repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
j0057/github-release | github_release.py | _recursive_gh_get | def _recursive_gh_get(href, items):
"""Recursively get list of GitHub objects.
See https://developer.github.com/v3/guides/traversing-with-pagination/
"""
response = _request('GET', href)
response.raise_for_status()
items.extend(response.json())
if "link" not in response.headers:
return
links = link_header.parse(response.headers["link"])
rels = {link.rel: link.href for link in links.links}
if "next" in rels:
_recursive_gh_get(rels["next"], items) | python | def _recursive_gh_get(href, items):
"""Recursively get list of GitHub objects.
See https://developer.github.com/v3/guides/traversing-with-pagination/
"""
response = _request('GET', href)
response.raise_for_status()
items.extend(response.json())
if "link" not in response.headers:
return
links = link_header.parse(response.headers["link"])
rels = {link.rel: link.href for link in links.links}
if "next" in rels:
_recursive_gh_get(rels["next"], items) | Recursively get list of GitHub objects.
See https://developer.github.com/v3/guides/traversing-with-pagination/ | https://github.com/j0057/github-release/blob/5421d1ad3e49eaad50c800e548f889d55e159b9d/github_release.py#L148-L161 |
j0057/github-release | github_release.py | main | def main(github_token, github_api_url, progress):
"""A CLI to easily manage GitHub releases, assets and references."""
global progress_reporter_cls
progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress
if progress_reporter_cls.reportProgress:
progress_reporter_cls = _progress_bar
global _github_token_cli_arg
_github_token_cli_arg = github_token
global _github_api_url
_github_api_url = github_api_url | python | def main(github_token, github_api_url, progress):
"""A CLI to easily manage GitHub releases, assets and references."""
global progress_reporter_cls
progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress
if progress_reporter_cls.reportProgress:
progress_reporter_cls = _progress_bar
global _github_token_cli_arg
_github_token_cli_arg = github_token
global _github_api_url
_github_api_url = github_api_url | A CLI to easily manage GitHub releases, assets and references. | https://github.com/j0057/github-release/blob/5421d1ad3e49eaad50c800e548f889d55e159b9d/github_release.py#L180-L189 |
j0057/github-release | github_release.py | _update_release_sha | def _update_release_sha(repo_name, tag_name, new_release_sha, dry_run):
"""Update the commit associated with a given release tag.
Since updating a tag commit is not directly possible, this function
does the following steps:
* set the release tag to ``<tag_name>-tmp`` and associate it
with ``new_release_sha``.
* delete tag ``refs/tags/<tag_name>``.
* update the release tag to ``<tag_name>`` and associate it
with ``new_release_sha``.
"""
if new_release_sha is None:
return
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tag_name)
if not refs:
return
assert len(refs) == 1
# If sha associated with "<tag_name>" is up-to-date, we are done.
previous_release_sha = refs[0]["object"]["sha"]
if previous_release_sha == new_release_sha:
return
tmp_tag_name = tag_name + "-tmp"
# If any, remove leftover temporary tag "<tag_name>-tmp"
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tmp_tag_name)
if refs:
assert len(refs) == 1
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run)
# Update "<tag_name>" release by associating it with the "<tag_name>-tmp"
# and "<new_release_sha>". It will create the temporary tag.
time.sleep(0.1)
patch_release(repo_name, tag_name,
tag_name=tmp_tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# Now "<tag_name>-tmp" references "<new_release_sha>", remove "<tag_name>"
time.sleep(0.1)
gh_ref_delete(repo_name, "refs/tags/%s" % tag_name, dry_run=dry_run)
# Finally, update "<tag_name>-tmp" release by associating it with the
# "<tag_name>" and "<new_release_sha>".
time.sleep(0.1)
patch_release(repo_name, tmp_tag_name,
tag_name=tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# ... and remove "<tag_name>-tmp"
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run) | python | def _update_release_sha(repo_name, tag_name, new_release_sha, dry_run):
"""Update the commit associated with a given release tag.
Since updating a tag commit is not directly possible, this function
does the following steps:
* set the release tag to ``<tag_name>-tmp`` and associate it
with ``new_release_sha``.
* delete tag ``refs/tags/<tag_name>``.
* update the release tag to ``<tag_name>`` and associate it
with ``new_release_sha``.
"""
if new_release_sha is None:
return
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tag_name)
if not refs:
return
assert len(refs) == 1
# If sha associated with "<tag_name>" is up-to-date, we are done.
previous_release_sha = refs[0]["object"]["sha"]
if previous_release_sha == new_release_sha:
return
tmp_tag_name = tag_name + "-tmp"
# If any, remove leftover temporary tag "<tag_name>-tmp"
refs = get_refs(repo_name, tags=True, pattern="refs/tags/%s" % tmp_tag_name)
if refs:
assert len(refs) == 1
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run)
# Update "<tag_name>" release by associating it with the "<tag_name>-tmp"
# and "<new_release_sha>". It will create the temporary tag.
time.sleep(0.1)
patch_release(repo_name, tag_name,
tag_name=tmp_tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# Now "<tag_name>-tmp" references "<new_release_sha>", remove "<tag_name>"
time.sleep(0.1)
gh_ref_delete(repo_name, "refs/tags/%s" % tag_name, dry_run=dry_run)
# Finally, update "<tag_name>-tmp" release by associating it with the
# "<tag_name>" and "<new_release_sha>".
time.sleep(0.1)
patch_release(repo_name, tmp_tag_name,
tag_name=tag_name,
target_commitish=new_release_sha,
dry_run=dry_run)
# ... and remove "<tag_name>-tmp"
time.sleep(0.1)
gh_ref_delete(repo_name,
"refs/tags/%s" % tmp_tag_name, dry_run=dry_run) | Update the commit associated with a given release tag.
Since updating a tag commit is not directly possible, this function
does the following steps:
* set the release tag to ``<tag_name>-tmp`` and associate it
with ``new_release_sha``.
* delete tag ``refs/tags/<tag_name>``.
* update the release tag to ``<tag_name>`` and associate it
with ``new_release_sha``. | https://github.com/j0057/github-release/blob/5421d1ad3e49eaad50c800e548f889d55e159b9d/github_release.py#L287-L343 |
lappis-unb/salic-ml | src/salicml/metrics/finance/approved_funds.py | approved_funds | def approved_funds(pronac, dt):
"""
Verifica se o valor total de um projeto é um
outlier em relação
aos projetos do mesmo seguimento cultural
Dataframes: planilha_orcamentaria
"""
funds_df = data.approved_funds_by_projects
project = (
funds_df
.loc[funds_df['PRONAC'] == pronac]
)
project = project.to_dict('records')[0]
info = (
data
.approved_funds_agg.to_dict(orient="index")
[project['idSegmento']]
)
mean, std = info.values()
outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'],
mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': outlier,
'total_approved_funds': project['VlTotalAprovado'],
'maximum_expected_funds': maximum_expected_funds
} | python | def approved_funds(pronac, dt):
"""
Verifica se o valor total de um projeto é um
outlier em relação
aos projetos do mesmo seguimento cultural
Dataframes: planilha_orcamentaria
"""
funds_df = data.approved_funds_by_projects
project = (
funds_df
.loc[funds_df['PRONAC'] == pronac]
)
project = project.to_dict('records')[0]
info = (
data
.approved_funds_agg.to_dict(orient="index")
[project['idSegmento']]
)
mean, std = info.values()
outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'],
mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': outlier,
'total_approved_funds': project['VlTotalAprovado'],
'maximum_expected_funds': maximum_expected_funds
} | Verifica se o valor total de um projeto é um
outlier em relação
aos projetos do mesmo seguimento cultural
Dataframes: planilha_orcamentaria | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/approved_funds.py#L28-L58 |
lappis-unb/salic-ml | src/salicml_api/analysis/api.py | complexidade | def complexidade(obj):
"""
Returns a value that indicates project health, currently FinancialIndicator
is used as this value, but it can be a result of calculation with other
indicators in future
"""
indicators = obj.indicator_set.all()
if not indicators:
value = 0.0
else:
value = indicators.first().value
return value | python | def complexidade(obj):
"""
Returns a value that indicates project health, currently FinancialIndicator
is used as this value, but it can be a result of calculation with other
indicators in future
"""
indicators = obj.indicator_set.all()
if not indicators:
value = 0.0
else:
value = indicators.first().value
return value | Returns a value that indicates project health, currently FinancialIndicator
is used as this value, but it can be a result of calculation with other
indicators in future | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/api.py#L7-L18 |
lappis-unb/salic-ml | src/salicml_api/analysis/api.py | details | def details(project):
"""
Project detail endpoint,
Returns project pronac, name,
and indicators with details
"""
indicators = project.indicator_set.all()
indicators_detail = [(indicator_details(i)
for i in indicators)][0]
if not indicators:
indicators_detail = [
{'FinancialIndicator':
{'valor': 0.0,
'metrics': default_metrics, }, }]
indicators_detail = convert_list_into_dict(indicators_detail)
return {'pronac': project.pronac,
'nome': project.nome,
'indicadores': indicators_detail,
} | python | def details(project):
"""
Project detail endpoint,
Returns project pronac, name,
and indicators with details
"""
indicators = project.indicator_set.all()
indicators_detail = [(indicator_details(i)
for i in indicators)][0]
if not indicators:
indicators_detail = [
{'FinancialIndicator':
{'valor': 0.0,
'metrics': default_metrics, }, }]
indicators_detail = convert_list_into_dict(indicators_detail)
return {'pronac': project.pronac,
'nome': project.nome,
'indicadores': indicators_detail,
} | Project detail endpoint,
Returns project pronac, name,
and indicators with details | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/api.py#L38-L57 |
lappis-unb/salic-ml | src/salicml_api/analysis/api.py | indicator_details | def indicator_details(indicator):
"""
Return a dictionary with all metrics in FinancialIndicator,
if there aren't values for that Indicator, it is filled with default values
"""
metrics = format_metrics_json(indicator)
metrics_list = set(indicator.metrics
.filter(name__in=metrics_name_map.keys())
.values_list('name', flat=True))
null_metrics = default_metrics
for keys in metrics_list:
null_metrics.pop(metrics_name_map[keys], None)
metrics.update(null_metrics)
return {type(indicator).__name__: {
'valor': indicator.value,
'metricas': metrics, },
} | python | def indicator_details(indicator):
"""
Return a dictionary with all metrics in FinancialIndicator,
if there aren't values for that Indicator, it is filled with default values
"""
metrics = format_metrics_json(indicator)
metrics_list = set(indicator.metrics
.filter(name__in=metrics_name_map.keys())
.values_list('name', flat=True))
null_metrics = default_metrics
for keys in metrics_list:
null_metrics.pop(metrics_name_map[keys], None)
metrics.update(null_metrics)
return {type(indicator).__name__: {
'valor': indicator.value,
'metricas': metrics, },
} | Return a dictionary with all metrics in FinancialIndicator,
if there aren't values for that Indicator, it is filled with default values | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/api.py#L60-L79 |
lappis-unb/salic-ml | src/salicml/data/query.py | Metrics.get_metric | def get_metric(self, pronac, metric):
"""
Get metric for the project with the given pronac number.
Usage:
>>> metrics.get_metric(pronac_id, 'finance.approved_funds')
"""
assert isinstance(metric, str)
assert '.' in metric, 'metric must declare a namespace'
try:
func = self._metrics[metric]
return func(pronac, self._data)
except KeyError:
raise InvalidMetricError('metric does not exist') | python | def get_metric(self, pronac, metric):
"""
Get metric for the project with the given pronac number.
Usage:
>>> metrics.get_metric(pronac_id, 'finance.approved_funds')
"""
assert isinstance(metric, str)
assert '.' in metric, 'metric must declare a namespace'
try:
func = self._metrics[metric]
return func(pronac, self._data)
except KeyError:
raise InvalidMetricError('metric does not exist') | Get metric for the project with the given pronac number.
Usage:
>>> metrics.get_metric(pronac_id, 'finance.approved_funds') | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/data/query.py#L75-L90 |
lappis-unb/salic-ml | src/salicml/data/query.py | Metrics.register | def register(self, category):
"""
Usage:
@metrics.register('finance')
def approved_funds(pronac, data):
return metric_from_data_and_pronac_number(data, pronac)
"""
def decorator(func):
name = func.__name__
key = f'{category}.{name}'
self._metrics[key] = func
return func
return decorator | python | def register(self, category):
"""
Usage:
@metrics.register('finance')
def approved_funds(pronac, data):
return metric_from_data_and_pronac_number(data, pronac)
"""
def decorator(func):
name = func.__name__
key = f'{category}.{name}'
self._metrics[key] = func
return func
return decorator | Usage:
@metrics.register('finance')
def approved_funds(pronac, data):
return metric_from_data_and_pronac_number(data, pronac) | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/data/query.py#L100-L112 |
lappis-unb/salic-ml | src/salicml_api/analysis/models/utils.py | execute_project_models_sql_scripts | def execute_project_models_sql_scripts(force_update=False):
"""
Used to get project information from MinC database
and convert to this application Project models.
Uses bulk_create if database is clean
"""
# TODO: Remove except and use ignore_conflicts
# on bulk_create when django 2.2. is released
with open(MODEL_FILE, "r") as file_content:
query = file_content.read()
db = db_connector()
query_result = db.execute_pandas_sql_query(query)
db.close()
try:
projects = Project.objects.bulk_create(
(Project(**vals) for vals in query_result.to_dict("records")),
# ignore_conflicts=True available on django 2.2.
)
indicators = [FinancialIndicator(project=p) for p in projects]
FinancialIndicator.objects.bulk_create(indicators)
except IntegrityError:
# happens when there are duplicated projects
LOG("Projects bulk_create failed, creating one by one...")
with transaction.atomic():
if force_update:
for item in query_result.to_dict("records"):
p, _ = Project.objects.update_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
else:
for item in query_result.to_dict("records"):
p, _ = Project.objects.get_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p) | python | def execute_project_models_sql_scripts(force_update=False):
"""
Used to get project information from MinC database
and convert to this application Project models.
Uses bulk_create if database is clean
"""
# TODO: Remove except and use ignore_conflicts
# on bulk_create when django 2.2. is released
with open(MODEL_FILE, "r") as file_content:
query = file_content.read()
db = db_connector()
query_result = db.execute_pandas_sql_query(query)
db.close()
try:
projects = Project.objects.bulk_create(
(Project(**vals) for vals in query_result.to_dict("records")),
# ignore_conflicts=True available on django 2.2.
)
indicators = [FinancialIndicator(project=p) for p in projects]
FinancialIndicator.objects.bulk_create(indicators)
except IntegrityError:
# happens when there are duplicated projects
LOG("Projects bulk_create failed, creating one by one...")
with transaction.atomic():
if force_update:
for item in query_result.to_dict("records"):
p, _ = Project.objects.update_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
else:
for item in query_result.to_dict("records"):
p, _ = Project.objects.get_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p) | Used to get project information from MinC database
and convert to this application Project models.
Uses bulk_create if database is clean | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/models/utils.py#L20-L52 |
lappis-unb/salic-ml | src/salicml_api/analysis/models/utils.py | create_finance_metrics | def create_finance_metrics(metrics: list, pronacs: list):
"""
Creates metrics, creating an Indicator if it doesn't already exists
Metrics are created for projects that are in pronacs and saved in
database.
args:
metrics: list of names of metrics that will be calculated
pronacs: pronacs in dataset that is used to calculate those metrics
"""
missing = missing_metrics(metrics, pronacs)
print(f"There are {len(missing)} missing metrics!")
processors = mp.cpu_count()
print(f"Using {processors} processors to calculate metrics!")
indicators_qs = FinancialIndicator.objects.filter(
project_id__in=[p for p, _ in missing]
)
indicators = {i.project_id: i for i in indicators_qs}
pool = mp.Pool(processors)
results = [
pool.apply_async(create_metric, args=(indicators, metric_name, pronac))
for pronac, metric_name in missing
]
calculated_metrics = [p.get() for p in results]
if calculated_metrics:
Metric.objects.bulk_create(calculated_metrics)
print("Bulk completed")
for indicator in indicators.values():
indicator.fetch_weighted_complexity()
print("Finished update indicators!")
pool.close()
print("Finished metrics calculation!") | python | def create_finance_metrics(metrics: list, pronacs: list):
"""
Creates metrics, creating an Indicator if it doesn't already exists
Metrics are created for projects that are in pronacs and saved in
database.
args:
metrics: list of names of metrics that will be calculated
pronacs: pronacs in dataset that is used to calculate those metrics
"""
missing = missing_metrics(metrics, pronacs)
print(f"There are {len(missing)} missing metrics!")
processors = mp.cpu_count()
print(f"Using {processors} processors to calculate metrics!")
indicators_qs = FinancialIndicator.objects.filter(
project_id__in=[p for p, _ in missing]
)
indicators = {i.project_id: i for i in indicators_qs}
pool = mp.Pool(processors)
results = [
pool.apply_async(create_metric, args=(indicators, metric_name, pronac))
for pronac, metric_name in missing
]
calculated_metrics = [p.get() for p in results]
if calculated_metrics:
Metric.objects.bulk_create(calculated_metrics)
print("Bulk completed")
for indicator in indicators.values():
indicator.fetch_weighted_complexity()
print("Finished update indicators!")
pool.close()
print("Finished metrics calculation!") | Creates metrics, creating an Indicator if it doesn't already exists
Metrics are created for projects that are in pronacs and saved in
database.
args:
metrics: list of names of metrics that will be calculated
pronacs: pronacs in dataset that is used to calculate those metrics | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/models/utils.py#L55-L93 |
lappis-unb/salic-ml | src/salicml/metrics/finance/total_receipts.py | total_receipts | def total_receipts(pronac, dt):
"""
This metric calculates the project total of receipts
and compare it to projects in the same segment
output:
is_outlier: True if projects receipts is not compatible
to others projects in the same segment
total_receipts: absolute number of receipts
maximum_expected_in_segment: maximum receipts expected in segment
"""
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
segments_cache = data.segment_projects_agg
segments_cache = segments_cache.to_dict(orient="index")
mean = segments_cache[segment_id]["mean"]
std = segments_cache[segment_id]["<lambda>"]
total_receipts = project.shape[0]
is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)
maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": total_receipts,
"maximo_esperado": maximum_expected,
"minimo_esperado": 0,
} | python | def total_receipts(pronac, dt):
"""
This metric calculates the project total of receipts
and compare it to projects in the same segment
output:
is_outlier: True if projects receipts is not compatible
to others projects in the same segment
total_receipts: absolute number of receipts
maximum_expected_in_segment: maximum receipts expected in segment
"""
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
segments_cache = data.segment_projects_agg
segments_cache = segments_cache.to_dict(orient="index")
mean = segments_cache[segment_id]["mean"]
std = segments_cache[segment_id]["<lambda>"]
total_receipts = project.shape[0]
is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)
maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": total_receipts,
"maximo_esperado": maximum_expected,
"minimo_esperado": 0,
} | This metric calculates the project total of receipts
and compare it to projects in the same segment
output:
is_outlier: True if projects receipts is not compatible
to others projects in the same segment
total_receipts: absolute number of receipts
maximum_expected_in_segment: maximum receipts expected in segment | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/total_receipts.py#L9-L36 |
lappis-unb/salic-ml | src/salicml_api/analysis/preload_data.py | load_project_metrics | def load_project_metrics():
"""
Create project metrics for financial indicator
Updates them if already exists
"""
all_metrics = FinancialIndicator.METRICS
for key in all_metrics:
df = getattr(data, key)
pronac = 'PRONAC'
if key == 'planilha_captacao':
pronac = 'Pronac'
pronacs = df[pronac].unique().tolist()
create_finance_metrics(all_metrics[key], pronacs) | python | def load_project_metrics():
"""
Create project metrics for financial indicator
Updates them if already exists
"""
all_metrics = FinancialIndicator.METRICS
for key in all_metrics:
df = getattr(data, key)
pronac = 'PRONAC'
if key == 'planilha_captacao':
pronac = 'Pronac'
pronacs = df[pronac].unique().tolist()
create_finance_metrics(all_metrics[key], pronacs) | Create project metrics for financial indicator
Updates them if already exists | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/preload_data.py#L10-L22 |
lappis-unb/salic-ml | src/salicml/metrics/finance/new_providers.py | new_providers | def new_providers(pronac, dt):
"""
Return the percentage of providers of a project
that are new to the providers database.
"""
info = data.providers_info
df = info[info['PRONAC'] == pronac]
providers_count = data.providers_count.to_dict()[0]
new_providers = []
segment_id = None
for _, row in df.iterrows():
cnpj = row['nrCNPJCPF']
cnpj_count = providers_count.get(cnpj, 0)
segment_id = row['idSegmento']
if cnpj_count <= 1:
item_id = row['idPlanilhaAprovacao']
item_name = row['Item']
provider_name = row['nmFornecedor']
new_provider = {
'nome': provider_name,
'cnpj': cnpj,
'itens': {
item_id: {
'nome': item_name,
'tem_comprovante': True
}
}
}
new_providers.append(new_provider)
providers_amount = len(df['nrCNPJCPF'].unique())
new_providers_amount = len(new_providers)
new_providers_percentage = new_providers_amount / providers_amount
averages = data.average_percentage_of_new_providers.to_dict()
segments_average = averages['segments_average_percentage']
all_projects_average = list(averages['all_projects_average'].values())[0]
if new_providers:
new_providers.sort(key=lambda provider: provider['nome'])
return {
'lista_de_novos_fornecedores': new_providers,
'valor': new_providers_amount,
'new_providers_percentage': new_providers_percentage,
'is_outlier': new_providers_percentage > segments_average[segment_id],
'segment_average_percentage': segments_average[segment_id],
'all_projects_average_percentage': all_projects_average,
} | python | def new_providers(pronac, dt):
"""
Return the percentage of providers of a project
that are new to the providers database.
"""
info = data.providers_info
df = info[info['PRONAC'] == pronac]
providers_count = data.providers_count.to_dict()[0]
new_providers = []
segment_id = None
for _, row in df.iterrows():
cnpj = row['nrCNPJCPF']
cnpj_count = providers_count.get(cnpj, 0)
segment_id = row['idSegmento']
if cnpj_count <= 1:
item_id = row['idPlanilhaAprovacao']
item_name = row['Item']
provider_name = row['nmFornecedor']
new_provider = {
'nome': provider_name,
'cnpj': cnpj,
'itens': {
item_id: {
'nome': item_name,
'tem_comprovante': True
}
}
}
new_providers.append(new_provider)
providers_amount = len(df['nrCNPJCPF'].unique())
new_providers_amount = len(new_providers)
new_providers_percentage = new_providers_amount / providers_amount
averages = data.average_percentage_of_new_providers.to_dict()
segments_average = averages['segments_average_percentage']
all_projects_average = list(averages['all_projects_average'].values())[0]
if new_providers:
new_providers.sort(key=lambda provider: provider['nome'])
return {
'lista_de_novos_fornecedores': new_providers,
'valor': new_providers_amount,
'new_providers_percentage': new_providers_percentage,
'is_outlier': new_providers_percentage > segments_average[segment_id],
'segment_average_percentage': segments_average[segment_id],
'all_projects_average_percentage': all_projects_average,
} | Return the percentage of providers of a project
that are new to the providers database. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/new_providers.py#L9-L62 |
lappis-unb/salic-ml | src/salicml/metrics/finance/new_providers.py | average_percentage_of_new_providers | def average_percentage_of_new_providers(providers_info, providers_count):
"""
Return the average percentage of new providers
per segment and the average percentage of all projects.
"""
segments_percentages = {}
all_projects_percentages = []
providers_count = providers_count.to_dict()[0]
for _, items in providers_info.groupby('PRONAC'):
cnpj_array = items['nrCNPJCPF'].unique()
new_providers = 0
for cnpj in cnpj_array:
cnpj_count = providers_count.get(cnpj, 0)
if cnpj_count <= 1:
new_providers += 1
segment_id = items.iloc[0]['idSegmento']
new_providers_percent = new_providers / cnpj_array.size
segments_percentages.setdefault(segment_id, [])
segments_percentages[segment_id].append(new_providers_percent)
all_projects_percentages.append(new_providers_percent)
segments_average_percentage = {}
for segment_id, percentages in segments_percentages.items():
mean = np.mean(percentages)
segments_average_percentage[segment_id] = mean
return pd.DataFrame.from_dict({
'segments_average_percentage': segments_average_percentage,
'all_projects_average': np.mean(all_projects_percentages)
}) | python | def average_percentage_of_new_providers(providers_info, providers_count):
"""
Return the average percentage of new providers
per segment and the average percentage of all projects.
"""
segments_percentages = {}
all_projects_percentages = []
providers_count = providers_count.to_dict()[0]
for _, items in providers_info.groupby('PRONAC'):
cnpj_array = items['nrCNPJCPF'].unique()
new_providers = 0
for cnpj in cnpj_array:
cnpj_count = providers_count.get(cnpj, 0)
if cnpj_count <= 1:
new_providers += 1
segment_id = items.iloc[0]['idSegmento']
new_providers_percent = new_providers / cnpj_array.size
segments_percentages.setdefault(segment_id, [])
segments_percentages[segment_id].append(new_providers_percent)
all_projects_percentages.append(new_providers_percent)
segments_average_percentage = {}
for segment_id, percentages in segments_percentages.items():
mean = np.mean(percentages)
segments_average_percentage[segment_id] = mean
return pd.DataFrame.from_dict({
'segments_average_percentage': segments_average_percentage,
'all_projects_average': np.mean(all_projects_percentages)
}) | Return the average percentage of new providers
per segment and the average percentage of all projects. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/new_providers.py#L66-L97 |
lappis-unb/salic-ml | src/salicml/metrics/finance/new_providers.py | providers_count | def providers_count(df):
"""
Returns total occurrences of each provider
in the database.
"""
providers_count = {}
cnpj_array = df.values
for a in cnpj_array:
cnpj = a[0]
occurrences = providers_count.get(cnpj, 0)
providers_count[cnpj] = occurrences + 1
return pd.DataFrame.from_dict(providers_count, orient='index') | python | def providers_count(df):
"""
Returns total occurrences of each provider
in the database.
"""
providers_count = {}
cnpj_array = df.values
for a in cnpj_array:
cnpj = a[0]
occurrences = providers_count.get(cnpj, 0)
providers_count[cnpj] = occurrences + 1
return pd.DataFrame.from_dict(providers_count, orient='index') | Returns total occurrences of each provider
in the database. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/new_providers.py#L101-L114 |
lappis-unb/salic-ml | src/salicml/metrics/finance/new_providers.py | all_providers_cnpj | def all_providers_cnpj(df):
"""
Return CPF/CNPJ of all providers
in database.
"""
cnpj_list = []
for _, items in df.groupby('PRONAC'):
unique_cnpjs = items['nrCNPJCPF'].unique()
cnpj_list += list(unique_cnpjs)
return pd.DataFrame(cnpj_list) | python | def all_providers_cnpj(df):
"""
Return CPF/CNPJ of all providers
in database.
"""
cnpj_list = []
for _, items in df.groupby('PRONAC'):
unique_cnpjs = items['nrCNPJCPF'].unique()
cnpj_list += list(unique_cnpjs)
return pd.DataFrame(cnpj_list) | Return CPF/CNPJ of all providers
in database. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/new_providers.py#L132-L143 |
lappis-unb/salic-ml | src/salicml/metrics/finance/new_providers.py | get_providers_info | def get_providers_info(pronac):
"""
Return all info about providers of a
project with the given pronac.
"""
df = data.providers_info
grouped = df.groupby('PRONAC')
return grouped.get_group(pronac) | python | def get_providers_info(pronac):
"""
Return all info about providers of a
project with the given pronac.
"""
df = data.providers_info
grouped = df.groupby('PRONAC')
return grouped.get_group(pronac) | Return all info about providers of a
project with the given pronac. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/new_providers.py#L146-L154 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | get_info | def get_info(df, group, info=['mean', 'std']):
"""
Aggregate mean and std with the given group.
"""
agg = df.groupby(group).agg(info)
agg.columns = agg.columns.droplevel(0)
return agg | python | def get_info(df, group, info=['mean', 'std']):
"""
Aggregate mean and std with the given group.
"""
agg = df.groupby(group).agg(info)
agg.columns = agg.columns.droplevel(0)
return agg | Aggregate mean and std with the given group. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L5-L11 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | get_salic_url | def get_salic_url(item, prefix, df_values=None):
"""
Mount a salic url for the given item.
"""
url_keys = {
'pronac': 'idPronac',
'uf': 'uf',
'product': 'produto',
'county': 'idmunicipio',
'item_id': 'idPlanilhaItem',
'stage': 'etapa',
}
if df_values:
values = [item[v] for v in df_values]
url_values = dict(
zip(url_keys.keys(), values)
)
else:
url_values = {
"pronac": item["idPronac"],
"uf": item["UfItem"],
"product": item["idProduto"],
"county": item["cdCidade"],
"item_id": item["idPlanilhaItens"],
"stage": item["cdEtapa"],
}
item_data = [(value, url_values[key]) for key, value in url_keys.items()]
url = prefix
for k, v in item_data:
url += f'/{str(k)}/{str(v)}'
return url | python | def get_salic_url(item, prefix, df_values=None):
"""
Mount a salic url for the given item.
"""
url_keys = {
'pronac': 'idPronac',
'uf': 'uf',
'product': 'produto',
'county': 'idmunicipio',
'item_id': 'idPlanilhaItem',
'stage': 'etapa',
}
if df_values:
values = [item[v] for v in df_values]
url_values = dict(
zip(url_keys.keys(), values)
)
else:
url_values = {
"pronac": item["idPronac"],
"uf": item["UfItem"],
"product": item["idProduto"],
"county": item["cdCidade"],
"item_id": item["idPlanilhaItens"],
"stage": item["cdEtapa"],
}
item_data = [(value, url_values[key]) for key, value in url_keys.items()]
url = prefix
for k, v in item_data:
url += f'/{str(k)}/{str(v)}'
return url | Mount a salic url for the given item. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L26-L59 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | get_cpf_cnpj_by_pronac | def get_cpf_cnpj_by_pronac(pronac):
"""
Return the CNPF/CNPJ of the proponent
of the project with the given pronac.
"""
df = data.planilha_projetos
cpf_cnpj = None
row_df = df[df['PRONAC'].astype(str) == str(pronac)]
if not row_df.empty:
cpf_cnpj = row_df.iloc[0]['CgcCpf']
return str(cpf_cnpj) | python | def get_cpf_cnpj_by_pronac(pronac):
"""
Return the CNPF/CNPJ of the proponent
of the project with the given pronac.
"""
df = data.planilha_projetos
cpf_cnpj = None
row_df = df[df['PRONAC'].astype(str) == str(pronac)]
if not row_df.empty:
cpf_cnpj = row_df.iloc[0]['CgcCpf']
return str(cpf_cnpj) | Return the CNPF/CNPJ of the proponent
of the project with the given pronac. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L62-L74 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | has_receipt | def has_receipt(item):
"""
Verify if a item has a receipt.
"""
pronac_id = str(item['idPronac'])
item_id = str(item["idPlanilhaItens"])
combined_id = f'{pronac_id}/{item_id}'
return combined_id in data.receipt.index | python | def has_receipt(item):
"""
Verify if a item has a receipt.
"""
pronac_id = str(item['idPronac'])
item_id = str(item["idPlanilhaItens"])
combined_id = f'{pronac_id}/{item_id}'
return combined_id in data.receipt.index | Verify if a item has a receipt. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L77-L86 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | get_segment_projects | def get_segment_projects(segment_id):
"""
Returns all projects from a segment.
"""
df = data.all_items
return (
df[df['idSegmento'] == str(segment_id)]
.drop_duplicates(["PRONAC"])
.values
) | python | def get_segment_projects(segment_id):
"""
Returns all projects from a segment.
"""
df = data.all_items
return (
df[df['idSegmento'] == str(segment_id)]
.drop_duplicates(["PRONAC"])
.values
) | Returns all projects from a segment. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L90-L99 |
lappis-unb/salic-ml | src/salicml/metrics/base.py | receipt | def receipt(df):
"""
Return a dataframe to verify if a item has a receipt.
"""
mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)
mutated_df['pronac_planilha_itens'] = (
f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}"
)
return (
mutated_df
.set_index(['pronac_planilha_itens'])
) | python | def receipt(df):
"""
Return a dataframe to verify if a item has a receipt.
"""
mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)
mutated_df['pronac_planilha_itens'] = (
f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}"
)
return (
mutated_df
.set_index(['pronac_planilha_itens'])
) | Return a dataframe to verify if a item has a receipt. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/base.py#L103-L115 |
lappis-unb/salic-ml | tasks.py | update_data | def update_data(ctx, models=True, pickles=False, f=False):
"""
Updates local django db projects and pickle files using salic database from
MinC
Pickles are saved in /data/raw/ from sql queries in /data/scripts/
Models are created from /data/scripts/models/
"""
if pickles:
save_sql_to_files(f)
if models:
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={}) | python | def update_data(ctx, models=True, pickles=False, f=False):
"""
Updates local django db projects and pickle files using salic database from
MinC
Pickles are saved in /data/raw/ from sql queries in /data/scripts/
Models are created from /data/scripts/models/
"""
if pickles:
save_sql_to_files(f)
if models:
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={}) | Updates local django db projects and pickle files using salic database from
MinC
Pickles are saved in /data/raw/ from sql queries in /data/scripts/
Models are created from /data/scripts/models/ | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/tasks.py#L72-L85 |
lappis-unb/salic-ml | tasks.py | update_models | def update_models(ctx, f=False):
"""
Updates local django db projects models using salic database from
MinC
"""
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={}) | python | def update_models(ctx, f=False):
"""
Updates local django db projects models using salic database from
MinC
"""
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={}) | Updates local django db projects models using salic database from
MinC | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/tasks.py#L89-L97 |
lappis-unb/salic-ml | src/salicml_api/analysis/models/financial.py | FinancialIndicatorManager.create_indicator | def create_indicator(self, project, is_valid, metrics_list):
"""
Creates FinancialIndicator object for a project, calculating
metrics and indicator value
"""
project = Project.objects.get(pronac=project)
indicator, _ = (FinancialIndicator
.objects.update_or_create(project=project))
indicator.is_valid = is_valid
if indicator.is_valid:
p_metrics = metrics_calc.get_project(project.pronac)
for metric_name in metrics_list:
print("calculando a metrica ", metric_name)
x = getattr(p_metrics.finance, metric_name)
print("do projeto: ", project)
Metric.objects.create_metric(metric_name, x, indicator)
indicator.fetch_weighted_complexity()
return indicator | python | def create_indicator(self, project, is_valid, metrics_list):
"""
Creates FinancialIndicator object for a project, calculating
metrics and indicator value
"""
project = Project.objects.get(pronac=project)
indicator, _ = (FinancialIndicator
.objects.update_or_create(project=project))
indicator.is_valid = is_valid
if indicator.is_valid:
p_metrics = metrics_calc.get_project(project.pronac)
for metric_name in metrics_list:
print("calculando a metrica ", metric_name)
x = getattr(p_metrics.finance, metric_name)
print("do projeto: ", project)
Metric.objects.create_metric(metric_name, x, indicator)
indicator.fetch_weighted_complexity()
return indicator | Creates FinancialIndicator object for a project, calculating
metrics and indicator value | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/models/financial.py#L11-L28 |
lappis-unb/salic-ml | src/salicml/data/db_operations.py | save_sql_to_files | def save_sql_to_files(overwrite=False):
"""
Executes every .sql files in /data/scripts/ using salic db vpn and
then saves pickle files into /data/raw/
"""
ext_size = len(SQL_EXTENSION)
path = DATA_PATH / 'scripts'
save_dir = DATA_PATH / "raw"
for file in os.listdir(path):
if file.endswith(SQL_EXTENSION):
file_path = os.path.join(save_dir,
file[:-ext_size] + '.' + FILE_EXTENSION)
if not os.path.isfile(file_path) or overwrite:
query_result = make_query(path / file)
save_dataframe_as_pickle(query_result, file_path)
else:
print(("file {} already exists, if you would like to update"
" it, use -f flag\n").format(file_path)) | python | def save_sql_to_files(overwrite=False):
"""
Executes every .sql files in /data/scripts/ using salic db vpn and
then saves pickle files into /data/raw/
"""
ext_size = len(SQL_EXTENSION)
path = DATA_PATH / 'scripts'
save_dir = DATA_PATH / "raw"
for file in os.listdir(path):
if file.endswith(SQL_EXTENSION):
file_path = os.path.join(save_dir,
file[:-ext_size] + '.' + FILE_EXTENSION)
if not os.path.isfile(file_path) or overwrite:
query_result = make_query(path / file)
save_dataframe_as_pickle(query_result, file_path)
else:
print(("file {} already exists, if you would like to update"
" it, use -f flag\n").format(file_path)) | Executes every .sql files in /data/scripts/ using salic db vpn and
then saves pickle files into /data/raw/ | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/data/db_operations.py#L31-L49 |
lappis-unb/salic-ml | src/salicml_api/analysis/models/base.py | Indicator.fetch_weighted_complexity | def fetch_weighted_complexity(self, recalculate_metrics=False):
"""
Calculates indicator value according to metrics weights
Uses metrics in database
args:
recalculate_metrics: If true metrics values are updated before
using weights
"""
# TODO: implment metrics recalculation
max_total = sum(
[self.metrics_weights[metric_name] for metric_name in self.metrics_weights]
)
total = 0
if recalculate_metrics:
self.calculate_indicator_metrics()
for metric in self.metrics.all():
if metric.name in self.metrics_weights and metric.is_outlier:
total += self.metrics_weights[metric.name]
value = total / max_total
final_value = "{:.1f}".format(value * 10)
if final_value[-1] == "0":
final_value = "{:.0f}".format(value * 10)
final_value = int(final_value)
else:
final_value = float(final_value)
self.value = float(final_value)
self.is_valid = True
self.updated_at = datetime.datetime.now()
self.save()
return final_value | python | def fetch_weighted_complexity(self, recalculate_metrics=False):
"""
Calculates indicator value according to metrics weights
Uses metrics in database
args:
recalculate_metrics: If true metrics values are updated before
using weights
"""
# TODO: implment metrics recalculation
max_total = sum(
[self.metrics_weights[metric_name] for metric_name in self.metrics_weights]
)
total = 0
if recalculate_metrics:
self.calculate_indicator_metrics()
for metric in self.metrics.all():
if metric.name in self.metrics_weights and metric.is_outlier:
total += self.metrics_weights[metric.name]
value = total / max_total
final_value = "{:.1f}".format(value * 10)
if final_value[-1] == "0":
final_value = "{:.0f}".format(value * 10)
final_value = int(final_value)
else:
final_value = float(final_value)
self.value = float(final_value)
self.is_valid = True
self.updated_at = datetime.datetime.now()
self.save()
return final_value | Calculates indicator value according to metrics weights
Uses metrics in database
args:
recalculate_metrics: If true metrics values are updated before
using weights | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/models/base.py#L27-L59 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | item_prices | def item_prices(pronac, data):
"""
Verify if a project is an outlier compared
to the other projects in his segment, based
on the price of bought items.
"""
threshold = 0.1
outlier_info = get_outliers_percentage(pronac)
outlier_info['is_outlier'] = outlier_info['percentage'] > threshold
outlier_info['maximum_expected'] = threshold * outlier_info['total_items']
return outlier_info | python | def item_prices(pronac, data):
"""
Verify if a project is an outlier compared
to the other projects in his segment, based
on the price of bought items.
"""
threshold = 0.1
outlier_info = get_outliers_percentage(pronac)
outlier_info['is_outlier'] = outlier_info['percentage'] > threshold
outlier_info['maximum_expected'] = threshold * outlier_info['total_items']
return outlier_info | Verify if a project is an outlier compared
to the other projects in his segment, based
on the price of bought items. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L12-L24 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | is_outlier | def is_outlier(df, item_id, segment_id, price):
"""
Verify if a item is an outlier compared to the
other occurrences of the same item, based on his price.
Args:
item_id: idPlanilhaItens
segment_id: idSegmento
price: VlUnitarioAprovado
"""
if (segment_id, item_id) not in df.index:
return False
mean = df.loc[(segment_id, item_id)]['mean']
std = df.loc[(segment_id, item_id)]['std']
return gaussian_outlier.is_outlier(
x=price, mean=mean, standard_deviation=std
) | python | def is_outlier(df, item_id, segment_id, price):
"""
Verify if a item is an outlier compared to the
other occurrences of the same item, based on his price.
Args:
item_id: idPlanilhaItens
segment_id: idSegmento
price: VlUnitarioAprovado
"""
if (segment_id, item_id) not in df.index:
return False
mean = df.loc[(segment_id, item_id)]['mean']
std = df.loc[(segment_id, item_id)]['std']
return gaussian_outlier.is_outlier(
x=price, mean=mean, standard_deviation=std
) | Verify if a item is an outlier compared to the
other occurrences of the same item, based on his price.
Args:
item_id: idPlanilhaItens
segment_id: idSegmento
price: VlUnitarioAprovado | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L27-L46 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | aggregated_relevant_items | def aggregated_relevant_items(raw_df):
"""
Aggragation for calculate mean and std.
"""
df = (
raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']]
.groupby(by=['idSegmento', 'idPlanilhaItens'])
.agg([np.mean, lambda x: np.std(x, ddof=0)])
)
df.columns = df.columns.droplevel(0)
return (
df
.rename(columns={'<lambda>': 'std'})
) | python | def aggregated_relevant_items(raw_df):
"""
Aggragation for calculate mean and std.
"""
df = (
raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']]
.groupby(by=['idSegmento', 'idPlanilhaItens'])
.agg([np.mean, lambda x: np.std(x, ddof=0)])
)
df.columns = df.columns.droplevel(0)
return (
df
.rename(columns={'<lambda>': 'std'})
) | Aggragation for calculate mean and std. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L50-L63 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | relevant_items | def relevant_items(df):
"""
Dataframe with items used by cultural projects,
filtered by date and price.
"""
start_date = datetime(2013, 1, 1)
df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])
# get only projects newer than start_date
# and items with price > 0
df = df[df.DataProjeto >= start_date]
df = df[df.VlUnitarioAprovado > 0.0]
return df | python | def relevant_items(df):
"""
Dataframe with items used by cultural projects,
filtered by date and price.
"""
start_date = datetime(2013, 1, 1)
df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])
# get only projects newer than start_date
# and items with price > 0
df = df[df.DataProjeto >= start_date]
df = df[df.VlUnitarioAprovado > 0.0]
return df | Dataframe with items used by cultural projects,
filtered by date and price. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L67-L81 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | items_with_price | def items_with_price(raw_df):
"""
Dataframe with price as number.
"""
df = (
raw_df
[['PRONAC', 'idPlanilhaAprovacao', 'Item',
'idPlanilhaItens', 'VlUnitarioAprovado',
'idSegmento', 'DataProjeto', 'idPronac',
'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']]
).copy()
df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)
return df | python | def items_with_price(raw_df):
"""
Dataframe with price as number.
"""
df = (
raw_df
[['PRONAC', 'idPlanilhaAprovacao', 'Item',
'idPlanilhaItens', 'VlUnitarioAprovado',
'idSegmento', 'DataProjeto', 'idPronac',
'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']]
).copy()
df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)
return df | Dataframe with price as number. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L85-L98 |
lappis-unb/salic-ml | src/salicml/metrics/finance/item_prices.py | get_outliers_percentage | def get_outliers_percentage(pronac):
"""
Returns the percentage of items
of the project that are outliers.
"""
items = (
data.items_with_price
.groupby(['PRONAC'])
.get_group(pronac)
)
df = data.aggregated_relevant_items
outlier_items = {}
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in items.iterrows():
item_id = item['idPlanilhaItens']
price = item['VlUnitarioAprovado']
segment_id = item['idSegmento']
item_name = item['Item']
if is_outlier(df, item_id, segment_id, price):
outlier_items[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_receipt': has_receipt(item)
}
total_items = items.shape[0]
outliers_amount = len(outlier_items)
percentage = outliers_amount / total_items
return {
'items': outlier_items,
'valor': outliers_amount,
'total_items': total_items,
'percentage': percentage,
'is_outlier': outliers_amount > 0,
} | python | def get_outliers_percentage(pronac):
"""
Returns the percentage of items
of the project that are outliers.
"""
items = (
data.items_with_price
.groupby(['PRONAC'])
.get_group(pronac)
)
df = data.aggregated_relevant_items
outlier_items = {}
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in items.iterrows():
item_id = item['idPlanilhaItens']
price = item['VlUnitarioAprovado']
segment_id = item['idSegmento']
item_name = item['Item']
if is_outlier(df, item_id, segment_id, price):
outlier_items[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_receipt': has_receipt(item)
}
total_items = items.shape[0]
outliers_amount = len(outlier_items)
percentage = outliers_amount / total_items
return {
'items': outlier_items,
'valor': outliers_amount,
'total_items': total_items,
'percentage': percentage,
'is_outlier': outliers_amount > 0,
} | Returns the percentage of items
of the project that are outliers. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/item_prices.py#L101-L141 |
lappis-unb/salic-ml | src/salicml/metrics/finance/number_of_items.py | number_of_items | def number_of_items(pronac, dt):
"""
This metric calculates the project number of declared number of items
and compare it to projects in the same segment
output:
is_outlier: True if projects number of items is not compatible
to others projects in the same segment
valor: absolute number of items
maximo_esperado: mean number of items of segment
desvio_padrao: standard deviation of number of items in project segment
"""
df = data.items_by_project
project = df.loc[df['PRONAC'] == pronac]
seg = project.iloc[0]["idSegmento"]
info = data.items_by_project_agg.to_dict(orient="index")[seg]
mean, std = info.values()
threshold = mean + 1.5 * std
project_items_count = project.shape[0]
is_outlier = project_items_count > threshold
return {
'is_outlier': is_outlier,
'valor': project_items_count,
'maximo_esperado': mean,
'desvio_padrao': std,
} | python | def number_of_items(pronac, dt):
"""
This metric calculates the project number of declared number of items
and compare it to projects in the same segment
output:
is_outlier: True if projects number of items is not compatible
to others projects in the same segment
valor: absolute number of items
maximo_esperado: mean number of items of segment
desvio_padrao: standard deviation of number of items in project segment
"""
df = data.items_by_project
project = df.loc[df['PRONAC'] == pronac]
seg = project.iloc[0]["idSegmento"]
info = data.items_by_project_agg.to_dict(orient="index")[seg]
mean, std = info.values()
threshold = mean + 1.5 * std
project_items_count = project.shape[0]
is_outlier = project_items_count > threshold
return {
'is_outlier': is_outlier,
'valor': project_items_count,
'maximo_esperado': mean,
'desvio_padrao': std,
} | This metric calculates the project number of declared number of items
and compare it to projects in the same segment
output:
is_outlier: True if projects number of items is not compatible
to others projects in the same segment
valor: absolute number of items
maximo_esperado: mean number of items of segment
desvio_padrao: standard deviation of number of items in project segment | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/number_of_items.py#L7-L31 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | common_items | def common_items(df):
"""
Returns the itens that are common in all the segments,
in the format | idSegmento | id planilhaItens |.
"""
percentage = 0.1
return (
df
.groupby(['idSegmento', 'idPlanilhaItens'])
.count()
.rename(columns={'PRONAC': 'itemOccurrences'})
.sort_values('itemOccurrences', ascending=False)
.reset_index(['idSegmento', 'idPlanilhaItens'])
.groupby('idSegmento')
.apply(lambda x: x[None: max(2, int(len(x) * percentage))])
.reset_index(['idSegmento'], drop=True)
.set_index(['idSegmento'])
) | python | def common_items(df):
"""
Returns the itens that are common in all the segments,
in the format | idSegmento | id planilhaItens |.
"""
percentage = 0.1
return (
df
.groupby(['idSegmento', 'idPlanilhaItens'])
.count()
.rename(columns={'PRONAC': 'itemOccurrences'})
.sort_values('itemOccurrences', ascending=False)
.reset_index(['idSegmento', 'idPlanilhaItens'])
.groupby('idSegmento')
.apply(lambda x: x[None: max(2, int(len(x) * percentage))])
.reset_index(['idSegmento'], drop=True)
.set_index(['idSegmento'])
) | Returns the itens that are common in all the segments,
in the format | idSegmento | id planilhaItens |. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L14-L32 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | common_items_percentage | def common_items_percentage(pronac, seg_common_items):
"""
Returns the percentage of items in a project that are
common in the cultural segment.
"""
if len(seg_common_items) == 0:
return 0
project_items = get_project_items(pronac).values[:, 0]
project_items_amount = len(project_items)
if project_items_amount == 0:
return 1
common_found_items = sum(
seg_common_items.isin(project_items)['idPlanilhaItens']
)
return common_found_items / project_items_amount | python | def common_items_percentage(pronac, seg_common_items):
"""
Returns the percentage of items in a project that are
common in the cultural segment.
"""
if len(seg_common_items) == 0:
return 0
project_items = get_project_items(pronac).values[:, 0]
project_items_amount = len(project_items)
if project_items_amount == 0:
return 1
common_found_items = sum(
seg_common_items.isin(project_items)['idPlanilhaItens']
)
return common_found_items / project_items_amount | Returns the percentage of items in a project that are
common in the cultural segment. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L61-L79 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | common_items_metrics | def common_items_metrics(all_items, common_items):
"""
Calculates the percentage of common items for each project
in each segment and calculates the mean and std of this percentage
for each segment.
"""
segments = common_items.index.unique()
metrics = {}
for seg in segments:
seg_common_items = segment_common_items(seg)
projects = get_segment_projects(seg)
metric_values = []
for proj in projects:
pronac = proj[0]
percentage = common_items_percentage(pronac, seg_common_items)
metric_values.append(percentage)
metrics[seg] = {
'mean': np.mean(metric_values),
'std': np.std(metric_values)
}
return pd.DataFrame.from_dict(metrics, orient='index') | python | def common_items_metrics(all_items, common_items):
"""
Calculates the percentage of common items for each project
in each segment and calculates the mean and std of this percentage
for each segment.
"""
segments = common_items.index.unique()
metrics = {}
for seg in segments:
seg_common_items = segment_common_items(seg)
projects = get_segment_projects(seg)
metric_values = []
for proj in projects:
pronac = proj[0]
percentage = common_items_percentage(pronac, seg_common_items)
metric_values.append(percentage)
metrics[seg] = {
'mean': np.mean(metric_values),
'std': np.std(metric_values)
}
return pd.DataFrame.from_dict(metrics, orient='index') | Calculates the percentage of common items for each project
in each segment and calculates the mean and std of this percentage
for each segment. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L83-L106 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | get_project_items | def get_project_items(pronac):
"""
Returns all items from a project.
"""
df = data.all_items
return (
df[df['PRONAC'] == pronac]
.drop(columns=['PRONAC', 'idSegmento'])
) | python | def get_project_items(pronac):
"""
Returns all items from a project.
"""
df = data.all_items
return (
df[df['PRONAC'] == pronac]
.drop(columns=['PRONAC', 'idSegmento'])
) | Returns all items from a project. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L110-L118 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | segment_common_items | def segment_common_items(segment_id):
"""
Returns all the common items in a segment.
"""
df = data.common_items
return (
df
.loc[str(segment_id)]
.reset_index(drop=1)
.drop(columns=["itemOccurrences"])
) | python | def segment_common_items(segment_id):
"""
Returns all the common items in a segment.
"""
df = data.common_items
return (
df
.loc[str(segment_id)]
.reset_index(drop=1)
.drop(columns=["itemOccurrences"])
) | Returns all the common items in a segment. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L122-L132 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | get_uncommon_items | def get_uncommon_items(pronac):
"""
Return all uncommon items of a project
(related to segment common items).
"""
segment_id = get_segment_id(str(pronac))
seg_common_items = (
segment_common_items(segment_id)
.set_index('idPlanilhaItens')
.index
)
project_items = (
get_project_items(pronac)
.set_index('idPlanilhaItens')
.index
)
diff = list(project_items.difference(seg_common_items))
return (
data.distinct_items
.loc[diff]
.to_dict()['Item']
) | python | def get_uncommon_items(pronac):
"""
Return all uncommon items of a project
(related to segment common items).
"""
segment_id = get_segment_id(str(pronac))
seg_common_items = (
segment_common_items(segment_id)
.set_index('idPlanilhaItens')
.index
)
project_items = (
get_project_items(pronac)
.set_index('idPlanilhaItens')
.index
)
diff = list(project_items.difference(seg_common_items))
return (
data.distinct_items
.loc[diff]
.to_dict()['Item']
) | Return all uncommon items of a project
(related to segment common items). | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L136-L159 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | add_info_to_uncommon_items | def add_info_to_uncommon_items(filtered_items, uncommon_items):
"""
Add extra info to the uncommon items.
"""
result = uncommon_items
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in filtered_items.iterrows():
item_id = item['idPlanilhaItens']
item_name = uncommon_items[item_id]
result[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_recepit': has_receipt(item)
}
return result | python | def add_info_to_uncommon_items(filtered_items, uncommon_items):
"""
Add extra info to the uncommon items.
"""
result = uncommon_items
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in filtered_items.iterrows():
item_id = item['idPlanilhaItens']
item_name = uncommon_items[item_id]
result[item_id] = {
'name': item_name,
'salic_url': get_salic_url(item, url_prefix),
'has_recepit': has_receipt(item)
}
return result | Add extra info to the uncommon items. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L188-L206 |
lappis-unb/salic-ml | src/salicml/metrics/finance/common_items_ratio.py | common_items_ratio | def common_items_ratio(pronac, dt):
"""
Calculates the common items on projects in a cultural segment,
calculates the uncommon items on projects in a cultural segment and
verify if a project is an outlier compared to the other projects
in his segment.
"""
segment_id = get_segment_id(str(pronac))
metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]
ratio = common_items_percentage(pronac, segment_common_items(segment_id))
# constant that defines the threshold to verify if a project
# is an outlier.
k = 1.5
threshold = metrics['mean'] - k * metrics['std']
uncommon_items = get_uncommon_items(pronac)
pronac_filter = data.all_items['PRONAC'] == pronac
uncommon_items_filter = (
data.all_items['idPlanilhaItens']
.isin(uncommon_items)
)
items_filter = (pronac_filter & uncommon_items_filter)
filtered_items = (
data
.all_items[items_filter]
.drop_duplicates(subset='idPlanilhaItens')
)
uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)
return {
'is_outlier': ratio < threshold,
'valor': ratio,
'maximo_esperado': metrics['mean'],
'desvio_padrao': metrics['std'],
'items_incomuns': uncommon_items,
'items_comuns_que_o_projeto_nao_possui': get_common_items_not_present(pronac),
} | python | def common_items_ratio(pronac, dt):
"""
Calculates the common items on projects in a cultural segment,
calculates the uncommon items on projects in a cultural segment and
verify if a project is an outlier compared to the other projects
in his segment.
"""
segment_id = get_segment_id(str(pronac))
metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]
ratio = common_items_percentage(pronac, segment_common_items(segment_id))
# constant that defines the threshold to verify if a project
# is an outlier.
k = 1.5
threshold = metrics['mean'] - k * metrics['std']
uncommon_items = get_uncommon_items(pronac)
pronac_filter = data.all_items['PRONAC'] == pronac
uncommon_items_filter = (
data.all_items['idPlanilhaItens']
.isin(uncommon_items)
)
items_filter = (pronac_filter & uncommon_items_filter)
filtered_items = (
data
.all_items[items_filter]
.drop_duplicates(subset='idPlanilhaItens')
)
uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)
return {
'is_outlier': ratio < threshold,
'valor': ratio,
'maximo_esperado': metrics['mean'],
'desvio_padrao': metrics['std'],
'items_incomuns': uncommon_items,
'items_comuns_que_o_projeto_nao_possui': get_common_items_not_present(pronac),
} | Calculates the common items on projects in a cultural segment,
calculates the uncommon items on projects in a cultural segment and
verify if a project is an outlier compared to the other projects
in his segment. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/common_items_ratio.py#L210-L249 |
lappis-unb/salic-ml | src/salicml/metrics/finance/verified_funds.py | verified_funds | def verified_funds(pronac, dt):
"""
Responsable for detecting anomalies in projects total verified funds.
"""
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
pronac_funds = project[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
segments_info = data.verified_funds_by_segment_agg.to_dict(orient="index")
mean = segments_info[segment_id]["mean"]
std = segments_info[segment_id]["std"]
is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": project_funds,
"maximo_esperado": maximum_expected_funds,
"minimo_esperado": 0,
} | python | def verified_funds(pronac, dt):
"""
Responsable for detecting anomalies in projects total verified funds.
"""
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]["idSegmento"]
pronac_funds = project[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
segments_info = data.verified_funds_by_segment_agg.to_dict(orient="index")
mean = segments_info[segment_id]["mean"]
std = segments_info[segment_id]["std"]
is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
"is_outlier": is_outlier,
"valor": project_funds,
"maximo_esperado": maximum_expected_funds,
"minimo_esperado": 0,
} | Responsable for detecting anomalies in projects total verified funds. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/verified_funds.py#L9-L34 |
lappis-unb/salic-ml | src/salicml/metrics/finance/to_verify_funds.py | raised_funds_by_project | def raised_funds_by_project(df):
"""
Raised funds organized by project.
"""
df['CaptacaoReal'] = df['CaptacaoReal'].apply(
pd.to_numeric
)
return (
df[['Pronac', 'CaptacaoReal']]
.groupby(['Pronac'])
.sum()
) | python | def raised_funds_by_project(df):
"""
Raised funds organized by project.
"""
df['CaptacaoReal'] = df['CaptacaoReal'].apply(
pd.to_numeric
)
return (
df[['Pronac', 'CaptacaoReal']]
.groupby(['Pronac'])
.sum()
) | Raised funds organized by project. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/to_verify_funds.py#L8-L19 |
lappis-unb/salic-ml | src/salicml/metrics/finance/to_verify_funds.py | to_verify_funds | def to_verify_funds(pronac, dt):
"""
Checks how much money is left for the project to verify,
using raised_funds - verified_funds
This value can be negative (a project can verify more money than
the value approved)
"""
project_raised_funds = data.raised_funds_by_project.loc[pronac]['CaptacaoReal']
dataframe = data.planilha_comprovacao
project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]
if project_verified.empty:
project_verified_funds = 0
else:
pronac_funds = project_verified[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_verified_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
to_verify_value = project_raised_funds - float(project_verified_funds)
is_outlier = to_verify_value != 0
return {
'is_outlier': is_outlier,
'valor': to_verify_value,
'valor_captado': project_raised_funds,
'valor_comprovado': project_verified_funds,
'minimo_esperado': 0,
} | python | def to_verify_funds(pronac, dt):
"""
Checks how much money is left for the project to verify,
using raised_funds - verified_funds
This value can be negative (a project can verify more money than
the value approved)
"""
project_raised_funds = data.raised_funds_by_project.loc[pronac]['CaptacaoReal']
dataframe = data.planilha_comprovacao
project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]
if project_verified.empty:
project_verified_funds = 0
else:
pronac_funds = project_verified[
["idPlanilhaAprovacao", "PRONAC", "vlComprovacao", "idSegmento"]
]
funds_grp = pronac_funds.drop(columns=["idPlanilhaAprovacao"]).groupby(
["PRONAC"]
)
project_verified_funds = funds_grp.sum().loc[pronac]["vlComprovacao"]
to_verify_value = project_raised_funds - float(project_verified_funds)
is_outlier = to_verify_value != 0
return {
'is_outlier': is_outlier,
'valor': to_verify_value,
'valor_captado': project_raised_funds,
'valor_comprovado': project_verified_funds,
'minimo_esperado': 0,
} | Checks how much money is left for the project to verify,
using raised_funds - verified_funds
This value can be negative (a project can verify more money than
the value approved) | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/to_verify_funds.py#L23-L54 |
lappis-unb/salic-ml | src/salicml/metrics/finance/proponent_projects.py | proponent_projects | def proponent_projects(pronac, data):
"""
Checks the CNPJ/CPF of the proponent of project
with the given pronac and returns all the projects
that have been submitted by this proponent and all
projects that have already been analyzed.
"""
cpf_cnpj = get_cpf_cnpj_by_pronac(pronac)
proponent_submitted_projects = {}
proponent_analyzed_projects = {}
if cpf_cnpj:
submitted_projects = get_proponent_submitted_projects(cpf_cnpj)
analyzed_projects = get_proponent_analyzed_projects(cpf_cnpj)
try:
proponent_submitted_projects = {
'number_of_projects': submitted_projects['num_pronacs'],
'pronacs_of_this_proponent': submitted_projects['pronac_list']
}
except KeyError:
pass
try:
proponent_analyzed_projects = {
'number_of_projects': analyzed_projects['num_pronacs'],
'pronacs_of_this_proponent': analyzed_projects['pronac_list']
}
except KeyError:
pass
return {
'cpf_cnpj': cpf_cnpj,
'valor': len(proponent_submitted_projects),
'projetos_submetidos': proponent_submitted_projects,
'projetos_analizados': proponent_analyzed_projects,
} | python | def proponent_projects(pronac, data):
"""
Checks the CNPJ/CPF of the proponent of project
with the given pronac and returns all the projects
that have been submitted by this proponent and all
projects that have already been analyzed.
"""
cpf_cnpj = get_cpf_cnpj_by_pronac(pronac)
proponent_submitted_projects = {}
proponent_analyzed_projects = {}
if cpf_cnpj:
submitted_projects = get_proponent_submitted_projects(cpf_cnpj)
analyzed_projects = get_proponent_analyzed_projects(cpf_cnpj)
try:
proponent_submitted_projects = {
'number_of_projects': submitted_projects['num_pronacs'],
'pronacs_of_this_proponent': submitted_projects['pronac_list']
}
except KeyError:
pass
try:
proponent_analyzed_projects = {
'number_of_projects': analyzed_projects['num_pronacs'],
'pronacs_of_this_proponent': analyzed_projects['pronac_list']
}
except KeyError:
pass
return {
'cpf_cnpj': cpf_cnpj,
'valor': len(proponent_submitted_projects),
'projetos_submetidos': proponent_submitted_projects,
'projetos_analizados': proponent_analyzed_projects,
} | Checks the CNPJ/CPF of the proponent of project
with the given pronac and returns all the projects
that have been submitted by this proponent and all
projects that have already been analyzed. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/proponent_projects.py#L9-L46 |
lappis-unb/salic-ml | src/salicml/metrics/finance/proponent_projects.py | analyzed_projects | def analyzed_projects(raw_df):
"""
Return all projects that was analyzed.
"""
df = raw_df[['PRONAC', 'proponenteCgcCpf']]
analyzed_projects = df.groupby('proponenteCgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
analyzed_projects.columns = ['pronac_list', 'num_pronacs']
return analyzed_projects | python | def analyzed_projects(raw_df):
"""
Return all projects that was analyzed.
"""
df = raw_df[['PRONAC', 'proponenteCgcCpf']]
analyzed_projects = df.groupby('proponenteCgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
analyzed_projects.columns = ['pronac_list', 'num_pronacs']
return analyzed_projects | Return all projects that was analyzed. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/proponent_projects.py#L50-L62 |
lappis-unb/salic-ml | src/salicml/metrics/finance/proponent_projects.py | submitted_projects | def submitted_projects(raw_df):
"""
Return all submitted projects.
"""
df = raw_df.astype({'PRONAC': str, 'CgcCpf': str})
submitted_projects = df.groupby('CgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
submitted_projects.columns = ['pronac_list', 'num_pronacs']
return submitted_projects | python | def submitted_projects(raw_df):
"""
Return all submitted projects.
"""
df = raw_df.astype({'PRONAC': str, 'CgcCpf': str})
submitted_projects = df.groupby('CgcCpf')[
'PRONAC'
].agg(['unique', 'nunique'])
submitted_projects.columns = ['pronac_list', 'num_pronacs']
return submitted_projects | Return all submitted projects. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/proponent_projects.py#L66-L77 |
lappis-unb/salic-ml | src/salicml/utils/read_csv.py | read_csv | def read_csv(csv_name, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/"""
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False,
usecols=usecols, encoding="utf-8")
return csv | python | def read_csv(csv_name, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/"""
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False,
usecols=usecols, encoding="utf-8")
return csv | Returns a DataFrame from a .csv file stored in /data/raw/ | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/utils/read_csv.py#L10-L15 |
lappis-unb/salic-ml | src/salicml/utils/read_csv.py | read_csv_with_different_type | def read_csv_with_different_type(csv_name, column_types_dict, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/.
Reads the CSV as string. """
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(
csv_path,
usecols=usecols,
encoding="utf-8",
dtype=column_types_dict,
engine="python",
)
for key_column, val_type in column_types_dict.items():
if val_type == str:
csv[key_column] = csv[key_column].str.strip()
return csv | python | def read_csv_with_different_type(csv_name, column_types_dict, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/.
Reads the CSV as string. """
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(
csv_path,
usecols=usecols,
encoding="utf-8",
dtype=column_types_dict,
engine="python",
)
for key_column, val_type in column_types_dict.items():
if val_type == str:
csv[key_column] = csv[key_column].str.strip()
return csv | Returns a DataFrame from a .csv file stored in /data/raw/.
Reads the CSV as string. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/utils/read_csv.py#L18-L34 |
lappis-unb/salic-ml | src/salicml/utils/read_csv.py | read_csv_as_integer | def read_csv_as_integer(csv_name, integer_columns, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/.
Converts columns specified by 'integer_columns' to integer.
"""
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False, usecols=usecols)
for column in integer_columns:
csv = csv[pd.to_numeric(csv[column], errors="coerce").notnull()]
csv[integer_columns] = csv[integer_columns].apply(pd.to_numeric)
return csv | python | def read_csv_as_integer(csv_name, integer_columns, usecols=None):
"""Returns a DataFrame from a .csv file stored in /data/raw/.
Converts columns specified by 'integer_columns' to integer.
"""
csv_path = os.path.join(DATA_FOLDER, csv_name)
csv = pd.read_csv(csv_path, low_memory=False, usecols=usecols)
for column in integer_columns:
csv = csv[pd.to_numeric(csv[column], errors="coerce").notnull()]
csv[integer_columns] = csv[integer_columns].apply(pd.to_numeric)
return csv | Returns a DataFrame from a .csv file stored in /data/raw/.
Converts columns specified by 'integer_columns' to integer. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/utils/read_csv.py#L37-L46 |
lappis-unb/salic-ml | src/salicml/metrics/finance/operation_code_receipts.py | check_receipts | def check_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is check
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_cheque = df[df['tpFormaDePagamento'] == 1.0]
return metric_return(comprovantes_cheque) | python | def check_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is check
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_cheque = df[df['tpFormaDePagamento'] == 1.0]
return metric_return(comprovantes_cheque) | Checks how many items are in a same receipt when payment type is check
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/operation_code_receipts.py#L19-L28 |
lappis-unb/salic-ml | src/salicml/metrics/finance/operation_code_receipts.py | transfer_receipts | def transfer_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is bank
transfer
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_transferencia = df[df['tpFormaDePagamento'] == 2.0]
return metric_return(comprovantes_transferencia) | python | def transfer_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is bank
transfer
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_transferencia = df[df['tpFormaDePagamento'] == 2.0]
return metric_return(comprovantes_transferencia) | Checks how many items are in a same receipt when payment type is bank
transfer
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/operation_code_receipts.py#L32-L42 |
lappis-unb/salic-ml | src/salicml/metrics/finance/operation_code_receipts.py | money_receipts | def money_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is
withdraw/money
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_saque = df[df['tpFormaDePagamento'] == 3.0]
return metric_return(comprovantes_saque) | python | def money_receipts(pronac, dt):
"""
Checks how many items are in a same receipt when payment type is
withdraw/money
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt
"""
df = verified_repeated_receipts_for_pronac(pronac)
comprovantes_saque = df[df['tpFormaDePagamento'] == 3.0]
return metric_return(comprovantes_saque) | Checks how many items are in a same receipt when payment type is
withdraw/money
- is_outlier: True if there are any receipts that have more than one
- itens_que_compartilham_comprovantes: List of items that share receipt | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/operation_code_receipts.py#L46-L56 |
lappis-unb/salic-ml | src/salicml/metrics/finance/raised_funds.py | raised_funds | def raised_funds(pronac, data):
"""
Returns the total raised funds of a project
with the given pronac and if this project is an
outlier based on this value.
"""
is_outlier, mean, std, total_raised_funds = get_outlier_info(pronac)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': is_outlier,
'total_raised_funds': total_raised_funds,
'maximum_expected_funds': maximum_expected_funds
} | python | def raised_funds(pronac, data):
"""
Returns the total raised funds of a project
with the given pronac and if this project is an
outlier based on this value.
"""
is_outlier, mean, std, total_raised_funds = get_outlier_info(pronac)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {
'is_outlier': is_outlier,
'total_raised_funds': total_raised_funds,
'maximum_expected_funds': maximum_expected_funds
} | Returns the total raised funds of a project
with the given pronac and if this project is an
outlier based on this value. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/raised_funds.py#L9-L22 |
lappis-unb/salic-ml | src/salicml/metrics/finance/raised_funds.py | segment_raised_funds_average | def segment_raised_funds_average(df):
"""
Return some info about raised funds.
"""
grouped = df.groupby('Segmento')
aggregated = grouped.agg(['mean', 'std'])
aggregated.columns = aggregated.columns.droplevel(0)
return aggregated | python | def segment_raised_funds_average(df):
"""
Return some info about raised funds.
"""
grouped = df.groupby('Segmento')
aggregated = grouped.agg(['mean', 'std'])
aggregated.columns = aggregated.columns.droplevel(0)
return aggregated | Return some info about raised funds. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/raised_funds.py#L38-L46 |
lappis-unb/salic-ml | src/salicml/metrics/finance/raised_funds.py | get_outlier_info | def get_outlier_info(pronac):
"""
Return if a project with the given
pronac is an outlier based on raised funds.
"""
df = data.planilha_captacao
raised_funds_averages = data.segment_raised_funds_average.to_dict('index')
segment_id = df[df['Pronac'] == pronac]['Segmento'].iloc[0]
mean = raised_funds_averages[segment_id]['mean']
std = raised_funds_averages[segment_id]['std']
project_raised_funds = get_project_raised_funds(pronac)
outlier = gaussian_outlier.is_outlier(project_raised_funds, mean, std)
return (outlier, mean, std, project_raised_funds) | python | def get_outlier_info(pronac):
"""
Return if a project with the given
pronac is an outlier based on raised funds.
"""
df = data.planilha_captacao
raised_funds_averages = data.segment_raised_funds_average.to_dict('index')
segment_id = df[df['Pronac'] == pronac]['Segmento'].iloc[0]
mean = raised_funds_averages[segment_id]['mean']
std = raised_funds_averages[segment_id]['std']
project_raised_funds = get_project_raised_funds(pronac)
outlier = gaussian_outlier.is_outlier(project_raised_funds, mean, std)
return (outlier, mean, std, project_raised_funds) | Return if a project with the given
pronac is an outlier based on raised funds. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/raised_funds.py#L49-L66 |
lappis-unb/salic-ml | src/salicml/metrics/finance/verified_approved.py | verified_approved | def verified_approved(pronac, dt):
"""
This metric compare budgetary items of SALIC projects in terms of
verified versus approved value
Items that have vlComprovacao > vlAprovacao * 1.5 are considered outliers
output:
is_outlier: True if any item is outlier
valor: Absolute number of items that are outliers
outlier_items: Outlier items detail
"""
items_df = data.approved_verified_items
items_df = items_df.loc[items_df['PRONAC'] == pronac]
items_df[[APPROVED_COLUMN, VERIFIED_COLUMN]] = items_df[
[APPROVED_COLUMN, VERIFIED_COLUMN]
].astype(float)
items_df["Item"] = items_df["Item"].str.replace("\r", "")
items_df["Item"] = items_df["Item"].str.replace("\n", "")
items_df["Item"] = items_df["Item"].str.replace('"', "")
items_df["Item"] = items_df["Item"].str.replace("'", "")
items_df["Item"] = items_df["Item"].str.replace("\\", "")
THRESHOLD = 1.5
bigger_than_approved = items_df[VERIFIED_COLUMN] > (
items_df[APPROVED_COLUMN] * THRESHOLD
)
features = items_df[bigger_than_approved]
outlier_items = outlier_items_(features)
features_size = features.shape[0]
is_outlier = features_size > 0
return {
"is_outlier": is_outlier,
"valor": features_size,
"maximo_esperado": MIN_EXPECTED_ITEMS,
"minimo_esperado": MAX_EXPECTED_ITEMS,
"lista_de_comprovantes": outlier_items,
"link_da_planilha": "http://salic.cultura.gov.br/projeto/#/{0}/relacao-de-pagamento".format(pronac)
} | python | def verified_approved(pronac, dt):
"""
This metric compare budgetary items of SALIC projects in terms of
verified versus approved value
Items that have vlComprovacao > vlAprovacao * 1.5 are considered outliers
output:
is_outlier: True if any item is outlier
valor: Absolute number of items that are outliers
outlier_items: Outlier items detail
"""
items_df = data.approved_verified_items
items_df = items_df.loc[items_df['PRONAC'] == pronac]
items_df[[APPROVED_COLUMN, VERIFIED_COLUMN]] = items_df[
[APPROVED_COLUMN, VERIFIED_COLUMN]
].astype(float)
items_df["Item"] = items_df["Item"].str.replace("\r", "")
items_df["Item"] = items_df["Item"].str.replace("\n", "")
items_df["Item"] = items_df["Item"].str.replace('"', "")
items_df["Item"] = items_df["Item"].str.replace("'", "")
items_df["Item"] = items_df["Item"].str.replace("\\", "")
THRESHOLD = 1.5
bigger_than_approved = items_df[VERIFIED_COLUMN] > (
items_df[APPROVED_COLUMN] * THRESHOLD
)
features = items_df[bigger_than_approved]
outlier_items = outlier_items_(features)
features_size = features.shape[0]
is_outlier = features_size > 0
return {
"is_outlier": is_outlier,
"valor": features_size,
"maximo_esperado": MIN_EXPECTED_ITEMS,
"minimo_esperado": MAX_EXPECTED_ITEMS,
"lista_de_comprovantes": outlier_items,
"link_da_planilha": "http://salic.cultura.gov.br/projeto/#/{0}/relacao-de-pagamento".format(pronac)
} | This metric compare budgetary items of SALIC projects in terms of
verified versus approved value
Items that have vlComprovacao > vlAprovacao * 1.5 are considered outliers
output:
is_outlier: True if any item is outlier
valor: Absolute number of items that are outliers
outlier_items: Outlier items detail | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/metrics/finance/verified_approved.py#L12-L49 |
lappis-unb/salic-ml | src/salicml/data/loader.py | csv_to_pickle | def csv_to_pickle(path=ROOT / "raw", clean=False):
"""Convert all CSV files in path to pickle."""
for file in os.listdir(path):
base, ext = os.path.splitext(file)
if ext != ".csv":
continue
LOG(f"converting {file} to pickle")
df = pd.read_csv(path / file, low_memory=True)
WRITE_DF(df, path / (base + "." + FILE_EXTENSION), **WRITE_DF_OPTS)
if clean:
os.remove(path / file)
LOG(f"removed {file}") | python | def csv_to_pickle(path=ROOT / "raw", clean=False):
"""Convert all CSV files in path to pickle."""
for file in os.listdir(path):
base, ext = os.path.splitext(file)
if ext != ".csv":
continue
LOG(f"converting {file} to pickle")
df = pd.read_csv(path / file, low_memory=True)
WRITE_DF(df, path / (base + "." + FILE_EXTENSION), **WRITE_DF_OPTS)
if clean:
os.remove(path / file)
LOG(f"removed {file}") | Convert all CSV files in path to pickle. | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/data/loader.py#L105-L118 |
lappis-unb/salic-ml | src/salicml/data/loader.py | Loader.store | def store(self, loc, df):
"""Store dataframe in the given location.
Store some arbitrary dataframe:
>>> data.store('my_data', df)
Now recover it from the global store.
>>> data.my_data
...
"""
path = "%s.%s" % (self._root / "processed" / loc, FILE_EXTENSION)
WRITE_DF(df, path, **WRITE_DF_OPTS)
self._cache[loc] = df | python | def store(self, loc, df):
"""Store dataframe in the given location.
Store some arbitrary dataframe:
>>> data.store('my_data', df)
Now recover it from the global store.
>>> data.my_data
...
"""
path = "%s.%s" % (self._root / "processed" / loc, FILE_EXTENSION)
WRITE_DF(df, path, **WRITE_DF_OPTS)
self._cache[loc] = df | Store dataframe in the given location.
Store some arbitrary dataframe:
>>> data.store('my_data', df)
Now recover it from the global store.
>>> data.my_data
... | https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml/data/loader.py#L52-L66 |
MisterY/asset-allocation | asset_allocation/stocks.py | StocksInfo.close_databases | def close_databases(self):
""" Close all database sessions """
if self.gc_book:
self.gc_book.close()
if self.pricedb_session:
self.pricedb_session.close() | python | def close_databases(self):
""" Close all database sessions """
if self.gc_book:
self.gc_book.close()
if self.pricedb_session:
self.pricedb_session.close() | Close all database sessions | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocks.py#L31-L36 |
MisterY/asset-allocation | asset_allocation/stocks.py | StocksInfo.load_stock_quantity | def load_stock_quantity(self, symbol: str) -> Decimal(0):
""" retrieves stock quantity """
book = self.get_gc_book()
collection = SecuritiesAggregate(book)
sec = collection.get_aggregate_for_symbol(symbol)
quantity = sec.get_quantity()
return quantity | python | def load_stock_quantity(self, symbol: str) -> Decimal(0):
""" retrieves stock quantity """
book = self.get_gc_book()
collection = SecuritiesAggregate(book)
sec = collection.get_aggregate_for_symbol(symbol)
quantity = sec.get_quantity()
return quantity | retrieves stock quantity | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocks.py#L38-L45 |
MisterY/asset-allocation | asset_allocation/stocks.py | StocksInfo.get_gc_book | def get_gc_book(self):
""" Returns the GnuCash db session """
if not self.gc_book:
gc_db = self.config.get(ConfigKeys.gnucash_book_path)
if not gc_db:
raise AttributeError("GnuCash book path not configured.")
# check if this is the abs file exists
if not os.path.isabs(gc_db):
gc_db = resource_filename(
Requirement.parse("Asset-Allocation"), gc_db)
if not os.path.exists(gc_db):
raise ValueError(f"Invalid GnuCash book path {gc_db}")
self.gc_book = open_book(gc_db, open_if_lock=True)
return self.gc_book | python | def get_gc_book(self):
""" Returns the GnuCash db session """
if not self.gc_book:
gc_db = self.config.get(ConfigKeys.gnucash_book_path)
if not gc_db:
raise AttributeError("GnuCash book path not configured.")
# check if this is the abs file exists
if not os.path.isabs(gc_db):
gc_db = resource_filename(
Requirement.parse("Asset-Allocation"), gc_db)
if not os.path.exists(gc_db):
raise ValueError(f"Invalid GnuCash book path {gc_db}")
self.gc_book = open_book(gc_db, open_if_lock=True)
return self.gc_book | Returns the GnuCash db session | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocks.py#L55-L69 |
MisterY/asset-allocation | asset_allocation/stocks.py | StocksInfo.get_symbols_with_positive_balances | def get_symbols_with_positive_balances(self) -> List[str]:
""" Identifies all the securities with positive balances """
from gnucash_portfolio import BookAggregate
holdings = []
with BookAggregate() as book:
# query = book.securities.query.filter(Commodity.)
holding_entities = book.securities.get_all()
for item in holding_entities:
# Check holding balance
agg = book.securities.get_aggregate(item)
balance = agg.get_num_shares()
if balance > Decimal(0):
holdings.append(f"{item.namespace}:{item.mnemonic}")
else:
self.logger.debug(f"0 balance for {item}")
# holdings = map(lambda x: , holding_entities)
return holdings | python | def get_symbols_with_positive_balances(self) -> List[str]:
""" Identifies all the securities with positive balances """
from gnucash_portfolio import BookAggregate
holdings = []
with BookAggregate() as book:
# query = book.securities.query.filter(Commodity.)
holding_entities = book.securities.get_all()
for item in holding_entities:
# Check holding balance
agg = book.securities.get_aggregate(item)
balance = agg.get_num_shares()
if balance > Decimal(0):
holdings.append(f"{item.namespace}:{item.mnemonic}")
else:
self.logger.debug(f"0 balance for {item}")
# holdings = map(lambda x: , holding_entities)
return holdings | Identifies all the securities with positive balances | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocks.py#L71-L90 |
MisterY/asset-allocation | asset_allocation/stocks.py | StocksInfo.__get_pricedb_session | def __get_pricedb_session(self):
""" Provides initialization and access to module-level session """
from pricedb import dal
if not self.pricedb_session:
self.pricedb_session = dal.get_default_session()
return self.pricedb_session | python | def __get_pricedb_session(self):
""" Provides initialization and access to module-level session """
from pricedb import dal
if not self.pricedb_session:
self.pricedb_session = dal.get_default_session()
return self.pricedb_session | Provides initialization and access to module-level session | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocks.py#L125-L131 |
MisterY/asset-allocation | asset_allocation/stocklink_cli.py | add | def add(assetclass: int, symbol: str):
""" Add a stock to an asset class """
assert isinstance(symbol, str)
assert isinstance(assetclass, int)
symbol = symbol.upper()
app = AppAggregate()
new_item = app.add_stock_to_class(assetclass, symbol)
print(f"Record added: {new_item}.") | python | def add(assetclass: int, symbol: str):
""" Add a stock to an asset class """
assert isinstance(symbol, str)
assert isinstance(assetclass, int)
symbol = symbol.upper()
app = AppAggregate()
new_item = app.add_stock_to_class(assetclass, symbol)
print(f"Record added: {new_item}.") | Add a stock to an asset class | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocklink_cli.py#L23-L31 |
MisterY/asset-allocation | asset_allocation/stocklink_cli.py | unallocated | def unallocated():
""" Identify unallocated holdings """
app = AppAggregate()
app.logger = logger
unalloc = app.find_unallocated_holdings()
if not unalloc:
print(f"No unallocated holdings.")
for item in unalloc:
print(item) | python | def unallocated():
""" Identify unallocated holdings """
app = AppAggregate()
app.logger = logger
unalloc = app.find_unallocated_holdings()
if not unalloc:
print(f"No unallocated holdings.")
for item in unalloc:
print(item) | Identify unallocated holdings | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/stocklink_cli.py#L74-L84 |
MisterY/asset-allocation | asset_allocation/formatters.py | AsciiFormatter.format | def format(self, model: AssetAllocationModel, full: bool = False):
""" Returns the view-friendly output of the aa model """
self.full = full
# Header
output = f"Asset Allocation model, total: {model.currency} {model.total_amount:,.2f}\n"
# Column Headers
for column in self.columns:
name = column['name']
if not self.full and name == "loc.cur.":
# Skip local currency if not displaying stocks.
continue
width = column["width"]
output += f"{name:^{width}}"
output += "\n"
output += f"-------------------------------------------------------------------------------\n"
# Asset classes
view_model = ModelMapper(model).map_to_linear(self.full)
for row in view_model:
output += self.__format_row(row) + "\n"
return output | python | def format(self, model: AssetAllocationModel, full: bool = False):
""" Returns the view-friendly output of the aa model """
self.full = full
# Header
output = f"Asset Allocation model, total: {model.currency} {model.total_amount:,.2f}\n"
# Column Headers
for column in self.columns:
name = column['name']
if not self.full and name == "loc.cur.":
# Skip local currency if not displaying stocks.
continue
width = column["width"]
output += f"{name:^{width}}"
output += "\n"
output += f"-------------------------------------------------------------------------------\n"
# Asset classes
view_model = ModelMapper(model).map_to_linear(self.full)
for row in view_model:
output += self.__format_row(row) + "\n"
return output | Returns the view-friendly output of the aa model | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/formatters.py#L26-L50 |
MisterY/asset-allocation | asset_allocation/formatters.py | AsciiFormatter.__format_row | def __format_row(self, row: AssetAllocationViewModel):
""" display-format one row
Formats one Asset Class record """
output = ""
index = 0
# Name
value = row.name
# Indent according to depth.
for _ in range(0, row.depth):
value = f" {value}"
output += self.append_text_column(value, index)
# Set Allocation
value = ""
index += 1
if row.set_allocation > 0:
value = f"{row.set_allocation:.2f}"
output += self.append_num_column(value, index)
# Current Allocation
value = ""
index += 1
if row.curr_allocation > Decimal(0):
value = f"{row.curr_allocation:.2f}"
output += self.append_num_column(value, index)
# Allocation difference, percentage
value = ""
index += 1
if row.alloc_diff_perc.copy_abs() > Decimal(0):
value = f"{row.alloc_diff_perc:.0f} %"
output += self.append_num_column(value, index)
# Allocated value
index += 1
value = ""
if row.set_value:
value = f"{row.set_value:,.0f}"
output += self.append_num_column(value, index)
# Current Value
index += 1
value = f"{row.curr_value:,.0f}"
output += self.append_num_column(value, index)
# Value in security's currency. Show only if displaying full model, with stocks.
index += 1
if self.full:
value = ""
if row.curr_value_own_currency:
value = f"({row.curr_value_own_currency:,.0f}"
value += f" {row.own_currency}"
value += ")"
output += self.append_num_column(value, index)
# https://en.wikipedia.org/wiki/ANSI_escape_code
# CSI="\x1B["
# red = 31, green = 32
# output += CSI+"31;40m" + "Colored Text" + CSI + "0m"
# Value diff
index += 1
value = ""
if row.diff_value:
value = f"{row.diff_value:,.0f}"
# Color the output
# value = f"{CSI};40m{value}{CSI};40m"
output += self.append_num_column(value, index)
return output | python | def __format_row(self, row: AssetAllocationViewModel):
""" display-format one row
Formats one Asset Class record """
output = ""
index = 0
# Name
value = row.name
# Indent according to depth.
for _ in range(0, row.depth):
value = f" {value}"
output += self.append_text_column(value, index)
# Set Allocation
value = ""
index += 1
if row.set_allocation > 0:
value = f"{row.set_allocation:.2f}"
output += self.append_num_column(value, index)
# Current Allocation
value = ""
index += 1
if row.curr_allocation > Decimal(0):
value = f"{row.curr_allocation:.2f}"
output += self.append_num_column(value, index)
# Allocation difference, percentage
value = ""
index += 1
if row.alloc_diff_perc.copy_abs() > Decimal(0):
value = f"{row.alloc_diff_perc:.0f} %"
output += self.append_num_column(value, index)
# Allocated value
index += 1
value = ""
if row.set_value:
value = f"{row.set_value:,.0f}"
output += self.append_num_column(value, index)
# Current Value
index += 1
value = f"{row.curr_value:,.0f}"
output += self.append_num_column(value, index)
# Value in security's currency. Show only if displaying full model, with stocks.
index += 1
if self.full:
value = ""
if row.curr_value_own_currency:
value = f"({row.curr_value_own_currency:,.0f}"
value += f" {row.own_currency}"
value += ")"
output += self.append_num_column(value, index)
# https://en.wikipedia.org/wiki/ANSI_escape_code
# CSI="\x1B["
# red = 31, green = 32
# output += CSI+"31;40m" + "Colored Text" + CSI + "0m"
# Value diff
index += 1
value = ""
if row.diff_value:
value = f"{row.diff_value:,.0f}"
# Color the output
# value = f"{CSI};40m{value}{CSI};40m"
output += self.append_num_column(value, index)
return output | display-format one row
Formats one Asset Class record | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/formatters.py#L52-L122 |
MisterY/asset-allocation | asset_allocation/formatters.py | AsciiFormatter.append_num_column | def append_num_column(self, text: str, index: int):
""" Add value to the output row, width based on index """
width = self.columns[index]["width"]
return f"{text:>{width}}" | python | def append_num_column(self, text: str, index: int):
""" Add value to the output row, width based on index """
width = self.columns[index]["width"]
return f"{text:>{width}}" | Add value to the output row, width based on index | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/formatters.py#L124-L127 |
MisterY/asset-allocation | asset_allocation/formatters.py | AsciiFormatter.append_text_column | def append_text_column(self, text: str, index: int):
""" Add value to the output row, width based on index """
width = self.columns[index]["width"]
return f"{text:<{width}}" | python | def append_text_column(self, text: str, index: int):
""" Add value to the output row, width based on index """
width = self.columns[index]["width"]
return f"{text:<{width}}" | Add value to the output row, width based on index | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/formatters.py#L129-L132 |
MisterY/asset-allocation | asset_allocation/maps.py | AssetClassMapper.map_entity | def map_entity(self, entity: dal.AssetClass):
""" maps data from entity -> object """
obj = model.AssetClass()
obj.id = entity.id
obj.parent_id = entity.parentid
obj.name = entity.name
obj.allocation = entity.allocation
obj.sort_order = entity.sortorder
#entity.stock_links
#entity.diff_adjustment
if entity.parentid == None:
obj.depth = 0
return obj | python | def map_entity(self, entity: dal.AssetClass):
""" maps data from entity -> object """
obj = model.AssetClass()
obj.id = entity.id
obj.parent_id = entity.parentid
obj.name = entity.name
obj.allocation = entity.allocation
obj.sort_order = entity.sortorder
#entity.stock_links
#entity.diff_adjustment
if entity.parentid == None:
obj.depth = 0
return obj | maps data from entity -> object | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L14-L28 |
MisterY/asset-allocation | asset_allocation/maps.py | ModelMapper.map_to_linear | def map_to_linear(self, with_stocks: bool=False):
""" Maps the tree to a linear representation suitable for display """
result = []
for ac in self.model.classes:
rows = self.__get_ac_tree(ac, with_stocks)
result += rows
return result | python | def map_to_linear(self, with_stocks: bool=False):
""" Maps the tree to a linear representation suitable for display """
result = []
for ac in self.model.classes:
rows = self.__get_ac_tree(ac, with_stocks)
result += rows
return result | Maps the tree to a linear representation suitable for display | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L36-L43 |
MisterY/asset-allocation | asset_allocation/maps.py | ModelMapper.__get_ac_tree | def __get_ac_tree(self, ac: model.AssetClass, with_stocks: bool):
""" formats the ac tree - entity with child elements """
output = []
output.append(self.__get_ac_row(ac))
for child in ac.classes:
output += self.__get_ac_tree(child, with_stocks)
if with_stocks:
for stock in ac.stocks:
row = None
if isinstance(stock, Stock):
row = self.__get_stock_row(stock, ac.depth + 1)
elif isinstance(stock, CashBalance):
row = self.__get_cash_row(stock, ac.depth + 1)
output.append(row)
return output | python | def __get_ac_tree(self, ac: model.AssetClass, with_stocks: bool):
""" formats the ac tree - entity with child elements """
output = []
output.append(self.__get_ac_row(ac))
for child in ac.classes:
output += self.__get_ac_tree(child, with_stocks)
if with_stocks:
for stock in ac.stocks:
row = None
if isinstance(stock, Stock):
row = self.__get_stock_row(stock, ac.depth + 1)
elif isinstance(stock, CashBalance):
row = self.__get_cash_row(stock, ac.depth + 1)
output.append(row)
return output | formats the ac tree - entity with child elements | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L45-L62 |
MisterY/asset-allocation | asset_allocation/maps.py | ModelMapper.__get_ac_row | def __get_ac_row(self, ac: model.AssetClass) -> AssetAllocationViewModel:
""" Formats one Asset Class record """
view_model = AssetAllocationViewModel()
view_model.depth = ac.depth
# Name
view_model.name = ac.name
view_model.set_allocation = ac.allocation
view_model.curr_allocation = ac.curr_alloc
view_model.diff_allocation = ac.alloc_diff
view_model.alloc_diff_perc = ac.alloc_diff_perc
# value
view_model.curr_value = ac.curr_value
# expected value
view_model.set_value = ac.alloc_value
# diff
view_model.diff_value = ac.value_diff
return view_model | python | def __get_ac_row(self, ac: model.AssetClass) -> AssetAllocationViewModel:
""" Formats one Asset Class record """
view_model = AssetAllocationViewModel()
view_model.depth = ac.depth
# Name
view_model.name = ac.name
view_model.set_allocation = ac.allocation
view_model.curr_allocation = ac.curr_alloc
view_model.diff_allocation = ac.alloc_diff
view_model.alloc_diff_perc = ac.alloc_diff_perc
# value
view_model.curr_value = ac.curr_value
# expected value
view_model.set_value = ac.alloc_value
# diff
view_model.diff_value = ac.value_diff
return view_model | Formats one Asset Class record | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L64-L85 |
MisterY/asset-allocation | asset_allocation/maps.py | ModelMapper.__get_stock_row | def __get_stock_row(self, stock: Stock, depth: int) -> str:
""" formats stock row """
assert isinstance(stock, Stock)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = stock.symbol
# Current allocation
view_model.curr_allocation = stock.curr_alloc
# Value in base currency
view_model.curr_value = stock.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = stock.value
view_model.own_currency = stock.currency
return view_model | python | def __get_stock_row(self, stock: Stock, depth: int) -> str:
""" formats stock row """
assert isinstance(stock, Stock)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = stock.symbol
# Current allocation
view_model.curr_allocation = stock.curr_alloc
# Value in base currency
view_model.curr_value = stock.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = stock.value
view_model.own_currency = stock.currency
return view_model | formats stock row | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L87-L108 |
MisterY/asset-allocation | asset_allocation/maps.py | ModelMapper.__get_cash_row | def __get_cash_row(self, item: CashBalance, depth: int) -> str:
""" formats stock row """
assert isinstance(item, CashBalance)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = item.symbol
# Value in base currency
view_model.curr_value = item.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = item.value
view_model.own_currency = item.currency
return view_model | python | def __get_cash_row(self, item: CashBalance, depth: int) -> str:
""" formats stock row """
assert isinstance(item, CashBalance)
view_model = AssetAllocationViewModel()
view_model.depth = depth
# Symbol
view_model.name = item.symbol
# Value in base currency
view_model.curr_value = item.value_in_base_currency
# Value in security's currency.
view_model.curr_value_own_currency = item.value
view_model.own_currency = item.currency
return view_model | formats stock row | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/maps.py#L110-L128 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.create_asset_class | def create_asset_class(self, item: AssetClass):
""" Inserts the record """
session = self.open_session()
session.add(item)
session.commit() | python | def create_asset_class(self, item: AssetClass):
""" Inserts the record """
session = self.open_session()
session.add(item)
session.commit() | Inserts the record | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L20-L24 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.add_stock_to_class | def add_stock_to_class(self, assetclass_id: int, symbol: str):
""" Add a stock link to an asset class """
assert isinstance(symbol, str)
assert isinstance(assetclass_id, int)
item = AssetClassStock()
item.assetclassid = assetclass_id
item.symbol = symbol
session = self.open_session()
session.add(item)
self.save()
return item | python | def add_stock_to_class(self, assetclass_id: int, symbol: str):
""" Add a stock link to an asset class """
assert isinstance(symbol, str)
assert isinstance(assetclass_id, int)
item = AssetClassStock()
item.assetclassid = assetclass_id
item.symbol = symbol
session = self.open_session()
session.add(item)
self.save()
return item | Add a stock link to an asset class | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L26-L39 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.delete | def delete(self, id: int):
""" Delete asset class """
assert isinstance(id, int)
self.open_session()
to_delete = self.get(id)
self.session.delete(to_delete)
self.save() | python | def delete(self, id: int):
""" Delete asset class """
assert isinstance(id, int)
self.open_session()
to_delete = self.get(id)
self.session.delete(to_delete)
self.save() | Delete asset class | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L41-L48 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.find_unallocated_holdings | def find_unallocated_holdings(self):
""" Identifies any holdings that are not included in asset allocation """
# Get linked securities
session = self.open_session()
linked_entities = session.query(AssetClassStock).all()
linked = []
# linked = map(lambda x: f"{x.symbol}", linked_entities)
for item in linked_entities:
linked.append(item.symbol)
# Get all securities with balance > 0.
from .stocks import StocksInfo
stocks = StocksInfo()
stocks.logger = self.logger
holdings = stocks.get_symbols_with_positive_balances()
# Find those which are not included in the stock links.
non_alloc = []
index = -1
for item in holdings:
try:
index = linked.index(item)
self.logger.debug(index)
except ValueError:
non_alloc.append(item)
return non_alloc | python | def find_unallocated_holdings(self):
""" Identifies any holdings that are not included in asset allocation """
# Get linked securities
session = self.open_session()
linked_entities = session.query(AssetClassStock).all()
linked = []
# linked = map(lambda x: f"{x.symbol}", linked_entities)
for item in linked_entities:
linked.append(item.symbol)
# Get all securities with balance > 0.
from .stocks import StocksInfo
stocks = StocksInfo()
stocks.logger = self.logger
holdings = stocks.get_symbols_with_positive_balances()
# Find those which are not included in the stock links.
non_alloc = []
index = -1
for item in holdings:
try:
index = linked.index(item)
self.logger.debug(index)
except ValueError:
non_alloc.append(item)
return non_alloc | Identifies any holdings that are not included in asset allocation | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L50-L77 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.get | def get(self, id: int) -> AssetClass:
""" Loads Asset Class """
self.open_session()
item = self.session.query(AssetClass).filter(
AssetClass.id == id).first()
return item | python | def get(self, id: int) -> AssetClass:
""" Loads Asset Class """
self.open_session()
item = self.session.query(AssetClass).filter(
AssetClass.id == id).first()
return item | Loads Asset Class | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L79-L84 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.open_session | def open_session(self):
""" Opens a db session and returns it """
from .dal import get_session
cfg = Config()
cfg.logger = self.logger
db_path = cfg.get(ConfigKeys.asset_allocation_database_path)
self.session = get_session(db_path)
return self.session | python | def open_session(self):
""" Opens a db session and returns it """
from .dal import get_session
cfg = Config()
cfg.logger = self.logger
db_path = cfg.get(ConfigKeys.asset_allocation_database_path)
self.session = get_session(db_path)
return self.session | Opens a db session and returns it | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L86-L95 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.get_asset_allocation | def get_asset_allocation(self):
""" Creates and populates the Asset Allocation model. The main function of the app. """
# load from db
# TODO set the base currency
base_currency = "EUR"
loader = AssetAllocationLoader(base_currency=base_currency)
loader.logger = self.logger
model = loader.load_tree_from_db()
model.validate()
# securities
# read stock links
loader.load_stock_links()
# read stock quantities from GnuCash
loader.load_stock_quantity()
# Load cash balances
loader.load_cash_balances()
# loader.session
# read prices from Prices database
loader.load_stock_prices()
# recalculate stock values into base currency
loader.recalculate_stock_values_into_base()
# calculate
model.calculate_current_value()
model.calculate_set_values()
model.calculate_current_allocation()
# return the model for display
return model | python | def get_asset_allocation(self):
""" Creates and populates the Asset Allocation model. The main function of the app. """
# load from db
# TODO set the base currency
base_currency = "EUR"
loader = AssetAllocationLoader(base_currency=base_currency)
loader.logger = self.logger
model = loader.load_tree_from_db()
model.validate()
# securities
# read stock links
loader.load_stock_links()
# read stock quantities from GnuCash
loader.load_stock_quantity()
# Load cash balances
loader.load_cash_balances()
# loader.session
# read prices from Prices database
loader.load_stock_prices()
# recalculate stock values into base currency
loader.recalculate_stock_values_into_base()
# calculate
model.calculate_current_value()
model.calculate_set_values()
model.calculate_current_allocation()
# return the model for display
return model | Creates and populates the Asset Allocation model. The main function of the app. | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L101-L131 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.get_asset_classes_for_security | def get_asset_classes_for_security(self, namespace: str, symbol: str) -> List[AssetClass]:
""" Find all asset classes (should be only one at the moment, though!) to which the symbol belongs """
full_symbol = symbol
if namespace:
full_symbol = f"{namespace}:{symbol}"
result = (
self.session.query(AssetClassStock)
.filter(AssetClassStock.symbol == full_symbol)
.all()
)
return result | python | def get_asset_classes_for_security(self, namespace: str, symbol: str) -> List[AssetClass]:
""" Find all asset classes (should be only one at the moment, though!) to which the symbol belongs """
full_symbol = symbol
if namespace:
full_symbol = f"{namespace}:{symbol}"
result = (
self.session.query(AssetClassStock)
.filter(AssetClassStock.symbol == full_symbol)
.all()
)
return result | Find all asset classes (should be only one at the moment, though!) to which the symbol belongs | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L133-L144 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.validate_model | def validate_model(self):
""" Validate the model """
model: AssetAllocationModel = self.get_asset_allocation_model()
model.logger = self.logger
valid = model.validate()
if valid:
print(f"The model is valid. Congratulations")
else:
print(f"The model is invalid.") | python | def validate_model(self):
""" Validate the model """
model: AssetAllocationModel = self.get_asset_allocation_model()
model.logger = self.logger
valid = model.validate()
if valid:
print(f"The model is valid. Congratulations")
else:
print(f"The model is invalid.") | Validate the model | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L146-L155 |
MisterY/asset-allocation | asset_allocation/app.py | AppAggregate.export_symbols | def export_symbols(self):
""" Exports all used symbols """
session = self.open_session()
links = session.query(AssetClassStock).order_by(
AssetClassStock.symbol).all()
output = []
for link in links:
output.append(link.symbol + '\n')
# Save output to a text file.
with open("symbols.txt", mode='w') as file:
file.writelines(output)
print("Symbols exported to symbols.txt") | python | def export_symbols(self):
""" Exports all used symbols """
session = self.open_session()
links = session.query(AssetClassStock).order_by(
AssetClassStock.symbol).all()
output = []
for link in links:
output.append(link.symbol + '\n')
# Save output to a text file.
with open("symbols.txt", mode='w') as file:
file.writelines(output)
print("Symbols exported to symbols.txt") | Exports all used symbols | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/app.py#L157-L170 |
MisterY/asset-allocation | asset_allocation/config.py | Config.__read_config | def __read_config(self, file_path: str):
""" Read the config file """
if not os.path.exists(file_path):
raise FileNotFoundError("File path not found: %s", file_path)
# check if file exists
if not os.path.isfile(file_path):
log(ERROR, "file not found: %s", file_path)
raise FileNotFoundError("configuration file not found %s", file_path)
self.config.read(file_path) | python | def __read_config(self, file_path: str):
""" Read the config file """
if not os.path.exists(file_path):
raise FileNotFoundError("File path not found: %s", file_path)
# check if file exists
if not os.path.isfile(file_path):
log(ERROR, "file not found: %s", file_path)
raise FileNotFoundError("configuration file not found %s", file_path)
self.config.read(file_path) | Read the config file | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/config.py#L54-L63 |
MisterY/asset-allocation | asset_allocation/config.py | Config.__create_user_config | def __create_user_config(self):
""" Copy the config template into user's directory """
src_path = self.__get_config_template_path()
src = os.path.abspath(src_path)
if not os.path.exists(src):
log(ERROR, "Config template not found %s", src)
raise FileNotFoundError()
dst = os.path.abspath(self.get_config_path())
shutil.copyfile(src, dst)
if not os.path.exists(dst):
raise FileNotFoundError("Config file could not be copied to user dir!") | python | def __create_user_config(self):
""" Copy the config template into user's directory """
src_path = self.__get_config_template_path()
src = os.path.abspath(src_path)
if not os.path.exists(src):
log(ERROR, "Config template not found %s", src)
raise FileNotFoundError()
dst = os.path.abspath(self.get_config_path())
shutil.copyfile(src, dst)
if not os.path.exists(dst):
raise FileNotFoundError("Config file could not be copied to user dir!") | Copy the config template into user's directory | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/config.py#L75-L88 |
MisterY/asset-allocation | asset_allocation/config_cli.py | set | def set(aadb, cur):
""" Sets the values in the config file """
cfg = Config()
edited = False
if aadb:
cfg.set(ConfigKeys.asset_allocation_database_path, aadb)
print(f"The database has been set to {aadb}.")
edited = True
if cur:
cfg.set(ConfigKeys.default_currency, cur)
edited = True
if edited:
print(f"Changes saved.")
else:
print(f"No changes were made.")
print(f"Use --help parameter for more information.") | python | def set(aadb, cur):
""" Sets the values in the config file """
cfg = Config()
edited = False
if aadb:
cfg.set(ConfigKeys.asset_allocation_database_path, aadb)
print(f"The database has been set to {aadb}.")
edited = True
if cur:
cfg.set(ConfigKeys.default_currency, cur)
edited = True
if edited:
print(f"Changes saved.")
else:
print(f"No changes were made.")
print(f"Use --help parameter for more information.") | Sets the values in the config file | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/config_cli.py#L31-L49 |
MisterY/asset-allocation | asset_allocation/config_cli.py | get | def get(aadb: str):
""" Retrieves a value from config """
if (aadb):
cfg = Config()
value = cfg.get(ConfigKeys.asset_allocation_database_path)
click.echo(value)
if not aadb:
click.echo("Use --help for more information.") | python | def get(aadb: str):
""" Retrieves a value from config """
if (aadb):
cfg = Config()
value = cfg.get(ConfigKeys.asset_allocation_database_path)
click.echo(value)
if not aadb:
click.echo("Use --help for more information.") | Retrieves a value from config | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/config_cli.py#L53-L61 |
MisterY/asset-allocation | asset_allocation/model.py | _AssetBase.fullname | def fullname(self):
""" includes the full path with parent names """
prefix = ""
if self.parent:
if self.parent.fullname:
prefix = self.parent.fullname + ":"
else:
# Only the root does not have a parent. In that case we also don't need a name.
return ""
return prefix + self.name | python | def fullname(self):
""" includes the full path with parent names """
prefix = ""
if self.parent:
if self.parent.fullname:
prefix = self.parent.fullname + ":"
else:
# Only the root does not have a parent. In that case we also don't need a name.
return ""
return prefix + self.name | includes the full path with parent names | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L67-L77 |
MisterY/asset-allocation | asset_allocation/model.py | Stock.value | def value(self) -> Decimal:
"""
Value of the holdings in exchange currency.
Value = Quantity * Price
"""
assert isinstance(self.price, Decimal)
return self.quantity * self.price | python | def value(self) -> Decimal:
"""
Value of the holdings in exchange currency.
Value = Quantity * Price
"""
assert isinstance(self.price, Decimal)
return self.quantity * self.price | Value of the holdings in exchange currency.
Value = Quantity * Price | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L116-L123 |
MisterY/asset-allocation | asset_allocation/model.py | Stock.asset_class | def asset_class(self) -> str:
""" Returns the full asset class path for this stock """
result = self.parent.name if self.parent else ""
# Iterate to the top asset class and add names.
cursor = self.parent
while cursor:
result = cursor.name + ":" + result
cursor = cursor.parent
return result | python | def asset_class(self) -> str:
""" Returns the full asset class path for this stock """
result = self.parent.name if self.parent else ""
# Iterate to the top asset class and add names.
cursor = self.parent
while cursor:
result = cursor.name + ":" + result
cursor = cursor.parent
return result | Returns the full asset class path for this stock | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L126-L134 |
MisterY/asset-allocation | asset_allocation/model.py | AssetClass.child_allocation | def child_allocation(self):
""" The sum of all child asset classes' allocations """
sum = Decimal(0)
if self.classes:
for child in self.classes:
sum += child.child_allocation
else:
# This is not a branch but a leaf. Return own allocation.
sum = self.allocation
return sum | python | def child_allocation(self):
""" The sum of all child asset classes' allocations """
sum = Decimal(0)
if self.classes:
for child in self.classes:
sum += child.child_allocation
else:
# This is not a branch but a leaf. Return own allocation.
sum = self.allocation
return sum | The sum of all child asset classes' allocations | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L152-L162 |
MisterY/asset-allocation | asset_allocation/model.py | AssetAllocationModel.get_class_by_id | def get_class_by_id(self, ac_id: int) -> AssetClass:
""" Finds the asset class by id """
assert isinstance(ac_id, int)
# iterate recursively
for ac in self.asset_classes:
if ac.id == ac_id:
return ac
# if nothing returned so far.
return None | python | def get_class_by_id(self, ac_id: int) -> AssetClass:
""" Finds the asset class by id """
assert isinstance(ac_id, int)
# iterate recursively
for ac in self.asset_classes:
if ac.id == ac_id:
return ac
# if nothing returned so far.
return None | Finds the asset class by id | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L182-L191 |
MisterY/asset-allocation | asset_allocation/model.py | AssetAllocationModel.get_cash_asset_class | def get_cash_asset_class(self) -> AssetClass:
""" Find the cash asset class by name. """
for ac in self.asset_classes:
if ac.name.lower() == "cash":
return ac
return None | python | def get_cash_asset_class(self) -> AssetClass:
""" Find the cash asset class by name. """
for ac in self.asset_classes:
if ac.name.lower() == "cash":
return ac
return None | Find the cash asset class by name. | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L193-L198 |
MisterY/asset-allocation | asset_allocation/model.py | AssetAllocationModel.validate | def validate(self) -> bool:
""" Validate that the values match. Incomplete! """
# Asset class allocation should match the sum of children's allocations.
# Each group should be compared.
sum = Decimal(0)
# Go through each asset class, not just the top level.
for ac in self.asset_classes:
if ac.classes:
# get the sum of all the children's allocations
child_alloc_sum = ac.child_allocation
# compare to set allocation
if ac.allocation != child_alloc_sum:
message = f"The sum of child allocations {child_alloc_sum:.2f} invalid for {ac}!"
self.logger.warning(message)
print(message)
return False
# also make sure that the sum of 1st level children matches 100
for ac in self.classes:
sum += ac.allocation
if sum != Decimal(100):
message = f"The sum of all allocations ({sum:.2f}) does not equal 100!"
self.logger.warning(message)
print(message)
return False
return True | python | def validate(self) -> bool:
""" Validate that the values match. Incomplete! """
# Asset class allocation should match the sum of children's allocations.
# Each group should be compared.
sum = Decimal(0)
# Go through each asset class, not just the top level.
for ac in self.asset_classes:
if ac.classes:
# get the sum of all the children's allocations
child_alloc_sum = ac.child_allocation
# compare to set allocation
if ac.allocation != child_alloc_sum:
message = f"The sum of child allocations {child_alloc_sum:.2f} invalid for {ac}!"
self.logger.warning(message)
print(message)
return False
# also make sure that the sum of 1st level children matches 100
for ac in self.classes:
sum += ac.allocation
if sum != Decimal(100):
message = f"The sum of all allocations ({sum:.2f}) does not equal 100!"
self.logger.warning(message)
print(message)
return False
return True | Validate that the values match. Incomplete! | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/model.py#L200-L227 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.