repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/base_handler.py
JsonHandler.base_path
def base_path(self): """Base path for all mapreduce-related urls. JSON handlers are mapped to /base_path/command/command_name thus they require special treatment. Raises: BadRequestPathError: if the path does not end with "/command". Returns: The base path. """ path = self.request.path base_path = path[:path.rfind("/")] if not base_path.endswith("/command"): raise BadRequestPathError( "Json handlers should have /command path prefix") return base_path[:base_path.rfind("/")]
python
def base_path(self): """Base path for all mapreduce-related urls. JSON handlers are mapped to /base_path/command/command_name thus they require special treatment. Raises: BadRequestPathError: if the path does not end with "/command". Returns: The base path. """ path = self.request.path base_path = path[:path.rfind("/")] if not base_path.endswith("/command"): raise BadRequestPathError( "Json handlers should have /command path prefix") return base_path[:base_path.rfind("/")]
Base path for all mapreduce-related urls. JSON handlers are mapped to /base_path/command/command_name thus they require special treatment. Raises: BadRequestPathError: if the path does not end with "/command". Returns: The base path.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/base_handler.py#L189-L206
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/base_handler.py
JsonHandler._handle_wrapper
def _handle_wrapper(self): """The helper method for handling JSON Post and Get requests.""" if self.request.headers.get("X-Requested-With") != "XMLHttpRequest": logging.error("Got JSON request with no X-Requested-With header") self.response.set_status( 403, message="Got JSON request with no X-Requested-With header") return self.json_response.clear() try: self.handle() except errors.MissingYamlError: logging.debug("Could not find 'mapreduce.yaml' file.") self.json_response.clear() self.json_response["error_class"] = "Notice" self.json_response["error_message"] = "Could not find 'mapreduce.yaml'" except Exception, e: logging.exception("Error in JsonHandler, returning exception.") # TODO(user): Include full traceback here for the end-user. self.json_response.clear() self.json_response["error_class"] = e.__class__.__name__ self.json_response["error_message"] = str(e) self.response.headers["Content-Type"] = "text/javascript" try: output = json.dumps(self.json_response, cls=json_util.JsonEncoder) # pylint: disable=broad-except except Exception, e: logging.exception("Could not serialize to JSON") self.response.set_status(500, message="Could not serialize to JSON") return else: self.response.out.write(output)
python
def _handle_wrapper(self): """The helper method for handling JSON Post and Get requests.""" if self.request.headers.get("X-Requested-With") != "XMLHttpRequest": logging.error("Got JSON request with no X-Requested-With header") self.response.set_status( 403, message="Got JSON request with no X-Requested-With header") return self.json_response.clear() try: self.handle() except errors.MissingYamlError: logging.debug("Could not find 'mapreduce.yaml' file.") self.json_response.clear() self.json_response["error_class"] = "Notice" self.json_response["error_message"] = "Could not find 'mapreduce.yaml'" except Exception, e: logging.exception("Error in JsonHandler, returning exception.") # TODO(user): Include full traceback here for the end-user. self.json_response.clear() self.json_response["error_class"] = e.__class__.__name__ self.json_response["error_message"] = str(e) self.response.headers["Content-Type"] = "text/javascript" try: output = json.dumps(self.json_response, cls=json_util.JsonEncoder) # pylint: disable=broad-except except Exception, e: logging.exception("Could not serialize to JSON") self.response.set_status(500, message="Could not serialize to JSON") return else: self.response.out.write(output)
The helper method for handling JSON Post and Get requests.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/base_handler.py#L208-L240
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/tools/gcs_file_seg_reader.py
_GCSFileSegReader.read
def read(self, n): """Read data from file segs. Args: n: max bytes to read. Must be positive. Returns: some bytes. May be smaller than n bytes. "" when no more data is left. """ if self._EOF: return "" while self._seg_index <= self._last_seg_index: result = self._read_from_seg(n) if result != "": return result else: self._next_seg() self._EOF = True return ""
python
def read(self, n): """Read data from file segs. Args: n: max bytes to read. Must be positive. Returns: some bytes. May be smaller than n bytes. "" when no more data is left. """ if self._EOF: return "" while self._seg_index <= self._last_seg_index: result = self._read_from_seg(n) if result != "": return result else: self._next_seg() self._EOF = True return ""
Read data from file segs. Args: n: max bytes to read. Must be positive. Returns: some bytes. May be smaller than n bytes. "" when no more data is left.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/tools/gcs_file_seg_reader.py#L62-L82
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/tools/gcs_file_seg_reader.py
_GCSFileSegReader._next_seg
def _next_seg(self): """Get next seg.""" if self._seg: self._seg.close() self._seg_index += 1 if self._seg_index > self._last_seg_index: self._seg = None return filename = self._seg_prefix + str(self._seg_index) stat = cloudstorage.stat(filename) writer = output_writers._GoogleCloudStorageOutputWriter if writer._VALID_LENGTH not in stat.metadata: raise ValueError( "Expect %s in metadata for file %s." % (writer._VALID_LENGTH, filename)) self._seg_valid_length = int(stat.metadata[writer._VALID_LENGTH]) if self._seg_valid_length > stat.st_size: raise ValueError( "Valid length %s is too big for file %s of length %s" % (self._seg_valid_length, filename, stat.st_size)) self._seg = cloudstorage.open(filename)
python
def _next_seg(self): """Get next seg.""" if self._seg: self._seg.close() self._seg_index += 1 if self._seg_index > self._last_seg_index: self._seg = None return filename = self._seg_prefix + str(self._seg_index) stat = cloudstorage.stat(filename) writer = output_writers._GoogleCloudStorageOutputWriter if writer._VALID_LENGTH not in stat.metadata: raise ValueError( "Expect %s in metadata for file %s." % (writer._VALID_LENGTH, filename)) self._seg_valid_length = int(stat.metadata[writer._VALID_LENGTH]) if self._seg_valid_length > stat.st_size: raise ValueError( "Valid length %s is too big for file %s of length %s" % (self._seg_valid_length, filename, stat.st_size)) self._seg = cloudstorage.open(filename)
Get next seg.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/tools/gcs_file_seg_reader.py#L92-L113
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/tools/gcs_file_seg_reader.py
_GCSFileSegReader._read_from_seg
def _read_from_seg(self, n): """Read from current seg. Args: n: max number of bytes to read. Returns: valid bytes from the current seg. "" if no more is left. """ result = self._seg.read(size=n) if result == "": return result offset = self._seg.tell() if offset > self._seg_valid_length: extra = offset - self._seg_valid_length result = result[:-1*extra] self._offset += len(result) return result
python
def _read_from_seg(self, n): """Read from current seg. Args: n: max number of bytes to read. Returns: valid bytes from the current seg. "" if no more is left. """ result = self._seg.read(size=n) if result == "": return result offset = self._seg.tell() if offset > self._seg_valid_length: extra = offset - self._seg_valid_length result = result[:-1*extra] self._offset += len(result) return result
Read from current seg. Args: n: max number of bytes to read. Returns: valid bytes from the current seg. "" if no more is left.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/tools/gcs_file_seg_reader.py#L115-L132
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
_get_descending_key
def _get_descending_key(gettime=time.time): """Returns a key name lexically ordered by time descending. This lets us have a key name for use with Datastore entities which returns rows in time descending order when it is scanned in lexically ascending order, allowing us to bypass index building for descending indexes. Args: gettime: Used for testing. Returns: A string with a time descending key. """ now_descending = int((_FUTURE_TIME - gettime()) * 100) request_id_hash = os.environ.get("REQUEST_ID_HASH") if not request_id_hash: request_id_hash = str(random.getrandbits(32)) return "%d%s" % (now_descending, request_id_hash)
python
def _get_descending_key(gettime=time.time): """Returns a key name lexically ordered by time descending. This lets us have a key name for use with Datastore entities which returns rows in time descending order when it is scanned in lexically ascending order, allowing us to bypass index building for descending indexes. Args: gettime: Used for testing. Returns: A string with a time descending key. """ now_descending = int((_FUTURE_TIME - gettime()) * 100) request_id_hash = os.environ.get("REQUEST_ID_HASH") if not request_id_hash: request_id_hash = str(random.getrandbits(32)) return "%d%s" % (now_descending, request_id_hash)
Returns a key name lexically ordered by time descending. This lets us have a key name for use with Datastore entities which returns rows in time descending order when it is scanned in lexically ascending order, allowing us to bypass index building for descending indexes. Args: gettime: Used for testing. Returns: A string with a time descending key.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L62-L79
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
_get_task_host
def _get_task_host(): """Get the Host header value for all mr tasks. Task Host header determines which instance this task would be routed to. Current version id format is: v7.368834058928280579 Current module id is just the module's name. It could be "default" Default version hostname is app_id.appspot.com Returns: A complete host name is of format version.module.app_id.appspot.com If module is the default module, just version.app_id.appspot.com. The reason is if an app doesn't have modules enabled and the url is "version.default.app_id", "version" is ignored and "default" is used as version. If "default" version doesn't exist, the url is routed to the default version. """ version = os.environ["CURRENT_VERSION_ID"].split(".")[0] default_host = os.environ["DEFAULT_VERSION_HOSTNAME"] module = os.environ["CURRENT_MODULE_ID"] if os.environ["CURRENT_MODULE_ID"] == "default": return "%s.%s" % (version, default_host) return "%s.%s.%s" % (version, module, default_host)
python
def _get_task_host(): """Get the Host header value for all mr tasks. Task Host header determines which instance this task would be routed to. Current version id format is: v7.368834058928280579 Current module id is just the module's name. It could be "default" Default version hostname is app_id.appspot.com Returns: A complete host name is of format version.module.app_id.appspot.com If module is the default module, just version.app_id.appspot.com. The reason is if an app doesn't have modules enabled and the url is "version.default.app_id", "version" is ignored and "default" is used as version. If "default" version doesn't exist, the url is routed to the default version. """ version = os.environ["CURRENT_VERSION_ID"].split(".")[0] default_host = os.environ["DEFAULT_VERSION_HOSTNAME"] module = os.environ["CURRENT_MODULE_ID"] if os.environ["CURRENT_MODULE_ID"] == "default": return "%s.%s" % (version, default_host) return "%s.%s.%s" % (version, module, default_host)
Get the Host header value for all mr tasks. Task Host header determines which instance this task would be routed to. Current version id format is: v7.368834058928280579 Current module id is just the module's name. It could be "default" Default version hostname is app_id.appspot.com Returns: A complete host name is of format version.module.app_id.appspot.com If module is the default module, just version.app_id.appspot.com. The reason is if an app doesn't have modules enabled and the url is "version.default.app_id", "version" is ignored and "default" is used as version. If "default" version doesn't exist, the url is routed to the default version.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L82-L104
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
get_queue_name
def get_queue_name(queue_name): """Determine which queue MR should run on. How to choose the queue: 1. If user provided one, use that. 2. If we are starting a mr from taskqueue, inherit that queue. If it's a special queue, fall back to the default queue. 3. Default queue. If user is using any MR pipeline interface, pipeline.start takes a "queue_name" argument. The pipeline will run on that queue and MR will simply inherit the queue_name. Args: queue_name: queue_name from user. Maybe None. Returns: The queue name to run on. """ if queue_name: return queue_name queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", parameters.config.QUEUE_NAME) if len(queue_name) > 1 and queue_name[0:2] == "__": # We are currently in some special queue. E.g. __cron. return parameters.config.QUEUE_NAME else: return queue_name
python
def get_queue_name(queue_name): """Determine which queue MR should run on. How to choose the queue: 1. If user provided one, use that. 2. If we are starting a mr from taskqueue, inherit that queue. If it's a special queue, fall back to the default queue. 3. Default queue. If user is using any MR pipeline interface, pipeline.start takes a "queue_name" argument. The pipeline will run on that queue and MR will simply inherit the queue_name. Args: queue_name: queue_name from user. Maybe None. Returns: The queue name to run on. """ if queue_name: return queue_name queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", parameters.config.QUEUE_NAME) if len(queue_name) > 1 and queue_name[0:2] == "__": # We are currently in some special queue. E.g. __cron. return parameters.config.QUEUE_NAME else: return queue_name
Determine which queue MR should run on. How to choose the queue: 1. If user provided one, use that. 2. If we are starting a mr from taskqueue, inherit that queue. If it's a special queue, fall back to the default queue. 3. Default queue. If user is using any MR pipeline interface, pipeline.start takes a "queue_name" argument. The pipeline will run on that queue and MR will simply inherit the queue_name. Args: queue_name: queue_name from user. Maybe None. Returns: The queue name to run on.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L127-L154
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
total_seconds
def total_seconds(td): """convert a timedelta to seconds. This is patterned after timedelta.total_seconds, which is only available in python 27. Args: td: a timedelta object. Returns: total seconds within a timedelta. Rounded up to seconds. """ secs = td.seconds + td.days * 24 * 3600 if td.microseconds: secs += 1 return secs
python
def total_seconds(td): """convert a timedelta to seconds. This is patterned after timedelta.total_seconds, which is only available in python 27. Args: td: a timedelta object. Returns: total seconds within a timedelta. Rounded up to seconds. """ secs = td.seconds + td.days * 24 * 3600 if td.microseconds: secs += 1 return secs
convert a timedelta to seconds. This is patterned after timedelta.total_seconds, which is only available in python 27. Args: td: a timedelta object. Returns: total seconds within a timedelta. Rounded up to seconds.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L157-L172
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
handler_for_name
def handler_for_name(fq_name): """Resolves and instantiates handler by fully qualified name. First resolves the name using for_name call. Then if it resolves to a class, instantiates a class, if it resolves to a method - instantiates the class and binds method to the instance. Args: fq_name: fully qualified name of something to find. Returns: handler instance which is ready to be called. """ resolved_name = for_name(fq_name) if isinstance(resolved_name, (type, types.ClassType)): # create new instance if this is type return resolved_name() elif isinstance(resolved_name, types.MethodType): # bind the method return getattr(resolved_name.im_class(), resolved_name.__name__) else: return resolved_name
python
def handler_for_name(fq_name): """Resolves and instantiates handler by fully qualified name. First resolves the name using for_name call. Then if it resolves to a class, instantiates a class, if it resolves to a method - instantiates the class and binds method to the instance. Args: fq_name: fully qualified name of something to find. Returns: handler instance which is ready to be called. """ resolved_name = for_name(fq_name) if isinstance(resolved_name, (type, types.ClassType)): # create new instance if this is type return resolved_name() elif isinstance(resolved_name, types.MethodType): # bind the method return getattr(resolved_name.im_class(), resolved_name.__name__) else: return resolved_name
Resolves and instantiates handler by fully qualified name. First resolves the name using for_name call. Then if it resolves to a class, instantiates a class, if it resolves to a method - instantiates the class and binds method to the instance. Args: fq_name: fully qualified name of something to find. Returns: handler instance which is ready to be called.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L249-L270
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
try_serialize_handler
def try_serialize_handler(handler): """Try to serialize map/reduce handler. Args: handler: handler function/instance. Handler can be a function or an instance of a callable class. In the latter case, the handler will be serialized across slices to allow users to save states. Returns: serialized handler string or None. """ if (isinstance(handler, types.InstanceType) or # old style class (isinstance(handler, object) and # new style class not inspect.isfunction(handler) and not inspect.ismethod(handler)) and hasattr(handler, "__call__")): return pickle.dumps(handler) return None
python
def try_serialize_handler(handler): """Try to serialize map/reduce handler. Args: handler: handler function/instance. Handler can be a function or an instance of a callable class. In the latter case, the handler will be serialized across slices to allow users to save states. Returns: serialized handler string or None. """ if (isinstance(handler, types.InstanceType) or # old style class (isinstance(handler, object) and # new style class not inspect.isfunction(handler) and not inspect.ismethod(handler)) and hasattr(handler, "__call__")): return pickle.dumps(handler) return None
Try to serialize map/reduce handler. Args: handler: handler function/instance. Handler can be a function or an instance of a callable class. In the latter case, the handler will be serialized across slices to allow users to save states. Returns: serialized handler string or None.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L273-L290
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
is_generator
def is_generator(obj): """Return true if the object is generator or generator function. Generator function objects provides same attributes as functions. See isfunction.__doc__ for attributes listing. Adapted from Python 2.6. Args: obj: an object to test. Returns: true if the object is generator function. """ if isinstance(obj, types.GeneratorType): return True CO_GENERATOR = 0x20 return bool(((inspect.isfunction(obj) or inspect.ismethod(obj)) and obj.func_code.co_flags & CO_GENERATOR))
python
def is_generator(obj): """Return true if the object is generator or generator function. Generator function objects provides same attributes as functions. See isfunction.__doc__ for attributes listing. Adapted from Python 2.6. Args: obj: an object to test. Returns: true if the object is generator function. """ if isinstance(obj, types.GeneratorType): return True CO_GENERATOR = 0x20 return bool(((inspect.isfunction(obj) or inspect.ismethod(obj)) and obj.func_code.co_flags & CO_GENERATOR))
Return true if the object is generator or generator function. Generator function objects provides same attributes as functions. See isfunction.__doc__ for attributes listing. Adapted from Python 2.6. Args: obj: an object to test. Returns: true if the object is generator function.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L306-L325
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
parse_bool
def parse_bool(obj): """Return true if the object represents a truth value, false otherwise. For bool and numeric objects, uses Python's built-in bool function. For str objects, checks string against a list of possible truth values. Args: obj: object to determine boolean value of; expected Returns: Boolean value according to 5.1 of Python docs if object is not a str object. For str objects, return True if str is in TRUTH_VALUE_SET and False otherwise. http://docs.python.org/library/stdtypes.html """ if type(obj) is str: TRUTH_VALUE_SET = ["true", "1", "yes", "t", "on"] return obj.lower() in TRUTH_VALUE_SET else: return bool(obj)
python
def parse_bool(obj): """Return true if the object represents a truth value, false otherwise. For bool and numeric objects, uses Python's built-in bool function. For str objects, checks string against a list of possible truth values. Args: obj: object to determine boolean value of; expected Returns: Boolean value according to 5.1 of Python docs if object is not a str object. For str objects, return True if str is in TRUTH_VALUE_SET and False otherwise. http://docs.python.org/library/stdtypes.html """ if type(obj) is str: TRUTH_VALUE_SET = ["true", "1", "yes", "t", "on"] return obj.lower() in TRUTH_VALUE_SET else: return bool(obj)
Return true if the object represents a truth value, false otherwise. For bool and numeric objects, uses Python's built-in bool function. For str objects, checks string against a list of possible truth values. Args: obj: object to determine boolean value of; expected Returns: Boolean value according to 5.1 of Python docs if object is not a str object. For str objects, return True if str is in TRUTH_VALUE_SET and False otherwise. http://docs.python.org/library/stdtypes.html
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L333-L352
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
create_datastore_write_config
def create_datastore_write_config(mapreduce_spec): """Creates datastore config to use in write operations. Args: mapreduce_spec: current mapreduce specification as MapreduceSpec. Returns: an instance of datastore_rpc.Configuration to use for all write operations in the mapreduce. """ force_writes = parse_bool(mapreduce_spec.params.get("force_writes", "false")) if force_writes: return datastore_rpc.Configuration(force_writes=force_writes) else: # dev server doesn't support force_writes. return datastore_rpc.Configuration()
python
def create_datastore_write_config(mapreduce_spec): """Creates datastore config to use in write operations. Args: mapreduce_spec: current mapreduce specification as MapreduceSpec. Returns: an instance of datastore_rpc.Configuration to use for all write operations in the mapreduce. """ force_writes = parse_bool(mapreduce_spec.params.get("force_writes", "false")) if force_writes: return datastore_rpc.Configuration(force_writes=force_writes) else: # dev server doesn't support force_writes. return datastore_rpc.Configuration()
Creates datastore config to use in write operations. Args: mapreduce_spec: current mapreduce specification as MapreduceSpec. Returns: an instance of datastore_rpc.Configuration to use for all write operations in the mapreduce.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L355-L370
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
_set_ndb_cache_policy
def _set_ndb_cache_policy(): """Tell NDB to never cache anything in memcache or in-process. This ensures that entities fetched from Datastore input_readers via NDB will not bloat up the request memory size and Datastore Puts will avoid doing calls to memcache. Without this you get soft memory limit exits, which hurts overall throughput. """ ndb_ctx = ndb.get_context() ndb_ctx.set_cache_policy(lambda key: False) ndb_ctx.set_memcache_policy(lambda key: False)
python
def _set_ndb_cache_policy(): """Tell NDB to never cache anything in memcache or in-process. This ensures that entities fetched from Datastore input_readers via NDB will not bloat up the request memory size and Datastore Puts will avoid doing calls to memcache. Without this you get soft memory limit exits, which hurts overall throughput. """ ndb_ctx = ndb.get_context() ndb_ctx.set_cache_policy(lambda key: False) ndb_ctx.set_memcache_policy(lambda key: False)
Tell NDB to never cache anything in memcache or in-process. This ensures that entities fetched from Datastore input_readers via NDB will not bloat up the request memory size and Datastore Puts will avoid doing calls to memcache. Without this you get soft memory limit exits, which hurts overall throughput.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L373-L383
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
_obj_to_path
def _obj_to_path(obj): """Returns the fully qualified path to the object. Args: obj: obj must be a new style top level class, or a top level function. No inner function or static method. Returns: Fully qualified path to the object. Raises: TypeError: when argument obj has unsupported type. ValueError: when obj can't be discovered on the top level. """ if obj is None: return obj if inspect.isclass(obj) or inspect.isfunction(obj): fetched = getattr(sys.modules[obj.__module__], obj.__name__, None) if fetched is None: raise ValueError( "Object %r must be defined on the top level of a module." % obj) return "%s.%s" % (obj.__module__, obj.__name__) raise TypeError("Unexpected type %s." % type(obj))
python
def _obj_to_path(obj): """Returns the fully qualified path to the object. Args: obj: obj must be a new style top level class, or a top level function. No inner function or static method. Returns: Fully qualified path to the object. Raises: TypeError: when argument obj has unsupported type. ValueError: when obj can't be discovered on the top level. """ if obj is None: return obj if inspect.isclass(obj) or inspect.isfunction(obj): fetched = getattr(sys.modules[obj.__module__], obj.__name__, None) if fetched is None: raise ValueError( "Object %r must be defined on the top level of a module." % obj) return "%s.%s" % (obj.__module__, obj.__name__) raise TypeError("Unexpected type %s." % type(obj))
Returns the fully qualified path to the object. Args: obj: obj must be a new style top level class, or a top level function. No inner function or static method. Returns: Fully qualified path to the object. Raises: TypeError: when argument obj has unsupported type. ValueError: when obj can't be discovered on the top level.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L386-L409
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/util.py
strip_prefix_from_items
def strip_prefix_from_items(prefix, items): """Strips out the prefix from each of the items if it is present. Args: prefix: the string for that you wish to strip from the beginning of each of the items. items: a list of strings that may or may not contain the prefix you want to strip out. Returns: items_no_prefix: a copy of the list of items (same order) without the prefix (if present). """ items_no_prefix = [] for item in items: if item.startswith(prefix): items_no_prefix.append(item[len(prefix):]) else: items_no_prefix.append(item) return items_no_prefix
python
def strip_prefix_from_items(prefix, items): """Strips out the prefix from each of the items if it is present. Args: prefix: the string for that you wish to strip from the beginning of each of the items. items: a list of strings that may or may not contain the prefix you want to strip out. Returns: items_no_prefix: a copy of the list of items (same order) without the prefix (if present). """ items_no_prefix = [] for item in items: if item.startswith(prefix): items_no_prefix.append(item[len(prefix):]) else: items_no_prefix.append(item) return items_no_prefix
Strips out the prefix from each of the items if it is present. Args: prefix: the string for that you wish to strip from the beginning of each of the items. items: a list of strings that may or may not contain the prefix you want to strip out. Returns: items_no_prefix: a copy of the list of items (same order) without the prefix (if present).
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/util.py#L412-L431
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
_run_task_hook
def _run_task_hook(hooks, method, task, queue_name): """Invokes hooks.method(task, queue_name). Args: hooks: A hooks.Hooks instance or None. method: The name of the method to invoke on the hooks class e.g. "enqueue_kickoff_task". task: The taskqueue.Task to pass to the hook method. queue_name: The name of the queue to pass to the hook method. Returns: True if the hooks.Hooks instance handled the method, False otherwise. """ if hooks is not None: try: getattr(hooks, method)(task, queue_name) except NotImplementedError: # Use the default task addition implementation. return False return True return False
python
def _run_task_hook(hooks, method, task, queue_name): """Invokes hooks.method(task, queue_name). Args: hooks: A hooks.Hooks instance or None. method: The name of the method to invoke on the hooks class e.g. "enqueue_kickoff_task". task: The taskqueue.Task to pass to the hook method. queue_name: The name of the queue to pass to the hook method. Returns: True if the hooks.Hooks instance handled the method, False otherwise. """ if hooks is not None: try: getattr(hooks, method)(task, queue_name) except NotImplementedError: # Use the default task addition implementation. return False return True return False
Invokes hooks.method(task, queue_name). Args: hooks: A hooks.Hooks instance or None. method: The name of the method to invoke on the hooks class e.g. "enqueue_kickoff_task". task: The taskqueue.Task to pass to the hook method. queue_name: The name of the queue to pass to the hook method. Returns: True if the hooks.Hooks instance handled the method, False otherwise.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L85-L106
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._drop_gracefully
def _drop_gracefully(self): """Drop worker task gracefully. Set current shard_state to failed. Controller logic will take care of other shards and the entire MR. """ shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER] mr_id = self.request.headers[util._MR_ID_TASK_HEADER] shard_state, mr_state = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceState.get_key_by_job_id(mr_id)]) if shard_state and shard_state.active: shard_state.set_for_failure() config = util.create_datastore_write_config(mr_state.mapreduce_spec) shard_state.put(config=config)
python
def _drop_gracefully(self): """Drop worker task gracefully. Set current shard_state to failed. Controller logic will take care of other shards and the entire MR. """ shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER] mr_id = self.request.headers[util._MR_ID_TASK_HEADER] shard_state, mr_state = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceState.get_key_by_job_id(mr_id)]) if shard_state and shard_state.active: shard_state.set_for_failure() config = util.create_datastore_write_config(mr_state.mapreduce_spec) shard_state.put(config=config)
Drop worker task gracefully. Set current shard_state to failed. Controller logic will take care of other shards and the entire MR.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L140-L155
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._try_acquire_lease
def _try_acquire_lease(self, shard_state, tstate): """Validate datastore and the task payload are consistent. If so, attempt to get a lease on this slice's execution. See model.ShardState doc on slice_start_time. Args: shard_state: model.ShardState from datastore. tstate: model.TransientShardState from taskqueue paylod. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if lock is acquired. RETRY_TASK if task should be retried, DROP_TASK if task should be dropped. Only old tasks (comparing to datastore state) will be dropped. Future tasks are retried until they naturally become old so that we don't ever stuck MR. """ # Controller will tally shard_states and properly handle the situation. if not shard_state: logging.warning("State not found for shard %s; Possible spurious task " "execution. Dropping this task.", tstate.shard_id) return self._TASK_DIRECTIVE.DROP_TASK if not shard_state.active: logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning(str(shard_state)) return self._TASK_DIRECTIVE.DROP_TASK # Validate shard retry count. if shard_state.retries > tstate.retries: logging.warning( "Got shard %s from previous shard retry %s. Possible spurious " "task execution. Dropping this task.", tstate.shard_id, tstate.retries) logging.warning(str(shard_state)) return self._TASK_DIRECTIVE.DROP_TASK elif shard_state.retries < tstate.retries: # By the end of last slice, task enqueue succeeded but datastore commit # failed. That transaction will be retried and adding the same task # will pass. logging.warning( "ShardState for %s is behind slice. Waiting for it to catch up", shard_state.shard_id) return self._TASK_DIRECTIVE.RETRY_TASK # Validate slice id. # Taskqueue executes old successful tasks. if shard_state.slice_id > tstate.slice_id: logging.warning( "Task %s-%s is behind ShardState %s. Dropping task.""", tstate.shard_id, tstate.slice_id, shard_state.slice_id) return self._TASK_DIRECTIVE.DROP_TASK # By the end of last slice, task enqueue succeeded but datastore commit # failed. That transaction will be retried and adding the same task # will pass. User data is duplicated in this case. elif shard_state.slice_id < tstate.slice_id: logging.warning( "Task %s-%s is ahead of ShardState %s. Waiting for it to catch up.", tstate.shard_id, tstate.slice_id, shard_state.slice_id) return self._TASK_DIRECTIVE.RETRY_TASK # Check potential duplicated tasks for the same slice. # See model.ShardState doc. if shard_state.slice_start_time: countdown = self._wait_time(shard_state, parameters._LEASE_DURATION_SEC) if countdown > 0: logging.warning( "Last retry of slice %s-%s may be still running." "Will try again in %s seconds", tstate.shard_id, tstate.slice_id, countdown) # TODO(user): There might be a better way. Taskqueue's countdown # only applies to add new tasks, not retry of tasks. # Reduce contention. time.sleep(countdown) return self._TASK_DIRECTIVE.RETRY_TASK # lease could have expired. Verify with logs API. else: if self._wait_time(shard_state, parameters._MAX_LEASE_DURATION_SEC): if not self._has_old_request_ended(shard_state): logging.warning( "Last retry of slice %s-%s is still in flight with request_id " "%s. Will try again later.", tstate.shard_id, tstate.slice_id, shard_state.slice_request_id) return self._TASK_DIRECTIVE.RETRY_TASK else: logging.warning( "Last retry of slice %s-%s has no log entry and has" "timed out after %s seconds", tstate.shard_id, tstate.slice_id, parameters._MAX_LEASE_DURATION_SEC) # Lease expired or slice_start_time not set. config = util.create_datastore_write_config(tstate.mapreduce_spec) @db.transactional(retries=5) def _tx(): """Use datastore to set slice_start_time to now. If failed for any reason, raise error to retry the task (hence all the previous validation code). The task would die naturally eventually. Raises: Rollback: If the shard state is missing. Returns: A _TASK_DIRECTIVE enum. """ fresh_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_state: logging.warning("ShardState missing.") raise db.Rollback() if (fresh_state.active and fresh_state.slice_id == shard_state.slice_id and fresh_state.slice_start_time == shard_state.slice_start_time): shard_state.slice_start_time = datetime.datetime.now() shard_state.slice_request_id = os.environ.get("REQUEST_LOG_ID") shard_state.acquired_once = True shard_state.put(config=config) return self._TASK_DIRECTIVE.PROCEED_TASK else: logging.warning( "Contention on slice %s-%s execution. Will retry again.", tstate.shard_id, tstate.slice_id) # One proposer should win. In case all lost, back off arbitrarily. time.sleep(random.randrange(1, 5)) return self._TASK_DIRECTIVE.RETRY_TASK return _tx()
python
def _try_acquire_lease(self, shard_state, tstate): """Validate datastore and the task payload are consistent. If so, attempt to get a lease on this slice's execution. See model.ShardState doc on slice_start_time. Args: shard_state: model.ShardState from datastore. tstate: model.TransientShardState from taskqueue paylod. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if lock is acquired. RETRY_TASK if task should be retried, DROP_TASK if task should be dropped. Only old tasks (comparing to datastore state) will be dropped. Future tasks are retried until they naturally become old so that we don't ever stuck MR. """ # Controller will tally shard_states and properly handle the situation. if not shard_state: logging.warning("State not found for shard %s; Possible spurious task " "execution. Dropping this task.", tstate.shard_id) return self._TASK_DIRECTIVE.DROP_TASK if not shard_state.active: logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning(str(shard_state)) return self._TASK_DIRECTIVE.DROP_TASK # Validate shard retry count. if shard_state.retries > tstate.retries: logging.warning( "Got shard %s from previous shard retry %s. Possible spurious " "task execution. Dropping this task.", tstate.shard_id, tstate.retries) logging.warning(str(shard_state)) return self._TASK_DIRECTIVE.DROP_TASK elif shard_state.retries < tstate.retries: # By the end of last slice, task enqueue succeeded but datastore commit # failed. That transaction will be retried and adding the same task # will pass. logging.warning( "ShardState for %s is behind slice. Waiting for it to catch up", shard_state.shard_id) return self._TASK_DIRECTIVE.RETRY_TASK # Validate slice id. # Taskqueue executes old successful tasks. if shard_state.slice_id > tstate.slice_id: logging.warning( "Task %s-%s is behind ShardState %s. Dropping task.""", tstate.shard_id, tstate.slice_id, shard_state.slice_id) return self._TASK_DIRECTIVE.DROP_TASK # By the end of last slice, task enqueue succeeded but datastore commit # failed. That transaction will be retried and adding the same task # will pass. User data is duplicated in this case. elif shard_state.slice_id < tstate.slice_id: logging.warning( "Task %s-%s is ahead of ShardState %s. Waiting for it to catch up.", tstate.shard_id, tstate.slice_id, shard_state.slice_id) return self._TASK_DIRECTIVE.RETRY_TASK # Check potential duplicated tasks for the same slice. # See model.ShardState doc. if shard_state.slice_start_time: countdown = self._wait_time(shard_state, parameters._LEASE_DURATION_SEC) if countdown > 0: logging.warning( "Last retry of slice %s-%s may be still running." "Will try again in %s seconds", tstate.shard_id, tstate.slice_id, countdown) # TODO(user): There might be a better way. Taskqueue's countdown # only applies to add new tasks, not retry of tasks. # Reduce contention. time.sleep(countdown) return self._TASK_DIRECTIVE.RETRY_TASK # lease could have expired. Verify with logs API. else: if self._wait_time(shard_state, parameters._MAX_LEASE_DURATION_SEC): if not self._has_old_request_ended(shard_state): logging.warning( "Last retry of slice %s-%s is still in flight with request_id " "%s. Will try again later.", tstate.shard_id, tstate.slice_id, shard_state.slice_request_id) return self._TASK_DIRECTIVE.RETRY_TASK else: logging.warning( "Last retry of slice %s-%s has no log entry and has" "timed out after %s seconds", tstate.shard_id, tstate.slice_id, parameters._MAX_LEASE_DURATION_SEC) # Lease expired or slice_start_time not set. config = util.create_datastore_write_config(tstate.mapreduce_spec) @db.transactional(retries=5) def _tx(): """Use datastore to set slice_start_time to now. If failed for any reason, raise error to retry the task (hence all the previous validation code). The task would die naturally eventually. Raises: Rollback: If the shard state is missing. Returns: A _TASK_DIRECTIVE enum. """ fresh_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_state: logging.warning("ShardState missing.") raise db.Rollback() if (fresh_state.active and fresh_state.slice_id == shard_state.slice_id and fresh_state.slice_start_time == shard_state.slice_start_time): shard_state.slice_start_time = datetime.datetime.now() shard_state.slice_request_id = os.environ.get("REQUEST_LOG_ID") shard_state.acquired_once = True shard_state.put(config=config) return self._TASK_DIRECTIVE.PROCEED_TASK else: logging.warning( "Contention on slice %s-%s execution. Will retry again.", tstate.shard_id, tstate.slice_id) # One proposer should win. In case all lost, back off arbitrarily. time.sleep(random.randrange(1, 5)) return self._TASK_DIRECTIVE.RETRY_TASK return _tx()
Validate datastore and the task payload are consistent. If so, attempt to get a lease on this slice's execution. See model.ShardState doc on slice_start_time. Args: shard_state: model.ShardState from datastore. tstate: model.TransientShardState from taskqueue paylod. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if lock is acquired. RETRY_TASK if task should be retried, DROP_TASK if task should be dropped. Only old tasks (comparing to datastore state) will be dropped. Future tasks are retried until they naturally become old so that we don't ever stuck MR.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L157-L288
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._has_old_request_ended
def _has_old_request_ended(self, shard_state): """Whether previous slice retry has ended according to Logs API. Args: shard_state: shard state. Returns: True if the request of previous slice retry has ended. False if it has not or unknown. """ assert shard_state.slice_start_time is not None assert shard_state.slice_request_id is not None request_ids = [shard_state.slice_request_id] logs = None try: logs = list(logservice.fetch(request_ids=request_ids)) except (apiproxy_errors.FeatureNotEnabledError, apiproxy_errors.CapabilityDisabledError) as e: # Managed VMs do not have access to the logservice API # See https://groups.google.com/forum/#!topic/app-engine-managed-vms/r8i65uiFW0w logging.warning("Ignoring exception: %s", e) if not logs or not logs[0].finished: return False return True
python
def _has_old_request_ended(self, shard_state): """Whether previous slice retry has ended according to Logs API. Args: shard_state: shard state. Returns: True if the request of previous slice retry has ended. False if it has not or unknown. """ assert shard_state.slice_start_time is not None assert shard_state.slice_request_id is not None request_ids = [shard_state.slice_request_id] logs = None try: logs = list(logservice.fetch(request_ids=request_ids)) except (apiproxy_errors.FeatureNotEnabledError, apiproxy_errors.CapabilityDisabledError) as e: # Managed VMs do not have access to the logservice API # See https://groups.google.com/forum/#!topic/app-engine-managed-vms/r8i65uiFW0w logging.warning("Ignoring exception: %s", e) if not logs or not logs[0].finished: return False return True
Whether previous slice retry has ended according to Logs API. Args: shard_state: shard state. Returns: True if the request of previous slice retry has ended. False if it has not or unknown.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L290-L314
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._wait_time
def _wait_time(self, shard_state, secs, now=datetime.datetime.now): """Time to wait until slice_start_time is secs ago from now. Args: shard_state: shard state. secs: duration in seconds. now: a func that gets now. Returns: 0 if no wait. A positive int in seconds otherwise. Always around up. """ assert shard_state.slice_start_time is not None delta = now() - shard_state.slice_start_time duration = datetime.timedelta(seconds=secs) if delta < duration: return util.total_seconds(duration - delta) else: return 0
python
def _wait_time(self, shard_state, secs, now=datetime.datetime.now): """Time to wait until slice_start_time is secs ago from now. Args: shard_state: shard state. secs: duration in seconds. now: a func that gets now. Returns: 0 if no wait. A positive int in seconds otherwise. Always around up. """ assert shard_state.slice_start_time is not None delta = now() - shard_state.slice_start_time duration = datetime.timedelta(seconds=secs) if delta < duration: return util.total_seconds(duration - delta) else: return 0
Time to wait until slice_start_time is secs ago from now. Args: shard_state: shard state. secs: duration in seconds. now: a func that gets now. Returns: 0 if no wait. A positive int in seconds otherwise. Always around up.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L316-L333
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._try_free_lease
def _try_free_lease(self, shard_state, slice_retry=False): """Try to free lease. A lightweight transaction to update shard_state and unset slice_start_time to allow the next retry to happen without blocking. We don't care if this fails or not because the lease will expire anyway. Under normal execution, _save_state_and_schedule_next is the exit point. It updates/saves shard state and schedules the next slice or returns. Other exit points are: 1. _are_states_consistent: at the beginning of handle, checks if datastore states and the task are in sync. If not, raise or return. 2. _attempt_slice_retry: may raise exception to taskqueue. 3. _save_state_and_schedule_next: may raise exception when taskqueue/db unreachable. This handler should try to free the lease on every exceptional exit point. Args: shard_state: model.ShardState. slice_retry: whether to count this as a failed slice execution. """ @db.transactional def _tx(): fresh_state = model.ShardState.get_by_shard_id(shard_state.shard_id) if fresh_state and fresh_state.active: # Free lease. fresh_state.slice_start_time = None fresh_state.slice_request_id = None if slice_retry: fresh_state.slice_retries += 1 fresh_state.put() try: _tx() # pylint: disable=broad-except except Exception, e: logging.warning(e) logging.warning( "Release lock for shard %s failed. Wait for lease to expire.", shard_state.shard_id)
python
def _try_free_lease(self, shard_state, slice_retry=False): """Try to free lease. A lightweight transaction to update shard_state and unset slice_start_time to allow the next retry to happen without blocking. We don't care if this fails or not because the lease will expire anyway. Under normal execution, _save_state_and_schedule_next is the exit point. It updates/saves shard state and schedules the next slice or returns. Other exit points are: 1. _are_states_consistent: at the beginning of handle, checks if datastore states and the task are in sync. If not, raise or return. 2. _attempt_slice_retry: may raise exception to taskqueue. 3. _save_state_and_schedule_next: may raise exception when taskqueue/db unreachable. This handler should try to free the lease on every exceptional exit point. Args: shard_state: model.ShardState. slice_retry: whether to count this as a failed slice execution. """ @db.transactional def _tx(): fresh_state = model.ShardState.get_by_shard_id(shard_state.shard_id) if fresh_state and fresh_state.active: # Free lease. fresh_state.slice_start_time = None fresh_state.slice_request_id = None if slice_retry: fresh_state.slice_retries += 1 fresh_state.put() try: _tx() # pylint: disable=broad-except except Exception, e: logging.warning(e) logging.warning( "Release lock for shard %s failed. Wait for lease to expire.", shard_state.shard_id)
Try to free lease. A lightweight transaction to update shard_state and unset slice_start_time to allow the next retry to happen without blocking. We don't care if this fails or not because the lease will expire anyway. Under normal execution, _save_state_and_schedule_next is the exit point. It updates/saves shard state and schedules the next slice or returns. Other exit points are: 1. _are_states_consistent: at the beginning of handle, checks if datastore states and the task are in sync. If not, raise or return. 2. _attempt_slice_retry: may raise exception to taskqueue. 3. _save_state_and_schedule_next: may raise exception when taskqueue/db unreachable. This handler should try to free the lease on every exceptional exit point. Args: shard_state: model.ShardState. slice_retry: whether to count this as a failed slice execution.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L335-L376
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._maintain_LC
def _maintain_LC(self, obj, slice_id, last_slice=False, begin_slice=True, shard_ctx=None, slice_ctx=None): """Makes sure shard life cycle interface are respected. Args: obj: the obj that may have implemented _ShardLifeCycle. slice_id: current slice_id last_slice: whether this is the last slice. begin_slice: whether this is the beginning or the end of a slice. shard_ctx: shard ctx for dependency injection. If None, it will be read from self. slice_ctx: slice ctx for dependency injection. If None, it will be read from self. """ if obj is None or not isinstance(obj, shard_life_cycle._ShardLifeCycle): return shard_context = shard_ctx or self.shard_context slice_context = slice_ctx or self.slice_context if begin_slice: if slice_id == 0: obj.begin_shard(shard_context) obj.begin_slice(slice_context) else: obj.end_slice(slice_context) if last_slice: obj.end_shard(shard_context)
python
def _maintain_LC(self, obj, slice_id, last_slice=False, begin_slice=True, shard_ctx=None, slice_ctx=None): """Makes sure shard life cycle interface are respected. Args: obj: the obj that may have implemented _ShardLifeCycle. slice_id: current slice_id last_slice: whether this is the last slice. begin_slice: whether this is the beginning or the end of a slice. shard_ctx: shard ctx for dependency injection. If None, it will be read from self. slice_ctx: slice ctx for dependency injection. If None, it will be read from self. """ if obj is None or not isinstance(obj, shard_life_cycle._ShardLifeCycle): return shard_context = shard_ctx or self.shard_context slice_context = slice_ctx or self.slice_context if begin_slice: if slice_id == 0: obj.begin_shard(shard_context) obj.begin_slice(slice_context) else: obj.end_slice(slice_context) if last_slice: obj.end_shard(shard_context)
Makes sure shard life cycle interface are respected. Args: obj: the obj that may have implemented _ShardLifeCycle. slice_id: current slice_id last_slice: whether this is the last slice. begin_slice: whether this is the beginning or the end of a slice. shard_ctx: shard ctx for dependency injection. If None, it will be read from self. slice_ctx: slice ctx for dependency injection. If None, it will be read from self.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L378-L404
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler.handle
def handle(self): """Handle request. This method has to be careful to pass the same ShardState instance to its subroutines calls if the calls mutate or read from ShardState. Note especially that Context instance caches and updates the ShardState instance. Returns: Set HTTP status code and always returns None. """ # Reconstruct basic states. self._start_time = self._time() shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER] mr_id = self.request.headers[util._MR_ID_TASK_HEADER] spec = model.MapreduceSpec._get_mapreduce_spec(mr_id) shard_state, control = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceControl.get_key_by_job_id(mr_id), ]) # Set context before any IO code is called. ctx = context.Context(spec, shard_state, task_retry_count=self.task_retry_count()) context.Context._set(ctx) # Unmarshall input reader, output writer, and other transient states. tstate = model.TransientShardState.from_request(self.request) # Try acquire a lease on the shard. if shard_state: is_this_a_retry = shard_state.acquired_once task_directive = self._try_acquire_lease(shard_state, tstate) if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self._TASK_DIRECTIVE.DROP_TASK): return self.__return(shard_state, tstate, task_directive) assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK # Abort shard if received signal. if control and control.command == model.MapreduceControl.ABORT: task_directive = self._TASK_DIRECTIVE.ABORT_SHARD return self.__return(shard_state, tstate, task_directive) # Retry shard if user disabled slice retry. if (is_this_a_retry and parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS <= 1): task_directive = self._TASK_DIRECTIVE.RETRY_SHARD return self.__return(shard_state, tstate, task_directive) # TODO(user): Find a better way to set these per thread configs. # E.g. what if user change it? util._set_ndb_cache_policy() job_config = map_job.JobConfig._to_map_job_config( spec, os.environ.get("HTTP_X_APPENGINE_QUEUENAME")) job_context = map_job_context.JobContext(job_config) self.shard_context = map_job_context.ShardContext(job_context, shard_state) self.slice_context = map_job_context.SliceContext(self.shard_context, shard_state, tstate) try: slice_id = tstate.slice_id self._lc_start_slice(tstate, slice_id) if shard_state.is_input_finished(): self._lc_end_slice(tstate, slice_id, last_slice=True) # Finalize the stream and set status if there's no more input. if (tstate.output_writer and isinstance(tstate.output_writer, output_writers.OutputWriter)): # It's possible that finalization is successful but # saving state failed. In this case this shard will retry upon # finalization error. # TODO(user): make finalize method idempotent! tstate.output_writer.finalize(ctx, shard_state) shard_state.set_for_success() return self.__return(shard_state, tstate, task_directive) if is_this_a_retry: task_directive = self._attempt_slice_recovery(shard_state, tstate) if task_directive != self._TASK_DIRECTIVE.PROCEED_TASK: return self.__return(shard_state, tstate, task_directive) last_slice = self._process_inputs( tstate.input_reader, shard_state, tstate, ctx) self._lc_end_slice(tstate, slice_id) ctx.flush() if last_slice: # We're done processing data but we still need to finalize the output # stream. We save this condition in datastore and force a new slice. # That way if finalize fails no input data will be retried. shard_state.set_input_finished() # pylint: disable=broad-except except Exception, e: logging.warning("Shard %s got error.", shard_state.shard_id) logging.error(traceback.format_exc()) # Fail fast. if type(e) is errors.FailJobError: logging.error("Got FailJobError.") task_directive = self._TASK_DIRECTIVE.FAIL_TASK else: task_directive = self._TASK_DIRECTIVE.RETRY_SLICE self.__return(shard_state, tstate, task_directive)
python
def handle(self): """Handle request. This method has to be careful to pass the same ShardState instance to its subroutines calls if the calls mutate or read from ShardState. Note especially that Context instance caches and updates the ShardState instance. Returns: Set HTTP status code and always returns None. """ # Reconstruct basic states. self._start_time = self._time() shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER] mr_id = self.request.headers[util._MR_ID_TASK_HEADER] spec = model.MapreduceSpec._get_mapreduce_spec(mr_id) shard_state, control = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceControl.get_key_by_job_id(mr_id), ]) # Set context before any IO code is called. ctx = context.Context(spec, shard_state, task_retry_count=self.task_retry_count()) context.Context._set(ctx) # Unmarshall input reader, output writer, and other transient states. tstate = model.TransientShardState.from_request(self.request) # Try acquire a lease on the shard. if shard_state: is_this_a_retry = shard_state.acquired_once task_directive = self._try_acquire_lease(shard_state, tstate) if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self._TASK_DIRECTIVE.DROP_TASK): return self.__return(shard_state, tstate, task_directive) assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK # Abort shard if received signal. if control and control.command == model.MapreduceControl.ABORT: task_directive = self._TASK_DIRECTIVE.ABORT_SHARD return self.__return(shard_state, tstate, task_directive) # Retry shard if user disabled slice retry. if (is_this_a_retry and parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS <= 1): task_directive = self._TASK_DIRECTIVE.RETRY_SHARD return self.__return(shard_state, tstate, task_directive) # TODO(user): Find a better way to set these per thread configs. # E.g. what if user change it? util._set_ndb_cache_policy() job_config = map_job.JobConfig._to_map_job_config( spec, os.environ.get("HTTP_X_APPENGINE_QUEUENAME")) job_context = map_job_context.JobContext(job_config) self.shard_context = map_job_context.ShardContext(job_context, shard_state) self.slice_context = map_job_context.SliceContext(self.shard_context, shard_state, tstate) try: slice_id = tstate.slice_id self._lc_start_slice(tstate, slice_id) if shard_state.is_input_finished(): self._lc_end_slice(tstate, slice_id, last_slice=True) # Finalize the stream and set status if there's no more input. if (tstate.output_writer and isinstance(tstate.output_writer, output_writers.OutputWriter)): # It's possible that finalization is successful but # saving state failed. In this case this shard will retry upon # finalization error. # TODO(user): make finalize method idempotent! tstate.output_writer.finalize(ctx, shard_state) shard_state.set_for_success() return self.__return(shard_state, tstate, task_directive) if is_this_a_retry: task_directive = self._attempt_slice_recovery(shard_state, tstate) if task_directive != self._TASK_DIRECTIVE.PROCEED_TASK: return self.__return(shard_state, tstate, task_directive) last_slice = self._process_inputs( tstate.input_reader, shard_state, tstate, ctx) self._lc_end_slice(tstate, slice_id) ctx.flush() if last_slice: # We're done processing data but we still need to finalize the output # stream. We save this condition in datastore and force a new slice. # That way if finalize fails no input data will be retried. shard_state.set_input_finished() # pylint: disable=broad-except except Exception, e: logging.warning("Shard %s got error.", shard_state.shard_id) logging.error(traceback.format_exc()) # Fail fast. if type(e) is errors.FailJobError: logging.error("Got FailJobError.") task_directive = self._TASK_DIRECTIVE.FAIL_TASK else: task_directive = self._TASK_DIRECTIVE.RETRY_SLICE self.__return(shard_state, tstate, task_directive)
Handle request. This method has to be careful to pass the same ShardState instance to its subroutines calls if the calls mutate or read from ShardState. Note especially that Context instance caches and updates the ShardState instance. Returns: Set HTTP status code and always returns None.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L419-L526
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler.__return
def __return(self, shard_state, tstate, task_directive): """Handler should always call this as the last statement.""" task_directive = self._set_state(shard_state, tstate, task_directive) self._save_state_and_schedule_next(shard_state, tstate, task_directive) context.Context._set(None)
python
def __return(self, shard_state, tstate, task_directive): """Handler should always call this as the last statement.""" task_directive = self._set_state(shard_state, tstate, task_directive) self._save_state_and_schedule_next(shard_state, tstate, task_directive) context.Context._set(None)
Handler should always call this as the last statement.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L528-L532
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._process_inputs
def _process_inputs(self, input_reader, shard_state, tstate, ctx): """Read inputs, process them, and write out outputs. This is the core logic of MapReduce. It reads inputs from input reader, invokes user specified mapper function, and writes output with output writer. It also updates shard_state accordingly. e.g. if shard processing is done, set shard_state.active to False. If errors.FailJobError is caught, it will fail this MR job. All other exceptions will be logged and raised to taskqueue for retry until the number of retries exceeds a limit. Args: input_reader: input reader. shard_state: shard state. tstate: transient shard state. ctx: mapreduce context. Returns: Whether this shard has finished processing all its input split. """ processing_limit = self._processing_limit(tstate.mapreduce_spec) if processing_limit == 0: return finished_shard = True # Input reader may not be an iterator. It is only a container. iterator = iter(input_reader) while True: try: entity = iterator.next() except StopIteration: break # Reading input got exception. If we assume # 1. The input reader have done enough retries. # 2. The input reader can still serialize correctly after this exception. # 3. The input reader, upon resume, will try to re-read this failed # record. # 4. This exception doesn't imply the input reader is permanently stuck. # we can serialize current slice immediately to avoid duplicated # outputs. # TODO(user): Validate these assumptions on all readers. MR should # also have a way to detect fake forward progress. if isinstance(entity, db.Model): shard_state.last_work_item = repr(entity.key()) elif isinstance(entity, ndb.Model): shard_state.last_work_item = repr(entity.key) else: shard_state.last_work_item = repr(entity)[:100] processing_limit -= 1 if not self._process_datum( entity, input_reader, ctx, tstate): finished_shard = False break elif processing_limit == 0: finished_shard = False break # Flush context and its pools. self.slice_context.incr( context.COUNTER_MAPPER_WALLTIME_MS, int((self._time() - self._start_time)*1000)) return finished_shard
python
def _process_inputs(self, input_reader, shard_state, tstate, ctx): """Read inputs, process them, and write out outputs. This is the core logic of MapReduce. It reads inputs from input reader, invokes user specified mapper function, and writes output with output writer. It also updates shard_state accordingly. e.g. if shard processing is done, set shard_state.active to False. If errors.FailJobError is caught, it will fail this MR job. All other exceptions will be logged and raised to taskqueue for retry until the number of retries exceeds a limit. Args: input_reader: input reader. shard_state: shard state. tstate: transient shard state. ctx: mapreduce context. Returns: Whether this shard has finished processing all its input split. """ processing_limit = self._processing_limit(tstate.mapreduce_spec) if processing_limit == 0: return finished_shard = True # Input reader may not be an iterator. It is only a container. iterator = iter(input_reader) while True: try: entity = iterator.next() except StopIteration: break # Reading input got exception. If we assume # 1. The input reader have done enough retries. # 2. The input reader can still serialize correctly after this exception. # 3. The input reader, upon resume, will try to re-read this failed # record. # 4. This exception doesn't imply the input reader is permanently stuck. # we can serialize current slice immediately to avoid duplicated # outputs. # TODO(user): Validate these assumptions on all readers. MR should # also have a way to detect fake forward progress. if isinstance(entity, db.Model): shard_state.last_work_item = repr(entity.key()) elif isinstance(entity, ndb.Model): shard_state.last_work_item = repr(entity.key) else: shard_state.last_work_item = repr(entity)[:100] processing_limit -= 1 if not self._process_datum( entity, input_reader, ctx, tstate): finished_shard = False break elif processing_limit == 0: finished_shard = False break # Flush context and its pools. self.slice_context.incr( context.COUNTER_MAPPER_WALLTIME_MS, int((self._time() - self._start_time)*1000)) return finished_shard
Read inputs, process them, and write out outputs. This is the core logic of MapReduce. It reads inputs from input reader, invokes user specified mapper function, and writes output with output writer. It also updates shard_state accordingly. e.g. if shard processing is done, set shard_state.active to False. If errors.FailJobError is caught, it will fail this MR job. All other exceptions will be logged and raised to taskqueue for retry until the number of retries exceeds a limit. Args: input_reader: input reader. shard_state: shard state. tstate: transient shard state. ctx: mapreduce context. Returns: Whether this shard has finished processing all its input split.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L534-L605
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._process_datum
def _process_datum(self, data, input_reader, ctx, transient_shard_state): """Process a single data piece. Call mapper handler on the data. Args: data: a datum to process. input_reader: input reader. ctx: mapreduce context transient_shard_state: transient shard state. Returns: True if scan should be continued, False if scan should be stopped. """ if data is not input_readers.ALLOW_CHECKPOINT: self.slice_context.incr(context.COUNTER_MAPPER_CALLS) handler = transient_shard_state.handler if isinstance(handler, map_job.Mapper): handler(self.slice_context, data) else: if input_reader.expand_parameters: result = handler(*data) else: result = handler(data) if util.is_generator(result): for output in result: if isinstance(output, operation.Operation): output(ctx) else: output_writer = transient_shard_state.output_writer if not output_writer: logging.warning( "Handler yielded %s, but no output writer is set.", output) else: output_writer.write(output) if self._time() - self._start_time >= parameters.config._SLICE_DURATION_SEC: return False return True
python
def _process_datum(self, data, input_reader, ctx, transient_shard_state): """Process a single data piece. Call mapper handler on the data. Args: data: a datum to process. input_reader: input reader. ctx: mapreduce context transient_shard_state: transient shard state. Returns: True if scan should be continued, False if scan should be stopped. """ if data is not input_readers.ALLOW_CHECKPOINT: self.slice_context.incr(context.COUNTER_MAPPER_CALLS) handler = transient_shard_state.handler if isinstance(handler, map_job.Mapper): handler(self.slice_context, data) else: if input_reader.expand_parameters: result = handler(*data) else: result = handler(data) if util.is_generator(result): for output in result: if isinstance(output, operation.Operation): output(ctx) else: output_writer = transient_shard_state.output_writer if not output_writer: logging.warning( "Handler yielded %s, but no output writer is set.", output) else: output_writer.write(output) if self._time() - self._start_time >= parameters.config._SLICE_DURATION_SEC: return False return True
Process a single data piece. Call mapper handler on the data. Args: data: a datum to process. input_reader: input reader. ctx: mapreduce context transient_shard_state: transient shard state. Returns: True if scan should be continued, False if scan should be stopped.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L607-L648
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._set_state
def _set_state(self, shard_state, tstate, task_directive): """Set shard_state and tstate based on task_directive. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: self._TASK_DIRECTIVE for current shard. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if task should proceed normally. RETRY_SHARD if shard should be retried. RETRY_SLICE if slice should be retried. FAIL_TASK if sahrd should fail. RECOVER_SLICE if slice should be recovered. ABORT_SHARD if shard should be aborted. RETRY_TASK if task should be retried. DROP_TASK if task should be dropped. """ if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self._TASK_DIRECTIVE.DROP_TASK): return task_directive if task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: shard_state.set_for_abort() return task_directive if task_directive == self._TASK_DIRECTIVE.PROCEED_TASK: shard_state.advance_for_next_slice() tstate.advance_for_next_slice() return task_directive if task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: tstate.advance_for_next_slice(recovery_slice=True) shard_state.advance_for_next_slice(recovery_slice=True) return task_directive if task_directive == self._TASK_DIRECTIVE.RETRY_SLICE: task_directive = self._attempt_slice_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: task_directive = self._attempt_shard_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.FAIL_TASK: shard_state.set_for_failure() return task_directive
python
def _set_state(self, shard_state, tstate, task_directive): """Set shard_state and tstate based on task_directive. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: self._TASK_DIRECTIVE for current shard. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if task should proceed normally. RETRY_SHARD if shard should be retried. RETRY_SLICE if slice should be retried. FAIL_TASK if sahrd should fail. RECOVER_SLICE if slice should be recovered. ABORT_SHARD if shard should be aborted. RETRY_TASK if task should be retried. DROP_TASK if task should be dropped. """ if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self._TASK_DIRECTIVE.DROP_TASK): return task_directive if task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: shard_state.set_for_abort() return task_directive if task_directive == self._TASK_DIRECTIVE.PROCEED_TASK: shard_state.advance_for_next_slice() tstate.advance_for_next_slice() return task_directive if task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: tstate.advance_for_next_slice(recovery_slice=True) shard_state.advance_for_next_slice(recovery_slice=True) return task_directive if task_directive == self._TASK_DIRECTIVE.RETRY_SLICE: task_directive = self._attempt_slice_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: task_directive = self._attempt_shard_retry(shard_state, tstate) if task_directive == self._TASK_DIRECTIVE.FAIL_TASK: shard_state.set_for_failure() return task_directive
Set shard_state and tstate based on task_directive. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: self._TASK_DIRECTIVE for current shard. Returns: A _TASK_DIRECTIVE enum. PROCEED_TASK if task should proceed normally. RETRY_SHARD if shard should be retried. RETRY_SLICE if slice should be retried. FAIL_TASK if sahrd should fail. RECOVER_SLICE if slice should be recovered. ABORT_SHARD if shard should be aborted. RETRY_TASK if task should be retried. DROP_TASK if task should be dropped.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L650-L694
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._save_state_and_schedule_next
def _save_state_and_schedule_next(self, shard_state, tstate, task_directive): """Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable. """ spec = tstate.mapreduce_spec if task_directive == self._TASK_DIRECTIVE.DROP_TASK: return if task_directive in (self._TASK_DIRECTIVE.RETRY_SLICE, self._TASK_DIRECTIVE.RETRY_TASK): # Set HTTP code to 500. return self.retry_task() elif task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: logging.info("Aborting shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) task = None elif task_directive == self._TASK_DIRECTIVE.FAIL_TASK: logging.critical("Shard %s failed permanently.", shard_state.shard_id) task = None elif task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: logging.warning("Shard %s is going to be attempted for the %s time.", shard_state.shard_id, shard_state.retries + 1) task = self._state_to_task(tstate, shard_state) elif task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: logging.warning("Shard %s slice %s is being recovered.", shard_state.shard_id, shard_state.slice_id) task = self._state_to_task(tstate, shard_state) else: assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK countdown = self._get_countdown_for_next_slice(spec) task = self._state_to_task(tstate, shard_state, countdown=countdown) # Prepare parameters for db transaction and taskqueue. queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", # For test only. # TODO(user): Remove this. "default") config = util.create_datastore_write_config(spec) @db.transactional(retries=5) def _tx(): """The Transaction helper.""" fresh_shard_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_shard_state: raise db.Rollback() if (not fresh_shard_state.active or "worker_active_state_collision" in _TEST_INJECTED_FAULTS): logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning("Datastore's %s", str(fresh_shard_state)) logging.warning("Slice's %s", str(shard_state)) return fresh_shard_state.copy_from(shard_state) fresh_shard_state.put(config=config) # Add task in the same datastore transaction. # This way we guarantee taskqueue is never behind datastore states. # Old tasks will be dropped. # Future task won't run until datastore states catches up. if fresh_shard_state.active: # Not adding task transactionally. # transactional enqueue requires tasks with no name. self._add_task(task, spec, queue_name) try: _tx() except (datastore_errors.Error, taskqueue.Error, runtime.DeadlineExceededError, apiproxy_errors.Error), e: logging.warning( "Can't transactionally continue shard. " "Will retry slice %s %s for the %s time.", tstate.shard_id, tstate.slice_id, self.task_retry_count() + 1) self._try_free_lease(shard_state) raise e
python
def _save_state_and_schedule_next(self, shard_state, tstate, task_directive): """Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable. """ spec = tstate.mapreduce_spec if task_directive == self._TASK_DIRECTIVE.DROP_TASK: return if task_directive in (self._TASK_DIRECTIVE.RETRY_SLICE, self._TASK_DIRECTIVE.RETRY_TASK): # Set HTTP code to 500. return self.retry_task() elif task_directive == self._TASK_DIRECTIVE.ABORT_SHARD: logging.info("Aborting shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) task = None elif task_directive == self._TASK_DIRECTIVE.FAIL_TASK: logging.critical("Shard %s failed permanently.", shard_state.shard_id) task = None elif task_directive == self._TASK_DIRECTIVE.RETRY_SHARD: logging.warning("Shard %s is going to be attempted for the %s time.", shard_state.shard_id, shard_state.retries + 1) task = self._state_to_task(tstate, shard_state) elif task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE: logging.warning("Shard %s slice %s is being recovered.", shard_state.shard_id, shard_state.slice_id) task = self._state_to_task(tstate, shard_state) else: assert task_directive == self._TASK_DIRECTIVE.PROCEED_TASK countdown = self._get_countdown_for_next_slice(spec) task = self._state_to_task(tstate, shard_state, countdown=countdown) # Prepare parameters for db transaction and taskqueue. queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", # For test only. # TODO(user): Remove this. "default") config = util.create_datastore_write_config(spec) @db.transactional(retries=5) def _tx(): """The Transaction helper.""" fresh_shard_state = model.ShardState.get_by_shard_id(tstate.shard_id) if not fresh_shard_state: raise db.Rollback() if (not fresh_shard_state.active or "worker_active_state_collision" in _TEST_INJECTED_FAULTS): logging.warning("Shard %s is not active. Possible spurious task " "execution. Dropping this task.", tstate.shard_id) logging.warning("Datastore's %s", str(fresh_shard_state)) logging.warning("Slice's %s", str(shard_state)) return fresh_shard_state.copy_from(shard_state) fresh_shard_state.put(config=config) # Add task in the same datastore transaction. # This way we guarantee taskqueue is never behind datastore states. # Old tasks will be dropped. # Future task won't run until datastore states catches up. if fresh_shard_state.active: # Not adding task transactionally. # transactional enqueue requires tasks with no name. self._add_task(task, spec, queue_name) try: _tx() except (datastore_errors.Error, taskqueue.Error, runtime.DeadlineExceededError, apiproxy_errors.Error), e: logging.warning( "Can't transactionally continue shard. " "Will retry slice %s %s for the %s time.", tstate.shard_id, tstate.slice_id, self.task_retry_count() + 1) self._try_free_lease(shard_state) raise e
Save state and schedule task. Save shard state to datastore. Schedule next slice if needed. Set HTTP response code. No modification to any shard_state or tstate. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. task_directive: enum _TASK_DIRECTIVE. Returns: The task to retry if applicable.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L696-L786
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._attempt_slice_recovery
def _attempt_slice_recovery(self, shard_state, tstate): """Recover a slice. This is run when a slice had been previously attempted and output may have been written. If an output writer requires slice recovery, we run those logic to remove output duplicates. Otherwise we just retry the slice. If recovery is needed, then the entire slice will be dedicated to recovery logic. No data processing will take place. Thus we call the slice "recovery slice". This is needed for correctness: An output writer instance can be out of sync from its physical medium only when the slice dies after acquring the shard lock but before committing shard state to db. The worst failure case is when shard state failed to commit after the NAMED task for the next slice was added. Thus, recovery slice has a special logic to increment current slice_id n to n+2. If the task for n+1 had been added, it will be dropped because it is behind shard state. Args: shard_state: an instance of Model.ShardState. tstate: an instance of Model.TransientShardState. Returns: _TASK_DIRECTIVE.PROCEED_TASK to continue with this retry. _TASK_DIRECTIVE.RECOVER_SLICE to recover this slice. The next slice will start at the same input as this slice but output to a new instance of output writer. Combining outputs from all writer instances is up to implementation. """ mapper_spec = tstate.mapreduce_spec.mapper if not (tstate.output_writer and tstate.output_writer._supports_slice_recovery(mapper_spec)): return self._TASK_DIRECTIVE.PROCEED_TASK tstate.output_writer = tstate.output_writer._recover( tstate.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1) return self._TASK_DIRECTIVE.RECOVER_SLICE
python
def _attempt_slice_recovery(self, shard_state, tstate): """Recover a slice. This is run when a slice had been previously attempted and output may have been written. If an output writer requires slice recovery, we run those logic to remove output duplicates. Otherwise we just retry the slice. If recovery is needed, then the entire slice will be dedicated to recovery logic. No data processing will take place. Thus we call the slice "recovery slice". This is needed for correctness: An output writer instance can be out of sync from its physical medium only when the slice dies after acquring the shard lock but before committing shard state to db. The worst failure case is when shard state failed to commit after the NAMED task for the next slice was added. Thus, recovery slice has a special logic to increment current slice_id n to n+2. If the task for n+1 had been added, it will be dropped because it is behind shard state. Args: shard_state: an instance of Model.ShardState. tstate: an instance of Model.TransientShardState. Returns: _TASK_DIRECTIVE.PROCEED_TASK to continue with this retry. _TASK_DIRECTIVE.RECOVER_SLICE to recover this slice. The next slice will start at the same input as this slice but output to a new instance of output writer. Combining outputs from all writer instances is up to implementation. """ mapper_spec = tstate.mapreduce_spec.mapper if not (tstate.output_writer and tstate.output_writer._supports_slice_recovery(mapper_spec)): return self._TASK_DIRECTIVE.PROCEED_TASK tstate.output_writer = tstate.output_writer._recover( tstate.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1) return self._TASK_DIRECTIVE.RECOVER_SLICE
Recover a slice. This is run when a slice had been previously attempted and output may have been written. If an output writer requires slice recovery, we run those logic to remove output duplicates. Otherwise we just retry the slice. If recovery is needed, then the entire slice will be dedicated to recovery logic. No data processing will take place. Thus we call the slice "recovery slice". This is needed for correctness: An output writer instance can be out of sync from its physical medium only when the slice dies after acquring the shard lock but before committing shard state to db. The worst failure case is when shard state failed to commit after the NAMED task for the next slice was added. Thus, recovery slice has a special logic to increment current slice_id n to n+2. If the task for n+1 had been added, it will be dropped because it is behind shard state. Args: shard_state: an instance of Model.ShardState. tstate: an instance of Model.TransientShardState. Returns: _TASK_DIRECTIVE.PROCEED_TASK to continue with this retry. _TASK_DIRECTIVE.RECOVER_SLICE to recover this slice. The next slice will start at the same input as this slice but output to a new instance of output writer. Combining outputs from all writer instances is up to implementation.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L788-L826
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._attempt_shard_retry
def _attempt_shard_retry(self, shard_state, tstate): """Whether to retry shard. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SHARD if shard should be retried. FAIL_TASK otherwise. """ shard_attempts = shard_state.retries + 1 if shard_attempts >= parameters.config.SHARD_MAX_ATTEMPTS: logging.warning( "Shard attempt %s exceeded %s max attempts.", shard_attempts, parameters.config.SHARD_MAX_ATTEMPTS) return self._TASK_DIRECTIVE.FAIL_TASK if tstate.output_writer and ( not tstate.output_writer._supports_shard_retry(tstate)): logging.warning("Output writer %s does not support shard retry.", tstate.output_writer.__class__.__name__) return self._TASK_DIRECTIVE.FAIL_TASK shard_state.reset_for_retry() logging.warning("Shard %s attempt %s failed with up to %s attempts.", shard_state.shard_id, shard_state.retries, parameters.config.SHARD_MAX_ATTEMPTS) output_writer = None if tstate.output_writer: output_writer = tstate.output_writer.create( tstate.mapreduce_spec, shard_state.shard_number, shard_attempts + 1) tstate.reset_for_retry(output_writer) return self._TASK_DIRECTIVE.RETRY_SHARD
python
def _attempt_shard_retry(self, shard_state, tstate): """Whether to retry shard. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SHARD if shard should be retried. FAIL_TASK otherwise. """ shard_attempts = shard_state.retries + 1 if shard_attempts >= parameters.config.SHARD_MAX_ATTEMPTS: logging.warning( "Shard attempt %s exceeded %s max attempts.", shard_attempts, parameters.config.SHARD_MAX_ATTEMPTS) return self._TASK_DIRECTIVE.FAIL_TASK if tstate.output_writer and ( not tstate.output_writer._supports_shard_retry(tstate)): logging.warning("Output writer %s does not support shard retry.", tstate.output_writer.__class__.__name__) return self._TASK_DIRECTIVE.FAIL_TASK shard_state.reset_for_retry() logging.warning("Shard %s attempt %s failed with up to %s attempts.", shard_state.shard_id, shard_state.retries, parameters.config.SHARD_MAX_ATTEMPTS) output_writer = None if tstate.output_writer: output_writer = tstate.output_writer.create( tstate.mapreduce_spec, shard_state.shard_number, shard_attempts + 1) tstate.reset_for_retry(output_writer) return self._TASK_DIRECTIVE.RETRY_SHARD
Whether to retry shard. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SHARD if shard should be retried. FAIL_TASK otherwise.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L828-L864
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._attempt_slice_retry
def _attempt_slice_retry(self, shard_state, tstate): """Attempt to retry this slice. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SLICE if slice should be retried. RETRY_SHARD if shard retry should be attempted. """ if (shard_state.slice_retries + 1 < parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS): logging.warning( "Slice %s %s failed for the %s of up to %s attempts " "(%s of %s taskqueue execution attempts). " "Will retry now.", tstate.shard_id, tstate.slice_id, shard_state.slice_retries + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS, self.task_retry_count() + 1, parameters.config.TASK_MAX_ATTEMPTS) # Clear info related to current exception. Otherwise, the real # callstack that includes a frame for this method will show up # in log. sys.exc_clear() self._try_free_lease(shard_state, slice_retry=True) return self._TASK_DIRECTIVE.RETRY_SLICE if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0: logging.warning("Slice attempt %s exceeded %s max attempts.", self.task_retry_count() + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS) return self._TASK_DIRECTIVE.RETRY_SHARD
python
def _attempt_slice_retry(self, shard_state, tstate): """Attempt to retry this slice. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SLICE if slice should be retried. RETRY_SHARD if shard retry should be attempted. """ if (shard_state.slice_retries + 1 < parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS): logging.warning( "Slice %s %s failed for the %s of up to %s attempts " "(%s of %s taskqueue execution attempts). " "Will retry now.", tstate.shard_id, tstate.slice_id, shard_state.slice_retries + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS, self.task_retry_count() + 1, parameters.config.TASK_MAX_ATTEMPTS) # Clear info related to current exception. Otherwise, the real # callstack that includes a frame for this method will show up # in log. sys.exc_clear() self._try_free_lease(shard_state, slice_retry=True) return self._TASK_DIRECTIVE.RETRY_SLICE if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0: logging.warning("Slice attempt %s exceeded %s max attempts.", self.task_retry_count() + 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS) return self._TASK_DIRECTIVE.RETRY_SHARD
Attempt to retry this slice. This method may modify shard_state and tstate to prepare for retry or fail. Args: shard_state: model.ShardState for current shard. tstate: model.TransientShardState for current shard. Returns: A _TASK_DIRECTIVE enum. RETRY_SLICE if slice should be retried. RETRY_SHARD if shard retry should be attempted.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L866-L902
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._get_countdown_for_next_slice
def _get_countdown_for_next_slice(self, spec): """Get countdown for next slice's task. When user sets processing rate, we set countdown to delay task execution. Args: spec: model.MapreduceSpec Returns: countdown in int. """ countdown = 0 if self._processing_limit(spec) != -1: countdown = max( int(parameters.config._SLICE_DURATION_SEC - (self._time() - self._start_time)), 0) return countdown
python
def _get_countdown_for_next_slice(self, spec): """Get countdown for next slice's task. When user sets processing rate, we set countdown to delay task execution. Args: spec: model.MapreduceSpec Returns: countdown in int. """ countdown = 0 if self._processing_limit(spec) != -1: countdown = max( int(parameters.config._SLICE_DURATION_SEC - (self._time() - self._start_time)), 0) return countdown
Get countdown for next slice's task. When user sets processing rate, we set countdown to delay task execution. Args: spec: model.MapreduceSpec Returns: countdown in int.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L921-L937
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._state_to_task
def _state_to_task(cls, tstate, shard_state, eta=None, countdown=None): """Generate task for slice according to current states. Args: tstate: An instance of TransientShardState. shard_state: An instance of ShardState. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. Returns: A model.HugeTask instance for the slice specified by current states. """ base_path = tstate.base_path task_name = MapperWorkerCallbackHandler.get_task_name( tstate.shard_id, tstate.slice_id, tstate.retries) headers = util._get_task_headers(tstate.mapreduce_spec.mapreduce_id) headers[util._MR_SHARD_ID_TASK_HEADER] = tstate.shard_id worker_task = model.HugeTask( url=base_path + "/worker_callback/" + tstate.shard_id, params=tstate.to_dict(), name=task_name, eta=eta, countdown=countdown, parent=shard_state, headers=headers) return worker_task
python
def _state_to_task(cls, tstate, shard_state, eta=None, countdown=None): """Generate task for slice according to current states. Args: tstate: An instance of TransientShardState. shard_state: An instance of ShardState. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. Returns: A model.HugeTask instance for the slice specified by current states. """ base_path = tstate.base_path task_name = MapperWorkerCallbackHandler.get_task_name( tstate.shard_id, tstate.slice_id, tstate.retries) headers = util._get_task_headers(tstate.mapreduce_spec.mapreduce_id) headers[util._MR_SHARD_ID_TASK_HEADER] = tstate.shard_id worker_task = model.HugeTask( url=base_path + "/worker_callback/" + tstate.shard_id, params=tstate.to_dict(), name=task_name, eta=eta, countdown=countdown, parent=shard_state, headers=headers) return worker_task
Generate task for slice according to current states. Args: tstate: An instance of TransientShardState. shard_state: An instance of ShardState. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. Returns: A model.HugeTask instance for the slice specified by current states.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L940-L977
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._add_task
def _add_task(cls, worker_task, mapreduce_spec, queue_name): """Schedule slice scanning by adding it to the task queue. Args: worker_task: a model.HugeTask task for slice. This is NOT a taskqueue task. mapreduce_spec: an instance of model.MapreduceSpec. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. """ if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_worker_task", worker_task, queue_name): try: # Not adding transactionally because worker_task has name. # Named task is not allowed for transactional add. worker_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r already exists. %s: %s", worker_task.name, e.__class__, e)
python
def _add_task(cls, worker_task, mapreduce_spec, queue_name): """Schedule slice scanning by adding it to the task queue. Args: worker_task: a model.HugeTask task for slice. This is NOT a taskqueue task. mapreduce_spec: an instance of model.MapreduceSpec. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. """ if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_worker_task", worker_task, queue_name): try: # Not adding transactionally because worker_task has name. # Named task is not allowed for transactional add. worker_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r already exists. %s: %s", worker_task.name, e.__class__, e)
Schedule slice scanning by adding it to the task queue. Args: worker_task: a model.HugeTask task for slice. This is NOT a taskqueue task. mapreduce_spec: an instance of model.MapreduceSpec. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L980-L1006
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._processing_limit
def _processing_limit(self, spec): """Get the limit on the number of map calls allowed by this slice. Args: spec: a Mapreduce spec. Returns: The limit as a positive int if specified by user. -1 otherwise. """ processing_rate = float(spec.mapper.params.get("processing_rate", 0)) slice_processing_limit = -1 if processing_rate > 0: slice_processing_limit = int(math.ceil( parameters.config._SLICE_DURATION_SEC*processing_rate/ int(spec.mapper.shard_count))) return slice_processing_limit
python
def _processing_limit(self, spec): """Get the limit on the number of map calls allowed by this slice. Args: spec: a Mapreduce spec. Returns: The limit as a positive int if specified by user. -1 otherwise. """ processing_rate = float(spec.mapper.params.get("processing_rate", 0)) slice_processing_limit = -1 if processing_rate > 0: slice_processing_limit = int(math.ceil( parameters.config._SLICE_DURATION_SEC*processing_rate/ int(spec.mapper.shard_count))) return slice_processing_limit
Get the limit on the number of map calls allowed by this slice. Args: spec: a Mapreduce spec. Returns: The limit as a positive int if specified by user. -1 otherwise.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1008-L1023
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
MapperWorkerCallbackHandler._schedule_slice
def _schedule_slice(cls, shard_state, tstate, queue_name=None, eta=None, countdown=None): """Schedule slice scanning by adding it to the task queue. Args: shard_state: An instance of ShardState. tstate: An instance of TransientShardState. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. """ queue_name = queue_name or os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") task = cls._state_to_task(tstate, shard_state, eta, countdown) cls._add_task(task, tstate.mapreduce_spec, queue_name)
python
def _schedule_slice(cls, shard_state, tstate, queue_name=None, eta=None, countdown=None): """Schedule slice scanning by adding it to the task queue. Args: shard_state: An instance of ShardState. tstate: An instance of TransientShardState. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. """ queue_name = queue_name or os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") task = cls._state_to_task(tstate, shard_state, eta, countdown) cls._add_task(task, tstate.mapreduce_spec, queue_name)
Schedule slice scanning by adding it to the task queue. Args: shard_state: An instance of ShardState. tstate: An instance of TransientShardState. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1028-L1050
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler._drop_gracefully
def _drop_gracefully(self): """Gracefully drop controller task. This method is called when decoding controller task payload failed. Upon this we mark ShardState and MapreduceState as failed so all tasks can stop. Writing to datastore is forced (ignore read-only mode) because we want the tasks to stop badly, and if force_writes was False, the job would have never been started. """ mr_id = self.request.headers[util._MR_ID_TASK_HEADER] state = model.MapreduceState.get_by_job_id(mr_id) if not state or not state.active: return state.active = False state.result_status = model.MapreduceState.RESULT_FAILED config = util.create_datastore_write_config(state.mapreduce_spec) puts = [] for ss in model.ShardState.find_all_by_mapreduce_state(state): if ss.active: ss.set_for_failure() puts.append(ss) # Avoid having too many shard states in memory. if len(puts) > model.ShardState._MAX_STATES_IN_MEMORY: db.put(puts, config=config) puts = [] db.put(puts, config=config) # Put mr_state only after all shard_states are put. db.put(state, config=config)
python
def _drop_gracefully(self): """Gracefully drop controller task. This method is called when decoding controller task payload failed. Upon this we mark ShardState and MapreduceState as failed so all tasks can stop. Writing to datastore is forced (ignore read-only mode) because we want the tasks to stop badly, and if force_writes was False, the job would have never been started. """ mr_id = self.request.headers[util._MR_ID_TASK_HEADER] state = model.MapreduceState.get_by_job_id(mr_id) if not state or not state.active: return state.active = False state.result_status = model.MapreduceState.RESULT_FAILED config = util.create_datastore_write_config(state.mapreduce_spec) puts = [] for ss in model.ShardState.find_all_by_mapreduce_state(state): if ss.active: ss.set_for_failure() puts.append(ss) # Avoid having too many shard states in memory. if len(puts) > model.ShardState._MAX_STATES_IN_MEMORY: db.put(puts, config=config) puts = [] db.put(puts, config=config) # Put mr_state only after all shard_states are put. db.put(state, config=config)
Gracefully drop controller task. This method is called when decoding controller task payload failed. Upon this we mark ShardState and MapreduceState as failed so all tasks can stop. Writing to datastore is forced (ignore read-only mode) because we want the tasks to stop badly, and if force_writes was False, the job would have never been started.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1068-L1098
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler.handle
def handle(self): """Handle request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) state, control = db.get([ model.MapreduceState.get_key_by_job_id(spec.mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not state: logging.warning("State not found for MR '%s'; dropping controller task.", spec.mapreduce_id) return if not state.active: logging.warning( "MR %r is not active. Looks like spurious controller task execution.", spec.mapreduce_id) self._clean_up_mr(spec) return shard_states = model.ShardState.find_all_by_mapreduce_state(state) self._update_state_from_shard_states(state, shard_states, control) if state.active: ControllerCallbackHandler.reschedule( state, spec, self.serial_id() + 1)
python
def handle(self): """Handle request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) state, control = db.get([ model.MapreduceState.get_key_by_job_id(spec.mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not state: logging.warning("State not found for MR '%s'; dropping controller task.", spec.mapreduce_id) return if not state.active: logging.warning( "MR %r is not active. Looks like spurious controller task execution.", spec.mapreduce_id) self._clean_up_mr(spec) return shard_states = model.ShardState.find_all_by_mapreduce_state(state) self._update_state_from_shard_states(state, shard_states, control) if state.active: ControllerCallbackHandler.reschedule( state, spec, self.serial_id() + 1)
Handle request.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1100-L1125
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler._update_state_from_shard_states
def _update_state_from_shard_states(self, state, shard_states, control): """Update mr state by examing shard states. Args: state: current mapreduce state as MapreduceState. shard_states: an iterator over shard states. control: model.MapreduceControl entity. """ # Initialize vars. state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0 total_shards = 0 processed_counts = [] processed_status = [] state.counters_map.clear() # Tally across shard states once. for s in shard_states: total_shards += 1 status = 'unknown' if s.active: state.active_shards += 1 status = 'running' if s.result_status == model.ShardState.RESULT_SUCCESS: status = 'success' elif s.result_status == model.ShardState.RESULT_ABORTED: state.aborted_shards += 1 status = 'aborted' elif s.result_status == model.ShardState.RESULT_FAILED: state.failed_shards += 1 status = 'failed' # Update stats in mapreduce state by aggregating stats from shard states. state.counters_map.add_map(s.counters_map) processed_counts.append(s.counters_map.get(context.COUNTER_MAPPER_CALLS)) processed_status.append(status) state.set_processed_counts(processed_counts, processed_status) state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) spec = state.mapreduce_spec if total_shards != spec.mapper.shard_count: logging.error("Found %d shard states. Expect %d. " "Issuing abort command to job '%s'", total_shards, spec.mapper.shard_count, spec.mapreduce_id) # We issue abort command to allow shards to stop themselves. model.MapreduceControl.abort(spec.mapreduce_id) # If any shard is active then the mr is active. # This way, controller won't prematurely stop before all the shards have. state.active = bool(state.active_shards) if not control and (state.failed_shards or state.aborted_shards): # Issue abort command if there are failed shards. model.MapreduceControl.abort(spec.mapreduce_id) if not state.active: # Set final result status derived from shard states. if state.failed_shards or not total_shards: state.result_status = model.MapreduceState.RESULT_FAILED # It's important failed shards is checked before aborted shards # because failed shards will trigger other shards to abort. elif state.aborted_shards: state.result_status = model.MapreduceState.RESULT_ABORTED else: state.result_status = model.MapreduceState.RESULT_SUCCESS self._finalize_outputs(spec, state) self._finalize_job(spec, state) else: @db.transactional(retries=5) def _put_state(): """The helper for storing the state.""" fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id) # We don't check anything other than active because we are only # updating stats. It's OK if they are briefly inconsistent. if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping controller task.", spec.mapreduce_id) return config = util.create_datastore_write_config(spec) state.put(config=config) _put_state()
python
def _update_state_from_shard_states(self, state, shard_states, control): """Update mr state by examing shard states. Args: state: current mapreduce state as MapreduceState. shard_states: an iterator over shard states. control: model.MapreduceControl entity. """ # Initialize vars. state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0 total_shards = 0 processed_counts = [] processed_status = [] state.counters_map.clear() # Tally across shard states once. for s in shard_states: total_shards += 1 status = 'unknown' if s.active: state.active_shards += 1 status = 'running' if s.result_status == model.ShardState.RESULT_SUCCESS: status = 'success' elif s.result_status == model.ShardState.RESULT_ABORTED: state.aborted_shards += 1 status = 'aborted' elif s.result_status == model.ShardState.RESULT_FAILED: state.failed_shards += 1 status = 'failed' # Update stats in mapreduce state by aggregating stats from shard states. state.counters_map.add_map(s.counters_map) processed_counts.append(s.counters_map.get(context.COUNTER_MAPPER_CALLS)) processed_status.append(status) state.set_processed_counts(processed_counts, processed_status) state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) spec = state.mapreduce_spec if total_shards != spec.mapper.shard_count: logging.error("Found %d shard states. Expect %d. " "Issuing abort command to job '%s'", total_shards, spec.mapper.shard_count, spec.mapreduce_id) # We issue abort command to allow shards to stop themselves. model.MapreduceControl.abort(spec.mapreduce_id) # If any shard is active then the mr is active. # This way, controller won't prematurely stop before all the shards have. state.active = bool(state.active_shards) if not control and (state.failed_shards or state.aborted_shards): # Issue abort command if there are failed shards. model.MapreduceControl.abort(spec.mapreduce_id) if not state.active: # Set final result status derived from shard states. if state.failed_shards or not total_shards: state.result_status = model.MapreduceState.RESULT_FAILED # It's important failed shards is checked before aborted shards # because failed shards will trigger other shards to abort. elif state.aborted_shards: state.result_status = model.MapreduceState.RESULT_ABORTED else: state.result_status = model.MapreduceState.RESULT_SUCCESS self._finalize_outputs(spec, state) self._finalize_job(spec, state) else: @db.transactional(retries=5) def _put_state(): """The helper for storing the state.""" fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id) # We don't check anything other than active because we are only # updating stats. It's OK if they are briefly inconsistent. if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping controller task.", spec.mapreduce_id) return config = util.create_datastore_write_config(spec) state.put(config=config) _put_state()
Update mr state by examing shard states. Args: state: current mapreduce state as MapreduceState. shard_states: an iterator over shard states. control: model.MapreduceControl entity.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1127-L1210
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler._finalize_outputs
def _finalize_outputs(cls, mapreduce_spec, mapreduce_state): """Finalize outputs. Args: mapreduce_spec: an instance of MapreduceSpec. mapreduce_state: an instance of MapreduceState. """ # Only finalize the output writers if the job is successful. if (mapreduce_spec.mapper.output_writer_class() and mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS): mapreduce_spec.mapper.output_writer_class().finalize_job(mapreduce_state)
python
def _finalize_outputs(cls, mapreduce_spec, mapreduce_state): """Finalize outputs. Args: mapreduce_spec: an instance of MapreduceSpec. mapreduce_state: an instance of MapreduceState. """ # Only finalize the output writers if the job is successful. if (mapreduce_spec.mapper.output_writer_class() and mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS): mapreduce_spec.mapper.output_writer_class().finalize_job(mapreduce_state)
Finalize outputs. Args: mapreduce_spec: an instance of MapreduceSpec. mapreduce_state: an instance of MapreduceState.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1221-L1231
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler._finalize_job
def _finalize_job(cls, mapreduce_spec, mapreduce_state): """Finalize job execution. Invokes done callback and save mapreduce state in a transaction, and schedule necessary clean ups. This method is idempotent. Args: mapreduce_spec: an instance of MapreduceSpec mapreduce_state: an instance of MapreduceState """ config = util.create_datastore_write_config(mapreduce_spec) queue_name = util.get_queue_name(mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE)) done_callback = mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK) done_task = None if done_callback: done_task = taskqueue.Task( url=done_callback, headers=util._get_task_headers(mapreduce_spec.mapreduce_id, util.CALLBACK_MR_ID_TASK_HEADER), method=mapreduce_spec.params.get("done_callback_method", "POST")) @db.transactional(retries=5) def _put_state(): """Helper to store state.""" fresh_state = model.MapreduceState.get_by_job_id( mapreduce_spec.mapreduce_id) if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping task.", mapreduce_spec.mapreduce_id) return mapreduce_state.put(config=config) # Enqueue done_callback if needed. if done_task and not _run_task_hook( mapreduce_spec.get_hooks(), "enqueue_done_task", done_task, queue_name): done_task.add(queue_name, transactional=True) _put_state() logging.info("Final result for job '%s' is '%s'", mapreduce_spec.mapreduce_id, mapreduce_state.result_status) cls._clean_up_mr(mapreduce_spec)
python
def _finalize_job(cls, mapreduce_spec, mapreduce_state): """Finalize job execution. Invokes done callback and save mapreduce state in a transaction, and schedule necessary clean ups. This method is idempotent. Args: mapreduce_spec: an instance of MapreduceSpec mapreduce_state: an instance of MapreduceState """ config = util.create_datastore_write_config(mapreduce_spec) queue_name = util.get_queue_name(mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE)) done_callback = mapreduce_spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK) done_task = None if done_callback: done_task = taskqueue.Task( url=done_callback, headers=util._get_task_headers(mapreduce_spec.mapreduce_id, util.CALLBACK_MR_ID_TASK_HEADER), method=mapreduce_spec.params.get("done_callback_method", "POST")) @db.transactional(retries=5) def _put_state(): """Helper to store state.""" fresh_state = model.MapreduceState.get_by_job_id( mapreduce_spec.mapreduce_id) if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping task.", mapreduce_spec.mapreduce_id) return mapreduce_state.put(config=config) # Enqueue done_callback if needed. if done_task and not _run_task_hook( mapreduce_spec.get_hooks(), "enqueue_done_task", done_task, queue_name): done_task.add(queue_name, transactional=True) _put_state() logging.info("Final result for job '%s' is '%s'", mapreduce_spec.mapreduce_id, mapreduce_state.result_status) cls._clean_up_mr(mapreduce_spec)
Finalize job execution. Invokes done callback and save mapreduce state in a transaction, and schedule necessary clean ups. This method is idempotent. Args: mapreduce_spec: an instance of MapreduceSpec mapreduce_state: an instance of MapreduceState
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1234-L1279
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
ControllerCallbackHandler.reschedule
def reschedule(cls, mapreduce_state, mapreduce_spec, serial_id, queue_name=None): """Schedule new update status callback task. Args: mapreduce_state: mapreduce state as model.MapreduceState mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied. """ task_name = ControllerCallbackHandler.get_task_name( mapreduce_spec, serial_id) task_params = ControllerCallbackHandler.controller_parameters( mapreduce_spec, serial_id) if not queue_name: queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") controller_callback_task = model.HugeTask( url=(mapreduce_spec.params["base_path"] + "/controller_callback/" + mapreduce_spec.mapreduce_id), name=task_name, params=task_params, countdown=parameters.config._CONTROLLER_PERIOD_SEC, parent=mapreduce_state, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", controller_callback_task, queue_name): try: controller_callback_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e)
python
def reschedule(cls, mapreduce_state, mapreduce_spec, serial_id, queue_name=None): """Schedule new update status callback task. Args: mapreduce_state: mapreduce state as model.MapreduceState mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied. """ task_name = ControllerCallbackHandler.get_task_name( mapreduce_spec, serial_id) task_params = ControllerCallbackHandler.controller_parameters( mapreduce_spec, serial_id) if not queue_name: queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") controller_callback_task = model.HugeTask( url=(mapreduce_spec.params["base_path"] + "/controller_callback/" + mapreduce_spec.mapreduce_id), name=task_name, params=task_params, countdown=parameters.config._CONTROLLER_PERIOD_SEC, parent=mapreduce_state, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", controller_callback_task, queue_name): try: controller_callback_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e)
Schedule new update status callback task. Args: mapreduce_state: mapreduce state as model.MapreduceState mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1319-L1357
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler.handle
def handle(self): """Handles kick off request.""" # Get and verify mr state. mr_id = self.request.get("mapreduce_id") # Log the mr_id since this is started in an unnamed task logging.info("Processing kickoff for job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Create input readers. readers, serialized_readers_entity = self._get_input_readers(state) if readers is None: # We don't have any data. Finish map. logging.warning("Found no mapper input data to process.") state.active = False state.result_status = model.MapreduceState.RESULT_SUCCESS ControllerCallbackHandler._finalize_job( state.mapreduce_spec, state) return False # Create output writers. self._setup_output_writer(state) # Save states and make sure we use the saved input readers for # subsequent operations. result = self._save_states(state, serialized_readers_entity) if result is None: readers, _ = self._get_input_readers(state) elif not result: return queue_name = self.request.headers.get("X-AppEngine-QueueName") KickOffJobHandler._schedule_shards(state.mapreduce_spec, readers, queue_name, state.mapreduce_spec.params["base_path"], state) ControllerCallbackHandler.reschedule( state, state.mapreduce_spec, serial_id=0, queue_name=queue_name)
python
def handle(self): """Handles kick off request.""" # Get and verify mr state. mr_id = self.request.get("mapreduce_id") # Log the mr_id since this is started in an unnamed task logging.info("Processing kickoff for job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Create input readers. readers, serialized_readers_entity = self._get_input_readers(state) if readers is None: # We don't have any data. Finish map. logging.warning("Found no mapper input data to process.") state.active = False state.result_status = model.MapreduceState.RESULT_SUCCESS ControllerCallbackHandler._finalize_job( state.mapreduce_spec, state) return False # Create output writers. self._setup_output_writer(state) # Save states and make sure we use the saved input readers for # subsequent operations. result = self._save_states(state, serialized_readers_entity) if result is None: readers, _ = self._get_input_readers(state) elif not result: return queue_name = self.request.headers.get("X-AppEngine-QueueName") KickOffJobHandler._schedule_shards(state.mapreduce_spec, readers, queue_name, state.mapreduce_spec.params["base_path"], state) ControllerCallbackHandler.reschedule( state, state.mapreduce_spec, serial_id=0, queue_name=queue_name)
Handles kick off request.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1376-L1415
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler._drop_gracefully
def _drop_gracefully(self): """See parent.""" mr_id = self.request.get("mapreduce_id") logging.error("Failed to kick off job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Issue abort command just in case there are running tasks. config = util.create_datastore_write_config(state.mapreduce_spec) model.MapreduceControl.abort(mr_id, config=config) # Finalize job and invoke callback. state.active = False state.result_status = model.MapreduceState.RESULT_FAILED ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)
python
def _drop_gracefully(self): """See parent.""" mr_id = self.request.get("mapreduce_id") logging.error("Failed to kick off job %s", mr_id) state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(state, mr_id): return # Issue abort command just in case there are running tasks. config = util.create_datastore_write_config(state.mapreduce_spec) model.MapreduceControl.abort(mr_id, config=config) # Finalize job and invoke callback. state.active = False state.result_status = model.MapreduceState.RESULT_FAILED ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)
See parent.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1417-L1433
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler._get_input_readers
def _get_input_readers(self, state): """Get input readers. Args: state: a MapreduceState model. Returns: A tuple: (a list of input readers, a model._HugeTaskPayload entity). The payload entity contains the json serialized input readers. (None, None) when input reader inplitting returned no data to process. """ serialized_input_readers_key = (self._SERIALIZED_INPUT_READERS_KEY % state.key().id_or_name()) serialized_input_readers = model._HugeTaskPayload.get_by_key_name( serialized_input_readers_key, parent=state) # Initialize input readers. input_reader_class = state.mapreduce_spec.mapper.input_reader_class() split_param = state.mapreduce_spec.mapper if issubclass(input_reader_class, map_job.InputReader): split_param = map_job.JobConfig._to_map_job_config( state.mapreduce_spec, os.environ.get("HTTP_X_APPENGINE_QUEUENAME")) if serialized_input_readers is None: readers = input_reader_class.split_input(split_param) else: readers = [input_reader_class.from_json_str(_json) for _json in json.loads(zlib.decompress( serialized_input_readers.payload))] if not readers: return None, None # Update state and spec with actual shard count. state.mapreduce_spec.mapper.shard_count = len(readers) state.active_shards = len(readers) # Prepare to save serialized input readers. if serialized_input_readers is None: # Use mr_state as parent so it can be easily cleaned up later. serialized_input_readers = model._HugeTaskPayload( key_name=serialized_input_readers_key, parent=state) readers_json_str = [i.to_json_str() for i in readers] serialized_input_readers.payload = zlib.compress(json.dumps( readers_json_str)) return readers, serialized_input_readers
python
def _get_input_readers(self, state): """Get input readers. Args: state: a MapreduceState model. Returns: A tuple: (a list of input readers, a model._HugeTaskPayload entity). The payload entity contains the json serialized input readers. (None, None) when input reader inplitting returned no data to process. """ serialized_input_readers_key = (self._SERIALIZED_INPUT_READERS_KEY % state.key().id_or_name()) serialized_input_readers = model._HugeTaskPayload.get_by_key_name( serialized_input_readers_key, parent=state) # Initialize input readers. input_reader_class = state.mapreduce_spec.mapper.input_reader_class() split_param = state.mapreduce_spec.mapper if issubclass(input_reader_class, map_job.InputReader): split_param = map_job.JobConfig._to_map_job_config( state.mapreduce_spec, os.environ.get("HTTP_X_APPENGINE_QUEUENAME")) if serialized_input_readers is None: readers = input_reader_class.split_input(split_param) else: readers = [input_reader_class.from_json_str(_json) for _json in json.loads(zlib.decompress( serialized_input_readers.payload))] if not readers: return None, None # Update state and spec with actual shard count. state.mapreduce_spec.mapper.shard_count = len(readers) state.active_shards = len(readers) # Prepare to save serialized input readers. if serialized_input_readers is None: # Use mr_state as parent so it can be easily cleaned up later. serialized_input_readers = model._HugeTaskPayload( key_name=serialized_input_readers_key, parent=state) readers_json_str = [i.to_json_str() for i in readers] serialized_input_readers.payload = zlib.compress(json.dumps( readers_json_str)) return readers, serialized_input_readers
Get input readers. Args: state: a MapreduceState model. Returns: A tuple: (a list of input readers, a model._HugeTaskPayload entity). The payload entity contains the json serialized input readers. (None, None) when input reader inplitting returned no data to process.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1435-L1480
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler._save_states
def _save_states(self, state, serialized_readers_entity): """Run transaction to save state. Args: state: a model.MapreduceState entity. serialized_readers_entity: a model._HugeTaskPayload entity containing json serialized input readers. Returns: False if a fatal error is encountered and this task should be dropped immediately. True if transaction is successful. None if a previous attempt of this same transaction has already succeeded. """ mr_id = state.key().id_or_name() fresh_state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(fresh_state, mr_id): return False if fresh_state.active_shards != 0: logging.warning( "Mapreduce %s already has active shards. Looks like spurious task " "execution.", mr_id) return None config = util.create_datastore_write_config(state.mapreduce_spec) db.put([state, serialized_readers_entity], config=config) return True
python
def _save_states(self, state, serialized_readers_entity): """Run transaction to save state. Args: state: a model.MapreduceState entity. serialized_readers_entity: a model._HugeTaskPayload entity containing json serialized input readers. Returns: False if a fatal error is encountered and this task should be dropped immediately. True if transaction is successful. None if a previous attempt of this same transaction has already succeeded. """ mr_id = state.key().id_or_name() fresh_state = model.MapreduceState.get_by_job_id(mr_id) if not self._check_mr_state(fresh_state, mr_id): return False if fresh_state.active_shards != 0: logging.warning( "Mapreduce %s already has active shards. Looks like spurious task " "execution.", mr_id) return None config = util.create_datastore_write_config(state.mapreduce_spec) db.put([state, serialized_readers_entity], config=config) return True
Run transaction to save state. Args: state: a model.MapreduceState entity. serialized_readers_entity: a model._HugeTaskPayload entity containing json serialized input readers. Returns: False if a fatal error is encountered and this task should be dropped immediately. True if transaction is successful. None if a previous attempt of this same transaction has already succeeded.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1489-L1513
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler._schedule_shards
def _schedule_shards(cls, spec, readers, queue_name, base_path, mr_state): """Prepares shard states and schedules their execution. Even though this method does not schedule shard task and save shard state transactionally, it's safe for taskqueue to retry this logic because the initial shard_state for each shard is the same from any retry. This is an important yet reasonable assumption on model.ShardState. Args: spec: mapreduce specification as MapreduceSpec. readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. mr_state: The MapReduceState of current job. """ # Create shard states. shard_states = [] for shard_number, input_reader in enumerate(readers): shard_state = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard_state.shard_description = str(input_reader) shard_states.append(shard_state) # Retrieves already existing shard states. existing_shard_states = db.get(shard.key() for shard in shard_states) existing_shard_keys = set(shard.key() for shard in existing_shard_states if shard is not None) # Save non existent shard states. # Note: we could do this transactionally if necessary. db.put((shard for shard in shard_states if shard.key() not in existing_shard_keys), config=util.create_datastore_write_config(spec)) # Create output writers. writer_class = spec.mapper.output_writer_class() writers = [None] * len(readers) if writer_class: for shard_number, shard_state in enumerate(shard_states): writers[shard_number] = writer_class.create( mr_state.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1, mr_state.writer_state) # Schedule ALL shard tasks. # Since each task is named, _add_task will fall back gracefully if a # task already exists. for shard_number, (input_reader, output_writer) in enumerate( zip(readers, writers)): shard_id = model.ShardState.shard_id_from_number( spec.mapreduce_id, shard_number) task = MapperWorkerCallbackHandler._state_to_task( model.TransientShardState( base_path, spec, shard_id, 0, input_reader, input_reader, output_writer=output_writer, handler=spec.mapper.handler), shard_states[shard_number]) MapperWorkerCallbackHandler._add_task(task, spec, queue_name)
python
def _schedule_shards(cls, spec, readers, queue_name, base_path, mr_state): """Prepares shard states and schedules their execution. Even though this method does not schedule shard task and save shard state transactionally, it's safe for taskqueue to retry this logic because the initial shard_state for each shard is the same from any retry. This is an important yet reasonable assumption on model.ShardState. Args: spec: mapreduce specification as MapreduceSpec. readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. mr_state: The MapReduceState of current job. """ # Create shard states. shard_states = [] for shard_number, input_reader in enumerate(readers): shard_state = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard_state.shard_description = str(input_reader) shard_states.append(shard_state) # Retrieves already existing shard states. existing_shard_states = db.get(shard.key() for shard in shard_states) existing_shard_keys = set(shard.key() for shard in existing_shard_states if shard is not None) # Save non existent shard states. # Note: we could do this transactionally if necessary. db.put((shard for shard in shard_states if shard.key() not in existing_shard_keys), config=util.create_datastore_write_config(spec)) # Create output writers. writer_class = spec.mapper.output_writer_class() writers = [None] * len(readers) if writer_class: for shard_number, shard_state in enumerate(shard_states): writers[shard_number] = writer_class.create( mr_state.mapreduce_spec, shard_state.shard_number, shard_state.retries + 1, mr_state.writer_state) # Schedule ALL shard tasks. # Since each task is named, _add_task will fall back gracefully if a # task already exists. for shard_number, (input_reader, output_writer) in enumerate( zip(readers, writers)): shard_id = model.ShardState.shard_id_from_number( spec.mapreduce_id, shard_number) task = MapperWorkerCallbackHandler._state_to_task( model.TransientShardState( base_path, spec, shard_id, 0, input_reader, input_reader, output_writer=output_writer, handler=spec.mapper.handler), shard_states[shard_number]) MapperWorkerCallbackHandler._add_task(task, spec, queue_name)
Prepares shard states and schedules their execution. Even though this method does not schedule shard task and save shard state transactionally, it's safe for taskqueue to retry this logic because the initial shard_state for each shard is the same from any retry. This is an important yet reasonable assumption on model.ShardState. Args: spec: mapreduce specification as MapreduceSpec. readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. mr_state: The MapReduceState of current job.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1516-L1579
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
KickOffJobHandler._check_mr_state
def _check_mr_state(cls, state, mr_id): """Check MapreduceState. Args: state: an MapreduceState instance. mr_id: mapreduce id. Returns: True if state is valid. False if not and this task should be dropped. """ if state is None: logging.warning( "Mapreduce State for job %s is missing. Dropping Task.", mr_id) return False if not state.active: logging.warning( "Mapreduce %s is not active. Looks like spurious task " "execution. Dropping Task.", mr_id) return False return True
python
def _check_mr_state(cls, state, mr_id): """Check MapreduceState. Args: state: an MapreduceState instance. mr_id: mapreduce id. Returns: True if state is valid. False if not and this task should be dropped. """ if state is None: logging.warning( "Mapreduce State for job %s is missing. Dropping Task.", mr_id) return False if not state.active: logging.warning( "Mapreduce %s is not active. Looks like spurious task " "execution. Dropping Task.", mr_id) return False return True
Check MapreduceState. Args: state: an MapreduceState instance. mr_id: mapreduce id. Returns: True if state is valid. False if not and this task should be dropped.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1582-L1602
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler.handle
def handle(self): """Handles start request.""" # Mapper spec as form arguments. mapreduce_name = self._get_required_param("name") mapper_input_reader_spec = self._get_required_param("mapper_input_reader") mapper_handler_spec = self._get_required_param("mapper_handler") mapper_output_writer_spec = self.request.get("mapper_output_writer") mapper_params = self._get_params( "mapper_params_validator", "mapper_params.") params = self._get_params( "params_validator", "params.") # Default values. mr_params = map_job.JobConfig._get_default_mr_params() mr_params.update(params) if "queue_name" in mapper_params: mr_params["queue_name"] = mapper_params["queue_name"] # Set some mapper param defaults if not present. mapper_params["processing_rate"] = int(mapper_params.get( "processing_rate") or parameters.config.PROCESSING_RATE_PER_SEC) # Validate the Mapper spec, handler, and input reader. mapper_spec = model.MapperSpec( mapper_handler_spec, mapper_input_reader_spec, mapper_params, int(mapper_params.get("shard_count", parameters.config.SHARD_COUNT)), output_writer_spec=mapper_output_writer_spec) mapreduce_id = self._start_map( mapreduce_name, mapper_spec, mr_params, queue_name=mr_params["queue_name"], _app=mapper_params.get("_app")) self.json_response["mapreduce_id"] = mapreduce_id
python
def handle(self): """Handles start request.""" # Mapper spec as form arguments. mapreduce_name = self._get_required_param("name") mapper_input_reader_spec = self._get_required_param("mapper_input_reader") mapper_handler_spec = self._get_required_param("mapper_handler") mapper_output_writer_spec = self.request.get("mapper_output_writer") mapper_params = self._get_params( "mapper_params_validator", "mapper_params.") params = self._get_params( "params_validator", "params.") # Default values. mr_params = map_job.JobConfig._get_default_mr_params() mr_params.update(params) if "queue_name" in mapper_params: mr_params["queue_name"] = mapper_params["queue_name"] # Set some mapper param defaults if not present. mapper_params["processing_rate"] = int(mapper_params.get( "processing_rate") or parameters.config.PROCESSING_RATE_PER_SEC) # Validate the Mapper spec, handler, and input reader. mapper_spec = model.MapperSpec( mapper_handler_spec, mapper_input_reader_spec, mapper_params, int(mapper_params.get("shard_count", parameters.config.SHARD_COUNT)), output_writer_spec=mapper_output_writer_spec) mapreduce_id = self._start_map( mapreduce_name, mapper_spec, mr_params, queue_name=mr_params["queue_name"], _app=mapper_params.get("_app")) self.json_response["mapreduce_id"] = mapreduce_id
Handles start request.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1612-L1648
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler._get_params
def _get_params(self, validator_parameter, name_prefix): """Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. Returns: The user parameters. """ params_validator = self.request.get(validator_parameter) user_params = {} for key in self.request.arguments(): if key.startswith(name_prefix): values = self.request.get_all(key) adjusted_key = key[len(name_prefix):] if len(values) == 1: user_params[adjusted_key] = values[0] else: user_params[adjusted_key] = values if params_validator: resolved_validator = util.for_name(params_validator) resolved_validator(user_params) return user_params
python
def _get_params(self, validator_parameter, name_prefix): """Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. Returns: The user parameters. """ params_validator = self.request.get(validator_parameter) user_params = {} for key in self.request.arguments(): if key.startswith(name_prefix): values = self.request.get_all(key) adjusted_key = key[len(name_prefix):] if len(values) == 1: user_params[adjusted_key] = values[0] else: user_params[adjusted_key] = values if params_validator: resolved_validator = util.for_name(params_validator) resolved_validator(user_params) return user_params
Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. Returns: The user parameters.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1650-L1681
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler._get_required_param
def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: errors.NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise errors.NotEnoughArgumentsError(param_name + " not specified") return value
python
def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: errors.NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise errors.NotEnoughArgumentsError(param_name + " not specified") return value
Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: errors.NotEnoughArgumentsError: if parameter is not specified.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1683-L1698
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler._start_map
def _start_map(cls, name, mapper_spec, mapreduce_params, queue_name, eta=None, countdown=None, hooks_class_name=None, _app=None, in_xg_transaction=False): # pylint: disable=g-doc-args # pylint: disable=g-doc-return-or-yield """See control.start_map. Requirements for this method: 1. The request that invokes this method can either be regular or from taskqueue. So taskqueue specific headers can not be used. 2. Each invocation transactionally starts an isolated mapreduce job with a unique id. MapreduceState should be immediately available after returning. See control.start_map's doc on transactional. 3. Method should be lightweight. """ # Validate input reader. mapper_input_reader_class = mapper_spec.input_reader_class() mapper_input_reader_class.validate(mapper_spec) # Validate output writer. mapper_output_writer_class = mapper_spec.output_writer_class() if mapper_output_writer_class: mapper_output_writer_class.validate(mapper_spec) # Create a new id and mr spec. mapreduce_id = model.MapreduceState.new_mapreduce_id() mapreduce_spec = model.MapreduceSpec( name, mapreduce_id, mapper_spec.to_json(), mapreduce_params, hooks_class_name) # Validate mapper handler. ctx = context.Context(mapreduce_spec, None) context.Context._set(ctx) try: # pylint: disable=pointless-statement mapper_spec.handler finally: context.Context._set(None) # Save states and enqueue task. if in_xg_transaction: propagation = db.MANDATORY else: propagation = db.INDEPENDENT @db.transactional(propagation=propagation) def _txn(): cls._create_and_save_state(mapreduce_spec, _app) cls._add_kickoff_task(mapreduce_params["base_path"], mapreduce_spec, eta, countdown, queue_name) _txn() return mapreduce_id
python
def _start_map(cls, name, mapper_spec, mapreduce_params, queue_name, eta=None, countdown=None, hooks_class_name=None, _app=None, in_xg_transaction=False): # pylint: disable=g-doc-args # pylint: disable=g-doc-return-or-yield """See control.start_map. Requirements for this method: 1. The request that invokes this method can either be regular or from taskqueue. So taskqueue specific headers can not be used. 2. Each invocation transactionally starts an isolated mapreduce job with a unique id. MapreduceState should be immediately available after returning. See control.start_map's doc on transactional. 3. Method should be lightweight. """ # Validate input reader. mapper_input_reader_class = mapper_spec.input_reader_class() mapper_input_reader_class.validate(mapper_spec) # Validate output writer. mapper_output_writer_class = mapper_spec.output_writer_class() if mapper_output_writer_class: mapper_output_writer_class.validate(mapper_spec) # Create a new id and mr spec. mapreduce_id = model.MapreduceState.new_mapreduce_id() mapreduce_spec = model.MapreduceSpec( name, mapreduce_id, mapper_spec.to_json(), mapreduce_params, hooks_class_name) # Validate mapper handler. ctx = context.Context(mapreduce_spec, None) context.Context._set(ctx) try: # pylint: disable=pointless-statement mapper_spec.handler finally: context.Context._set(None) # Save states and enqueue task. if in_xg_transaction: propagation = db.MANDATORY else: propagation = db.INDEPENDENT @db.transactional(propagation=propagation) def _txn(): cls._create_and_save_state(mapreduce_spec, _app) cls._add_kickoff_task(mapreduce_params["base_path"], mapreduce_spec, eta, countdown, queue_name) _txn() return mapreduce_id
See control.start_map. Requirements for this method: 1. The request that invokes this method can either be regular or from taskqueue. So taskqueue specific headers can not be used. 2. Each invocation transactionally starts an isolated mapreduce job with a unique id. MapreduceState should be immediately available after returning. See control.start_map's doc on transactional. 3. Method should be lightweight.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1701-L1763
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler._create_and_save_state
def _create_and_save_state(cls, mapreduce_spec, _app): """Save mapreduce state to datastore. Save state to datastore so that UI can see it immediately. Args: mapreduce_spec: model.MapreduceSpec, _app: app id if specified. None otherwise. Returns: The saved Mapreduce state. """ state = model.MapreduceState.create_new(mapreduce_spec.mapreduce_id) state.mapreduce_spec = mapreduce_spec state.active = True state.active_shards = 0 if _app: state.app_id = _app config = util.create_datastore_write_config(mapreduce_spec) state.put(config=config) return state
python
def _create_and_save_state(cls, mapreduce_spec, _app): """Save mapreduce state to datastore. Save state to datastore so that UI can see it immediately. Args: mapreduce_spec: model.MapreduceSpec, _app: app id if specified. None otherwise. Returns: The saved Mapreduce state. """ state = model.MapreduceState.create_new(mapreduce_spec.mapreduce_id) state.mapreduce_spec = mapreduce_spec state.active = True state.active_shards = 0 if _app: state.app_id = _app config = util.create_datastore_write_config(mapreduce_spec) state.put(config=config) return state
Save mapreduce state to datastore. Save state to datastore so that UI can see it immediately. Args: mapreduce_spec: model.MapreduceSpec, _app: app id if specified. None otherwise. Returns: The saved Mapreduce state.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1766-L1786
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
StartJobHandler._add_kickoff_task
def _add_kickoff_task(cls, base_path, mapreduce_spec, eta, countdown, queue_name): """Enqueues a new kickoff task.""" params = {"mapreduce_id": mapreduce_spec.mapreduce_id} # Task is not named so that it can be added within a transaction. kickoff_task = taskqueue.Task( url=base_path + "/kickoffjob_callback/" + mapreduce_spec.mapreduce_id, headers=util._get_task_headers(mapreduce_spec.mapreduce_id), params=params, eta=eta, countdown=countdown) hooks = mapreduce_spec.get_hooks() if hooks is not None: try: hooks.enqueue_kickoff_task(kickoff_task, queue_name) return except NotImplementedError: pass kickoff_task.add(queue_name, transactional=True)
python
def _add_kickoff_task(cls, base_path, mapreduce_spec, eta, countdown, queue_name): """Enqueues a new kickoff task.""" params = {"mapreduce_id": mapreduce_spec.mapreduce_id} # Task is not named so that it can be added within a transaction. kickoff_task = taskqueue.Task( url=base_path + "/kickoffjob_callback/" + mapreduce_spec.mapreduce_id, headers=util._get_task_headers(mapreduce_spec.mapreduce_id), params=params, eta=eta, countdown=countdown) hooks = mapreduce_spec.get_hooks() if hooks is not None: try: hooks.enqueue_kickoff_task(kickoff_task, queue_name) return except NotImplementedError: pass kickoff_task.add(queue_name, transactional=True)
Enqueues a new kickoff task.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1789-L1811
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/handlers.py
FinalizeJobHandler.schedule
def schedule(cls, mapreduce_spec): """Schedule finalize task. Args: mapreduce_spec: mapreduce specification as MapreduceSpec. """ task_name = mapreduce_spec.mapreduce_id + "-finalize" finalize_task = taskqueue.Task( name=task_name, url=(mapreduce_spec.params["base_path"] + "/finalizejob_callback/" + mapreduce_spec.mapreduce_id), params={"mapreduce_id": mapreduce_spec.mapreduce_id}, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) queue_name = util.get_queue_name(None) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", finalize_task, queue_name): try: finalize_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r already exists. %s: %s", task_name, e.__class__, e)
python
def schedule(cls, mapreduce_spec): """Schedule finalize task. Args: mapreduce_spec: mapreduce specification as MapreduceSpec. """ task_name = mapreduce_spec.mapreduce_id + "-finalize" finalize_task = taskqueue.Task( name=task_name, url=(mapreduce_spec.params["base_path"] + "/finalizejob_callback/" + mapreduce_spec.mapreduce_id), params={"mapreduce_id": mapreduce_spec.mapreduce_id}, headers=util._get_task_headers(mapreduce_spec.mapreduce_id)) queue_name = util.get_queue_name(None) if not _run_task_hook(mapreduce_spec.get_hooks(), "enqueue_controller_task", finalize_task, queue_name): try: finalize_task.add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r already exists. %s: %s", task_name, e.__class__, e)
Schedule finalize task. Args: mapreduce_spec: mapreduce specification as MapreduceSpec.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/handlers.py#L1832-L1855
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_get_params
def _get_params(mapper_spec, allowed_keys=None, allow_old=True): """Obtain input reader parameters. Utility function for input readers implementation. Fetches parameters from mapreduce specification giving appropriate usage warnings. Args: mapper_spec: The MapperSpec for the job allowed_keys: set of all allowed keys in parameters as strings. If it is not None, then parameters are expected to be in a separate "input_reader" subdictionary of mapper_spec parameters. allow_old: Allow parameters to exist outside of the input_reader subdictionary for compatability. Returns: mapper parameters as dict Raises: BadReaderParamsError: if parameters are invalid/missing or not allowed. """ if "input_reader" not in mapper_spec.params: message = ("Input reader's parameters should be specified in " "input_reader subdictionary.") if not allow_old or allowed_keys: raise errors.BadReaderParamsError(message) params = mapper_spec.params params = dict((str(n), v) for n, v in params.iteritems()) else: if not isinstance(mapper_spec.params.get("input_reader"), dict): raise errors.BadReaderParamsError( "Input reader parameters should be a dictionary") params = mapper_spec.params.get("input_reader") params = dict((str(n), v) for n, v in params.iteritems()) if allowed_keys: params_diff = set(params.keys()) - allowed_keys if params_diff: raise errors.BadReaderParamsError( "Invalid input_reader parameters: %s" % ",".join(params_diff)) return params
python
def _get_params(mapper_spec, allowed_keys=None, allow_old=True): """Obtain input reader parameters. Utility function for input readers implementation. Fetches parameters from mapreduce specification giving appropriate usage warnings. Args: mapper_spec: The MapperSpec for the job allowed_keys: set of all allowed keys in parameters as strings. If it is not None, then parameters are expected to be in a separate "input_reader" subdictionary of mapper_spec parameters. allow_old: Allow parameters to exist outside of the input_reader subdictionary for compatability. Returns: mapper parameters as dict Raises: BadReaderParamsError: if parameters are invalid/missing or not allowed. """ if "input_reader" not in mapper_spec.params: message = ("Input reader's parameters should be specified in " "input_reader subdictionary.") if not allow_old or allowed_keys: raise errors.BadReaderParamsError(message) params = mapper_spec.params params = dict((str(n), v) for n, v in params.iteritems()) else: if not isinstance(mapper_spec.params.get("input_reader"), dict): raise errors.BadReaderParamsError( "Input reader parameters should be a dictionary") params = mapper_spec.params.get("input_reader") params = dict((str(n), v) for n, v in params.iteritems()) if allowed_keys: params_diff = set(params.keys()) - allowed_keys if params_diff: raise errors.BadReaderParamsError( "Invalid input_reader parameters: %s" % ",".join(params_diff)) return params
Obtain input reader parameters. Utility function for input readers implementation. Fetches parameters from mapreduce specification giving appropriate usage warnings. Args: mapper_spec: The MapperSpec for the job allowed_keys: set of all allowed keys in parameters as strings. If it is not None, then parameters are expected to be in a separate "input_reader" subdictionary of mapper_spec parameters. allow_old: Allow parameters to exist outside of the input_reader subdictionary for compatability. Returns: mapper parameters as dict Raises: BadReaderParamsError: if parameters are invalid/missing or not allowed.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L206-L244
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
AbstractDatastoreInputReader._split_ns_by_scatter
def _split_ns_by_scatter(cls, shard_count, namespace, raw_entity_kind, filters, app): """Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end. """ if shard_count == 1: # With one shard we don't need to calculate any split points at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") oversampling_factor = 32 random_keys = None if filters: ds_query_with_filters = copy.copy(ds_query) for (key, op, value) in filters: ds_query_with_filters.update({'%s %s' % (key, op): value}) try: random_keys = ds_query_with_filters.Get(shard_count * oversampling_factor) except db.NeedIndexError, why: logging.warning('Need to add an index for optimal mapreduce-input' ' splitting:\n%s' % why) # We'll try again without the filter. We hope the filter # will filter keys uniformly across the key-name space! if not random_keys: random_keys = ds_query.Get(shard_count * oversampling_factor) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) k_ranges = [] k_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): k_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) k_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(k_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. k_ranges += [None] * (shard_count - len(k_ranges)) return k_ranges
python
def _split_ns_by_scatter(cls, shard_count, namespace, raw_entity_kind, filters, app): """Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end. """ if shard_count == 1: # With one shard we don't need to calculate any split points at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") oversampling_factor = 32 random_keys = None if filters: ds_query_with_filters = copy.copy(ds_query) for (key, op, value) in filters: ds_query_with_filters.update({'%s %s' % (key, op): value}) try: random_keys = ds_query_with_filters.Get(shard_count * oversampling_factor) except db.NeedIndexError, why: logging.warning('Need to add an index for optimal mapreduce-input' ' splitting:\n%s' % why) # We'll try again without the filter. We hope the filter # will filter keys uniformly across the key-name space! if not random_keys: random_keys = ds_query.Get(shard_count * oversampling_factor) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) k_ranges = [] k_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): k_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) k_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(k_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. k_ranges += [None] * (shard_count - len(k_ranges)) return k_ranges
Split a namespace by scatter index into key_range.KeyRange. TODO(user): Power this with key_range.KeyRange.compute_split_points. Args: shard_count: number of shards. namespace: namespace name to split. str. raw_entity_kind: low level datastore API entity kind. app: app id in str. Returns: A list of key_range.KeyRange objects. If there are not enough entities to splits into requested shards, the returned list will contain KeyRanges ordered lexicographically with any Nones appearing at the end.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L418-L511
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
AbstractDatastoreInputReader._choose_split_points
def _choose_split_points(cls, sorted_keys, shard_count): """Returns the best split points given a random set of datastore.Keys.""" assert len(sorted_keys) >= shard_count index_stride = len(sorted_keys) / float(shard_count) return [sorted_keys[int(round(index_stride * i))] for i in range(1, shard_count)]
python
def _choose_split_points(cls, sorted_keys, shard_count): """Returns the best split points given a random set of datastore.Keys.""" assert len(sorted_keys) >= shard_count index_stride = len(sorted_keys) / float(shard_count) return [sorted_keys[int(round(index_stride * i))] for i in range(1, shard_count)]
Returns the best split points given a random set of datastore.Keys.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L514-L519
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
AbstractDatastoreInputReader.validate
def validate(cls, mapper_spec): """Inherit docs.""" params = _get_params(mapper_spec) if cls.ENTITY_KIND_PARAM not in params: raise BadReaderParamsError("Missing input reader parameter 'entity_kind'") if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e) if cls.OVERSPLIT_FACTOR_PARAM in params: try: oversplit_factor = int(params[cls.OVERSPLIT_FACTOR_PARAM]) if oversplit_factor < 1: raise BadReaderParamsError("Bad oversplit factor:" " %s" % oversplit_factor) except ValueError, e: raise BadReaderParamsError("Bad oversplit factor: %s" % e) try: bool(params.get(cls.KEYS_ONLY_PARAM, False)) except: raise BadReaderParamsError("keys_only expects a boolean value but got %s", params[cls.KEYS_ONLY_PARAM]) if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise BadReaderParamsError( "Expected a single namespace string") if cls.NAMESPACES_PARAM in params: raise BadReaderParamsError("Multiple namespaces are no longer supported") if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise BadReaderParamsError("Filter should be a tuple or list: %s", f) if len(f) != 3: raise BadReaderParamsError("Filter should be a 3-tuple: %s", f) prop, op, _ = f if not isinstance(prop, basestring): raise BadReaderParamsError("Property should be string: %s", prop) if not isinstance(op, basestring): raise BadReaderParamsError("Operator should be string: %s", op)
python
def validate(cls, mapper_spec): """Inherit docs.""" params = _get_params(mapper_spec) if cls.ENTITY_KIND_PARAM not in params: raise BadReaderParamsError("Missing input reader parameter 'entity_kind'") if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e) if cls.OVERSPLIT_FACTOR_PARAM in params: try: oversplit_factor = int(params[cls.OVERSPLIT_FACTOR_PARAM]) if oversplit_factor < 1: raise BadReaderParamsError("Bad oversplit factor:" " %s" % oversplit_factor) except ValueError, e: raise BadReaderParamsError("Bad oversplit factor: %s" % e) try: bool(params.get(cls.KEYS_ONLY_PARAM, False)) except: raise BadReaderParamsError("keys_only expects a boolean value but got %s", params[cls.KEYS_ONLY_PARAM]) if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise BadReaderParamsError( "Expected a single namespace string") if cls.NAMESPACES_PARAM in params: raise BadReaderParamsError("Multiple namespaces are no longer supported") if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise BadReaderParamsError("Filter should be a tuple or list: %s", f) if len(f) != 3: raise BadReaderParamsError("Filter should be a 3-tuple: %s", f) prop, op, _ = f if not isinstance(prop, basestring): raise BadReaderParamsError("Property should be string: %s", prop) if not isinstance(op, basestring): raise BadReaderParamsError("Operator should be string: %s", op)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L522-L567
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
RawDatastoreInputReader.validate
def validate(cls, mapper_spec): """Inherit docs.""" super(RawDatastoreInputReader, cls).validate(mapper_spec) params = _get_params(mapper_spec) entity_kind = params[cls.ENTITY_KIND_PARAM] if "." in entity_kind: logging.warning( ". detected in entity kind %s specified for reader %s." "Assuming entity kind contains the dot.", entity_kind, cls.__name__) if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] for f in filters: if f[1] != "=": raise BadReaderParamsError( "Only equality filters are supported: %s", f)
python
def validate(cls, mapper_spec): """Inherit docs.""" super(RawDatastoreInputReader, cls).validate(mapper_spec) params = _get_params(mapper_spec) entity_kind = params[cls.ENTITY_KIND_PARAM] if "." in entity_kind: logging.warning( ". detected in entity kind %s specified for reader %s." "Assuming entity kind contains the dot.", entity_kind, cls.__name__) if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] for f in filters: if f[1] != "=": raise BadReaderParamsError( "Only equality filters are supported: %s", f)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L589-L604
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
DatastoreInputReader.validate
def validate(cls, mapper_spec): """Inherit docs.""" super(DatastoreInputReader, cls).validate(mapper_spec) params = _get_params(mapper_spec) entity_kind = params[cls.ENTITY_KIND_PARAM] # Fail fast if Model cannot be located. try: model_class = util.for_name(entity_kind) except ImportError, e: raise BadReaderParamsError("Bad entity kind: %s" % e) if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if issubclass(model_class, db.Model): cls._validate_filters(filters, model_class) else: cls._validate_filters_ndb(filters, model_class) property_range.PropertyRange(filters, entity_kind)
python
def validate(cls, mapper_spec): """Inherit docs.""" super(DatastoreInputReader, cls).validate(mapper_spec) params = _get_params(mapper_spec) entity_kind = params[cls.ENTITY_KIND_PARAM] # Fail fast if Model cannot be located. try: model_class = util.for_name(entity_kind) except ImportError, e: raise BadReaderParamsError("Bad entity kind: %s" % e) if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if issubclass(model_class, db.Model): cls._validate_filters(filters, model_class) else: cls._validate_filters_ndb(filters, model_class) property_range.PropertyRange(filters, entity_kind)
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L627-L643
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
DatastoreInputReader._validate_filters_ndb
def _validate_filters_ndb(cls, filters, model_class): """Validate ndb.Model filters.""" if not filters: return properties = model_class._properties for idx, f in enumerate(filters): prop, ineq, val = f if prop not in properties: raise errors.BadReaderParamsError( "Property %s is not defined for entity type %s", prop, model_class._get_kind()) # Attempt to cast the value to a KeyProperty if appropriate. # This enables filtering against keys. try: if (isinstance(val, basestring) and isinstance(properties[prop], (ndb.KeyProperty, ndb.ComputedProperty))): val = ndb.Key(urlsafe=val) filters[idx] = [prop, ineq, val] except: pass # Validate the value of each filter. We need to know filters have # valid value to carry out splits. try: properties[prop]._do_validate(val) except db.BadValueError, e: raise errors.BadReaderParamsError(e)
python
def _validate_filters_ndb(cls, filters, model_class): """Validate ndb.Model filters.""" if not filters: return properties = model_class._properties for idx, f in enumerate(filters): prop, ineq, val = f if prop not in properties: raise errors.BadReaderParamsError( "Property %s is not defined for entity type %s", prop, model_class._get_kind()) # Attempt to cast the value to a KeyProperty if appropriate. # This enables filtering against keys. try: if (isinstance(val, basestring) and isinstance(properties[prop], (ndb.KeyProperty, ndb.ComputedProperty))): val = ndb.Key(urlsafe=val) filters[idx] = [prop, ineq, val] except: pass # Validate the value of each filter. We need to know filters have # valid value to carry out splits. try: properties[prop]._do_validate(val) except db.BadValueError, e: raise errors.BadReaderParamsError(e)
Validate ndb.Model filters.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L682-L713
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
DatastoreInputReader.split_input
def split_input(cls, mapper_spec): """Inherit docs.""" shard_count = mapper_spec.shard_count query_spec = cls._get_query_spec(mapper_spec) if not property_range.should_shard_by_property_range(query_spec.filters): return super(DatastoreInputReader, cls).split_input(mapper_spec) # Artificially increase the number of shards to get a more even split. # For example, if we are creating 7 shards for one week of data based on a # Day property and the data points tend to be clumped on certain days (say, # Monday and Wednesday), instead of assigning each shard a single day of # the week, we will split each day into "oversplit_factor" pieces, and # assign each shard "oversplit_factor" pieces with "1 / oversplit_factor" # the work, so that the data from Monday and Wednesday is more evenly # spread across all shards. oversplit_factor = query_spec.oversplit_factor oversplit_shard_count = oversplit_factor * shard_count p_range = property_range.PropertyRange(query_spec.filters, query_spec.model_class_path) p_ranges = p_range.split(oversplit_shard_count) # User specified a namespace. if query_spec.ns is not None: ns_range = namespace_range.NamespaceRange( namespace_start=query_spec.ns, namespace_end=query_spec.ns, _app=query_spec.app) ns_ranges = [copy.copy(ns_range) for _ in p_ranges] else: ns_keys = namespace_range.get_namespace_keys( query_spec.app, cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) if not ns_keys: return # User doesn't specify ns but the number of ns is small. # We still split by property range. if len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD: ns_ranges = [namespace_range.NamespaceRange(_app=query_spec.app) for _ in p_ranges] # Lots of namespaces. Split by ns. else: ns_ranges = namespace_range.NamespaceRange.split(n=oversplit_shard_count, contiguous=False, can_query=lambda: True, _app=query_spec.app) p_ranges = [copy.copy(p_range) for _ in ns_ranges] assert len(p_ranges) == len(ns_ranges) iters = [ db_iters.RangeIteratorFactory.create_property_range_iterator( p, ns, query_spec) for p, ns in zip(p_ranges, ns_ranges)] # Reduce the number of ranges back down to the shard count. # It's possible that we didn't split into enough shards even # after oversplitting, in which case we don't need to do anything. if len(iters) > shard_count: # We cycle through the iterators and chain them together, e.g. # if we look at the indices chained together, we get: # Shard #0 gets 0, num_shards, 2 * num_shards, ... # Shard #1 gets 1, num_shards + 1, 2 * num_shards + 1, ... # Shard #2 gets 2, num_shards + 2, 2 * num_shards + 2, ... # and so on. This should split fairly evenly. iters = [ db_iters.RangeIteratorFactory.create_multi_property_range_iterator( [iters[i] for i in xrange(start_index, len(iters), shard_count)] ) for start_index in xrange(shard_count) ] return [cls(i) for i in iters]
python
def split_input(cls, mapper_spec): """Inherit docs.""" shard_count = mapper_spec.shard_count query_spec = cls._get_query_spec(mapper_spec) if not property_range.should_shard_by_property_range(query_spec.filters): return super(DatastoreInputReader, cls).split_input(mapper_spec) # Artificially increase the number of shards to get a more even split. # For example, if we are creating 7 shards for one week of data based on a # Day property and the data points tend to be clumped on certain days (say, # Monday and Wednesday), instead of assigning each shard a single day of # the week, we will split each day into "oversplit_factor" pieces, and # assign each shard "oversplit_factor" pieces with "1 / oversplit_factor" # the work, so that the data from Monday and Wednesday is more evenly # spread across all shards. oversplit_factor = query_spec.oversplit_factor oversplit_shard_count = oversplit_factor * shard_count p_range = property_range.PropertyRange(query_spec.filters, query_spec.model_class_path) p_ranges = p_range.split(oversplit_shard_count) # User specified a namespace. if query_spec.ns is not None: ns_range = namespace_range.NamespaceRange( namespace_start=query_spec.ns, namespace_end=query_spec.ns, _app=query_spec.app) ns_ranges = [copy.copy(ns_range) for _ in p_ranges] else: ns_keys = namespace_range.get_namespace_keys( query_spec.app, cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) if not ns_keys: return # User doesn't specify ns but the number of ns is small. # We still split by property range. if len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD: ns_ranges = [namespace_range.NamespaceRange(_app=query_spec.app) for _ in p_ranges] # Lots of namespaces. Split by ns. else: ns_ranges = namespace_range.NamespaceRange.split(n=oversplit_shard_count, contiguous=False, can_query=lambda: True, _app=query_spec.app) p_ranges = [copy.copy(p_range) for _ in ns_ranges] assert len(p_ranges) == len(ns_ranges) iters = [ db_iters.RangeIteratorFactory.create_property_range_iterator( p, ns, query_spec) for p, ns in zip(p_ranges, ns_ranges)] # Reduce the number of ranges back down to the shard count. # It's possible that we didn't split into enough shards even # after oversplitting, in which case we don't need to do anything. if len(iters) > shard_count: # We cycle through the iterators and chain them together, e.g. # if we look at the indices chained together, we get: # Shard #0 gets 0, num_shards, 2 * num_shards, ... # Shard #1 gets 1, num_shards + 1, 2 * num_shards + 1, ... # Shard #2 gets 2, num_shards + 2, 2 * num_shards + 2, ... # and so on. This should split fairly evenly. iters = [ db_iters.RangeIteratorFactory.create_multi_property_range_iterator( [iters[i] for i in xrange(start_index, len(iters), shard_count)] ) for start_index in xrange(shard_count) ] return [cls(i) for i in iters]
Inherit docs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L716-L785
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader._iter_key_ranges
def _iter_key_ranges(self): """Iterates over self._key_ranges, delegating to self._iter_key_range().""" while True: if self._current_key_range is None: if self._key_ranges: self._current_key_range = self._key_ranges.pop() # The most recently popped key_range may be None, so continue here # to find the next keyrange that's valid. continue else: break for key, o in self._iter_key_range( copy.deepcopy(self._current_key_range)): # The caller must consume yielded values so advancing the KeyRange # before yielding is safe. self._current_key_range.advance(key) yield o self._current_key_range = None
python
def _iter_key_ranges(self): """Iterates over self._key_ranges, delegating to self._iter_key_range().""" while True: if self._current_key_range is None: if self._key_ranges: self._current_key_range = self._key_ranges.pop() # The most recently popped key_range may be None, so continue here # to find the next keyrange that's valid. continue else: break for key, o in self._iter_key_range( copy.deepcopy(self._current_key_range)): # The caller must consume yielded values so advancing the KeyRange # before yielding is safe. self._current_key_range.advance(key) yield o self._current_key_range = None
Iterates over self._key_ranges, delegating to self._iter_key_range().
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L902-L920
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader._iter_ns_range
def _iter_ns_range(self): """Iterates over self._ns_range, delegating to self._iter_key_range().""" while True: if self._current_key_range is None: query = self._ns_range.make_datastore_query() namespace_result = query.Get(1) if not namespace_result: break namespace = namespace_result[0].name() or "" self._current_key_range = key_range.KeyRange( namespace=namespace, _app=self._ns_range.app) yield ALLOW_CHECKPOINT for key, o in self._iter_key_range( copy.deepcopy(self._current_key_range)): # The caller must consume yielded values so advancing the KeyRange # before yielding is safe. self._current_key_range.advance(key) yield o if (self._ns_range.is_single_namespace or self._current_key_range.namespace == self._ns_range.namespace_end): break self._ns_range = self._ns_range.with_start_after( self._current_key_range.namespace) self._current_key_range = None
python
def _iter_ns_range(self): """Iterates over self._ns_range, delegating to self._iter_key_range().""" while True: if self._current_key_range is None: query = self._ns_range.make_datastore_query() namespace_result = query.Get(1) if not namespace_result: break namespace = namespace_result[0].name() or "" self._current_key_range = key_range.KeyRange( namespace=namespace, _app=self._ns_range.app) yield ALLOW_CHECKPOINT for key, o in self._iter_key_range( copy.deepcopy(self._current_key_range)): # The caller must consume yielded values so advancing the KeyRange # before yielding is safe. self._current_key_range.advance(key) yield o if (self._ns_range.is_single_namespace or self._current_key_range.namespace == self._ns_range.namespace_end): break self._ns_range = self._ns_range.with_start_after( self._current_key_range.namespace) self._current_key_range = None
Iterates over self._ns_range, delegating to self._iter_key_range().
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L922-L948
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader._split_input_from_namespace
def _split_input_from_namespace(cls, app, namespace, entity_kind, shard_count): """Helper for _split_input_from_params. If there are not enough Entities to make all of the given shards, the returned list of KeyRanges will include Nones. The returned list will contain KeyRanges ordered lexographically with any Nones appearing at the end. Args: app: the app. namespace: the namespace. entity_kind: entity kind as string. shard_count: the number of shards. Returns: KeyRange objects. """ raw_entity_kind = cls._get_raw_entity_kind(entity_kind) if shard_count == 1: # With one shard we don't need to calculate any splitpoints at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") random_keys = ds_query.Get(shard_count * cls._OVERSAMPLING_FACTOR) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) # pylint: disable=redefined-outer-name key_ranges = [] key_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): key_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) key_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(key_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. key_ranges += [None] * (shard_count - len(key_ranges)) return key_ranges
python
def _split_input_from_namespace(cls, app, namespace, entity_kind, shard_count): """Helper for _split_input_from_params. If there are not enough Entities to make all of the given shards, the returned list of KeyRanges will include Nones. The returned list will contain KeyRanges ordered lexographically with any Nones appearing at the end. Args: app: the app. namespace: the namespace. entity_kind: entity kind as string. shard_count: the number of shards. Returns: KeyRange objects. """ raw_entity_kind = cls._get_raw_entity_kind(entity_kind) if shard_count == 1: # With one shard we don't need to calculate any splitpoints at all. return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order("__scatter__") random_keys = ds_query.Get(shard_count * cls._OVERSAMPLING_FACTOR) if not random_keys: # There are no entities with scatter property. We have no idea # how to split. return ([key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (shard_count - 1)) random_keys.sort() if len(random_keys) >= shard_count: # We've got a lot of scatter values. Sample them down. random_keys = cls._choose_split_points(random_keys, shard_count) # pylint: disable=redefined-outer-name key_ranges = [] key_ranges.append(key_range.KeyRange( key_start=None, key_end=random_keys[0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): key_ranges.append(key_range.KeyRange( key_start=random_keys[i], key_end=random_keys[i+1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) key_ranges.append(key_range.KeyRange( key_start=random_keys[-1], key_end=None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(key_ranges) < shard_count: # We need to have as many shards as it was requested. Add some Nones. key_ranges += [None] * (shard_count - len(key_ranges)) return key_ranges
Helper for _split_input_from_params. If there are not enough Entities to make all of the given shards, the returned list of KeyRanges will include Nones. The returned list will contain KeyRanges ordered lexographically with any Nones appearing at the end. Args: app: the app. namespace: the namespace. entity_kind: entity kind as string. shard_count: the number of shards. Returns: KeyRange objects.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L982-L1060
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader._split_input_from_params
def _split_input_from_params(cls, app, namespaces, entity_kind_name, params, shard_count): """Return input reader objects. Helper for split_input.""" # pylint: disable=redefined-outer-name key_ranges = [] # KeyRanges for all namespaces for namespace in namespaces: key_ranges.extend( cls._split_input_from_namespace(app, namespace, entity_kind_name, shard_count)) # Divide the KeyRanges into shard_count shards. The KeyRanges for different # namespaces might be very different in size so the assignment of KeyRanges # to shards is done round-robin. shared_ranges = [[] for _ in range(shard_count)] for i, k_range in enumerate(key_ranges): shared_ranges[i % shard_count].append(k_range) batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) return [cls(entity_kind_name, key_ranges=key_ranges, ns_range=None, batch_size=batch_size) for key_ranges in shared_ranges if key_ranges]
python
def _split_input_from_params(cls, app, namespaces, entity_kind_name, params, shard_count): """Return input reader objects. Helper for split_input.""" # pylint: disable=redefined-outer-name key_ranges = [] # KeyRanges for all namespaces for namespace in namespaces: key_ranges.extend( cls._split_input_from_namespace(app, namespace, entity_kind_name, shard_count)) # Divide the KeyRanges into shard_count shards. The KeyRanges for different # namespaces might be very different in size so the assignment of KeyRanges # to shards is done round-robin. shared_ranges = [[] for _ in range(shard_count)] for i, k_range in enumerate(key_ranges): shared_ranges[i % shard_count].append(k_range) batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) return [cls(entity_kind_name, key_ranges=key_ranges, ns_range=None, batch_size=batch_size) for key_ranges in shared_ranges if key_ranges]
Return input reader objects. Helper for split_input.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1063-L1087
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader.validate
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec) if cls.ENTITY_KIND_PARAM not in params: raise BadReaderParamsError("Missing mapper parameter 'entity_kind'") if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e) if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise BadReaderParamsError( "Expected a single namespace string") if cls.NAMESPACES_PARAM in params: raise BadReaderParamsError("Multiple namespaces are no longer supported") if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise BadReaderParamsError("Filter should be a tuple or list: %s", f) if len(f) != 3: raise BadReaderParamsError("Filter should be a 3-tuple: %s", f) if not isinstance(f[0], basestring): raise BadReaderParamsError("First element should be string: %s", f) if f[1] != "=": raise BadReaderParamsError( "Only equality filters are supported: %s", f)
python
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec) if cls.ENTITY_KIND_PARAM not in params: raise BadReaderParamsError("Missing mapper parameter 'entity_kind'") if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e) if cls.NAMESPACE_PARAM in params: if not isinstance(params[cls.NAMESPACE_PARAM], (str, unicode, type(None))): raise BadReaderParamsError( "Expected a single namespace string") if cls.NAMESPACES_PARAM in params: raise BadReaderParamsError("Multiple namespaces are no longer supported") if cls.FILTERS_PARAM in params: filters = params[cls.FILTERS_PARAM] if not isinstance(filters, list): raise BadReaderParamsError("Expected list for filters parameter") for f in filters: if not isinstance(f, (tuple, list)): raise BadReaderParamsError("Filter should be a tuple or list: %s", f) if len(f) != 3: raise BadReaderParamsError("Filter should be a 3-tuple: %s", f) if not isinstance(f[0], basestring): raise BadReaderParamsError("First element should be string: %s", f) if f[1] != "=": raise BadReaderParamsError( "Only equality filters are supported: %s", f)
Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1090-L1131
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader.split_input
def split_input(cls, mapper_spec): """Splits query into shards without fetching query results. Tries as best as it can to split the whole query result set into equal shards. Due to difficulty of making the perfect split, resulting shards' sizes might differ significantly from each other. Args: mapper_spec: MapperSpec with params containing 'entity_kind'. May have 'namespace' in the params as a string containing a single namespace. If specified then the input reader will only yield values in the given namespace. If 'namespace' is not given then values from all namespaces will be yielded. May also have 'batch_size' in the params to specify the number of entities to process in each batch. Returns: A list of InputReader objects. If the query results are empty then the empty list will be returned. Otherwise, the list will always have a length equal to number_of_shards but may be padded with Nones if there are too few results for effective sharding. """ params = _get_params(mapper_spec) entity_kind_name = params[cls.ENTITY_KIND_PARAM] batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) shard_count = mapper_spec.shard_count namespace = params.get(cls.NAMESPACE_PARAM) app = params.get(cls._APP_PARAM) filters = params.get(cls.FILTERS_PARAM) if namespace is None: # It is difficult to efficiently shard large numbers of namespaces because # there can be an arbitrary number of them. So the strategy is: # 1. if there are a small number of namespaces in the datastore then # generate one KeyRange per namespace per shard and assign each shard a # KeyRange for every namespace. This should lead to nearly perfect # sharding. # 2. if there are a large number of namespaces in the datastore then # generate one NamespaceRange per worker. This can lead to very bad # sharding because namespaces can contain very different numbers of # entities and each NamespaceRange may contain very different numbers # of namespaces. namespace_query = datastore.Query("__namespace__", keys_only=True, _app=app) namespace_keys = namespace_query.Get( limit=cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) if len(namespace_keys) > cls.MAX_NAMESPACES_FOR_KEY_SHARD: ns_ranges = namespace_range.NamespaceRange.split(n=shard_count, contiguous=True, _app=app) return [cls(entity_kind_name, key_ranges=None, ns_range=ns_range, batch_size=batch_size, filters=filters) for ns_range in ns_ranges] elif not namespace_keys: return [cls(entity_kind_name, key_ranges=None, ns_range=namespace_range.NamespaceRange(_app=app), batch_size=shard_count, filters=filters)] else: namespaces = [namespace_key.name() or "" for namespace_key in namespace_keys] else: namespaces = [namespace] readers = cls._split_input_from_params( app, namespaces, entity_kind_name, params, shard_count) if filters: for reader in readers: reader._filters = filters return readers
python
def split_input(cls, mapper_spec): """Splits query into shards without fetching query results. Tries as best as it can to split the whole query result set into equal shards. Due to difficulty of making the perfect split, resulting shards' sizes might differ significantly from each other. Args: mapper_spec: MapperSpec with params containing 'entity_kind'. May have 'namespace' in the params as a string containing a single namespace. If specified then the input reader will only yield values in the given namespace. If 'namespace' is not given then values from all namespaces will be yielded. May also have 'batch_size' in the params to specify the number of entities to process in each batch. Returns: A list of InputReader objects. If the query results are empty then the empty list will be returned. Otherwise, the list will always have a length equal to number_of_shards but may be padded with Nones if there are too few results for effective sharding. """ params = _get_params(mapper_spec) entity_kind_name = params[cls.ENTITY_KIND_PARAM] batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) shard_count = mapper_spec.shard_count namespace = params.get(cls.NAMESPACE_PARAM) app = params.get(cls._APP_PARAM) filters = params.get(cls.FILTERS_PARAM) if namespace is None: # It is difficult to efficiently shard large numbers of namespaces because # there can be an arbitrary number of them. So the strategy is: # 1. if there are a small number of namespaces in the datastore then # generate one KeyRange per namespace per shard and assign each shard a # KeyRange for every namespace. This should lead to nearly perfect # sharding. # 2. if there are a large number of namespaces in the datastore then # generate one NamespaceRange per worker. This can lead to very bad # sharding because namespaces can contain very different numbers of # entities and each NamespaceRange may contain very different numbers # of namespaces. namespace_query = datastore.Query("__namespace__", keys_only=True, _app=app) namespace_keys = namespace_query.Get( limit=cls.MAX_NAMESPACES_FOR_KEY_SHARD+1) if len(namespace_keys) > cls.MAX_NAMESPACES_FOR_KEY_SHARD: ns_ranges = namespace_range.NamespaceRange.split(n=shard_count, contiguous=True, _app=app) return [cls(entity_kind_name, key_ranges=None, ns_range=ns_range, batch_size=batch_size, filters=filters) for ns_range in ns_ranges] elif not namespace_keys: return [cls(entity_kind_name, key_ranges=None, ns_range=namespace_range.NamespaceRange(_app=app), batch_size=shard_count, filters=filters)] else: namespaces = [namespace_key.name() or "" for namespace_key in namespace_keys] else: namespaces = [namespace] readers = cls._split_input_from_params( app, namespaces, entity_kind_name, params, shard_count) if filters: for reader in readers: reader._filters = filters return readers
Splits query into shards without fetching query results. Tries as best as it can to split the whole query result set into equal shards. Due to difficulty of making the perfect split, resulting shards' sizes might differ significantly from each other. Args: mapper_spec: MapperSpec with params containing 'entity_kind'. May have 'namespace' in the params as a string containing a single namespace. If specified then the input reader will only yield values in the given namespace. If 'namespace' is not given then values from all namespaces will be yielded. May also have 'batch_size' in the params to specify the number of entities to process in each batch. Returns: A list of InputReader objects. If the query results are empty then the empty list will be returned. Otherwise, the list will always have a length equal to number_of_shards but may be padded with Nones if there are too few results for effective sharding.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1134-L1208
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader.to_json
def to_json(self): """Serializes all the data in this query range into json form. Returns: all the data in json-compatible map. """ if self._key_ranges is None: key_ranges_json = None else: key_ranges_json = [] for k in self._key_ranges: if k: key_ranges_json.append(k.to_json()) else: key_ranges_json.append(None) if self._ns_range is None: namespace_range_json = None else: namespace_range_json = self._ns_range.to_json_object() if self._current_key_range is None: current_key_range_json = None else: current_key_range_json = self._current_key_range.to_json() json_dict = {self.KEY_RANGE_PARAM: key_ranges_json, self.NAMESPACE_RANGE_PARAM: namespace_range_json, self.CURRENT_KEY_RANGE_PARAM: current_key_range_json, self.ENTITY_KIND_PARAM: self._entity_kind, self.BATCH_SIZE_PARAM: self._batch_size, self.FILTERS_PARAM: self._filters} return json_dict
python
def to_json(self): """Serializes all the data in this query range into json form. Returns: all the data in json-compatible map. """ if self._key_ranges is None: key_ranges_json = None else: key_ranges_json = [] for k in self._key_ranges: if k: key_ranges_json.append(k.to_json()) else: key_ranges_json.append(None) if self._ns_range is None: namespace_range_json = None else: namespace_range_json = self._ns_range.to_json_object() if self._current_key_range is None: current_key_range_json = None else: current_key_range_json = self._current_key_range.to_json() json_dict = {self.KEY_RANGE_PARAM: key_ranges_json, self.NAMESPACE_RANGE_PARAM: namespace_range_json, self.CURRENT_KEY_RANGE_PARAM: current_key_range_json, self.ENTITY_KIND_PARAM: self._entity_kind, self.BATCH_SIZE_PARAM: self._batch_size, self.FILTERS_PARAM: self._filters} return json_dict
Serializes all the data in this query range into json form. Returns: all the data in json-compatible map.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1210-L1242
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_OldAbstractDatastoreInputReader.from_json
def from_json(cls, json): """Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json. """ if json[cls.KEY_RANGE_PARAM] is None: # pylint: disable=redefined-outer-name key_ranges = None else: key_ranges = [] for k in json[cls.KEY_RANGE_PARAM]: if k: key_ranges.append(key_range.KeyRange.from_json(k)) else: key_ranges.append(None) if json[cls.NAMESPACE_RANGE_PARAM] is None: ns_range = None else: ns_range = namespace_range.NamespaceRange.from_json_object( json[cls.NAMESPACE_RANGE_PARAM]) if json[cls.CURRENT_KEY_RANGE_PARAM] is None: current_key_range = None else: current_key_range = key_range.KeyRange.from_json( json[cls.CURRENT_KEY_RANGE_PARAM]) return cls( json[cls.ENTITY_KIND_PARAM], key_ranges, ns_range, json[cls.BATCH_SIZE_PARAM], current_key_range, filters=json.get(cls.FILTERS_PARAM))
python
def from_json(cls, json): """Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json. """ if json[cls.KEY_RANGE_PARAM] is None: # pylint: disable=redefined-outer-name key_ranges = None else: key_ranges = [] for k in json[cls.KEY_RANGE_PARAM]: if k: key_ranges.append(key_range.KeyRange.from_json(k)) else: key_ranges.append(None) if json[cls.NAMESPACE_RANGE_PARAM] is None: ns_range = None else: ns_range = namespace_range.NamespaceRange.from_json_object( json[cls.NAMESPACE_RANGE_PARAM]) if json[cls.CURRENT_KEY_RANGE_PARAM] is None: current_key_range = None else: current_key_range = key_range.KeyRange.from_json( json[cls.CURRENT_KEY_RANGE_PARAM]) return cls( json[cls.ENTITY_KIND_PARAM], key_ranges, ns_range, json[cls.BATCH_SIZE_PARAM], current_key_range, filters=json.get(cls.FILTERS_PARAM))
Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1245-L1283
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreLineInputReader.next
def next(self): """Returns the next input from as an (offset, line) tuple.""" self._has_iterated = True if self._read_before_start: self._blob_reader.readline() self._read_before_start = False start_position = self._blob_reader.tell() if start_position > self._end_position: raise StopIteration() line = self._blob_reader.readline() if not line: raise StopIteration() return start_position, line.rstrip("\n")
python
def next(self): """Returns the next input from as an (offset, line) tuple.""" self._has_iterated = True if self._read_before_start: self._blob_reader.readline() self._read_before_start = False start_position = self._blob_reader.tell() if start_position > self._end_position: raise StopIteration() line = self._blob_reader.readline() if not line: raise StopIteration() return start_position, line.rstrip("\n")
Returns the next input from as an (offset, line) tuple.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1327-L1344
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreLineInputReader.to_json
def to_json(self): """Returns an json-compatible input shard spec for remaining inputs.""" new_pos = self._blob_reader.tell() if self._has_iterated: new_pos -= 1 return {self.BLOB_KEY_PARAM: self._blob_key, self.INITIAL_POSITION_PARAM: new_pos, self.END_POSITION_PARAM: self._end_position}
python
def to_json(self): """Returns an json-compatible input shard spec for remaining inputs.""" new_pos = self._blob_reader.tell() if self._has_iterated: new_pos -= 1 return {self.BLOB_KEY_PARAM: self._blob_key, self.INITIAL_POSITION_PARAM: new_pos, self.END_POSITION_PARAM: self._end_position}
Returns an json-compatible input shard spec for remaining inputs.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1346-L1353
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreLineInputReader.from_json
def from_json(cls, json): """Instantiates an instance of this InputReader for the given shard spec.""" return cls(json[cls.BLOB_KEY_PARAM], json[cls.INITIAL_POSITION_PARAM], json[cls.END_POSITION_PARAM])
python
def from_json(cls, json): """Instantiates an instance of this InputReader for the given shard spec.""" return cls(json[cls.BLOB_KEY_PARAM], json[cls.INITIAL_POSITION_PARAM], json[cls.END_POSITION_PARAM])
Instantiates an instance of this InputReader for the given shard spec.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1361-L1365
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreLineInputReader.validate
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Mapper input reader class mismatch") params = _get_params(mapper_spec) if cls.BLOB_KEYS_PARAM not in params: raise BadReaderParamsError("Must specify 'blob_keys' for mapper input") blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") if len(blob_keys) > cls._MAX_BLOB_KEYS_COUNT: raise BadReaderParamsError("Too many 'blob_keys' for mapper input") if not blob_keys: raise BadReaderParamsError("No 'blob_keys' specified for mapper input") for blob_key in blob_keys: blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) if not blob_info: raise BadReaderParamsError("Could not find blobinfo for key %s" % blob_key)
python
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Mapper input reader class mismatch") params = _get_params(mapper_spec) if cls.BLOB_KEYS_PARAM not in params: raise BadReaderParamsError("Must specify 'blob_keys' for mapper input") blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") if len(blob_keys) > cls._MAX_BLOB_KEYS_COUNT: raise BadReaderParamsError("Too many 'blob_keys' for mapper input") if not blob_keys: raise BadReaderParamsError("No 'blob_keys' specified for mapper input") for blob_key in blob_keys: blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) if not blob_info: raise BadReaderParamsError("Could not find blobinfo for key %s" % blob_key)
Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1368-L1395
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreLineInputReader.split_input
def split_input(cls, mapper_spec): """Returns a list of shard_count input_spec_shards for input_spec. Args: mapper_spec: The mapper specification to split from. Must contain 'blob_keys' parameter with one or more blob keys. Returns: A list of BlobstoreInputReaders corresponding to the specified shards. """ params = _get_params(mapper_spec) blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") blob_sizes = {} for blob_key in blob_keys: blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) blob_sizes[blob_key] = blob_info.size shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count) shards_per_blob = shard_count // len(blob_keys) if shards_per_blob == 0: shards_per_blob = 1 chunks = [] for blob_key, blob_size in blob_sizes.items(): blob_chunk_size = blob_size // shards_per_blob for i in xrange(shards_per_blob - 1): chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * i, cls.END_POSITION_PARAM: blob_chunk_size * (i + 1)})) chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * (shards_per_blob - 1), cls.END_POSITION_PARAM: blob_size})) return chunks
python
def split_input(cls, mapper_spec): """Returns a list of shard_count input_spec_shards for input_spec. Args: mapper_spec: The mapper specification to split from. Must contain 'blob_keys' parameter with one or more blob keys. Returns: A list of BlobstoreInputReaders corresponding to the specified shards. """ params = _get_params(mapper_spec) blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") blob_sizes = {} for blob_key in blob_keys: blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) blob_sizes[blob_key] = blob_info.size shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count) shards_per_blob = shard_count // len(blob_keys) if shards_per_blob == 0: shards_per_blob = 1 chunks = [] for blob_key, blob_size in blob_sizes.items(): blob_chunk_size = blob_size // shards_per_blob for i in xrange(shards_per_blob - 1): chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * i, cls.END_POSITION_PARAM: blob_chunk_size * (i + 1)})) chunks.append(BlobstoreLineInputReader.from_json( {cls.BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: blob_chunk_size * (shards_per_blob - 1), cls.END_POSITION_PARAM: blob_size})) return chunks
Returns a list of shard_count input_spec_shards for input_spec. Args: mapper_spec: The mapper specification to split from. Must contain 'blob_keys' parameter with one or more blob keys. Returns: A list of BlobstoreInputReaders corresponding to the specified shards.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1398-L1437
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader.next
def next(self): """Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file. """ if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_index:self._end_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() self._start_index += 1 return (entry, lambda: self._read(entry))
python
def next(self): """Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file. """ if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_index:self._end_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() self._start_index += 1 return (entry, lambda: self._read(entry))
Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1476-L1494
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader._read
def _read(self, entry): """Read entry content. Args: entry: zip file entry as zipfile.ZipInfo. Returns: Entry content as string. """ start_time = time.time() content = self._zip.read(entry.filename) ctx = context.get() if ctx: operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx) operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return content
python
def _read(self, entry): """Read entry content. Args: entry: zip file entry as zipfile.ZipInfo. Returns: Entry content as string. """ start_time = time.time() content = self._zip.read(entry.filename) ctx = context.get() if ctx: operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx) operation.counters.Increment( COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx) return content
Read entry content. Args: entry: zip file entry as zipfile.ZipInfo. Returns: Entry content as string.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1496-L1513
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader.from_json
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json. """ return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_INDEX_PARAM], json[cls.END_INDEX_PARAM])
python
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json. """ return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_INDEX_PARAM], json[cls.END_INDEX_PARAM])
Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the values of json.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1516-L1527
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader.to_json
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_INDEX_PARAM: self._start_index, self.END_INDEX_PARAM: self._end_index}
python
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_INDEX_PARAM: self._start_index, self.END_INDEX_PARAM: self._end_index}
Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1529-L1537
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader.validate
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Mapper input reader class mismatch") params = _get_params(mapper_spec) if cls.BLOB_KEY_PARAM not in params: raise BadReaderParamsError("Must specify 'blob_key' for mapper input") blob_key = params[cls.BLOB_KEY_PARAM] blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) if not blob_info: raise BadReaderParamsError("Could not find blobinfo for key %s" % blob_key)
python
def validate(cls, mapper_spec): """Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Mapper input reader class mismatch") params = _get_params(mapper_spec) if cls.BLOB_KEY_PARAM not in params: raise BadReaderParamsError("Must specify 'blob_key' for mapper input") blob_key = params[cls.BLOB_KEY_PARAM] blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key)) if not blob_info: raise BadReaderParamsError("Could not find blobinfo for key %s" % blob_key)
Validates mapper spec and all mapper parameters. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1545-L1563
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipInputReader.split_input
def split_input(cls, mapper_spec, _reader=blobstore.BlobReader): """Returns a list of input shard states for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_key' parameter with one blob key. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning files within the zip. """ params = _get_params(mapper_spec) blob_key = params[cls.BLOB_KEY_PARAM] zip_input = zipfile.ZipFile(_reader(blob_key)) zfiles = zip_input.infolist() total_size = sum(x.file_size for x in zfiles) num_shards = min(mapper_spec.shard_count, cls._MAX_SHARD_COUNT) size_per_shard = total_size // num_shards # Break the list of files into sublists, each of approximately # size_per_shard bytes. shard_start_indexes = [0] current_shard_size = 0 for i, fileinfo in enumerate(zfiles): current_shard_size += fileinfo.file_size if current_shard_size >= size_per_shard: shard_start_indexes.append(i + 1) current_shard_size = 0 if shard_start_indexes[-1] != len(zfiles): shard_start_indexes.append(len(zfiles)) return [cls(blob_key, start_index, end_index, _reader) for start_index, end_index in zip(shard_start_indexes, shard_start_indexes[1:])]
python
def split_input(cls, mapper_spec, _reader=blobstore.BlobReader): """Returns a list of input shard states for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_key' parameter with one blob key. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning files within the zip. """ params = _get_params(mapper_spec) blob_key = params[cls.BLOB_KEY_PARAM] zip_input = zipfile.ZipFile(_reader(blob_key)) zfiles = zip_input.infolist() total_size = sum(x.file_size for x in zfiles) num_shards = min(mapper_spec.shard_count, cls._MAX_SHARD_COUNT) size_per_shard = total_size // num_shards # Break the list of files into sublists, each of approximately # size_per_shard bytes. shard_start_indexes = [0] current_shard_size = 0 for i, fileinfo in enumerate(zfiles): current_shard_size += fileinfo.file_size if current_shard_size >= size_per_shard: shard_start_indexes.append(i + 1) current_shard_size = 0 if shard_start_indexes[-1] != len(zfiles): shard_start_indexes.append(len(zfiles)) return [cls(blob_key, start_index, end_index, _reader) for start_index, end_index in zip(shard_start_indexes, shard_start_indexes[1:])]
Returns a list of input shard states for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_key' parameter with one blob key. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning files within the zip.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1566-L1601
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipLineInputReader.split_input
def split_input(cls, mapper_spec, _reader=blobstore.BlobReader): """Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_keys' parameter with one or more blob keys. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning the subfiles within the blobs. There will be at least one reader per blob, but it will otherwise attempt to keep the expanded size even. """ params = _get_params(mapper_spec) blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") blob_files = {} total_size = 0 for blob_key in blob_keys: zip_input = zipfile.ZipFile(_reader(blob_key)) blob_files[blob_key] = zip_input.infolist() total_size += sum(x.file_size for x in blob_files[blob_key]) shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count) # We can break on both blob key and file-within-zip boundaries. # A shard will span at minimum a single blob key, but may only # handle a few files within a blob. size_per_shard = total_size // shard_count readers = [] for blob_key in blob_keys: bfiles = blob_files[blob_key] current_shard_size = 0 start_file_index = 0 next_file_index = 0 for fileinfo in bfiles: next_file_index += 1 current_shard_size += fileinfo.file_size if current_shard_size >= size_per_shard: readers.append(cls(blob_key, start_file_index, next_file_index, 0, _reader)) current_shard_size = 0 start_file_index = next_file_index if current_shard_size != 0: readers.append(cls(blob_key, start_file_index, next_file_index, 0, _reader)) return readers
python
def split_input(cls, mapper_spec, _reader=blobstore.BlobReader): """Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_keys' parameter with one or more blob keys. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning the subfiles within the blobs. There will be at least one reader per blob, but it will otherwise attempt to keep the expanded size even. """ params = _get_params(mapper_spec) blob_keys = params[cls.BLOB_KEYS_PARAM] if isinstance(blob_keys, basestring): # This is a mechanism to allow multiple blob keys (which do not contain # commas) in a single string. It may go away. blob_keys = blob_keys.split(",") blob_files = {} total_size = 0 for blob_key in blob_keys: zip_input = zipfile.ZipFile(_reader(blob_key)) blob_files[blob_key] = zip_input.infolist() total_size += sum(x.file_size for x in blob_files[blob_key]) shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count) # We can break on both blob key and file-within-zip boundaries. # A shard will span at minimum a single blob key, but may only # handle a few files within a blob. size_per_shard = total_size // shard_count readers = [] for blob_key in blob_keys: bfiles = blob_files[blob_key] current_shard_size = 0 start_file_index = 0 next_file_index = 0 for fileinfo in bfiles: next_file_index += 1 current_shard_size += fileinfo.file_size if current_shard_size >= size_per_shard: readers.append(cls(blob_key, start_file_index, next_file_index, 0, _reader)) current_shard_size = 0 start_file_index = next_file_index if current_shard_size != 0: readers.append(cls(blob_key, start_file_index, next_file_index, 0, _reader)) return readers
Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Must contain 'blob_keys' parameter with one or more blob keys. _reader: a callable that returns a file-like object for reading blobs. Used for dependency injection. Returns: A list of InputReaders spanning the subfiles within the blobs. There will be at least one reader per blob, but it will otherwise attempt to keep the expanded size even.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1688-L1742
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipLineInputReader.next
def next(self): """Returns the next line from this input reader as (lineinfo, line) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple describes the source, it is itself a tuple (blobkey, filenumber, byteoffset). The second element of the tuple is the line found at that offset. """ if not self._filestream: if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_file_index: self._end_file_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() value = self._zip.read(entry.filename) self._filestream = StringIO.StringIO(value) if self._initial_offset: self._filestream.seek(self._initial_offset) self._filestream.readline() start_position = self._filestream.tell() line = self._filestream.readline() if not line: # Done with this file in the zip. Move on to the next file. self._filestream.close() self._filestream = None self._start_file_index += 1 self._initial_offset = 0 return self.next() return ((self._blob_key, self._start_file_index, start_position), line.rstrip("\n"))
python
def next(self): """Returns the next line from this input reader as (lineinfo, line) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple describes the source, it is itself a tuple (blobkey, filenumber, byteoffset). The second element of the tuple is the line found at that offset. """ if not self._filestream: if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_file_index: self._end_file_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() value = self._zip.read(entry.filename) self._filestream = StringIO.StringIO(value) if self._initial_offset: self._filestream.seek(self._initial_offset) self._filestream.readline() start_position = self._filestream.tell() line = self._filestream.readline() if not line: # Done with this file in the zip. Move on to the next file. self._filestream.close() self._filestream = None self._start_file_index += 1 self._initial_offset = 0 return self.next() return ((self._blob_key, self._start_file_index, start_position), line.rstrip("\n"))
Returns the next line from this input reader as (lineinfo, line) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple describes the source, it is itself a tuple (blobkey, filenumber, byteoffset). The second element of the tuple is the line found at that offset.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1744-L1781
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipLineInputReader._next_offset
def _next_offset(self): """Return the offset of the next line to read.""" if self._filestream: offset = self._filestream.tell() if offset: offset -= 1 else: offset = self._initial_offset return offset
python
def _next_offset(self): """Return the offset of the next line to read.""" if self._filestream: offset = self._filestream.tell() if offset: offset -= 1 else: offset = self._initial_offset return offset
Return the offset of the next line to read.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1783-L1792
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipLineInputReader.to_json
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_FILE_INDEX_PARAM: self._start_file_index, self.END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self._next_offset()}
python
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_FILE_INDEX_PARAM: self._start_file_index, self.END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self._next_offset()}
Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1794-L1804
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
BlobstoreZipLineInputReader.from_json
def from_json(cls, json, _reader=blobstore.BlobReader): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. _reader: For dependency injection. Returns: An instance of the InputReader configured using the values of json. """ return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_FILE_INDEX_PARAM], json[cls.END_FILE_INDEX_PARAM], json[cls.OFFSET_PARAM], _reader)
python
def from_json(cls, json, _reader=blobstore.BlobReader): """Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. _reader: For dependency injection. Returns: An instance of the InputReader configured using the values of json. """ return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_FILE_INDEX_PARAM], json[cls.END_FILE_INDEX_PARAM], json[cls.OFFSET_PARAM], _reader)
Creates an instance of the InputReader for the given input shard state. Args: json: The InputReader state as a dict-like object. _reader: For dependency injection. Returns: An instance of the InputReader configured using the values of json.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1807-L1821
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
NamespaceInputReader.to_json
def to_json(self): """Serializes all the data in this query range into json form. Returns: all the data in json-compatible map. """ return {self.NAMESPACE_RANGE_PARAM: self.ns_range.to_json_object(), self.BATCH_SIZE_PARAM: self._batch_size}
python
def to_json(self): """Serializes all the data in this query range into json form. Returns: all the data in json-compatible map. """ return {self.NAMESPACE_RANGE_PARAM: self.ns_range.to_json_object(), self.BATCH_SIZE_PARAM: self._batch_size}
Serializes all the data in this query range into json form. Returns: all the data in json-compatible map.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1944-L1951
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
NamespaceInputReader.from_json
def from_json(cls, json): """Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json. """ return cls( namespace_range.NamespaceRange.from_json_object( json[cls.NAMESPACE_RANGE_PARAM]), json[cls.BATCH_SIZE_PARAM])
python
def from_json(cls, json): """Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json. """ return cls( namespace_range.NamespaceRange.from_json_object( json[cls.NAMESPACE_RANGE_PARAM]), json[cls.BATCH_SIZE_PARAM])
Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1954-L1966
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
NamespaceInputReader.validate
def validate(cls, mapper_spec): """Validates mapper spec. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec) if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e)
python
def validate(cls, mapper_spec): """Validates mapper spec. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid. """ if mapper_spec.input_reader_class() != cls: raise BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec) if cls.BATCH_SIZE_PARAM in params: try: batch_size = int(params[cls.BATCH_SIZE_PARAM]) if batch_size < 1: raise BadReaderParamsError("Bad batch size: %s" % batch_size) except ValueError, e: raise BadReaderParamsError("Bad batch size: %s" % e)
Validates mapper spec. Args: mapper_spec: The MapperSpec for this InputReader. Raises: BadReaderParamsError: required parameters are missing or invalid.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1969-L1987
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
NamespaceInputReader.split_input
def split_input(cls, mapper_spec): """Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders. """ batch_size = int(_get_params(mapper_spec).get( cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) shard_count = mapper_spec.shard_count namespace_ranges = namespace_range.NamespaceRange.split(shard_count, contiguous=True) return [NamespaceInputReader(ns_range, batch_size) for ns_range in namespace_ranges]
python
def split_input(cls, mapper_spec): """Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders. """ batch_size = int(_get_params(mapper_spec).get( cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE)) shard_count = mapper_spec.shard_count namespace_ranges = namespace_range.NamespaceRange.split(shard_count, contiguous=True) return [NamespaceInputReader(ns_range, batch_size) for ns_range in namespace_ranges]
Returns a list of input readers for the input spec. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L1990-L2005
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
LogInputReader.from_json
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard's state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the given JSON parameters. """ # Strip out unrecognized parameters, as introduced by b/5960884. params = dict((str(k), v) for k, v in json.iteritems() if k in cls._PARAMS) # This is not symmetric with to_json() wrt. PROTOTYPE_REQUEST_PARAM because # the constructor parameters need to be JSON-encodable, so the decoding # needs to happen there anyways. if cls._OFFSET_PARAM in params: params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM]) return cls(**params)
python
def from_json(cls, json): """Creates an instance of the InputReader for the given input shard's state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the given JSON parameters. """ # Strip out unrecognized parameters, as introduced by b/5960884. params = dict((str(k), v) for k, v in json.iteritems() if k in cls._PARAMS) # This is not symmetric with to_json() wrt. PROTOTYPE_REQUEST_PARAM because # the constructor parameters need to be JSON-encodable, so the decoding # needs to happen there anyways. if cls._OFFSET_PARAM in params: params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM]) return cls(**params)
Creates an instance of the InputReader for the given input shard's state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the given JSON parameters.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2115-L2133
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
LogInputReader.to_json
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A JSON serializable version of the remaining input to read. """ params = dict(self.__params) # Shallow copy. if self._PROTOTYPE_REQUEST_PARAM in params: prototype_request = params[self._PROTOTYPE_REQUEST_PARAM] params[self._PROTOTYPE_REQUEST_PARAM] = prototype_request.Encode() if self._OFFSET_PARAM in params: params[self._OFFSET_PARAM] = base64.b64encode(params[self._OFFSET_PARAM]) return params
python
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A JSON serializable version of the remaining input to read. """ params = dict(self.__params) # Shallow copy. if self._PROTOTYPE_REQUEST_PARAM in params: prototype_request = params[self._PROTOTYPE_REQUEST_PARAM] params[self._PROTOTYPE_REQUEST_PARAM] = prototype_request.Encode() if self._OFFSET_PARAM in params: params[self._OFFSET_PARAM] = base64.b64encode(params[self._OFFSET_PARAM]) return params
Returns an input shard state for the remaining inputs. Returns: A JSON serializable version of the remaining input to read.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2135-L2148
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
LogInputReader.split_input
def split_input(cls, mapper_spec): """Returns a list of input readers for the given input specification. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders. """ params = _get_params(mapper_spec) shard_count = mapper_spec.shard_count # Pick out the overall start and end times and time step per shard. start_time = params[cls.START_TIME_PARAM] end_time = params[cls.END_TIME_PARAM] seconds_per_shard = (end_time - start_time) / shard_count # Create a LogInputReader for each shard, modulating the params as we go. shards = [] for _ in xrange(shard_count - 1): params[cls.END_TIME_PARAM] = (params[cls.START_TIME_PARAM] + seconds_per_shard) shards.append(LogInputReader(**params)) params[cls.START_TIME_PARAM] = params[cls.END_TIME_PARAM] # Create a final shard to complete the time range. params[cls.END_TIME_PARAM] = end_time return shards + [LogInputReader(**params)]
python
def split_input(cls, mapper_spec): """Returns a list of input readers for the given input specification. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders. """ params = _get_params(mapper_spec) shard_count = mapper_spec.shard_count # Pick out the overall start and end times and time step per shard. start_time = params[cls.START_TIME_PARAM] end_time = params[cls.END_TIME_PARAM] seconds_per_shard = (end_time - start_time) / shard_count # Create a LogInputReader for each shard, modulating the params as we go. shards = [] for _ in xrange(shard_count - 1): params[cls.END_TIME_PARAM] = (params[cls.START_TIME_PARAM] + seconds_per_shard) shards.append(LogInputReader(**params)) params[cls.START_TIME_PARAM] = params[cls.END_TIME_PARAM] # Create a final shard to complete the time range. params[cls.END_TIME_PARAM] = end_time return shards + [LogInputReader(**params)]
Returns a list of input readers for the given input specification. Args: mapper_spec: The MapperSpec for this InputReader. Returns: A list of InputReaders.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2151-L2178
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
LogInputReader.validate
def validate(cls, mapper_spec): """Validates the mapper's specification and all necessary parameters. Args: mapper_spec: The MapperSpec to be used with this InputReader. Raises: BadReaderParamsError: If the user fails to specify both a starting time and an ending time, or if the starting time is later than the ending time. """ if mapper_spec.input_reader_class() != cls: raise errors.BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec, allowed_keys=cls._PARAMS) if (cls.VERSION_IDS_PARAM not in params and cls.MODULE_VERSIONS_PARAM not in params): raise errors.BadReaderParamsError("Must specify a list of version ids or " "module/version ids for mapper input") if (cls.VERSION_IDS_PARAM in params and cls.MODULE_VERSIONS_PARAM in params): raise errors.BadReaderParamsError("Can not supply both version ids or " "module/version ids. Use only one.") if (cls.START_TIME_PARAM not in params or params[cls.START_TIME_PARAM] is None): raise errors.BadReaderParamsError("Must specify a starting time for " "mapper input") if cls.END_TIME_PARAM not in params or params[cls.END_TIME_PARAM] is None: params[cls.END_TIME_PARAM] = time.time() if params[cls.START_TIME_PARAM] >= params[cls.END_TIME_PARAM]: raise errors.BadReaderParamsError("The starting time cannot be later " "than or the same as the ending time.") if cls._PROTOTYPE_REQUEST_PARAM in params: try: params[cls._PROTOTYPE_REQUEST_PARAM] = log_service_pb.LogReadRequest( params[cls._PROTOTYPE_REQUEST_PARAM]) except (TypeError, ProtocolBuffer.ProtocolBufferDecodeError): raise errors.BadReaderParamsError("The prototype request must be " "parseable as a LogReadRequest.") # Pass the parameters to logservice.fetch() to verify any underlying # constraints on types or values. This only constructs an iterator, it # doesn't trigger any requests for actual log records. try: logservice.fetch(**params) except logservice.InvalidArgumentError, e: raise errors.BadReaderParamsError("One or more parameters are not valid " "inputs to logservice.fetch(): %s" % e)
python
def validate(cls, mapper_spec): """Validates the mapper's specification and all necessary parameters. Args: mapper_spec: The MapperSpec to be used with this InputReader. Raises: BadReaderParamsError: If the user fails to specify both a starting time and an ending time, or if the starting time is later than the ending time. """ if mapper_spec.input_reader_class() != cls: raise errors.BadReaderParamsError("Input reader class mismatch") params = _get_params(mapper_spec, allowed_keys=cls._PARAMS) if (cls.VERSION_IDS_PARAM not in params and cls.MODULE_VERSIONS_PARAM not in params): raise errors.BadReaderParamsError("Must specify a list of version ids or " "module/version ids for mapper input") if (cls.VERSION_IDS_PARAM in params and cls.MODULE_VERSIONS_PARAM in params): raise errors.BadReaderParamsError("Can not supply both version ids or " "module/version ids. Use only one.") if (cls.START_TIME_PARAM not in params or params[cls.START_TIME_PARAM] is None): raise errors.BadReaderParamsError("Must specify a starting time for " "mapper input") if cls.END_TIME_PARAM not in params or params[cls.END_TIME_PARAM] is None: params[cls.END_TIME_PARAM] = time.time() if params[cls.START_TIME_PARAM] >= params[cls.END_TIME_PARAM]: raise errors.BadReaderParamsError("The starting time cannot be later " "than or the same as the ending time.") if cls._PROTOTYPE_REQUEST_PARAM in params: try: params[cls._PROTOTYPE_REQUEST_PARAM] = log_service_pb.LogReadRequest( params[cls._PROTOTYPE_REQUEST_PARAM]) except (TypeError, ProtocolBuffer.ProtocolBufferDecodeError): raise errors.BadReaderParamsError("The prototype request must be " "parseable as a LogReadRequest.") # Pass the parameters to logservice.fetch() to verify any underlying # constraints on types or values. This only constructs an iterator, it # doesn't trigger any requests for actual log records. try: logservice.fetch(**params) except logservice.InvalidArgumentError, e: raise errors.BadReaderParamsError("One or more parameters are not valid " "inputs to logservice.fetch(): %s" % e)
Validates the mapper's specification and all necessary parameters. Args: mapper_spec: The MapperSpec to be used with this InputReader. Raises: BadReaderParamsError: If the user fails to specify both a starting time and an ending time, or if the starting time is later than the ending time.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2181-L2230
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_GoogleCloudStorageInputReader._next_file
def _next_file(self): """Find next filename. self._filenames may need to be expanded via listbucket. Returns: None if no more file is left. Filename otherwise. """ while True: if self._bucket_iter: try: return self._bucket_iter.next().filename except StopIteration: self._bucket_iter = None self._bucket = None if self._index >= len(self._filenames): return filename = self._filenames[self._index] self._index += 1 if self._delimiter is None or not filename.endswith(self._delimiter): return filename self._bucket = cloudstorage.listbucket(filename, delimiter=self._delimiter) self._bucket_iter = iter(self._bucket)
python
def _next_file(self): """Find next filename. self._filenames may need to be expanded via listbucket. Returns: None if no more file is left. Filename otherwise. """ while True: if self._bucket_iter: try: return self._bucket_iter.next().filename except StopIteration: self._bucket_iter = None self._bucket = None if self._index >= len(self._filenames): return filename = self._filenames[self._index] self._index += 1 if self._delimiter is None or not filename.endswith(self._delimiter): return filename self._bucket = cloudstorage.listbucket(filename, delimiter=self._delimiter) self._bucket_iter = iter(self._bucket)
Find next filename. self._filenames may need to be expanded via listbucket. Returns: None if no more file is left. Filename otherwise.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2326-L2349
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_GoogleCloudStorageInputReader.validate
def validate(cls, mapper_spec): """Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ reader_spec = cls.get_params(mapper_spec, allow_old=False) # Bucket Name is required if cls.BUCKET_NAME_PARAM not in reader_spec: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( reader_spec[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadReaderParamsError("Bad bucket name, %s" % (error)) # Object Name(s) are required if cls.OBJECT_NAMES_PARAM not in reader_spec: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.OBJECT_NAMES_PARAM) filenames = reader_spec[cls.OBJECT_NAMES_PARAM] if not isinstance(filenames, list): raise errors.BadReaderParamsError( "Object name list is not a list but a %s" % filenames.__class__.__name__) for filename in filenames: if not isinstance(filename, basestring): raise errors.BadReaderParamsError( "Object name is not a string but a %s" % filename.__class__.__name__) if cls.DELIMITER_PARAM in reader_spec: delimiter = reader_spec[cls.DELIMITER_PARAM] if not isinstance(delimiter, basestring): raise errors.BadReaderParamsError( "%s is not a string but a %s" % (cls.DELIMITER_PARAM, type(delimiter)))
python
def validate(cls, mapper_spec): """Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name. """ reader_spec = cls.get_params(mapper_spec, allow_old=False) # Bucket Name is required if cls.BUCKET_NAME_PARAM not in reader_spec: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.BUCKET_NAME_PARAM) try: cloudstorage.validate_bucket_name( reader_spec[cls.BUCKET_NAME_PARAM]) except ValueError, error: raise errors.BadReaderParamsError("Bad bucket name, %s" % (error)) # Object Name(s) are required if cls.OBJECT_NAMES_PARAM not in reader_spec: raise errors.BadReaderParamsError( "%s is required for Google Cloud Storage" % cls.OBJECT_NAMES_PARAM) filenames = reader_spec[cls.OBJECT_NAMES_PARAM] if not isinstance(filenames, list): raise errors.BadReaderParamsError( "Object name list is not a list but a %s" % filenames.__class__.__name__) for filename in filenames: if not isinstance(filename, basestring): raise errors.BadReaderParamsError( "Object name is not a string but a %s" % filename.__class__.__name__) if cls.DELIMITER_PARAM in reader_spec: delimiter = reader_spec[cls.DELIMITER_PARAM] if not isinstance(delimiter, basestring): raise errors.BadReaderParamsError( "%s is not a string but a %s" % (cls.DELIMITER_PARAM, type(delimiter)))
Validate mapper specification. Args: mapper_spec: an instance of model.MapperSpec Raises: BadReaderParamsError: if the specification is invalid for any reason such as missing the bucket name or providing an invalid bucket name.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2362-L2405
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/input_readers.py
_GoogleCloudStorageInputReader.split_input
def split_input(cls, mapper_spec): """Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: mapper_spec: an instance of model.MapperSpec. Returns: A list of InputReaders. None when no input data can be found. """ reader_spec = cls.get_params(mapper_spec, allow_old=False) bucket = reader_spec[cls.BUCKET_NAME_PARAM] filenames = reader_spec[cls.OBJECT_NAMES_PARAM] delimiter = reader_spec.get(cls.DELIMITER_PARAM) account_id = reader_spec.get(cls._ACCOUNT_ID_PARAM) buffer_size = reader_spec.get(cls.BUFFER_SIZE_PARAM) fail_on_missing_input = reader_spec.get(cls.FAIL_ON_MISSING_INPUT) # Gather the complete list of files (expanding wildcards) all_filenames = [] for filename in filenames: if filename.endswith("*"): all_filenames.extend( [file_stat.filename for file_stat in cloudstorage.listbucket( "/" + bucket + "/" + filename[:-1], delimiter=delimiter, _account_id=account_id)]) else: all_filenames.append("/%s/%s" % (bucket, filename)) # Split into shards readers = [] for shard in range(0, mapper_spec.shard_count): shard_filenames = all_filenames[shard::mapper_spec.shard_count] if shard_filenames: reader = cls( shard_filenames, buffer_size=buffer_size, _account_id=account_id, delimiter=delimiter) reader._fail_on_missing_input = fail_on_missing_input readers.append(reader) return readers
python
def split_input(cls, mapper_spec): """Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: mapper_spec: an instance of model.MapperSpec. Returns: A list of InputReaders. None when no input data can be found. """ reader_spec = cls.get_params(mapper_spec, allow_old=False) bucket = reader_spec[cls.BUCKET_NAME_PARAM] filenames = reader_spec[cls.OBJECT_NAMES_PARAM] delimiter = reader_spec.get(cls.DELIMITER_PARAM) account_id = reader_spec.get(cls._ACCOUNT_ID_PARAM) buffer_size = reader_spec.get(cls.BUFFER_SIZE_PARAM) fail_on_missing_input = reader_spec.get(cls.FAIL_ON_MISSING_INPUT) # Gather the complete list of files (expanding wildcards) all_filenames = [] for filename in filenames: if filename.endswith("*"): all_filenames.extend( [file_stat.filename for file_stat in cloudstorage.listbucket( "/" + bucket + "/" + filename[:-1], delimiter=delimiter, _account_id=account_id)]) else: all_filenames.append("/%s/%s" % (bucket, filename)) # Split into shards readers = [] for shard in range(0, mapper_spec.shard_count): shard_filenames = all_filenames[shard::mapper_spec.shard_count] if shard_filenames: reader = cls( shard_filenames, buffer_size=buffer_size, _account_id=account_id, delimiter=delimiter) reader._fail_on_missing_input = fail_on_missing_input readers.append(reader) return readers
Returns a list of input readers. An equal number of input files are assigned to each shard (+/- 1). If there are fewer files than shards, fewer than the requested number of shards will be used. Input files are currently never split (although for some formats could be and may be split in a future implementation). Args: mapper_spec: an instance of model.MapperSpec. Returns: A list of InputReaders. None when no input data can be found.
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/input_readers.py#L2408-L2451