repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_GoogleCloudStorageInputReader.next
def next(self): """Returns the next input from this input reader, a block of bytes. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() try: start_time = time.time() handle = cloudstorage.open(filename, **options) ctx = context.get() if ctx: operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return handle except cloudstorage.NotFoundError: # Fail the job if we're strict on missing input. if getattr(self, "_fail_on_missing_input", False): raise errors.FailJobError( "File missing in GCS, aborting: %s" % filename) # Move on otherwise. logging.warning("File %s may have been removed. Skipping file.", filename)
python
def next(self): """Returns the next input from this input reader, a block of bytes. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() try: start_time = time.time() handle = cloudstorage.open(filename, **options) ctx = context.get() if ctx: operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return handle except cloudstorage.NotFoundError: # Fail the job if we're strict on missing input. if getattr(self, "_fail_on_missing_input", False): raise errors.FailJobError( "File missing in GCS, aborting: %s" % filename) # Move on otherwise. logging.warning("File %s may have been removed. Skipping file.", filename)
Returns the next input from this input reader, a block of bytes. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2478-L2518
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_GoogleCloudStorageRecordInputReader.next
def next(self): """Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted. """ while True: if not hasattr(self, "_cur_handle") or self._cur_handle is None: # If there are no more files, StopIteration is raised here self._cur_handle = super(_GoogleCloudStorageRecordInputReader, self).next() if not hasattr(self, "_record_reader") or self._record_reader is None: self._record_reader = records.RecordsReader(self._cur_handle) try: start_time = time.time() content = self._record_reader.read() ctx = context.get() if ctx: operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx) operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return content except EOFError: self._cur_handle = None self._record_reader = None
python
def next(self): """Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted. """ while True: if not hasattr(self, "_cur_handle") or self._cur_handle is None: # If there are no more files, StopIteration is raised here self._cur_handle = super(_GoogleCloudStorageRecordInputReader, self).next() if not hasattr(self, "_record_reader") or self._record_reader is None: self._record_reader = records.RecordsReader(self._cur_handle) try: start_time = time.time() content = self._record_reader.read() ctx = context.get() if ctx: operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx) operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return content except EOFError: self._cur_handle = None self._record_reader = None
Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2559-L2590
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_ReducerReader.to_json
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ result = super(_ReducerReader, self).to_json() result["current_key"] = self.encode_data(self.current_key) result["current_values"] = self.encode_data(self.current_values) return result
python
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ result = super(_ReducerReader, self).to_json() result["current_key"] = self.encode_data(self.current_key) result["current_values"] = self.encode_data(self.current_values) return result
Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2693-L2702
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_ReducerReader.from_json
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json. """ result = super(_ReducerReader, cls).from_json(json) result.current_key = _ReducerReader.decode_data(json["current_key"]) result.current_values = _ReducerReader.decode_data(json["current_values"]) return result
python
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json. """ result = super(_ReducerReader, cls).from_json(json) result.current_key = _ReducerReader.decode_data(json["current_key"]) result.current_values = _ReducerReader.decode_data(json["current_values"]) return result
Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2705-L2717
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/map_job_context.py
ShardContext.incr
def incr(self, counter_name, delta=1): """Changes counter by delta. Args: counter_name: the name of the counter to change. str. delta: int. """ self._state.counters_map.increment(counter_name, delta)
python
def incr(self, counter_name, delta=1): """Changes counter by delta. Args: counter_name: the name of the counter to change. str. delta: int. """ self._state.counters_map.increment(counter_name, delta)
Changes counter by delta. Args: counter_name: the name of the counter to change. str. delta: int.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/map_job_context.py#L63-L70
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/map_job_context.py
ShardContext.counter
def counter(self, counter_name, default=0): """Get the current counter value. Args: counter_name: name of the counter in string. default: default value in int if one doesn't exist. Returns: Current value of the counter. """ return self._state.counters_map.get(counter_name, default)
python
def counter(self, counter_name, default=0): """Get the current counter value. Args: counter_name: name of the counter in string. default: default value in int if one doesn't exist. Returns: Current value of the counter. """ return self._state.counters_map.get(counter_name, default)
Get the current counter value. Args: counter_name: name of the counter in string. default: default value in int if one doesn't exist. Returns: Current value of the counter.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/map_job_context.py#L72-L82
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/map_job_context.py
SliceContext.emit
def emit(self, value): """Emits a value to output writer. Args: value: a value of type expected by the output writer. """ if not self._tstate.output_writer: logging.error("emit is called, but no output writer is set.") return self._tstate.output_writer.write(value)
python
def emit(self, value): """Emits a value to output writer. Args: value: a value of type expected by the output writer. """ if not self._tstate.output_writer: logging.error("emit is called, but no output writer is set.") return self._tstate.output_writer.write(value)
Emits a value to output writer. Args: value: a value of type expected by the output writer.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/map_job_context.py#L119-L128
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/lib/input_reader/_gcs.py
GCSInputReader.validate
def validate(cls, job_config): """Validate mapper specification. Args: job_config: map_job.JobConfig. Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ reader_params = job_config.input_reader_params # Bucket Name is required if cls.BUCKET_NAME_PARAM not in reader_params: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( reader_params[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadReaderParamsError("Bad bucket name, %s" % (error)) # Object Name(s) are required if cls.OBJECT_NAMES_PARAM not in reader_params: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.OBJECT_NAMES_PARAM) filenames = reader_params[cls.OBJECT_NAMES_PARAM] if not isinstance(filenames, list): raise errors.BadReaderParamsError( "Object name list is not a list but a %s" % filenames.__class__.__name__) for filename in filenames: if not isinstance(filename, basestring): raise errors.BadReaderParamsError( "Object name is not a string but a %s" % filename.__class__.__name__) # Delimiter. if cls.DELIMITER_PARAM in reader_params: delimiter = reader_params[cls.DELIMITER_PARAM] if not isinstance(delimiter, basestring): raise errors.BadReaderParamsError( "%s is not a string but a %s" % (cls.DELIMITER_PARAM, type(delimiter))) # Buffer size. if cls.BUFFER_SIZE_PARAM in reader_params: buffer_size = reader_params[cls.BUFFER_SIZE_PARAM] if not isinstance(buffer_size, int): raise errors.BadReaderParamsError( "%s is not an int but a %s" % (cls.BUFFER_SIZE_PARAM, type(buffer_size))) # Path filter. if cls.PATH_FILTER_PARAM in reader_params: path_filter = reader_params[cls.PATH_FILTER_PARAM] if not isinstance(path_filter, PathFilter): raise errors.BadReaderParamsError( "%s is not an instance of PathFilter but %s." % (cls.PATH_FILTER_PARAM, type(path_filter)))
python
def validate(cls, job_config): """Validate mapper specification. Args: job_config: map_job.JobConfig. Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ reader_params = job_config.input_reader_params # Bucket Name is required if cls.BUCKET_NAME_PARAM not in reader_params: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( reader_params[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadReaderParamsError("Bad bucket name, %s" % (error)) # Object Name(s) are required if cls.OBJECT_NAMES_PARAM not in reader_params: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.OBJECT_NAMES_PARAM) filenames = reader_params[cls.OBJECT_NAMES_PARAM] if not isinstance(filenames, list): raise errors.BadReaderParamsError( "Object name list is not a list but a %s" % filenames.__class__.__name__) for filename in filenames: if not isinstance(filename, basestring): raise errors.BadReaderParamsError( "Object name is not a string but a %s" % filename.__class__.__name__) # Delimiter. if cls.DELIMITER_PARAM in reader_params: delimiter = reader_params[cls.DELIMITER_PARAM] if not isinstance(delimiter, basestring): raise errors.BadReaderParamsError( "%s is not a string but a %s" % (cls.DELIMITER_PARAM, type(delimiter))) # Buffer size. if cls.BUFFER_SIZE_PARAM in reader_params: buffer_size = reader_params[cls.BUFFER_SIZE_PARAM] if not isinstance(buffer_size, int): raise errors.BadReaderParamsError( "%s is not an int but a %s" % (cls.BUFFER_SIZE_PARAM, type(buffer_size))) # Path filter. if cls.PATH_FILTER_PARAM in reader_params: path_filter = reader_params[cls.PATH_FILTER_PARAM] if not isinstance(path_filter, PathFilter): raise errors.BadReaderParamsError( "%s is not an instance of PathFilter but %s." % (cls.PATH_FILTER_PARAM, type(path_filter)))
Validate mapper specification. Args: job_config: map_job.JobConfig. Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/lib/input_reader/_gcs.py#L164-L225
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/lib/input_reader/_gcs.py
GCSInputReader.split_input
def split_input(cls, job_config): """Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: job_config: map_job.JobConfig Returns: A list of InputReaders. None when no input data can be found. """ reader_params = job_config.input_reader_params bucket = reader_params[cls.BUCKET_NAME_PARAM] filenames = reader_params[cls.OBJECT_NAMES_PARAM] delimiter = reader_params.get(cls.DELIMITER_PARAM) account_id = reader_params.get(cls._ACCOUNT_ID_PARAM) buffer_size = reader_params.get(cls.BUFFER_SIZE_PARAM) path_filter = reader_params.get(cls.PATH_FILTER_PARAM) # Gather the complete list of files (expanding wildcards) all_filenames = [] for filename in filenames: if filename.endswith("*"): all_filenames.extend( [file_stat.filename for file_stat in cloudstorage.listbucket( "/" + bucket + "/" + filename[:-1], delimiter=delimiter, _account_id=account_id)]) else: all_filenames.append("/%s/%s" % (bucket, filename)) # Split into shards readers = [] for shard in range(0, job_config.shard_count): shard_filenames = all_filenames[shard::job_config.shard_count] if shard_filenames: readers.append(cls( shard_filenames, buffer_size=buffer_size, _account_id=account_id, delimiter=delimiter, path_filter=path_filter)) return readers
python
def split_input(cls, job_config): """Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: job_config: map_job.JobConfig Returns: A list of InputReaders. None when no input data can be found. """ reader_params = job_config.input_reader_params bucket = reader_params[cls.BUCKET_NAME_PARAM] filenames = reader_params[cls.OBJECT_NAMES_PARAM] delimiter = reader_params.get(cls.DELIMITER_PARAM) account_id = reader_params.get(cls._ACCOUNT_ID_PARAM) buffer_size = reader_params.get(cls.BUFFER_SIZE_PARAM) path_filter = reader_params.get(cls.PATH_FILTER_PARAM) # Gather the complete list of files (expanding wildcards) all_filenames = [] for filename in filenames: if filename.endswith("*"): all_filenames.extend( [file_stat.filename for file_stat in cloudstorage.listbucket( "/" + bucket + "/" + filename[:-1], delimiter=delimiter, _account_id=account_id)]) else: all_filenames.append("/%s/%s" % (bucket, filename)) # Split into shards readers = [] for shard in range(0, job_config.shard_count): shard_filenames = all_filenames[shard::job_config.shard_count] if shard_filenames: readers.append(cls( shard_filenames, buffer_size=buffer_size, _account_id=account_id, delimiter=delimiter, path_filter=path_filter)) return readers
Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: job_config: map_job.JobConfig Returns: A list of InputReaders. None when no input data can be found.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/lib/input_reader/_gcs.py#L228-L269
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/lib/input_reader/_gcs.py
GCSInputReader.next
def next(self): """Returns a handler to the next file. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() if (self._path_filter and not self._path_filter.accept(self._slice_ctx, filename)): continue try: start_time = time.time() handle = cloudstorage.open(filename, **options) self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() - start_time) * 1000) self._slice_ctx.incr(self.COUNTER_FILE_READ) return handle except cloudstorage.NotFoundError: logging.warning("File %s may have been removed. Skipping file.", filename) self._slice_ctx.incr(self.COUNTER_FILE_MISSING)
python
def next(self): """Returns a handler to the next file. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted. """ options = {} if self._buffer_size: options["read_buffer_size"] = self._buffer_size if self._account_id: options["_account_id"] = self._account_id while True: filename = self._next_file() if filename is None: raise StopIteration() if (self._path_filter and not self._path_filter.accept(self._slice_ctx, filename)): continue try: start_time = time.time() handle = cloudstorage.open(filename, **options) self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() - start_time) * 1000) self._slice_ctx.incr(self.COUNTER_FILE_READ) return handle except cloudstorage.NotFoundError: logging.warning("File %s may have been removed. Skipping file.", filename) self._slice_ctx.incr(self.COUNTER_FILE_MISSING)
Returns a handler to the next file. Non existent files will be logged and skipped. The file might have been removed after input splitting. Returns: The next input from this input reader in the form of a cloudstorage ReadBuffer that supports a File-like interface (read, readline, seek, tell, and close). An error may be raised if the file can not be opened. Raises: StopIteration: The list of files has been exhausted.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/lib/input_reader/_gcs.py#L289-L325
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/lib/input_reader/_gcs.py
GCSInputReader.params_to_json
def params_to_json(cls, params): """Inherit docs.""" params_cp = dict(params) if cls.PATH_FILTER_PARAM in params_cp: path_filter = params_cp[cls.PATH_FILTER_PARAM] params_cp[cls.PATH_FILTER_PARAM] = pickle.dumps(path_filter) return params_cp
python
def params_to_json(cls, params): """Inherit docs.""" params_cp = dict(params) if cls.PATH_FILTER_PARAM in params_cp: path_filter = params_cp[cls.PATH_FILTER_PARAM] params_cp[cls.PATH_FILTER_PARAM] = pickle.dumps(path_filter) return params_cp
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/lib/input_reader/_gcs.py#L348-L354
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/lib/input_reader/_gcs.py
GCSRecordInputReader.next
def next(self): """Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted. """ while True: if not hasattr(self, "_cur_handle") or self._cur_handle is None: # If there are no more files, StopIteration is raised here self._cur_handle = super(GCSRecordInputReader, self).next() if not hasattr(self, "_record_reader") or self._record_reader is None: self._record_reader = records.RecordsReader(self._cur_handle) try: start_time = time.time() content = self._record_reader.read() self._slice_ctx.incr(self.COUNTER_IO_READ_BYTE, len(content)) self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() - start_time) * 1000) return content except EOFError: self._cur_handle = None self._record_reader = None
python
def next(self): """Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted. """ while True: if not hasattr(self, "_cur_handle") or self._cur_handle is None: # If there are no more files, StopIteration is raised here self._cur_handle = super(GCSRecordInputReader, self).next() if not hasattr(self, "_record_reader") or self._record_reader is None: self._record_reader = records.RecordsReader(self._cur_handle) try: start_time = time.time() content = self._record_reader.read() self._slice_ctx.incr(self.COUNTER_IO_READ_BYTE, len(content)) self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() - start_time) * 1000) return content except EOFError: self._cur_handle = None self._record_reader = None
Returns the next input from this input reader, a record. Returns: The next input from this input reader in the form of a record read from an LevelDB file. Raises: StopIteration: The ordered set records has been exhausted.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/lib/input_reader/_gcs.py#L379-L405
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py
AbstractDatastoreInputReader._get_query_spec
def _get_query_spec(cls, params): """Construct a model.QuerySpec from model.MapperSpec.""" entity_kind = params[cls.ENTITY_KIND_PARAM] filters = params.get(cls.FILTERS_PARAM) app = params.get(cls._APP_PARAM) ns = params.get(cls.NAMESPACE_PARAM) return model.QuerySpec( entity_kind=cls._get_raw_entity_kind(entity_kind), keys_only=bool(params.get(cls.KEYS_ONLY_PARAM, False)), filters=filters, batch_size=int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)), model_class_path=entity_kind, app=app, ns=ns)
python
def _get_query_spec(cls, params): """Construct a model.QuerySpec from model.MapperSpec.""" entity_kind = params[cls.ENTITY_KIND_PARAM] filters = params.get(cls.FILTERS_PARAM) app = params.get(cls._APP_PARAM) ns = params.get(cls.NAMESPACE_PARAM) return model.QuerySpec( entity_kind=cls._get_raw_entity_kind(entity_kind), keys_only=bool(params.get(cls.KEYS_ONLY_PARAM, False)), filters=filters, batch_size=int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)), model_class_path=entity_kind, app=app, ns=ns)
Construct a model.QuerySpec from model.MapperSpec.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py#L86-L100
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py
AbstractDatastoreInputReader.split_input
def split_input(cls, job_config): """Inherit doc.""" shard_count = job_config.shard_count params = job_config.input_reader_params query_spec = cls._get_query_spec(params) namespaces = None if query_spec.ns is not None: k_ranges = cls._to_key_ranges_by_shard( query_spec.app, [query_spec.ns], shard_count, query_spec) else: ns_keys = namespace_range.get_namespace_keys( query_spec.app, cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) # No namespace means the app may have some data but those data are not # visible yet. Just return. if not ns_keys: return # If the number of ns is small, we shard each ns by key and assign each # shard a piece of a ns. elif len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD: namespaces = [ns_key.name() or "" for ns_key in ns_keys] k_ranges = cls._to_key_ranges_by_shard( query_spec.app, namespaces, shard_count, query_spec) # When number of ns is large, we can only split lexicographically by ns. else: ns_ranges = namespace_range.NamespaceRange.split(n=shard_count, contiguous=False, can_query=lambda: True, _app=query_spec.app) k_ranges = [key_ranges.KeyRangesFactory.create_from_ns_range(ns_range) for ns_range in ns_ranges] iters = [db_iters.RangeIteratorFactory.create_key_ranges_iterator( r, query_spec, cls._KEY_RANGE_ITER_CLS) for r in k_ranges] return [cls(i) for i in iters]
python
def split_input(cls, job_config): """Inherit doc.""" shard_count = job_config.shard_count params = job_config.input_reader_params query_spec = cls._get_query_spec(params) namespaces = None if query_spec.ns is not None: k_ranges = cls._to_key_ranges_by_shard( query_spec.app, [query_spec.ns], shard_count, query_spec) else: ns_keys = namespace_range.get_namespace_keys( query_spec.app, cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) # No namespace means the app may have some data but those data are not # visible yet. Just return. if not ns_keys: return # If the number of ns is small, we shard each ns by key and assign each # shard a piece of a ns. elif len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD: namespaces = [ns_key.name() or "" for ns_key in ns_keys] k_ranges = cls._to_key_ranges_by_shard( query_spec.app, namespaces, shard_count, query_spec) # When number of ns is large, we can only split lexicographically by ns. else: ns_ranges = namespace_range.NamespaceRange.split(n=shard_count, contiguous=False, can_query=lambda: True, _app=query_spec.app) k_ranges = [key_ranges.KeyRangesFactory.create_from_ns_range(ns_range) for ns_range in ns_ranges] iters = [db_iters.RangeIteratorFactory.create_key_ranges_iterator( r, query_spec, cls._KEY_RANGE_ITER_CLS) for r in k_ranges] return [cls(i) for i in iters]
Inherit doc.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py#L103-L138
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py
AbstractDatastoreInputReader._to_key_ranges_by_shard
def _to_key_ranges_by_shard(cls, app, namespaces, shard_count, query_spec): """Get a list of key_ranges.KeyRanges objects, one for each shard. This method uses scatter index to split each namespace into pieces and assign those pieces to shards. Args: app: app_id in str. namespaces: a list of namespaces in str. shard_count: number of shards to split. query_spec: model.QuerySpec. Returns: a list of key_ranges.KeyRanges objects. """ key_ranges_by_ns = [] # Split each ns into n splits. If a ns doesn't have enough scatter to # split into n, the last few splits are None. for namespace in namespaces: ranges = cls._split_ns_by_scatter( shard_count, namespace, query_spec.entity_kind, app) # The nth split of each ns will be assigned to the nth shard. # Shuffle so that None are not all by the end. random.shuffle(ranges) key_ranges_by_ns.append(ranges) # KeyRanges from different namespaces might be very different in size. # Use round robin to make sure each shard can have at most one split # or a None from a ns. ranges_by_shard = [[] for _ in range(shard_count)] for ranges in key_ranges_by_ns: for i, k_range in enumerate(ranges): if k_range: ranges_by_shard[i].append(k_range) key_ranges_by_shard = [] for ranges in ranges_by_shard: if ranges: key_ranges_by_shard.append(key_ranges.KeyRangesFactory.create_from_list( ranges)) return key_ranges_by_shard
python
def _to_key_ranges_by_shard(cls, app, namespaces, shard_count, query_spec): """Get a list of key_ranges.KeyRanges objects, one for each shard. This method uses scatter index to split each namespace into pieces and assign those pieces to shards. Args: app: app_id in str. namespaces: a list of namespaces in str. shard_count: number of shards to split. query_spec: model.QuerySpec. Returns: a list of key_ranges.KeyRanges objects. """ key_ranges_by_ns = [] # Split each ns into n splits. If a ns doesn't have enough scatter to # split into n, the last few splits are None. for namespace in namespaces: ranges = cls._split_ns_by_scatter( shard_count, namespace, query_spec.entity_kind, app) # The nth split of each ns will be assigned to the nth shard. # Shuffle so that None are not all by the end. random.shuffle(ranges) key_ranges_by_ns.append(ranges) # KeyRanges from different namespaces might be very different in size. # Use round robin to make sure each shard can have at most one split # or a None from a ns. ranges_by_shard = [[] for _ in range(shard_count)] for ranges in key_ranges_by_ns: for i, k_range in enumerate(ranges): if k_range: ranges_by_shard[i].append(k_range) key_ranges_by_shard = [] for ranges in ranges_by_shard: if ranges: key_ranges_by_shard.append(key_ranges.KeyRangesFactory.create_from_list( ranges)) return key_ranges_by_shard
Get a list of key_ranges.KeyRanges objects, one for each shard. This method uses scatter index to split each namespace into pieces and assign those pieces to shards. Args: app: app_id in str. namespaces: a list of namespaces in str. shard_count: number of shards to split. query_spec: model.QuerySpec. Returns: a list of key_ranges.KeyRanges objects.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py#L141-L184
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py
AbstractDatastoreInputReader._split_ns_by_scatter
def _split_ns_by_scatter(cls, shard_count, namespace, raw_entity_kind, app): """Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end. """ if shard_count == 1: # With one shard we don't need to calculate any split points at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") oversampling_factor = 32 random_keys = ds_query.Get(shard_count * oversampling_factor) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) k_ranges = [] k_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): k_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) k_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(k_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. k_ranges += [None] * (shard_count - len(k_ranges)) return k_ranges
python
def _split_ns_by_scatter(cls, shard_count, namespace, raw_entity_kind, app): """Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end. """ if shard_count == 1: # With one shard we don't need to calculate any split points at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") oversampling_factor = 32 random_keys = ds_query.Get(shard_count * oversampling_factor) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) k_ranges = [] k_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): k_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) k_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(k_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. k_ranges += [None] * (shard_count - len(k_ranges)) return k_ranges
Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py#L187-L264
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py
AbstractDatastoreInputReader.validate
def validate(cls, job_config): """Inherit docs.""" super(AbstractDatastoreInputReader, cls).validate(job_config) params = job_config.input_reader_params # Check for the required entity kind parameter. if cls.ENTITY_KIND_PARAM not in params: raise errors.BadReaderParamsError("Missing input reader parameter " "'entity_kind'") # Validate the batch size parameter. if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise errors.BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise errors.BadReaderParamsError("Bad batch size: %s" % e) # Validate the keys only parameter. try: bool(params.get(cls.KEYS_ONLY_PARAM, False)) except: raise errors.BadReaderParamsError("keys_only expects a boolean value but " "got %s", params[cls.KEYS_ONLY_PARAM]) # Validate the namespace parameter. if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise errors.BadReaderParamsError("Expected a single namespace string") # Validate the filters parameter. if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise errors.BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise errors.BadReaderParamsError("Filter should be a tuple or list: " "%s", f) if len(f) != 3: raise errors.BadReaderParamsError("Filter should be a 3-tuple: %s", f) prop, op, _ = f if not isinstance(prop, basestring): raise errors.BadReaderParamsError("Property should be string: %s", prop) if not isinstance(op, basestring): raise errors.BadReaderParamsError("Operator should be string: %s", op)
python
def validate(cls, job_config): """Inherit docs.""" super(AbstractDatastoreInputReader, cls).validate(job_config) params = job_config.input_reader_params # Check for the required entity kind parameter. if cls.ENTITY_KIND_PARAM not in params: raise errors.BadReaderParamsError("Missing input reader parameter " "'entity_kind'") # Validate the batch size parameter. if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise errors.BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise errors.BadReaderParamsError("Bad batch size: %s" % e) # Validate the keys only parameter. try: bool(params.get(cls.KEYS_ONLY_PARAM, False)) except: raise errors.BadReaderParamsError("keys_only expects a boolean value but " "got %s", params[cls.KEYS_ONLY_PARAM]) # Validate the namespace parameter. if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise errors.BadReaderParamsError("Expected a single namespace string") # Validate the filters parameter. if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise errors.BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise errors.BadReaderParamsError("Filter should be a tuple or list: " "%s", f) if len(f) != 3: raise errors.BadReaderParamsError("Filter should be a 3-tuple: %s", f) prop, op, _ = f if not isinstance(prop, basestring): raise errors.BadReaderParamsError("Property should be string: %s", prop) if not isinstance(op, basestring): raise errors.BadReaderParamsError("Operator should be string: %s", op)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/abstract_datastore_input_reader.py#L275-L321
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
_setup_constants
def _setup_constants(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH, batch_size=NAMESPACE_BATCH_SIZE): """Calculate derived constant values. Only useful for testing.""" global NAMESPACE_CHARACTERS global MAX_NAMESPACE_LENGTH # pylint: disable=global-variable-undefined global MAX_NAMESPACE global _LEX_DISTANCE global NAMESPACE_BATCH_SIZE NAMESPACE_CHARACTERS = alphabet MAX_NAMESPACE_LENGTH = max_length MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH NAMESPACE_BATCH_SIZE = batch_size # _LEX_DISTANCE will contain the lexical distance between two adjacent # characters in NAMESPACE_CHARACTERS at each character index. This is used # to calculate the ordinal for each string. Example: # NAMESPACE_CHARACTERS = 'ab' # MAX_NAMESPACE_LENGTH = 3 # _LEX_DISTANCE = [1, 3, 7] # '' => 0 # 'a' => 1 # 'aa' => 2 # 'aaa' => 3 # 'aab' => 4 - Distance between 'aaa' and 'aab' is 1. # 'ab' => 5 - Distance between 'aa' and 'ab' is 3. # 'aba' => 6 # 'abb' => 7 # 'b' => 8 - Distance between 'a' and 'b' is 7. # 'ba' => 9 # 'baa' => 10 # 'bab' => 11 # ... # _namespace_to_ord('bab') = (1 * 7 + 1) + (0 * 3 + 1) + (1 * 1 + 1) = 11 _LEX_DISTANCE = [1] for i in range(1, MAX_NAMESPACE_LENGTH): _LEX_DISTANCE.append( _LEX_DISTANCE[i-1] * len(NAMESPACE_CHARACTERS) + 1) # pylint: disable=undefined-loop-variable del i
python
def _setup_constants(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH, batch_size=NAMESPACE_BATCH_SIZE): """Calculate derived constant values. Only useful for testing.""" global NAMESPACE_CHARACTERS global MAX_NAMESPACE_LENGTH # pylint: disable=global-variable-undefined global MAX_NAMESPACE global _LEX_DISTANCE global NAMESPACE_BATCH_SIZE NAMESPACE_CHARACTERS = alphabet MAX_NAMESPACE_LENGTH = max_length MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH NAMESPACE_BATCH_SIZE = batch_size # _LEX_DISTANCE will contain the lexical distance between two adjacent # characters in NAMESPACE_CHARACTERS at each character index. This is used # to calculate the ordinal for each string. Example: # NAMESPACE_CHARACTERS = 'ab' # MAX_NAMESPACE_LENGTH = 3 # _LEX_DISTANCE = [1, 3, 7] # '' => 0 # 'a' => 1 # 'aa' => 2 # 'aaa' => 3 # 'aab' => 4 - Distance between 'aaa' and 'aab' is 1. # 'ab' => 5 - Distance between 'aa' and 'ab' is 3. # 'aba' => 6 # 'abb' => 7 # 'b' => 8 - Distance between 'a' and 'b' is 7. # 'ba' => 9 # 'baa' => 10 # 'bab' => 11 # ... # _namespace_to_ord('bab') = (1 * 7 + 1) + (0 * 3 + 1) + (1 * 1 + 1) = 11 _LEX_DISTANCE = [1] for i in range(1, MAX_NAMESPACE_LENGTH): _LEX_DISTANCE.append( _LEX_DISTANCE[i-1] * len(NAMESPACE_CHARACTERS) + 1) # pylint: disable=undefined-loop-variable del i
Calculate derived constant values. Only useful for testing.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L48-L90
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
_ord_to_namespace
def _ord_to_namespace(n, _max_length=None): """Convert a namespace ordinal to a namespace string. Converts an int, representing the sequence number of a namespace ordered lexographically, into a namespace string. >>> _ord_to_namespace(0) '' >>> _ord_to_namespace(1) '-' >>> _ord_to_namespace(2) '--' >>> _ord_to_namespace(3) '---' Args: n: A number representing the lexographical ordering of a namespace. _max_length: The maximum namespace length. Returns: A string representing the nth namespace in lexographical order. """ if _max_length is None: _max_length = MAX_NAMESPACE_LENGTH length = _LEX_DISTANCE[_max_length - 1] if n == 0: return '' n -= 1 return (NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length, _max_length - 1))
python
def _ord_to_namespace(n, _max_length=None): """Convert a namespace ordinal to a namespace string. Converts an int, representing the sequence number of a namespace ordered lexographically, into a namespace string. >>> _ord_to_namespace(0) '' >>> _ord_to_namespace(1) '-' >>> _ord_to_namespace(2) '--' >>> _ord_to_namespace(3) '---' Args: n: A number representing the lexographical ordering of a namespace. _max_length: The maximum namespace length. Returns: A string representing the nth namespace in lexographical order. """ if _max_length is None: _max_length = MAX_NAMESPACE_LENGTH length = _LEX_DISTANCE[_max_length - 1] if n == 0: return '' n -= 1 return (NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length, _max_length - 1))
Convert a namespace ordinal to a namespace string. Converts an int, representing the sequence number of a namespace ordered lexographically, into a namespace string. >>> _ord_to_namespace(0) '' >>> _ord_to_namespace(1) '-' >>> _ord_to_namespace(2) '--' >>> _ord_to_namespace(3) '---' Args: n: A number representing the lexographical ordering of a namespace. _max_length: The maximum namespace length. Returns: A string representing the nth namespace in lexographical order.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L94-L123
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
_namespace_to_ord
def _namespace_to_ord(namespace): """Converts a namespace string into an int representing its lexographic order. >>> _namespace_to_ord('') '' >>> _namespace_to_ord('_') 1 >>> _namespace_to_ord('__') 2 Args: namespace: A namespace string. Returns: An int representing the lexographical order of the given namespace string. """ n = 0 for i, c in enumerate(namespace): n += (_LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i- 1] * NAMESPACE_CHARACTERS.index(c) + 1) return n
python
def _namespace_to_ord(namespace): """Converts a namespace string into an int representing its lexographic order. >>> _namespace_to_ord('') '' >>> _namespace_to_ord('_') 1 >>> _namespace_to_ord('__') 2 Args: namespace: A namespace string. Returns: An int representing the lexographical order of the given namespace string. """ n = 0 for i, c in enumerate(namespace): n += (_LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i- 1] * NAMESPACE_CHARACTERS.index(c) + 1) return n
Converts a namespace string into an int representing its lexographic order. >>> _namespace_to_ord('') '' >>> _namespace_to_ord('_') 1 >>> _namespace_to_ord('__') 2 Args: namespace: A namespace string. Returns: An int representing the lexographical order of the given namespace string.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L126-L147
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
_key_for_namespace
def _key_for_namespace(namespace, app): """Return the __namespace__ key for a namespace. Args: namespace: The namespace whose key is requested. app: The id of the application that the key belongs to. Returns: A db.Key representing the namespace. """ if namespace: return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace, _app=app) else: return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata.Namespace.EMPTY_NAMESPACE_ID, _app=app)
python
def _key_for_namespace(namespace, app): """Return the __namespace__ key for a namespace. Args: namespace: The namespace whose key is requested. app: The id of the application that the key belongs to. Returns: A db.Key representing the namespace. """ if namespace: return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace, _app=app) else: return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata.Namespace.EMPTY_NAMESPACE_ID, _app=app)
Return the __namespace__ key for a namespace. Args: namespace: The namespace whose key is requested. app: The id of the application that the key belongs to. Returns: A db.Key representing the namespace.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L150-L167
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
get_namespace_keys
def get_namespace_keys(app, limit): """Get namespace keys.""" ns_query = datastore.Query('__namespace__', keys_only=True, _app=app) return list(ns_query.Run(limit=limit, batch_size=limit))
python
def get_namespace_keys(app, limit): """Get namespace keys.""" ns_query = datastore.Query('__namespace__', keys_only=True, _app=app) return list(ns_query.Run(limit=limit, batch_size=limit))
Get namespace keys.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L457-L460
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.split_range
def split_range(self): """Splits the NamespaceRange into two nearly equal-sized ranges. Returns: If this NamespaceRange contains a single namespace then a list containing this NamespaceRange is returned. Otherwise a two-element list containing two NamespaceRanges whose total range is identical to this NamespaceRange's is returned. """ if self.is_single_namespace: return [self] mid_point = (_namespace_to_ord(self.namespace_start) + _namespace_to_ord(self.namespace_end)) // 2 return [NamespaceRange(self.namespace_start, _ord_to_namespace(mid_point), _app=self.app), NamespaceRange(_ord_to_namespace(mid_point+1), self.namespace_end, _app=self.app)]
python
def split_range(self): """Splits the NamespaceRange into two nearly equal-sized ranges. Returns: If this NamespaceRange contains a single namespace then a list containing this NamespaceRange is returned. Otherwise a two-element list containing two NamespaceRanges whose total range is identical to this NamespaceRange's is returned. """ if self.is_single_namespace: return [self] mid_point = (_namespace_to_ord(self.namespace_start) + _namespace_to_ord(self.namespace_end)) // 2 return [NamespaceRange(self.namespace_start, _ord_to_namespace(mid_point), _app=self.app), NamespaceRange(_ord_to_namespace(mid_point+1), self.namespace_end, _app=self.app)]
Splits the NamespaceRange into two nearly equal-sized ranges. Returns: If this NamespaceRange contains a single namespace then a list containing this NamespaceRange is returned. Otherwise a two-element list containing two NamespaceRanges whose total range is identical to this NamespaceRange's is returned.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L225-L245
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.with_start_after
def with_start_after(self, after_namespace): """Returns a copy of this NamespaceName with a new namespace_start. Args: after_namespace: A namespace string. Returns: A NamespaceRange object whose namespace_start is the lexographically next namespace after the given namespace string. Raises: ValueError: if the NamespaceRange includes only a single namespace. """ namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1) return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)
python
def with_start_after(self, after_namespace): """Returns a copy of this NamespaceName with a new namespace_start. Args: after_namespace: A namespace string. Returns: A NamespaceRange object whose namespace_start is the lexographically next namespace after the given namespace string. Raises: ValueError: if the NamespaceRange includes only a single namespace. """ namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1) return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)
Returns a copy of this NamespaceName with a new namespace_start. Args: after_namespace: A namespace string. Returns: A NamespaceRange object whose namespace_start is the lexographically next namespace after the given namespace string. Raises: ValueError: if the NamespaceRange includes only a single namespace.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L267-L281
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.make_datastore_query
def make_datastore_query(self, cursor=None): """Returns a datastore.Query that generates all namespaces in the range. Args: cursor: start cursor for the query. Returns: A datastore.Query instance that generates db.Keys for each namespace in the NamespaceRange. """ filters = {} filters['__key__ >= '] = _key_for_namespace( self.namespace_start, self.app) filters['__key__ <= '] = _key_for_namespace( self.namespace_end, self.app) return datastore.Query('__namespace__', filters=filters, keys_only=True, cursor=cursor, _app=self.app)
python
def make_datastore_query(self, cursor=None): """Returns a datastore.Query that generates all namespaces in the range. Args: cursor: start cursor for the query. Returns: A datastore.Query instance that generates db.Keys for each namespace in the NamespaceRange. """ filters = {} filters['__key__ >= '] = _key_for_namespace( self.namespace_start, self.app) filters['__key__ <= '] = _key_for_namespace( self.namespace_end, self.app) return datastore.Query('__namespace__', filters=filters, keys_only=True, cursor=cursor, _app=self.app)
Returns a datastore.Query that generates all namespaces in the range. Args: cursor: start cursor for the query. Returns: A datastore.Query instance that generates db.Keys for each namespace in the NamespaceRange.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L283-L303
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.normalized_start
def normalized_start(self): """Returns a NamespaceRange with leading non-existant namespaces removed. Returns: A copy of this NamespaceRange whose namespace_start is adjusted to exclude the portion of the range that contains no actual namespaces in the datastore. None is returned if the NamespaceRange contains no actual namespaces in the datastore. """ namespaces_after_key = list(self.make_datastore_query().Run(limit=1)) if not namespaces_after_key: return None namespace_after_key = namespaces_after_key[0].name() or '' return NamespaceRange(namespace_after_key, self.namespace_end, _app=self.app)
python
def normalized_start(self): """Returns a NamespaceRange with leading non-existant namespaces removed. Returns: A copy of this NamespaceRange whose namespace_start is adjusted to exclude the portion of the range that contains no actual namespaces in the datastore. None is returned if the NamespaceRange contains no actual namespaces in the datastore. """ namespaces_after_key = list(self.make_datastore_query().Run(limit=1)) if not namespaces_after_key: return None namespace_after_key = namespaces_after_key[0].name() or '' return NamespaceRange(namespace_after_key, self.namespace_end, _app=self.app)
Returns a NamespaceRange with leading non-existant namespaces removed. Returns: A copy of this NamespaceRange whose namespace_start is adjusted to exclude the portion of the range that contains no actual namespaces in the datastore. None is returned if the NamespaceRange contains no actual namespaces in the datastore.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L305-L322
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.to_json_object
def to_json_object(self): """Returns a dict representation that can be serialized to JSON.""" obj_dict = dict(namespace_start=self.namespace_start, namespace_end=self.namespace_end) if self.app is not None: obj_dict['app'] = self.app return obj_dict
python
def to_json_object(self): """Returns a dict representation that can be serialized to JSON.""" obj_dict = dict(namespace_start=self.namespace_start, namespace_end=self.namespace_end) if self.app is not None: obj_dict['app'] = self.app return obj_dict
Returns a dict representation that can be serialized to JSON.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L324-L330
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
NamespaceRange.split
def split(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True, 50), itertools.repeat(False)).next, _app=None): # pylint: disable=g-doc-args """Splits the complete NamespaceRange into n equally-sized NamespaceRanges. Args: n: The maximum number of NamespaceRanges to return. Fewer than n namespaces may be returned. contiguous: If True then the returned NamespaceRanges will cover the entire space of possible namespaces (i.e. from MIN_NAMESPACE to MAX_NAMESPACE) without gaps. If False then the returned NamespaceRanges may exclude namespaces that don't appear in the datastore. can_query: A function that returns True if split() can query the datastore to generate more fair namespace range splits, and False otherwise. If not set then split() is allowed to make 50 datastore queries. Returns: A list of at most n NamespaceRanges representing a near-equal distribution of actual existant datastore namespaces. The returned list will be sorted lexographically. Raises: ValueError: if n is < 1. """ if n < 1: raise ValueError('n must be >= 1') ranges = None if can_query(): if not contiguous: ns_keys = get_namespace_keys(_app, n + 1) if not ns_keys: return [] else: if len(ns_keys) <= n: # If you have less actual namespaces than number of NamespaceRanges # to return, then just return the list of those namespaces. ns_range = [] for ns_key in ns_keys: ns_range.append(NamespaceRange(ns_key.name() or '', ns_key.name() or '', _app=_app)) return sorted(ns_range, key=lambda ns_range: ns_range.namespace_start) # Use the first key and save the initial normalized_start() call. ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)] else: ns_range = NamespaceRange(_app=_app).normalized_start() if ns_range is None: return [NamespaceRange(_app=_app)] ranges = [ns_range] else: ranges = [NamespaceRange(_app=_app)] singles = [] while ranges and (len(ranges) + len(singles)) < n: namespace_range = ranges.pop(0) if namespace_range.is_single_namespace: singles.append(namespace_range) else: left, right = namespace_range.split_range() if can_query(): right = right.normalized_start() if right is not None: ranges.append(right) ranges.append(left) ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range.namespace_start) if contiguous: if not ns_ranges: # This condition is possible if every namespace was deleted after the # first call to ns_range.normalized_start(). return [NamespaceRange(_app=_app)] continuous_ns_ranges = [] for i in range(len(ns_ranges)): if i == 0: namespace_start = MIN_NAMESPACE else: namespace_start = ns_ranges[i].namespace_start if i == len(ns_ranges) - 1: namespace_end = MAX_NAMESPACE else: namespace_end = _ord_to_namespace( _namespace_to_ord(ns_ranges[i+1].namespace_start) - 1) continuous_ns_ranges.append(NamespaceRange(namespace_start, namespace_end, _app=_app)) return continuous_ns_ranges else: return ns_ranges
python
def split(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True, 50), itertools.repeat(False)).next, _app=None): # pylint: disable=g-doc-args """Splits the complete NamespaceRange into n equally-sized NamespaceRanges. Args: n: The maximum number of NamespaceRanges to return. Fewer than n namespaces may be returned. contiguous: If True then the returned NamespaceRanges will cover the entire space of possible namespaces (i.e. from MIN_NAMESPACE to MAX_NAMESPACE) without gaps. If False then the returned NamespaceRanges may exclude namespaces that don't appear in the datastore. can_query: A function that returns True if split() can query the datastore to generate more fair namespace range splits, and False otherwise. If not set then split() is allowed to make 50 datastore queries. Returns: A list of at most n NamespaceRanges representing a near-equal distribution of actual existant datastore namespaces. The returned list will be sorted lexographically. Raises: ValueError: if n is < 1. """ if n < 1: raise ValueError('n must be >= 1') ranges = None if can_query(): if not contiguous: ns_keys = get_namespace_keys(_app, n + 1) if not ns_keys: return [] else: if len(ns_keys) <= n: # If you have less actual namespaces than number of NamespaceRanges # to return, then just return the list of those namespaces. ns_range = [] for ns_key in ns_keys: ns_range.append(NamespaceRange(ns_key.name() or '', ns_key.name() or '', _app=_app)) return sorted(ns_range, key=lambda ns_range: ns_range.namespace_start) # Use the first key and save the initial normalized_start() call. ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)] else: ns_range = NamespaceRange(_app=_app).normalized_start() if ns_range is None: return [NamespaceRange(_app=_app)] ranges = [ns_range] else: ranges = [NamespaceRange(_app=_app)] singles = [] while ranges and (len(ranges) + len(singles)) < n: namespace_range = ranges.pop(0) if namespace_range.is_single_namespace: singles.append(namespace_range) else: left, right = namespace_range.split_range() if can_query(): right = right.normalized_start() if right is not None: ranges.append(right) ranges.append(left) ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range.namespace_start) if contiguous: if not ns_ranges: # This condition is possible if every namespace was deleted after the # first call to ns_range.normalized_start(). return [NamespaceRange(_app=_app)] continuous_ns_ranges = [] for i in range(len(ns_ranges)): if i == 0: namespace_start = MIN_NAMESPACE else: namespace_start = ns_ranges[i].namespace_start if i == len(ns_ranges) - 1: namespace_end = MAX_NAMESPACE else: namespace_end = _ord_to_namespace( _namespace_to_ord(ns_ranges[i+1].namespace_start) - 1) continuous_ns_ranges.append(NamespaceRange(namespace_start, namespace_end, _app=_app)) return continuous_ns_ranges else: return ns_ranges
Splits the complete NamespaceRange into n equally-sized NamespaceRanges. Args: n: The maximum number of NamespaceRanges to return. Fewer than n namespaces may be returned. contiguous: If True then the returned NamespaceRanges will cover the entire space of possible namespaces (i.e. from MIN_NAMESPACE to MAX_NAMESPACE) without gaps. If False then the returned NamespaceRanges may exclude namespaces that don't appear in the datastore. can_query: A function that returns True if split() can query the datastore to generate more fair namespace range splits, and False otherwise. If not set then split() is allowed to make 50 datastore queries. Returns: A list of at most n NamespaceRanges representing a near-equal distribution of actual existant datastore namespaces. The returned list will be sorted lexographically. Raises: ValueError: if n is < 1.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L343-L441
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_RecordsPoolBase.append
def append(self, data): """Append data to a file.""" data_length = len(data) if self._size + data_length > self._flush_size: self.flush() if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE: raise errors.Error( "Too big input %s (%s)." % (data_length, _FILE_POOL_MAX_SIZE)) else: self._buffer.append(data) self._size += data_length if self._size > self._flush_size: self.flush()
python
def append(self, data): """Append data to a file.""" data_length = len(data) if self._size + data_length > self._flush_size: self.flush() if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE: raise errors.Error( "Too big input %s (%s)." % (data_length, _FILE_POOL_MAX_SIZE)) else: self._buffer.append(data) self._size += data_length if self._size > self._flush_size: self.flush()
Append data to a file.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L357-L371
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_RecordsPoolBase.flush
def flush(self): """Flush pool contents.""" # Write data to in-memory buffer first. buf = cStringIO.StringIO() with records.RecordsWriter(buf) as w: for record in self._buffer: w.write(record) w._pad_block() str_buf = buf.getvalue() buf.close() if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE: # Shouldn't really happen because of flush size. raise errors.Error( "Buffer too big. Can't write more than %s bytes in one request: " "risk of writes interleaving. Got: %s" % (_FILE_POOL_MAX_SIZE, len(str_buf))) # Write data to file. start_time = time.time() self._write(str_buf) if self._ctx: operation.counters.Increment( COUNTER_IO_WRITE_BYTES, len(str_buf))(self._ctx) operation.counters.Increment( COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(self._ctx) # reset buffer self._buffer = [] self._size = 0 gc.collect()
python
def flush(self): """Flush pool contents.""" # Write data to in-memory buffer first. buf = cStringIO.StringIO() with records.RecordsWriter(buf) as w: for record in self._buffer: w.write(record) w._pad_block() str_buf = buf.getvalue() buf.close() if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE: # Shouldn't really happen because of flush size. raise errors.Error( "Buffer too big. Can't write more than %s bytes in one request: " "risk of writes interleaving. Got: %s" % (_FILE_POOL_MAX_SIZE, len(str_buf))) # Write data to file. start_time = time.time() self._write(str_buf) if self._ctx: operation.counters.Increment( COUNTER_IO_WRITE_BYTES, len(str_buf))(self._ctx) operation.counters.Increment( COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(self._ctx) # reset buffer self._buffer = [] self._size = 0 gc.collect()
Flush pool contents.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L373-L404
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GCSRecordsPool._write
def _write(self, str_buf): """Uses the filehandle to the file in GCS to write to it.""" self._filehandle.write(str_buf) self._buf_size += len(str_buf)
python
def _write(self, str_buf): """Uses the filehandle to the file in GCS to write to it.""" self._filehandle.write(str_buf) self._buf_size += len(str_buf)
Uses the filehandle to the file in GCS to write to it.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L432-L435
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GCSRecordsPool.flush
def flush(self, force=False): """Flush pool contents. Args: force: Inserts additional padding to achieve the minimum block size required for GCS. """ super(GCSRecordsPool, self).flush() if force: extra_padding = self._buf_size % self._GCS_BLOCK_SIZE if extra_padding > 0: self._write("\x00" * (self._GCS_BLOCK_SIZE - extra_padding)) self._filehandle.flush()
python
def flush(self, force=False): """Flush pool contents. Args: force: Inserts additional padding to achieve the minimum block size required for GCS. """ super(GCSRecordsPool, self).flush() if force: extra_padding = self._buf_size % self._GCS_BLOCK_SIZE if extra_padding > 0: self._write("\x00" * (self._GCS_BLOCK_SIZE - extra_padding)) self._filehandle.flush()
Flush pool contents. Args: force: Inserts additional padding to achieve the minimum block size required for GCS.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L437-L449
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageBase._get_tmp_gcs_bucket
def _get_tmp_gcs_bucket(cls, writer_spec): """Returns bucket used for writing tmp files.""" if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec[cls.TMP_BUCKET_NAME_PARAM] return cls._get_gcs_bucket(writer_spec)
python
def _get_tmp_gcs_bucket(cls, writer_spec): """Returns bucket used for writing tmp files.""" if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec[cls.TMP_BUCKET_NAME_PARAM] return cls._get_gcs_bucket(writer_spec)
Returns bucket used for writing tmp files.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L497-L501
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageBase._get_tmp_account_id
def _get_tmp_account_id(cls, writer_spec): """Returns the account id to use with tmp bucket.""" # pick tmp id iff tmp bucket is set explicitly if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None) return cls._get_account_id(writer_spec)
python
def _get_tmp_account_id(cls, writer_spec): """Returns the account id to use with tmp bucket.""" # pick tmp id iff tmp bucket is set explicitly if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None) return cls._get_account_id(writer_spec)
Returns the account id to use with tmp bucket.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L504-L509
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriterBase._generate_filename
def _generate_filename(cls, writer_spec, name, job_id, num, attempt=None, seg_index=None): """Generates a filename for a particular output. Args: writer_spec: specification dictionary for the output writer. name: name of the job. job_id: the ID number assigned to the job. num: shard number. attempt: the shard attempt number. seg_index: index of the seg. None means the final output. Returns: a string containing the filename. Raises: BadWriterParamsError: if the template contains any errors such as invalid syntax or contains unknown substitution placeholders. """ naming_format = cls._TMP_FILE_NAMING_FORMAT if seg_index is None: naming_format = writer_spec.get(cls.NAMING_FORMAT_PARAM, cls._DEFAULT_NAMING_FORMAT) template = string.Template(naming_format) try: # Check that template doesn't use undefined mappings and is formatted well if seg_index is None: return template.substitute(name=name, id=job_id, num=num) else: return template.substitute(name=name, id=job_id, num=num, attempt=attempt, seg=seg_index) except ValueError, error: raise errors.BadWriterParamsError("Naming template is bad, %s" % (error)) except KeyError, error: raise errors.BadWriterParamsError("Naming template '%s' has extra " "mappings, %s" % (naming_format, error))
python
def _generate_filename(cls, writer_spec, name, job_id, num, attempt=None, seg_index=None): """Generates a filename for a particular output. Args: writer_spec: specification dictionary for the output writer. name: name of the job. job_id: the ID number assigned to the job. num: shard number. attempt: the shard attempt number. seg_index: index of the seg. None means the final output. Returns: a string containing the filename. Raises: BadWriterParamsError: if the template contains any errors such as invalid syntax or contains unknown substitution placeholders. """ naming_format = cls._TMP_FILE_NAMING_FORMAT if seg_index is None: naming_format = writer_spec.get(cls.NAMING_FORMAT_PARAM, cls._DEFAULT_NAMING_FORMAT) template = string.Template(naming_format) try: # Check that template doesn't use undefined mappings and is formatted well if seg_index is None: return template.substitute(name=name, id=job_id, num=num) else: return template.substitute(name=name, id=job_id, num=num, attempt=attempt, seg=seg_index) except ValueError, error: raise errors.BadWriterParamsError("Naming template is bad, %s" % (error)) except KeyError, error: raise errors.BadWriterParamsError("Naming template '%s' has extra " "mappings, %s" % (naming_format, error))
Generates a filename for a particular output. Args: writer_spec: specification dictionary for the output writer. name: name of the job. job_id: the ID number assigned to the job. num: shard number. attempt: the shard attempt number. seg_index: index of the seg. None means the final output. Returns: a string containing the filename. Raises: BadWriterParamsError: if the template contains any errors such as invalid syntax or contains unknown substitution placeholders.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L536-L573
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriterBase.validate
def validate(cls, mapper_spec): """Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec. Raises: BadWriterParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ writer_spec = cls.get_params(mapper_spec, allow_old=False) # Bucket Name is required if cls.BUCKET_NAME_PARAM not in writer_spec: raise errors.BadWriterParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( writer_spec[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadWriterParamsError("Bad bucket name, %s" % (error)) # Validate the naming format does not throw any errors using dummy values cls._generate_filename(writer_spec, "name", "id", 0) cls._generate_filename(writer_spec, "name", "id", 0, 1, 0)
python
def validate(cls, mapper_spec): """Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec. Raises: BadWriterParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ writer_spec = cls.get_params(mapper_spec, allow_old=False) # Bucket Name is required if cls.BUCKET_NAME_PARAM not in writer_spec: raise errors.BadWriterParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( writer_spec[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadWriterParamsError("Bad bucket name, %s" % (error)) # Validate the naming format does not throw any errors using dummy values cls._generate_filename(writer_spec, "name", "id", 0) cls._generate_filename(writer_spec, "name", "id", 0, 1, 0)
Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec. Raises: BadWriterParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L586-L611
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriterBase._open_file
def _open_file(cls, writer_spec, filename_suffix, use_tmp_bucket=False): """Opens a new gcs file for writing.""" if use_tmp_bucket: bucket = cls._get_tmp_gcs_bucket(writer_spec) account_id = cls._get_tmp_account_id(writer_spec) else: bucket = cls._get_gcs_bucket(writer_spec) account_id = cls._get_account_id(writer_spec) # GoogleCloudStorage format for filenames, Initial slash is required filename = "/%s/%s" % (bucket, filename_suffix) content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None) options = {} if cls.ACL_PARAM in writer_spec: options["x-goog-acl"] = writer_spec.get(cls.ACL_PARAM) return cloudstorage.open(filename, mode="w", content_type=content_type, options=options, _account_id=account_id)
python
def _open_file(cls, writer_spec, filename_suffix, use_tmp_bucket=False): """Opens a new gcs file for writing.""" if use_tmp_bucket: bucket = cls._get_tmp_gcs_bucket(writer_spec) account_id = cls._get_tmp_account_id(writer_spec) else: bucket = cls._get_gcs_bucket(writer_spec) account_id = cls._get_account_id(writer_spec) # GoogleCloudStorage format for filenames, Initial slash is required filename = "/%s/%s" % (bucket, filename_suffix) content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None) options = {} if cls.ACL_PARAM in writer_spec: options["x-goog-acl"] = writer_spec.get(cls.ACL_PARAM) return cloudstorage.open(filename, mode="w", content_type=content_type, options=options, _account_id=account_id)
Opens a new gcs file for writing.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L614-L633
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriterBase.write
def write(self, data): """Write data to the GoogleCloudStorage file. Args: data: string containing the data to be written. """ start_time = time.time() self._get_write_buffer().write(data) ctx = context.get() operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx) operation.counters.Increment( COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(ctx)
python
def write(self, data): """Write data to the GoogleCloudStorage file. Args: data: string containing the data to be written. """ start_time = time.time() self._get_write_buffer().write(data) ctx = context.get() operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx) operation.counters.Increment( COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(ctx)
Write data to the GoogleCloudStorage file. Args: data: string containing the data to be written.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L651-L662
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriter.validate
def validate(cls, mapper_spec): """Inherit docs.""" writer_spec = cls.get_params(mapper_spec, allow_old=False) if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False): raise errors.BadWriterParamsError("No duplicate must a boolean.") super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)
python
def validate(cls, mapper_spec): """Inherit docs.""" writer_spec = cls.get_params(mapper_spec, allow_old=False) if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False): raise errors.BadWriterParamsError("No duplicate must a boolean.") super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L718-L723
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriter.create
def create(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): """Inherit docs.""" writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) seg_index = None if writer_spec.get(cls._NO_DUPLICATE, False): seg_index = 0 # Determine parameters key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.mapreduce_id, shard_number, shard_attempt, seg_index) return cls._create(writer_spec, key)
python
def create(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): """Inherit docs.""" writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) seg_index = None if writer_spec.get(cls._NO_DUPLICATE, False): seg_index = 0 # Determine parameters key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.mapreduce_id, shard_number, shard_attempt, seg_index) return cls._create(writer_spec, key)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L729-L741
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
_GoogleCloudStorageOutputWriter._create
def _create(cls, writer_spec, filename_suffix): """Helper method that actually creates the file in cloud storage.""" writer = cls._open_file(writer_spec, filename_suffix) return cls(writer, writer_spec=writer_spec)
python
def _create(cls, writer_spec, filename_suffix): """Helper method that actually creates the file in cloud storage.""" writer = cls._open_file(writer_spec, filename_suffix) return cls(writer, writer_spec=writer_spec)
Helper method that actually creates the file in cloud storage.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L744-L747
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GoogleCloudStorageConsistentOutputWriter.create
def create(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): """Inherit docs.""" writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) # Determine parameters key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.mapreduce_id, shard_number, shard_attempt) status = _ConsistentStatus() status.writer_spec = writer_spec status.mainfile = cls._open_file(writer_spec, key) status.mapreduce_id = mr_spec.mapreduce_id status.shard = shard_number return cls(status)
python
def create(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): """Inherit docs.""" writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) # Determine parameters key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.mapreduce_id, shard_number, shard_attempt) status = _ConsistentStatus() status.writer_spec = writer_spec status.mainfile = cls._open_file(writer_spec, key) status.mapreduce_id = mr_spec.mapreduce_id status.shard = shard_number return cls(status)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L912-L927
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GoogleCloudStorageConsistentOutputWriter._rewrite_tmpfile
def _rewrite_tmpfile(self, mainfile, tmpfile, writer_spec): """Copies contents of tmpfile (name) to mainfile (buffer).""" if mainfile.closed: # can happen when finalize fails return account_id = self._get_tmp_account_id(writer_spec) f = cloudstorage_api.open(tmpfile, _account_id=account_id) # both reads and writes are buffered - the number here doesn't matter data = f.read(self._REWRITE_BLOCK_SIZE) while data: mainfile.write(data) data = f.read(self._REWRITE_BLOCK_SIZE) f.close() mainfile.flush()
python
def _rewrite_tmpfile(self, mainfile, tmpfile, writer_spec): """Copies contents of tmpfile (name) to mainfile (buffer).""" if mainfile.closed: # can happen when finalize fails return account_id = self._get_tmp_account_id(writer_spec) f = cloudstorage_api.open(tmpfile, _account_id=account_id) # both reads and writes are buffered - the number here doesn't matter data = f.read(self._REWRITE_BLOCK_SIZE) while data: mainfile.write(data) data = f.read(self._REWRITE_BLOCK_SIZE) f.close() mainfile.flush()
Copies contents of tmpfile (name) to mainfile (buffer).
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L938-L952
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GoogleCloudStorageConsistentOutputWriter._create_tmpfile
def _create_tmpfile(cls, status): """Creates a new random-named tmpfile.""" # We can't put the tmpfile in the same directory as the output. There are # rare circumstances when we leave trash behind and we don't want this trash # to be loaded into bigquery and/or used for restore. # # We used mapreduce id, shard number and attempt and 128 random bits to make # collisions virtually impossible. tmpl = string.Template(cls._TMPFILE_PATTERN) filename = tmpl.substitute( id=status.mapreduce_id, shard=status.shard, random=random.getrandbits(cls._RAND_BITS)) return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)
python
def _create_tmpfile(cls, status): """Creates a new random-named tmpfile.""" # We can't put the tmpfile in the same directory as the output. There are # rare circumstances when we leave trash behind and we don't want this trash # to be loaded into bigquery and/or used for restore. # # We used mapreduce id, shard number and attempt and 128 random bits to make # collisions virtually impossible. tmpl = string.Template(cls._TMPFILE_PATTERN) filename = tmpl.substitute( id=status.mapreduce_id, shard=status.shard, random=random.getrandbits(cls._RAND_BITS)) return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)
Creates a new random-named tmpfile.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L955-L969
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/output_writers.py
GoogleCloudStorageConsistentOutputWriter._try_to_clean_garbage
def _try_to_clean_garbage(self, writer_spec, exclude_list=()): """Tries to remove any files created by this shard that aren't needed. Args: writer_spec: writer_spec for the MR. exclude_list: A list of filenames (strings) that should not be removed. """ # Try to remove garbage (if any). Note that listbucket is not strongly # consistent so something might survive. tmpl = string.Template(self._TMPFILE_PREFIX) prefix = tmpl.substitute( id=self.status.mapreduce_id, shard=self.status.shard) bucket = self._get_tmp_gcs_bucket(writer_spec) account_id = self._get_tmp_account_id(writer_spec) for f in cloudstorage.listbucket("/%s/%s" % (bucket, prefix), _account_id=account_id): if f.filename not in exclude_list: self._remove_tmpfile(f.filename, self.status.writer_spec)
python
def _try_to_clean_garbage(self, writer_spec, exclude_list=()): """Tries to remove any files created by this shard that aren't needed. Args: writer_spec: writer_spec for the MR. exclude_list: A list of filenames (strings) that should not be removed. """ # Try to remove garbage (if any). Note that listbucket is not strongly # consistent so something might survive. tmpl = string.Template(self._TMPFILE_PREFIX) prefix = tmpl.substitute( id=self.status.mapreduce_id, shard=self.status.shard) bucket = self._get_tmp_gcs_bucket(writer_spec) account_id = self._get_tmp_account_id(writer_spec) for f in cloudstorage.listbucket("/%s/%s" % (bucket, prefix), _account_id=account_id): if f.filename not in exclude_list: self._remove_tmpfile(f.filename, self.status.writer_spec)
Tries to remove any files created by this shard that aren't needed. Args: writer_spec: writer_spec for the MR. exclude_list: A list of filenames (strings) that should not be removed.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/output_writers.py#L1014-L1032
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/sample_input_reader.py
SampleInputReader.from_json
def from_json(cls, state): """Inherit docs.""" return cls(state[cls.COUNT], state[cls.STRING_LENGTH])
python
def from_json(cls, state): """Inherit docs.""" return cls(state[cls.COUNT], state[cls.STRING_LENGTH])
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/sample_input_reader.py#L73-L75
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/sample_input_reader.py
SampleInputReader.split_input
def split_input(cls, job_config): """Inherit docs.""" params = job_config.input_reader_params count = params[cls.COUNT] string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH) shard_count = job_config.shard_count count_per_shard = count // shard_count mr_input_readers = [ cls(count_per_shard, string_length) for _ in range(shard_count)] left = count - count_per_shard*shard_count if left > 0: mr_input_readers.append(cls(left, string_length)) return mr_input_readers
python
def split_input(cls, job_config): """Inherit docs.""" params = job_config.input_reader_params count = params[cls.COUNT] string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH) shard_count = job_config.shard_count count_per_shard = count // shard_count mr_input_readers = [ cls(count_per_shard, string_length) for _ in range(shard_count)] left = count - count_per_shard*shard_count if left > 0: mr_input_readers.append(cls(left, string_length)) return mr_input_readers
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/sample_input_reader.py#L82-L98
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/sample_input_reader.py
SampleInputReader.validate
def validate(cls, job_config): """Inherit docs.""" super(SampleInputReader, cls).validate(job_config) params = job_config.input_reader_params # Validate count. if cls.COUNT not in params: raise errors.BadReaderParamsError("Must specify %s" % cls.COUNT) if not isinstance(params[cls.COUNT], int): raise errors.BadReaderParamsError("%s should be an int but is %s" % (cls.COUNT, type(params[cls.COUNT]))) if params[cls.COUNT] <= 0: raise errors.BadReaderParamsError("%s should be a positive int") # Validate string length. if cls.STRING_LENGTH in params and not ( isinstance(params[cls.STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0): raise errors.BadReaderParamsError("%s should be a positive int " "but is %s" % (cls.STRING_LENGTH, params[cls.STRING_LENGTH]))
python
def validate(cls, job_config): """Inherit docs.""" super(SampleInputReader, cls).validate(job_config) params = job_config.input_reader_params # Validate count. if cls.COUNT not in params: raise errors.BadReaderParamsError("Must specify %s" % cls.COUNT) if not isinstance(params[cls.COUNT], int): raise errors.BadReaderParamsError("%s should be an int but is %s" % (cls.COUNT, type(params[cls.COUNT]))) if params[cls.COUNT] <= 0: raise errors.BadReaderParamsError("%s should be a positive int") # Validate string length. if cls.STRING_LENGTH in params and not ( isinstance(params[cls.STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0): raise errors.BadReaderParamsError("%s should be a positive int " "but is %s" % (cls.STRING_LENGTH, params[cls.STRING_LENGTH]))
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/sample_input_reader.py#L101-L121
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
_get_weights
def _get_weights(max_length): """Get weights for each offset in str of certain max length. Args: max_length: max length of the strings. Returns: A list of ints as weights. Example: If max_length is 2 and alphabet is "ab", then we have order "", "a", "aa", "ab", "b", "ba", "bb". So the weight for the first char is 3. """ weights = [1] for i in range(1, max_length): weights.append(weights[i-1] * len(_ALPHABET) + 1) weights.reverse() return weights
python
def _get_weights(max_length): """Get weights for each offset in str of certain max length. Args: max_length: max length of the strings. Returns: A list of ints as weights. Example: If max_length is 2 and alphabet is "ab", then we have order "", "a", "aa", "ab", "b", "ba", "bb". So the weight for the first char is 3. """ weights = [1] for i in range(1, max_length): weights.append(weights[i-1] * len(_ALPHABET) + 1) weights.reverse() return weights
Get weights for each offset in str of certain max length. Args: max_length: max length of the strings. Returns: A list of ints as weights. Example: If max_length is 2 and alphabet is "ab", then we have order "", "a", "aa", "ab", "b", "ba", "bb". So the weight for the first char is 3.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L355-L372
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
_str_to_ord
def _str_to_ord(content, weights): """Converts a string to its lexicographical order. Args: content: the string to convert. Of type str. weights: weights from _get_weights. Returns: an int or long that represents the order of this string. "" has order 0. """ ordinal = 0 for i, c in enumerate(content): ordinal += weights[i] * _ALPHABET.index(c) + 1 return ordinal
python
def _str_to_ord(content, weights): """Converts a string to its lexicographical order. Args: content: the string to convert. Of type str. weights: weights from _get_weights. Returns: an int or long that represents the order of this string. "" has order 0. """ ordinal = 0 for i, c in enumerate(content): ordinal += weights[i] * _ALPHABET.index(c) + 1 return ordinal
Converts a string to its lexicographical order. Args: content: the string to convert. Of type str. weights: weights from _get_weights. Returns: an int or long that represents the order of this string. "" has order 0.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L375-L388
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
_ord_to_str
def _ord_to_str(ordinal, weights): """Reverse function of _str_to_ord.""" chars = [] for weight in weights: if ordinal == 0: return "".join(chars) ordinal -= 1 index, ordinal = divmod(ordinal, weight) chars.append(_ALPHABET[index]) return "".join(chars)
python
def _ord_to_str(ordinal, weights): """Reverse function of _str_to_ord.""" chars = [] for weight in weights: if ordinal == 0: return "".join(chars) ordinal -= 1 index, ordinal = divmod(ordinal, weight) chars.append(_ALPHABET[index]) return "".join(chars)
Reverse function of _str_to_ord.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L391-L400
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
PropertyRange._get_range_from_filters
def _get_range_from_filters(cls, filters, model_class): """Get property range from filters user provided. This method also validates there is one and only one closed range on a single property. Args: filters: user supplied filters. Each filter should be a list or tuple of format (<property_name_as_str>, <query_operator_as_str>, <value_of_certain_type>). Value type should satisfy the property's type. model_class: the model class for the entity type to apply filters on. Returns: a tuple of (property, start_filter, end_filter). property is the model's field that the range is about. start_filter and end_filter define the start and the end of the range. (None, None, None) if no range is found. Raises: BadReaderParamsError: if any filter is invalid in any way. """ if not filters: return None, None, None range_property = None start_val = None end_val = None start_filter = None end_filter = None for f in filters: prop, op, val = f if op in [">", ">=", "<", "<="]: if range_property and range_property != prop: raise errors.BadReaderParamsError( "Range on only one property is supported.") range_property = prop if val is None: raise errors.BadReaderParamsError( "Range can't be None in filter %s", f) if op in [">", ">="]: if start_val is not None: raise errors.BadReaderParamsError( "Operation %s is specified more than once.", op) start_val = val start_filter = f else: if end_val is not None: raise errors.BadReaderParamsError( "Operation %s is specified more than once.", op) end_val = val end_filter = f elif op != "=": raise errors.BadReaderParamsError( "Only < <= > >= = are supported as operation. Got %s", op) if not range_property: return None, None, None if start_val is None or end_val is None: raise errors.BadReaderParamsError( "Filter should contains a complete range on property %s", range_property) if issubclass(model_class, db.Model): property_obj = model_class.properties()[range_property] else: property_obj = ( model_class._properties[ # pylint: disable=protected-access range_property]) supported_properties = ( _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys() + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys()) if not isinstance(property_obj, tuple(supported_properties)): raise errors.BadReaderParamsError( "Filtered property %s is not supported by sharding.", range_property) if not start_val < end_val: raise errors.BadReaderParamsError( "Start value %s should be smaller than end value %s", start_val, end_val) return property_obj, start_filter, end_filter
python
def _get_range_from_filters(cls, filters, model_class): """Get property range from filters user provided. This method also validates there is one and only one closed range on a single property. Args: filters: user supplied filters. Each filter should be a list or tuple of format (<property_name_as_str>, <query_operator_as_str>, <value_of_certain_type>). Value type should satisfy the property's type. model_class: the model class for the entity type to apply filters on. Returns: a tuple of (property, start_filter, end_filter). property is the model's field that the range is about. start_filter and end_filter define the start and the end of the range. (None, None, None) if no range is found. Raises: BadReaderParamsError: if any filter is invalid in any way. """ if not filters: return None, None, None range_property = None start_val = None end_val = None start_filter = None end_filter = None for f in filters: prop, op, val = f if op in [">", ">=", "<", "<="]: if range_property and range_property != prop: raise errors.BadReaderParamsError( "Range on only one property is supported.") range_property = prop if val is None: raise errors.BadReaderParamsError( "Range can't be None in filter %s", f) if op in [">", ">="]: if start_val is not None: raise errors.BadReaderParamsError( "Operation %s is specified more than once.", op) start_val = val start_filter = f else: if end_val is not None: raise errors.BadReaderParamsError( "Operation %s is specified more than once.", op) end_val = val end_filter = f elif op != "=": raise errors.BadReaderParamsError( "Only < <= > >= = are supported as operation. Got %s", op) if not range_property: return None, None, None if start_val is None or end_val is None: raise errors.BadReaderParamsError( "Filter should contains a complete range on property %s", range_property) if issubclass(model_class, db.Model): property_obj = model_class.properties()[range_property] else: property_obj = ( model_class._properties[ # pylint: disable=protected-access range_property]) supported_properties = ( _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys() + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys()) if not isinstance(property_obj, tuple(supported_properties)): raise errors.BadReaderParamsError( "Filtered property %s is not supported by sharding.", range_property) if not start_val < end_val: raise errors.BadReaderParamsError( "Start value %s should be smaller than end value %s", start_val, end_val) return property_obj, start_filter, end_filter
Get property range from filters user provided. This method also validates there is one and only one closed range on a single property. Args: filters: user supplied filters. Each filter should be a list or tuple of format (<property_name_as_str>, <query_operator_as_str>, <value_of_certain_type>). Value type should satisfy the property's type. model_class: the model class for the entity type to apply filters on. Returns: a tuple of (property, start_filter, end_filter). property is the model's field that the range is about. start_filter and end_filter define the start and the end of the range. (None, None, None) if no range is found. Raises: BadReaderParamsError: if any filter is invalid in any way.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L81-L162
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
PropertyRange.split
def split(self, n): """Evenly split this range into contiguous, non overlapping subranges. Args: n: number of splits. Returns: a list of contiguous, non overlapping sub PropertyRanges. Maybe less than n when not enough subranges. """ new_range_filters = [] name = self.start[0] prop_cls = self.prop.__class__ if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS: splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n, self.start[1] == ">=", self.end[1] == "<=") start_filter = (name, ">=", splitpoints[0]) for p in splitpoints[1:]: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) else: splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n) start_filter = self.start for p in splitpoints: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) new_range_filters.append([start_filter, self.end]) for f in new_range_filters: f.extend(self._equality_filters) return [self.__class__(f, self.model_class_path) for f in new_range_filters]
python
def split(self, n): """Evenly split this range into contiguous, non overlapping subranges. Args: n: number of splits. Returns: a list of contiguous, non overlapping sub PropertyRanges. Maybe less than n when not enough subranges. """ new_range_filters = [] name = self.start[0] prop_cls = self.prop.__class__ if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS: splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n, self.start[1] == ">=", self.end[1] == "<=") start_filter = (name, ">=", splitpoints[0]) for p in splitpoints[1:]: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) else: splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n) start_filter = self.start for p in splitpoints: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) new_range_filters.append([start_filter, self.end]) for f in new_range_filters: f.extend(self._equality_filters) return [self.__class__(f, self.model_class_path) for f in new_range_filters]
Evenly split this range into contiguous, non overlapping subranges. Args: n: number of splits. Returns: a list of contiguous, non overlapping sub PropertyRanges. Maybe less than n when not enough subranges.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L164-L199
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/property_range.py
PropertyRange.make_query
def make_query(self, ns): """Make a query of entities within this range. Query options are not supported. They should be specified when the query is run. Args: ns: namespace of this query. Returns: a db.Query or ndb.Query, depends on the model class's type. """ if issubclass(self.model_class, db.Model): query = db.Query(self.model_class, namespace=ns) for f in self.filters: query.filter("%s %s" % (f[0], f[1]), f[2]) else: query = self.model_class.query(namespace=ns) for f in self.filters: query = query.filter(ndb.FilterNode(*f)) return query
python
def make_query(self, ns): """Make a query of entities within this range. Query options are not supported. They should be specified when the query is run. Args: ns: namespace of this query. Returns: a db.Query or ndb.Query, depends on the model class's type. """ if issubclass(self.model_class, db.Model): query = db.Query(self.model_class, namespace=ns) for f in self.filters: query.filter("%s %s" % (f[0], f[1]), f[2]) else: query = self.model_class.query(namespace=ns) for f in self.filters: query = query.filter(ndb.FilterNode(*f)) return query
Make a query of entities within this range. Query options are not supported. They should be specified when the query is run. Args: ns: namespace of this query. Returns: a db.Query or ndb.Query, depends on the model class's type.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/property_range.py#L201-L221
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/output_writer.py
OutputWriter.validate
def validate(cls, job_config): """Validates relevant parameters. This method can validate fields which it deems relevant. Args: job_config: an instance of map_job.JobConfig. Raises: errors.BadWriterParamsError: required parameters are missing or invalid. """ if job_config.output_writer_cls != cls: raise errors.BadWriterParamsError( "Expect output writer class %r, got %r." % (cls, job_config.output_writer_cls))
python
def validate(cls, job_config): """Validates relevant parameters. This method can validate fields which it deems relevant. Args: job_config: an instance of map_job.JobConfig. Raises: errors.BadWriterParamsError: required parameters are missing or invalid. """ if job_config.output_writer_cls != cls: raise errors.BadWriterParamsError( "Expect output writer class %r, got %r." % (cls, job_config.output_writer_cls))
Validates relevant parameters. This method can validate fields which it deems relevant. Args: job_config: an instance of map_job.JobConfig. Raises: errors.BadWriterParamsError: required parameters are missing or invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/output_writer.py#L50-L64
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/api/map_job/output_writer.py
OutputWriter.commit_output
def commit_output(cls, shard_ctx, iterator): """Saves output references when a shard finishes. Inside end_shard(), an output writer can optionally use this method to persist some references to the outputs from this shard (e.g a list of filenames) Args: shard_ctx: map_job_context.ShardContext for this shard. iterator: an iterator that yields json serializable references to the outputs from this shard. Contents from the iterator can be accessible later via map_job.Job.get_outputs. """ # We accept an iterator just in case output references get too big. outs = tuple(iterator) shard_ctx._state.writer_state["outs"] = outs
python
def commit_output(cls, shard_ctx, iterator): """Saves output references when a shard finishes. Inside end_shard(), an output writer can optionally use this method to persist some references to the outputs from this shard (e.g a list of filenames) Args: shard_ctx: map_job_context.ShardContext for this shard. iterator: an iterator that yields json serializable references to the outputs from this shard. Contents from the iterator can be accessible later via map_job.Job.get_outputs. """ # We accept an iterator just in case output references get too big. outs = tuple(iterator) shard_ctx._state.writer_state["outs"] = outs
Saves output references when a shard finishes. Inside end_shard(), an output writer can optionally use this method to persist some references to the outputs from this shard (e.g a list of filenames) Args: shard_ctx: map_job_context.ShardContext for this shard. iterator: an iterator that yields json serializable references to the outputs from this shard. Contents from the iterator can be accessible later via map_job.Job.get_outputs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/api/map_job/output_writer.py#L111-L127
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/main.py
create_handlers_map
def create_handlers_map(): """Create new handlers map. Returns: list of (regexp, handler) pairs for WSGIApplication constructor. """ pipeline_handlers_map = [] if pipeline: pipeline_handlers_map = pipeline.create_handlers_map(prefix=".*/pipeline") return pipeline_handlers_map + [ # Task queue handlers. # Always suffix by mapreduce_id or shard_id for log analysis purposes. # mapreduce_id or shard_id also presents in headers or payload. (r".*/worker_callback.*", handlers.MapperWorkerCallbackHandler), (r".*/controller_callback.*", handlers.ControllerCallbackHandler), (r".*/kickoffjob_callback.*", handlers.KickOffJobHandler), (r".*/finalizejob_callback.*", handlers.FinalizeJobHandler), # RPC requests with JSON responses # All JSON handlers should have /command/ prefix. (r".*/command/start_job", handlers.StartJobHandler), (r".*/command/cleanup_job", handlers.CleanUpJobHandler), (r".*/command/abort_job", handlers.AbortJobHandler), (r".*/command/list_configs", status.ListConfigsHandler), (r".*/command/list_jobs", status.ListJobsHandler), (r".*/command/get_job_detail", status.GetJobDetailHandler), # UI static files (STATIC_RE, status.ResourceHandler), # Redirect non-file URLs that do not end in status/detail to status page. (r".*", RedirectHandler), ]
python
def create_handlers_map(): """Create new handlers map. Returns: list of (regexp, handler) pairs for WSGIApplication constructor. """ pipeline_handlers_map = [] if pipeline: pipeline_handlers_map = pipeline.create_handlers_map(prefix=".*/pipeline") return pipeline_handlers_map + [ # Task queue handlers. # Always suffix by mapreduce_id or shard_id for log analysis purposes. # mapreduce_id or shard_id also presents in headers or payload. (r".*/worker_callback.*", handlers.MapperWorkerCallbackHandler), (r".*/controller_callback.*", handlers.ControllerCallbackHandler), (r".*/kickoffjob_callback.*", handlers.KickOffJobHandler), (r".*/finalizejob_callback.*", handlers.FinalizeJobHandler), # RPC requests with JSON responses # All JSON handlers should have /command/ prefix. (r".*/command/start_job", handlers.StartJobHandler), (r".*/command/cleanup_job", handlers.CleanUpJobHandler), (r".*/command/abort_job", handlers.AbortJobHandler), (r".*/command/list_configs", status.ListConfigsHandler), (r".*/command/list_jobs", status.ListJobsHandler), (r".*/command/get_job_detail", status.GetJobDetailHandler), # UI static files (STATIC_RE, status.ResourceHandler), # Redirect non-file URLs that do not end in status/detail to status page. (r".*", RedirectHandler), ]
Create new handlers map. Returns: list of (regexp, handler) pairs for WSGIApplication constructor.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/main.py#L58-L92
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/key_ranges.py
KeyRangesFactory.from_json
def from_json(cls, json): """Deserialize from json. Args: json: a dict of json compatible fields. Returns: a KeyRanges object. Raises: ValueError: if the json is invalid. """ if json["name"] in _KEYRANGES_CLASSES: return _KEYRANGES_CLASSES[json["name"]].from_json(json) raise ValueError("Invalid json %s", json)
python
def from_json(cls, json): """Deserialize from json. Args: json: a dict of json compatible fields. Returns: a KeyRanges object. Raises: ValueError: if the json is invalid. """ if json["name"] in _KEYRANGES_CLASSES: return _KEYRANGES_CLASSES[json["name"]].from_json(json) raise ValueError("Invalid json %s", json)
Deserialize from json. Args: json: a dict of json compatible fields. Returns: a KeyRanges object. Raises: ValueError: if the json is invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/key_ranges.py#L58-L72
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
split_into_sentences
def split_into_sentences(s): """Split text into list of sentences.""" s = re.sub(r"\s+", " ", s) s = re.sub(r"[\\.\\?\\!]", "\n", s) return s.split("\n")
python
def split_into_sentences(s): """Split text into list of sentences.""" s = re.sub(r"\s+", " ", s) s = re.sub(r"[\\.\\?\\!]", "\n", s) return s.split("\n")
Split text into list of sentences.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L181-L185
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
split_into_words
def split_into_words(s): """Split a sentence into list of words.""" s = re.sub(r"\W+", " ", s) s = re.sub(r"[_0-9]+", " ", s) return s.split()
python
def split_into_words(s): """Split a sentence into list of words.""" s = re.sub(r"\W+", " ", s) s = re.sub(r"[_0-9]+", " ", s) return s.split()
Split a sentence into list of words.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L188-L192
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
index_map
def index_map(data): """Index demo map function.""" (entry, text_fn) = data text = text_fn() logging.debug("Got %s", entry.filename) for s in split_into_sentences(text): for w in split_into_words(s.lower()): yield (w, entry.filename)
python
def index_map(data): """Index demo map function.""" (entry, text_fn) = data text = text_fn() logging.debug("Got %s", entry.filename) for s in split_into_sentences(text): for w in split_into_words(s.lower()): yield (w, entry.filename)
Index demo map function.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L211-L219
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
phrases_map
def phrases_map(data): """Phrases demo map function.""" (entry, text_fn) = data text = text_fn() filename = entry.filename logging.debug("Got %s", filename) for s in split_into_sentences(text): words = split_into_words(s.lower()) if len(words) < PHRASE_LENGTH: yield (":".join(words), filename) continue for i in range(0, len(words) - PHRASE_LENGTH): yield (":".join(words[i:i+PHRASE_LENGTH]), filename)
python
def phrases_map(data): """Phrases demo map function.""" (entry, text_fn) = data text = text_fn() filename = entry.filename logging.debug("Got %s", filename) for s in split_into_sentences(text): words = split_into_words(s.lower()) if len(words) < PHRASE_LENGTH: yield (":".join(words), filename) continue for i in range(0, len(words) - PHRASE_LENGTH): yield (":".join(words[i:i+PHRASE_LENGTH]), filename)
Phrases demo map function.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L230-L243
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
phrases_reduce
def phrases_reduce(key, values): """Phrases demo reduce function.""" if len(values) < 10: return counts = {} for filename in values: counts[filename] = counts.get(filename, 0) + 1 words = re.sub(r":", " ", key) threshold = len(values) / 2 for filename, count in counts.items(): if count > threshold: yield "%s:%s\n" % (words, filename)
python
def phrases_reduce(key, values): """Phrases demo reduce function.""" if len(values) < 10: return counts = {} for filename in values: counts[filename] = counts.get(filename, 0) + 1 words = re.sub(r":", " ", key) threshold = len(values) / 2 for filename, count in counts.items(): if count > threshold: yield "%s:%s\n" % (words, filename)
Phrases demo reduce function.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L246-L258
GoogleCloudPlatform/appengine-mapreduce
python/demo/main.py
FileMetadata.getKeyName
def getKeyName(username, date, blob_key): """Returns the internal key for a particular item in the database. Our items are stored with keys of the form 'user/date/blob_key' ('/' is not the real separator, but __SEP is). Args: username: The given user's e-mail address. date: A datetime object representing the date and time that an input file was uploaded to this app. blob_key: The blob key corresponding to the location of the input file in the Blobstore. Returns: The internal key for the item specified by (username, date, blob_key). """ sep = FileMetadata.__SEP return str(username + sep + str(date) + sep + blob_key)
python
def getKeyName(username, date, blob_key): """Returns the internal key for a particular item in the database. Our items are stored with keys of the form 'user/date/blob_key' ('/' is not the real separator, but __SEP is). Args: username: The given user's e-mail address. date: A datetime object representing the date and time that an input file was uploaded to this app. blob_key: The blob key corresponding to the location of the input file in the Blobstore. Returns: The internal key for the item specified by (username, date, blob_key). """ sep = FileMetadata.__SEP return str(username + sep + str(date) + sep + blob_key)
Returns the internal key for a particular item in the database. Our items are stored with keys of the form 'user/date/blob_key' ('/' is not the real separator, but __SEP is). Args: username: The given user's e-mail address. date: A datetime object representing the date and time that an input file was uploaded to this app. blob_key: The blob key corresponding to the location of the input file in the Blobstore. Returns: The internal key for the item specified by (username, date, blob_key).
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/demo/main.py#L113-L130
materialsproject/custodian
custodian/custodian.py
Custodian.from_spec
def from_spec(cls, spec): """ Load a Custodian instance where the jobs are specified from a structure and a spec dict. This allows simple custom job sequences to be constructed quickly via a YAML file. Args: spec (dict): A dict specifying job. A sample of the dict in YAML format for the usual MP workflow is given as follows ``` jobs: - jb: custodian.vasp.jobs.VaspJob params: final: False suffix: .relax1 - jb: custodian.vasp.jobs.VaspJob params: final: True suffix: .relax2 settings_override: {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}} jobs_common_params: vasp_cmd: /opt/vasp handlers: - hdlr: custodian.vasp.handlers.VaspErrorHandler - hdlr: custodian.vasp.handlers.AliasingErrorHandler - hdlr: custodian.vasp.handlers.MeshSymmetryHandler validators: - vldr: custodian.vasp.validators.VasprunXMLValidator custodian_params: scratch_dir: /tmp ``` The `jobs` key is a list of jobs. Each job is specified via "job": <explicit path>, and all parameters are specified via `params` which is a dict. `common_params` specify a common set of parameters that are passed to all jobs, e.g., vasp_cmd. Returns: Custodian instance. """ dec = MontyDecoder() def load_class(dotpath): modname, classname = dotpath.rsplit(".", 1) mod = __import__(modname, globals(), locals(), [classname], 0) return getattr(mod, classname) def process_params(d): decoded = {} for k, v in d.items(): if k.startswith("$"): if isinstance(v, list): v = [os.path.expandvars(i) for i in v] elif isinstance(v, dict): v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()} else: v = os.path.expandvars(v) decoded[k.strip("$")] = dec.process_decoded(v) return decoded jobs = [] common_params = process_params(spec.get("jobs_common_params", {})) for d in spec["jobs"]: cls_ = load_class(d["jb"]) params = process_params(d.get("params", {})) params.update(common_params) jobs.append(cls_(**params)) handlers = [] for d in spec.get("handlers", []): cls_ = load_class(d["hdlr"]) params = process_params(d.get("params", {})) handlers.append(cls_(**params)) validators = [] for d in spec.get("validators", []): cls_ = load_class(d["vldr"]) params = process_params(d.get("params", {})) validators.append(cls_(**params)) custodian_params = process_params(spec.get("custodian_params", {})) return cls(jobs=jobs, handlers=handlers, validators=validators, **custodian_params)
python
def from_spec(cls, spec): """ Load a Custodian instance where the jobs are specified from a structure and a spec dict. This allows simple custom job sequences to be constructed quickly via a YAML file. Args: spec (dict): A dict specifying job. A sample of the dict in YAML format for the usual MP workflow is given as follows ``` jobs: - jb: custodian.vasp.jobs.VaspJob params: final: False suffix: .relax1 - jb: custodian.vasp.jobs.VaspJob params: final: True suffix: .relax2 settings_override: {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}} jobs_common_params: vasp_cmd: /opt/vasp handlers: - hdlr: custodian.vasp.handlers.VaspErrorHandler - hdlr: custodian.vasp.handlers.AliasingErrorHandler - hdlr: custodian.vasp.handlers.MeshSymmetryHandler validators: - vldr: custodian.vasp.validators.VasprunXMLValidator custodian_params: scratch_dir: /tmp ``` The `jobs` key is a list of jobs. Each job is specified via "job": <explicit path>, and all parameters are specified via `params` which is a dict. `common_params` specify a common set of parameters that are passed to all jobs, e.g., vasp_cmd. Returns: Custodian instance. """ dec = MontyDecoder() def load_class(dotpath): modname, classname = dotpath.rsplit(".", 1) mod = __import__(modname, globals(), locals(), [classname], 0) return getattr(mod, classname) def process_params(d): decoded = {} for k, v in d.items(): if k.startswith("$"): if isinstance(v, list): v = [os.path.expandvars(i) for i in v] elif isinstance(v, dict): v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()} else: v = os.path.expandvars(v) decoded[k.strip("$")] = dec.process_decoded(v) return decoded jobs = [] common_params = process_params(spec.get("jobs_common_params", {})) for d in spec["jobs"]: cls_ = load_class(d["jb"]) params = process_params(d.get("params", {})) params.update(common_params) jobs.append(cls_(**params)) handlers = [] for d in spec.get("handlers", []): cls_ = load_class(d["hdlr"]) params = process_params(d.get("params", {})) handlers.append(cls_(**params)) validators = [] for d in spec.get("validators", []): cls_ = load_class(d["vldr"]) params = process_params(d.get("params", {})) validators.append(cls_(**params)) custodian_params = process_params(spec.get("custodian_params", {})) return cls(jobs=jobs, handlers=handlers, validators=validators, **custodian_params)
Load a Custodian instance where the jobs are specified from a structure and a spec dict. This allows simple custom job sequences to be constructed quickly via a YAML file. Args: spec (dict): A dict specifying job. A sample of the dict in YAML format for the usual MP workflow is given as follows ``` jobs: - jb: custodian.vasp.jobs.VaspJob params: final: False suffix: .relax1 - jb: custodian.vasp.jobs.VaspJob params: final: True suffix: .relax2 settings_override: {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}} jobs_common_params: vasp_cmd: /opt/vasp handlers: - hdlr: custodian.vasp.handlers.VaspErrorHandler - hdlr: custodian.vasp.handlers.AliasingErrorHandler - hdlr: custodian.vasp.handlers.MeshSymmetryHandler validators: - vldr: custodian.vasp.validators.VasprunXMLValidator custodian_params: scratch_dir: /tmp ``` The `jobs` key is a list of jobs. Each job is specified via "job": <explicit path>, and all parameters are specified via `params` which is a dict. `common_params` specify a common set of parameters that are passed to all jobs, e.g., vasp_cmd. Returns: Custodian instance.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/custodian.py#L204-L292
materialsproject/custodian
custodian/custodian.py
Custodian.run
def run(self): """ Runs all jobs. Returns: All errors encountered as a list of list. [[error_dicts for job 1], [error_dicts for job 2], ....] Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ cwd = os.getcwd() with ScratchDir(self.scratch_dir, create_symbolic_link=True, copy_to_current_on_exit=True, copy_from_current_on_enter=True) as temp_dir: self.total_errors = 0 start = datetime.datetime.now() logger.info("Run started at {} in {}.".format( start, temp_dir)) v = sys.version.replace("\n", " ") logger.info("Custodian running on Python version {}".format(v)) logger.info("Hostname: {}, Cluster: {}".format( *get_execution_host_info())) try: # skip jobs until the restart for job_n, job in islice(enumerate(self.jobs, 1), self.restart, None): self._run_job(job_n, job) # We do a dump of the run log after each job. dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) # Checkpoint after each job so that we can recover from last # point and remove old checkpoints if self.checkpoint: self.restart = job_n Custodian._save_checkpoint(cwd, job_n) except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) if self.gzipped_output: gzip_dir(".") # Cleanup checkpoint files (if any) if run is successful. Custodian._delete_checkpoints(cwd) return self.run_log
python
def run(self): """ Runs all jobs. Returns: All errors encountered as a list of list. [[error_dicts for job 1], [error_dicts for job 2], ....] Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ cwd = os.getcwd() with ScratchDir(self.scratch_dir, create_symbolic_link=True, copy_to_current_on_exit=True, copy_from_current_on_enter=True) as temp_dir: self.total_errors = 0 start = datetime.datetime.now() logger.info("Run started at {} in {}.".format( start, temp_dir)) v = sys.version.replace("\n", " ") logger.info("Custodian running on Python version {}".format(v)) logger.info("Hostname: {}, Cluster: {}".format( *get_execution_host_info())) try: # skip jobs until the restart for job_n, job in islice(enumerate(self.jobs, 1), self.restart, None): self._run_job(job_n, job) # We do a dump of the run log after each job. dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) # Checkpoint after each job so that we can recover from last # point and remove old checkpoints if self.checkpoint: self.restart = job_n Custodian._save_checkpoint(cwd, job_n) except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) if self.gzipped_output: gzip_dir(".") # Cleanup checkpoint files (if any) if run is successful. Custodian._delete_checkpoints(cwd) return self.run_log
Runs all jobs. Returns: All errors encountered as a list of list. [[error_dicts for job 1], [error_dicts for job 2], ....] Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/custodian.py#L294-L357
materialsproject/custodian
custodian/custodian.py
Custodian._run_job
def _run_job(self, job_n, job): """ Runs a single job. Args: job_n: job number (1 index) job: Custodian job Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ self.run_log.append({"job": job.as_dict(), "corrections": [], "handler": None, "validator": None, "max_errors": False, "max_errors_per_job": False, "max_errors_per_handler": False, "nonzero_return_code": False}) self.errors_current_job = 0 # reset the counters of the number of times a correction has been # applied for each handler for h in self.handlers: h.n_applied_corrections = 0 job.setup() attempt = 0 while (self.total_errors < self.max_errors and self.errors_current_job < self.max_errors_per_job): attempt += 1 logger.info( "Starting job no. {} ({}) attempt no. {}. Total errors and " "errors in job thus far = {}, {}.".format( job_n, job.name, attempt, self.total_errors, self.errors_current_job)) p = job.run() # Check for errors using the error handlers and perform # corrections. has_error = False zero_return_code = True # While the job is running, we use the handlers that are # monitors to monitor the job. if isinstance(p, subprocess.Popen): if self.monitors: n = 0 while True: n += 1 time.sleep(self.polling_time_step) if p.poll() is not None: break terminate = self.terminate_func or p.terminate if n % self.monitor_freq == 0: has_error = self._do_check(self.monitors, terminate) if terminate is not None and terminate != p.terminate: time.sleep(self.polling_time_step) else: p.wait() if self.terminate_func is not None and \ self.terminate_func != p.terminate: self.terminate_func() time.sleep(self.polling_time_step) zero_return_code = p.returncode == 0 logger.info("{}.run has completed. " "Checking remaining handlers".format(job.name)) # Check for errors again, since in some cases non-monitor # handlers fix the problems detected by monitors # if an error has been found, not all handlers need to run if has_error: self._do_check([h for h in self.handlers if not h.is_monitor]) else: has_error = self._do_check(self.handlers) if has_error: # This makes sure the job is killed cleanly for certain systems. job.terminate() # If there are no errors detected, perform # postprocessing and exit. if not has_error: for v in self.validators: if v.check(): self.run_log[-1]["validator"] = v s = "Validation failed: {}".format(v) raise ValidationError(s, True, v) if not zero_return_code: if self.terminate_on_nonzero_returncode: self.run_log[-1]["nonzero_return_code"] = True s = "Job return code is %d. Terminating..." % \ p.returncode logger.info(s) raise ReturnCodeError(s, True) else: warnings.warn("subprocess returned a non-zero return " "code. Check outputs carefully...") job.postprocess() return # Check that all errors could be handled for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: {}".format(x["handler"]) raise NonRecoverableError(s, True, x["handler"]) for x in self.run_log[-1]["corrections"]: if not x["actions"]: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: %s" % x["handler"] raise NonRecoverableError(s, False, x["handler"]) if self.errors_current_job >= self.max_errors_per_job: self.run_log[-1]["max_errors_per_job"] = True msg = "Max errors per job reached: {}.".format(self.max_errors_per_job) logger.info(msg) raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job) else: self.run_log[-1]["max_errors"] = True msg = "Max errors reached: {}.".format(self.max_errors) logger.info(msg) raise MaxCorrectionsError(msg, True, self.max_errors)
python
def _run_job(self, job_n, job): """ Runs a single job. Args: job_n: job number (1 index) job: Custodian job Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ self.run_log.append({"job": job.as_dict(), "corrections": [], "handler": None, "validator": None, "max_errors": False, "max_errors_per_job": False, "max_errors_per_handler": False, "nonzero_return_code": False}) self.errors_current_job = 0 # reset the counters of the number of times a correction has been # applied for each handler for h in self.handlers: h.n_applied_corrections = 0 job.setup() attempt = 0 while (self.total_errors < self.max_errors and self.errors_current_job < self.max_errors_per_job): attempt += 1 logger.info( "Starting job no. {} ({}) attempt no. {}. Total errors and " "errors in job thus far = {}, {}.".format( job_n, job.name, attempt, self.total_errors, self.errors_current_job)) p = job.run() # Check for errors using the error handlers and perform # corrections. has_error = False zero_return_code = True # While the job is running, we use the handlers that are # monitors to monitor the job. if isinstance(p, subprocess.Popen): if self.monitors: n = 0 while True: n += 1 time.sleep(self.polling_time_step) if p.poll() is not None: break terminate = self.terminate_func or p.terminate if n % self.monitor_freq == 0: has_error = self._do_check(self.monitors, terminate) if terminate is not None and terminate != p.terminate: time.sleep(self.polling_time_step) else: p.wait() if self.terminate_func is not None and \ self.terminate_func != p.terminate: self.terminate_func() time.sleep(self.polling_time_step) zero_return_code = p.returncode == 0 logger.info("{}.run has completed. " "Checking remaining handlers".format(job.name)) # Check for errors again, since in some cases non-monitor # handlers fix the problems detected by monitors # if an error has been found, not all handlers need to run if has_error: self._do_check([h for h in self.handlers if not h.is_monitor]) else: has_error = self._do_check(self.handlers) if has_error: # This makes sure the job is killed cleanly for certain systems. job.terminate() # If there are no errors detected, perform # postprocessing and exit. if not has_error: for v in self.validators: if v.check(): self.run_log[-1]["validator"] = v s = "Validation failed: {}".format(v) raise ValidationError(s, True, v) if not zero_return_code: if self.terminate_on_nonzero_returncode: self.run_log[-1]["nonzero_return_code"] = True s = "Job return code is %d. Terminating..." % \ p.returncode logger.info(s) raise ReturnCodeError(s, True) else: warnings.warn("subprocess returned a non-zero return " "code. Check outputs carefully...") job.postprocess() return # Check that all errors could be handled for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: {}".format(x["handler"]) raise NonRecoverableError(s, True, x["handler"]) for x in self.run_log[-1]["corrections"]: if not x["actions"]: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: %s" % x["handler"] raise NonRecoverableError(s, False, x["handler"]) if self.errors_current_job >= self.max_errors_per_job: self.run_log[-1]["max_errors_per_job"] = True msg = "Max errors per job reached: {}.".format(self.max_errors_per_job) logger.info(msg) raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job) else: self.run_log[-1]["max_errors"] = True msg = "Max errors reached: {}.".format(self.max_errors) logger.info(msg) raise MaxCorrectionsError(msg, True, self.max_errors)
Runs a single job. Args: job_n: job number (1 index) job: Custodian job Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/custodian.py#L359-L487
materialsproject/custodian
custodian/custodian.py
Custodian.run_interrupted
def run_interrupted(self): """ Runs custodian in a interuppted mode, which sets up and validates jobs but doesn't run the executable Returns: number of remaining jobs Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ start = datetime.datetime.now() try: cwd = os.getcwd() v = sys.version.replace("\n", " ") logger.info("Custodian started in singleshot mode at {} in {}." .format(start, cwd)) logger.info("Custodian running on Python version {}".format(v)) # load run log if os.path.exists(Custodian.LOG_FILE): self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder) if len(self.run_log) == 0: # starting up an initial job - setup input and quit job_n = 0 job = self.jobs[job_n] logger.info("Setting up job no. 1 ({}) ".format(job.name)) job.setup() self.run_log.append({"job": job.as_dict(), "corrections": [], 'job_n': job_n}) return len(self.jobs) else: # Continuing after running calculation job_n = self.run_log[-1]['job_n'] job = self.jobs[job_n] # If we had to fix errors from a previous run, insert clean log # dict if len(self.run_log[-1]['corrections']) > 0: logger.info("Reran {}.run due to fixable errors".format( job.name)) # check error handlers logger.info("Checking error handlers for {}.run".format( job.name)) if self._do_check(self.handlers): logger.info("Failed validation based on error handlers") # raise an error for an unrecoverable error for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: {}. " \ "Raising RuntimeError".format(x["handler"]) raise NonRecoverableError(s, True, x["handler"]) logger.info("Corrected input based on error handlers") # Return with more jobs to run if recoverable error caught # and corrected for return len(self.jobs) - job_n # check validators logger.info("Checking validator for {}.run".format(job.name)) for v in self.validators: if v.check(): self.run_log[-1]["validator"] = v logger.info("Failed validation based on validator") s = "Validation failed: {}".format(v) raise ValidationError(s, True, v) logger.info("Postprocessing for {}.run".format(job.name)) job.postprocess() # IF DONE WITH ALL JOBS - DELETE ALL CHECKPOINTS AND RETURN # VALIDATED if len(self.jobs) == (job_n + 1): self.finished = True return 0 # Setup next job_n job_n += 1 job = self.jobs[job_n] self.run_log.append({"job": job.as_dict(), "corrections": [], 'job_n': job_n}) job.setup() return len(self.jobs) - job_n except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) if self.finished and self.gzipped_output: gzip_dir(".")
python
def run_interrupted(self): """ Runs custodian in a interuppted mode, which sets up and validates jobs but doesn't run the executable Returns: number of remaining jobs Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached """ start = datetime.datetime.now() try: cwd = os.getcwd() v = sys.version.replace("\n", " ") logger.info("Custodian started in singleshot mode at {} in {}." .format(start, cwd)) logger.info("Custodian running on Python version {}".format(v)) # load run log if os.path.exists(Custodian.LOG_FILE): self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder) if len(self.run_log) == 0: # starting up an initial job - setup input and quit job_n = 0 job = self.jobs[job_n] logger.info("Setting up job no. 1 ({}) ".format(job.name)) job.setup() self.run_log.append({"job": job.as_dict(), "corrections": [], 'job_n': job_n}) return len(self.jobs) else: # Continuing after running calculation job_n = self.run_log[-1]['job_n'] job = self.jobs[job_n] # If we had to fix errors from a previous run, insert clean log # dict if len(self.run_log[-1]['corrections']) > 0: logger.info("Reran {}.run due to fixable errors".format( job.name)) # check error handlers logger.info("Checking error handlers for {}.run".format( job.name)) if self._do_check(self.handlers): logger.info("Failed validation based on error handlers") # raise an error for an unrecoverable error for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: self.run_log[-1]["handler"] = x["handler"] s = "Unrecoverable error for handler: {}. " \ "Raising RuntimeError".format(x["handler"]) raise NonRecoverableError(s, True, x["handler"]) logger.info("Corrected input based on error handlers") # Return with more jobs to run if recoverable error caught # and corrected for return len(self.jobs) - job_n # check validators logger.info("Checking validator for {}.run".format(job.name)) for v in self.validators: if v.check(): self.run_log[-1]["validator"] = v logger.info("Failed validation based on validator") s = "Validation failed: {}".format(v) raise ValidationError(s, True, v) logger.info("Postprocessing for {}.run".format(job.name)) job.postprocess() # IF DONE WITH ALL JOBS - DELETE ALL CHECKPOINTS AND RETURN # VALIDATED if len(self.jobs) == (job_n + 1): self.finished = True return 0 # Setup next job_n job_n += 1 job = self.jobs[job_n] self.run_log.append({"job": job.as_dict(), "corrections": [], 'job_n': job_n}) job.setup() return len(self.jobs) - job_n except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) if self.finished and self.gzipped_output: gzip_dir(".")
Runs custodian in a interuppted mode, which sets up and validates jobs but doesn't run the executable Returns: number of remaining jobs Raises: ValidationError: if a job fails validation ReturnCodeError: if the process has a return code different from 0 NonRecoverableError: if an unrecoverable occurs MaxCorrectionsPerJobError: if max_errors_per_job is reached MaxCorrectionsError: if max_errors is reached MaxCorrectionsPerHandlerError: if max_errors_per_handler is reached
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/custodian.py#L489-L596
materialsproject/custodian
custodian/custodian.py
Custodian._do_check
def _do_check(self, handlers, terminate_func=None): """ checks the specified handlers. Returns True iff errors caught """ corrections = [] for h in handlers: try: if h.check(): if h.max_num_corrections is not None \ and h.n_applied_corrections >= h.max_num_corrections: msg = "Maximum number of corrections {} reached " \ "for handler {}".format(h.max_num_corrections, h) if h.raise_on_max: self.run_log[-1]["handler"] = h self.run_log[-1]["max_errors_per_handler"] = True raise MaxCorrectionsPerHandlerError(msg, True, h.max_num_corrections, h) else: logger.warning(msg+" Correction not applied.") continue if terminate_func is not None and h.is_terminating: logger.info("Terminating job") terminate_func() # make sure we don't terminate twice terminate_func = None d = h.correct() d["handler"] = h logger.error("\n" + pformat(d, indent=2, width=-1)) corrections.append(d) h.n_applied_corrections += 1 except Exception: if not self.skip_over_errors: raise else: import traceback logger.error("Bad handler %s " % h) logger.error(traceback.format_exc()) corrections.append( {"errors": ["Bad handler %s " % h], "actions": []}) self.total_errors += len(corrections) self.errors_current_job += len(corrections) self.run_log[-1]["corrections"].extend(corrections) # We do a dump of the run log after each check. dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) return len(corrections) > 0
python
def _do_check(self, handlers, terminate_func=None): """ checks the specified handlers. Returns True iff errors caught """ corrections = [] for h in handlers: try: if h.check(): if h.max_num_corrections is not None \ and h.n_applied_corrections >= h.max_num_corrections: msg = "Maximum number of corrections {} reached " \ "for handler {}".format(h.max_num_corrections, h) if h.raise_on_max: self.run_log[-1]["handler"] = h self.run_log[-1]["max_errors_per_handler"] = True raise MaxCorrectionsPerHandlerError(msg, True, h.max_num_corrections, h) else: logger.warning(msg+" Correction not applied.") continue if terminate_func is not None and h.is_terminating: logger.info("Terminating job") terminate_func() # make sure we don't terminate twice terminate_func = None d = h.correct() d["handler"] = h logger.error("\n" + pformat(d, indent=2, width=-1)) corrections.append(d) h.n_applied_corrections += 1 except Exception: if not self.skip_over_errors: raise else: import traceback logger.error("Bad handler %s " % h) logger.error(traceback.format_exc()) corrections.append( {"errors": ["Bad handler %s " % h], "actions": []}) self.total_errors += len(corrections) self.errors_current_job += len(corrections) self.run_log[-1]["corrections"].extend(corrections) # We do a dump of the run log after each check. dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) return len(corrections) > 0
checks the specified handlers. Returns True iff errors caught
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/custodian.py#L598-L643
materialsproject/custodian
custodian/feff/interpreter.py
FeffModder.apply_actions
def apply_actions(self, actions): """ Applies a list of actions to the FEFF Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': feffinput_key, 'action': moddermodification} """ modified = [] for a in actions: if "dict" in a: k = a["dict"] modified.append(k) self.feffinp[k] = self.modify_object(a["action"], self.feffinp[k]) elif "file" in a: self.modify(a["action"], a["file"]) else: raise ValueError("Unrecognized format: {}".format(a)) if modified: feff = self.feffinp feff_input = "\n\n".join(str(feff[k]) for k in ["HEADER", "PARAMETERS", "POTENTIALS", "ATOMS"] if k in feff) for k, v in six.iteritems(feff): with open(os.path.join('.', k), "w") as f: f.write(str(v)) with open(os.path.join('.', "feff.inp"), "w") as f: f.write(feff_input)
python
def apply_actions(self, actions): """ Applies a list of actions to the FEFF Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': feffinput_key, 'action': moddermodification} """ modified = [] for a in actions: if "dict" in a: k = a["dict"] modified.append(k) self.feffinp[k] = self.modify_object(a["action"], self.feffinp[k]) elif "file" in a: self.modify(a["action"], a["file"]) else: raise ValueError("Unrecognized format: {}".format(a)) if modified: feff = self.feffinp feff_input = "\n\n".join(str(feff[k]) for k in ["HEADER", "PARAMETERS", "POTENTIALS", "ATOMS"] if k in feff) for k, v in six.iteritems(feff): with open(os.path.join('.', k), "w") as f: f.write(str(v)) with open(os.path.join('.', "feff.inp"), "w") as f: f.write(feff_input)
Applies a list of actions to the FEFF Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': feffinput_key, 'action': moddermodification}
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/feff/interpreter.py#L35-L65
materialsproject/custodian
custodian/ansible/actions.py
FileActions.file_create
def file_create(filename, settings): """ Creates a file. Args: filename (str): Filename. settings (dict): Must be {"content": actual_content} """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'content'.") for k, v in settings.items(): if k == "content": with open(filename, 'w') as f: f.write(v)
python
def file_create(filename, settings): """ Creates a file. Args: filename (str): Filename. settings (dict): Must be {"content": actual_content} """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'content'.") for k, v in settings.items(): if k == "content": with open(filename, 'w') as f: f.write(v)
Creates a file. Args: filename (str): Filename. settings (dict): Must be {"content": actual_content}
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/actions.py#L154-L168
materialsproject/custodian
custodian/ansible/actions.py
FileActions.file_move
def file_move(filename, settings): """ Moves a file. {'_file_move': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file} """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'dest'.") for k, v in settings.items(): if k == "dest": shutil.move(filename, v)
python
def file_move(filename, settings): """ Moves a file. {'_file_move': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file} """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'dest'.") for k, v in settings.items(): if k == "dest": shutil.move(filename, v)
Moves a file. {'_file_move': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file}
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/actions.py#L171-L184
materialsproject/custodian
custodian/ansible/actions.py
FileActions.file_delete
def file_delete(filename, settings): """ Deletes a file. {'_file_delete': {'mode': "actual"}} Args: filename (str): Filename. settings (dict): Must be {"mode": actual/simulated}. Simulated mode only prints the action without performing it. """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'mode'.") for k, v in settings.items(): if k == "mode" and v == "actual": try: os.remove(filename) except OSError: #Skip file not found error. pass elif k == "mode" and v == "simulated": print("Simulated removal of {}".format(filename))
python
def file_delete(filename, settings): """ Deletes a file. {'_file_delete': {'mode': "actual"}} Args: filename (str): Filename. settings (dict): Must be {"mode": actual/simulated}. Simulated mode only prints the action without performing it. """ if len(settings) != 1: raise ValueError("Settings must only contain one item with key " "'mode'.") for k, v in settings.items(): if k == "mode" and v == "actual": try: os.remove(filename) except OSError: #Skip file not found error. pass elif k == "mode" and v == "simulated": print("Simulated removal of {}".format(filename))
Deletes a file. {'_file_delete': {'mode': "actual"}} Args: filename (str): Filename. settings (dict): Must be {"mode": actual/simulated}. Simulated mode only prints the action without performing it.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/actions.py#L187-L207
materialsproject/custodian
custodian/ansible/actions.py
FileActions.file_copy
def file_copy(filename, settings): """ Copies a file. {'_file_copy': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file} """ for k, v in settings.items(): if k.startswith("dest"): shutil.copyfile(filename, v)
python
def file_copy(filename, settings): """ Copies a file. {'_file_copy': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file} """ for k, v in settings.items(): if k.startswith("dest"): shutil.copyfile(filename, v)
Copies a file. {'_file_copy': {'dest': 'new_file_name'}} Args: filename (str): Filename. settings (dict): Must be {"dest": path of new file}
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/actions.py#L210-L220
materialsproject/custodian
custodian/ansible/actions.py
FileActions.file_modify
def file_modify(filename, settings): """ Modifies file access Args: filename (str): Filename. settings (dict): Can be "mode" or "owners" """ for k, v in settings.items(): if k == "mode": os.chmod(filename,v) if k == "owners": os.chown(filename,v)
python
def file_modify(filename, settings): """ Modifies file access Args: filename (str): Filename. settings (dict): Can be "mode" or "owners" """ for k, v in settings.items(): if k == "mode": os.chmod(filename,v) if k == "owners": os.chown(filename,v)
Modifies file access Args: filename (str): Filename. settings (dict): Can be "mode" or "owners"
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/actions.py#L223-L235
materialsproject/custodian
custodian/feff/jobs.py
FeffJob.setup
def setup(self): """ Performs initial setup for FeffJob, do backing up. Returns: """ decompress_dir('.') if self.backup: for f in FEFF_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) for f in FEFF_BACKUP_FILES: if os.path.isfile(f): shutil.copy(f, "{}.orig".format(f))
python
def setup(self): """ Performs initial setup for FeffJob, do backing up. Returns: """ decompress_dir('.') if self.backup: for f in FEFF_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) for f in FEFF_BACKUP_FILES: if os.path.isfile(f): shutil.copy(f, "{}.orig".format(f))
Performs initial setup for FeffJob, do backing up. Returns:
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/feff/jobs.py#L59-L73
materialsproject/custodian
custodian/feff/jobs.py
FeffJob.run
def run(self): """ Performs the actual FEFF run Returns: (subprocess.Popen) Used for monitoring. """ with open(self.output_file, "w") as f_std, \ open(self.stderr_file, "w", buffering=1) as f_err: # Use line buffering for stderr # On TSCC, need to run shell command p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err, shell=True) return p
python
def run(self): """ Performs the actual FEFF run Returns: (subprocess.Popen) Used for monitoring. """ with open(self.output_file, "w") as f_std, \ open(self.stderr_file, "w", buffering=1) as f_err: # Use line buffering for stderr # On TSCC, need to run shell command p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err, shell=True) return p
Performs the actual FEFF run Returns: (subprocess.Popen) Used for monitoring.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/feff/jobs.py#L75-L88
materialsproject/custodian
custodian/ansible/interpreter.py
Modder.modify
def modify(self, modification, obj): """ Note that modify makes actual in-place modifications. It does not return a copy. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (dict/str/object): Object to modify depending on actions. For example, for DictActions, obj will be a dict to be modified. For FileActions, obj will be a string with a full pathname to a file. """ for action, settings in modification.items(): if action in self.supported_actions: self.supported_actions[action].__call__(obj, settings) elif self.strict: raise ValueError("{} is not a supported action!" .format(action))
python
def modify(self, modification, obj): """ Note that modify makes actual in-place modifications. It does not return a copy. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (dict/str/object): Object to modify depending on actions. For example, for DictActions, obj will be a dict to be modified. For FileActions, obj will be a string with a full pathname to a file. """ for action, settings in modification.items(): if action in self.supported_actions: self.supported_actions[action].__call__(obj, settings) elif self.strict: raise ValueError("{} is not a supported action!" .format(action))
Note that modify makes actual in-place modifications. It does not return a copy. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (dict/str/object): Object to modify depending on actions. For example, for DictActions, obj will be a dict to be modified. For FileActions, obj will be a string with a full pathname to a file.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/interpreter.py#L67-L85
materialsproject/custodian
custodian/ansible/interpreter.py
Modder.modify_object
def modify_object(self, modification, obj): """ Modify an object that supports pymatgen's as_dict() and from_dict API. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (object): Object to modify """ d = obj.as_dict() self.modify(modification, d) return obj.from_dict(d)
python
def modify_object(self, modification, obj): """ Modify an object that supports pymatgen's as_dict() and from_dict API. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (object): Object to modify """ d = obj.as_dict() self.modify(modification, d) return obj.from_dict(d)
Modify an object that supports pymatgen's as_dict() and from_dict API. Args: modification (dict): Modification must be {action_keyword : settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}} obj (object): Object to modify
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/ansible/interpreter.py#L87-L98
materialsproject/custodian
custodian/vasp/interpreter.py
VaspModder.apply_actions
def apply_actions(self, actions): """ Applies a list of actions to the Vasp Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': vaspinput_key, 'action': moddermodification} """ modified = [] for a in actions: if "dict" in a: k = a["dict"] modified.append(k) self.vi[k] = self.modify_object(a["action"], self.vi[k]) elif "file" in a: self.modify(a["action"], a["file"]) else: raise ValueError("Unrecognized format: {}".format(a)) for f in modified: self.vi[f].write_file(f)
python
def apply_actions(self, actions): """ Applies a list of actions to the Vasp Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': vaspinput_key, 'action': moddermodification} """ modified = [] for a in actions: if "dict" in a: k = a["dict"] modified.append(k) self.vi[k] = self.modify_object(a["action"], self.vi[k]) elif "file" in a: self.modify(a["action"], a["file"]) else: raise ValueError("Unrecognized format: {}".format(a)) for f in modified: self.vi[f].write_file(f)
Applies a list of actions to the Vasp Input Set and rewrites modified files. Args: actions [dict]: A list of actions of the form {'file': filename, 'action': moddermodification} or {'dict': vaspinput_key, 'action': moddermodification}
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/interpreter.py#L31-L51
materialsproject/custodian
custodian/utils.py
backup
def backup(filenames, prefix="error"): """ Backup files to a tar.gz file. Used, for example, in backing up the files of an errored run before performing corrections. Args: filenames ([str]): List of files to backup. Supports wildcards, e.g., *.*. prefix (str): prefix to the files. Defaults to error, which means a series of error.1.tar.gz, error.2.tar.gz, ... will be generated. """ num = max([0] + [int(f.split(".")[1]) for f in glob("{}.*.tar.gz".format(prefix))]) filename = "{}.{}.tar.gz".format(prefix, num + 1) logging.info("Backing up run to {}.".format(filename)) with tarfile.open(filename, "w:gz") as tar: for fname in filenames: for f in glob(fname): tar.add(f)
python
def backup(filenames, prefix="error"): """ Backup files to a tar.gz file. Used, for example, in backing up the files of an errored run before performing corrections. Args: filenames ([str]): List of files to backup. Supports wildcards, e.g., *.*. prefix (str): prefix to the files. Defaults to error, which means a series of error.1.tar.gz, error.2.tar.gz, ... will be generated. """ num = max([0] + [int(f.split(".")[1]) for f in glob("{}.*.tar.gz".format(prefix))]) filename = "{}.{}.tar.gz".format(prefix, num + 1) logging.info("Backing up run to {}.".format(filename)) with tarfile.open(filename, "w:gz") as tar: for fname in filenames: for f in glob(fname): tar.add(f)
Backup files to a tar.gz file. Used, for example, in backing up the files of an errored run before performing corrections. Args: filenames ([str]): List of files to backup. Supports wildcards, e.g., *.*. prefix (str): prefix to the files. Defaults to error, which means a series of error.1.tar.gz, error.2.tar.gz, ... will be generated.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/utils.py#L23-L41
materialsproject/custodian
custodian/utils.py
get_execution_host_info
def get_execution_host_info(): """ Tries to return a tuple describing the execution host. Doesn't work for all queueing systems Returns: (HOSTNAME, CLUSTER_NAME) """ host = os.environ.get('HOSTNAME', None) cluster = os.environ.get('SGE_O_HOST', None) if host is None: try: import socket host = host or socket.gethostname() except: pass return host or 'unknown', cluster or 'unknown'
python
def get_execution_host_info(): """ Tries to return a tuple describing the execution host. Doesn't work for all queueing systems Returns: (HOSTNAME, CLUSTER_NAME) """ host = os.environ.get('HOSTNAME', None) cluster = os.environ.get('SGE_O_HOST', None) if host is None: try: import socket host = host or socket.gethostname() except: pass return host or 'unknown', cluster or 'unknown'
Tries to return a tuple describing the execution host. Doesn't work for all queueing systems Returns: (HOSTNAME, CLUSTER_NAME)
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/utils.py#L44-L60
materialsproject/custodian
custodian/qchem/jobs.py
QCJob.run
def run(self): """ Perform the actual QChem run. Returns: (subprocess.Popen) Used for monitoring. """ qclog = open(self.qclog_file, 'w') p = subprocess.Popen(self.current_command, stdout=qclog) return p
python
def run(self): """ Perform the actual QChem run. Returns: (subprocess.Popen) Used for monitoring. """ qclog = open(self.qclog_file, 'w') p = subprocess.Popen(self.current_command, stdout=qclog) return p
Perform the actual QChem run. Returns: (subprocess.Popen) Used for monitoring.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/qchem/jobs.py#L120-L129
materialsproject/custodian
custodian/qchem/jobs.py
QCJob.opt_with_frequency_flattener
def opt_with_frequency_flattener(cls, qchem_command, multimode="openmp", input_file="mol.qin", output_file="mol.qout", qclog_file="mol.qclog", max_iterations=10, max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs): """ Optimize a structure and calculate vibrational frequencies to check if the structure is in a true minima. If a frequency is negative, iteratively perturbe the geometry, optimize, and recalculate frequencies until all are positive, aka a true minima has been found. Args: qchem_command (str): Command to run QChem. multimode (str): Parallelization scheme, either openmp or mpi. input_file (str): Name of the QChem input file. output_file (str): Name of the QChem output file. max_iterations (int): Number of perturbation -> optimization -> frequency iterations to perform. Defaults to 10. max_molecule_perturb_scale (float): The maximum scaled perturbation that can be applied to the molecule. Defaults to 0.3. check_connectivity (bool): Whether to check differences in connectivity introduced by structural perturbation. Defaults to True. **QCJob_kwargs: Passthrough kwargs to QCJob. See :class:`custodian.qchem.jobs.QCJob`. """ min_molecule_perturb_scale = 0.1 scale_grid = 10 perturb_scale_grid = ( max_molecule_perturb_scale - min_molecule_perturb_scale ) / scale_grid if not os.path.exists(input_file): raise AssertionError('Input file must be present!') orig_opt_input = QCInput.from_file(input_file) orig_opt_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem["job_type"] = "freq" first = True reversed_direction = False num_neg_freqs = [] for ii in range(max_iterations): yield (QCJob( qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file=qclog_file, suffix=".opt_" + str(ii), backup=first, **QCJob_kwargs)) first = False opt_outdata = QCOutput(output_file + ".opt_" + str(ii)).data if opt_outdata["structure_change"] == "unconnected_fragments" and not opt_outdata["completion"]: print("Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...") break else: freq_QCInput = QCInput( molecule=opt_outdata.get("molecule_from_optimized_geometry"), rem=orig_freq_rem, opt=orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=orig_opt_input.solvent) freq_QCInput.write_file(input_file) yield (QCJob( qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file=qclog_file, suffix=".freq_" + str(ii), backup=first, **QCJob_kwargs)) outdata = QCOutput(output_file + ".freq_" + str(ii)).data errors = outdata.get("errors") if len(errors) != 0: raise AssertionError('No errors should be encountered while flattening frequencies!') if outdata.get('frequencies')[0] > 0.0: print("All frequencies positive!") break else: num_neg_freqs += [sum(1 for freq in outdata.get('frequencies') if freq < 0)] if len(num_neg_freqs) > 1: if num_neg_freqs[-1] == num_neg_freqs[-2] and not reversed_direction: reversed_direction = True elif num_neg_freqs[-1] == num_neg_freqs[-2] and reversed_direction: if len(num_neg_freqs) < 3: raise AssertionError("ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...") else: raise Exception("ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...") elif num_neg_freqs[-1] != num_neg_freqs[-2] and reversed_direction: reversed_direction = False negative_freq_vecs = outdata.get("frequency_mode_vectors")[0] structure_successfully_perturbed = False for molecule_perturb_scale in np.arange( max_molecule_perturb_scale, min_molecule_perturb_scale, -perturb_scale_grid): new_coords = perturb_coordinates( old_coords=outdata.get("initial_geometry"), negative_freq_vecs=negative_freq_vecs, molecule_perturb_scale=molecule_perturb_scale, reversed_direction=reversed_direction) new_molecule = Molecule( species=outdata.get('species'), coords=new_coords, charge=outdata.get('charge'), spin_multiplicity=outdata.get('multiplicity')) if check_connectivity: old_molgraph = MoleculeGraph.with_local_env_strategy(outdata.get("initial_molecule"), OpenBabelNN(), reorder=False, extend_structure=False) new_molgraph = MoleculeGraph.with_local_env_strategy(new_molecule, OpenBabelNN(), reorder=False, extend_structure=False) if old_molgraph.isomorphic_to(new_molgraph): structure_successfully_perturbed = True break if not structure_successfully_perturbed: raise Exception( "ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting..." ) new_opt_QCInput = QCInput( molecule=new_molecule, rem=orig_opt_rem, opt=orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=orig_opt_input.solvent) new_opt_QCInput.write_file(input_file)
python
def opt_with_frequency_flattener(cls, qchem_command, multimode="openmp", input_file="mol.qin", output_file="mol.qout", qclog_file="mol.qclog", max_iterations=10, max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs): """ Optimize a structure and calculate vibrational frequencies to check if the structure is in a true minima. If a frequency is negative, iteratively perturbe the geometry, optimize, and recalculate frequencies until all are positive, aka a true minima has been found. Args: qchem_command (str): Command to run QChem. multimode (str): Parallelization scheme, either openmp or mpi. input_file (str): Name of the QChem input file. output_file (str): Name of the QChem output file. max_iterations (int): Number of perturbation -> optimization -> frequency iterations to perform. Defaults to 10. max_molecule_perturb_scale (float): The maximum scaled perturbation that can be applied to the molecule. Defaults to 0.3. check_connectivity (bool): Whether to check differences in connectivity introduced by structural perturbation. Defaults to True. **QCJob_kwargs: Passthrough kwargs to QCJob. See :class:`custodian.qchem.jobs.QCJob`. """ min_molecule_perturb_scale = 0.1 scale_grid = 10 perturb_scale_grid = ( max_molecule_perturb_scale - min_molecule_perturb_scale ) / scale_grid if not os.path.exists(input_file): raise AssertionError('Input file must be present!') orig_opt_input = QCInput.from_file(input_file) orig_opt_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem["job_type"] = "freq" first = True reversed_direction = False num_neg_freqs = [] for ii in range(max_iterations): yield (QCJob( qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file=qclog_file, suffix=".opt_" + str(ii), backup=first, **QCJob_kwargs)) first = False opt_outdata = QCOutput(output_file + ".opt_" + str(ii)).data if opt_outdata["structure_change"] == "unconnected_fragments" and not opt_outdata["completion"]: print("Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...") break else: freq_QCInput = QCInput( molecule=opt_outdata.get("molecule_from_optimized_geometry"), rem=orig_freq_rem, opt=orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=orig_opt_input.solvent) freq_QCInput.write_file(input_file) yield (QCJob( qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file=qclog_file, suffix=".freq_" + str(ii), backup=first, **QCJob_kwargs)) outdata = QCOutput(output_file + ".freq_" + str(ii)).data errors = outdata.get("errors") if len(errors) != 0: raise AssertionError('No errors should be encountered while flattening frequencies!') if outdata.get('frequencies')[0] > 0.0: print("All frequencies positive!") break else: num_neg_freqs += [sum(1 for freq in outdata.get('frequencies') if freq < 0)] if len(num_neg_freqs) > 1: if num_neg_freqs[-1] == num_neg_freqs[-2] and not reversed_direction: reversed_direction = True elif num_neg_freqs[-1] == num_neg_freqs[-2] and reversed_direction: if len(num_neg_freqs) < 3: raise AssertionError("ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...") else: raise Exception("ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...") elif num_neg_freqs[-1] != num_neg_freqs[-2] and reversed_direction: reversed_direction = False negative_freq_vecs = outdata.get("frequency_mode_vectors")[0] structure_successfully_perturbed = False for molecule_perturb_scale in np.arange( max_molecule_perturb_scale, min_molecule_perturb_scale, -perturb_scale_grid): new_coords = perturb_coordinates( old_coords=outdata.get("initial_geometry"), negative_freq_vecs=negative_freq_vecs, molecule_perturb_scale=molecule_perturb_scale, reversed_direction=reversed_direction) new_molecule = Molecule( species=outdata.get('species'), coords=new_coords, charge=outdata.get('charge'), spin_multiplicity=outdata.get('multiplicity')) if check_connectivity: old_molgraph = MoleculeGraph.with_local_env_strategy(outdata.get("initial_molecule"), OpenBabelNN(), reorder=False, extend_structure=False) new_molgraph = MoleculeGraph.with_local_env_strategy(new_molecule, OpenBabelNN(), reorder=False, extend_structure=False) if old_molgraph.isomorphic_to(new_molgraph): structure_successfully_perturbed = True break if not structure_successfully_perturbed: raise Exception( "ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting..." ) new_opt_QCInput = QCInput( molecule=new_molecule, rem=orig_opt_rem, opt=orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=orig_opt_input.solvent) new_opt_QCInput.write_file(input_file)
Optimize a structure and calculate vibrational frequencies to check if the structure is in a true minima. If a frequency is negative, iteratively perturbe the geometry, optimize, and recalculate frequencies until all are positive, aka a true minima has been found. Args: qchem_command (str): Command to run QChem. multimode (str): Parallelization scheme, either openmp or mpi. input_file (str): Name of the QChem input file. output_file (str): Name of the QChem output file. max_iterations (int): Number of perturbation -> optimization -> frequency iterations to perform. Defaults to 10. max_molecule_perturb_scale (float): The maximum scaled perturbation that can be applied to the molecule. Defaults to 0.3. check_connectivity (bool): Whether to check differences in connectivity introduced by structural perturbation. Defaults to True. **QCJob_kwargs: Passthrough kwargs to QCJob. See :class:`custodian.qchem.jobs.QCJob`.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/qchem/jobs.py#L132-L270
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.setup
def setup(self): """ Performs initial setup for VaspJob, including overriding any settings and backing up. """ decompress_dir('.') if self.backup: for f in VASP_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) if self.auto_npar: try: incar = Incar.from_file("INCAR") # Only optimized NPAR for non-HF and non-RPA calculations. if not (incar.get("LHFCALC") or incar.get("LRPA") or incar.get("LEPSILON")): if incar.get("IBRION") in [5, 6, 7, 8]: # NPAR should not be set for Hessian matrix # calculations, whether in DFPT or otherwise. del incar["NPAR"] else: import multiprocessing # try sge environment variable first # (since multiprocessing counts cores on the current # machine only) ncores = os.environ.get('NSLOTS') or \ multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar["NPAR"] = npar break incar.write_file("INCAR") except: pass if self.auto_continue: if os.path.exists("continue.json"): actions = loadfn("continue.json").get("actions") logger.info("Continuing previous VaspJob. Actions: {}".format(actions)) backup(VASP_BACKUP_FILES, prefix="prev_run") VaspModder().apply_actions(actions) else: # Default functionality is to copy CONTCAR to POSCAR and set # ISTART to 1 in the INCAR, but other actions can be specified if self.auto_continue is True: actions = [{"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}, {"dict": "INCAR", "action": {"_set": {"ISTART": 1}}}] else: actions = self.auto_continue dumpfn({"actions": actions}, "continue.json") if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
python
def setup(self): """ Performs initial setup for VaspJob, including overriding any settings and backing up. """ decompress_dir('.') if self.backup: for f in VASP_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) if self.auto_npar: try: incar = Incar.from_file("INCAR") # Only optimized NPAR for non-HF and non-RPA calculations. if not (incar.get("LHFCALC") or incar.get("LRPA") or incar.get("LEPSILON")): if incar.get("IBRION") in [5, 6, 7, 8]: # NPAR should not be set for Hessian matrix # calculations, whether in DFPT or otherwise. del incar["NPAR"] else: import multiprocessing # try sge environment variable first # (since multiprocessing counts cores on the current # machine only) ncores = os.environ.get('NSLOTS') or \ multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar["NPAR"] = npar break incar.write_file("INCAR") except: pass if self.auto_continue: if os.path.exists("continue.json"): actions = loadfn("continue.json").get("actions") logger.info("Continuing previous VaspJob. Actions: {}".format(actions)) backup(VASP_BACKUP_FILES, prefix="prev_run") VaspModder().apply_actions(actions) else: # Default functionality is to copy CONTCAR to POSCAR and set # ISTART to 1 in the INCAR, but other actions can be specified if self.auto_continue is True: actions = [{"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}, {"dict": "INCAR", "action": {"_set": {"ISTART": 1}}}] else: actions = self.auto_continue dumpfn({"actions": actions}, "continue.json") if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
Performs initial setup for VaspJob, including overriding any settings and backing up.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L131-L189
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.run
def run(self): """ Perform the actual VASP run. Returns: (subprocess.Popen) Used for monitoring. """ cmd = list(self.vasp_cmd) if self.auto_gamma: vi = VaspInput.from_directory(".") kpts = vi["KPOINTS"] if kpts.style == Kpoints.supported_modes.Gamma \ and tuple(kpts.kpts[0]) == (1, 1, 1): if self.gamma_vasp_cmd is not None and which( self.gamma_vasp_cmd[-1]): cmd = self.gamma_vasp_cmd elif which(cmd[-1] + ".gamma"): cmd[-1] += ".gamma" logger.info("Running {}".format(" ".join(cmd))) with open(self.output_file, 'w') as f_std, \ open(self.stderr_file, "w", buffering=1) as f_err: # use line buffering for stderr p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err) return p
python
def run(self): """ Perform the actual VASP run. Returns: (subprocess.Popen) Used for monitoring. """ cmd = list(self.vasp_cmd) if self.auto_gamma: vi = VaspInput.from_directory(".") kpts = vi["KPOINTS"] if kpts.style == Kpoints.supported_modes.Gamma \ and tuple(kpts.kpts[0]) == (1, 1, 1): if self.gamma_vasp_cmd is not None and which( self.gamma_vasp_cmd[-1]): cmd = self.gamma_vasp_cmd elif which(cmd[-1] + ".gamma"): cmd[-1] += ".gamma" logger.info("Running {}".format(" ".join(cmd))) with open(self.output_file, 'w') as f_std, \ open(self.stderr_file, "w", buffering=1) as f_err: # use line buffering for stderr p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err) return p
Perform the actual VASP run. Returns: (subprocess.Popen) Used for monitoring.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L191-L214
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.postprocess
def postprocess(self): """ Postprocessing includes renaming and gzipping where necessary. Also copies the magmom to the incar if necessary """ for f in VASP_OUTPUT_FILES + [self.output_file]: if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix)) if self.copy_magmom and not self.final: try: outcar = Outcar("OUTCAR") magmom = [m['tot'] for m in outcar.magnetization] incar = Incar.from_file("INCAR") incar['MAGMOM'] = magmom incar.write_file("INCAR") except: logger.error('MAGMOM copy from OUTCAR to INCAR failed') # Remove continuation so if a subsequent job is run in # the same directory, will not restart this job. if os.path.exists("continue.json"): os.remove("continue.json")
python
def postprocess(self): """ Postprocessing includes renaming and gzipping where necessary. Also copies the magmom to the incar if necessary """ for f in VASP_OUTPUT_FILES + [self.output_file]: if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix)) if self.copy_magmom and not self.final: try: outcar = Outcar("OUTCAR") magmom = [m['tot'] for m in outcar.magnetization] incar = Incar.from_file("INCAR") incar['MAGMOM'] = magmom incar.write_file("INCAR") except: logger.error('MAGMOM copy from OUTCAR to INCAR failed') # Remove continuation so if a subsequent job is run in # the same directory, will not restart this job. if os.path.exists("continue.json"): os.remove("continue.json")
Postprocessing includes renaming and gzipping where necessary. Also copies the magmom to the incar if necessary
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L216-L241
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.double_relaxation_run
def double_relaxation_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=False, auto_continue=False): """ Returns a list of two jobs corresponding to an AFLOW style double relaxation run. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] auto_npar (bool): Whether to automatically tune NPAR to be sqrt( number of cores) as recommended by VASP for DFT calculations. Generally, this results in significant speedups. Defaults to True. Set to False for HF, GW and RPA calculations. ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. Returns: List of two jobs corresponding to an AFLOW style run. """ incar_update = {"ISTART": 1} if ediffg: incar_update["EDIFFG"] = ediffg settings_overide_1 = None settings_overide_2 = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if half_kpts_first_relax and os.path.exists("KPOINTS") and \ os.path.exists("POSCAR"): kpts = Kpoints.from_file("KPOINTS") orig_kpts_dict = kpts.as_dict() # lattice vectors with length < 8 will get >1 KPOINT kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int).tolist() low_kpts_dict = kpts.as_dict() settings_overide_1 = [ {"dict": "KPOINTS", "action": {"_set": low_kpts_dict}} ] settings_overide_2.append( {"dict": "KPOINTS", "action": {"_set": orig_kpts_dict}} ) return [VaspJob(vasp_cmd, final=False, suffix=".relax1", auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False, suffix=".relax2", auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_2)]
python
def double_relaxation_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=False, auto_continue=False): """ Returns a list of two jobs corresponding to an AFLOW style double relaxation run. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] auto_npar (bool): Whether to automatically tune NPAR to be sqrt( number of cores) as recommended by VASP for DFT calculations. Generally, this results in significant speedups. Defaults to True. Set to False for HF, GW and RPA calculations. ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. Returns: List of two jobs corresponding to an AFLOW style run. """ incar_update = {"ISTART": 1} if ediffg: incar_update["EDIFFG"] = ediffg settings_overide_1 = None settings_overide_2 = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if half_kpts_first_relax and os.path.exists("KPOINTS") and \ os.path.exists("POSCAR"): kpts = Kpoints.from_file("KPOINTS") orig_kpts_dict = kpts.as_dict() # lattice vectors with length < 8 will get >1 KPOINT kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int).tolist() low_kpts_dict = kpts.as_dict() settings_overide_1 = [ {"dict": "KPOINTS", "action": {"_set": low_kpts_dict}} ] settings_overide_2.append( {"dict": "KPOINTS", "action": {"_set": orig_kpts_dict}} ) return [VaspJob(vasp_cmd, final=False, suffix=".relax1", auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False, suffix=".relax2", auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_2)]
Returns a list of two jobs corresponding to an AFLOW style double relaxation run. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] auto_npar (bool): Whether to automatically tune NPAR to be sqrt( number of cores) as recommended by VASP for DFT calculations. Generally, this results in significant speedups. Defaults to True. Set to False for HF, GW and RPA calculations. ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. Returns: List of two jobs corresponding to an AFLOW style run.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L244-L298
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.metagga_opt_run
def metagga_opt_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=False, auto_continue=False): """ Returns a list of thres jobs to perform an optimization for any metaGGA functional. There is an initial calculation of the GGA wavefunction which is fed into the initial metaGGA optimization to precondition the electronic structure optimizer. The metaGGA optimization is performed using the double relaxation scheme """ incar = Incar.from_file("INCAR") # Defaults to using the SCAN metaGGA metaGGA = incar.get("METAGGA", "SCAN") # Pre optimze WAVECAR and structure using regular GGA pre_opt_setings = [{"dict": "INCAR", "action": {"_set": {"METAGGA": None, "LWAVE": True, "NSW": 0}}}] jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix=".precondition", settings_override=pre_opt_setings)] # Finish with regular double relaxation style run using SCAN jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar, ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax)) # Ensure the first relaxation doesn't overwrite the original inputs jobs[1].backup = False # Update double_relaxation job to start from pre-optimized run post_opt_settings = [{"dict": "INCAR", "action": {"_set": {"METAGGA": metaGGA, "ISTART": 1, "NSW": incar.get("NSW", 99), "LWAVE": incar.get("LWAVE", False)}}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if jobs[1].settings_override: post_opt_settings = jobs[1].settings_override + post_opt_settings jobs[1].settings_override = post_opt_settings return jobs
python
def metagga_opt_run(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=False, auto_continue=False): """ Returns a list of thres jobs to perform an optimization for any metaGGA functional. There is an initial calculation of the GGA wavefunction which is fed into the initial metaGGA optimization to precondition the electronic structure optimizer. The metaGGA optimization is performed using the double relaxation scheme """ incar = Incar.from_file("INCAR") # Defaults to using the SCAN metaGGA metaGGA = incar.get("METAGGA", "SCAN") # Pre optimze WAVECAR and structure using regular GGA pre_opt_setings = [{"dict": "INCAR", "action": {"_set": {"METAGGA": None, "LWAVE": True, "NSW": 0}}}] jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix=".precondition", settings_override=pre_opt_setings)] # Finish with regular double relaxation style run using SCAN jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar, ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax)) # Ensure the first relaxation doesn't overwrite the original inputs jobs[1].backup = False # Update double_relaxation job to start from pre-optimized run post_opt_settings = [{"dict": "INCAR", "action": {"_set": {"METAGGA": metaGGA, "ISTART": 1, "NSW": incar.get("NSW", 99), "LWAVE": incar.get("LWAVE", False)}}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if jobs[1].settings_override: post_opt_settings = jobs[1].settings_override + post_opt_settings jobs[1].settings_override = post_opt_settings return jobs
Returns a list of thres jobs to perform an optimization for any metaGGA functional. There is an initial calculation of the GGA wavefunction which is fed into the initial metaGGA optimization to precondition the electronic structure optimizer. The metaGGA optimization is performed using the double relaxation scheme
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L301-L343
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.full_opt_run
def full_opt_run(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05, half_kpts_first_relax=False, **vasp_job_kwargs): """ Returns a generator of jobs for a full optimization run. Basically, this runs an infinite series of geometry optimization jobs until the % vol change in a particular optimization is less than vol_change_tol. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] vol_change_tol (float): The tolerance at which to stop a run. Defaults to 0.05, i.e., 5%. max_steps (int): The maximum number of runs. Defaults to 10 ( highly unlikely that this limit is ever reached). ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs. """ for i in range(max_steps): if i == 0: settings = None backup = True if half_kpts_first_relax and os.path.exists("KPOINTS") and \ os.path.exists("POSCAR"): kpts = Kpoints.from_file("KPOINTS") orig_kpts_dict = kpts.as_dict() kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist() low_kpts_dict = kpts.as_dict() settings = [ {"dict": "KPOINTS", "action": {"_set": low_kpts_dict}} ] else: backup = False initial = Poscar.from_file("POSCAR").structure final = Poscar.from_file("CONTCAR").structure vol_change = (final.volume - initial.volume) / initial.volume logger.info("Vol change = %.1f %%!" % (vol_change * 100)) if abs(vol_change) < vol_change_tol: logger.info("Stopping optimization!") break else: incar_update = {"ISTART": 1} if ediffg: incar_update["EDIFFG"] = ediffg settings = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if i == 1 and half_kpts_first_relax: settings.append({"dict": "KPOINTS", "action": {"_set": orig_kpts_dict}}) logger.info("Generating job = %d!" % (i+1)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=".relax%d" % (i+1), settings_override=settings, **vasp_job_kwargs)
python
def full_opt_run(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05, half_kpts_first_relax=False, **vasp_job_kwargs): """ Returns a generator of jobs for a full optimization run. Basically, this runs an infinite series of geometry optimization jobs until the % vol change in a particular optimization is less than vol_change_tol. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] vol_change_tol (float): The tolerance at which to stop a run. Defaults to 0.05, i.e., 5%. max_steps (int): The maximum number of runs. Defaults to 10 ( highly unlikely that this limit is ever reached). ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs. """ for i in range(max_steps): if i == 0: settings = None backup = True if half_kpts_first_relax and os.path.exists("KPOINTS") and \ os.path.exists("POSCAR"): kpts = Kpoints.from_file("KPOINTS") orig_kpts_dict = kpts.as_dict() kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist() low_kpts_dict = kpts.as_dict() settings = [ {"dict": "KPOINTS", "action": {"_set": low_kpts_dict}} ] else: backup = False initial = Poscar.from_file("POSCAR").structure final = Poscar.from_file("CONTCAR").structure vol_change = (final.volume - initial.volume) / initial.volume logger.info("Vol change = %.1f %%!" % (vol_change * 100)) if abs(vol_change) < vol_change_tol: logger.info("Stopping optimization!") break else: incar_update = {"ISTART": 1} if ediffg: incar_update["EDIFFG"] = ediffg settings = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": "CONTCAR", "action": {"_file_copy": {"dest": "POSCAR"}}}] if i == 1 and half_kpts_first_relax: settings.append({"dict": "KPOINTS", "action": {"_set": orig_kpts_dict}}) logger.info("Generating job = %d!" % (i+1)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=".relax%d" % (i+1), settings_override=settings, **vasp_job_kwargs)
Returns a generator of jobs for a full optimization run. Basically, this runs an infinite series of geometry optimization jobs until the % vol change in a particular optimization is less than vol_change_tol. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] vol_change_tol (float): The tolerance at which to stop a run. Defaults to 0.05, i.e., 5%. max_steps (int): The maximum number of runs. Defaults to 10 ( highly unlikely that this limit is ever reached). ediffg (float): Force convergence criteria for subsequent runs ( ignored for the initial run.) half_kpts_first_relax (bool): Whether to halve the kpoint grid for the first relaxation. Speeds up difficult convergence considerably. Defaults to False. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L346-L412
materialsproject/custodian
custodian/vasp/jobs.py
VaspJob.constrained_opt_run
def constrained_opt_run(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True, max_steps=20, algo="bfgs", **vasp_job_kwargs): """ Returns a generator of jobs for a constrained optimization run. Typical use case is when you want to approximate a biaxial strain situation, e.g., you apply a defined strain to a and b directions of the lattice, but allows the c-direction to relax. Some guidelines on the use of this method: i. It is recommended you do not use the Auto kpoint generation. The grid generated via Auto may fluctuate with changes in lattice param, resulting in numerical noise. ii. Make sure your EDIFF/EDIFFG is properly set in your INCAR. The optimization relies on these values to determine convergence. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] lattice_direction (str): Which direction to relax. Valid values are "a", "b" or "c". initial_strain (float): An initial strain to be applied to the lattice_direction. This can usually be estimated as the negative of the strain applied in the other two directions. E.g., if you apply a tensile strain of 0.05 to the a and b directions, you can use -0.05 as a reasonable first guess for initial strain. atom_relax (bool): Whether to relax atomic positions. max_steps (int): The maximum number of runs. Defaults to 20 ( highly unlikely that this limit is ever reached). algo (str): Algorithm to use to find minimum. Default is "bfgs", which is fast, but can be sensitive to numerical noise in energy calculations. The alternative is "bisection", which is more robust but can be a bit slow. The code does fall back on the bisection when bfgs gives a non-sensical result, e.g., negative lattice params. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs. At the end of the run, an "EOS.txt" is written which provides a quick look at the E vs lattice parameter. """ nsw = 99 if atom_relax else 0 incar = Incar.from_file("INCAR") # Set the energy convergence criteria as the EDIFFG (if present) or # 10 x EDIFF (which itself defaults to 1e-4 if not present). if incar.get("EDIFFG") and incar.get("EDIFFG") > 0: etol = incar["EDIFFG"] else: etol = incar.get("EDIFF", 1e-4) * 10 if lattice_direction == "a": lattice_index = 0 elif lattice_direction == "b": lattice_index = 1 else: lattice_index = 2 energies = {} for i in range(max_steps): if i == 0: settings = [ {"dict": "INCAR", "action": {"_set": {"ISIF": 2, "NSW": nsw}}}] structure = Poscar.from_file("POSCAR").structure x = structure.lattice.abc[lattice_index] backup = True else: backup = False v = Vasprun("vasprun.xml") structure = v.final_structure energy = v.final_energy lattice = structure.lattice x = lattice.abc[lattice_index] energies[x] = energy if i == 1: x *= (1 + initial_strain) else: # Sort the lattice parameter by energies. min_x = min(energies.keys(), key=lambda e: energies[e]) sorted_x = sorted(energies.keys()) ind = sorted_x.index(min_x) if ind == 0: other = ind + 1 elif ind == len(sorted_x) - 1: other = ind - 1 else: other = ind + 1 \ if energies[sorted_x[ind + 1]] \ < energies[sorted_x[ind - 1]] \ else ind - 1 if abs(energies[min_x] - energies[sorted_x[other]]) < etol: logger.info("Stopping optimization! Final %s = %f" % (lattice_direction, min_x)) break if ind == 0 and len(sorted_x) > 2: # Lowest energy lies outside of range of lowest value. # we decrease the lattice parameter in the next # iteration to find a minimum. This applies only when # there are at least 3 values. x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0]) logger.info("Lowest energy lies below bounds. " "Setting %s = %f." % (lattice_direction, x)) elif ind == len(sorted_x) - 1 and len(sorted_x) > 2: # Lowest energy lies outside of range of highest value. # we increase the lattice parameter in the next # iteration to find a minimum. This applies only when # there are at least 3 values. x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2]) logger.info("Lowest energy lies above bounds. " "Setting %s = %f." % (lattice_direction, x)) else: if algo.lower() == "bfgs" and len(sorted_x) >= 4: try: # If there are more than 4 data points, we will # do a quadratic fit to accelerate convergence. x1 = list(energies.keys()) y1 = [energies[j] for j in x1] z1 = np.polyfit(x1, y1, 2) pp = np.poly1d(z1) from scipy.optimize import minimize result = minimize( pp, min_x, bounds=[(sorted_x[0], sorted_x[-1])]) if (not result.success) or result.x[0] < 0: raise ValueError( "Negative lattice constant!") x = result.x[0] logger.info("BFGS minimized %s = %f." % (lattice_direction, x)) except ValueError as ex: # Fall back on bisection algo if the bfgs fails. logger.info(str(ex)) x = (min_x + sorted_x[other]) / 2 logger.info("Falling back on bisection %s = %f." % (lattice_direction, x)) else: x = (min_x + sorted_x[other]) / 2 logger.info("Bisection %s = %f." % (lattice_direction, x)) lattice = lattice.matrix lattice[lattice_index] = lattice[lattice_index] / \ np.linalg.norm(lattice[lattice_index]) * x s = Structure(lattice, structure.species, structure.frac_coords) fname = "POSCAR.%f" % x s.to(filename=fname) incar_update = {"ISTART": 1, "NSW": nsw, "ISIF": 2} settings = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": fname, "action": {"_file_copy": {"dest": "POSCAR"}}}] logger.info("Generating job = %d with parameter %f!" % (i + 1, x)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=".static.%f" % x, settings_override=settings, **vasp_job_kwargs) with open("EOS.txt", "wt") as f: f.write("# %s energy\n" % lattice_direction) for k in sorted(energies.keys()): f.write("%f %f\n" % (k, energies[k]))
python
def constrained_opt_run(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True, max_steps=20, algo="bfgs", **vasp_job_kwargs): """ Returns a generator of jobs for a constrained optimization run. Typical use case is when you want to approximate a biaxial strain situation, e.g., you apply a defined strain to a and b directions of the lattice, but allows the c-direction to relax. Some guidelines on the use of this method: i. It is recommended you do not use the Auto kpoint generation. The grid generated via Auto may fluctuate with changes in lattice param, resulting in numerical noise. ii. Make sure your EDIFF/EDIFFG is properly set in your INCAR. The optimization relies on these values to determine convergence. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] lattice_direction (str): Which direction to relax. Valid values are "a", "b" or "c". initial_strain (float): An initial strain to be applied to the lattice_direction. This can usually be estimated as the negative of the strain applied in the other two directions. E.g., if you apply a tensile strain of 0.05 to the a and b directions, you can use -0.05 as a reasonable first guess for initial strain. atom_relax (bool): Whether to relax atomic positions. max_steps (int): The maximum number of runs. Defaults to 20 ( highly unlikely that this limit is ever reached). algo (str): Algorithm to use to find minimum. Default is "bfgs", which is fast, but can be sensitive to numerical noise in energy calculations. The alternative is "bisection", which is more robust but can be a bit slow. The code does fall back on the bisection when bfgs gives a non-sensical result, e.g., negative lattice params. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs. At the end of the run, an "EOS.txt" is written which provides a quick look at the E vs lattice parameter. """ nsw = 99 if atom_relax else 0 incar = Incar.from_file("INCAR") # Set the energy convergence criteria as the EDIFFG (if present) or # 10 x EDIFF (which itself defaults to 1e-4 if not present). if incar.get("EDIFFG") and incar.get("EDIFFG") > 0: etol = incar["EDIFFG"] else: etol = incar.get("EDIFF", 1e-4) * 10 if lattice_direction == "a": lattice_index = 0 elif lattice_direction == "b": lattice_index = 1 else: lattice_index = 2 energies = {} for i in range(max_steps): if i == 0: settings = [ {"dict": "INCAR", "action": {"_set": {"ISIF": 2, "NSW": nsw}}}] structure = Poscar.from_file("POSCAR").structure x = structure.lattice.abc[lattice_index] backup = True else: backup = False v = Vasprun("vasprun.xml") structure = v.final_structure energy = v.final_energy lattice = structure.lattice x = lattice.abc[lattice_index] energies[x] = energy if i == 1: x *= (1 + initial_strain) else: # Sort the lattice parameter by energies. min_x = min(energies.keys(), key=lambda e: energies[e]) sorted_x = sorted(energies.keys()) ind = sorted_x.index(min_x) if ind == 0: other = ind + 1 elif ind == len(sorted_x) - 1: other = ind - 1 else: other = ind + 1 \ if energies[sorted_x[ind + 1]] \ < energies[sorted_x[ind - 1]] \ else ind - 1 if abs(energies[min_x] - energies[sorted_x[other]]) < etol: logger.info("Stopping optimization! Final %s = %f" % (lattice_direction, min_x)) break if ind == 0 and len(sorted_x) > 2: # Lowest energy lies outside of range of lowest value. # we decrease the lattice parameter in the next # iteration to find a minimum. This applies only when # there are at least 3 values. x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0]) logger.info("Lowest energy lies below bounds. " "Setting %s = %f." % (lattice_direction, x)) elif ind == len(sorted_x) - 1 and len(sorted_x) > 2: # Lowest energy lies outside of range of highest value. # we increase the lattice parameter in the next # iteration to find a minimum. This applies only when # there are at least 3 values. x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2]) logger.info("Lowest energy lies above bounds. " "Setting %s = %f." % (lattice_direction, x)) else: if algo.lower() == "bfgs" and len(sorted_x) >= 4: try: # If there are more than 4 data points, we will # do a quadratic fit to accelerate convergence. x1 = list(energies.keys()) y1 = [energies[j] for j in x1] z1 = np.polyfit(x1, y1, 2) pp = np.poly1d(z1) from scipy.optimize import minimize result = minimize( pp, min_x, bounds=[(sorted_x[0], sorted_x[-1])]) if (not result.success) or result.x[0] < 0: raise ValueError( "Negative lattice constant!") x = result.x[0] logger.info("BFGS minimized %s = %f." % (lattice_direction, x)) except ValueError as ex: # Fall back on bisection algo if the bfgs fails. logger.info(str(ex)) x = (min_x + sorted_x[other]) / 2 logger.info("Falling back on bisection %s = %f." % (lattice_direction, x)) else: x = (min_x + sorted_x[other]) / 2 logger.info("Bisection %s = %f." % (lattice_direction, x)) lattice = lattice.matrix lattice[lattice_index] = lattice[lattice_index] / \ np.linalg.norm(lattice[lattice_index]) * x s = Structure(lattice, structure.species, structure.frac_coords) fname = "POSCAR.%f" % x s.to(filename=fname) incar_update = {"ISTART": 1, "NSW": nsw, "ISIF": 2} settings = [ {"dict": "INCAR", "action": {"_set": incar_update}}, {"file": fname, "action": {"_file_copy": {"dest": "POSCAR"}}}] logger.info("Generating job = %d with parameter %f!" % (i + 1, x)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=".static.%f" % x, settings_override=settings, **vasp_job_kwargs) with open("EOS.txt", "wt") as f: f.write("# %s energy\n" % lattice_direction) for k in sorted(energies.keys()): f.write("%f %f\n" % (k, energies[k]))
Returns a generator of jobs for a constrained optimization run. Typical use case is when you want to approximate a biaxial strain situation, e.g., you apply a defined strain to a and b directions of the lattice, but allows the c-direction to relax. Some guidelines on the use of this method: i. It is recommended you do not use the Auto kpoint generation. The grid generated via Auto may fluctuate with changes in lattice param, resulting in numerical noise. ii. Make sure your EDIFF/EDIFFG is properly set in your INCAR. The optimization relies on these values to determine convergence. Args: vasp_cmd (str): Command to run vasp as a list of args. For example, if you are using mpirun, it can be something like ["mpirun", "pvasp.5.2.11"] lattice_direction (str): Which direction to relax. Valid values are "a", "b" or "c". initial_strain (float): An initial strain to be applied to the lattice_direction. This can usually be estimated as the negative of the strain applied in the other two directions. E.g., if you apply a tensile strain of 0.05 to the a and b directions, you can use -0.05 as a reasonable first guess for initial strain. atom_relax (bool): Whether to relax atomic positions. max_steps (int): The maximum number of runs. Defaults to 20 ( highly unlikely that this limit is ever reached). algo (str): Algorithm to use to find minimum. Default is "bfgs", which is fast, but can be sensitive to numerical noise in energy calculations. The alternative is "bisection", which is more robust but can be a bit slow. The code does fall back on the bisection when bfgs gives a non-sensical result, e.g., negative lattice params. \*\*vasp_job_kwargs: Passthrough kwargs to VaspJob. See :class:`custodian.vasp.jobs.VaspJob`. Returns: Generator of jobs. At the end of the run, an "EOS.txt" is written which provides a quick look at the E vs lattice parameter.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L415-L590
materialsproject/custodian
custodian/vasp/jobs.py
VaspNEBJob.setup
def setup(self): """ Performs initial setup for VaspNEBJob, including overriding any settings and backing up. """ neb_dirs = self.neb_dirs if self.backup: # Back up KPOINTS, INCAR, POTCAR for f in VASP_NEB_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) # Back up POSCARs for path in neb_dirs: poscar = os.path.join(path, "POSCAR") shutil.copy(poscar, "{}.orig".format(poscar)) if self.half_kpts and os.path.exists("KPOINTS"): kpts = Kpoints.from_file("KPOINTS") kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1) kpts.kpts = kpts.kpts.astype(int).tolist() if tuple(kpts.kpts[0]) == (1, 1, 1): kpt_dic = kpts.as_dict() kpt_dic["generation_style"] = 'Gamma' kpts = Kpoints.from_dict(kpt_dic) kpts.write_file("KPOINTS") if self.auto_npar: try: incar = Incar.from_file("INCAR") import multiprocessing # Try sge environment variable first # (since multiprocessing counts cores on the current # machine only) ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar["NPAR"] = npar break incar.write_file("INCAR") except: pass if self.auto_continue and \ os.path.exists("STOPCAR") and \ not os.access("STOPCAR", os.W_OK): # Remove STOPCAR os.chmod("STOPCAR", 0o644) os.remove("STOPCAR") # Copy CONTCAR to POSCAR for path in self.neb_sub: contcar = os.path.join(path, "CONTCAR") poscar = os.path.join(path, "POSCAR") shutil.copy(contcar, poscar) if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
python
def setup(self): """ Performs initial setup for VaspNEBJob, including overriding any settings and backing up. """ neb_dirs = self.neb_dirs if self.backup: # Back up KPOINTS, INCAR, POTCAR for f in VASP_NEB_INPUT_FILES: shutil.copy(f, "{}.orig".format(f)) # Back up POSCARs for path in neb_dirs: poscar = os.path.join(path, "POSCAR") shutil.copy(poscar, "{}.orig".format(poscar)) if self.half_kpts and os.path.exists("KPOINTS"): kpts = Kpoints.from_file("KPOINTS") kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1) kpts.kpts = kpts.kpts.astype(int).tolist() if tuple(kpts.kpts[0]) == (1, 1, 1): kpt_dic = kpts.as_dict() kpt_dic["generation_style"] = 'Gamma' kpts = Kpoints.from_dict(kpt_dic) kpts.write_file("KPOINTS") if self.auto_npar: try: incar = Incar.from_file("INCAR") import multiprocessing # Try sge environment variable first # (since multiprocessing counts cores on the current # machine only) ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar["NPAR"] = npar break incar.write_file("INCAR") except: pass if self.auto_continue and \ os.path.exists("STOPCAR") and \ not os.access("STOPCAR", os.W_OK): # Remove STOPCAR os.chmod("STOPCAR", 0o644) os.remove("STOPCAR") # Copy CONTCAR to POSCAR for path in self.neb_sub: contcar = os.path.join(path, "CONTCAR") poscar = os.path.join(path, "POSCAR") shutil.copy(contcar, poscar) if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
Performs initial setup for VaspNEBJob, including overriding any settings and backing up.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L686-L744
materialsproject/custodian
custodian/vasp/jobs.py
VaspNEBJob.postprocess
def postprocess(self): """ Postprocessing includes renaming and gzipping where necessary. """ # Add suffix to all sub_dir/{items} for path in self.neb_dirs: for f in VASP_NEB_OUTPUT_SUB_FILES: f = os.path.join(path, f) if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix)) # Add suffix to all output files for f in VASP_NEB_OUTPUT_FILES + [self.output_file]: if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix))
python
def postprocess(self): """ Postprocessing includes renaming and gzipping where necessary. """ # Add suffix to all sub_dir/{items} for path in self.neb_dirs: for f in VASP_NEB_OUTPUT_SUB_FILES: f = os.path.join(path, f) if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix)) # Add suffix to all output files for f in VASP_NEB_OUTPUT_FILES + [self.output_file]: if os.path.exists(f): if self.final and self.suffix != "": shutil.move(f, "{}{}".format(f, self.suffix)) elif self.suffix != "": shutil.copy(f, "{}{}".format(f, self.suffix))
Postprocessing includes renaming and gzipping where necessary.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/vasp/jobs.py#L771-L791
materialsproject/custodian
custodian/nwchem/jobs.py
NwchemJob.setup
def setup(self): """ Performs backup if necessary. """ if self.backup: shutil.copy(self.input_file, "{}.orig".format(self.input_file))
python
def setup(self): """ Performs backup if necessary. """ if self.backup: shutil.copy(self.input_file, "{}.orig".format(self.input_file))
Performs backup if necessary.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/nwchem/jobs.py#L58-L63
materialsproject/custodian
custodian/nwchem/jobs.py
NwchemJob.run
def run(self): """ Performs actual nwchem run. """ with zopen(self.output_file, 'w') as fout: return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout=fout)
python
def run(self): """ Performs actual nwchem run. """ with zopen(self.output_file, 'w') as fout: return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout=fout)
Performs actual nwchem run.
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/nwchem/jobs.py#L65-L71
wdecoster/nanofilt
nanofilt/NanoFilt.py
valid_GC
def valid_GC(x): """type function for argparse to check GC values. Check if the supplied value for minGC and maxGC is a valid input, being between 0 and 1 """ x = float(x) if x < 0.0 or x > 1.0: raise ArgumentTypeError("{} not in range [0.0, 1.0]".format(x)) return x
python
def valid_GC(x): """type function for argparse to check GC values. Check if the supplied value for minGC and maxGC is a valid input, being between 0 and 1 """ x = float(x) if x < 0.0 or x > 1.0: raise ArgumentTypeError("{} not in range [0.0, 1.0]".format(x)) return x
type function for argparse to check GC values. Check if the supplied value for minGC and maxGC is a valid input, being between 0 and 1
https://github.com/wdecoster/nanofilt/blob/513bdc529317bebbd743c0dff799472f35d92f45/nanofilt/NanoFilt.py#L157-L165
wdecoster/nanofilt
nanofilt/NanoFilt.py
filter_stream
def filter_stream(fq, args): """Filter a fastq file on stdin. Print fastq record to stdout if it passes - quality filter (optional) - length filter (optional) - min/maxGC filter (optional) Optionally trim a number of nucleotides from beginning and end. Record has to be longer than args.length (default 1) after trimming Use a faster silent quality_check if no filtering on quality is required """ if args.quality: quality_check = ave_qual else: quality_check = silent_quality_check minlen = args.length + int(args.headcrop or 0) - (int(args.tailcrop or 0)) for rec in SeqIO.parse(fq, "fastq"): if args.GC_filter: gc = (rec.seq.upper().count("C") + rec.seq.upper().count("G")) / len(rec) else: gc = 0.50 # dummy variable if quality_check(rec.letter_annotations["phred_quality"]) > args.quality \ and minlen <= len(rec) <= args.maxlength \ and args.minGC <= gc <= args.maxGC: print(rec[args.headcrop:args.tailcrop].format("fastq"), end="")
python
def filter_stream(fq, args): """Filter a fastq file on stdin. Print fastq record to stdout if it passes - quality filter (optional) - length filter (optional) - min/maxGC filter (optional) Optionally trim a number of nucleotides from beginning and end. Record has to be longer than args.length (default 1) after trimming Use a faster silent quality_check if no filtering on quality is required """ if args.quality: quality_check = ave_qual else: quality_check = silent_quality_check minlen = args.length + int(args.headcrop or 0) - (int(args.tailcrop or 0)) for rec in SeqIO.parse(fq, "fastq"): if args.GC_filter: gc = (rec.seq.upper().count("C") + rec.seq.upper().count("G")) / len(rec) else: gc = 0.50 # dummy variable if quality_check(rec.letter_annotations["phred_quality"]) > args.quality \ and minlen <= len(rec) <= args.maxlength \ and args.minGC <= gc <= args.maxGC: print(rec[args.headcrop:args.tailcrop].format("fastq"), end="")
Filter a fastq file on stdin. Print fastq record to stdout if it passes - quality filter (optional) - length filter (optional) - min/maxGC filter (optional) Optionally trim a number of nucleotides from beginning and end. Record has to be longer than args.length (default 1) after trimming Use a faster silent quality_check if no filtering on quality is required
https://github.com/wdecoster/nanofilt/blob/513bdc529317bebbd743c0dff799472f35d92f45/nanofilt/NanoFilt.py#L173-L197
wdecoster/nanofilt
nanofilt/NanoFilt.py
filter_using_summary
def filter_using_summary(fq, args): """Use quality scores from albacore summary file for filtering Use the summary file from albacore for more accurate quality estimate Get the dataframe from nanoget, convert to dictionary """ data = {entry[0]: entry[1] for entry in process_summary( summaryfile=args.summary, threads="NA", readtype=args.readtype, barcoded=False)[ ["readIDs", "quals"]].itertuples(index=False)} try: for record in SeqIO.parse(fq, "fastq"): if data[record.id] > args.quality \ and args.length <= len(record) <= args.maxlength: print(record[args.headcrop:args.tailcrop].format("fastq"), end="") except KeyError: logging.error("mismatch between summary and fastq: \ {} was not found in the summary file.".format(record.id)) sys.exit('\nERROR: mismatch between sequencing_summary and fastq file: \ {} was not found in the summary file.\nQuitting.'.format(record.id))
python
def filter_using_summary(fq, args): """Use quality scores from albacore summary file for filtering Use the summary file from albacore for more accurate quality estimate Get the dataframe from nanoget, convert to dictionary """ data = {entry[0]: entry[1] for entry in process_summary( summaryfile=args.summary, threads="NA", readtype=args.readtype, barcoded=False)[ ["readIDs", "quals"]].itertuples(index=False)} try: for record in SeqIO.parse(fq, "fastq"): if data[record.id] > args.quality \ and args.length <= len(record) <= args.maxlength: print(record[args.headcrop:args.tailcrop].format("fastq"), end="") except KeyError: logging.error("mismatch between summary and fastq: \ {} was not found in the summary file.".format(record.id)) sys.exit('\nERROR: mismatch between sequencing_summary and fastq file: \ {} was not found in the summary file.\nQuitting.'.format(record.id))
Use quality scores from albacore summary file for filtering Use the summary file from albacore for more accurate quality estimate Get the dataframe from nanoget, convert to dictionary
https://github.com/wdecoster/nanofilt/blob/513bdc529317bebbd743c0dff799472f35d92f45/nanofilt/NanoFilt.py#L200-L221
milesrichardson/ParsePy
parse_rest/connection.py
master_key_required
def master_key_required(func): '''decorator describing methods that require the master key''' def ret(obj, *args, **kw): conn = ACCESS_KEYS if not (conn and conn.get('master_key')): message = '%s requires the master key' % func.__name__ raise core.ParseError(message) func(obj, *args, **kw) return ret
python
def master_key_required(func): '''decorator describing methods that require the master key''' def ret(obj, *args, **kw): conn = ACCESS_KEYS if not (conn and conn.get('master_key')): message = '%s requires the master key' % func.__name__ raise core.ParseError(message) func(obj, *args, **kw) return ret
decorator describing methods that require the master key
https://github.com/milesrichardson/ParsePy/blob/7c52d8a5dc63bb7c3b0b8c0c09d032b4bc7299ea/parse_rest/connection.py#L66-L74
milesrichardson/ParsePy
parse_rest/connection.py
ParseBase.execute
def execute(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw): """ if batch == False, execute a command with the given parameters and return the response JSON. If batch == True, return the dictionary that would be used in a batch command. """ if batch: urlsplitter = urlparse(API_ROOT).netloc ret = {"method": http_verb, "path": uri.split(urlsplitter, 1)[1]} if kw: ret["body"] = kw return ret if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS): raise core.ParseError('Missing connection credentials') app_id = ACCESS_KEYS.get('app_id') rest_key = ACCESS_KEYS.get('rest_key') master_key = ACCESS_KEYS.get('master_key') url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri if _body is None: data = kw and json.dumps(kw, default=date_handler) or "{}" else: data = _body if http_verb == 'GET' and data: url += '?%s' % urlencode(kw) data = None else: if cls.__name__ == 'File': data = data else: data = data.encode('utf-8') headers = { 'Content-type': 'application/json', 'X-Parse-Application-Id': app_id, 'X-Parse-REST-API-Key': rest_key } headers.update(extra_headers or {}) if cls.__name__ == 'File': request = Request(url.encode('utf-8'), data, headers) else: request = Request(url, data, headers) if ACCESS_KEYS.get('session_token'): request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get('session_token')) elif master_key: request.add_header('X-Parse-Master-Key', master_key) request.get_method = lambda: http_verb try: response = urlopen(request, timeout=CONNECTION_TIMEOUT) except HTTPError as e: exc = { 400: core.ResourceRequestBadRequest, 401: core.ResourceRequestLoginRequired, 403: core.ResourceRequestForbidden, 404: core.ResourceRequestNotFound }.get(e.code, core.ParseError) raise exc(e.read()) return json.loads(response.read().decode('utf-8'))
python
def execute(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw): """ if batch == False, execute a command with the given parameters and return the response JSON. If batch == True, return the dictionary that would be used in a batch command. """ if batch: urlsplitter = urlparse(API_ROOT).netloc ret = {"method": http_verb, "path": uri.split(urlsplitter, 1)[1]} if kw: ret["body"] = kw return ret if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS): raise core.ParseError('Missing connection credentials') app_id = ACCESS_KEYS.get('app_id') rest_key = ACCESS_KEYS.get('rest_key') master_key = ACCESS_KEYS.get('master_key') url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri if _body is None: data = kw and json.dumps(kw, default=date_handler) or "{}" else: data = _body if http_verb == 'GET' and data: url += '?%s' % urlencode(kw) data = None else: if cls.__name__ == 'File': data = data else: data = data.encode('utf-8') headers = { 'Content-type': 'application/json', 'X-Parse-Application-Id': app_id, 'X-Parse-REST-API-Key': rest_key } headers.update(extra_headers or {}) if cls.__name__ == 'File': request = Request(url.encode('utf-8'), data, headers) else: request = Request(url, data, headers) if ACCESS_KEYS.get('session_token'): request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get('session_token')) elif master_key: request.add_header('X-Parse-Master-Key', master_key) request.get_method = lambda: http_verb try: response = urlopen(request, timeout=CONNECTION_TIMEOUT) except HTTPError as e: exc = { 400: core.ResourceRequestBadRequest, 401: core.ResourceRequestLoginRequired, 403: core.ResourceRequestForbidden, 404: core.ResourceRequestNotFound }.get(e.code, core.ParseError) raise exc(e.read()) return json.loads(response.read().decode('utf-8'))
if batch == False, execute a command with the given parameters and return the response JSON. If batch == True, return the dictionary that would be used in a batch command.
https://github.com/milesrichardson/ParsePy/blob/7c52d8a5dc63bb7c3b0b8c0c09d032b4bc7299ea/parse_rest/connection.py#L85-L150