{}_{}".format(name, InfoBase.__name__)
return NewClass
path = '/info/{}'.format(name)
self.api.add_resource(info_factory(name), path)
logger.info('Regestered informational resource to {} (available via GET)'.format(path))
logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, data)) | Create an endpoint to serve info GET requests. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L154-L175 |
rtlee9/serveit | serveit/server.py | ModelServer._create_model_info_endpoint | def _create_model_info_endpoint(self, path='/info/model'):
"""Create an endpoint to serve info GET requests."""
model = self.model
# parse model details
model_details = {}
for key, value in model.__dict__.items():
model_details[key] = make_serializable(value)
# create generic restful resource to serve model information as JSON
class ModelInfo(Resource):
@staticmethod
def get():
return model_details
self.api.add_resource(ModelInfo, path)
self.app.logger.info('Regestered informational resource to {} (available via GET)'.format(path))
self.app.logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, model_details)) | python | def _create_model_info_endpoint(self, path='/info/model'):
"""Create an endpoint to serve info GET requests."""
model = self.model
# parse model details
model_details = {}
for key, value in model.__dict__.items():
model_details[key] = make_serializable(value)
# create generic restful resource to serve model information as JSON
class ModelInfo(Resource):
@staticmethod
def get():
return model_details
self.api.add_resource(ModelInfo, path)
self.app.logger.info('Regestered informational resource to {} (available via GET)'.format(path))
self.app.logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, model_details)) | Create an endpoint to serve info GET requests. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L177-L194 |
rtlee9/serveit | serveit/server.py | ModelServer.serve | def serve(self, host='127.0.0.1', port=5000):
"""Serve predictions as an API endpoint."""
from meinheld import server, middleware
# self.app.run(host=host, port=port)
server.listen((host, port))
server.run(middleware.WebSocketMiddleware(self.app)) | python | def serve(self, host='127.0.0.1', port=5000):
"""Serve predictions as an API endpoint."""
from meinheld import server, middleware
# self.app.run(host=host, port=port)
server.listen((host, port))
server.run(middleware.WebSocketMiddleware(self.app)) | Serve predictions as an API endpoint. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L196-L201 |
rtlee9/serveit | examples/keras_boston_neural_net.py | get_model | def get_model(input_dim):
"""Create and compile simple model."""
model = Sequential()
model.add(Dense(100, input_dim=input_dim, activation='sigmoid'))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='SGD')
return model | python | def get_model(input_dim):
"""Create and compile simple model."""
model = Sequential()
model.add(Dense(100, input_dim=input_dim, activation='sigmoid'))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='SGD')
return model | Create and compile simple model. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/keras_boston_neural_net.py#L8-L14 |
rtlee9/serveit | examples/keras_boston_neural_net.py | validator | def validator(input_data):
"""Simple model input validator.
Validator ensures the input data array is
- two dimensional
- has the correct number of features.
"""
global data
# check num dims
if input_data.ndim != 2:
return False, 'Data should have two dimensions.'
# check number of columns
if input_data.shape[1] != data.data.shape[1]:
reason = '{} features required, {} features provided'.format(
data.data.shape[1], input_data.shape[1])
return False, reason
# validation passed
return True, None | python | def validator(input_data):
"""Simple model input validator.
Validator ensures the input data array is
- two dimensional
- has the correct number of features.
"""
global data
# check num dims
if input_data.ndim != 2:
return False, 'Data should have two dimensions.'
# check number of columns
if input_data.shape[1] != data.data.shape[1]:
reason = '{} features required, {} features provided'.format(
data.data.shape[1], input_data.shape[1])
return False, reason
# validation passed
return True, None | Simple model input validator.
Validator ensures the input data array is
- two dimensional
- has the correct number of features. | https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/keras_boston_neural_net.py#L22-L39 |
OTTOMATIC-IO/pycine | pycine/file.py | read_chd_header | def read_chd_header(chd_file):
"""
read the .chd header file created when Vision Research software saves the images in a file format other than .cine
"""
with open(chd_file, "rb") as f:
header = {
"cinefileheader": cine.CINEFILEHEADER(),
"bitmapinfoheader": cine.BITMAPINFOHEADER(),
"setup": cine.SETUP(),
}
f.readinto(header["cinefileheader"])
f.readinto(header["bitmapinfoheader"])
f.readinto(header["setup"])
return header | python | def read_chd_header(chd_file):
"""
read the .chd header file created when Vision Research software saves the images in a file format other than .cine
"""
with open(chd_file, "rb") as f:
header = {
"cinefileheader": cine.CINEFILEHEADER(),
"bitmapinfoheader": cine.BITMAPINFOHEADER(),
"setup": cine.SETUP(),
}
f.readinto(header["cinefileheader"])
f.readinto(header["bitmapinfoheader"])
f.readinto(header["setup"])
return header | read the .chd header file created when Vision Research software saves the images in a file format other than .cine | https://github.com/OTTOMATIC-IO/pycine/blob/8cc27b762796456e36fffe42df940f232e402974/pycine/file.py#L31-L46 |
jackmaney/python-stdlib-list | stdlib_list/fetch.py | fetch_list | def fetch_list(version=None):
"""
For the given version of Python (or all versions if no version is set), this function:
- Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to
grab and parse the Sphinx object inventory
(ie ``http://docs.python.org/<version>/objects.inv``) for the given version.
- Grabs the names of all of the modules in the parsed inventory data.
- Writes the sorted list of module names to file (within the `lists` subfolder).
:param str|None version: A specified version of Python. If not specified, then all
available versions of Python will have their inventory objects fetched
and parsed, and have their module names written to file.
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``)
"""
if version is None:
versions = short_versions
else:
versions = [get_canonical_version(version)]
for version in versions:
url = "http://docs.python.org/{}/objects.inv".format(version)
modules = sorted(
list(
fetch_inventory(DummyApp(), "", url).get("py:module").keys()
)
)
with open(os.path.join(list_dir, "{}.txt".format(version)), "w") as f:
for module in modules:
f.write(module)
f.write("\n") | python | def fetch_list(version=None):
"""
For the given version of Python (or all versions if no version is set), this function:
- Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to
grab and parse the Sphinx object inventory
(ie ``http://docs.python.org/<version>/objects.inv``) for the given version.
- Grabs the names of all of the modules in the parsed inventory data.
- Writes the sorted list of module names to file (within the `lists` subfolder).
:param str|None version: A specified version of Python. If not specified, then all
available versions of Python will have their inventory objects fetched
and parsed, and have their module names written to file.
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``)
"""
if version is None:
versions = short_versions
else:
versions = [get_canonical_version(version)]
for version in versions:
url = "http://docs.python.org/{}/objects.inv".format(version)
modules = sorted(
list(
fetch_inventory(DummyApp(), "", url).get("py:module").keys()
)
)
with open(os.path.join(list_dir, "{}.txt".format(version)), "w") as f:
for module in modules:
f.write(module)
f.write("\n") | For the given version of Python (or all versions if no version is set), this function:
- Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to
grab and parse the Sphinx object inventory
(ie ``http://docs.python.org/<version>/objects.inv``) for the given version.
- Grabs the names of all of the modules in the parsed inventory data.
- Writes the sorted list of module names to file (within the `lists` subfolder).
:param str|None version: A specified version of Python. If not specified, then all
available versions of Python will have their inventory objects fetched
and parsed, and have their module names written to file.
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``) | https://github.com/jackmaney/python-stdlib-list/blob/f343504405435fcc4bc49bc064f70006813f6845/stdlib_list/fetch.py#L34-L71 |
jackmaney/python-stdlib-list | stdlib_list/base.py | stdlib_list | def stdlib_list(version=None):
"""
Given a ``version``, return a ``list`` of names of the Python Standard
Libraries for that version. These names are obtained from the Sphinx inventory
file (used in :py:mod:`sphinx.ext.intersphinx`).
:param str|None version: The version (as a string) whose list of libraries you want
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``).
If not specified, the current version of Python will be used.
:return: A list of standard libraries from the specified version of Python
:rtype: list
"""
version = get_canonical_version(version) if version is not None else '.'.join(
str(x) for x in sys.version_info[:2])
module_list_file = os.path.join(list_dir, "{}.txt".format(version))
with open(module_list_file) as f:
result = [y for y in [x.strip() for x in f.readlines()] if y]
return result | python | def stdlib_list(version=None):
"""
Given a ``version``, return a ``list`` of names of the Python Standard
Libraries for that version. These names are obtained from the Sphinx inventory
file (used in :py:mod:`sphinx.ext.intersphinx`).
:param str|None version: The version (as a string) whose list of libraries you want
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``).
If not specified, the current version of Python will be used.
:return: A list of standard libraries from the specified version of Python
:rtype: list
"""
version = get_canonical_version(version) if version is not None else '.'.join(
str(x) for x in sys.version_info[:2])
module_list_file = os.path.join(list_dir, "{}.txt".format(version))
with open(module_list_file) as f:
result = [y for y in [x.strip() for x in f.readlines()] if y]
return result | Given a ``version``, return a ``list`` of names of the Python Standard
Libraries for that version. These names are obtained from the Sphinx inventory
file (used in :py:mod:`sphinx.ext.intersphinx`).
:param str|None version: The version (as a string) whose list of libraries you want
(one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``).
If not specified, the current version of Python will be used.
:return: A list of standard libraries from the specified version of Python
:rtype: list | https://github.com/jackmaney/python-stdlib-list/blob/f343504405435fcc4bc49bc064f70006813f6845/stdlib_list/base.py#L25-L47 |
OTTOMATIC-IO/pycine | pycine/color.py | color_pipeline | def color_pipeline(raw, setup, bpp=12):
"""Order from:
http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884
"""
# 1. Offset the raw image by the amount in flare
print("fFlare: ", setup.fFlare)
# 2. White balance the raw picture using the white balance component of cmatrix
BayerPatterns = {3: "gbrg", 4: "rggb"}
pattern = BayerPatterns[setup.CFA]
raw = whitebalance_raw(raw.astype(np.float32), setup, pattern).astype(np.uint16)
# 3. Debayer the image
rgb_image = cv2.cvtColor(raw, cv2.COLOR_BAYER_GB2RGB)
# convert to float
rgb_image = rgb_image.astype(np.float32) / (2 ** bpp - 1)
# return rgb_image
# 4. Apply the color correction matrix component of cmatrix
#
# From the documentation:
# ...should decompose this
# matrix in two components: a diagonal one with the white balance to be
# applied before interpolation and a normalized one to be applied after
# interpolation.
cmCalib = np.asarray(setup.cmCalib).reshape(3, 3)
# normalize matrix
ccm = cmCalib / cmCalib.sum(axis=1)[:, np.newaxis]
# or should it be normalized this way?
ccm2 = cmCalib.copy()
ccm2[0][0] = 1 - ccm2[0][1] - ccm2[0][2]
ccm2[1][1] = 1 - ccm2[1][0] - ccm2[1][2]
ccm2[2][2] = 1 - ccm2[2][0] - ccm2[2][1]
print("cmCalib", cmCalib)
print("ccm: ", ccm)
print("ccm2", ccm2)
m = np.asarray(
[
1.4956012040024347,
-0.5162879962189262,
0.020686792216491584,
-0.09884672458400766,
0.757682383759598,
0.34116434082440983,
-0.04121405804689133,
-0.5527871476076358,
1.5940012056545272,
]
).reshape(3, 3)
rgb_image = np.dot(rgb_image, m.T)
# rgb_reshaped = rgb_image.reshape((rgb_image.shape[0] * rgb_image.shape[1], rgb_image.shape[2]))
# rgb_image = np.dot(m, rgb_reshaped.T).T.reshape(rgb_image.shape)
# 5. Apply the user RGB matrix umatrix
# cmUser = np.asarray(setup.cmUser).reshape(3, 3)
# rgb_image = np.dot(rgb_image, cmUser.T)
# 6. Offset the image by the amount in offset
print("fOffset: ", setup.fOffset)
# 7. Apply the global gain
print("fGain: ", setup.fGain)
# 8. Apply the per-component gains red, green, blue
print("fGainR, fGainG, fGainB: ", setup.fGainR, setup.fGainG, setup.fGainB)
# 9. Apply the gamma curves; the green channel uses gamma, red uses gamma + rgamma and blue uses gamma + bgamma
print("fGamma, fGammaR, fGammaB: ", setup.fGamma, setup.fGammaR, setup.fGammaB)
rgb_image = apply_gamma(rgb_image, setup)
# 10. Apply the tone curve to each of the red, green, blue channels
fTone = np.asarray(setup.fTone)
print(setup.ToneLabel, setup.TonePoints, fTone)
# 11. Add the pedestals to each color channel, and linearly rescale to keep the white point the same.
print("fPedestalR, fPedestalG, fPedestalB: ", setup.fPedestalR, setup.fPedestalG, setup.fPedestalB)
# 12. Convert to YCrCb using REC709 coefficients
# 13. Scale the Cr and Cb components by chroma.
print("fChroma: ", setup.fChroma)
# 14. Rotate the Cr and Cb components around the origin in the CrCb plane by hue degrees.
print("fHue: ", setup.fHue)
return rgb_image | python | def color_pipeline(raw, setup, bpp=12):
"""Order from:
http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884
"""
# 1. Offset the raw image by the amount in flare
print("fFlare: ", setup.fFlare)
# 2. White balance the raw picture using the white balance component of cmatrix
BayerPatterns = {3: "gbrg", 4: "rggb"}
pattern = BayerPatterns[setup.CFA]
raw = whitebalance_raw(raw.astype(np.float32), setup, pattern).astype(np.uint16)
# 3. Debayer the image
rgb_image = cv2.cvtColor(raw, cv2.COLOR_BAYER_GB2RGB)
# convert to float
rgb_image = rgb_image.astype(np.float32) / (2 ** bpp - 1)
# return rgb_image
# 4. Apply the color correction matrix component of cmatrix
#
# From the documentation:
# ...should decompose this
# matrix in two components: a diagonal one with the white balance to be
# applied before interpolation and a normalized one to be applied after
# interpolation.
cmCalib = np.asarray(setup.cmCalib).reshape(3, 3)
# normalize matrix
ccm = cmCalib / cmCalib.sum(axis=1)[:, np.newaxis]
# or should it be normalized this way?
ccm2 = cmCalib.copy()
ccm2[0][0] = 1 - ccm2[0][1] - ccm2[0][2]
ccm2[1][1] = 1 - ccm2[1][0] - ccm2[1][2]
ccm2[2][2] = 1 - ccm2[2][0] - ccm2[2][1]
print("cmCalib", cmCalib)
print("ccm: ", ccm)
print("ccm2", ccm2)
m = np.asarray(
[
1.4956012040024347,
-0.5162879962189262,
0.020686792216491584,
-0.09884672458400766,
0.757682383759598,
0.34116434082440983,
-0.04121405804689133,
-0.5527871476076358,
1.5940012056545272,
]
).reshape(3, 3)
rgb_image = np.dot(rgb_image, m.T)
# rgb_reshaped = rgb_image.reshape((rgb_image.shape[0] * rgb_image.shape[1], rgb_image.shape[2]))
# rgb_image = np.dot(m, rgb_reshaped.T).T.reshape(rgb_image.shape)
# 5. Apply the user RGB matrix umatrix
# cmUser = np.asarray(setup.cmUser).reshape(3, 3)
# rgb_image = np.dot(rgb_image, cmUser.T)
# 6. Offset the image by the amount in offset
print("fOffset: ", setup.fOffset)
# 7. Apply the global gain
print("fGain: ", setup.fGain)
# 8. Apply the per-component gains red, green, blue
print("fGainR, fGainG, fGainB: ", setup.fGainR, setup.fGainG, setup.fGainB)
# 9. Apply the gamma curves; the green channel uses gamma, red uses gamma + rgamma and blue uses gamma + bgamma
print("fGamma, fGammaR, fGammaB: ", setup.fGamma, setup.fGammaR, setup.fGammaB)
rgb_image = apply_gamma(rgb_image, setup)
# 10. Apply the tone curve to each of the red, green, blue channels
fTone = np.asarray(setup.fTone)
print(setup.ToneLabel, setup.TonePoints, fTone)
# 11. Add the pedestals to each color channel, and linearly rescale to keep the white point the same.
print("fPedestalR, fPedestalG, fPedestalB: ", setup.fPedestalR, setup.fPedestalG, setup.fPedestalB)
# 12. Convert to YCrCb using REC709 coefficients
# 13. Scale the Cr and Cb components by chroma.
print("fChroma: ", setup.fChroma)
# 14. Rotate the Cr and Cb components around the origin in the CrCb plane by hue degrees.
print("fHue: ", setup.fHue)
return rgb_image | Order from:
http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884 | https://github.com/OTTOMATIC-IO/pycine/blob/8cc27b762796456e36fffe42df940f232e402974/pycine/color.py#L5-L99 |
smarie/python-autoclass | autoclass/autohash_.py | autohash | def autohash(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
cls=DECORATED
):
"""
A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any
other field that would be created in the constructor or dynamically. Please note that this behaviour is the
opposite from @autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields
will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
return autohash_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields) | python | def autohash(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
cls=DECORATED
):
"""
A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any
other field that would be created in the constructor or dynamically. Please note that this behaviour is the
opposite from @autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields
will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
return autohash_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields) | A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any
other field that would be created in the constructor or dynamically. Please note that this behaviour is the
opposite from @autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields
will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L26-L51 |
smarie/python-autoclass | autoclass/autohash_.py | autohash_decorate | def autohash_decorate(cls, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
):
# type: (...) -> Type[T]
"""
To automatically generate the appropriate methods so that objects of this class are hashable,
manually, without using @autohash decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
# first check that we do not conflict with other known decorators
_check_known_decorators(cls, '@autohash')
# perform the class mod
_execute_autohash_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields)
return cls | python | def autohash_decorate(cls, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
):
# type: (...) -> Type[T]
"""
To automatically generate the appropriate methods so that objects of this class are hashable,
manually, without using @autohash decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
# first check that we do not conflict with other known decorators
_check_known_decorators(cls, '@autohash')
# perform the class mod
_execute_autohash_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields)
return cls | To automatically generate the appropriate methods so that objects of this class are hashable,
manually, without using @autohash decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L54-L85 |
smarie/python-autoclass | autoclass/autohash_.py | _execute_autohash_on_class | def _execute_autohash_on_class(object_type, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
):
"""
A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param object_type: the class on which to execute.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
# First check parameters
validate_include_exclude(include, exclude)
# Override hash method if not already implemented
if not method_already_there(object_type, '__hash__'):
if only_constructor_args:
# a. Find the __init__ constructor signature
constructor = get_constructor(object_type, allow_inheritance=True)
s = signature(constructor)
# b. Collect all attributes that are not 'self' and are included and not excluded
added = []
# we assume that the order of attributes will always be the same here....
for attr_name in s.parameters.keys():
if is_attr_selected(attr_name, include=include, exclude=exclude):
added.append(attr_name)
# c. Finally build the method
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing a tuple of selected attributes
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# return hash(tuple([type(self)] + [getattr(self, att_name) for att_name in added]))
return hash(tuple(getattr(self, att_name) for att_name in added))
else:
# ** all dynamic fields are allowed
if include is None and exclude is None and not only_public_fields:
# easy: all of vars values is included in the hash
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing vars(self).values()
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# return hash(tuple([type(self)] + list(vars(self).values())))
return hash(tuple(vars(self).values()))
else:
# harder: dynamic filters
# private_name_prefix = '_' + object_type.__name__ + '_'
private_name_prefix = '_'
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing the tuple of included/not excluded field values, possibly
not including the private fields if `only_public_fields` was set to True
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# to_hash = [type(self)]
to_hash = []
for att_name, att_value in vars(self).items():
att_name = possibly_replace_with_property_name(self.__class__, att_name)
if is_attr_selected(att_name, include=include, exclude=exclude):
if not only_public_fields \
or (only_public_fields and not att_name.startswith(private_name_prefix)):
to_hash.append(att_value)
return hash(tuple(to_hash))
# now set the method on the class
object_type.__hash__ = __hash__
return | python | def _execute_autohash_on_class(object_type, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=False, # type: bool
only_public_fields=False, # type: bool
):
"""
A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param object_type: the class on which to execute.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return:
"""
# First check parameters
validate_include_exclude(include, exclude)
# Override hash method if not already implemented
if not method_already_there(object_type, '__hash__'):
if only_constructor_args:
# a. Find the __init__ constructor signature
constructor = get_constructor(object_type, allow_inheritance=True)
s = signature(constructor)
# b. Collect all attributes that are not 'self' and are included and not excluded
added = []
# we assume that the order of attributes will always be the same here....
for attr_name in s.parameters.keys():
if is_attr_selected(attr_name, include=include, exclude=exclude):
added.append(attr_name)
# c. Finally build the method
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing a tuple of selected attributes
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# return hash(tuple([type(self)] + [getattr(self, att_name) for att_name in added]))
return hash(tuple(getattr(self, att_name) for att_name in added))
else:
# ** all dynamic fields are allowed
if include is None and exclude is None and not only_public_fields:
# easy: all of vars values is included in the hash
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing vars(self).values()
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# return hash(tuple([type(self)] + list(vars(self).values())))
return hash(tuple(vars(self).values()))
else:
# harder: dynamic filters
# private_name_prefix = '_' + object_type.__name__ + '_'
private_name_prefix = '_'
def __hash__(self):
"""
Generated by @autohash.
Implements the __hash__ method by hashing the tuple of included/not excluded field values, possibly
not including the private fields if `only_public_fields` was set to True
:param self:
:return:
"""
# note: we prepend a unique hash for the class > NO, it is more intuitive to not do that.
# to_hash = [type(self)]
to_hash = []
for att_name, att_value in vars(self).items():
att_name = possibly_replace_with_property_name(self.__class__, att_name)
if is_attr_selected(att_name, include=include, exclude=exclude):
if not only_public_fields \
or (only_public_fields and not att_name.startswith(private_name_prefix)):
to_hash.append(att_value)
return hash(tuple(to_hash))
# now set the method on the class
object_type.__hash__ = __hash__
return | A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in
sets.
Parameters allow to customize the list of attributes that are taken into account in the hash.
:param object_type: the class on which to execute.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined
in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other
field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from
@autodict.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will
not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict.
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L88-L187 |
smarie/python-autoclass | autoclass/autoclass_.py | autoclass | def autoclass(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
autoargs=True, # type: bool
autoprops=True, # type: bool
autodict=True, # type: bool
autohash=True, # type: bool
cls=DECORATED
):
"""
A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param autoargs: a boolean to enable autoargs on the consturctor (default: True)
:param autoprops: a boolean to enable autoargs on the consturctor (default: True)
:param autodict: a boolean to enable autoargs on the consturctor (default: True)
:param autohash: a boolean to enable autohash on the constructor (default: True)
:return:
"""
return autoclass_decorate(cls, include=include, exclude=exclude, autoargs=autoargs, autoprops=autoprops,
autodict=autodict, autohash=autohash) | python | def autoclass(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
autoargs=True, # type: bool
autoprops=True, # type: bool
autodict=True, # type: bool
autohash=True, # type: bool
cls=DECORATED
):
"""
A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param autoargs: a boolean to enable autoargs on the consturctor (default: True)
:param autoprops: a boolean to enable autoargs on the consturctor (default: True)
:param autodict: a boolean to enable autoargs on the consturctor (default: True)
:param autohash: a boolean to enable autohash on the constructor (default: True)
:return:
"""
return autoclass_decorate(cls, include=include, exclude=exclude, autoargs=autoargs, autoprops=autoprops,
autodict=autodict, autohash=autohash) | A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param autoargs: a boolean to enable autoargs on the consturctor (default: True)
:param autoprops: a boolean to enable autoargs on the consturctor (default: True)
:param autodict: a boolean to enable autoargs on the consturctor (default: True)
:param autohash: a boolean to enable autohash on the constructor (default: True)
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autoclass_.py#L22-L42 |
smarie/python-autoclass | ci_tools/py_install.py | install | def install(cmd, packages):
"""
Installs all packages provided at once
:param packages:
:return:
"""
check_cmd(cmd)
all_pkgs_str = " ".join(all_pkgs)
print("INSTALLING: " + cmd + " install " + all_pkgs_str)
subprocess.check_call([cmd, 'install'] + packages) | python | def install(cmd, packages):
"""
Installs all packages provided at once
:param packages:
:return:
"""
check_cmd(cmd)
all_pkgs_str = " ".join(all_pkgs)
print("INSTALLING: " + cmd + " install " + all_pkgs_str)
subprocess.check_call([cmd, 'install'] + packages) | Installs all packages provided at once
:param packages:
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/ci_tools/py_install.py#L18-L28 |
smarie/python-autoclass | autoclass/autodict_.py | autodict | def autodict(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=True, # type: bool
only_public_fields=True, # type: bool
cls=DECORATED
):
"""
A decorator to makes objects of the class behave like a read-only `dict`. It does several things:
* it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`)
* it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict
view.
* it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True)
* it overrides eq method if not already implemented
* it overrides str and repr method if not already implemented
Parameters allow to customize the list of fields that will be visible.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be
hidden
:return:
"""
return autodict_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields) | python | def autodict(include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=True, # type: bool
only_public_fields=True, # type: bool
cls=DECORATED
):
"""
A decorator to makes objects of the class behave like a read-only `dict`. It does several things:
* it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`)
* it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict
view.
* it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True)
* it overrides eq method if not already implemented
* it overrides str and repr method if not already implemented
Parameters allow to customize the list of fields that will be visible.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be
hidden
:return:
"""
return autodict_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields) | A decorator to makes objects of the class behave like a read-only `dict`. It does several things:
* it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`)
* it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict
view.
* it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True)
* it overrides eq method if not already implemented
* it overrides str and repr method if not already implemented
Parameters allow to customize the list of fields that will be visible.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be
hidden
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autodict_.py#L34-L62 |
smarie/python-autoclass | autoclass/autodict_.py | autodict_decorate | def autodict_decorate(cls, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=True, # type: bool
only_public_fields=True # type: bool
):
# type: (...) -> Type[T]
"""
To automatically generate the appropriate methods so that objects of this class behave like a `dict`,
manually, without using @autodict decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden
:return:
"""
# first check that we do not conflict with other known decorators
_check_known_decorators(cls, '@autodict')
# perform the class mod
_execute_autodict_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields)
return cls | python | def autodict_decorate(cls, # type: Type[T]
include=None, # type: Union[str, Tuple[str]]
exclude=None, # type: Union[str, Tuple[str]]
only_constructor_args=True, # type: bool
only_public_fields=True # type: bool
):
# type: (...) -> Type[T]
"""
To automatically generate the appropriate methods so that objects of this class behave like a `dict`,
manually, without using @autodict decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden
:return:
"""
# first check that we do not conflict with other known decorators
_check_known_decorators(cls, '@autodict')
# perform the class mod
_execute_autodict_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args,
only_public_fields=only_public_fields)
return cls | To automatically generate the appropriate methods so that objects of this class behave like a `dict`,
manually, without using @autodict decorator.
:param cls: the class on which to execute. Note that it won't be wrapped.
:param include: a tuple of explicit attribute names to include (None means all)
:param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None.
:param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary
view, not any other field that would be created in the constructor or dynamically. This makes it very convenient
to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields.
:param only_public_fields: this parameter is only used when only_constructor_args is set to False. If
only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden
:return: | https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autodict_.py#L65-L94 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.