repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
ruipgil/TrackToTrip
tracktotrip/segment.py
Segment.slice
def slice(self, start, end): """ Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment` """ reverse = False if start > end: temp = start start = end end = temp reverse = True seg = self.copy() seg.points = seg.points[start:end+1] if reverse: seg.points = list(reversed(seg.points)) return seg
python
def slice(self, start, end): """ Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment` """ reverse = False if start > end: temp = start start = end end = temp reverse = True seg = self.copy() seg.points = seg.points[start:end+1] if reverse: seg.points = list(reversed(seg.points)) return seg
Creates a copy of the current segment between indexes. If end > start, points are reverted Args: start (int): Start index end (int): End index Returns: :obj:`Segment`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L257-L280
ruipgil/TrackToTrip
tracktotrip/segment.py
Segment.to_json
def to_json(self): """ Converts segment to a JSON serializable format Returns: :obj:`dict` """ points = [point.to_json() for point in self.points] return { 'points': points, 'transportationModes': self.transportation_modes, 'locationFrom': self.location_from.to_json() if self.location_from != None else None, 'locationTo': self.location_to.to_json() if self.location_to != None else None }
python
def to_json(self): """ Converts segment to a JSON serializable format Returns: :obj:`dict` """ points = [point.to_json() for point in self.points] return { 'points': points, 'transportationModes': self.transportation_modes, 'locationFrom': self.location_from.to_json() if self.location_from != None else None, 'locationTo': self.location_to.to_json() if self.location_to != None else None }
Converts segment to a JSON serializable format Returns: :obj:`dict`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L290-L302
ruipgil/TrackToTrip
tracktotrip/segment.py
Segment.from_gpx
def from_gpx(gpx_segment): """ Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment` """ points = [] for point in gpx_segment.points: points.append(Point.from_gpx(point)) return Segment(points)
python
def from_gpx(gpx_segment): """ Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment` """ points = [] for point in gpx_segment.points: points.append(Point.from_gpx(point)) return Segment(points)
Creates a segment from a GPX format. No preprocessing is done. Arguments: gpx_segment (:obj:`gpxpy.GPXTrackSegment`) Return: :obj:`Segment`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L305-L318
ruipgil/TrackToTrip
tracktotrip/segment.py
Segment.from_json
def from_json(json): """ Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment` """ points = [] for point in json['points']: points.append(Point.from_json(point)) return Segment(points)
python
def from_json(json): """ Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment` """ points = [] for point in json['points']: points.append(Point.from_json(point)) return Segment(points)
Creates a segment from a JSON file. No preprocessing is done. Arguments: json (:obj:`dict`): JSON representation. See to_json. Return: :obj:`Segment`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/segment.py#L321-L334
ruipgil/TrackToTrip
tracktotrip/smooth.py
extrapolate_points
def extrapolate_points(points, n_points): """ Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point` """ points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat-point.lat) lon.append(last.lon-point.lon) last = point dts = np.mean([p.dt for p in points]) lons = np.mean(lon) lats = np.mean(lat) gen_sample = [] last = points[0] for _ in range(n_points): point = Point(last.lat+lats, last.lon+lons, None) point.dt = dts # point.compute_metrics(last) gen_sample.append(point) last = point return gen_sample
python
def extrapolate_points(points, n_points): """ Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point` """ points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat-point.lat) lon.append(last.lon-point.lon) last = point dts = np.mean([p.dt for p in points]) lons = np.mean(lon) lats = np.mean(lat) gen_sample = [] last = points[0] for _ in range(n_points): point = Point(last.lat+lats, last.lon+lons, None) point.dt = dts # point.compute_metrics(last) gen_sample.append(point) last = point return gen_sample
Extrapolate a number of points, based on the first ones Args: points (:obj:`list` of :obj:`Point`) n_points (int): number of points to extrapolate Returns: :obj:`list` of :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L13-L45
ruipgil/TrackToTrip
tracktotrip/smooth.py
with_extrapolation
def with_extrapolation(points, noise, n_points): """ Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ n_points = 10 return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:]
python
def with_extrapolation(points, noise, n_points): """ Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ n_points = 10 return kalman_filter(extrapolate_points(points, n_points) + points, noise)[n_points:]
Smooths a set of points, but it extrapolates some points at the beginning Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L47-L58
ruipgil/TrackToTrip
tracktotrip/smooth.py
with_inverse
def with_inverse(points, noise): """ Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ # noise_sample = 20 n_points = len(points)/2 break_point = n_points points_part = copy.deepcopy(points) points_part = list(reversed(points_part)) part = kalman_filter(points_part, noise) total = kalman_filter(points, noise) result = list(reversed(part))[:break_point] + total[break_point:] result[break_point] = point_mean(part[break_point], total[break_point]) return result
python
def with_inverse(points, noise): """ Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point` """ # noise_sample = 20 n_points = len(points)/2 break_point = n_points points_part = copy.deepcopy(points) points_part = list(reversed(points_part)) part = kalman_filter(points_part, noise) total = kalman_filter(points, noise) result = list(reversed(part))[:break_point] + total[break_point:] result[break_point] = point_mean(part[break_point], total[break_point]) return result
Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/smooth.py#L76-L102
ruipgil/TrackToTrip
tracktotrip/spatiotemporal_segmentation.py
temporal_segmentation
def temporal_segmentation(segments, min_time): """ Segments based on time distant points Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points min_time (int): minimum required time for segmentation """ final_segments = [] for segment in segments: final_segments.append([]) for point in segment: if point.dt > min_time: final_segments.append([]) final_segments[-1].append(point) return final_segments
python
def temporal_segmentation(segments, min_time): """ Segments based on time distant points Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points min_time (int): minimum required time for segmentation """ final_segments = [] for segment in segments: final_segments.append([]) for point in segment: if point.dt > min_time: final_segments.append([]) final_segments[-1].append(point) return final_segments
Segments based on time distant points Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points min_time (int): minimum required time for segmentation
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L8-L23
ruipgil/TrackToTrip
tracktotrip/spatiotemporal_segmentation.py
correct_segmentation
def correct_segmentation(segments, clusters, min_time): """ Corrects the predicted segmentation This process prevents over segmentation Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segments to correct min_time (int): minimum required time for segmentation """ # segments = [points for points in segments if len(points) > 1] result_segments = [] prev_segment = None for i, segment in enumerate(segments): if len(segment) >= 1: continue cluster = clusters[i] if prev_segment is None: prev_segment = segment else: cluster_dt = 0 if len(cluster) > 0: cluster_dt = abs(cluster[0].time_difference(cluster[-1])) if cluster_dt <= min_time: prev_segment.extend(segment) else: prev_segment.append(segment[0]) result_segments.append(prev_segment) prev_segment = segment if prev_segment is not None: result_segments.append(prev_segment) return result_segments
python
def correct_segmentation(segments, clusters, min_time): """ Corrects the predicted segmentation This process prevents over segmentation Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segments to correct min_time (int): minimum required time for segmentation """ # segments = [points for points in segments if len(points) > 1] result_segments = [] prev_segment = None for i, segment in enumerate(segments): if len(segment) >= 1: continue cluster = clusters[i] if prev_segment is None: prev_segment = segment else: cluster_dt = 0 if len(cluster) > 0: cluster_dt = abs(cluster[0].time_difference(cluster[-1])) if cluster_dt <= min_time: prev_segment.extend(segment) else: prev_segment.append(segment[0]) result_segments.append(prev_segment) prev_segment = segment if prev_segment is not None: result_segments.append(prev_segment) return result_segments
Corrects the predicted segmentation This process prevents over segmentation Args: segments (:obj:`list` of :obj:`list` of :obj:`Point`): segments to correct min_time (int): minimum required time for segmentation
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L25-L59
ruipgil/TrackToTrip
tracktotrip/spatiotemporal_segmentation.py
spatiotemporal_segmentation
def spatiotemporal_segmentation(points, eps, min_time): """ Splits a set of points into multiple sets of points based on spatio-temporal stays DBSCAN is used to predict possible segmentations, furthermore we check to see if each clusters is big enough in time (>=min_time). If that's the case than the segmentation is considered valid. When segmenting, the last point of the ith segment will be the same of the (i-1)th segment. Segments are identified through clusters. The last point of a clusters, that comes after a sub-segment A, will be present on the sub-segment A. Args: points (:obj:`list` of :obj:`Point`): segment's points eps (float): Epsilon to feed to the DBSCAN algorithm. Maximum distance between two samples, to be considered in the same cluster. min_time (float): Minimum time of a stay Returns: :obj:`list` of :obj:`list` of :obj:`Point`: Initial set of points in different segments """ # min time / sample rate dt_average = np.median([point.dt for point in points]) min_samples = min_time / dt_average data = [point.gen3arr() for point in points] data = StandardScaler().fit_transform(data) print 'min_samples: %f' % min_samples db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data) labels = db_cluster.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) segments = [[] for _ in range(n_clusters_+1)] clusters = [[] for _ in range(n_clusters_+1)] current_segment = 0 print 'clusters' print n_clusters_ if n_clusters_ == 1: segments = temporal_segmentation([points], min_time) return [segment for segment in segments if len(segment) > 1] # split segments identified with dbscan for i, label in enumerate(labels): if label != -1 and label + 1 != current_segment: current_segment = label + 1 point = points[i] if label == -1: segments[current_segment].append(point) else: clusters[label + 1].append(point) if len(segments) == 0 or sum([len(s) for s in segments]): segments = [points] segments = temporal_segmentation(segments, min_time) # segments = temporal_segmentation(correct_segmentation(segments, clusters, min_time), min_time) return [segment for segment in segments if len(segment) > 1]
python
def spatiotemporal_segmentation(points, eps, min_time): """ Splits a set of points into multiple sets of points based on spatio-temporal stays DBSCAN is used to predict possible segmentations, furthermore we check to see if each clusters is big enough in time (>=min_time). If that's the case than the segmentation is considered valid. When segmenting, the last point of the ith segment will be the same of the (i-1)th segment. Segments are identified through clusters. The last point of a clusters, that comes after a sub-segment A, will be present on the sub-segment A. Args: points (:obj:`list` of :obj:`Point`): segment's points eps (float): Epsilon to feed to the DBSCAN algorithm. Maximum distance between two samples, to be considered in the same cluster. min_time (float): Minimum time of a stay Returns: :obj:`list` of :obj:`list` of :obj:`Point`: Initial set of points in different segments """ # min time / sample rate dt_average = np.median([point.dt for point in points]) min_samples = min_time / dt_average data = [point.gen3arr() for point in points] data = StandardScaler().fit_transform(data) print 'min_samples: %f' % min_samples db_cluster = DBSCAN(eps=eps, min_samples=min_samples).fit(data) labels = db_cluster.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) segments = [[] for _ in range(n_clusters_+1)] clusters = [[] for _ in range(n_clusters_+1)] current_segment = 0 print 'clusters' print n_clusters_ if n_clusters_ == 1: segments = temporal_segmentation([points], min_time) return [segment for segment in segments if len(segment) > 1] # split segments identified with dbscan for i, label in enumerate(labels): if label != -1 and label + 1 != current_segment: current_segment = label + 1 point = points[i] if label == -1: segments[current_segment].append(point) else: clusters[label + 1].append(point) if len(segments) == 0 or sum([len(s) for s in segments]): segments = [points] segments = temporal_segmentation(segments, min_time) # segments = temporal_segmentation(correct_segmentation(segments, clusters, min_time), min_time) return [segment for segment in segments if len(segment) > 1]
Splits a set of points into multiple sets of points based on spatio-temporal stays DBSCAN is used to predict possible segmentations, furthermore we check to see if each clusters is big enough in time (>=min_time). If that's the case than the segmentation is considered valid. When segmenting, the last point of the ith segment will be the same of the (i-1)th segment. Segments are identified through clusters. The last point of a clusters, that comes after a sub-segment A, will be present on the sub-segment A. Args: points (:obj:`list` of :obj:`Point`): segment's points eps (float): Epsilon to feed to the DBSCAN algorithm. Maximum distance between two samples, to be considered in the same cluster. min_time (float): Minimum time of a stay Returns: :obj:`list` of :obj:`list` of :obj:`Point`: Initial set of points in different segments
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/spatiotemporal_segmentation.py#L61-L124
ruipgil/TrackToTrip
tracktotrip/kalman.py
kalman_filter
def kalman_filter(points, noise): """ Smooths points with kalman filter See https://github.com/open-city/ikalman Args: points (:obj:`list` of :obj:`Point`): points to smooth noise (float): expected noise """ kalman = ikalman.filter(noise) for point in points: kalman.update_velocity2d(point.lat, point.lon, point.dt) (lat, lon) = kalman.get_lat_long() point.lat = lat point.lon = lon return points
python
def kalman_filter(points, noise): """ Smooths points with kalman filter See https://github.com/open-city/ikalman Args: points (:obj:`list` of :obj:`Point`): points to smooth noise (float): expected noise """ kalman = ikalman.filter(noise) for point in points: kalman.update_velocity2d(point.lat, point.lon, point.dt) (lat, lon) = kalman.get_lat_long() point.lat = lat point.lon = lon return points
Smooths points with kalman filter See https://github.com/open-city/ikalman Args: points (:obj:`list` of :obj:`Point`): points to smooth noise (float): expected noise
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/kalman.py#L7-L22
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
learn_transportation_mode
def learn_transportation_mode(track, clf): """ Inserts transportation modes of a track into a classifier Args: track (:obj:`Track`) clf (:obj:`Classifier`) """ for segment in track.segments: tmodes = segment.transportation_modes points = segment.points features = [] labels = [] for tmode in tmodes: points_part = points[tmode['from']:tmode['to']] if len(points_part) > 0: features.append(extract_features_2(points_part)) labels.append(tmode['label']) clf.learn(features, labels)
python
def learn_transportation_mode(track, clf): """ Inserts transportation modes of a track into a classifier Args: track (:obj:`Track`) clf (:obj:`Classifier`) """ for segment in track.segments: tmodes = segment.transportation_modes points = segment.points features = [] labels = [] for tmode in tmodes: points_part = points[tmode['from']:tmode['to']] if len(points_part) > 0: features.append(extract_features_2(points_part)) labels.append(tmode['label']) clf.learn(features, labels)
Inserts transportation modes of a track into a classifier Args: track (:obj:`Track`) clf (:obj:`Classifier`)
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L57-L76
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
extract_features
def extract_features(points, n_tops): """ Feature extractor Args: points (:obj:`list` of :obj:`Point`) n_tops (int): Number of top speeds to extract Returns: :obj:`list` of float: with length (n_tops*2). Where the ith even element is the ith top speed and the i+1 element is the percentage of time spent on that speed """ max_bin = -1 for point in points: max_bin = max(max_bin, point.vel) max_bin = int(round(max_bin)) + 1 # inits histogram histogram = [0] * max_bin time = 0 # fills histogram for point in points: bin_index = int(round(point.vel)) histogram[bin_index] += point.dt time += point.dt result = [] if time == 0: return result for _ in range(n_tops): max_index = np.argmax(histogram) value = histogram[max_index] / time result.extend([max_index, value]) histogram[max_index] = -1 return result
python
def extract_features(points, n_tops): """ Feature extractor Args: points (:obj:`list` of :obj:`Point`) n_tops (int): Number of top speeds to extract Returns: :obj:`list` of float: with length (n_tops*2). Where the ith even element is the ith top speed and the i+1 element is the percentage of time spent on that speed """ max_bin = -1 for point in points: max_bin = max(max_bin, point.vel) max_bin = int(round(max_bin)) + 1 # inits histogram histogram = [0] * max_bin time = 0 # fills histogram for point in points: bin_index = int(round(point.vel)) histogram[bin_index] += point.dt time += point.dt result = [] if time == 0: return result for _ in range(n_tops): max_index = np.argmax(histogram) value = histogram[max_index] / time result.extend([max_index, value]) histogram[max_index] = -1 return result
Feature extractor Args: points (:obj:`list` of :obj:`Point`) n_tops (int): Number of top speeds to extract Returns: :obj:`list` of float: with length (n_tops*2). Where the ith even element is the ith top speed and the i+1 element is the percentage of time spent on that speed
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L78-L114
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
speed_difference
def speed_difference(points): """ Computes the speed difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints """ data = [0] for before, after in pairwise(points): data.append(before.vel - after.vel) return data
python
def speed_difference(points): """ Computes the speed difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints """ data = [0] for before, after in pairwise(points): data.append(before.vel - after.vel) return data
Computes the speed difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L116-L127
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
acc_difference
def acc_difference(points): """ Computes the accelaration difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints """ data = [0] for before, after in pairwise(points): data.append(before.acc - after.acc) return data
python
def acc_difference(points): """ Computes the accelaration difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints """ data = [0] for before, after in pairwise(points): data.append(before.acc - after.acc) return data
Computes the accelaration difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L129-L140
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
detect_changepoints
def detect_changepoints(points, min_time, data_processor=acc_difference): """ Detects changepoints on points that have at least a specific duration Args: points (:obj:`Point`) min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have data_processor (function): Function to extract data to feed to the changepoint algorithm. Defaults to `speed_difference` Returns: :obj:`list` of int: Indexes of changepoints """ data = data_processor(points) changepoints = pelt(normal_mean(data, np.std(data)), len(data)) changepoints.append(len(points) - 1) result = [] for start, end in pairwise(changepoints): time_diff = points[end].time_difference(points[start]) if time_diff > min_time: result.append(start) # adds the first point result.append(0) # adds the last changepoint detected result.append(len(points) - 1) return sorted(list(set(result)))
python
def detect_changepoints(points, min_time, data_processor=acc_difference): """ Detects changepoints on points that have at least a specific duration Args: points (:obj:`Point`) min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have data_processor (function): Function to extract data to feed to the changepoint algorithm. Defaults to `speed_difference` Returns: :obj:`list` of int: Indexes of changepoints """ data = data_processor(points) changepoints = pelt(normal_mean(data, np.std(data)), len(data)) changepoints.append(len(points) - 1) result = [] for start, end in pairwise(changepoints): time_diff = points[end].time_difference(points[start]) if time_diff > min_time: result.append(start) # adds the first point result.append(0) # adds the last changepoint detected result.append(len(points) - 1) return sorted(list(set(result)))
Detects changepoints on points that have at least a specific duration Args: points (:obj:`Point`) min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have data_processor (function): Function to extract data to feed to the changepoint algorithm. Defaults to `speed_difference` Returns: :obj:`list` of int: Indexes of changepoints
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L142-L167
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
group_modes
def group_modes(modes): """ Groups consecutive transportation modes with same label, into one Args: modes (:obj:`list` of :obj:`dict`) Returns: :obj:`list` of :obj:`dict` """ if len(modes) > 0: previous = modes[0] grouped = [] for changep in modes[1:]: if changep['label'] != previous['label']: previous['to'] = changep['from'] grouped.append(previous) previous = changep previous['to'] = modes[-1]['to'] grouped.append(previous) return grouped else: return modes
python
def group_modes(modes): """ Groups consecutive transportation modes with same label, into one Args: modes (:obj:`list` of :obj:`dict`) Returns: :obj:`list` of :obj:`dict` """ if len(modes) > 0: previous = modes[0] grouped = [] for changep in modes[1:]: if changep['label'] != previous['label']: previous['to'] = changep['from'] grouped.append(previous) previous = changep previous['to'] = modes[-1]['to'] grouped.append(previous) return grouped else: return modes
Groups consecutive transportation modes with same label, into one Args: modes (:obj:`list` of :obj:`dict`) Returns: :obj:`list` of :obj:`dict`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L169-L191
ruipgil/TrackToTrip
tracktotrip/transportation_mode.py
speed_clustering
def speed_clustering(clf, points, min_time): """ Transportation mode infering, based on changepoint segmentation Args: clf (:obj:`Classifier`): Classifier to use points (:obj:`list` of :obj:`Point`) min_time (float): Min time, in seconds, before do another segmentation Returns: :obj:`list` of :obj:`dict` """ # get changepoint indexes changepoints = detect_changepoints(points, min_time) # info for each changepoint cp_info = [] for i in range(0, len(changepoints) - 1): from_index = changepoints[i] to_index = changepoints[i+1] info = classify(clf, points[from_index:to_index], min_time, from_index, to_index) if info: cp_info.append(info) return group_modes(cp_info)
python
def speed_clustering(clf, points, min_time): """ Transportation mode infering, based on changepoint segmentation Args: clf (:obj:`Classifier`): Classifier to use points (:obj:`list` of :obj:`Point`) min_time (float): Min time, in seconds, before do another segmentation Returns: :obj:`list` of :obj:`dict` """ # get changepoint indexes changepoints = detect_changepoints(points, min_time) # info for each changepoint cp_info = [] for i in range(0, len(changepoints) - 1): from_index = changepoints[i] to_index = changepoints[i+1] info = classify(clf, points[from_index:to_index], min_time, from_index, to_index) if info: cp_info.append(info) return group_modes(cp_info)
Transportation mode infering, based on changepoint segmentation Args: clf (:obj:`Classifier`): Classifier to use points (:obj:`list` of :obj:`Point`) min_time (float): Min time, in seconds, before do another segmentation Returns: :obj:`list` of :obj:`dict`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/transportation_mode.py#L208-L231
ruipgil/TrackToTrip
tracktotrip/compression.py
distance
def distance(p_a, p_b): """ Euclidean distance, between two points Args: p_a (:obj:`Point`) p_b (:obj:`Point`) Returns: float: distance, in degrees """ return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)
python
def distance(p_a, p_b): """ Euclidean distance, between two points Args: p_a (:obj:`Point`) p_b (:obj:`Point`) Returns: float: distance, in degrees """ return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)
Euclidean distance, between two points Args: p_a (:obj:`Point`) p_b (:obj:`Point`) Returns: float: distance, in degrees
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L40-L49
ruipgil/TrackToTrip
tracktotrip/compression.py
point_line_distance
def point_line_distance(point, start, end): """ Distance from a point to a line, formed by two points Args: point (:obj:`Point`) start (:obj:`Point`): line point end (:obj:`Point`): line point Returns: float: distance to line, in degrees """ if start == end: return distance(point, start) else: un_dist = abs( (end.lat-start.lat)*(start.lon-point.lon) - (start.lat-point.lat)*(end.lon-start.lon) ) n_dist = sqrt( (end.lat-start.lat)**2 + (end.lon-start.lon)**2 ) if n_dist == 0: return 0 else: return un_dist / n_dist
python
def point_line_distance(point, start, end): """ Distance from a point to a line, formed by two points Args: point (:obj:`Point`) start (:obj:`Point`): line point end (:obj:`Point`): line point Returns: float: distance to line, in degrees """ if start == end: return distance(point, start) else: un_dist = abs( (end.lat-start.lat)*(start.lon-point.lon) - (start.lat-point.lat)*(end.lon-start.lon) ) n_dist = sqrt( (end.lat-start.lat)**2 + (end.lon-start.lon)**2 ) if n_dist == 0: return 0 else: return un_dist / n_dist
Distance from a point to a line, formed by two points Args: point (:obj:`Point`) start (:obj:`Point`): line point end (:obj:`Point`): line point Returns: float: distance to line, in degrees
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L51-L73
ruipgil/TrackToTrip
tracktotrip/compression.py
drp
def drp(points, epsilon): """ Douglas ramer peucker Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm Args: points (:obj:`list` of :obj:`Point`) epsilon (float): drp threshold Returns: :obj:`list` of :obj:`Point` """ dmax = 0.0 index = 0 for i in range(1, len(points)-1): dist = point_line_distance(points[i], points[0], points[-1]) if dist > dmax: index = i dmax = dist if dmax > epsilon: return drp(points[:index+1], epsilon)[:-1] + drp(points[index:], epsilon) else: return [points[0], points[-1]]
python
def drp(points, epsilon): """ Douglas ramer peucker Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm Args: points (:obj:`list` of :obj:`Point`) epsilon (float): drp threshold Returns: :obj:`list` of :obj:`Point` """ dmax = 0.0 index = 0 for i in range(1, len(points)-1): dist = point_line_distance(points[i], points[0], points[-1]) if dist > dmax: index = i dmax = dist if dmax > epsilon: return drp(points[:index+1], epsilon)[:-1] + drp(points[index:], epsilon) else: return [points[0], points[-1]]
Douglas ramer peucker Based on https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm Args: points (:obj:`list` of :obj:`Point`) epsilon (float): drp threshold Returns: :obj:`list` of :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L75-L98
ruipgil/TrackToTrip
tracktotrip/compression.py
td_sp
def td_sp(points, speed_threshold): """ Top-Down Speed-Based Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it speed_threshold (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_speed_threshold = 0 found_index = 0 for i in range(1, len(points)-1): dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 vim = loc_dist(points[i], points[i-1]) / dt1 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 vi_ = loc_dist(points[i+1], points[i]) / dt2 if abs(vi_ - vim) > max_speed_threshold: max_speed_threshold = abs(vi_ - vim) found_index = i if max_speed_threshold > speed_threshold: one = td_sp(points[:found_index], speed_threshold) two = td_sp(points[found_index:], speed_threshold) one.extend(two) return one else: return [points[0], points[-1]]
python
def td_sp(points, speed_threshold): """ Top-Down Speed-Based Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it speed_threshold (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_speed_threshold = 0 found_index = 0 for i in range(1, len(points)-1): dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 vim = loc_dist(points[i], points[i-1]) / dt1 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 vi_ = loc_dist(points[i+1], points[i]) / dt2 if abs(vi_ - vim) > max_speed_threshold: max_speed_threshold = abs(vi_ - vim) found_index = i if max_speed_threshold > speed_threshold: one = td_sp(points[:found_index], speed_threshold) two = td_sp(points[found_index:], speed_threshold) one.extend(two) return one else: return [points[0], points[-1]]
Top-Down Speed-Based Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it speed_threshold (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`, compressed trajectory
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L100-L134
ruipgil/TrackToTrip
tracktotrip/compression.py
td_tr
def td_tr(points, dist_threshold): """ Top-Down Time-Ratio Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it dist_threshold (float): max distance error, in meters Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_dist_threshold = 0 found_index = 0 delta_e = time_dist(points[-1], points[0]) * I_3600 d_lat = points[-1].lat - points[0].lat d_lon = points[-1].lon - points[0].lon for i in range(1, len(points)-1): delta_i = time_dist(points[i], points[0]) * I_3600 di_de = delta_i / delta_e point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dist = loc_dist(points[i], point) if dist > max_dist_threshold: max_dist_threshold = dist found_index = i if max_dist_threshold > dist_threshold: one = td_tr(points[:found_index], dist_threshold) two = td_tr(points[found_index:], dist_threshold) one.extend(two) return one else: return [points[0], points[-1]]
python
def td_tr(points, dist_threshold): """ Top-Down Time-Ratio Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it dist_threshold (float): max distance error, in meters Returns: :obj:`list` of :obj:`Point`, compressed trajectory """ if len(points) <= 2: return points else: max_dist_threshold = 0 found_index = 0 delta_e = time_dist(points[-1], points[0]) * I_3600 d_lat = points[-1].lat - points[0].lat d_lon = points[-1].lon - points[0].lon for i in range(1, len(points)-1): delta_i = time_dist(points[i], points[0]) * I_3600 di_de = delta_i / delta_e point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dist = loc_dist(points[i], point) if dist > max_dist_threshold: max_dist_threshold = dist found_index = i if max_dist_threshold > dist_threshold: one = td_tr(points[:found_index], dist_threshold) two = td_tr(points[found_index:], dist_threshold) one.extend(two) return one else: return [points[0], points[-1]]
Top-Down Time-Ratio Trajectory Compression Algorithm Detailed in https://www.itc.nl/library/Papers_2003/peer_ref_conf/meratnia_new.pdf Args: points (:obj:`list` of :obj:`Point`): trajectory or part of it dist_threshold (float): max distance error, in meters Returns: :obj:`list` of :obj:`Point`, compressed trajectory
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L136-L177
ruipgil/TrackToTrip
tracktotrip/compression.py
spt
def spt(points, max_dist_error, max_speed_error): """ A combination of both `td_sp` and `td_tr` Detailed in, Spatiotemporal Compression Techniques for Moving Point Objects, Nirvana Meratnia and Rolf A. de By, 2004, in Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 Args: points (:obj:`list` of :obj:`Point`) max_dist_error (float): max distance error, in meters max_speed_error (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point` """ if len(points) <= 2: return points else: is_error = False e = 1 while e < len(points) and not is_error: i = 1 while i < e and not is_error: delta_e = time_dist(points[e], points[0]) * I_3600 delta_i = time_dist(points[i], points[0]) * I_3600 di_de = 0 if delta_e != 0: di_de = delta_i / delta_e d_lat = points[e].lat - points[0].lat d_lon = points[e].lon - points[0].lon point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 v_i_1 = loc_dist(points[i], points[i-1]) / dt1 v_i = loc_dist(points[i+1], points[i]) / dt2 if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error: is_error = True else: i = i + 1 if is_error: return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error) e = e + 1 if not is_error: return [points[0], points[len(points)-1]]
python
def spt(points, max_dist_error, max_speed_error): """ A combination of both `td_sp` and `td_tr` Detailed in, Spatiotemporal Compression Techniques for Moving Point Objects, Nirvana Meratnia and Rolf A. de By, 2004, in Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 Args: points (:obj:`list` of :obj:`Point`) max_dist_error (float): max distance error, in meters max_speed_error (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point` """ if len(points) <= 2: return points else: is_error = False e = 1 while e < len(points) and not is_error: i = 1 while i < e and not is_error: delta_e = time_dist(points[e], points[0]) * I_3600 delta_i = time_dist(points[i], points[0]) * I_3600 di_de = 0 if delta_e != 0: di_de = delta_i / delta_e d_lat = points[e].lat - points[0].lat d_lon = points[e].lon - points[0].lon point = Point( points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None ) dt1 = time_dist(points[i], points[i-1]) if dt1 == 0: dt1 = 0.000000001 dt2 = time_dist(points[i+1], points[i]) if dt2 == 0: dt2 = 0.000000001 v_i_1 = loc_dist(points[i], points[i-1]) / dt1 v_i = loc_dist(points[i+1], points[i]) / dt2 if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error: is_error = True else: i = i + 1 if is_error: return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error) e = e + 1 if not is_error: return [points[0], points[len(points)-1]]
A combination of both `td_sp` and `td_tr` Detailed in, Spatiotemporal Compression Techniques for Moving Point Objects, Nirvana Meratnia and Rolf A. de By, 2004, in Advances in Database Technology - EDBT 2004: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004 Args: points (:obj:`list` of :obj:`Point`) max_dist_error (float): max distance error, in meters max_speed_error (float): max speed error, in km/h Returns: :obj:`list` of :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/compression.py#L179-L236
ruipgil/TrackToTrip
tracktotrip/track.py
Track.generate_name
def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT): """ Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args: name_format (str, optional): Name formar to give to the track, based on its start time. Defaults to DEFAULT_FILE_NAME_FORMAT Returns: str """ if len(self.segments) > 0: return self.segments[0].points[0].time.strftime(name_format) + ".gpx" else: return "EmptyTrack"
python
def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT): """ Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args: name_format (str, optional): Name formar to give to the track, based on its start time. Defaults to DEFAULT_FILE_NAME_FORMAT Returns: str """ if len(self.segments) > 0: return self.segments[0].points[0].time.strftime(name_format) + ".gpx" else: return "EmptyTrack"
Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args: name_format (str, optional): Name formar to give to the track, based on its start time. Defaults to DEFAULT_FILE_NAME_FORMAT Returns: str
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L44-L59
ruipgil/TrackToTrip
tracktotrip/track.py
Track.smooth
def smooth(self, strategy, noise): """ In-place smoothing of segments Returns: :obj:`Track`: self """ print noise for segment in self.segments: segment.smooth(noise, strategy) return self
python
def smooth(self, strategy, noise): """ In-place smoothing of segments Returns: :obj:`Track`: self """ print noise for segment in self.segments: segment.smooth(noise, strategy) return self
In-place smoothing of segments Returns: :obj:`Track`: self
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L71-L80
ruipgil/TrackToTrip
tracktotrip/track.py
Track.segment
def segment(self, eps, min_time): """In-place segmentation of segments Spatio-temporal segmentation of each segment The number of segments may increse after this step Returns: This track """ new_segments = [] for segment in self.segments: segmented = segment.segment(eps, min_time) for seg in segmented: new_segments.append(Segment(seg)) self.segments = new_segments return self
python
def segment(self, eps, min_time): """In-place segmentation of segments Spatio-temporal segmentation of each segment The number of segments may increse after this step Returns: This track """ new_segments = [] for segment in self.segments: segmented = segment.segment(eps, min_time) for seg in segmented: new_segments.append(Segment(seg)) self.segments = new_segments return self
In-place segmentation of segments Spatio-temporal segmentation of each segment The number of segments may increse after this step Returns: This track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L82-L97
ruipgil/TrackToTrip
tracktotrip/track.py
Track.simplify
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track """ for segment in self.segments: segment.simplify(eps, max_dist_error, max_speed_error, topology_only) return self
python
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track """ for segment in self.segments: segment.simplify(eps, max_dist_error, max_speed_error, topology_only) return self
In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L99-L115
ruipgil/TrackToTrip
tracktotrip/track.py
Track.infer_transportation_mode
def infer_transportation_mode(self, clf, min_time): """In-place transportation mode inferring of segments Returns: This track """ for segment in self.segments: segment.infer_transportation_mode(clf, min_time) return self
python
def infer_transportation_mode(self, clf, min_time): """In-place transportation mode inferring of segments Returns: This track """ for segment in self.segments: segment.infer_transportation_mode(clf, min_time) return self
In-place transportation mode inferring of segments Returns: This track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L117-L125
ruipgil/TrackToTrip
tracktotrip/track.py
Track.to_trip
def to_trip( self, smooth, smooth_strategy, smooth_noise, seg, seg_eps, seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error ): """In-place, transformation of a track into a trip A trip is a more accurate depiction of reality than a track. For a track to become a trip it need to go through the following steps: + noise removal + smoothing + spatio-temporal segmentation + simplification At the end of these steps we have a less noisy, track that has less points, but that holds the same information. It's required that each segment has their metrics calculated or has been preprocessed. Args: name: An optional string with the name of the trip. If none is given, one will be generated by generateName Returns: This Track instance """ self.compute_metrics() self.remove_noise() print (smooth, seg, simplify) if smooth: self.compute_metrics() self.smooth(smooth_strategy, smooth_noise) if seg: self.compute_metrics() self.segment(seg_eps, seg_min_time) if simplify: self.compute_metrics() self.simplify(0, simplify_max_dist_error, simplify_max_speed_error) self.compute_metrics() return self
python
def to_trip( self, smooth, smooth_strategy, smooth_noise, seg, seg_eps, seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error ): """In-place, transformation of a track into a trip A trip is a more accurate depiction of reality than a track. For a track to become a trip it need to go through the following steps: + noise removal + smoothing + spatio-temporal segmentation + simplification At the end of these steps we have a less noisy, track that has less points, but that holds the same information. It's required that each segment has their metrics calculated or has been preprocessed. Args: name: An optional string with the name of the trip. If none is given, one will be generated by generateName Returns: This Track instance """ self.compute_metrics() self.remove_noise() print (smooth, seg, simplify) if smooth: self.compute_metrics() self.smooth(smooth_strategy, smooth_noise) if seg: self.compute_metrics() self.segment(seg_eps, seg_min_time) if simplify: self.compute_metrics() self.simplify(0, simplify_max_dist_error, simplify_max_speed_error) self.compute_metrics() return self
In-place, transformation of a track into a trip A trip is a more accurate depiction of reality than a track. For a track to become a trip it need to go through the following steps: + noise removal + smoothing + spatio-temporal segmentation + simplification At the end of these steps we have a less noisy, track that has less points, but that holds the same information. It's required that each segment has their metrics calculated or has been preprocessed. Args: name: An optional string with the name of the trip. If none is given, one will be generated by generateName Returns: This Track instance
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L137-L189
ruipgil/TrackToTrip
tracktotrip/track.py
Track.infer_transportation_modes
def infer_transportation_modes(self, dt_threshold=10): """In-place transportation inferring of segments Returns: This track """ self.segments = [ segment.infer_transportation_mode(dt_threshold=dt_threshold) for segment in self.segments ] return self
python
def infer_transportation_modes(self, dt_threshold=10): """In-place transportation inferring of segments Returns: This track """ self.segments = [ segment.infer_transportation_mode(dt_threshold=dt_threshold) for segment in self.segments ] return self
In-place transportation inferring of segments Returns: This track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L191-L201
ruipgil/TrackToTrip
tracktotrip/track.py
Track.infer_location
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """In-place location inferring of segments Returns: This track """ self.segments = [ segment.infer_location( location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) for segment in self.segments ] return self
python
def infer_location( self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """In-place location inferring of segments Returns: This track """ self.segments = [ segment.infer_location( location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ) for segment in self.segments ] return self
In-place location inferring of segments Returns: This track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L204-L229
ruipgil/TrackToTrip
tracktotrip/track.py
Track.to_json
def to_json(self): """Converts track to a JSON serializable format Returns: Map with the name, and segments of the track. """ return { 'name': self.name, 'segments': [segment.to_json() for segment in self.segments], 'meta': self.meta }
python
def to_json(self): """Converts track to a JSON serializable format Returns: Map with the name, and segments of the track. """ return { 'name': self.name, 'segments': [segment.to_json() for segment in self.segments], 'meta': self.meta }
Converts track to a JSON serializable format Returns: Map with the name, and segments of the track.
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L231-L241
ruipgil/TrackToTrip
tracktotrip/track.py
Track.merge_and_fit
def merge_and_fit(self, track, pairings): """ Merges another track with this one, ordering the points based on a distance heuristic Args: track (:obj:`Track`): Track to merge with pairings Returns: :obj:`Segment`: self """ for (self_seg_index, track_seg_index, _) in pairings: self_s = self.segments[self_seg_index] ss_start = self_s.points[0] track_s = track.segments[track_seg_index] tt_start = track_s.points[0] tt_end = track_s.points[-1] d_start = ss_start.distance(tt_start) d_end = ss_start.distance(tt_end) if d_start > d_end: track_s = track_s.copy() track_s.points = list(reversed(track_s.points)) self_s.merge_and_fit(track_s) return self
python
def merge_and_fit(self, track, pairings): """ Merges another track with this one, ordering the points based on a distance heuristic Args: track (:obj:`Track`): Track to merge with pairings Returns: :obj:`Segment`: self """ for (self_seg_index, track_seg_index, _) in pairings: self_s = self.segments[self_seg_index] ss_start = self_s.points[0] track_s = track.segments[track_seg_index] tt_start = track_s.points[0] tt_end = track_s.points[-1] d_start = ss_start.distance(tt_start) d_end = ss_start.distance(tt_end) if d_start > d_end: track_s = track_s.copy() track_s.points = list(reversed(track_s.points)) self_s.merge_and_fit(track_s) return self
Merges another track with this one, ordering the points based on a distance heuristic Args: track (:obj:`Track`): Track to merge with pairings Returns: :obj:`Segment`: self
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L244-L270
ruipgil/TrackToTrip
tracktotrip/track.py
Track.get_point_index
def get_point_index(self, point): """ Gets of the closest first point Args: point (:obj:`Point`) Returns: (int, int): Segment id and point index in that segment """ for i, segment in enumerate(self.segments): idx = segment.getPointIndex(point) if idx != -1: return i, idx return -1, -1
python
def get_point_index(self, point): """ Gets of the closest first point Args: point (:obj:`Point`) Returns: (int, int): Segment id and point index in that segment """ for i, segment in enumerate(self.segments): idx = segment.getPointIndex(point) if idx != -1: return i, idx return -1, -1
Gets of the closest first point Args: point (:obj:`Point`) Returns: (int, int): Segment id and point index in that segment
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L272-L284
ruipgil/TrackToTrip
tracktotrip/track.py
Track.bounds
def bounds(self, thr=0): """ Gets the bounds of this segment Returns: (float, float, float, float): Bounds, with min latitude, min longitude, max latitude and max longitude """ min_lat = float("inf") min_lon = float("inf") max_lat = -float("inf") max_lon = -float("inf") for segment in self.segments: milat, milon, malat, malon = segment.bounds(thr=thr) min_lat = min(milat, min_lat) min_lon = min(milon, min_lon) max_lat = max(malat, max_lat) max_lon = max(malon, max_lon) return min_lat, min_lon, max_lat, max_lon
python
def bounds(self, thr=0): """ Gets the bounds of this segment Returns: (float, float, float, float): Bounds, with min latitude, min longitude, max latitude and max longitude """ min_lat = float("inf") min_lon = float("inf") max_lat = -float("inf") max_lon = -float("inf") for segment in self.segments: milat, milon, malat, malon = segment.bounds(thr=thr) min_lat = min(milat, min_lat) min_lon = min(milon, min_lon) max_lat = max(malat, max_lat) max_lon = max(malon, max_lon) return min_lat, min_lon, max_lat, max_lon
Gets the bounds of this segment Returns: (float, float, float, float): Bounds, with min latitude, min longitude, max latitude and max longitude
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L286-L303
ruipgil/TrackToTrip
tracktotrip/track.py
Track.similarity
def similarity(self, track): """ Compares two tracks based on their topology This method compares the given track against this instance. It only verifies if given track is close to this one, not the other way arround Args: track (:obj:`Track`) Returns: Two-tuple with global similarity between tracks and an array the similarity between segments """ idx = index.Index() i = 0 for i, segment in enumerate(self.segments): idx.insert(i, segment.bounds(), obj=segment) final_siml = [] final_diff = [] for i, segment in enumerate(track.segments): query = idx.intersection(segment.bounds(), objects=True) res_siml = [] res_diff = [] for result in query: siml, diff = segment_similarity(segment, result.object) res_siml.append(siml) res_diff.append((result.id, i, diff)) if len(res_siml) > 0: final_siml.append(max(res_siml)) final_diff.append(res_diff[np.argmax(res_siml)]) else: final_siml.append(0) final_diff.append([]) return np.mean(final_siml), final_diff
python
def similarity(self, track): """ Compares two tracks based on their topology This method compares the given track against this instance. It only verifies if given track is close to this one, not the other way arround Args: track (:obj:`Track`) Returns: Two-tuple with global similarity between tracks and an array the similarity between segments """ idx = index.Index() i = 0 for i, segment in enumerate(self.segments): idx.insert(i, segment.bounds(), obj=segment) final_siml = [] final_diff = [] for i, segment in enumerate(track.segments): query = idx.intersection(segment.bounds(), objects=True) res_siml = [] res_diff = [] for result in query: siml, diff = segment_similarity(segment, result.object) res_siml.append(siml) res_diff.append((result.id, i, diff)) if len(res_siml) > 0: final_siml.append(max(res_siml)) final_diff.append(res_diff[np.argmax(res_siml)]) else: final_siml.append(0) final_diff.append([]) return np.mean(final_siml), final_diff
Compares two tracks based on their topology This method compares the given track against this instance. It only verifies if given track is close to this one, not the other way arround Args: track (:obj:`Track`) Returns: Two-tuple with global similarity between tracks and an array the similarity between segments
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L316-L353
ruipgil/TrackToTrip
tracktotrip/track.py
Track.to_gpx
def to_gpx(self): """Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track """ gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append( u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time) ) points = u'\n\t\t\t'.join(gpx_points) gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points) segments = u'\t\n'.join(gpx_segments) content = [ u'<?xml version="1.0" encoding="UTF-8"?>', u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">', u'\t<trk>', segments, u'\t</trk>', u'</gpx>' ] return u'\n'.join(content)
python
def to_gpx(self): """Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track """ gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append( u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (point.lat, point.lon, time) ) points = u'\n\t\t\t'.join(gpx_points) gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points) segments = u'\t\n'.join(gpx_segments) content = [ u'<?xml version="1.0" encoding="UTF-8"?>', u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">', u'\t<trk>', segments, u'\t</trk>', u'</gpx>' ] return u'\n'.join(content)
Converts track to a GPX format Uses GPXPY library as an intermediate format Returns: A string with the GPX/XML track
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L367-L398
ruipgil/TrackToTrip
tracktotrip/track.py
Track.timezone
def timezone(self, timezone=0): """ Sets the timezone of the entire track Args: timezone (int): Timezone hour delta """ tz_dt = timedelta(hours=timezone) for segment in self.segments: for point in segment.points: point.time = point.time + tz_dt return self
python
def timezone(self, timezone=0): """ Sets the timezone of the entire track Args: timezone (int): Timezone hour delta """ tz_dt = timedelta(hours=timezone) for segment in self.segments: for point in segment.points: point.time = point.time + tz_dt return self
Sets the timezone of the entire track Args: timezone (int): Timezone hour delta
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L400-L411
ruipgil/TrackToTrip
tracktotrip/track.py
Track.to_life
def to_life(self): """Converts track to LIFE format """ buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d") # buff += "--" + day # buff += "UTC+s" # if needed def military_time(time): """ Converts time to military time Args: time (:obj:`datetime.datetime`) Returns: str: Time in the format 1245 (12 hours and 45 minutes) """ return time.strftime("%H%M") def stay(buff, start, end, place): """ Creates a stay representation Args: start (:obj:`datetime.datetime` or str) end (:obj:`datetime.datetime` or str) place (:obj:`Location`) Returns: str """ if not isinstance(start, str): start = military_time(start) if not isinstance(end, str): end = military_time(end) return "%s\n%s-%s: %s" % (buff, start, end, place.label) def trip(buff, segment): """ Creates a trip representation Args: buff (str): buffer segment (:obj:`Segment`) Returns: str: buffer and trip representation """ trip = "%s-%s: %s -> %s" % ( military_time(segment.points[0].time), military_time(segment.points[-1].time), segment.location_from.label, segment.location_to.label ) t_modes = segment.transportation_modes if len(t_modes) == 1: trip = "%s [%s]" % (trip, t_modes[0]['label']) elif len(t_modes) > 1: modes = [] for mode in t_modes: trip_from = military_time(segment.points[mode['from']].time) trip_to = military_time(segment.points[mode['to']].time) modes.append(" %s-%s: [%s]" % (trip_from, trip_to, mode['label'])) trip = "%s\n%s" % (trip, "\n".join(modes)) return "%s\n%s" % (buff, trip) last = len(self.segments) - 1 for i, segment in enumerate(self.segments): if i == 0: buff = stay( buff, "0000", military_time(segment.points[0].time), segment.location_from ) buff = trip(buff, segment) if i is last: buff = stay( buff, military_time(segment.points[-1].time), "2359", segment.location_to ) else: next_seg = self.segments[i+1] buff = stay( buff, military_time(segment.points[-1].time), military_time(next_seg.points[0].time), segment.location_to ) return buff
python
def to_life(self): """Converts track to LIFE format """ buff = "--%s\n" % self.segments[0].points[0].time.strftime("%Y_%m_%d") # buff += "--" + day # buff += "UTC+s" # if needed def military_time(time): """ Converts time to military time Args: time (:obj:`datetime.datetime`) Returns: str: Time in the format 1245 (12 hours and 45 minutes) """ return time.strftime("%H%M") def stay(buff, start, end, place): """ Creates a stay representation Args: start (:obj:`datetime.datetime` or str) end (:obj:`datetime.datetime` or str) place (:obj:`Location`) Returns: str """ if not isinstance(start, str): start = military_time(start) if not isinstance(end, str): end = military_time(end) return "%s\n%s-%s: %s" % (buff, start, end, place.label) def trip(buff, segment): """ Creates a trip representation Args: buff (str): buffer segment (:obj:`Segment`) Returns: str: buffer and trip representation """ trip = "%s-%s: %s -> %s" % ( military_time(segment.points[0].time), military_time(segment.points[-1].time), segment.location_from.label, segment.location_to.label ) t_modes = segment.transportation_modes if len(t_modes) == 1: trip = "%s [%s]" % (trip, t_modes[0]['label']) elif len(t_modes) > 1: modes = [] for mode in t_modes: trip_from = military_time(segment.points[mode['from']].time) trip_to = military_time(segment.points[mode['to']].time) modes.append(" %s-%s: [%s]" % (trip_from, trip_to, mode['label'])) trip = "%s\n%s" % (trip, "\n".join(modes)) return "%s\n%s" % (buff, trip) last = len(self.segments) - 1 for i, segment in enumerate(self.segments): if i == 0: buff = stay( buff, "0000", military_time(segment.points[0].time), segment.location_from ) buff = trip(buff, segment) if i is last: buff = stay( buff, military_time(segment.points[-1].time), "2359", segment.location_to ) else: next_seg = self.segments[i+1] buff = stay( buff, military_time(segment.points[-1].time), military_time(next_seg.points[0].time), segment.location_to ) return buff
Converts track to LIFE format
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L413-L502
ruipgil/TrackToTrip
tracktotrip/track.py
Track.from_gpx
def from_gpx(file_path): """ Creates a Track from a GPX file. No preprocessing is done. Arguments: file_path (str): file path and name to the GPX file Return: :obj:`list` of :obj:`Track` """ gpx = gpxpy.parse(open(file_path, 'r')) file_name = basename(file_path) tracks = [] for i, track in enumerate(gpx.tracks): segments = [] for segment in track.segments: segments.append(Segment.from_gpx(segment)) if len(gpx.tracks) > 1: name = file_name + "_" + str(i) else: name = file_name tracks.append(Track(name, segments)) return tracks
python
def from_gpx(file_path): """ Creates a Track from a GPX file. No preprocessing is done. Arguments: file_path (str): file path and name to the GPX file Return: :obj:`list` of :obj:`Track` """ gpx = gpxpy.parse(open(file_path, 'r')) file_name = basename(file_path) tracks = [] for i, track in enumerate(gpx.tracks): segments = [] for segment in track.segments: segments.append(Segment.from_gpx(segment)) if len(gpx.tracks) > 1: name = file_name + "_" + str(i) else: name = file_name tracks.append(Track(name, segments)) return tracks
Creates a Track from a GPX file. No preprocessing is done. Arguments: file_path (str): file path and name to the GPX file Return: :obj:`list` of :obj:`Track`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L505-L530
ruipgil/TrackToTrip
tracktotrip/track.py
Track.from_json
def from_json(json): """Creates a Track from a JSON file. No preprocessing is done. Arguments: json: map with the keys: name (optional) and segments. Return: A track instance """ segments = [Segment.from_json(s) for s in json['segments']] return Track(json['name'], segments).compute_metrics()
python
def from_json(json): """Creates a Track from a JSON file. No preprocessing is done. Arguments: json: map with the keys: name (optional) and segments. Return: A track instance """ segments = [Segment.from_json(s) for s in json['segments']] return Track(json['name'], segments).compute_metrics()
Creates a Track from a JSON file. No preprocessing is done. Arguments: json: map with the keys: name (optional) and segments. Return: A track instance
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L533-L544
ruipgil/TrackToTrip
tracktotrip/similarity.py
normalize
def normalize(p): """Normalizes a point/vector Args: p ([float, float]): x and y coordinates Returns: float """ l = math.sqrt(p[0]**2 + p[1]**2) return [0.0, 0.0] if l == 0 else [p[0]/l, p[1]/l]
python
def normalize(p): """Normalizes a point/vector Args: p ([float, float]): x and y coordinates Returns: float """ l = math.sqrt(p[0]**2 + p[1]**2) return [0.0, 0.0] if l == 0 else [p[0]/l, p[1]/l]
Normalizes a point/vector Args: p ([float, float]): x and y coordinates Returns: float
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L21-L30
ruipgil/TrackToTrip
tracktotrip/similarity.py
line
def line(p1, p2): """Creates a line from two points From http://stackoverflow.com/a/20679579 Args: p1 ([float, float]): x and y coordinates p2 ([float, float]): x and y coordinates Returns: (float, float, float): x, y and _ """ A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0]*p2[1] - p2[0]*p1[1]) return A, B, -C
python
def line(p1, p2): """Creates a line from two points From http://stackoverflow.com/a/20679579 Args: p1 ([float, float]): x and y coordinates p2 ([float, float]): x and y coordinates Returns: (float, float, float): x, y and _ """ A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0]*p2[1] - p2[0]*p1[1]) return A, B, -C
Creates a line from two points From http://stackoverflow.com/a/20679579 Args: p1 ([float, float]): x and y coordinates p2 ([float, float]): x and y coordinates Returns: (float, float, float): x, y and _
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L55-L69
ruipgil/TrackToTrip
tracktotrip/similarity.py
intersection
def intersection(L1, L2): """Intersects two line segments Args: L1 ([float, float]): x and y coordinates L2 ([float, float]): x and y coordinates Returns: bool: if they intersect (float, float): x and y of intersection, if they do """ D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return False
python
def intersection(L1, L2): """Intersects two line segments Args: L1 ([float, float]): x and y coordinates L2 ([float, float]): x and y coordinates Returns: bool: if they intersect (float, float): x and y of intersection, if they do """ D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return False
Intersects two line segments Args: L1 ([float, float]): x and y coordinates L2 ([float, float]): x and y coordinates Returns: bool: if they intersect (float, float): x and y of intersection, if they do
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L71-L89
ruipgil/TrackToTrip
tracktotrip/similarity.py
distance_tt_point
def distance_tt_point(a, b): """ Euclidean distance between two (tracktotrip) points Args: a (:obj:`Point`) b (:obj:`Point`) Returns: float """ return math.sqrt((b.lat-a.lat)**2 + (b.lon-a.lon)**2)
python
def distance_tt_point(a, b): """ Euclidean distance between two (tracktotrip) points Args: a (:obj:`Point`) b (:obj:`Point`) Returns: float """ return math.sqrt((b.lat-a.lat)**2 + (b.lon-a.lon)**2)
Euclidean distance between two (tracktotrip) points Args: a (:obj:`Point`) b (:obj:`Point`) Returns: float
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L102-L111
ruipgil/TrackToTrip
tracktotrip/similarity.py
closest_point
def closest_point(a, b, p): """Finds closest point in a line segment Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to find in the segment Returns: (float, float): x and y coordinates of the closest point """ ap = [p[0]-a[0], p[1]-a[1]] ab = [b[0]-a[0], b[1]-a[1]] mag = float(ab[0]**2 + ab[1]**2) proj = dot(ap, ab) if mag ==0 : dist = 0 else: dist = proj / mag if dist < 0: return [a[0], a[1]] elif dist > 1: return [b[0], b[1]] else: return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
python
def closest_point(a, b, p): """Finds closest point in a line segment Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to find in the segment Returns: (float, float): x and y coordinates of the closest point """ ap = [p[0]-a[0], p[1]-a[1]] ab = [b[0]-a[0], b[1]-a[1]] mag = float(ab[0]**2 + ab[1]**2) proj = dot(ap, ab) if mag ==0 : dist = 0 else: dist = proj / mag if dist < 0: return [a[0], a[1]] elif dist > 1: return [b[0], b[1]] else: return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
Finds closest point in a line segment Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to find in the segment Returns: (float, float): x and y coordinates of the closest point
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L113-L136
ruipgil/TrackToTrip
tracktotrip/similarity.py
distance_to_line
def distance_to_line(a, b, p): """Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float """ return distance(closest_point(a, b, p), p)
python
def distance_to_line(a, b, p): """Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float """ return distance(closest_point(a, b, p), p)
Closest distance between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L138-L148
ruipgil/TrackToTrip
tracktotrip/similarity.py
distance_similarity
def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD): """Computes the distance similarity between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d = distance_to_line(a, b, p) r = (-1/float(T)) * abs(d) + 1 return r if r > 0 else 0
python
def distance_similarity(a, b, p, T=CLOSE_DISTANCE_THRESHOLD): """Computes the distance similarity between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d = distance_to_line(a, b, p) r = (-1/float(T)) * abs(d) + 1 return r if r > 0 else 0
Computes the distance similarity between a line segment and a point Args: a ([float, float]): x and y coordinates. Line start b ([float, float]): x and y coordinates. Line end p ([float, float]): x and y coordinates. Point to compute the distance Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L151-L165
ruipgil/TrackToTrip
tracktotrip/similarity.py
line_distance_similarity
def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Line distance similarity between two line segments Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d1 = distance_similarity(p1a, p1b, p2a, T=T) d2 = distance_similarity(p1a, p1b, p2b, T=T) return abs(d1 + d2) * 0.5
python
def line_distance_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Line distance similarity between two line segments Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d1 = distance_similarity(p1a, p1b, p2a, T=T) d2 = distance_similarity(p1a, p1b, p2b, T=T) return abs(d1 + d2) * 0.5
Line distance similarity between two line segments Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L167-L180
ruipgil/TrackToTrip
tracktotrip/similarity.py
line_similarity
def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Similarity between two lines Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d = line_distance_similarity(p1a, p1b, p2a, p2b, T=T) a = abs(angle_similarity(normalize(line(p1a, p1b)), normalize(line(p2a, p2b)))) return d * a
python
def line_similarity(p1a, p1b, p2a, p2b, T=CLOSE_DISTANCE_THRESHOLD): """Similarity between two lines Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ d = line_distance_similarity(p1a, p1b, p2a, p2b, T=T) a = abs(angle_similarity(normalize(line(p1a, p1b)), normalize(line(p2a, p2b)))) return d * a
Similarity between two lines Args: p1a ([float, float]): x and y coordinates. Line A start p1b ([float, float]): x and y coordinates. Line A end p2a ([float, float]): x and y coordinates. Line B start p2b ([float, float]): x and y coordinates. Line B end Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L182-L195
ruipgil/TrackToTrip
tracktotrip/similarity.py
bounding_box_from
def bounding_box_from(points, i, i1, thr): """Creates bounding box for a line segment Args: points (:obj:`list` of :obj:`Point`) i (int): Line segment start, index in points array i1 (int): Line segment end, index in points array Returns: (float, float, float, float): with bounding box min x, min y, max x and max y """ pi = points[i] pi1 = points[i1] min_lat = min(pi.lat, pi1.lat) min_lon = min(pi.lon, pi1.lon) max_lat = max(pi.lat, pi1.lat) max_lon = max(pi.lon, pi1.lon) return min_lat-thr, min_lon-thr, max_lat+thr, max_lon+thr
python
def bounding_box_from(points, i, i1, thr): """Creates bounding box for a line segment Args: points (:obj:`list` of :obj:`Point`) i (int): Line segment start, index in points array i1 (int): Line segment end, index in points array Returns: (float, float, float, float): with bounding box min x, min y, max x and max y """ pi = points[i] pi1 = points[i1] min_lat = min(pi.lat, pi1.lat) min_lon = min(pi.lon, pi1.lon) max_lat = max(pi.lat, pi1.lat) max_lon = max(pi.lon, pi1.lon) return min_lat-thr, min_lon-thr, max_lat+thr, max_lon+thr
Creates bounding box for a line segment Args: points (:obj:`list` of :obj:`Point`) i (int): Line segment start, index in points array i1 (int): Line segment end, index in points array Returns: (float, float, float, float): with bounding box min x, min y, max x and max y
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L197-L215
ruipgil/TrackToTrip
tracktotrip/similarity.py
segment_similarity
def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD): """Computes the similarity between two segments Args: A (:obj:`Segment`) B (:obj:`Segment`) Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ l_a = len(A.points) l_b = len(B.points) idx = index.Index() dex = 0 for i in range(l_a-1): idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]]) dex = dex + 1 prox_acc = [] for i in range(l_b-1): ti = B.points[i].gen2arr() ti1 = B.points[i+1].gen2arr() bb = bounding_box_from(B.points, i, i+1, T) intersects = idx.intersection(bb, objects=True) n_prox = [] i_prox = 0 a = 0 for x in intersects: a = a + 1 pi = x.object[0].gen2arr() pi1 = x.object[1].gen2arr() prox = line_similarity(ti, ti1, pi, pi1, T) i_prox = i_prox + prox n_prox.append(prox) if a != 0: prox_acc.append(i_prox / a) # prox_acc.append(max(n_prox)) else: prox_acc.append(0) return np.mean(prox_acc), prox_acc
python
def segment_similarity(A, B, T=CLOSE_DISTANCE_THRESHOLD): """Computes the similarity between two segments Args: A (:obj:`Segment`) B (:obj:`Segment`) Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different """ l_a = len(A.points) l_b = len(B.points) idx = index.Index() dex = 0 for i in range(l_a-1): idx.insert(dex, bounding_box_from(A.points, i, i+1, T), obj=[A.points[i], A.points[i+1]]) dex = dex + 1 prox_acc = [] for i in range(l_b-1): ti = B.points[i].gen2arr() ti1 = B.points[i+1].gen2arr() bb = bounding_box_from(B.points, i, i+1, T) intersects = idx.intersection(bb, objects=True) n_prox = [] i_prox = 0 a = 0 for x in intersects: a = a + 1 pi = x.object[0].gen2arr() pi1 = x.object[1].gen2arr() prox = line_similarity(ti, ti1, pi, pi1, T) i_prox = i_prox + prox n_prox.append(prox) if a != 0: prox_acc.append(i_prox / a) # prox_acc.append(max(n_prox)) else: prox_acc.append(0) return np.mean(prox_acc), prox_acc
Computes the similarity between two segments Args: A (:obj:`Segment`) B (:obj:`Segment`) Returns: float: between 0 and 1. Where 1 is very similar and 0 is completely different
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L217-L259
ruipgil/TrackToTrip
tracktotrip/similarity.py
sort_segment_points
def sort_segment_points(Aps, Bps): """Takes two line segments and sorts all their points, so that they form a continuous path Args: Aps: Array of tracktotrip.Point Bps: Array of tracktotrip.Point Returns: Array with points ordered """ mid = [] j = 0 mid.append(Aps[0]) for i in range(len(Aps)-1): dist = distance_tt_point(Aps[i], Aps[i+1]) for m in range(j, len(Bps)): distm = distance_tt_point(Aps[i], Bps[m]) if dist > distm: direction = dot(normalize(line(Aps[i].gen2arr(), Aps[i+1].gen2arr())), normalize(Bps[m].gen2arr())) if direction > 0: j = m + 1 mid.append(Bps[m]) break mid.append(Aps[i+1]) for m in range(j, len(Bps)): mid.append(Bps[m]) return mid
python
def sort_segment_points(Aps, Bps): """Takes two line segments and sorts all their points, so that they form a continuous path Args: Aps: Array of tracktotrip.Point Bps: Array of tracktotrip.Point Returns: Array with points ordered """ mid = [] j = 0 mid.append(Aps[0]) for i in range(len(Aps)-1): dist = distance_tt_point(Aps[i], Aps[i+1]) for m in range(j, len(Bps)): distm = distance_tt_point(Aps[i], Bps[m]) if dist > distm: direction = dot(normalize(line(Aps[i].gen2arr(), Aps[i+1].gen2arr())), normalize(Bps[m].gen2arr())) if direction > 0: j = m + 1 mid.append(Bps[m]) break mid.append(Aps[i+1]) for m in range(j, len(Bps)): mid.append(Bps[m]) return mid
Takes two line segments and sorts all their points, so that they form a continuous path Args: Aps: Array of tracktotrip.Point Bps: Array of tracktotrip.Point Returns: Array with points ordered
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/similarity.py#L261-L288
ruipgil/TrackToTrip
tracktotrip/point.py
haversine_distance
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2): """ Haversine distance between two points, expressed in meters. Implemented from http://www.movable-type.co.uk/scripts/latlong.html """ d_lat = to_rad(latitude_1 - latitude_2) d_lon = to_rad(longitude_1 - longitude_2) lat1 = to_rad(latitude_1) lat2 = to_rad(latitude_2) #pylint: disable=invalid-name a = math.sin(d_lat/2) * math.sin(d_lat/2) + \ math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) d = EARTH_RADIUS * c return d
python
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2): """ Haversine distance between two points, expressed in meters. Implemented from http://www.movable-type.co.uk/scripts/latlong.html """ d_lat = to_rad(latitude_1 - latitude_2) d_lon = to_rad(longitude_1 - longitude_2) lat1 = to_rad(latitude_1) lat2 = to_rad(latitude_2) #pylint: disable=invalid-name a = math.sin(d_lat/2) * math.sin(d_lat/2) + \ math.sin(d_lon/2) * math.sin(d_lon/2) * math.cos(lat1) * math.cos(lat2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) d = EARTH_RADIUS * c return d
Haversine distance between two points, expressed in meters. Implemented from http://www.movable-type.co.uk/scripts/latlong.html
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L165-L181
ruipgil/TrackToTrip
tracktotrip/point.py
distance
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2, haversine=None): """ Distance between two points """ # If points too distant -- compute haversine distance: if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2): return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2) coef = math.cos(latitude_1 / 180. * math.pi) #pylint: disable=invalid-name x = latitude_1 - latitude_2 y = (longitude_1 - longitude_2) * coef distance_2d = math.sqrt(x * x + y * y) * ONE_DEGREE if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2: return distance_2d return math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
python
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2, haversine=None): """ Distance between two points """ # If points too distant -- compute haversine distance: if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2): return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2) coef = math.cos(latitude_1 / 180. * math.pi) #pylint: disable=invalid-name x = latitude_1 - latitude_2 y = (longitude_1 - longitude_2) * coef distance_2d = math.sqrt(x * x + y * y) * ONE_DEGREE if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2: return distance_2d return math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
Distance between two points
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L184-L202
ruipgil/TrackToTrip
tracktotrip/point.py
Point.distance
def distance(self, other): """ Distance between points Args: other (:obj:`Point`) Returns: float: Distance in km """ return distance(self.lat, self.lon, None, other.lat, other.lon, None)
python
def distance(self, other): """ Distance between points Args: other (:obj:`Point`) Returns: float: Distance in km """ return distance(self.lat, self.lon, None, other.lat, other.lon, None)
Distance between points Args: other (:obj:`Point`) Returns: float: Distance in km
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L57-L65
ruipgil/TrackToTrip
tracktotrip/point.py
Point.compute_metrics
def compute_metrics(self, previous): """ Computes the metrics of this point Computes and updates the dt, vel and acc attributes. Args: previous (:obj:`Point`): Point before Returns: :obj:`Point`: Self """ delta_t = self.time_difference(previous) delta_x = self.distance(previous) vel = 0 delta_v = 0 acc = 0 if delta_t != 0: vel = delta_x/delta_t delta_v = vel - previous.vel acc = delta_v/delta_t self.dt = delta_t self.dx = delta_x self.acc = acc self.vel = vel return self
python
def compute_metrics(self, previous): """ Computes the metrics of this point Computes and updates the dt, vel and acc attributes. Args: previous (:obj:`Point`): Point before Returns: :obj:`Point`: Self """ delta_t = self.time_difference(previous) delta_x = self.distance(previous) vel = 0 delta_v = 0 acc = 0 if delta_t != 0: vel = delta_x/delta_t delta_v = vel - previous.vel acc = delta_v/delta_t self.dt = delta_t self.dx = delta_x self.acc = acc self.vel = vel return self
Computes the metrics of this point Computes and updates the dt, vel and acc attributes. Args: previous (:obj:`Point`): Point before Returns: :obj:`Point`: Self
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L77-L101
ruipgil/TrackToTrip
tracktotrip/point.py
Point.from_gpx
def from_gpx(gpx_track_point): """ Creates a point from GPX representation Arguments: gpx_track_point (:obj:`gpxpy.GPXTrackPoint`) Returns: :obj:`Point` """ return Point( lat=gpx_track_point.latitude, lon=gpx_track_point.longitude, time=gpx_track_point.time )
python
def from_gpx(gpx_track_point): """ Creates a point from GPX representation Arguments: gpx_track_point (:obj:`gpxpy.GPXTrackPoint`) Returns: :obj:`Point` """ return Point( lat=gpx_track_point.latitude, lon=gpx_track_point.longitude, time=gpx_track_point.time )
Creates a point from GPX representation Arguments: gpx_track_point (:obj:`gpxpy.GPXTrackPoint`) Returns: :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L104-L116
ruipgil/TrackToTrip
tracktotrip/point.py
Point.to_json
def to_json(self): """ Creates a JSON serializable representation of this instance Returns: :obj:`dict`: For example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } """ return { 'lat': self.lat, 'lon': self.lon, 'time': self.time.isoformat() if self.time is not None else None }
python
def to_json(self): """ Creates a JSON serializable representation of this instance Returns: :obj:`dict`: For example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } """ return { 'lat': self.lat, 'lon': self.lon, 'time': self.time.isoformat() if self.time is not None else None }
Creates a JSON serializable representation of this instance Returns: :obj:`dict`: For example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" }
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L118-L133
ruipgil/TrackToTrip
tracktotrip/point.py
Point.from_json
def from_json(json): """ Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } json: map representation of Point instance Returns: :obj:`Point` """ return Point( lat=json['lat'], lon=json['lon'], time=isostr_to_datetime(json['time']) )
python
def from_json(json): """ Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } json: map representation of Point instance Returns: :obj:`Point` """ return Point( lat=json['lat'], lon=json['lon'], time=isostr_to_datetime(json['time']) )
Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } json: map representation of Point instance Returns: :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/point.py#L136-L155
ruipgil/TrackToTrip
tracktotrip/location.py
compute_centroid
def compute_centroid(points): """ Computes the centroid of set of points Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`Point` """ lats = [p[1] for p in points] lons = [p[0] for p in points] return Point(np.mean(lats), np.mean(lons), None)
python
def compute_centroid(points): """ Computes the centroid of set of points Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`Point` """ lats = [p[1] for p in points] lons = [p[0] for p in points] return Point(np.mean(lats), np.mean(lons), None)
Computes the centroid of set of points Args: points (:obj:`list` of :obj:`Point`) Returns: :obj:`Point`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L37-L47
ruipgil/TrackToTrip
tracktotrip/location.py
update_location_centroid
def update_location_centroid(point, cluster, max_distance, min_samples): """ Updates the centroid of a location cluster with another point Args: point (:obj:`Point`): Point to add to the cluster cluster (:obj:`list` of :obj:`Point`): Location cluster max_distance (float): Max neighbour distance min_samples (int): Minimum number of samples Returns: (:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid and new point cluster (given cluster + given point) """ cluster.append(point) points = [p.gen2arr() for p in cluster] # Estimates the epsilon eps = estimate_meters_to_deg(max_distance, precision=6) p_cluster = DBSCAN(eps=eps, min_samples=min_samples) p_cluster.fit(points) clusters = {} for i, label in enumerate(p_cluster.labels_): if label in clusters.keys(): clusters[label].append(points[i]) else: clusters[label] = [points[i]] centroids = [] biggest_centroid_l = -float("inf") biggest_centroid = None for label, n_cluster in clusters.items(): centroid = compute_centroid(n_cluster) centroids.append(centroid) if label >= 0 and len(n_cluster) >= biggest_centroid_l: biggest_centroid_l = len(n_cluster) biggest_centroid = centroid if biggest_centroid is None: biggest_centroid = compute_centroid(points) return biggest_centroid, cluster
python
def update_location_centroid(point, cluster, max_distance, min_samples): """ Updates the centroid of a location cluster with another point Args: point (:obj:`Point`): Point to add to the cluster cluster (:obj:`list` of :obj:`Point`): Location cluster max_distance (float): Max neighbour distance min_samples (int): Minimum number of samples Returns: (:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid and new point cluster (given cluster + given point) """ cluster.append(point) points = [p.gen2arr() for p in cluster] # Estimates the epsilon eps = estimate_meters_to_deg(max_distance, precision=6) p_cluster = DBSCAN(eps=eps, min_samples=min_samples) p_cluster.fit(points) clusters = {} for i, label in enumerate(p_cluster.labels_): if label in clusters.keys(): clusters[label].append(points[i]) else: clusters[label] = [points[i]] centroids = [] biggest_centroid_l = -float("inf") biggest_centroid = None for label, n_cluster in clusters.items(): centroid = compute_centroid(n_cluster) centroids.append(centroid) if label >= 0 and len(n_cluster) >= biggest_centroid_l: biggest_centroid_l = len(n_cluster) biggest_centroid = centroid if biggest_centroid is None: biggest_centroid = compute_centroid(points) return biggest_centroid, cluster
Updates the centroid of a location cluster with another point Args: point (:obj:`Point`): Point to add to the cluster cluster (:obj:`list` of :obj:`Point`): Location cluster max_distance (float): Max neighbour distance min_samples (int): Minimum number of samples Returns: (:obj:`Point`, :obj:`list` of :obj:`Point`): Tuple with the location centroid and new point cluster (given cluster + given point)
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L49-L92
ruipgil/TrackToTrip
tracktotrip/location.py
query_foursquare
def query_foursquare(point, max_distance, client_id, client_secret): """ Queries Squarespace API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters client_id (str): Valid Foursquare client id client_secret (str): Valid Foursquare client secret Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'distance': 19, 'types': 'Commerce', 'suggestion_type': 'FOURSQUARE' } """ if not client_id: return [] if not client_secret: return [] if from_cache(FS_CACHE, point, max_distance): return from_cache(FS_CACHE, point, max_distance) url = FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance) req = requests.get(url) if req.status_code != 200: return [] response = req.json() result = [] venues = response['response']['venues'] for venue in venues: name = venue['name'] distance = venue['location']['distance'] categories = [c['shortName'] for c in venue['categories']] result.append({ 'label': name, 'distance': distance, 'types': categories, 'suggestion_type': 'FOURSQUARE' }) # final_results = sorted(result, key=lambda elm: elm['distance']) foursquare_insert_cache(point, result) return result
python
def query_foursquare(point, max_distance, client_id, client_secret): """ Queries Squarespace API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters client_id (str): Valid Foursquare client id client_secret (str): Valid Foursquare client secret Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'distance': 19, 'types': 'Commerce', 'suggestion_type': 'FOURSQUARE' } """ if not client_id: return [] if not client_secret: return [] if from_cache(FS_CACHE, point, max_distance): return from_cache(FS_CACHE, point, max_distance) url = FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance) req = requests.get(url) if req.status_code != 200: return [] response = req.json() result = [] venues = response['response']['venues'] for venue in venues: name = venue['name'] distance = venue['location']['distance'] categories = [c['shortName'] for c in venue['categories']] result.append({ 'label': name, 'distance': distance, 'types': categories, 'suggestion_type': 'FOURSQUARE' }) # final_results = sorted(result, key=lambda elm: elm['distance']) foursquare_insert_cache(point, result) return result
Queries Squarespace API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters client_id (str): Valid Foursquare client id client_secret (str): Valid Foursquare client secret Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'distance': 19, 'types': 'Commerce', 'suggestion_type': 'FOURSQUARE' }
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L94-L142
ruipgil/TrackToTrip
tracktotrip/location.py
query_google
def query_google(point, max_distance, key): """ Queries google maps API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters key (str): Valid google maps api key Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'types': 'Commerce', 'suggestion_type': 'GOOGLE' } """ if not key: return [] if from_cache(GG_CACHE, point, max_distance): return from_cache(GG_CACHE, point, max_distance) req = requests.get(GOOGLE_PLACES_URL % ( point.lat, point.lon, max_distance, key )) if req.status_code != 200: return [] response = req.json() results = response['results'] # l = len(results) final_results = [] for local in results: final_results.append({ 'label': local['name'], 'distance': Point(local['geometry']['location']['lat'], local['geometry']['location']['lng'], None).distance(point), # 'rank': (l-i)/float(l), 'types': local['types'], 'suggestion_type': 'GOOGLE' }) google_insert_cache(point, final_results) return final_results
python
def query_google(point, max_distance, key): """ Queries google maps API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters key (str): Valid google maps api key Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'types': 'Commerce', 'suggestion_type': 'GOOGLE' } """ if not key: return [] if from_cache(GG_CACHE, point, max_distance): return from_cache(GG_CACHE, point, max_distance) req = requests.get(GOOGLE_PLACES_URL % ( point.lat, point.lon, max_distance, key )) if req.status_code != 200: return [] response = req.json() results = response['results'] # l = len(results) final_results = [] for local in results: final_results.append({ 'label': local['name'], 'distance': Point(local['geometry']['location']['lat'], local['geometry']['location']['lng'], None).distance(point), # 'rank': (l-i)/float(l), 'types': local['types'], 'suggestion_type': 'GOOGLE' }) google_insert_cache(point, final_results) return final_results
Queries google maps API for a location Args: point (:obj:`Point`): Point location to query max_distance (float): Search radius, in meters key (str): Valid google maps api key Returns: :obj:`list` of :obj:`dict`: List of locations with the following format: { 'label': 'Coffee house', 'types': 'Commerce', 'suggestion_type': 'GOOGLE' }
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L145-L189
ruipgil/TrackToTrip
tracktotrip/location.py
infer_location
def infer_location( point, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """ Infers the semantic location of a (point) place. Args: points (:obj:`Point`): Point location to infer location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...) max_distance (float): Max distance to a position, in meters google_key (str): Valid google maps api key foursquare_client_id (str): Valid Foursquare client id foursquare_client_secret (str): Valid Foursquare client secret limit (int): Results limit Returns: :obj:`Location`: with top match, and alternatives """ locations = [] if location_query is not None: queried_locations = location_query(point, max_distance) for (label, centroid, _) in queried_locations: locations.append({ 'label': unicode(label, 'utf-8'), 'distance': centroid.distance(point), # 'centroid': centroid, 'suggestion_type': 'KB' }) api_locations = [] if len(locations) <= limit: if google_key: google_locs = query_google(point, max_distance, google_key) api_locations.extend(google_locs) if foursquare_client_id and foursquare_client_secret: foursquare_locs = query_foursquare( point, max_distance, foursquare_client_id, foursquare_client_secret ) api_locations.extend(foursquare_locs) if len(locations) > 0 or len(api_locations) > 0: locations = sorted(locations, key=lambda d: d['distance']) api_locations = sorted(api_locations, key=lambda d: d['distance']) locations = (locations + api_locations)[:limit] return Location(locations[0]['label'], point, locations) else: return Location('#?', point, [])
python
def infer_location( point, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit ): """ Infers the semantic location of a (point) place. Args: points (:obj:`Point`): Point location to infer location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...) max_distance (float): Max distance to a position, in meters google_key (str): Valid google maps api key foursquare_client_id (str): Valid Foursquare client id foursquare_client_secret (str): Valid Foursquare client secret limit (int): Results limit Returns: :obj:`Location`: with top match, and alternatives """ locations = [] if location_query is not None: queried_locations = location_query(point, max_distance) for (label, centroid, _) in queried_locations: locations.append({ 'label': unicode(label, 'utf-8'), 'distance': centroid.distance(point), # 'centroid': centroid, 'suggestion_type': 'KB' }) api_locations = [] if len(locations) <= limit: if google_key: google_locs = query_google(point, max_distance, google_key) api_locations.extend(google_locs) if foursquare_client_id and foursquare_client_secret: foursquare_locs = query_foursquare( point, max_distance, foursquare_client_id, foursquare_client_secret ) api_locations.extend(foursquare_locs) if len(locations) > 0 or len(api_locations) > 0: locations = sorted(locations, key=lambda d: d['distance']) api_locations = sorted(api_locations, key=lambda d: d['distance']) locations = (locations + api_locations)[:limit] return Location(locations[0]['label'], point, locations) else: return Location('#?', point, [])
Infers the semantic location of a (point) place. Args: points (:obj:`Point`): Point location to infer location_query: Function with signature, (:obj:`Point`, int) -> (str, :obj:`Point`, ...) max_distance (float): Max distance to a position, in meters google_key (str): Valid google maps api key foursquare_client_id (str): Valid Foursquare client id foursquare_client_secret (str): Valid Foursquare client secret limit (int): Results limit Returns: :obj:`Location`: with top match, and alternatives
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/location.py#L191-L245
ruipgil/TrackToTrip
tracktotrip/utils.py
estimate_meters_to_deg
def estimate_meters_to_deg(meters, precision=PRECISION_PERSON): """ Meters to degrees estimation See https://en.wikipedia.org/wiki/Decimal_degrees Args: meters (float) precision (float) Returns: float: meters in degrees approximation """ line = PRECISION_TABLE[precision] dec = 1/float(10 ** precision) return meters / line[3] * dec
python
def estimate_meters_to_deg(meters, precision=PRECISION_PERSON): """ Meters to degrees estimation See https://en.wikipedia.org/wiki/Decimal_degrees Args: meters (float) precision (float) Returns: float: meters in degrees approximation """ line = PRECISION_TABLE[precision] dec = 1/float(10 ** precision) return meters / line[3] * dec
Meters to degrees estimation See https://en.wikipedia.org/wiki/Decimal_degrees Args: meters (float) precision (float) Returns: float: meters in degrees approximation
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L21-L34
ruipgil/TrackToTrip
tracktotrip/utils.py
isostr_to_datetime
def isostr_to_datetime(dt_str): """ Converts iso formated text string into a datetime object Args: dt_str (str): ISO formated text string Returns: :obj:`datetime.datetime` """ if len(dt_str) <= 20: return datetime.datetime.strptime(dt_str, "%Y-%m-%dT%H:%M:%SZ") else: dt_str = dt_str.split(".") return isostr_to_datetime("%sZ" % dt_str[0])
python
def isostr_to_datetime(dt_str): """ Converts iso formated text string into a datetime object Args: dt_str (str): ISO formated text string Returns: :obj:`datetime.datetime` """ if len(dt_str) <= 20: return datetime.datetime.strptime(dt_str, "%Y-%m-%dT%H:%M:%SZ") else: dt_str = dt_str.split(".") return isostr_to_datetime("%sZ" % dt_str[0])
Converts iso formated text string into a datetime object Args: dt_str (str): ISO formated text string Returns: :obj:`datetime.datetime`
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L36-L48
ruipgil/TrackToTrip
tracktotrip/utils.py
pairwise
def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." now, nxt = tee(iterable) next(nxt, None) return izip(now, nxt)
python
def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." now, nxt = tee(iterable) next(nxt, None) return izip(now, nxt)
s -> (s0,s1), (s1,s2), (s2, s3), ...
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/utils.py#L50-L54
ruipgil/TrackToTrip
tracktotrip/classifier.py
Classifier.__learn_labels
def __learn_labels(self, labels): """ Learns new labels, this method is intended for internal use Args: labels (:obj:`list` of :obj:`str`): Labels to learn """ if self.feature_length > 0: result = list(self.labels.classes_) else: result = [] for label in labels: result.append(label) self.labels.fit(result)
python
def __learn_labels(self, labels): """ Learns new labels, this method is intended for internal use Args: labels (:obj:`list` of :obj:`str`): Labels to learn """ if self.feature_length > 0: result = list(self.labels.classes_) else: result = [] for label in labels: result.append(label) self.labels.fit(result)
Learns new labels, this method is intended for internal use Args: labels (:obj:`list` of :obj:`str`): Labels to learn
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L28-L41
ruipgil/TrackToTrip
tracktotrip/classifier.py
Classifier.learn
def learn(self, features, labels): """ Fits the classifier If it's state is empty, the classifier is fitted, if not the classifier is partially fitted. See sklearn's SGDClassifier fit and partial_fit methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) labels (:obj:`list` of :obj:`str`): Labels for each set of features. New features are learnt. """ labels = np.ravel(labels) self.__learn_labels(labels) if len(labels) == 0: return labels = self.labels.transform(labels) if self.feature_length > 0 and hasattr(self.clf, 'partial_fit'): # FIXME? check docs, may need to pass class=[...] self.clf = self.clf.partial_fit(features, labels) else: self.clf = self.clf.fit(features, labels) self.feature_length = len(features[0])
python
def learn(self, features, labels): """ Fits the classifier If it's state is empty, the classifier is fitted, if not the classifier is partially fitted. See sklearn's SGDClassifier fit and partial_fit methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) labels (:obj:`list` of :obj:`str`): Labels for each set of features. New features are learnt. """ labels = np.ravel(labels) self.__learn_labels(labels) if len(labels) == 0: return labels = self.labels.transform(labels) if self.feature_length > 0 and hasattr(self.clf, 'partial_fit'): # FIXME? check docs, may need to pass class=[...] self.clf = self.clf.partial_fit(features, labels) else: self.clf = self.clf.fit(features, labels) self.feature_length = len(features[0])
Fits the classifier If it's state is empty, the classifier is fitted, if not the classifier is partially fitted. See sklearn's SGDClassifier fit and partial_fit methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) labels (:obj:`list` of :obj:`str`): Labels for each set of features. New features are learnt.
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L43-L66
ruipgil/TrackToTrip
tracktotrip/classifier.py
Classifier.predict
def predict(self, features, verbose=False): """ Probability estimates of each feature See sklearn's SGDClassifier predict and predict_proba methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) verbose: Boolean, optional. If true returns an array where each element is a dictionary, where keys are labels and values are the respective probabilities. Defaults to False. Returns: Array of array of numbers, or array of dictionaries if verbose i True """ probs = self.clf.predict_proba(features) if verbose: labels = self.labels.classes_ res = [] for prob in probs: vals = {} for i, val in enumerate(prob): label = labels[i] vals[label] = val res.append(vals) return res else: return probs
python
def predict(self, features, verbose=False): """ Probability estimates of each feature See sklearn's SGDClassifier predict and predict_proba methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) verbose: Boolean, optional. If true returns an array where each element is a dictionary, where keys are labels and values are the respective probabilities. Defaults to False. Returns: Array of array of numbers, or array of dictionaries if verbose i True """ probs = self.clf.predict_proba(features) if verbose: labels = self.labels.classes_ res = [] for prob in probs: vals = {} for i, val in enumerate(prob): label = labels[i] vals[label] = val res.append(vals) return res else: return probs
Probability estimates of each feature See sklearn's SGDClassifier predict and predict_proba methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) verbose: Boolean, optional. If true returns an array where each element is a dictionary, where keys are labels and values are the respective probabilities. Defaults to False. Returns: Array of array of numbers, or array of dictionaries if verbose i True
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/classifier.py#L72-L98
the-tale/pynames
pynames/utils.py
is_file
def is_file(obj): """Retrun True is object has 'next', '__enter__' and '__exit__' methods. Suitable to check both builtin ``file`` and ``django.core.file.File`` instances. """ return all( [callable(getattr(obj, method_name, None)) for method_name in ('__enter__', '__exit__')] + [any([callable(getattr(obj, method_name, None)) for method_name in ('next', '__iter__')])] )
python
def is_file(obj): """Retrun True is object has 'next', '__enter__' and '__exit__' methods. Suitable to check both builtin ``file`` and ``django.core.file.File`` instances. """ return all( [callable(getattr(obj, method_name, None)) for method_name in ('__enter__', '__exit__')] + [any([callable(getattr(obj, method_name, None)) for method_name in ('next', '__iter__')])] )
Retrun True is object has 'next', '__enter__' and '__exit__' methods. Suitable to check both builtin ``file`` and ``django.core.file.File`` instances.
https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/utils.py#L40-L50
the-tale/pynames
pynames/utils.py
file_adapter
def file_adapter(file_or_path): """Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects.""" if is_file(file_or_path): file_obj = file_or_path else: file_obj = open(file_or_path, 'rb') yield file_obj file_obj.close()
python
def file_adapter(file_or_path): """Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects.""" if is_file(file_or_path): file_obj = file_or_path else: file_obj = open(file_or_path, 'rb') yield file_obj file_obj.close()
Context manager that works similar to ``open(file_path)``but also accepts already openned file-like objects.
https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/utils.py#L54-L61
the-tale/pynames
pynames/from_tables_generator.py
FromCSVTablesGenerator.source_loader
def source_loader(self, source_paths, create_missing_tables=True): """Load source from 3 csv files. First file should contain global settings: * ``native_lagnauge,languages`` header on first row * appropriate values on following rows Example:: native_lagnauge,languages ru,ru ,en Second file should contain templates: * ``template_name,probability,genders,template`` header on first row * appropriate values on following rows (separate values with semicolon ";" in template column) Example:: template_name,probability,genders,template male_1,5,m,prefixes;male_suffixes baby_1,1,m;f,prefixes;descriptive Third file should contain tables with values for template slugs in all languages: * first row should contain slugs with language code after colon for each * appropriate values on following rows. Multiple forms may be specified using semicolon as separator Example:: prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en Бж,Bzh,пра,pra,быстряк;быстряку,fasty дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language If tables are missing for some slug then it is automatically created with values equeal to slug itself. So you may use some slugs without specifying tables data for them. Example for apostrophe and space: male_1,5,m,prefixes;';male_suffixes male_full,5,m,first_name; ;last_name """ if not isinstance(source_paths, Iterable) or len(source_paths) < 3: raise TypeError('FromCSVTablesGenerator.source_loader accepts list of 3 paths as argument. Got `%s` instead' % source_paths) self.native_language = '' self.languages = [] self.templates = [] self.tables = {} self.load_settings(source_paths[0]) template_slugs = self.load_templates(source_paths[1]) self.load_tables(source_paths[2]) if create_missing_tables: self.create_missing_tables(template_slugs) self.full_forms_for_languages = set()
python
def source_loader(self, source_paths, create_missing_tables=True): """Load source from 3 csv files. First file should contain global settings: * ``native_lagnauge,languages`` header on first row * appropriate values on following rows Example:: native_lagnauge,languages ru,ru ,en Second file should contain templates: * ``template_name,probability,genders,template`` header on first row * appropriate values on following rows (separate values with semicolon ";" in template column) Example:: template_name,probability,genders,template male_1,5,m,prefixes;male_suffixes baby_1,1,m;f,prefixes;descriptive Third file should contain tables with values for template slugs in all languages: * first row should contain slugs with language code after colon for each * appropriate values on following rows. Multiple forms may be specified using semicolon as separator Example:: prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en Бж,Bzh,пра,pra,быстряк;быстряку,fasty дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language If tables are missing for some slug then it is automatically created with values equeal to slug itself. So you may use some slugs without specifying tables data for them. Example for apostrophe and space: male_1,5,m,prefixes;';male_suffixes male_full,5,m,first_name; ;last_name """ if not isinstance(source_paths, Iterable) or len(source_paths) < 3: raise TypeError('FromCSVTablesGenerator.source_loader accepts list of 3 paths as argument. Got `%s` instead' % source_paths) self.native_language = '' self.languages = [] self.templates = [] self.tables = {} self.load_settings(source_paths[0]) template_slugs = self.load_templates(source_paths[1]) self.load_tables(source_paths[2]) if create_missing_tables: self.create_missing_tables(template_slugs) self.full_forms_for_languages = set()
Load source from 3 csv files. First file should contain global settings: * ``native_lagnauge,languages`` header on first row * appropriate values on following rows Example:: native_lagnauge,languages ru,ru ,en Second file should contain templates: * ``template_name,probability,genders,template`` header on first row * appropriate values on following rows (separate values with semicolon ";" in template column) Example:: template_name,probability,genders,template male_1,5,m,prefixes;male_suffixes baby_1,1,m;f,prefixes;descriptive Third file should contain tables with values for template slugs in all languages: * first row should contain slugs with language code after colon for each * appropriate values on following rows. Multiple forms may be specified using semicolon as separator Example:: prefixes:ru,prefixes:en,male_suffixes:ru,male_suffixes:en,descriptive:ru,descriptive:en Бж,Bzh,пра,pra,быстряк;быстряку,fasty дон;дону,don,Иван;Ивану,Ivan,Иванов;Иванову,Ivanov Note: you may use slugs without ":lang_code" suffix in csv header of tables file. Such headers will be treated as headers for native language If tables are missing for some slug then it is automatically created with values equeal to slug itself. So you may use some slugs without specifying tables data for them. Example for apostrophe and space: male_1,5,m,prefixes;';male_suffixes male_full,5,m,first_name; ;last_name
https://github.com/the-tale/pynames/blob/da45eaaac3166847bcb2c48cab4571a462660ace/pynames/from_tables_generator.py#L179-L238
rtlee9/serveit
examples/pytorch_imagenet_resnet50.py
loader
def loader(): """Load image from URL, and preprocess for Resnet.""" url = request.args.get('url') # read image URL as a request URL param response = requests.get(url) # make request to static image file return response.content
python
def loader(): """Load image from URL, and preprocess for Resnet.""" url = request.args.get('url') # read image URL as a request URL param response = requests.get(url) # make request to static image file return response.content
Load image from URL, and preprocess for Resnet.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/pytorch_imagenet_resnet50.py#L32-L36
rtlee9/serveit
examples/pytorch_imagenet_resnet50.py
postprocessor
def postprocessor(prediction): """Map prediction tensor to labels.""" prediction = prediction.data.numpy()[0] top_predictions = prediction.argsort()[-3:][::-1] return [labels[prediction] for prediction in top_predictions]
python
def postprocessor(prediction): """Map prediction tensor to labels.""" prediction = prediction.data.numpy()[0] top_predictions = prediction.argsort()[-3:][::-1] return [labels[prediction] for prediction in top_predictions]
Map prediction tensor to labels.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/pytorch_imagenet_resnet50.py#L48-L52
rtlee9/serveit
serveit/log_utils.py
get_logger
def get_logger(name): """Get a logger with the specified name.""" logger = logging.getLogger(name) logger.setLevel(getenv('LOGLEVEL', 'INFO')) return logger
python
def get_logger(name): """Get a logger with the specified name.""" logger = logging.getLogger(name) logger.setLevel(getenv('LOGLEVEL', 'INFO')) return logger
Get a logger with the specified name.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/log_utils.py#L8-L12
rtlee9/serveit
serveit/utils.py
make_serializable
def make_serializable(data): """Ensure data is serializable.""" if is_serializable(data): return data # if numpy array convert to list try: return data.tolist() except AttributeError: pass except Exception as e: logger.debug('{} exception ({}): {}'.format(type(e).__name__, e, data)) # try serializing each child element if isinstance(data, dict): return {key: make_serializable(value) for key, value in data.items()} try: return [make_serializable(element) for element in data] except TypeError: # not iterable pass except Exception: logger.debug('Could not serialize {}; converting to string'.format(data)) # last resort: convert to string return str(data)
python
def make_serializable(data): """Ensure data is serializable.""" if is_serializable(data): return data # if numpy array convert to list try: return data.tolist() except AttributeError: pass except Exception as e: logger.debug('{} exception ({}): {}'.format(type(e).__name__, e, data)) # try serializing each child element if isinstance(data, dict): return {key: make_serializable(value) for key, value in data.items()} try: return [make_serializable(element) for element in data] except TypeError: # not iterable pass except Exception: logger.debug('Could not serialize {}; converting to string'.format(data)) # last resort: convert to string return str(data)
Ensure data is serializable.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L10-L34
rtlee9/serveit
serveit/utils.py
json_numpy_loader
def json_numpy_loader(): """Load data from JSON request and convert to numpy array.""" data = request.get_json() logger.debug('Received JSON data of length {:,}'.format(len(data))) return data
python
def json_numpy_loader(): """Load data from JSON request and convert to numpy array.""" data = request.get_json() logger.debug('Received JSON data of length {:,}'.format(len(data))) return data
Load data from JSON request and convert to numpy array.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L46-L50
rtlee9/serveit
serveit/utils.py
get_bytes_to_image_callback
def get_bytes_to_image_callback(image_dims=(224, 224)): """Return a callback to process image bytes for ImageNet.""" from keras.preprocessing import image import numpy as np from PIL import Image from io import BytesIO def preprocess_image_bytes(data_bytes): """Process image bytes for ImageNet.""" try: img = Image.open(BytesIO(data_bytes)) # open image except OSError as e: raise ValueError('Please provide a raw image') img = img.resize(image_dims, Image.ANTIALIAS) # model requires 224x224 pixels x = image.img_to_array(img) # convert image to numpy array x = np.expand_dims(x, axis=0) # model expects dim 0 to be iterable across images return x return preprocess_image_bytes
python
def get_bytes_to_image_callback(image_dims=(224, 224)): """Return a callback to process image bytes for ImageNet.""" from keras.preprocessing import image import numpy as np from PIL import Image from io import BytesIO def preprocess_image_bytes(data_bytes): """Process image bytes for ImageNet.""" try: img = Image.open(BytesIO(data_bytes)) # open image except OSError as e: raise ValueError('Please provide a raw image') img = img.resize(image_dims, Image.ANTIALIAS) # model requires 224x224 pixels x = image.img_to_array(img) # convert image to numpy array x = np.expand_dims(x, axis=0) # model expects dim 0 to be iterable across images return x return preprocess_image_bytes
Return a callback to process image bytes for ImageNet.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/utils.py#L53-L70
rtlee9/serveit
serveit/server.py
exception_log_and_respond
def exception_log_and_respond(exception, logger, message, status_code): """Log an error and send jsonified respond.""" logger.error(message, exc_info=True) return make_response( message, status_code, dict(exception_type=type(exception).__name__, exception_message=str(exception)), )
python
def exception_log_and_respond(exception, logger, message, status_code): """Log an error and send jsonified respond.""" logger.error(message, exc_info=True) return make_response( message, status_code, dict(exception_type=type(exception).__name__, exception_message=str(exception)), )
Log an error and send jsonified respond.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L12-L19
rtlee9/serveit
serveit/server.py
make_response
def make_response(message, status_code, details=None): """Make a jsonified response with specified message and status code.""" response_body = dict(message=message) if details: response_body['details'] = details response = jsonify(response_body) response.status_code = status_code return response
python
def make_response(message, status_code, details=None): """Make a jsonified response with specified message and status code.""" response_body = dict(message=message) if details: response_body['details'] = details response = jsonify(response_body) response.status_code = status_code return response
Make a jsonified response with specified message and status code.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L22-L29
rtlee9/serveit
serveit/server.py
ModelServer._create_prediction_endpoint
def _create_prediction_endpoint( self, to_numpy=True, data_loader=json_numpy_loader, preprocessor=lambda x: x, input_validation=lambda data: (True, None), postprocessor=lambda x: x, make_serializable_post=True): """Create an endpoint to serve predictions. Arguments: - input_validation (fn): takes a numpy array as input; returns True if validation passes and False otherwise - data_loader (fn): reads flask request and returns data preprocessed to be used in the `predict` method - postprocessor (fn): transforms the predictions from the `predict` method """ # copy instance variables to local scope for resource class predict = self.predict logger = self.app.logger # create restful resource class Predictions(Resource): @staticmethod def post(): # read data from API request try: data = data_loader() except Exception as e: return exception_log_and_respond(e, logger, 'Unable to fetch data', 400) try: if hasattr(preprocessor, '__iter__'): for preprocessor_step in preprocessor: data = preprocessor_step(data) else: data = preprocessor(data) # preprocess data data = np.array(data) if to_numpy else data # convert to numpy except Exception as e: return exception_log_and_respond(e, logger, 'Could not preprocess data', 400) # sanity check using user defined callback (default is no check) validation_pass, validation_reason = input_validation(data) if not validation_pass: # if validation fails, log the reason code, log the data, and send a 400 response validation_message = 'Input validation failed with reason: {}'.format(validation_reason) logger.error(validation_message) logger.debug('Data: {}'.format(data)) return make_response(validation_message, 400) try: prediction = predict(data) except Exception as e: # log exception and return the message in a 500 response logger.debug('Data: {}'.format(data)) return exception_log_and_respond(e, logger, 'Unable to make prediction', 500) logger.debug(prediction) try: # preprocess data if hasattr(postprocessor, '__iter__'): for postprocessor_step in postprocessor: prediction = postprocessor_step(prediction) else: prediction = postprocessor(prediction) # cast to serializable types if make_serializable_post: return make_serializable(prediction) else: return prediction except Exception as e: return exception_log_and_respond(e, logger, 'Postprocessing failed', 500) # map resource to endpoint self.api.add_resource(Predictions, '/predictions')
python
def _create_prediction_endpoint( self, to_numpy=True, data_loader=json_numpy_loader, preprocessor=lambda x: x, input_validation=lambda data: (True, None), postprocessor=lambda x: x, make_serializable_post=True): """Create an endpoint to serve predictions. Arguments: - input_validation (fn): takes a numpy array as input; returns True if validation passes and False otherwise - data_loader (fn): reads flask request and returns data preprocessed to be used in the `predict` method - postprocessor (fn): transforms the predictions from the `predict` method """ # copy instance variables to local scope for resource class predict = self.predict logger = self.app.logger # create restful resource class Predictions(Resource): @staticmethod def post(): # read data from API request try: data = data_loader() except Exception as e: return exception_log_and_respond(e, logger, 'Unable to fetch data', 400) try: if hasattr(preprocessor, '__iter__'): for preprocessor_step in preprocessor: data = preprocessor_step(data) else: data = preprocessor(data) # preprocess data data = np.array(data) if to_numpy else data # convert to numpy except Exception as e: return exception_log_and_respond(e, logger, 'Could not preprocess data', 400) # sanity check using user defined callback (default is no check) validation_pass, validation_reason = input_validation(data) if not validation_pass: # if validation fails, log the reason code, log the data, and send a 400 response validation_message = 'Input validation failed with reason: {}'.format(validation_reason) logger.error(validation_message) logger.debug('Data: {}'.format(data)) return make_response(validation_message, 400) try: prediction = predict(data) except Exception as e: # log exception and return the message in a 500 response logger.debug('Data: {}'.format(data)) return exception_log_and_respond(e, logger, 'Unable to make prediction', 500) logger.debug(prediction) try: # preprocess data if hasattr(postprocessor, '__iter__'): for postprocessor_step in postprocessor: prediction = postprocessor_step(prediction) else: prediction = postprocessor(prediction) # cast to serializable types if make_serializable_post: return make_serializable(prediction) else: return prediction except Exception as e: return exception_log_and_respond(e, logger, 'Postprocessing failed', 500) # map resource to endpoint self.api.add_resource(Predictions, '/predictions')
Create an endpoint to serve predictions. Arguments: - input_validation (fn): takes a numpy array as input; returns True if validation passes and False otherwise - data_loader (fn): reads flask request and returns data preprocessed to be used in the `predict` method - postprocessor (fn): transforms the predictions from the `predict` method
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L77-L152
rtlee9/serveit
serveit/server.py
ModelServer.create_info_endpoint
def create_info_endpoint(self, name, data): """Create an endpoint to serve info GET requests.""" # make sure data is serializable data = make_serializable(data) # create generic restful resource to serve static JSON data class InfoBase(Resource): @staticmethod def get(): return data def info_factory(name): """Return an Info derivative resource.""" class NewClass(InfoBase): pass NewClass.__name__ = "{}_{}".format(name, InfoBase.__name__) return NewClass path = '/info/{}'.format(name) self.api.add_resource(info_factory(name), path) logger.info('Regestered informational resource to {} (available via GET)'.format(path)) logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, data))
python
def create_info_endpoint(self, name, data): """Create an endpoint to serve info GET requests.""" # make sure data is serializable data = make_serializable(data) # create generic restful resource to serve static JSON data class InfoBase(Resource): @staticmethod def get(): return data def info_factory(name): """Return an Info derivative resource.""" class NewClass(InfoBase): pass NewClass.__name__ = "{}_{}".format(name, InfoBase.__name__) return NewClass path = '/info/{}'.format(name) self.api.add_resource(info_factory(name), path) logger.info('Regestered informational resource to {} (available via GET)'.format(path)) logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, data))
Create an endpoint to serve info GET requests.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L154-L175
rtlee9/serveit
serveit/server.py
ModelServer._create_model_info_endpoint
def _create_model_info_endpoint(self, path='/info/model'): """Create an endpoint to serve info GET requests.""" model = self.model # parse model details model_details = {} for key, value in model.__dict__.items(): model_details[key] = make_serializable(value) # create generic restful resource to serve model information as JSON class ModelInfo(Resource): @staticmethod def get(): return model_details self.api.add_resource(ModelInfo, path) self.app.logger.info('Regestered informational resource to {} (available via GET)'.format(path)) self.app.logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, model_details))
python
def _create_model_info_endpoint(self, path='/info/model'): """Create an endpoint to serve info GET requests.""" model = self.model # parse model details model_details = {} for key, value in model.__dict__.items(): model_details[key] = make_serializable(value) # create generic restful resource to serve model information as JSON class ModelInfo(Resource): @staticmethod def get(): return model_details self.api.add_resource(ModelInfo, path) self.app.logger.info('Regestered informational resource to {} (available via GET)'.format(path)) self.app.logger.debug('Endpoint {} will now serve the following static data:\n{}'.format(path, model_details))
Create an endpoint to serve info GET requests.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L177-L194
rtlee9/serveit
serveit/server.py
ModelServer.serve
def serve(self, host='127.0.0.1', port=5000): """Serve predictions as an API endpoint.""" from meinheld import server, middleware # self.app.run(host=host, port=port) server.listen((host, port)) server.run(middleware.WebSocketMiddleware(self.app))
python
def serve(self, host='127.0.0.1', port=5000): """Serve predictions as an API endpoint.""" from meinheld import server, middleware # self.app.run(host=host, port=port) server.listen((host, port)) server.run(middleware.WebSocketMiddleware(self.app))
Serve predictions as an API endpoint.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/serveit/server.py#L196-L201
rtlee9/serveit
examples/keras_boston_neural_net.py
get_model
def get_model(input_dim): """Create and compile simple model.""" model = Sequential() model.add(Dense(100, input_dim=input_dim, activation='sigmoid')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='SGD') return model
python
def get_model(input_dim): """Create and compile simple model.""" model = Sequential() model.add(Dense(100, input_dim=input_dim, activation='sigmoid')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='SGD') return model
Create and compile simple model.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/keras_boston_neural_net.py#L8-L14
rtlee9/serveit
examples/keras_boston_neural_net.py
validator
def validator(input_data): """Simple model input validator. Validator ensures the input data array is - two dimensional - has the correct number of features. """ global data # check num dims if input_data.ndim != 2: return False, 'Data should have two dimensions.' # check number of columns if input_data.shape[1] != data.data.shape[1]: reason = '{} features required, {} features provided'.format( data.data.shape[1], input_data.shape[1]) return False, reason # validation passed return True, None
python
def validator(input_data): """Simple model input validator. Validator ensures the input data array is - two dimensional - has the correct number of features. """ global data # check num dims if input_data.ndim != 2: return False, 'Data should have two dimensions.' # check number of columns if input_data.shape[1] != data.data.shape[1]: reason = '{} features required, {} features provided'.format( data.data.shape[1], input_data.shape[1]) return False, reason # validation passed return True, None
Simple model input validator. Validator ensures the input data array is - two dimensional - has the correct number of features.
https://github.com/rtlee9/serveit/blob/d97b5fbe56bec78d6c0193d6fd2ea2a0c1cbafdc/examples/keras_boston_neural_net.py#L22-L39
OTTOMATIC-IO/pycine
pycine/file.py
read_chd_header
def read_chd_header(chd_file): """ read the .chd header file created when Vision Research software saves the images in a file format other than .cine """ with open(chd_file, "rb") as f: header = { "cinefileheader": cine.CINEFILEHEADER(), "bitmapinfoheader": cine.BITMAPINFOHEADER(), "setup": cine.SETUP(), } f.readinto(header["cinefileheader"]) f.readinto(header["bitmapinfoheader"]) f.readinto(header["setup"]) return header
python
def read_chd_header(chd_file): """ read the .chd header file created when Vision Research software saves the images in a file format other than .cine """ with open(chd_file, "rb") as f: header = { "cinefileheader": cine.CINEFILEHEADER(), "bitmapinfoheader": cine.BITMAPINFOHEADER(), "setup": cine.SETUP(), } f.readinto(header["cinefileheader"]) f.readinto(header["bitmapinfoheader"]) f.readinto(header["setup"]) return header
read the .chd header file created when Vision Research software saves the images in a file format other than .cine
https://github.com/OTTOMATIC-IO/pycine/blob/8cc27b762796456e36fffe42df940f232e402974/pycine/file.py#L31-L46
jackmaney/python-stdlib-list
stdlib_list/fetch.py
fetch_list
def fetch_list(version=None): """ For the given version of Python (or all versions if no version is set), this function: - Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to grab and parse the Sphinx object inventory (ie ``http://docs.python.org/<version>/objects.inv``) for the given version. - Grabs the names of all of the modules in the parsed inventory data. - Writes the sorted list of module names to file (within the `lists` subfolder). :param str|None version: A specified version of Python. If not specified, then all available versions of Python will have their inventory objects fetched and parsed, and have their module names written to file. (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``) """ if version is None: versions = short_versions else: versions = [get_canonical_version(version)] for version in versions: url = "http://docs.python.org/{}/objects.inv".format(version) modules = sorted( list( fetch_inventory(DummyApp(), "", url).get("py:module").keys() ) ) with open(os.path.join(list_dir, "{}.txt".format(version)), "w") as f: for module in modules: f.write(module) f.write("\n")
python
def fetch_list(version=None): """ For the given version of Python (or all versions if no version is set), this function: - Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to grab and parse the Sphinx object inventory (ie ``http://docs.python.org/<version>/objects.inv``) for the given version. - Grabs the names of all of the modules in the parsed inventory data. - Writes the sorted list of module names to file (within the `lists` subfolder). :param str|None version: A specified version of Python. If not specified, then all available versions of Python will have their inventory objects fetched and parsed, and have their module names written to file. (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``) """ if version is None: versions = short_versions else: versions = [get_canonical_version(version)] for version in versions: url = "http://docs.python.org/{}/objects.inv".format(version) modules = sorted( list( fetch_inventory(DummyApp(), "", url).get("py:module").keys() ) ) with open(os.path.join(list_dir, "{}.txt".format(version)), "w") as f: for module in modules: f.write(module) f.write("\n")
For the given version of Python (or all versions if no version is set), this function: - Uses the `fetch_inventory` function of :py:mod`sphinx.ext.intersphinx` to grab and parse the Sphinx object inventory (ie ``http://docs.python.org/<version>/objects.inv``) for the given version. - Grabs the names of all of the modules in the parsed inventory data. - Writes the sorted list of module names to file (within the `lists` subfolder). :param str|None version: A specified version of Python. If not specified, then all available versions of Python will have their inventory objects fetched and parsed, and have their module names written to file. (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, ``"3.5"``, or ``None``)
https://github.com/jackmaney/python-stdlib-list/blob/f343504405435fcc4bc49bc064f70006813f6845/stdlib_list/fetch.py#L34-L71
jackmaney/python-stdlib-list
stdlib_list/base.py
stdlib_list
def stdlib_list(version=None): """ Given a ``version``, return a ``list`` of names of the Python Standard Libraries for that version. These names are obtained from the Sphinx inventory file (used in :py:mod:`sphinx.ext.intersphinx`). :param str|None version: The version (as a string) whose list of libraries you want (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``). If not specified, the current version of Python will be used. :return: A list of standard libraries from the specified version of Python :rtype: list """ version = get_canonical_version(version) if version is not None else '.'.join( str(x) for x in sys.version_info[:2]) module_list_file = os.path.join(list_dir, "{}.txt".format(version)) with open(module_list_file) as f: result = [y for y in [x.strip() for x in f.readlines()] if y] return result
python
def stdlib_list(version=None): """ Given a ``version``, return a ``list`` of names of the Python Standard Libraries for that version. These names are obtained from the Sphinx inventory file (used in :py:mod:`sphinx.ext.intersphinx`). :param str|None version: The version (as a string) whose list of libraries you want (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``). If not specified, the current version of Python will be used. :return: A list of standard libraries from the specified version of Python :rtype: list """ version = get_canonical_version(version) if version is not None else '.'.join( str(x) for x in sys.version_info[:2]) module_list_file = os.path.join(list_dir, "{}.txt".format(version)) with open(module_list_file) as f: result = [y for y in [x.strip() for x in f.readlines()] if y] return result
Given a ``version``, return a ``list`` of names of the Python Standard Libraries for that version. These names are obtained from the Sphinx inventory file (used in :py:mod:`sphinx.ext.intersphinx`). :param str|None version: The version (as a string) whose list of libraries you want (one of ``"2.6"``, ``"2.7"``, ``"3.2"``, ``"3.3"``, ``"3.4"``, or ``"3.5"``). If not specified, the current version of Python will be used. :return: A list of standard libraries from the specified version of Python :rtype: list
https://github.com/jackmaney/python-stdlib-list/blob/f343504405435fcc4bc49bc064f70006813f6845/stdlib_list/base.py#L25-L47
OTTOMATIC-IO/pycine
pycine/color.py
color_pipeline
def color_pipeline(raw, setup, bpp=12): """Order from: http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884 """ # 1. Offset the raw image by the amount in flare print("fFlare: ", setup.fFlare) # 2. White balance the raw picture using the white balance component of cmatrix BayerPatterns = {3: "gbrg", 4: "rggb"} pattern = BayerPatterns[setup.CFA] raw = whitebalance_raw(raw.astype(np.float32), setup, pattern).astype(np.uint16) # 3. Debayer the image rgb_image = cv2.cvtColor(raw, cv2.COLOR_BAYER_GB2RGB) # convert to float rgb_image = rgb_image.astype(np.float32) / (2 ** bpp - 1) # return rgb_image # 4. Apply the color correction matrix component of cmatrix # # From the documentation: # ...should decompose this # matrix in two components: a diagonal one with the white balance to be # applied before interpolation and a normalized one to be applied after # interpolation. cmCalib = np.asarray(setup.cmCalib).reshape(3, 3) # normalize matrix ccm = cmCalib / cmCalib.sum(axis=1)[:, np.newaxis] # or should it be normalized this way? ccm2 = cmCalib.copy() ccm2[0][0] = 1 - ccm2[0][1] - ccm2[0][2] ccm2[1][1] = 1 - ccm2[1][0] - ccm2[1][2] ccm2[2][2] = 1 - ccm2[2][0] - ccm2[2][1] print("cmCalib", cmCalib) print("ccm: ", ccm) print("ccm2", ccm2) m = np.asarray( [ 1.4956012040024347, -0.5162879962189262, 0.020686792216491584, -0.09884672458400766, 0.757682383759598, 0.34116434082440983, -0.04121405804689133, -0.5527871476076358, 1.5940012056545272, ] ).reshape(3, 3) rgb_image = np.dot(rgb_image, m.T) # rgb_reshaped = rgb_image.reshape((rgb_image.shape[0] * rgb_image.shape[1], rgb_image.shape[2])) # rgb_image = np.dot(m, rgb_reshaped.T).T.reshape(rgb_image.shape) # 5. Apply the user RGB matrix umatrix # cmUser = np.asarray(setup.cmUser).reshape(3, 3) # rgb_image = np.dot(rgb_image, cmUser.T) # 6. Offset the image by the amount in offset print("fOffset: ", setup.fOffset) # 7. Apply the global gain print("fGain: ", setup.fGain) # 8. Apply the per-component gains red, green, blue print("fGainR, fGainG, fGainB: ", setup.fGainR, setup.fGainG, setup.fGainB) # 9. Apply the gamma curves; the green channel uses gamma, red uses gamma + rgamma and blue uses gamma + bgamma print("fGamma, fGammaR, fGammaB: ", setup.fGamma, setup.fGammaR, setup.fGammaB) rgb_image = apply_gamma(rgb_image, setup) # 10. Apply the tone curve to each of the red, green, blue channels fTone = np.asarray(setup.fTone) print(setup.ToneLabel, setup.TonePoints, fTone) # 11. Add the pedestals to each color channel, and linearly rescale to keep the white point the same. print("fPedestalR, fPedestalG, fPedestalB: ", setup.fPedestalR, setup.fPedestalG, setup.fPedestalB) # 12. Convert to YCrCb using REC709 coefficients # 13. Scale the Cr and Cb components by chroma. print("fChroma: ", setup.fChroma) # 14. Rotate the Cr and Cb components around the origin in the CrCb plane by hue degrees. print("fHue: ", setup.fHue) return rgb_image
python
def color_pipeline(raw, setup, bpp=12): """Order from: http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884 """ # 1. Offset the raw image by the amount in flare print("fFlare: ", setup.fFlare) # 2. White balance the raw picture using the white balance component of cmatrix BayerPatterns = {3: "gbrg", 4: "rggb"} pattern = BayerPatterns[setup.CFA] raw = whitebalance_raw(raw.astype(np.float32), setup, pattern).astype(np.uint16) # 3. Debayer the image rgb_image = cv2.cvtColor(raw, cv2.COLOR_BAYER_GB2RGB) # convert to float rgb_image = rgb_image.astype(np.float32) / (2 ** bpp - 1) # return rgb_image # 4. Apply the color correction matrix component of cmatrix # # From the documentation: # ...should decompose this # matrix in two components: a diagonal one with the white balance to be # applied before interpolation and a normalized one to be applied after # interpolation. cmCalib = np.asarray(setup.cmCalib).reshape(3, 3) # normalize matrix ccm = cmCalib / cmCalib.sum(axis=1)[:, np.newaxis] # or should it be normalized this way? ccm2 = cmCalib.copy() ccm2[0][0] = 1 - ccm2[0][1] - ccm2[0][2] ccm2[1][1] = 1 - ccm2[1][0] - ccm2[1][2] ccm2[2][2] = 1 - ccm2[2][0] - ccm2[2][1] print("cmCalib", cmCalib) print("ccm: ", ccm) print("ccm2", ccm2) m = np.asarray( [ 1.4956012040024347, -0.5162879962189262, 0.020686792216491584, -0.09884672458400766, 0.757682383759598, 0.34116434082440983, -0.04121405804689133, -0.5527871476076358, 1.5940012056545272, ] ).reshape(3, 3) rgb_image = np.dot(rgb_image, m.T) # rgb_reshaped = rgb_image.reshape((rgb_image.shape[0] * rgb_image.shape[1], rgb_image.shape[2])) # rgb_image = np.dot(m, rgb_reshaped.T).T.reshape(rgb_image.shape) # 5. Apply the user RGB matrix umatrix # cmUser = np.asarray(setup.cmUser).reshape(3, 3) # rgb_image = np.dot(rgb_image, cmUser.T) # 6. Offset the image by the amount in offset print("fOffset: ", setup.fOffset) # 7. Apply the global gain print("fGain: ", setup.fGain) # 8. Apply the per-component gains red, green, blue print("fGainR, fGainG, fGainB: ", setup.fGainR, setup.fGainG, setup.fGainB) # 9. Apply the gamma curves; the green channel uses gamma, red uses gamma + rgamma and blue uses gamma + bgamma print("fGamma, fGammaR, fGammaB: ", setup.fGamma, setup.fGammaR, setup.fGammaB) rgb_image = apply_gamma(rgb_image, setup) # 10. Apply the tone curve to each of the red, green, blue channels fTone = np.asarray(setup.fTone) print(setup.ToneLabel, setup.TonePoints, fTone) # 11. Add the pedestals to each color channel, and linearly rescale to keep the white point the same. print("fPedestalR, fPedestalG, fPedestalB: ", setup.fPedestalR, setup.fPedestalG, setup.fPedestalB) # 12. Convert to YCrCb using REC709 coefficients # 13. Scale the Cr and Cb components by chroma. print("fChroma: ", setup.fChroma) # 14. Rotate the Cr and Cb components around the origin in the CrCb plane by hue degrees. print("fHue: ", setup.fHue) return rgb_image
Order from: http://www.visionresearch.com/phantomzone/viewtopic.php?f=20&t=572#p3884
https://github.com/OTTOMATIC-IO/pycine/blob/8cc27b762796456e36fffe42df940f232e402974/pycine/color.py#L5-L99
smarie/python-autoclass
autoclass/autohash_.py
autohash
def autohash(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool cls=DECORATED ): """ A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ return autohash_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields)
python
def autohash(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool cls=DECORATED ): """ A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ return autohash_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields)
A decorator to makes objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L26-L51
smarie/python-autoclass
autoclass/autohash_.py
autohash_decorate
def autohash_decorate(cls, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool ): # type: (...) -> Type[T] """ To automatically generate the appropriate methods so that objects of this class are hashable, manually, without using @autohash decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ # first check that we do not conflict with other known decorators _check_known_decorators(cls, '@autohash') # perform the class mod _execute_autohash_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields) return cls
python
def autohash_decorate(cls, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool ): # type: (...) -> Type[T] """ To automatically generate the appropriate methods so that objects of this class are hashable, manually, without using @autohash decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ # first check that we do not conflict with other known decorators _check_known_decorators(cls, '@autohash') # perform the class mod _execute_autohash_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields) return cls
To automatically generate the appropriate methods so that objects of this class are hashable, manually, without using @autohash decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L54-L85
smarie/python-autoclass
autoclass/autohash_.py
_execute_autohash_on_class
def _execute_autohash_on_class(object_type, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool ): """ A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param object_type: the class on which to execute. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ # First check parameters validate_include_exclude(include, exclude) # Override hash method if not already implemented if not method_already_there(object_type, '__hash__'): if only_constructor_args: # a. Find the __init__ constructor signature constructor = get_constructor(object_type, allow_inheritance=True) s = signature(constructor) # b. Collect all attributes that are not 'self' and are included and not excluded added = [] # we assume that the order of attributes will always be the same here.... for attr_name in s.parameters.keys(): if is_attr_selected(attr_name, include=include, exclude=exclude): added.append(attr_name) # c. Finally build the method def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing a tuple of selected attributes :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # return hash(tuple([type(self)] + [getattr(self, att_name) for att_name in added])) return hash(tuple(getattr(self, att_name) for att_name in added)) else: # ** all dynamic fields are allowed if include is None and exclude is None and not only_public_fields: # easy: all of vars values is included in the hash def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing vars(self).values() :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # return hash(tuple([type(self)] + list(vars(self).values()))) return hash(tuple(vars(self).values())) else: # harder: dynamic filters # private_name_prefix = '_' + object_type.__name__ + '_' private_name_prefix = '_' def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing the tuple of included/not excluded field values, possibly not including the private fields if `only_public_fields` was set to True :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # to_hash = [type(self)] to_hash = [] for att_name, att_value in vars(self).items(): att_name = possibly_replace_with_property_name(self.__class__, att_name) if is_attr_selected(att_name, include=include, exclude=exclude): if not only_public_fields \ or (only_public_fields and not att_name.startswith(private_name_prefix)): to_hash.append(att_value) return hash(tuple(to_hash)) # now set the method on the class object_type.__hash__ = __hash__ return
python
def _execute_autohash_on_class(object_type, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=False, # type: bool only_public_fields=False, # type: bool ): """ A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param object_type: the class on which to execute. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return: """ # First check parameters validate_include_exclude(include, exclude) # Override hash method if not already implemented if not method_already_there(object_type, '__hash__'): if only_constructor_args: # a. Find the __init__ constructor signature constructor = get_constructor(object_type, allow_inheritance=True) s = signature(constructor) # b. Collect all attributes that are not 'self' and are included and not excluded added = [] # we assume that the order of attributes will always be the same here.... for attr_name in s.parameters.keys(): if is_attr_selected(attr_name, include=include, exclude=exclude): added.append(attr_name) # c. Finally build the method def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing a tuple of selected attributes :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # return hash(tuple([type(self)] + [getattr(self, att_name) for att_name in added])) return hash(tuple(getattr(self, att_name) for att_name in added)) else: # ** all dynamic fields are allowed if include is None and exclude is None and not only_public_fields: # easy: all of vars values is included in the hash def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing vars(self).values() :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # return hash(tuple([type(self)] + list(vars(self).values()))) return hash(tuple(vars(self).values())) else: # harder: dynamic filters # private_name_prefix = '_' + object_type.__name__ + '_' private_name_prefix = '_' def __hash__(self): """ Generated by @autohash. Implements the __hash__ method by hashing the tuple of included/not excluded field values, possibly not including the private fields if `only_public_fields` was set to True :param self: :return: """ # note: we prepend a unique hash for the class > NO, it is more intuitive to not do that. # to_hash = [type(self)] to_hash = [] for att_name, att_value in vars(self).items(): att_name = possibly_replace_with_property_name(self.__class__, att_name) if is_attr_selected(att_name, include=include, exclude=exclude): if not only_public_fields \ or (only_public_fields and not att_name.startswith(private_name_prefix)): to_hash.append(att_value) return hash(tuple(to_hash)) # now set the method on the class object_type.__hash__ = __hash__ return
A decorator to make objects of the class implement __hash__, so that they can be used correctly for example in sets. Parameters allow to customize the list of attributes that are taken into account in the hash. :param object_type: the class on which to execute. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if False (default), all fields will be included in the hash, even if they are defined in the constructor or dynamically. If True, only constructor arguments will be included in the hash, not any other field that would be created in the constructor or dynamically. Please note that this behaviour is the opposite from @autodict. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False (default), all fields are used in the hash. Otherwise, class-private fields will not be taken into account in the hash. Please note that this behaviour is the opposite from @autodict. :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autohash_.py#L88-L187
smarie/python-autoclass
autoclass/autoclass_.py
autoclass
def autoclass(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] autoargs=True, # type: bool autoprops=True, # type: bool autodict=True, # type: bool autohash=True, # type: bool cls=DECORATED ): """ A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param autoargs: a boolean to enable autoargs on the consturctor (default: True) :param autoprops: a boolean to enable autoargs on the consturctor (default: True) :param autodict: a boolean to enable autoargs on the consturctor (default: True) :param autohash: a boolean to enable autohash on the constructor (default: True) :return: """ return autoclass_decorate(cls, include=include, exclude=exclude, autoargs=autoargs, autoprops=autoprops, autodict=autodict, autohash=autohash)
python
def autoclass(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] autoargs=True, # type: bool autoprops=True, # type: bool autodict=True, # type: bool autohash=True, # type: bool cls=DECORATED ): """ A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param autoargs: a boolean to enable autoargs on the consturctor (default: True) :param autoprops: a boolean to enable autoargs on the consturctor (default: True) :param autodict: a boolean to enable autoargs on the consturctor (default: True) :param autohash: a boolean to enable autohash on the constructor (default: True) :return: """ return autoclass_decorate(cls, include=include, exclude=exclude, autoargs=autoargs, autoprops=autoprops, autodict=autodict, autohash=autohash)
A decorator to perform @autoargs, @autoprops and @autodict all at once with the same include/exclude list. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param autoargs: a boolean to enable autoargs on the consturctor (default: True) :param autoprops: a boolean to enable autoargs on the consturctor (default: True) :param autodict: a boolean to enable autoargs on the consturctor (default: True) :param autohash: a boolean to enable autohash on the constructor (default: True) :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autoclass_.py#L22-L42
smarie/python-autoclass
ci_tools/py_install.py
install
def install(cmd, packages): """ Installs all packages provided at once :param packages: :return: """ check_cmd(cmd) all_pkgs_str = " ".join(all_pkgs) print("INSTALLING: " + cmd + " install " + all_pkgs_str) subprocess.check_call([cmd, 'install'] + packages)
python
def install(cmd, packages): """ Installs all packages provided at once :param packages: :return: """ check_cmd(cmd) all_pkgs_str = " ".join(all_pkgs) print("INSTALLING: " + cmd + " install " + all_pkgs_str) subprocess.check_call([cmd, 'install'] + packages)
Installs all packages provided at once :param packages: :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/ci_tools/py_install.py#L18-L28
smarie/python-autoclass
autoclass/autodict_.py
autodict
def autodict(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=True, # type: bool only_public_fields=True, # type: bool cls=DECORATED ): """ A decorator to makes objects of the class behave like a read-only `dict`. It does several things: * it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`) * it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict view. * it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True) * it overrides eq method if not already implemented * it overrides str and repr method if not already implemented Parameters allow to customize the list of fields that will be visible. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return: """ return autodict_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields)
python
def autodict(include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=True, # type: bool only_public_fields=True, # type: bool cls=DECORATED ): """ A decorator to makes objects of the class behave like a read-only `dict`. It does several things: * it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`) * it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict view. * it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True) * it overrides eq method if not already implemented * it overrides str and repr method if not already implemented Parameters allow to customize the list of fields that will be visible. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return: """ return autodict_decorate(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields)
A decorator to makes objects of the class behave like a read-only `dict`. It does several things: * it adds collections.Mapping to the list of parent classes (i.e. to the class' `__bases__`) * it generates `__len__`, `__iter__` and `__getitem__` in order for the appropriate fields to be exposed in the dict view. * it adds a static from_dict method to build objects from dicts (only if only_constructor_args=True) * it overrides eq method if not already implemented * it overrides str and repr method if not already implemented Parameters allow to customize the list of fields that will be visible. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autodict_.py#L34-L62
smarie/python-autoclass
autoclass/autodict_.py
autodict_decorate
def autodict_decorate(cls, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=True, # type: bool only_public_fields=True # type: bool ): # type: (...) -> Type[T] """ To automatically generate the appropriate methods so that objects of this class behave like a `dict`, manually, without using @autodict decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return: """ # first check that we do not conflict with other known decorators _check_known_decorators(cls, '@autodict') # perform the class mod _execute_autodict_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields) return cls
python
def autodict_decorate(cls, # type: Type[T] include=None, # type: Union[str, Tuple[str]] exclude=None, # type: Union[str, Tuple[str]] only_constructor_args=True, # type: bool only_public_fields=True # type: bool ): # type: (...) -> Type[T] """ To automatically generate the appropriate methods so that objects of this class behave like a `dict`, manually, without using @autodict decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return: """ # first check that we do not conflict with other known decorators _check_known_decorators(cls, '@autodict') # perform the class mod _execute_autodict_on_class(cls, include=include, exclude=exclude, only_constructor_args=only_constructor_args, only_public_fields=only_public_fields) return cls
To automatically generate the appropriate methods so that objects of this class behave like a `dict`, manually, without using @autodict decorator. :param cls: the class on which to execute. Note that it won't be wrapped. :param include: a tuple of explicit attribute names to include (None means all) :param exclude: a tuple of explicit attribute names to exclude. In such case, include should be None. :param only_constructor_args: if True (default), only constructor arguments will be exposed through the dictionary view, not any other field that would be created in the constructor or dynamically. This makes it very convenient to use in combination with @autoargs. If set to False, the dictionary is a direct view of public object fields. :param only_public_fields: this parameter is only used when only_constructor_args is set to False. If only_public_fields is set to False, all fields are visible. Otherwise (default), class-private fields will be hidden :return:
https://github.com/smarie/python-autoclass/blob/097098776c69ebc87bc1aeda6997431b29bd583a/autoclass/autodict_.py#L65-L94