repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_right_click_listctrl
def on_right_click_listctrl(self, event): """ right click on the listctrl toggles measurement bad """ g_index = event.GetIndex() if self.Data[self.s]['measurement_flag'][g_index] == 'g': self.mark_meas_bad(g_index) else: self.mark_meas_good(g_index) if self.data_model == 3.0: self.con.tables['measurements'].write_magic_file(dir_path=self.WD) else: pmag.magic_write(os.path.join( self.WD, "magic_measurements.txt"), self.mag_meas_data, "magic_measurements") self.recalculate_current_specimen_interpreatations() if self.ie_open: self.ie.update_current_fit_data() self.calculate_high_levels_data() self.update_selection()
python
def on_right_click_listctrl(self, event): """ right click on the listctrl toggles measurement bad """ g_index = event.GetIndex() if self.Data[self.s]['measurement_flag'][g_index] == 'g': self.mark_meas_bad(g_index) else: self.mark_meas_good(g_index) if self.data_model == 3.0: self.con.tables['measurements'].write_magic_file(dir_path=self.WD) else: pmag.magic_write(os.path.join( self.WD, "magic_measurements.txt"), self.mag_meas_data, "magic_measurements") self.recalculate_current_specimen_interpreatations() if self.ie_open: self.ie.update_current_fit_data() self.calculate_high_levels_data() self.update_selection()
right click on the listctrl toggles measurement bad
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8115-L8137
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.onSelect_specimen
def onSelect_specimen(self, event): """ update figures and text when a new specimen is selected """ self.selected_meas = [] self.select_specimen(str(self.specimens_box.GetValue())) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
python
def onSelect_specimen(self, event): """ update figures and text when a new specimen is selected """ self.selected_meas = [] self.select_specimen(str(self.specimens_box.GetValue())) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
update figures and text when a new specimen is selected
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8160-L8168
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_enter_specimen
def on_enter_specimen(self, event): """ upon enter on the specimen box it makes that specimen the current specimen """ new_specimen = self.specimens_box.GetValue() if new_specimen not in self.specimens: self.user_warning( "%s is not a valid specimen with measurement data, aborting" % (new_specimen)) self.specimens_box.SetValue(self.s) return self.select_specimen(new_specimen) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
python
def on_enter_specimen(self, event): """ upon enter on the specimen box it makes that specimen the current specimen """ new_specimen = self.specimens_box.GetValue() if new_specimen not in self.specimens: self.user_warning( "%s is not a valid specimen with measurement data, aborting" % (new_specimen)) self.specimens_box.SetValue(self.s) return self.select_specimen(new_specimen) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
upon enter on the specimen box it makes that specimen the current specimen
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8170-L8184
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.get_new_PCA_parameters
def get_new_PCA_parameters(self, event): """ calculate statistics when temperatures are selected or PCA type is changed """ tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) if tmin == "" or tmax == "": return if tmin in self.T_list and tmax in self.T_list and \ (self.T_list.index(tmax) <= self.T_list.index(tmin)): return PCA_type = self.PCA_type_box.GetValue() if PCA_type == "line": calculation_type = "DE-BFL" elif PCA_type == "line-anchored": calculation_type = "DE-BFL-A" elif PCA_type == "line-with-origin": calculation_type = "DE-BFL-O" elif PCA_type == "Fisher": calculation_type = "DE-FM" elif PCA_type == "plane": calculation_type = "DE-BFP" coordinate_system = self.COORDINATE_SYSTEM if self.current_fit: self.current_fit.put(self.s, coordinate_system, self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, coordinate_system, calculation_type)) if self.ie_open: self.ie.update_current_fit_data() self.update_GUI_with_new_interpretation()
python
def get_new_PCA_parameters(self, event): """ calculate statistics when temperatures are selected or PCA type is changed """ tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) if tmin == "" or tmax == "": return if tmin in self.T_list and tmax in self.T_list and \ (self.T_list.index(tmax) <= self.T_list.index(tmin)): return PCA_type = self.PCA_type_box.GetValue() if PCA_type == "line": calculation_type = "DE-BFL" elif PCA_type == "line-anchored": calculation_type = "DE-BFL-A" elif PCA_type == "line-with-origin": calculation_type = "DE-BFL-O" elif PCA_type == "Fisher": calculation_type = "DE-FM" elif PCA_type == "plane": calculation_type = "DE-BFP" coordinate_system = self.COORDINATE_SYSTEM if self.current_fit: self.current_fit.put(self.s, coordinate_system, self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, coordinate_system, calculation_type)) if self.ie_open: self.ie.update_current_fit_data() self.update_GUI_with_new_interpretation()
calculate statistics when temperatures are selected or PCA type is changed
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8221-L8253
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_select_fit
def on_select_fit(self, event): """ Picks out the fit selected in the fit combobox and sets it to the current fit of the GUI then calls the select function of the fit to set the GUI's bounds boxes and alter other such parameters Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit, fit_box selection, tmin_box selection, tmax_box selection """ fit_val = self.fit_box.GetValue() if self.s not in self.pmag_results_data['specimens'] or not self.pmag_results_data['specimens'][self.s] or fit_val == 'None': self.clear_boxes() self.current_fit = None self.fit_box.SetStringSelection('None') self.tmin_box.SetStringSelection('') self.tmax_box.SetStringSelection('') else: try: fit_num = list( map(lambda x: x.name, self.pmag_results_data['specimens'][self.s])).index(fit_val) except ValueError: fit_num = -1 self.pmag_results_data['specimens'][self.s][fit_num].select() if self.ie_open: self.ie.change_selected(self.current_fit)
python
def on_select_fit(self, event): """ Picks out the fit selected in the fit combobox and sets it to the current fit of the GUI then calls the select function of the fit to set the GUI's bounds boxes and alter other such parameters Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit, fit_box selection, tmin_box selection, tmax_box selection """ fit_val = self.fit_box.GetValue() if self.s not in self.pmag_results_data['specimens'] or not self.pmag_results_data['specimens'][self.s] or fit_val == 'None': self.clear_boxes() self.current_fit = None self.fit_box.SetStringSelection('None') self.tmin_box.SetStringSelection('') self.tmax_box.SetStringSelection('') else: try: fit_num = list( map(lambda x: x.name, self.pmag_results_data['specimens'][self.s])).index(fit_val) except ValueError: fit_num = -1 self.pmag_results_data['specimens'][self.s][fit_num].select() if self.ie_open: self.ie.change_selected(self.current_fit)
Picks out the fit selected in the fit combobox and sets it to the current fit of the GUI then calls the select function of the fit to set the GUI's bounds boxes and alter other such parameters Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit, fit_box selection, tmin_box selection, tmax_box selection
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8362-L8392
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_enter_fit_name
def on_enter_fit_name(self, event): """ Allows the entering of new fit names in the fit combobox Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit.name """ if self.current_fit == None: self.on_btn_add_fit(event) value = self.fit_box.GetValue() if ':' in value: name, color = value.split(':') else: name, color = value, None if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]: print('bad name') return self.current_fit.name = name if color in list(self.color_dict.keys()): self.current_fit.color = self.color_dict[color] self.update_fit_boxes() self.plot_high_levels_data()
python
def on_enter_fit_name(self, event): """ Allows the entering of new fit names in the fit combobox Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit.name """ if self.current_fit == None: self.on_btn_add_fit(event) value = self.fit_box.GetValue() if ':' in value: name, color = value.split(':') else: name, color = value, None if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]: print('bad name') return self.current_fit.name = name if color in list(self.color_dict.keys()): self.current_fit.color = self.color_dict[color] self.update_fit_boxes() self.plot_high_levels_data()
Allows the entering of new fit names in the fit combobox Parameters ---------- event : the wx.ComboBoxEvent that triggers this function Alters ------ current_fit.name
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8394-L8420
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_save_interpretation_button
def on_save_interpretation_button(self, event): """ on the save button the interpretation is saved to pmag_results_table data in all coordinate systems """ if self.current_fit: self.current_fit.saved = True calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[ 'calculation_type'] tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type)) if len(self.Data[self.s]['zijdblock_geo']) > 0: self.current_fit.put(self.s, 'geographic', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'geographic', calculation_type)) if len(self.Data[self.s]['zijdblock_tilt']) > 0: self.current_fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'tilt-corrected', calculation_type)) # calculate high level data self.calculate_high_levels_data() self.plot_high_levels_data() self.on_menu_save_interpretation(event) self.update_selection() self.close_warning = True
python
def on_save_interpretation_button(self, event): """ on the save button the interpretation is saved to pmag_results_table data in all coordinate systems """ if self.current_fit: self.current_fit.saved = True calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[ 'calculation_type'] tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type)) if len(self.Data[self.s]['zijdblock_geo']) > 0: self.current_fit.put(self.s, 'geographic', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'geographic', calculation_type)) if len(self.Data[self.s]['zijdblock_tilt']) > 0: self.current_fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'tilt-corrected', calculation_type)) # calculate high level data self.calculate_high_levels_data() self.plot_high_levels_data() self.on_menu_save_interpretation(event) self.update_selection() self.close_warning = True
on the save button the interpretation is saved to pmag_results_table data in all coordinate systems
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8426-L8453
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_btn_add_fit
def on_btn_add_fit(self, event): """ add a new interpretation to the current specimen Parameters ---------- event : the wx.ButtonEvent that triggered this function Alters ------ pmag_results_data """ if self.auto_save.GetValue(): self.current_fit = self.add_fit(self.s, None, None, None, saved=True) else: self.current_fit = self.add_fit(self.s, None, None, None, saved=False) self.generate_warning_text() self.update_warning_box() if self.ie_open: self.ie.update_editor() self.update_fit_boxes(True) # Draw figures and add text self.get_new_PCA_parameters(event)
python
def on_btn_add_fit(self, event): """ add a new interpretation to the current specimen Parameters ---------- event : the wx.ButtonEvent that triggered this function Alters ------ pmag_results_data """ if self.auto_save.GetValue(): self.current_fit = self.add_fit(self.s, None, None, None, saved=True) else: self.current_fit = self.add_fit(self.s, None, None, None, saved=False) self.generate_warning_text() self.update_warning_box() if self.ie_open: self.ie.update_editor() self.update_fit_boxes(True) # Draw figures and add text self.get_new_PCA_parameters(event)
add a new interpretation to the current specimen Parameters ---------- event : the wx.ButtonEvent that triggered this function Alters ------ pmag_results_data
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8455-L8479
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_btn_delete_fit
def on_btn_delete_fit(self, event): """ removes the current interpretation Parameters ---------- event : the wx.ButtonEvent that triggered this function """ self.delete_fit(self.current_fit, specimen=self.s)
python
def on_btn_delete_fit(self, event): """ removes the current interpretation Parameters ---------- event : the wx.ButtonEvent that triggered this function """ self.delete_fit(self.current_fit, specimen=self.s)
removes the current interpretation Parameters ---------- event : the wx.ButtonEvent that triggered this function
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8481-L8489
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.do_auto_save
def do_auto_save(self): """ Delete current fit if auto_save==False, unless current fit has explicitly been saved. """ if not self.auto_save.GetValue(): if self.current_fit: if not self.current_fit.saved: self.delete_fit(self.current_fit, specimen=self.s)
python
def do_auto_save(self): """ Delete current fit if auto_save==False, unless current fit has explicitly been saved. """ if not self.auto_save.GetValue(): if self.current_fit: if not self.current_fit.saved: self.delete_fit(self.current_fit, specimen=self.s)
Delete current fit if auto_save==False, unless current fit has explicitly been saved.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8516-L8524
PmagPy/PmagPy
programs/demag_gui.py
Demag_GUI.on_next_button
def on_next_button(self, event): """ update figures and text when a next button is selected """ self.do_auto_save() self.selected_meas = [] index = self.specimens.index(self.s) try: fit_index = self.pmag_results_data['specimens'][self.s].index( self.current_fit) except KeyError: fit_index = None except ValueError: fit_index = None if index == len(self.specimens)-1: index = 0 else: index += 1 # sets self.s calculates params etc. self.initialize_CART_rot(str(self.specimens[index])) self.specimens_box.SetStringSelection(str(self.s)) if fit_index != None and self.s in self.pmag_results_data['specimens']: try: self.current_fit = self.pmag_results_data['specimens'][self.s][fit_index] except IndexError: self.current_fit = None else: self.current_fit = None if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
python
def on_next_button(self, event): """ update figures and text when a next button is selected """ self.do_auto_save() self.selected_meas = [] index = self.specimens.index(self.s) try: fit_index = self.pmag_results_data['specimens'][self.s].index( self.current_fit) except KeyError: fit_index = None except ValueError: fit_index = None if index == len(self.specimens)-1: index = 0 else: index += 1 # sets self.s calculates params etc. self.initialize_CART_rot(str(self.specimens[index])) self.specimens_box.SetStringSelection(str(self.s)) if fit_index != None and self.s in self.pmag_results_data['specimens']: try: self.current_fit = self.pmag_results_data['specimens'][self.s][fit_index] except IndexError: self.current_fit = None else: self.current_fit = None if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
update figures and text when a next button is selected
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8527-L8557
PmagPy/PmagPy
programs/chi_magic.py
main
def main(): """ NAME chi_magic.py DESCRIPTION plots magnetic susceptibility as a function of frequency and temperature and AC field SYNTAX chi_magic.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify measurements format file, default "measurements.txt" -T IND, specify temperature step to plot -- NOT IMPLEMENTED -e EXP, specify experiment name to plot -fmt [svg,jpg,png,pdf] set figure format [default is svg] -sav save figure and quit """ if "-h" in sys.argv: print(main.__doc__) return infile = pmag.get_named_arg("-f", "measurements.txt") dir_path = pmag.get_named_arg("-WD", ".") infile = pmag.resolve_file_name(infile, dir_path) fmt = pmag.get_named_arg("-fmt", "svg") save_plots = False interactive = True if "-sav" in sys.argv: interactive = False save_plots = True experiments = pmag.get_named_arg("-e", "") ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive)
python
def main(): """ NAME chi_magic.py DESCRIPTION plots magnetic susceptibility as a function of frequency and temperature and AC field SYNTAX chi_magic.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify measurements format file, default "measurements.txt" -T IND, specify temperature step to plot -- NOT IMPLEMENTED -e EXP, specify experiment name to plot -fmt [svg,jpg,png,pdf] set figure format [default is svg] -sav save figure and quit """ if "-h" in sys.argv: print(main.__doc__) return infile = pmag.get_named_arg("-f", "measurements.txt") dir_path = pmag.get_named_arg("-WD", ".") infile = pmag.resolve_file_name(infile, dir_path) fmt = pmag.get_named_arg("-fmt", "svg") save_plots = False interactive = True if "-sav" in sys.argv: interactive = False save_plots = True experiments = pmag.get_named_arg("-e", "") ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive)
NAME chi_magic.py DESCRIPTION plots magnetic susceptibility as a function of frequency and temperature and AC field SYNTAX chi_magic.py [command line options] OPTIONS -h prints help message and quits -f FILE, specify measurements format file, default "measurements.txt" -T IND, specify temperature step to plot -- NOT IMPLEMENTED -e EXP, specify experiment name to plot -fmt [svg,jpg,png,pdf] set figure format [default is svg] -sav save figure and quit
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/chi_magic.py#L10-L43
PmagPy/PmagPy
programs/watsons_f.py
main
def main(): """ NAME watsons_f.py DESCRIPTION calculates Watson's F statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_f.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions in FILE to opposite direction OUTPUT Watson's F, critical value from F-tables for 2, 2(N-2) degrees of freedom """ D,D1,D2=[],[],[] Flip=0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] f=open(file1,'r') for line in f.readlines(): if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records Dec,Inc=float(rec[0]),float(rec[1]) D1.append([Dec,Inc,1.]) D.append([Dec,Inc,1.]) f.close() if Flip==0: f=open(file2,'r') for line in f.readlines(): rec=line.split() Dec,Inc=float(rec[0]),float(rec[1]) D2.append([Dec,Inc,1.]) D.append([Dec,Inc,1.]) f.close() else: D1,D2=pmag.flip(D1) for d in D2: D.append(d) # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_0=pmag.fisher_mean(D) pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get F statistic for these # N= len(D) R=pars_0['r'] R1=pars_1['r'] R2=pars_2['r'] F=(N-2)*(old_div((R1+R2-R),(N-R1-R2))) Fcrit=pmag.fcalc(2,2*(N-2)) print('%7.2f %7.2f'%(F,Fcrit))
python
def main(): """ NAME watsons_f.py DESCRIPTION calculates Watson's F statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_f.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions in FILE to opposite direction OUTPUT Watson's F, critical value from F-tables for 2, 2(N-2) degrees of freedom """ D,D1,D2=[],[],[] Flip=0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-ant' in sys.argv: Flip=1 if '-f' in sys.argv: ind=sys.argv.index('-f') file1=sys.argv[ind+1] if '-f2' in sys.argv: ind=sys.argv.index('-f2') file2=sys.argv[ind+1] f=open(file1,'r') for line in f.readlines(): if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records Dec,Inc=float(rec[0]),float(rec[1]) D1.append([Dec,Inc,1.]) D.append([Dec,Inc,1.]) f.close() if Flip==0: f=open(file2,'r') for line in f.readlines(): rec=line.split() Dec,Inc=float(rec[0]),float(rec[1]) D2.append([Dec,Inc,1.]) D.append([Dec,Inc,1.]) f.close() else: D1,D2=pmag.flip(D1) for d in D2: D.append(d) # # first calculate the fisher means and cartesian coordinates of each set of Directions # pars_0=pmag.fisher_mean(D) pars_1=pmag.fisher_mean(D1) pars_2=pmag.fisher_mean(D2) # # get F statistic for these # N= len(D) R=pars_0['r'] R1=pars_1['r'] R2=pars_2['r'] F=(N-2)*(old_div((R1+R2-R),(N-R1-R2))) Fcrit=pmag.fcalc(2,2*(N-2)) print('%7.2f %7.2f'%(F,Fcrit))
NAME watsons_f.py DESCRIPTION calculates Watson's F statistic from input files INPUT FORMAT takes dec/inc as first two columns in two space delimited files SYNTAX watsons_f.py [command line options] OPTIONS -h prints help message and quits -f FILE (with optional second) -f2 FILE (second file) -ant, flip antipodal directions in FILE to opposite direction OUTPUT Watson's F, critical value from F-tables for 2, 2(N-2) degrees of freedom
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/watsons_f.py#L11-L83
PmagPy/PmagPy
programs/deprecated/thellier_magic_redo.py
main
def main(): """ NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade) """ dir_path='.' critout="" version_num=pmag.get_version() field,first_save=-1,1 spec,recnum,start,end=0,0,0,0 crfrac=0 NltRecs,PmagSpecs,AniSpecRecs,NltSpecRecs,CRSpecs=[],[],[],[],[] meas_file,pmag_file,mk_file="magic_measurements.txt","thellier_specimens.txt","thellier_redo" anis_file="rmag_anisotropy.txt" anisout,nltout="AC_specimens.txt","NLT_specimens.txt" crout="CR_specimens.txt" nlt_file="" samp_file="" comment,user="","unknown" anis,nltrm=0,0 jackknife=0 # maybe in future can do jackknife args=sys.argv Zdiff=0 if '-WD' in args: ind=args.index('-WD') dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=sys.argv[ind+1] if "-leg" in args: comment="Recalculated from original measurements; supercedes published results. " cool=0 if "-CR" in args: cool=1 ind=args.index("-CR") crfrac=.01*float(sys.argv[ind+1]) crtype='DA-CR-'+sys.argv[ind+2] if "-Fcr" in args: ind=args.index("-Fcr") crout=sys.argv[ind+1] if "-f" in args: ind=args.index("-f") meas_file=sys.argv[ind+1] if "-F" in args: ind=args.index("-F") pmag_file=sys.argv[ind+1] if "-fre" in args: ind=args.index("-fre") mk_file=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) SampCRs=pmag.get_dictitem(Samps,'cooling_rate_corr','','F') # get samples cooling rate corrections cool=1 if file_type!='er_samples': print('not a valid er_samples.txt file') sys.exit() # # if "-ANI" in args: anis=1 ind=args.index("-ANI") if "-Fac" in args: ind=args.index("-Fac") anisout=args[ind+1] if "-fan" in args: ind=args.index("-fan") anis_file=args[ind+1] # if "-NLT" in args: if "-Fnl" in args: ind=args.index("-Fnl") nltout=args[ind+1] if "-fnl" in args: ind=args.index("-fnl") nlt_file=args[ind+1] if "-z" in args: Zdiff=1 if '-fcr' in sys.argv: ind=args.index("-fcr") critout=sys.argv[ind+1] # # start reading in data: # meas_file=dir_path+"/"+meas_file mk_file=dir_path+"/"+mk_file accept=pmag.default_criteria(1)[0] # set criteria to none if critout!="": critout=dir_path+"/"+critout crit_data,file_type=pmag.magic_read(critout) if file_type!='pmag_criteria': print('bad pmag_criteria file, using no acceptance criteria') print("Acceptance criteria read in from ", critout) for critrec in crit_data: if 'sample_int_sigma_uT' in list(critrec.keys()): # accommodate Shaar's new criterion critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6) for key in list(critrec.keys()): if key not in list(accept.keys()) and critrec[key]!='': accept[key]=critrec[key] meas_data,file_type=pmag.magic_read(meas_file) if file_type != 'magic_measurements': print(file_type) print(file_type,"This is not a valid magic_measurements file ") sys.exit() try: mk_f=open(mk_file,'r') except: print("Bad redo file") sys.exit() mkspec=[] speclist=[] for line in mk_f.readlines(): tmp=line.split() mkspec.append(tmp) speclist.append(tmp[0]) if anis==1: anis_file=dir_path+"/"+anis_file anis_data,file_type=pmag.magic_read(anis_file) if file_type != 'rmag_anisotropy': print(file_type) print(file_type,"This is not a valid rmag_anisotropy file ") sys.exit() if nlt_file=="": nlt_data=pmag.get_dictitem(meas_data,'magic_method_codes','LP-TRM','has') # look for trm acquisition data in the meas_data file else: nlt_file=dir_path+"/"+nlt_file nlt_data,file_type=pmag.magic_read(nlt_file) if len(nlt_data)>0: nltrm=1 # # sort the specimen names and step through one by one # sids=pmag.get_specs(meas_data) # print('Processing ',len(speclist),' specimens - please wait ') while spec < len(speclist): s=speclist[spec] recnum=0 datablock=[] PmagSpecRec={} PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["magic_software_packages"]=version_num methcodes,inst_code=[],"" # # find the data from the meas_data file for this specimen # datablock=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') datablock=pmag.get_dictitem(datablock,'magic_method_codes','LP-PI-TRM','has') #pick out the thellier experiment data if len(datablock)>0: for rec in datablock: if "magic_instrument_codes" not in list(rec.keys()): rec["magic_instrument_codes"]="unknown" # # collect info for the PmagSpecRec dictionary # rec=datablock[0] PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] PmagSpecRec["measurement_step_unit"]="K" PmagSpecRec["specimen_correction"]='u' if "er_expedition_name" in list(rec.keys()):PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] if "magic_instrument_codes" not in list(rec.keys()): PmagSpecRec["magic_instrument_codes"]="unknown" else: PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] if "magic_experiment_name" not in list(rec.keys()): rec["magic_experiment_name"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] meths=rec["magic_experiment_name"].split(":") for meth in meths: if meth.strip() not in methcodes and "LP-" in meth:methcodes.append(meth.strip()) # # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail # araiblock,field=pmag.sortarai(datablock,s,Zdiff) first_Z=araiblock[0] first_I=araiblock[1] ptrm_check=araiblock[2] ptrm_tail=araiblock[3] if len(first_I)<3 or len(first_Z)<4: spec+=1 print('skipping specimen ', s) else: # # get start, end # for redospec in mkspec: if redospec[0]==s: b,e=float(redospec[1]),float(redospec[2]) break if e > float(first_Z[-1][0]):e=float(first_Z[-1][0]) for recnum in range(len(first_Z)): if first_Z[recnum][0]==b:start=recnum if first_Z[recnum][0]==e:end=recnum nsteps=end-start if nsteps>2: zijdblock,units=pmag.find_dmag_rec(s,meas_data) pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept) if 'specimen_scat' in list(pars.keys()): PmagSpecRec['specimen_scat']=pars['specimen_scat'] if 'specimen_frac' in list(pars.keys()): PmagSpecRec['specimen_frac']='%5.3f'%(pars['specimen_frac']) if 'specimen_gmax' in list(pars.keys()): PmagSpecRec['specimen_gmax']='%5.3f'%(pars['specimen_gmax']) pars['measurement_step_unit']=units pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] PmagSpecRec["measurement_step_min"]='%8.3e' % (pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e' % (pars["measurement_step_max"]) PmagSpecRec["specimen_int_n"]='%i'%(pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"]='%8.3e'%(pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"]='%9.4e '%(pars["specimen_int"]) PmagSpecRec["specimen_b"]='%5.3f '%(pars["specimen_b"]) PmagSpecRec["specimen_q"]='%5.1f '%(pars["specimen_q"]) PmagSpecRec["specimen_f"]='%5.3f '%(pars["specimen_f"]) PmagSpecRec["specimen_fvds"]='%5.3f'%(pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"]='%5.3f'%(pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"]='%7.1f'%(pars["specimen_int_mad"]) PmagSpecRec["specimen_gamma"]='%7.1f'%(pars["specimen_gamma"]) if pars["magic_method_codes"]!="" and pars["magic_method_codes"] not in methcodes: methcodes.append(pars["magic_method_codes"]) PmagSpecRec["specimen_dec"]='%7.1f'%(pars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f'%(pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' PmagSpecRec["specimen_direction_type"]='l' PmagSpecRec["direction_type"]='l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"]='%7.1f '%(pars["specimen_dang"]) PmagSpecRec["specimen_drats"]='%7.1f '%(pars["specimen_drats"]) PmagSpecRec["specimen_drat"]='%7.1f '%(pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"]='%i '%(pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"]='%6.4f '%(pars["specimen_rsc"]) PmagSpecRec["specimen_md"]='%i '%(int(pars["specimen_md"])) if PmagSpecRec["specimen_md"]=='-1':PmagSpecRec["specimen_md"]="" PmagSpecRec["specimen_b_sigma"]='%5.3f '%(pars["specimen_b_sigma"]) if "IE-TT" not in methcodes:methcodes.append("IE-TT") methods="" for meth in methcodes: methods=methods+meth+":" PmagSpecRec["magic_method_codes"]=methods.strip(':') PmagSpecRec["magic_software_packages"]=version_num PmagSpecRec["specimen_description"]=comment if critout!="": kill=pmag.grade(PmagSpecRec,accept,'specimen_int') if len(kill)>0: Grade='F' # fails else: Grade='A' # passes PmagSpecRec["specimen_grade"]=Grade else: PmagSpecRec["specimen_grade"]="" # not graded if nltrm==0 and anis==0 and cool!=0: # apply cooling rate correction SCR=pmag.get_dictitem(SampCRs,'er_sample_name',PmagSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(PmagSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) PmagSpecs.append(PmagSpecRec) NltSpecRec="" # # check on non-linear TRM correction # if nltrm==1: # # find the data from the nlt_data list for this specimen # TRMs,Bs=[],[] NltSpecRec="" NltRecs=pmag.get_dictitem(nlt_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'has') # fish out all the NLT data for this specimen if len(NltRecs) > 2: for NltRec in NltRecs: Bs.append(float(NltRec['treatment_dc_field'])) TRMs.append(float(NltRec['measurement_magn_moment'])) NLTpars=nlt.NLtrm(Bs,TRMs,float(PmagSpecRec['specimen_int']),float(PmagSpecRec['specimen_lab_field_dc']),0) if NLTpars['banc']>0: NltSpecRec={} for key in list(PmagSpecRec.keys()): NltSpecRec[key]=PmagSpecRec[key] NltSpecRec['specimen_int']='%9.4e'%(NLTpars['banc']) NltSpecRec['magic_method_codes']=PmagSpecRec["magic_method_codes"]+":DA-NL" NltSpecRec["specimen_correction"]='c' NltSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] NltSpecRec["magic_software_packages"]=version_num print(NltSpecRec['er_specimen_name'], ' Banc= ',float(NLTpars['banc'])*1e6) if anis==0 and cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',NltSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(NltSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) NltSpecRecs.append(NltSpecRec) # # check on anisotropy correction if anis==1: if NltSpecRec!="": Spc=NltSpecRec else: # find uncorrected data Spc=PmagSpecRec AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(Spc,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec['magic_instrument_codes'] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',AniSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(AniSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) elif anis==1: AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(PmagSpecRec,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec["magic_instrument_codes"] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if crfrac!=0: CrSpecRec={} for key in list(AniSpecRec.keys()):CrSpecRec[key]=AniSpecRec[key] inten=frac*float(CrSpecRec['specimen_int']) CrSpecRec["specimen_int"]='%9.4e '%(inten) # adjust specimen intensity by cooling rate correction CrSpecRec['magic_method_codes'] = CrSpecRec['magic_method_codes']+':DA-CR-'+crtype CRSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) spec +=1 else: print("skipping ",s) spec+=1 pmag_file=dir_path+'/'+pmag_file pmag.magic_write(pmag_file,PmagSpecs,'pmag_specimens') print('uncorrected thellier data saved in: ',pmag_file) if anis==1 and len(AniSpecRecs)>0: anisout=dir_path+'/'+anisout pmag.magic_write(anisout,AniSpecRecs,'pmag_specimens') print('anisotropy corrected data saved in: ',anisout) if nltrm==1 and len(NltSpecRecs)>0: nltout=dir_path+'/'+nltout pmag.magic_write(nltout,NltSpecRecs,'pmag_specimens') print('non-linear TRM corrected data saved in: ',nltout) if crfrac!=0: crout=dir_path+'/'+crout pmag.magic_write(crout,CRSpecs,'pmag_specimens') print('cooling rate corrected data saved in: ',crout)
python
def main(): """ NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade) """ dir_path='.' critout="" version_num=pmag.get_version() field,first_save=-1,1 spec,recnum,start,end=0,0,0,0 crfrac=0 NltRecs,PmagSpecs,AniSpecRecs,NltSpecRecs,CRSpecs=[],[],[],[],[] meas_file,pmag_file,mk_file="magic_measurements.txt","thellier_specimens.txt","thellier_redo" anis_file="rmag_anisotropy.txt" anisout,nltout="AC_specimens.txt","NLT_specimens.txt" crout="CR_specimens.txt" nlt_file="" samp_file="" comment,user="","unknown" anis,nltrm=0,0 jackknife=0 # maybe in future can do jackknife args=sys.argv Zdiff=0 if '-WD' in args: ind=args.index('-WD') dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=sys.argv[ind+1] if "-leg" in args: comment="Recalculated from original measurements; supercedes published results. " cool=0 if "-CR" in args: cool=1 ind=args.index("-CR") crfrac=.01*float(sys.argv[ind+1]) crtype='DA-CR-'+sys.argv[ind+2] if "-Fcr" in args: ind=args.index("-Fcr") crout=sys.argv[ind+1] if "-f" in args: ind=args.index("-f") meas_file=sys.argv[ind+1] if "-F" in args: ind=args.index("-F") pmag_file=sys.argv[ind+1] if "-fre" in args: ind=args.index("-fre") mk_file=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) SampCRs=pmag.get_dictitem(Samps,'cooling_rate_corr','','F') # get samples cooling rate corrections cool=1 if file_type!='er_samples': print('not a valid er_samples.txt file') sys.exit() # # if "-ANI" in args: anis=1 ind=args.index("-ANI") if "-Fac" in args: ind=args.index("-Fac") anisout=args[ind+1] if "-fan" in args: ind=args.index("-fan") anis_file=args[ind+1] # if "-NLT" in args: if "-Fnl" in args: ind=args.index("-Fnl") nltout=args[ind+1] if "-fnl" in args: ind=args.index("-fnl") nlt_file=args[ind+1] if "-z" in args: Zdiff=1 if '-fcr' in sys.argv: ind=args.index("-fcr") critout=sys.argv[ind+1] # # start reading in data: # meas_file=dir_path+"/"+meas_file mk_file=dir_path+"/"+mk_file accept=pmag.default_criteria(1)[0] # set criteria to none if critout!="": critout=dir_path+"/"+critout crit_data,file_type=pmag.magic_read(critout) if file_type!='pmag_criteria': print('bad pmag_criteria file, using no acceptance criteria') print("Acceptance criteria read in from ", critout) for critrec in crit_data: if 'sample_int_sigma_uT' in list(critrec.keys()): # accommodate Shaar's new criterion critrec['sample_int_sigma']='%10.3e'%(eval(critrec['sample_int_sigma_uT'])*1e-6) for key in list(critrec.keys()): if key not in list(accept.keys()) and critrec[key]!='': accept[key]=critrec[key] meas_data,file_type=pmag.magic_read(meas_file) if file_type != 'magic_measurements': print(file_type) print(file_type,"This is not a valid magic_measurements file ") sys.exit() try: mk_f=open(mk_file,'r') except: print("Bad redo file") sys.exit() mkspec=[] speclist=[] for line in mk_f.readlines(): tmp=line.split() mkspec.append(tmp) speclist.append(tmp[0]) if anis==1: anis_file=dir_path+"/"+anis_file anis_data,file_type=pmag.magic_read(anis_file) if file_type != 'rmag_anisotropy': print(file_type) print(file_type,"This is not a valid rmag_anisotropy file ") sys.exit() if nlt_file=="": nlt_data=pmag.get_dictitem(meas_data,'magic_method_codes','LP-TRM','has') # look for trm acquisition data in the meas_data file else: nlt_file=dir_path+"/"+nlt_file nlt_data,file_type=pmag.magic_read(nlt_file) if len(nlt_data)>0: nltrm=1 # # sort the specimen names and step through one by one # sids=pmag.get_specs(meas_data) # print('Processing ',len(speclist),' specimens - please wait ') while spec < len(speclist): s=speclist[spec] recnum=0 datablock=[] PmagSpecRec={} PmagSpecRec["er_analyst_mail_names"]=user PmagSpecRec["er_citation_names"]="This study" PmagSpecRec["magic_software_packages"]=version_num methcodes,inst_code=[],"" # # find the data from the meas_data file for this specimen # datablock=pmag.get_dictitem(meas_data,'er_specimen_name',s,'T') datablock=pmag.get_dictitem(datablock,'magic_method_codes','LP-PI-TRM','has') #pick out the thellier experiment data if len(datablock)>0: for rec in datablock: if "magic_instrument_codes" not in list(rec.keys()): rec["magic_instrument_codes"]="unknown" # # collect info for the PmagSpecRec dictionary # rec=datablock[0] PmagSpecRec["er_specimen_name"]=s PmagSpecRec["er_sample_name"]=rec["er_sample_name"] PmagSpecRec["er_site_name"]=rec["er_site_name"] PmagSpecRec["er_location_name"]=rec["er_location_name"] PmagSpecRec["measurement_step_unit"]="K" PmagSpecRec["specimen_correction"]='u' if "er_expedition_name" in list(rec.keys()):PmagSpecRec["er_expedition_name"]=rec["er_expedition_name"] if "magic_instrument_codes" not in list(rec.keys()): PmagSpecRec["magic_instrument_codes"]="unknown" else: PmagSpecRec["magic_instrument_codes"]=rec["magic_instrument_codes"] if "magic_experiment_name" not in list(rec.keys()): rec["magic_experiment_name"]="" else: PmagSpecRec["magic_experiment_names"]=rec["magic_experiment_name"] meths=rec["magic_experiment_name"].split(":") for meth in meths: if meth.strip() not in methcodes and "LP-" in meth:methcodes.append(meth.strip()) # # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail # araiblock,field=pmag.sortarai(datablock,s,Zdiff) first_Z=araiblock[0] first_I=araiblock[1] ptrm_check=araiblock[2] ptrm_tail=araiblock[3] if len(first_I)<3 or len(first_Z)<4: spec+=1 print('skipping specimen ', s) else: # # get start, end # for redospec in mkspec: if redospec[0]==s: b,e=float(redospec[1]),float(redospec[2]) break if e > float(first_Z[-1][0]):e=float(first_Z[-1][0]) for recnum in range(len(first_Z)): if first_Z[recnum][0]==b:start=recnum if first_Z[recnum][0]==e:end=recnum nsteps=end-start if nsteps>2: zijdblock,units=pmag.find_dmag_rec(s,meas_data) pars,errcode=pmag.PintPars(datablock,araiblock,zijdblock,start,end,accept) if 'specimen_scat' in list(pars.keys()): PmagSpecRec['specimen_scat']=pars['specimen_scat'] if 'specimen_frac' in list(pars.keys()): PmagSpecRec['specimen_frac']='%5.3f'%(pars['specimen_frac']) if 'specimen_gmax' in list(pars.keys()): PmagSpecRec['specimen_gmax']='%5.3f'%(pars['specimen_gmax']) pars['measurement_step_unit']=units pars["specimen_lab_field_dc"]=field pars["specimen_int"]=-1*field*pars["specimen_b"] PmagSpecRec["measurement_step_min"]='%8.3e' % (pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"]='%8.3e' % (pars["measurement_step_max"]) PmagSpecRec["specimen_int_n"]='%i'%(pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"]='%8.3e'%(pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"]='%9.4e '%(pars["specimen_int"]) PmagSpecRec["specimen_b"]='%5.3f '%(pars["specimen_b"]) PmagSpecRec["specimen_q"]='%5.1f '%(pars["specimen_q"]) PmagSpecRec["specimen_f"]='%5.3f '%(pars["specimen_f"]) PmagSpecRec["specimen_fvds"]='%5.3f'%(pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"]='%5.3f'%(pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"]='%7.1f'%(pars["specimen_int_mad"]) PmagSpecRec["specimen_gamma"]='%7.1f'%(pars["specimen_gamma"]) if pars["magic_method_codes"]!="" and pars["magic_method_codes"] not in methcodes: methcodes.append(pars["magic_method_codes"]) PmagSpecRec["specimen_dec"]='%7.1f'%(pars["specimen_dec"]) PmagSpecRec["specimen_inc"]='%7.1f'%(pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"]='-1' PmagSpecRec["specimen_direction_type"]='l' PmagSpecRec["direction_type"]='l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"]='%7.1f '%(pars["specimen_dang"]) PmagSpecRec["specimen_drats"]='%7.1f '%(pars["specimen_drats"]) PmagSpecRec["specimen_drat"]='%7.1f '%(pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"]='%i '%(pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"]='%6.4f '%(pars["specimen_rsc"]) PmagSpecRec["specimen_md"]='%i '%(int(pars["specimen_md"])) if PmagSpecRec["specimen_md"]=='-1':PmagSpecRec["specimen_md"]="" PmagSpecRec["specimen_b_sigma"]='%5.3f '%(pars["specimen_b_sigma"]) if "IE-TT" not in methcodes:methcodes.append("IE-TT") methods="" for meth in methcodes: methods=methods+meth+":" PmagSpecRec["magic_method_codes"]=methods.strip(':') PmagSpecRec["magic_software_packages"]=version_num PmagSpecRec["specimen_description"]=comment if critout!="": kill=pmag.grade(PmagSpecRec,accept,'specimen_int') if len(kill)>0: Grade='F' # fails else: Grade='A' # passes PmagSpecRec["specimen_grade"]=Grade else: PmagSpecRec["specimen_grade"]="" # not graded if nltrm==0 and anis==0 and cool!=0: # apply cooling rate correction SCR=pmag.get_dictitem(SampCRs,'er_sample_name',PmagSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(PmagSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) PmagSpecs.append(PmagSpecRec) NltSpecRec="" # # check on non-linear TRM correction # if nltrm==1: # # find the data from the nlt_data list for this specimen # TRMs,Bs=[],[] NltSpecRec="" NltRecs=pmag.get_dictitem(nlt_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'has') # fish out all the NLT data for this specimen if len(NltRecs) > 2: for NltRec in NltRecs: Bs.append(float(NltRec['treatment_dc_field'])) TRMs.append(float(NltRec['measurement_magn_moment'])) NLTpars=nlt.NLtrm(Bs,TRMs,float(PmagSpecRec['specimen_int']),float(PmagSpecRec['specimen_lab_field_dc']),0) if NLTpars['banc']>0: NltSpecRec={} for key in list(PmagSpecRec.keys()): NltSpecRec[key]=PmagSpecRec[key] NltSpecRec['specimen_int']='%9.4e'%(NLTpars['banc']) NltSpecRec['magic_method_codes']=PmagSpecRec["magic_method_codes"]+":DA-NL" NltSpecRec["specimen_correction"]='c' NltSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] NltSpecRec["magic_software_packages"]=version_num print(NltSpecRec['er_specimen_name'], ' Banc= ',float(NLTpars['banc'])*1e6) if anis==0 and cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',NltSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(NltSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) NltSpecRecs.append(NltSpecRec) # # check on anisotropy correction if anis==1: if NltSpecRec!="": Spc=NltSpecRec else: # find uncorrected data Spc=PmagSpecRec AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(Spc,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec['magic_instrument_codes'] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if cool!=0: SCR=pmag.get_dictitem(SampCRs,'er_sample_name',AniSpecRec['er_sample_name'],'T') # get this samples, cooling rate correction CrSpecRec=pmag.cooling_rate(AniSpecRec,SCR,crfrac,crtype) if CrSpecRec['er_specimen_name']!='none':CrSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) elif anis==1: AniSpecs=pmag.get_dictitem(anis_data,'er_specimen_name',PmagSpecRec['er_specimen_name'],'T') if len(AniSpecs)>0: AniSpec=AniSpecs[0] AniSpecRec=pmag.doaniscorr(PmagSpecRec,AniSpec) AniSpecRec['specimen_grade']=PmagSpecRec['specimen_grade'] AniSpecRec["magic_instrument_codes"]=PmagSpecRec["magic_instrument_codes"] AniSpecRec["specimen_correction"]='c' AniSpecRec["magic_software_packages"]=version_num if crfrac!=0: CrSpecRec={} for key in list(AniSpecRec.keys()):CrSpecRec[key]=AniSpecRec[key] inten=frac*float(CrSpecRec['specimen_int']) CrSpecRec["specimen_int"]='%9.4e '%(inten) # adjust specimen intensity by cooling rate correction CrSpecRec['magic_method_codes'] = CrSpecRec['magic_method_codes']+':DA-CR-'+crtype CRSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) spec +=1 else: print("skipping ",s) spec+=1 pmag_file=dir_path+'/'+pmag_file pmag.magic_write(pmag_file,PmagSpecs,'pmag_specimens') print('uncorrected thellier data saved in: ',pmag_file) if anis==1 and len(AniSpecRecs)>0: anisout=dir_path+'/'+anisout pmag.magic_write(anisout,AniSpecRecs,'pmag_specimens') print('anisotropy corrected data saved in: ',anisout) if nltrm==1 and len(NltSpecRecs)>0: nltout=dir_path+'/'+nltout pmag.magic_write(nltout,NltSpecRecs,'pmag_specimens') print('non-linear TRM corrected data saved in: ',nltout) if crfrac!=0: crout=dir_path+'/'+crout pmag.magic_write(crout,CRSpecs,'pmag_specimens') print('cooling rate corrected data saved in: ',crout)
NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/thellier_magic_redo.py#L8-L383
PmagPy/PmagPy
programs/conversion_scripts2/pmd_magic2.py
main
def main(command_line=True, **kwargs): """ NAME pmd_magic.py DESCRIPTION converts PMD (Enkin) format files to magic_measurements format files SYNTAX pmd_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY -lat: Lattitude of site (if no value given assumes 0) -lon: Longitude of site (if no value given assumes 0) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT PMD format files """ # initialize some stuff noave=0 inst="" samp_con,Z='1',"" missing=1 demag="N" er_location_name="unknown" citation='This study' args=sys.argv meth_code="LP-NO" specnum=-1 MagRecs=[] version_num=pmag.get_version() Samps=[] # keeps track of sample orientations DIspec=[] MagFiles=[] user="" mag_file="" dir_path='.' ErSamps=[] SampOuts=[] samp_file = 'er_samples.txt' meas_file = 'magic_measurements.txt' # # get command line arguments # if command_line: if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-ID' in sys.argv: ind = sys.argv.index('-ID') input_dir_path = sys.argv[ind+1] else: input_dir_path = dir_path output_dir_path = dir_path if "-h" in args: print(main.__doc__) return False if '-F' in args: ind=args.index("-F") meas_file = args[ind+1] if '-Fsa' in args: ind = args.index("-Fsa") samp_file = args[ind+1] #try: # open(samp_file,'r') # ErSamps,file_type=pmag.magic_read(samp_file) # print 'sample information will be appended to ', samp_file #except: # print samp_file,' not found: sample information will be stored in new er_samples.txt file' # samp_file = output_dir_path+'/er_samples.txt' if '-f' in args: ind = args.index("-f") mag_file= args[ind+1] if "-spc" in args: ind = args.index("-spc") specnum = int(args[ind+1]) if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-A" in args: noave=1 if "-mcd" in args: ind=args.index("-mcd") meth_code=args[ind+1] if "-lat" in args: ind=args.index("-lat") site_lat=args[ind+1] if "-lon" in args: ind=args.index("-lon") site_lon=args[ind+1] if not command_line: dir_path = kwargs.get('dir_path', '.') input_dir_path = kwargs.get('input_dir_path', dir_path) output_dir_path = dir_path meas_file = kwargs.get('meas_file', 'magic_measurements.txt') mag_file = kwargs.get('mag_file') spec_file = kwargs.get('spec_file', 'er_specimens.txt') samp_file = kwargs.get('samp_file', 'er_samples.txt') site_file = kwargs.get('site_file', 'er_sites.txt') site_lat = kwargs.get('site_lat', 0) site_lon = kwargs.get('site_lon', 0) specnum = kwargs.get('specnum', 0) samp_con = kwargs.get('samp_con', '1') er_location_name = kwargs.get('er_location_name', '') noave = kwargs.get('noave', 0) # default (0) means DO average meth_code = kwargs.get('meth_code', "LP-NO") print(samp_con) # format variables mag_file = os.path.join(input_dir_path,mag_file) meas_file = os.path.join(output_dir_path,meas_file) spec_file = os.path.join(output_dir_path,spec_file) samp_file = os.path.join(output_dir_path,samp_file) site_file = os.path.join(output_dir_path,site_file) if specnum!=0:specnum=-specnum if "4" in samp_con: if "-" not in samp_con: print("naming convention option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" # parse data data=open(mag_file,'r').readlines() # read in data from file comment=data[0] line=data[1].strip() line=line.replace("=","= ") # make finding orientations easier rec=line.split() # read in sample orientation, etc. er_specimen_name=rec[0] ErSpecRec,ErSampRec,ErSiteRec={},{},{} # make a sample record if specnum!=0: er_sample_name=rec[0][:specnum] else: er_sample_name=rec[0] if len(ErSamps)>0: # need to copy existing for samp in ErSamps: if samp['er_sample_name']==er_sample_name: ErSampRec=samp # we'll ammend this one else: SampOuts.append(samp) # keep all the others if int(samp_con)<6: er_site_name=pmag.parse_site(er_sample_name,samp_con,Z) else: if 'er_site_name' in list(ErSampRec.keys()):er_site_name=ErSampREc['er_site_name'] if 'er_location_name' in list(ErSampRec.keys()):er_location_name=ErSampREc['er_location_name'] az_ind=rec.index('a=')+1 ErSampRec['er_sample_name']=er_sample_name ErSampRec['er_sample_description']=comment ErSampRec['sample_azimuth']=rec[az_ind] dip_ind=rec.index('b=')+1 dip=-float(rec[dip_ind]) ErSampRec['sample_dip']='%7.1f'%(dip) strike_ind=rec.index('s=')+1 ErSampRec['sample_bed_dip_direction']='%7.1f'%(float(rec[strike_ind])+90.) bd_ind=rec.index('d=')+1 ErSampRec['sample_bed_dip']=rec[bd_ind] v_ind=rec.index('v=')+1 vol=rec[v_ind][:-3] date=rec[-2] time=rec[-1] ErSampRec['magic_method_codes']=meth_code if 'er_location_name' not in list(ErSampRec.keys()):ErSampRec['er_location_name']=er_location_name if 'er_site_name' not in list(ErSampRec.keys()):ErSampRec['er_site_name']=er_site_name if 'er_citation_names' not in list(ErSampRec.keys()):ErSampRec['er_citation_names']='This study' if 'magic_method_codes' not in list(ErSampRec.keys()):ErSampRec['magic_method_codes']='SO-NO' ErSpecRec['er_specimen_name'] = er_specimen_name ErSpecRec['er_sample_name'] = er_sample_name ErSpecRec['er_site_name'] = er_site_name ErSpecRec['er_location_name'] = er_location_name ErSpecRec['er_citation_names']='This study' ErSiteRec['er_site_name'] = er_site_name ErSiteRec['er_location_name'] = er_location_name ErSiteRec['er_citation_names']='This study' ErSiteRec['site_lat'] = site_lat ErSiteRec['site_lon']= site_lon SpecOuts.append(ErSpecRec) SampOuts.append(ErSampRec) SiteOuts.append(ErSiteRec) for k in range(3,len(data)): # read in data line=data[k] rec=line.split() if len(rec)>1: # skip blank lines at bottom MagRec={} MagRec['measurement_description']='Date: '+date+' '+time MagRec["er_citation_names"]="This study" MagRec['er_location_name']=er_location_name MagRec['er_site_name']=er_site_name MagRec['er_sample_name']=er_sample_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_flag"]='g' MagRec["measurement_standard"]='u' MagRec["measurement_number"]='1' MagRec["er_specimen_name"]=er_specimen_name if rec[0]=='NRM': meas_type="LT-NO" elif rec[0][0]=='M' or rec[0][0]=='H': meas_type="LT-AF-Z" elif rec[0][0]=='T': meas_type="LT-T-Z" else: print("measurement type unknown") return False, "measurement type unknown" X=[float(rec[1]),float(rec[2]),float(rec[3])] Vec=pmag.cart2dir(X) MagRec["measurement_magn_moment"]='%10.3e'% (Vec[2]) # Am^2 MagRec["measurement_magn_volume"]=rec[4] # A/m MagRec["measurement_dec"]='%7.1f'%(Vec[0]) MagRec["measurement_inc"]='%7.1f'%(Vec[1]) MagRec["treatment_ac_field"]='0' if meas_type!='LT-NO': treat=float(rec[0][1:]) else: treat=0 if meas_type=="LT-AF-Z": MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla elif meas_type=="LT-T-Z": MagRec["treatment_temp"]='%8.3e' % (treat+273.) # temp in kelvin MagRec['magic_method_codes']=meas_type MagRecs.append(MagRec) MagOuts=pmag.measurements_methods(MagRecs,noave) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file) pmag.magic_write(samp_file,SpecOuts,'er_specimens') pmag.magic_write(samp_file,SampOuts,'er_samples') pmag.magic_write(samp_file,SiteOuts,'er_sites') return True, meas_file
python
def main(command_line=True, **kwargs): """ NAME pmd_magic.py DESCRIPTION converts PMD (Enkin) format files to magic_measurements format files SYNTAX pmd_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY -lat: Lattitude of site (if no value given assumes 0) -lon: Longitude of site (if no value given assumes 0) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT PMD format files """ # initialize some stuff noave=0 inst="" samp_con,Z='1',"" missing=1 demag="N" er_location_name="unknown" citation='This study' args=sys.argv meth_code="LP-NO" specnum=-1 MagRecs=[] version_num=pmag.get_version() Samps=[] # keeps track of sample orientations DIspec=[] MagFiles=[] user="" mag_file="" dir_path='.' ErSamps=[] SampOuts=[] samp_file = 'er_samples.txt' meas_file = 'magic_measurements.txt' # # get command line arguments # if command_line: if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-ID' in sys.argv: ind = sys.argv.index('-ID') input_dir_path = sys.argv[ind+1] else: input_dir_path = dir_path output_dir_path = dir_path if "-h" in args: print(main.__doc__) return False if '-F' in args: ind=args.index("-F") meas_file = args[ind+1] if '-Fsa' in args: ind = args.index("-Fsa") samp_file = args[ind+1] #try: # open(samp_file,'r') # ErSamps,file_type=pmag.magic_read(samp_file) # print 'sample information will be appended to ', samp_file #except: # print samp_file,' not found: sample information will be stored in new er_samples.txt file' # samp_file = output_dir_path+'/er_samples.txt' if '-f' in args: ind = args.index("-f") mag_file= args[ind+1] if "-spc" in args: ind = args.index("-spc") specnum = int(args[ind+1]) if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-A" in args: noave=1 if "-mcd" in args: ind=args.index("-mcd") meth_code=args[ind+1] if "-lat" in args: ind=args.index("-lat") site_lat=args[ind+1] if "-lon" in args: ind=args.index("-lon") site_lon=args[ind+1] if not command_line: dir_path = kwargs.get('dir_path', '.') input_dir_path = kwargs.get('input_dir_path', dir_path) output_dir_path = dir_path meas_file = kwargs.get('meas_file', 'magic_measurements.txt') mag_file = kwargs.get('mag_file') spec_file = kwargs.get('spec_file', 'er_specimens.txt') samp_file = kwargs.get('samp_file', 'er_samples.txt') site_file = kwargs.get('site_file', 'er_sites.txt') site_lat = kwargs.get('site_lat', 0) site_lon = kwargs.get('site_lon', 0) specnum = kwargs.get('specnum', 0) samp_con = kwargs.get('samp_con', '1') er_location_name = kwargs.get('er_location_name', '') noave = kwargs.get('noave', 0) # default (0) means DO average meth_code = kwargs.get('meth_code', "LP-NO") print(samp_con) # format variables mag_file = os.path.join(input_dir_path,mag_file) meas_file = os.path.join(output_dir_path,meas_file) spec_file = os.path.join(output_dir_path,spec_file) samp_file = os.path.join(output_dir_path,samp_file) site_file = os.path.join(output_dir_path,site_file) if specnum!=0:specnum=-specnum if "4" in samp_con: if "-" not in samp_con: print("naming convention option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" # parse data data=open(mag_file,'r').readlines() # read in data from file comment=data[0] line=data[1].strip() line=line.replace("=","= ") # make finding orientations easier rec=line.split() # read in sample orientation, etc. er_specimen_name=rec[0] ErSpecRec,ErSampRec,ErSiteRec={},{},{} # make a sample record if specnum!=0: er_sample_name=rec[0][:specnum] else: er_sample_name=rec[0] if len(ErSamps)>0: # need to copy existing for samp in ErSamps: if samp['er_sample_name']==er_sample_name: ErSampRec=samp # we'll ammend this one else: SampOuts.append(samp) # keep all the others if int(samp_con)<6: er_site_name=pmag.parse_site(er_sample_name,samp_con,Z) else: if 'er_site_name' in list(ErSampRec.keys()):er_site_name=ErSampREc['er_site_name'] if 'er_location_name' in list(ErSampRec.keys()):er_location_name=ErSampREc['er_location_name'] az_ind=rec.index('a=')+1 ErSampRec['er_sample_name']=er_sample_name ErSampRec['er_sample_description']=comment ErSampRec['sample_azimuth']=rec[az_ind] dip_ind=rec.index('b=')+1 dip=-float(rec[dip_ind]) ErSampRec['sample_dip']='%7.1f'%(dip) strike_ind=rec.index('s=')+1 ErSampRec['sample_bed_dip_direction']='%7.1f'%(float(rec[strike_ind])+90.) bd_ind=rec.index('d=')+1 ErSampRec['sample_bed_dip']=rec[bd_ind] v_ind=rec.index('v=')+1 vol=rec[v_ind][:-3] date=rec[-2] time=rec[-1] ErSampRec['magic_method_codes']=meth_code if 'er_location_name' not in list(ErSampRec.keys()):ErSampRec['er_location_name']=er_location_name if 'er_site_name' not in list(ErSampRec.keys()):ErSampRec['er_site_name']=er_site_name if 'er_citation_names' not in list(ErSampRec.keys()):ErSampRec['er_citation_names']='This study' if 'magic_method_codes' not in list(ErSampRec.keys()):ErSampRec['magic_method_codes']='SO-NO' ErSpecRec['er_specimen_name'] = er_specimen_name ErSpecRec['er_sample_name'] = er_sample_name ErSpecRec['er_site_name'] = er_site_name ErSpecRec['er_location_name'] = er_location_name ErSpecRec['er_citation_names']='This study' ErSiteRec['er_site_name'] = er_site_name ErSiteRec['er_location_name'] = er_location_name ErSiteRec['er_citation_names']='This study' ErSiteRec['site_lat'] = site_lat ErSiteRec['site_lon']= site_lon SpecOuts.append(ErSpecRec) SampOuts.append(ErSampRec) SiteOuts.append(ErSiteRec) for k in range(3,len(data)): # read in data line=data[k] rec=line.split() if len(rec)>1: # skip blank lines at bottom MagRec={} MagRec['measurement_description']='Date: '+date+' '+time MagRec["er_citation_names"]="This study" MagRec['er_location_name']=er_location_name MagRec['er_site_name']=er_site_name MagRec['er_sample_name']=er_sample_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_flag"]='g' MagRec["measurement_standard"]='u' MagRec["measurement_number"]='1' MagRec["er_specimen_name"]=er_specimen_name if rec[0]=='NRM': meas_type="LT-NO" elif rec[0][0]=='M' or rec[0][0]=='H': meas_type="LT-AF-Z" elif rec[0][0]=='T': meas_type="LT-T-Z" else: print("measurement type unknown") return False, "measurement type unknown" X=[float(rec[1]),float(rec[2]),float(rec[3])] Vec=pmag.cart2dir(X) MagRec["measurement_magn_moment"]='%10.3e'% (Vec[2]) # Am^2 MagRec["measurement_magn_volume"]=rec[4] # A/m MagRec["measurement_dec"]='%7.1f'%(Vec[0]) MagRec["measurement_inc"]='%7.1f'%(Vec[1]) MagRec["treatment_ac_field"]='0' if meas_type!='LT-NO': treat=float(rec[0][1:]) else: treat=0 if meas_type=="LT-AF-Z": MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla elif meas_type=="LT-T-Z": MagRec["treatment_temp"]='%8.3e' % (treat+273.) # temp in kelvin MagRec['magic_method_codes']=meas_type MagRecs.append(MagRec) MagOuts=pmag.measurements_methods(MagRecs,noave) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file) pmag.magic_write(samp_file,SpecOuts,'er_specimens') pmag.magic_write(samp_file,SampOuts,'er_samples') pmag.magic_write(samp_file,SiteOuts,'er_sites') return True, meas_file
NAME pmd_magic.py DESCRIPTION converts PMD (Enkin) format files to magic_measurements format files SYNTAX pmd_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY -lat: Lattitude of site (if no value given assumes 0) -lon: Longitude of site (if no value given assumes 0) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT PMD format files
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts2/pmd_magic2.py#L7-L276
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
York_Regression
def York_Regression(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai): """ input: x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai output: x_err, y_err, x_tag, y_tag, b, b_sigma, specimen_b_beta, y_intercept, x_intercept, x_prime, y_prime, delta_x_prime, delta_y_prime, f_Coe, g_Coe, g_lim, specimen_q, specimen_w, count_IZ, count_ZI, B_lab, B_anc, B_anc_sigma, specimen_int """ x_err = x_segment - x_mean y_err = y_segment - y_mean york_b = -1* numpy.sqrt(old_div(sum(y_err**2), sum(x_err**2)) ) # averaged slope b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1)/numpy.std(x_segment, ddof=1) # ddof is degrees of freedom if b == 0: york_b = 1e-10 else: york_b = b york_sigma= numpy.sqrt( old_div((2 * sum(y_err**2) - 2*york_b* sum(x_err*y_err)), ( (n-2) * sum(x_err**2) )) ) if york_sigma == 0: # prevent divide by zero york_sigma = 1e-10 beta_Coe = abs(old_div(york_sigma,york_b)) # y_T is the intercept of the extrepolated line # through the center of mass (see figure 7 in Coe (1978)) y_T = y_mean - (york_b* x_mean) x_T = old_div((-1 * y_T), york_b) # x intercept # # calculate the extrarpolated data points for f and fvds x_tag = old_div((y_segment - y_T ), york_b) # returns array of y points minus the y intercept, divided by slope y_tag = york_b*x_segment + y_T # intersect of the dashed square and the horizontal dahed line next to delta-y-5 in figure 7, Coe (1978) x_prime = old_div((x_segment+x_tag), 2) y_prime = old_div((y_segment+y_tag), 2) delta_x_prime = abs(max(x_prime) - min(x_prime)) # TRM length of best fit line delta_y_prime = abs(max(y_prime) - min(y_prime)) # NRM length of best fit line f_Coe = old_div(delta_y_prime, abs(y_T)) if delta_y_prime: g_Coe = 1 - (old_div(sum((y_prime[:-1]-y_prime[1:])**2), delta_y_prime ** 2)) # gap factor else: g_Coe = float('nan') g_lim = old_div((float(n) - 2), (float(n) - 1)) q_Coe = abs(york_b)*f_Coe*g_Coe/york_sigma w_Coe = old_div(q_Coe, numpy.sqrt(n - 2)) count_IZ = steps_Arai.count('IZ') count_ZI = steps_Arai.count('ZI') B_lab = lab_dc_field * 1e6 B_anc = abs(york_b) * B_lab # in microtesla B_anc_sigma = york_sigma * B_lab specimen_int = -1* lab_dc_field * york_b # in tesla specimen_int_sigma = york_sigma * lab_dc_field return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag, 'specimen_b': york_b, 'specimen_b_sigma': york_sigma, 'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime': x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime, 'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g': g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w': w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab, 'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int': specimen_int, 'specimen_int_sigma': specimen_int_sigma}
python
def York_Regression(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai): """ input: x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai output: x_err, y_err, x_tag, y_tag, b, b_sigma, specimen_b_beta, y_intercept, x_intercept, x_prime, y_prime, delta_x_prime, delta_y_prime, f_Coe, g_Coe, g_lim, specimen_q, specimen_w, count_IZ, count_ZI, B_lab, B_anc, B_anc_sigma, specimen_int """ x_err = x_segment - x_mean y_err = y_segment - y_mean york_b = -1* numpy.sqrt(old_div(sum(y_err**2), sum(x_err**2)) ) # averaged slope b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1)/numpy.std(x_segment, ddof=1) # ddof is degrees of freedom if b == 0: york_b = 1e-10 else: york_b = b york_sigma= numpy.sqrt( old_div((2 * sum(y_err**2) - 2*york_b* sum(x_err*y_err)), ( (n-2) * sum(x_err**2) )) ) if york_sigma == 0: # prevent divide by zero york_sigma = 1e-10 beta_Coe = abs(old_div(york_sigma,york_b)) # y_T is the intercept of the extrepolated line # through the center of mass (see figure 7 in Coe (1978)) y_T = y_mean - (york_b* x_mean) x_T = old_div((-1 * y_T), york_b) # x intercept # # calculate the extrarpolated data points for f and fvds x_tag = old_div((y_segment - y_T ), york_b) # returns array of y points minus the y intercept, divided by slope y_tag = york_b*x_segment + y_T # intersect of the dashed square and the horizontal dahed line next to delta-y-5 in figure 7, Coe (1978) x_prime = old_div((x_segment+x_tag), 2) y_prime = old_div((y_segment+y_tag), 2) delta_x_prime = abs(max(x_prime) - min(x_prime)) # TRM length of best fit line delta_y_prime = abs(max(y_prime) - min(y_prime)) # NRM length of best fit line f_Coe = old_div(delta_y_prime, abs(y_T)) if delta_y_prime: g_Coe = 1 - (old_div(sum((y_prime[:-1]-y_prime[1:])**2), delta_y_prime ** 2)) # gap factor else: g_Coe = float('nan') g_lim = old_div((float(n) - 2), (float(n) - 1)) q_Coe = abs(york_b)*f_Coe*g_Coe/york_sigma w_Coe = old_div(q_Coe, numpy.sqrt(n - 2)) count_IZ = steps_Arai.count('IZ') count_ZI = steps_Arai.count('ZI') B_lab = lab_dc_field * 1e6 B_anc = abs(york_b) * B_lab # in microtesla B_anc_sigma = york_sigma * B_lab specimen_int = -1* lab_dc_field * york_b # in tesla specimen_int_sigma = york_sigma * lab_dc_field return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag, 'specimen_b': york_b, 'specimen_b_sigma': york_sigma, 'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime': x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime, 'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g': g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w': w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab, 'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int': specimen_int, 'specimen_int_sigma': specimen_int_sigma}
input: x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai output: x_err, y_err, x_tag, y_tag, b, b_sigma, specimen_b_beta, y_intercept, x_intercept, x_prime, y_prime, delta_x_prime, delta_y_prime, f_Coe, g_Coe, g_lim, specimen_q, specimen_w, count_IZ, count_ZI, B_lab, B_anc, B_anc_sigma, specimen_int
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L10-L68
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_vds
def get_vds(zdata, delta_y_prime, start, end): """takes zdata array: [[1, 2, 3], [3, 4, 5]], delta_y_prime: 1, start value, and end value. gets vds and f_vds, etc. """ vector_diffs = [] for k in range(len(zdata)-1): # gets diff between two vectors vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k+1]) - numpy.array(zdata[k]))**2) )) last_vector = numpy.linalg.norm(zdata[-1]) vector_diffs.append(last_vector) vds = sum(vector_diffs) f_vds = abs(old_div(delta_y_prime, vds)) # fvds varies, because of delta_y_prime, but vds does not. vector_diffs_segment = vector_diffs[start:end] partial_vds = sum(vector_diffs_segment) max_diff = max(vector_diffs_segment) GAP_MAX = old_div(max_diff, partial_vds) # return {'max_diff': max_diff, 'vector_diffs': vector_diffs, 'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment': vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}
python
def get_vds(zdata, delta_y_prime, start, end): """takes zdata array: [[1, 2, 3], [3, 4, 5]], delta_y_prime: 1, start value, and end value. gets vds and f_vds, etc. """ vector_diffs = [] for k in range(len(zdata)-1): # gets diff between two vectors vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k+1]) - numpy.array(zdata[k]))**2) )) last_vector = numpy.linalg.norm(zdata[-1]) vector_diffs.append(last_vector) vds = sum(vector_diffs) f_vds = abs(old_div(delta_y_prime, vds)) # fvds varies, because of delta_y_prime, but vds does not. vector_diffs_segment = vector_diffs[start:end] partial_vds = sum(vector_diffs_segment) max_diff = max(vector_diffs_segment) GAP_MAX = old_div(max_diff, partial_vds) # return {'max_diff': max_diff, 'vector_diffs': vector_diffs, 'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment': vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}
takes zdata array: [[1, 2, 3], [3, 4, 5]], delta_y_prime: 1, start value, and end value. gets vds and f_vds, etc.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L70-L86
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_SCAT_box
def get_SCAT_box(slope, x_mean, y_mean, beta_threshold = .1): """ takes in data and returns information about SCAT box: the largest possible x_value, the largest possible y_value, and functions for the two bounding lines of the box """ # if beta_threshold is -999, that means null if beta_threshold == -999: beta_threshold = .1 slope_err_threshold = abs(slope) * beta_threshold x, y = x_mean, y_mean # get lines that pass through mass center, with opposite slope slope1 = slope + (2* slope_err_threshold) line1_y_int = y - (slope1 * x) line1_x_int = -1 * (old_div(line1_y_int, slope1)) slope2 = slope - (2 * slope_err_threshold) line2_y_int = y - (slope2 * x) line2_x_int = -1 * (old_div(line2_y_int, slope2)) # l1_y_int and l2_x_int form the bottom line of the box # l2_y_int and l1_x_int form the top line of the box # print "_diagonal line1:", (0, line2_y_int), (line2_x_int, 0), (x, y) # print "_diagonal line2:", (0, line1_y_int), (line1_x_int, 0), (x, y) # print "_bottom line:", [(0, line1_y_int), (line2_x_int, 0)] # print "_top line:", [(0, line2_y_int), (line1_x_int, 0)] low_bound = [(0, line1_y_int), (line2_x_int, 0)] high_bound = [(0, line2_y_int), (line1_x_int, 0)] x_max = high_bound[1][0]# y_max = high_bound[0][1] # function for low_bound low_slope = old_div((low_bound[0][1] - low_bound[1][1]), (low_bound[0][0] - low_bound[1][0])) # low_y_int = low_bound[0][1] def low_bound(x): y = low_slope * x + low_y_int return y # function for high_bound high_slope = old_div((high_bound[0][1] - high_bound[1][1]), (high_bound[0][0] - high_bound[1][0])) # y_0-y_1/x_0-x_1 high_y_int = high_bound[0][1] def high_bound(x): y = high_slope * x + high_y_int return y high_line = [high_y_int, high_slope] low_line = [low_y_int, low_slope] return low_bound, high_bound, x_max, y_max, low_line, high_line
python
def get_SCAT_box(slope, x_mean, y_mean, beta_threshold = .1): """ takes in data and returns information about SCAT box: the largest possible x_value, the largest possible y_value, and functions for the two bounding lines of the box """ # if beta_threshold is -999, that means null if beta_threshold == -999: beta_threshold = .1 slope_err_threshold = abs(slope) * beta_threshold x, y = x_mean, y_mean # get lines that pass through mass center, with opposite slope slope1 = slope + (2* slope_err_threshold) line1_y_int = y - (slope1 * x) line1_x_int = -1 * (old_div(line1_y_int, slope1)) slope2 = slope - (2 * slope_err_threshold) line2_y_int = y - (slope2 * x) line2_x_int = -1 * (old_div(line2_y_int, slope2)) # l1_y_int and l2_x_int form the bottom line of the box # l2_y_int and l1_x_int form the top line of the box # print "_diagonal line1:", (0, line2_y_int), (line2_x_int, 0), (x, y) # print "_diagonal line2:", (0, line1_y_int), (line1_x_int, 0), (x, y) # print "_bottom line:", [(0, line1_y_int), (line2_x_int, 0)] # print "_top line:", [(0, line2_y_int), (line1_x_int, 0)] low_bound = [(0, line1_y_int), (line2_x_int, 0)] high_bound = [(0, line2_y_int), (line1_x_int, 0)] x_max = high_bound[1][0]# y_max = high_bound[0][1] # function for low_bound low_slope = old_div((low_bound[0][1] - low_bound[1][1]), (low_bound[0][0] - low_bound[1][0])) # low_y_int = low_bound[0][1] def low_bound(x): y = low_slope * x + low_y_int return y # function for high_bound high_slope = old_div((high_bound[0][1] - high_bound[1][1]), (high_bound[0][0] - high_bound[1][0])) # y_0-y_1/x_0-x_1 high_y_int = high_bound[0][1] def high_bound(x): y = high_slope * x + high_y_int return y high_line = [high_y_int, high_slope] low_line = [low_y_int, low_slope] return low_bound, high_bound, x_max, y_max, low_line, high_line
takes in data and returns information about SCAT box: the largest possible x_value, the largest possible y_value, and functions for the two bounding lines of the box
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L88-L130
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
in_SCAT_box
def in_SCAT_box(x, y, low_bound, high_bound, x_max, y_max): """determines if a particular point falls within a box""" passing = True upper_limit = high_bound(x) lower_limit = low_bound(x) if x > x_max or y > y_max: passing = False if x < 0 or y < 0: passing = False if y > upper_limit: passing = False if y < lower_limit: passing = False return passing
python
def in_SCAT_box(x, y, low_bound, high_bound, x_max, y_max): """determines if a particular point falls within a box""" passing = True upper_limit = high_bound(x) lower_limit = low_bound(x) if x > x_max or y > y_max: passing = False if x < 0 or y < 0: passing = False if y > upper_limit: passing = False if y < lower_limit: passing = False return passing
determines if a particular point falls within a box
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L132-L145
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_SCAT_points
def get_SCAT_points(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures, ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check, tail_checks_temperatures, tail_checks_starting_temperatures, x_tail_check, y_tail_check): """returns relevant points for a SCAT test""" points = [] points_arai = [] points_ptrm = [] points_tail = [] for i in range(len(x_Arai_segment)): # uses only the best_fit segment, so no need for further selection x = x_Arai_segment[i] y = y_Arai_segment[i] points.append((x, y)) points_arai.append((x,y)) for num, temp in enumerate(ptrm_checks_temperatures): # if temp >= tmin and temp <= tmax: # if temp is within selected range if (ptrm_checks_starting_temperatures[num] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax): # and also if it was not done after an out-of-range temp x = x_ptrm_check[num] y = y_ptrm_check[num] points.append((x, y)) points_ptrm.append((x,y)) for num, temp in enumerate(tail_checks_temperatures): if temp >= tmin and temp <= tmax: if (tail_checks_starting_temperatures[num] >= tmin and tail_checks_starting_temperatures[num] <= tmax): x = x_tail_check[num] y = y_tail_check[num] points.append((x, y)) points_tail.append((x,y)) # print "points (tail checks added)", points fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm, 'points_tail': points_tail} return points, fancy_points
python
def get_SCAT_points(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures, ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check, tail_checks_temperatures, tail_checks_starting_temperatures, x_tail_check, y_tail_check): """returns relevant points for a SCAT test""" points = [] points_arai = [] points_ptrm = [] points_tail = [] for i in range(len(x_Arai_segment)): # uses only the best_fit segment, so no need for further selection x = x_Arai_segment[i] y = y_Arai_segment[i] points.append((x, y)) points_arai.append((x,y)) for num, temp in enumerate(ptrm_checks_temperatures): # if temp >= tmin and temp <= tmax: # if temp is within selected range if (ptrm_checks_starting_temperatures[num] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax): # and also if it was not done after an out-of-range temp x = x_ptrm_check[num] y = y_ptrm_check[num] points.append((x, y)) points_ptrm.append((x,y)) for num, temp in enumerate(tail_checks_temperatures): if temp >= tmin and temp <= tmax: if (tail_checks_starting_temperatures[num] >= tmin and tail_checks_starting_temperatures[num] <= tmax): x = x_tail_check[num] y = y_tail_check[num] points.append((x, y)) points_tail.append((x,y)) # print "points (tail checks added)", points fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm, 'points_tail': points_tail} return points, fancy_points
returns relevant points for a SCAT test
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L147-L181
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_SCAT
def get_SCAT(points, low_bound, high_bound, x_max, y_max): """ runs SCAT test and returns boolean """ # iterate through all relevant points and see if any of them fall outside of your SCAT box SCAT = True for point in points: result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if result == False: # print "SCAT TEST FAILED" SCAT = False return SCAT
python
def get_SCAT(points, low_bound, high_bound, x_max, y_max): """ runs SCAT test and returns boolean """ # iterate through all relevant points and see if any of them fall outside of your SCAT box SCAT = True for point in points: result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if result == False: # print "SCAT TEST FAILED" SCAT = False return SCAT
runs SCAT test and returns boolean
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L183-L194
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
fancy_SCAT
def fancy_SCAT(points, low_bound, high_bound, x_max, y_max): """ runs SCAT test and returns 'Pass' or 'Fail' """ # iterate through all relevant points and see if any of them fall outside of your SCAT box # {'points_arai': [(x,y),(x,y)], 'points_ptrm': [(x,y),(x,y)], ...} SCAT = 'Pass' SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'} for point_type in points: #print 'point_type', point_type for point in points[point_type]: #print 'point', point result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if not result: # print "SCAT TEST FAILED" x = 'SCAT' + point_type[6:] #print 'lib point type', point_type #print 'xxxx', x SCATs[x] = 'Fail' SCAT = 'Fail' return SCAT, SCATs
python
def fancy_SCAT(points, low_bound, high_bound, x_max, y_max): """ runs SCAT test and returns 'Pass' or 'Fail' """ # iterate through all relevant points and see if any of them fall outside of your SCAT box # {'points_arai': [(x,y),(x,y)], 'points_ptrm': [(x,y),(x,y)], ...} SCAT = 'Pass' SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'} for point_type in points: #print 'point_type', point_type for point in points[point_type]: #print 'point', point result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if not result: # print "SCAT TEST FAILED" x = 'SCAT' + point_type[6:] #print 'lib point type', point_type #print 'xxxx', x SCATs[x] = 'Fail' SCAT = 'Fail' return SCAT, SCATs
runs SCAT test and returns 'Pass' or 'Fail'
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L196-L216
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_FRAC
def get_FRAC(vds, vector_diffs_segment): """ input: vds, vector_diffs_segment output: FRAC """ for num in vector_diffs_segment: if num < 0: raise ValueError('vector diffs should not be negative') if vds == 0: raise ValueError('attempting to divide by zero. vds should be a positive number') FRAC = old_div(sum(vector_diffs_segment), vds) return FRAC
python
def get_FRAC(vds, vector_diffs_segment): """ input: vds, vector_diffs_segment output: FRAC """ for num in vector_diffs_segment: if num < 0: raise ValueError('vector diffs should not be negative') if vds == 0: raise ValueError('attempting to divide by zero. vds should be a positive number') FRAC = old_div(sum(vector_diffs_segment), vds) return FRAC
input: vds, vector_diffs_segment output: FRAC
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L219-L230
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_R_corr2
def get_R_corr2(x_avg, y_avg, x_segment, y_segment): # """ input: x_avg, y_avg, x_segment, y_segment output: R_corr2 """ xd = x_segment - x_avg # detrend x_segment yd = y_segment - y_avg # detrend y_segment if sum(xd**2) * sum(yd**2) == 0: # prevent divide by zero error return float('nan') rcorr = old_div(sum((xd * yd))**2, (sum(xd**2) * sum(yd**2))) return rcorr
python
def get_R_corr2(x_avg, y_avg, x_segment, y_segment): # """ input: x_avg, y_avg, x_segment, y_segment output: R_corr2 """ xd = x_segment - x_avg # detrend x_segment yd = y_segment - y_avg # detrend y_segment if sum(xd**2) * sum(yd**2) == 0: # prevent divide by zero error return float('nan') rcorr = old_div(sum((xd * yd))**2, (sum(xd**2) * sum(yd**2))) return rcorr
input: x_avg, y_avg, x_segment, y_segment output: R_corr2
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L232-L242
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_R_det2
def get_R_det2(y_segment, y_avg, y_prime): """ takes in an array of y values, the mean of those values, and the array of y prime values. returns R_det2 """ numerator = sum((numpy.array(y_segment) - numpy.array(y_prime))**2) denominator = sum((numpy.array(y_segment) - y_avg)**2) if denominator: # prevent divide by zero error R_det2 = 1 - (old_div(numerator, denominator)) return R_det2 else: return float('nan')
python
def get_R_det2(y_segment, y_avg, y_prime): """ takes in an array of y values, the mean of those values, and the array of y prime values. returns R_det2 """ numerator = sum((numpy.array(y_segment) - numpy.array(y_prime))**2) denominator = sum((numpy.array(y_segment) - y_avg)**2) if denominator: # prevent divide by zero error R_det2 = 1 - (old_div(numerator, denominator)) return R_det2 else: return float('nan')
takes in an array of y values, the mean of those values, and the array of y prime values. returns R_det2
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L244-L255
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_b_wiggle
def get_b_wiggle(x, y, y_int): """returns instantaneous slope from the ratio of NRM lost to TRM gained at the ith step""" if x == 0: b_wiggle = 0 else: b_wiggle = old_div((y_int - y), x) return b_wiggle
python
def get_b_wiggle(x, y, y_int): """returns instantaneous slope from the ratio of NRM lost to TRM gained at the ith step""" if x == 0: b_wiggle = 0 else: b_wiggle = old_div((y_int - y), x) return b_wiggle
returns instantaneous slope from the ratio of NRM lost to TRM gained at the ith step
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L257-L263
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_Z
def get_Z(x_segment, y_segment, x_int, y_int, slope): """ input: x_segment, y_segment, x_int, y_int, slope output: Z (Arai plot zigzag parameter) """ Z = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) z = old_div((x * abs(b_wiggle - abs(slope)) ), abs(x_int)) Z += z first_time = False return Z
python
def get_Z(x_segment, y_segment, x_int, y_int, slope): """ input: x_segment, y_segment, x_int, y_int, slope output: Z (Arai plot zigzag parameter) """ Z = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) z = old_div((x * abs(b_wiggle - abs(slope)) ), abs(x_int)) Z += z first_time = False return Z
input: x_segment, y_segment, x_int, y_int, slope output: Z (Arai plot zigzag parameter)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L265-L277
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_Zstar
def get_Zstar(x_segment, y_segment, x_int, y_int, slope, n): """ input: x_segment, y_segment, x_int, y_int, slope, n output: Z* (Arai plot zigzag parameter (alternate)) """ total = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) result = 100 * ( old_div((x * abs(b_wiggle - abs(slope)) ), abs(y_int)) ) total += result first_time = False Zstar = (old_div(1., (n - 1.))) * total return Zstar
python
def get_Zstar(x_segment, y_segment, x_int, y_int, slope, n): """ input: x_segment, y_segment, x_int, y_int, slope, n output: Z* (Arai plot zigzag parameter (alternate)) """ total = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) result = 100 * ( old_div((x * abs(b_wiggle - abs(slope)) ), abs(y_int)) ) total += result first_time = False Zstar = (old_div(1., (n - 1.))) * total return Zstar
input: x_segment, y_segment, x_int, y_int, slope, n output: Z* (Arai plot zigzag parameter (alternate))
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L279-L292
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_normed_points
def get_normed_points(point_array, norm): # good to go """ input: point_array, norm output: normed array """ norm = float(norm) #floated_array = [] #for p in point_array: # need to make sure each point is a float #floated_array.append(float(p)) points = old_div(numpy.array(point_array), norm) return points
python
def get_normed_points(point_array, norm): # good to go """ input: point_array, norm output: normed array """ norm = float(norm) #floated_array = [] #for p in point_array: # need to make sure each point is a float #floated_array.append(float(p)) points = old_div(numpy.array(point_array), norm) return points
input: point_array, norm output: normed array
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L297-L307
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
get_xy_array
def get_xy_array(x_segment, y_segment): """ input: x_segment, y_segment output: xy_segment, ( format: [(x[0], y[0]), (x[1], y[1])] """ xy_array = [] for num, x in enumerate(x_segment): xy_array.append((x, y_segment[num])) return xy_array
python
def get_xy_array(x_segment, y_segment): """ input: x_segment, y_segment output: xy_segment, ( format: [(x[0], y[0]), (x[1], y[1])] """ xy_array = [] for num, x in enumerate(x_segment): xy_array.append((x, y_segment[num])) return xy_array
input: x_segment, y_segment output: xy_segment, ( format: [(x[0], y[0]), (x[1], y[1])]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L309-L317
PmagPy/PmagPy
programs/stats.py
main
def main(): """ NAME stats.py DEFINITION calculates Gauss statistics for input data SYNTAX stats [command line options][< filename] INPUT single column of numbers OPTIONS -h prints help message and quits -i interactive entry of file name -f input file name -F output file name OUTPUT N, mean, sum, sigma, (%) where sigma is the standard deviation where % is sigma as percentage of the mean stderr is the standard error and 95% conf.= 1.96*sigma/sqrt(N) """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file=input("Enter file name: ") f=open(file,'r') elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') else: f=sys.stdin ofile = "" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') data=f.readlines() dat=[] sum=0 for line in data: rec=line.split() dat.append(float(rec[0])) sum+=float(float(rec[0])) mean,std=pmag.gausspars(dat) outdata = len(dat),mean,sum,std,100*std/mean if ofile == "": print(len(dat),mean,sum,std,100*std/mean) else: for i in outdata: i = str(i) out.write(i + " ")
python
def main(): """ NAME stats.py DEFINITION calculates Gauss statistics for input data SYNTAX stats [command line options][< filename] INPUT single column of numbers OPTIONS -h prints help message and quits -i interactive entry of file name -f input file name -F output file name OUTPUT N, mean, sum, sigma, (%) where sigma is the standard deviation where % is sigma as percentage of the mean stderr is the standard error and 95% conf.= 1.96*sigma/sqrt(N) """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file=input("Enter file name: ") f=open(file,'r') elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') else: f=sys.stdin ofile = "" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') data=f.readlines() dat=[] sum=0 for line in data: rec=line.split() dat.append(float(rec[0])) sum+=float(float(rec[0])) mean,std=pmag.gausspars(dat) outdata = len(dat),mean,sum,std,100*std/mean if ofile == "": print(len(dat),mean,sum,std,100*std/mean) else: for i in outdata: i = str(i) out.write(i + " ")
NAME stats.py DEFINITION calculates Gauss statistics for input data SYNTAX stats [command line options][< filename] INPUT single column of numbers OPTIONS -h prints help message and quits -i interactive entry of file name -f input file name -F output file name OUTPUT N, mean, sum, sigma, (%) where sigma is the standard deviation where % is sigma as percentage of the mean stderr is the standard error and 95% conf.= 1.96*sigma/sqrt(N)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/stats.py#L7-L65
PmagPy/PmagPy
programs/magic_select.py
main
def main(): """ NAME magic_select.py DESCRIPTION picks out records and dictitem options saves to magic_special file SYNTAX magic_select.py [command line optins] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -F FILE: specify output magic format file -dm : data model (default is 3.0, otherwise use 2.5) -key KEY string [T,F,has, not, eval,min,max] returns records where the value of the key either: matches exactly the string (T) does not match the string (F) contains the string (has) does not contain the string (not) the value equals the numerical value of the string (eval) the value is greater than the numerical value of the string (min) the value is less than the numerical value of the string (max) NOTES for age range: use KEY: age (converts to Ma, takes mid point of low, high if no value for age. for paleolat: use KEY: model_lat (uses lat, if age<5 Ma, else, model_lat, or attempts calculation from average_inc if no model_lat.) returns estimate in model_lat key EXAMPLE: # here I want to output all records where the site column exactly matches "MC01" magic_select.py -f samples.txt -key site MC01 T -F select_samples.txt """ dir_path = "." flag = '' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') magic_file = dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) print('-W- "-f" is a required option') sys.exit() if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model_num=sys.argv[ind+1] if data_model_num!='3':data_model_num=2.5 else : data_model_num=3 if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) print('-W- "-F" is a required option') sys.exit() if '-key' in sys.argv: ind = sys.argv.index('-key') grab_key = sys.argv[ind+1] v = sys.argv[ind+2] flag = sys.argv[ind+3] else: print(main.__doc__) print('-key is required') sys.exit() # # get data read in Data, file_type = pmag.magic_read(magic_file) if grab_key == 'age': grab_key = 'average_age' Data = pmag.convert_ages(Data,data_model=data_model_num) if grab_key == 'model_lat': Data = pmag.convert_lat(Data) Data = pmag.convert_ages(Data,data_model=data_model_num) #print(Data[0]) Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True) if len(Selection) > 0: pmag.magic_write(outfile, Selection, file_type) else: print('no data matched your criteria')
python
def main(): """ NAME magic_select.py DESCRIPTION picks out records and dictitem options saves to magic_special file SYNTAX magic_select.py [command line optins] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -F FILE: specify output magic format file -dm : data model (default is 3.0, otherwise use 2.5) -key KEY string [T,F,has, not, eval,min,max] returns records where the value of the key either: matches exactly the string (T) does not match the string (F) contains the string (has) does not contain the string (not) the value equals the numerical value of the string (eval) the value is greater than the numerical value of the string (min) the value is less than the numerical value of the string (max) NOTES for age range: use KEY: age (converts to Ma, takes mid point of low, high if no value for age. for paleolat: use KEY: model_lat (uses lat, if age<5 Ma, else, model_lat, or attempts calculation from average_inc if no model_lat.) returns estimate in model_lat key EXAMPLE: # here I want to output all records where the site column exactly matches "MC01" magic_select.py -f samples.txt -key site MC01 T -F select_samples.txt """ dir_path = "." flag = '' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') magic_file = dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) print('-W- "-f" is a required option') sys.exit() if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model_num=sys.argv[ind+1] if data_model_num!='3':data_model_num=2.5 else : data_model_num=3 if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = dir_path+'/'+sys.argv[ind+1] else: print(main.__doc__) print('-W- "-F" is a required option') sys.exit() if '-key' in sys.argv: ind = sys.argv.index('-key') grab_key = sys.argv[ind+1] v = sys.argv[ind+2] flag = sys.argv[ind+3] else: print(main.__doc__) print('-key is required') sys.exit() # # get data read in Data, file_type = pmag.magic_read(magic_file) if grab_key == 'age': grab_key = 'average_age' Data = pmag.convert_ages(Data,data_model=data_model_num) if grab_key == 'model_lat': Data = pmag.convert_lat(Data) Data = pmag.convert_ages(Data,data_model=data_model_num) #print(Data[0]) Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True) if len(Selection) > 0: pmag.magic_write(outfile, Selection, file_type) else: print('no data matched your criteria')
NAME magic_select.py DESCRIPTION picks out records and dictitem options saves to magic_special file SYNTAX magic_select.py [command line optins] OPTIONS -h prints help message and quits -f FILE: specify input magic format file -F FILE: specify output magic format file -dm : data model (default is 3.0, otherwise use 2.5) -key KEY string [T,F,has, not, eval,min,max] returns records where the value of the key either: matches exactly the string (T) does not match the string (F) contains the string (has) does not contain the string (not) the value equals the numerical value of the string (eval) the value is greater than the numerical value of the string (min) the value is less than the numerical value of the string (max) NOTES for age range: use KEY: age (converts to Ma, takes mid point of low, high if no value for age. for paleolat: use KEY: model_lat (uses lat, if age<5 Ma, else, model_lat, or attempts calculation from average_inc if no model_lat.) returns estimate in model_lat key EXAMPLE: # here I want to output all records where the site column exactly matches "MC01" magic_select.py -f samples.txt -key site MC01 T -F select_samples.txt
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/magic_select.py#L7-L93
PmagPy/PmagPy
programs/aniso_magic2.py
main
def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify rmag_anisotropy formatted file for input -F RFILE, specify rmag_results formatted file for output -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just make rmag_results table -sav don't make the rmag_results table - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -n N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ # dir_path = "." version_num = pmag.get_version() verbose = pmagplotlib.verbose args = sys.argv ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0 hpars, bpars, PDir = [], [], [] CS, crd = '-1', 's' nb = 1000 fmt = 'pdf' ResRecs = [] orlist = [] outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, [] infile = 'rmag_anisotropy.txt' if "-h" in args: print(main.__doc__) sys.exit() if '-WD' in args: ind = args.index('-WD') dir_path = args[ind+1] if '-n' in args: ind = args.index('-n') nb = int(args[ind+1]) if '-usr' in args: ind = args.index('-usr') user = args[ind+1] else: user = "" if '-B' in args: iboot, ihext = 0, 1 if '-par' in args: ipar = 1 if '-x' in args: ihext = 1 if '-v' in args: ivec = 1 if '-sit' in args: isite = 1 if '-P' in args: iplot = 0 if '-f' in args: ind = args.index('-f') infile = args[ind+1] if '-F' in args: ind = args.index('-F') outfile = args[ind+1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': CS = '0' if crd == 't': CS = '100' if '-fmt' in args: ind = args.index('-fmt') fmt = args[ind+1] if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind+1]), float(args[ind+2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind+1])-1 Dir = [float(args[ind+2]), float(args[ind+3])] # # set up plots # if infile[0] != '/': infile = dir_path+'/'+infile if outfile[0] != '/': outfile = dir_path+'/'+outfile ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data data, ifiletype = pmag.magic_read(infile) for rec in data: # find all the orientation systems if 'anisotropy_tilt_correction' not in rec.keys(): rec['anisotropy_tilt_correction'] = '-1' if rec['anisotropy_tilt_correction'] not in orlist: orlist.append(rec['anisotropy_tilt_correction']) if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' if verbose: print("desired coordinate system not available, using available: ", crd) if isite == 1: sitelist = [] for rec in data: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" sdata, Ss = [], [] # list of S format data Locs, Sites, Samples, Specimens, Cits = [], [], [], [], [] if isite == 0: sdata = data else: site = sitelist[k] for rec in data: if rec['er_site_name'] == site: sdata.append(rec) anitypes = [] csrecs = pmag.get_dictitem( sdata, 'anisotropy_tilt_correction', CS, 'T') for rec in csrecs: if rec['anisotropy_type'] not in anitypes: anitypes.append(rec['anisotropy_type']) if rec['er_location_name'] not in Locs: Locs.append(rec['er_location_name']) if rec['er_site_name'] not in Sites: Sites.append(rec['er_site_name']) if rec['er_sample_name'] not in Samples: Samples.append(rec['er_sample_name']) if rec['er_specimen_name'] not in Specimens: Specimens.append(rec['er_specimen_name']) if rec['er_citation_names'] not in Cits: Cits.append(rec['er_citation_names']) s = [] s.append(float(rec["anisotropy_s1"])) s.append(float(rec["anisotropy_s2"])) s.append(float(rec["anisotropy_s3"])) s.append(float(rec["anisotropy_s4"])) s.append(float(rec["anisotropy_s5"])) s.append(float(rec["anisotropy_s6"])) if s[0] <= 1.0: Ss.append(s) # protect against crap # tau,Vdirs=pmag.doseigs(s) ResRec = {} ResRec['er_location_names'] = rec['er_location_name'] ResRec['er_citation_names'] = rec['er_citation_names'] ResRec['er_site_names'] = rec['er_site_name'] ResRec['er_sample_names'] = rec['er_sample_name'] ResRec['er_specimen_names'] = rec['er_specimen_name'] ResRec['rmag_result_name'] = rec['er_specimen_name'] + \ ":"+rec['anisotropy_type'] ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS ResRec["anisotropy_type"] = rec['anisotropy_type'] if "anisotropy_n" not in rec.keys(): rec["anisotropy_n"] = "6" if "anisotropy_sigma" not in rec.keys(): rec["anisotropy_sigma"] = "0" fpars = pmag.dohext( int(rec["anisotropy_n"])-6, float(rec["anisotropy_sigma"]), s) ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec']) ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec']) ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec']) ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc']) ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc']) ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc']) ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1']) ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2']) ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3']) ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F']) ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12']) ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23']) ResRec["result_description"] = 'F_crit: ' + \ fpars['F_crit']+'; F12,F23_crit: '+fpars['F12_crit'] ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRecs.append(ResRec) if len(Ss) > 1: if pmagplotlib.isServer: title = "LO:_"+ResRec['er_location_names'] + \ '_SI:_'+site+'_SA:__SP:__CO:_'+crd else: title = ResRec['er_location_names'] if site: title += "_{}".format(site) title += '_{}'.format(crd) ResRec['er_location_names'] = pmag.makelist(Locs) bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if len(PDir) > 0: pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) ResRec['er_location_names'] = pmag.makelist(Locs) if plots == 1: save(ANIS, fmt, title) ResRec = {} ResRec['er_citation_names'] = pmag.makelist(Cits) ResRec['er_location_names'] = pmag.makelist(Locs) ResRec['er_site_names'] = pmag.makelist(Sites) ResRec['er_sample_names'] = pmag.makelist(Samples) ResRec['er_specimen_names'] = pmag.makelist(Specimens) ResRec['rmag_result_name'] = pmag.makelist( Sites)+":"+pmag.makelist(anitypes) ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS if isite == "0": ResRec['result_description'] = "Study average using coordinate system: " + CS if isite == "1": ResRec['result_description'] = "Site average using coordinate system: " + CS if hpars != [] and ihext == 1: HextRec = {} for key in ResRec.keys(): HextRec[key] = ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print("Hext Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], HextRec["anisotropy_v1_zeta_inc"]) print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], HextRec["anisotropy_v2_zeta_inc"]) print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], HextRec["anisotropy_v3_zeta_inc"]) HextRec['magic_software_packages'] = version_num ResRecs.append(HextRec) if bpars != []: BootRec = {} for key in ResRec.keys(): BootRec[key] = ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % ( bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % ( bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % ( bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % ( bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % ( bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % ( bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' # regular bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS' if ipar == 1: # parametric bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' if verbose: print("Boostrap Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], BootRec["anisotropy_v1_zeta_inc"]) print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"]) print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"]) BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print("compare with [d]irection ") print( " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit ") if isite == 1: print(" [p]revious, [s]ite, [q]uit, <return> for next ") ans = input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec = 1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "c": print("Current Coordinate system is: ") if CS == '-1': print(" Specimen") if CS == '0': print(" Geographic") if CS == '100': print(" Tilt corrected") key = input( " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected ") if key == 's': CS = '-1' if key == 'g': CS = '0' if key == 't': CS = '100' if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' print( "desired coordinate system not available, using available: ", crd) k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print("Good bye ") sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print(""" Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""") con = 1 while con == 1: try: vdi = input("Vi D I: ").split() vec = int(vdi[0])-1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print(" Incorrect entry, try again ") bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print( " Input: input pole to great circle ( D I) to plot a great circle: ") di = input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con = 0 except: cnt += 1 if cnt < 10: print( " enter the dec and inc of the pole on one line ") else: print( "ummm - you are doing something wrong - i give up") sys.exit() pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print(site, " not found, but this was: ") print(tmplist) site = input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) if pmagplotlib.isServer: # use server plot naming convention title = "LO:_"+locs+'_SI:__'+'_SA:__SP:__CO:_'+crd else: # use more readable plot naming convention title = "{}_{}".format(locs, crd) save(ANIS, fmt, title) goon = 0 else: if verbose: print('skipping plot - not enough data points') k += 1 # put rmag_results stuff here if len(ResRecs) > 0: ResOut, keylist = pmag.fillkeys(ResRecs) pmag.magic_write(outfile, ResOut, 'rmag_results') if verbose: print(" Good bye ")
python
def main(): """ NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify rmag_anisotropy formatted file for input -F RFILE, specify rmag_results formatted file for output -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just make rmag_results table -sav don't make the rmag_results table - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -n N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black """ # dir_path = "." version_num = pmag.get_version() verbose = pmagplotlib.verbose args = sys.argv ipar, ihext, ivec, iboot, imeas, isite, iplot, vec = 0, 0, 0, 1, 1, 0, 1, 0 hpars, bpars, PDir = [], [], [] CS, crd = '-1', 's' nb = 1000 fmt = 'pdf' ResRecs = [] orlist = [] outfile, comp, Dir, gtcirc, PDir = 'rmag_results.txt', 0, [], 0, [] infile = 'rmag_anisotropy.txt' if "-h" in args: print(main.__doc__) sys.exit() if '-WD' in args: ind = args.index('-WD') dir_path = args[ind+1] if '-n' in args: ind = args.index('-n') nb = int(args[ind+1]) if '-usr' in args: ind = args.index('-usr') user = args[ind+1] else: user = "" if '-B' in args: iboot, ihext = 0, 1 if '-par' in args: ipar = 1 if '-x' in args: ihext = 1 if '-v' in args: ivec = 1 if '-sit' in args: isite = 1 if '-P' in args: iplot = 0 if '-f' in args: ind = args.index('-f') infile = args[ind+1] if '-F' in args: ind = args.index('-F') outfile = args[ind+1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': CS = '0' if crd == 't': CS = '100' if '-fmt' in args: ind = args.index('-fmt') fmt = args[ind+1] if '-sav' in args: plots = 1 verbose = 0 else: plots = 0 if '-gtc' in args: ind = args.index('-gtc') d, i = float(args[ind+1]), float(args[ind+2]) PDir.append(d) PDir.append(i) if '-d' in args: comp = 1 ind = args.index('-d') vec = int(args[ind+1])-1 Dir = [float(args[ind+2]), float(args[ind+3])] # # set up plots # if infile[0] != '/': infile = dir_path+'/'+infile if outfile[0] != '/': outfile = dir_path+'/'+outfile ANIS = {} initcdf, inittcdf = 0, 0 ANIS['data'], ANIS['conf'] = 1, 2 if iboot == 1: ANIS['tcdf'] = 3 if iplot == 1: inittcdf = 1 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) if comp == 1 and iplot == 1: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) if iplot == 1: pmagplotlib.plot_init(ANIS['conf'], 5, 5) pmagplotlib.plot_init(ANIS['data'], 5, 5) # read in the data data, ifiletype = pmag.magic_read(infile) for rec in data: # find all the orientation systems if 'anisotropy_tilt_correction' not in rec.keys(): rec['anisotropy_tilt_correction'] = '-1' if rec['anisotropy_tilt_correction'] not in orlist: orlist.append(rec['anisotropy_tilt_correction']) if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' if verbose: print("desired coordinate system not available, using available: ", crd) if isite == 1: sitelist = [] for rec in data: if rec['er_site_name'] not in sitelist: sitelist.append(rec['er_site_name']) sitelist.sort() plt = len(sitelist) else: plt = 1 k = 0 while k < plt: site = "" sdata, Ss = [], [] # list of S format data Locs, Sites, Samples, Specimens, Cits = [], [], [], [], [] if isite == 0: sdata = data else: site = sitelist[k] for rec in data: if rec['er_site_name'] == site: sdata.append(rec) anitypes = [] csrecs = pmag.get_dictitem( sdata, 'anisotropy_tilt_correction', CS, 'T') for rec in csrecs: if rec['anisotropy_type'] not in anitypes: anitypes.append(rec['anisotropy_type']) if rec['er_location_name'] not in Locs: Locs.append(rec['er_location_name']) if rec['er_site_name'] not in Sites: Sites.append(rec['er_site_name']) if rec['er_sample_name'] not in Samples: Samples.append(rec['er_sample_name']) if rec['er_specimen_name'] not in Specimens: Specimens.append(rec['er_specimen_name']) if rec['er_citation_names'] not in Cits: Cits.append(rec['er_citation_names']) s = [] s.append(float(rec["anisotropy_s1"])) s.append(float(rec["anisotropy_s2"])) s.append(float(rec["anisotropy_s3"])) s.append(float(rec["anisotropy_s4"])) s.append(float(rec["anisotropy_s5"])) s.append(float(rec["anisotropy_s6"])) if s[0] <= 1.0: Ss.append(s) # protect against crap # tau,Vdirs=pmag.doseigs(s) ResRec = {} ResRec['er_location_names'] = rec['er_location_name'] ResRec['er_citation_names'] = rec['er_citation_names'] ResRec['er_site_names'] = rec['er_site_name'] ResRec['er_sample_names'] = rec['er_sample_name'] ResRec['er_specimen_names'] = rec['er_specimen_name'] ResRec['rmag_result_name'] = rec['er_specimen_name'] + \ ":"+rec['anisotropy_type'] ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS ResRec["anisotropy_type"] = rec['anisotropy_type'] if "anisotropy_n" not in rec.keys(): rec["anisotropy_n"] = "6" if "anisotropy_sigma" not in rec.keys(): rec["anisotropy_sigma"] = "0" fpars = pmag.dohext( int(rec["anisotropy_n"])-6, float(rec["anisotropy_sigma"]), s) ResRec["anisotropy_v1_dec"] = '%7.1f' % (fpars['v1_dec']) ResRec["anisotropy_v2_dec"] = '%7.1f' % (fpars['v2_dec']) ResRec["anisotropy_v3_dec"] = '%7.1f' % (fpars['v3_dec']) ResRec["anisotropy_v1_inc"] = '%7.1f' % (fpars['v1_inc']) ResRec["anisotropy_v2_inc"] = '%7.1f' % (fpars['v2_inc']) ResRec["anisotropy_v3_inc"] = '%7.1f' % (fpars['v3_inc']) ResRec["anisotropy_t1"] = '%10.8f' % (fpars['t1']) ResRec["anisotropy_t2"] = '%10.8f' % (fpars['t2']) ResRec["anisotropy_t3"] = '%10.8f' % (fpars['t3']) ResRec["anisotropy_ftest"] = '%10.3f' % (fpars['F']) ResRec["anisotropy_ftest12"] = '%10.3f' % (fpars['F12']) ResRec["anisotropy_ftest23"] = '%10.3f' % (fpars['F23']) ResRec["result_description"] = 'F_crit: ' + \ fpars['F_crit']+'; F12,F23_crit: '+fpars['F12_crit'] ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRecs.append(ResRec) if len(Ss) > 1: if pmagplotlib.isServer: title = "LO:_"+ResRec['er_location_names'] + \ '_SI:_'+site+'_SA:__SP:__CO:_'+crd else: title = ResRec['er_location_names'] if site: title += "_{}".format(site) title += '_{}'.format(crd) ResRec['er_location_names'] = pmag.makelist(Locs) bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if len(PDir) > 0: pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) ResRec['er_location_names'] = pmag.makelist(Locs) if plots == 1: save(ANIS, fmt, title) ResRec = {} ResRec['er_citation_names'] = pmag.makelist(Cits) ResRec['er_location_names'] = pmag.makelist(Locs) ResRec['er_site_names'] = pmag.makelist(Sites) ResRec['er_sample_names'] = pmag.makelist(Samples) ResRec['er_specimen_names'] = pmag.makelist(Specimens) ResRec['rmag_result_name'] = pmag.makelist( Sites)+":"+pmag.makelist(anitypes) ResRec['anisotropy_type'] = pmag.makelist(anitypes) ResRec["er_analyst_mail_names"] = user ResRec["tilt_correction"] = CS if isite == "0": ResRec['result_description'] = "Study average using coordinate system: " + CS if isite == "1": ResRec['result_description'] = "Site average using coordinate system: " + CS if hpars != [] and ihext == 1: HextRec = {} for key in ResRec.keys(): HextRec[key] = ResRec[key] # copy over stuff HextRec["anisotropy_v1_dec"] = '%7.1f' % (hpars["v1_dec"]) HextRec["anisotropy_v2_dec"] = '%7.1f' % (hpars["v2_dec"]) HextRec["anisotropy_v3_dec"] = '%7.1f' % (hpars["v3_dec"]) HextRec["anisotropy_v1_inc"] = '%7.1f' % (hpars["v1_inc"]) HextRec["anisotropy_v2_inc"] = '%7.1f' % (hpars["v2_inc"]) HextRec["anisotropy_v3_inc"] = '%7.1f' % (hpars["v3_inc"]) HextRec["anisotropy_t1"] = '%10.8f' % (hpars["t1"]) HextRec["anisotropy_t2"] = '%10.8f' % (hpars["t2"]) HextRec["anisotropy_t3"] = '%10.8f' % (hpars["t3"]) HextRec["anisotropy_hext_F"] = '%7.1f ' % (hpars["F"]) HextRec["anisotropy_hext_F12"] = '%7.1f ' % (hpars["F12"]) HextRec["anisotropy_hext_F23"] = '%7.1f ' % (hpars["F23"]) HextRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v1_eta_dec"] = '%7.1f ' % (hpars["v2_dec"]) HextRec["anisotropy_v1_eta_inc"] = '%7.1f ' % (hpars["v2_inc"]) HextRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( hpars["e13"]) HextRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v2_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v2_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( hpars["v3_dec"]) HextRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( hpars["v3_inc"]) HextRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( hpars["e12"]) HextRec["anisotropy_v3_eta_dec"] = '%7.1f ' % (hpars["v1_dec"]) HextRec["anisotropy_v3_eta_inc"] = '%7.1f ' % (hpars["v1_inc"]) HextRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( hpars["e23"]) HextRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( hpars["v2_dec"]) HextRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( hpars["v2_inc"]) HextRec["magic_method_codes"] = 'LP-AN:AE-H' if verbose: print("Hext Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(HextRec["anisotropy_t1"], HextRec["anisotropy_v1_dec"], HextRec["anisotropy_v1_inc"], HextRec["anisotropy_v1_eta_semi_angle"], HextRec["anisotropy_v1_eta_dec"], HextRec["anisotropy_v1_eta_inc"], HextRec["anisotropy_v1_zeta_semi_angle"], HextRec["anisotropy_v1_zeta_dec"], HextRec["anisotropy_v1_zeta_inc"]) print(HextRec["anisotropy_t2"], HextRec["anisotropy_v2_dec"], HextRec["anisotropy_v2_inc"], HextRec["anisotropy_v2_eta_semi_angle"], HextRec["anisotropy_v2_eta_dec"], HextRec["anisotropy_v2_eta_inc"], HextRec["anisotropy_v2_zeta_semi_angle"], HextRec["anisotropy_v2_zeta_dec"], HextRec["anisotropy_v2_zeta_inc"]) print(HextRec["anisotropy_t3"], HextRec["anisotropy_v3_dec"], HextRec["anisotropy_v3_inc"], HextRec["anisotropy_v3_eta_semi_angle"], HextRec["anisotropy_v3_eta_dec"], HextRec["anisotropy_v3_eta_inc"], HextRec["anisotropy_v3_zeta_semi_angle"], HextRec["anisotropy_v3_zeta_dec"], HextRec["anisotropy_v3_zeta_inc"]) HextRec['magic_software_packages'] = version_num ResRecs.append(HextRec) if bpars != []: BootRec = {} for key in ResRec.keys(): BootRec[key] = ResRec[key] # copy over stuff BootRec["anisotropy_v1_dec"] = '%7.1f' % (bpars["v1_dec"]) BootRec["anisotropy_v2_dec"] = '%7.1f' % (bpars["v2_dec"]) BootRec["anisotropy_v3_dec"] = '%7.1f' % (bpars["v3_dec"]) BootRec["anisotropy_v1_inc"] = '%7.1f' % (bpars["v1_inc"]) BootRec["anisotropy_v2_inc"] = '%7.1f' % (bpars["v2_inc"]) BootRec["anisotropy_v3_inc"] = '%7.1f' % (bpars["v3_inc"]) BootRec["anisotropy_t1"] = '%10.8f' % (bpars["t1"]) BootRec["anisotropy_t2"] = '%10.8f' % (bpars["t2"]) BootRec["anisotropy_t3"] = '%10.8f' % (bpars["t3"]) BootRec["anisotropy_v1_eta_inc"] = '%7.1f ' % ( bpars["v1_eta_inc"]) BootRec["anisotropy_v1_eta_dec"] = '%7.1f ' % ( bpars["v1_eta_dec"]) BootRec["anisotropy_v1_eta_semi_angle"] = '%7.1f ' % ( bpars["v1_eta"]) BootRec["anisotropy_v1_zeta_inc"] = '%7.1f ' % ( bpars["v1_zeta_inc"]) BootRec["anisotropy_v1_zeta_dec"] = '%7.1f ' % ( bpars["v1_zeta_dec"]) BootRec["anisotropy_v1_zeta_semi_angle"] = '%7.1f ' % ( bpars["v1_zeta"]) BootRec["anisotropy_v2_eta_inc"] = '%7.1f ' % ( bpars["v2_eta_inc"]) BootRec["anisotropy_v2_eta_dec"] = '%7.1f ' % ( bpars["v2_eta_dec"]) BootRec["anisotropy_v2_eta_semi_angle"] = '%7.1f ' % ( bpars["v2_eta"]) BootRec["anisotropy_v2_zeta_inc"] = '%7.1f ' % ( bpars["v2_zeta_inc"]) BootRec["anisotropy_v2_zeta_dec"] = '%7.1f ' % ( bpars["v2_zeta_dec"]) BootRec["anisotropy_v2_zeta_semi_angle"] = '%7.1f ' % ( bpars["v2_zeta"]) BootRec["anisotropy_v3_eta_inc"] = '%7.1f ' % ( bpars["v3_eta_inc"]) BootRec["anisotropy_v3_eta_dec"] = '%7.1f ' % ( bpars["v3_eta_dec"]) BootRec["anisotropy_v3_eta_semi_angle"] = '%7.1f ' % ( bpars["v3_eta"]) BootRec["anisotropy_v3_zeta_inc"] = '%7.1f ' % ( bpars["v3_zeta_inc"]) BootRec["anisotropy_v3_zeta_dec"] = '%7.1f ' % ( bpars["v3_zeta_dec"]) BootRec["anisotropy_v3_zeta_semi_angle"] = '%7.1f ' % ( bpars["v3_zeta"]) BootRec["anisotropy_hext_F"] = '' BootRec["anisotropy_hext_F12"] = '' BootRec["anisotropy_hext_F23"] = '' # regular bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS' if ipar == 1: # parametric bootstrap BootRec["magic_method_codes"] = 'LP-AN:AE-H:AE-BS-P' if verbose: print("Boostrap Statistics: ") print( " tau_i, V_i_D, V_i_I, V_i_zeta, V_i_zeta_D, V_i_zeta_I, V_i_eta, V_i_eta_D, V_i_eta_I") print(BootRec["anisotropy_t1"], BootRec["anisotropy_v1_dec"], BootRec["anisotropy_v1_inc"], BootRec["anisotropy_v1_eta_semi_angle"], BootRec["anisotropy_v1_eta_dec"], BootRec["anisotropy_v1_eta_inc"], BootRec["anisotropy_v1_zeta_semi_angle"], BootRec["anisotropy_v1_zeta_dec"], BootRec["anisotropy_v1_zeta_inc"]) print(BootRec["anisotropy_t2"], BootRec["anisotropy_v2_dec"], BootRec["anisotropy_v2_inc"], BootRec["anisotropy_v2_eta_semi_angle"], BootRec["anisotropy_v2_eta_dec"], BootRec["anisotropy_v2_eta_inc"], BootRec["anisotropy_v2_zeta_semi_angle"], BootRec["anisotropy_v2_zeta_dec"], BootRec["anisotropy_v2_zeta_inc"]) print(BootRec["anisotropy_t3"], BootRec["anisotropy_v3_dec"], BootRec["anisotropy_v3_inc"], BootRec["anisotropy_v3_eta_semi_angle"], BootRec["anisotropy_v3_eta_dec"], BootRec["anisotropy_v3_eta_inc"], BootRec["anisotropy_v3_zeta_semi_angle"], BootRec["anisotropy_v3_zeta_dec"], BootRec["anisotropy_v3_zeta_inc"]) BootRec['magic_software_packages'] = version_num ResRecs.append(BootRec) k += 1 goon = 1 while goon == 1 and iplot == 1 and verbose: if iboot == 1: print("compare with [d]irection ") print( " plot [g]reat circle, change [c]oord. system, change [e]llipse calculation, s[a]ve plots, [q]uit ") if isite == 1: print(" [p]revious, [s]ite, [q]uit, <return> for next ") ans = input("") if ans == "q": sys.exit() if ans == "e": iboot, ipar, ihext, ivec = 1, 0, 0, 0 e = input("Do Hext Statistics 1/[0]: ") if e == "1": ihext = 1 e = input("Suppress bootstrap 1/[0]: ") if e == "1": iboot = 0 if iboot == 1: e = input("Parametric bootstrap 1/[0]: ") if e == "1": ipar = 1 e = input("Plot bootstrap eigenvectors: 1/[0]: ") if e == "1": ivec = 1 if iplot == 1: if inittcdf == 0: ANIS['tcdf'] = 3 pmagplotlib.plot_init(ANIS['tcdf'], 5, 5) inittcdf = 1 bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "c": print("Current Coordinate system is: ") if CS == '-1': print(" Specimen") if CS == '0': print(" Geographic") if CS == '100': print(" Tilt corrected") key = input( " Enter desired coordinate system: [s]pecimen, [g]eographic, [t]ilt corrected ") if key == 's': CS = '-1' if key == 'g': CS = '0' if key == 't': CS = '100' if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = '-1' if CS == '-1': crd = 's' if CS == '0': crd = 'g' if CS == '100': crd = 't' print( "desired coordinate system not available, using available: ", crd) k -= 1 goon = 0 if ans == "": if isite == 1: goon = 0 else: print("Good bye ") sys.exit() if ans == 'd': if initcdf == 0: initcdf = 1 ANIS['vxcdf'], ANIS['vycdf'], ANIS['vzcdf'] = 4, 5, 6 pmagplotlib.plot_init(ANIS['vxcdf'], 5, 5) pmagplotlib.plot_init(ANIS['vycdf'], 5, 5) pmagplotlib.plot_init(ANIS['vzcdf'], 5, 5) Dir, comp = [], 1 print(""" Input: Vi D I to compare eigenvector Vi with direction D/I where Vi=1: principal Vi=2: major Vi=3: minor D= declination of comparison direction I= inclination of comparison direction""") con = 1 while con == 1: try: vdi = input("Vi D I: ").split() vec = int(vdi[0])-1 Dir = [float(vdi[1]), float(vdi[2])] con = 0 except IndexError: print(" Incorrect entry, try again ") bpars, hpars = pmagplotlib.plot_anis( ANIS, Ss, iboot, ihext, ivec, ipar, title, iplot, comp, vec, Dir, nb) Dir, comp = [], 0 if ans == 'g': con, cnt = 1, 0 while con == 1: try: print( " Input: input pole to great circle ( D I) to plot a great circle: ") di = input(" D I: ").split() PDir.append(float(di[0])) PDir.append(float(di[1])) con = 0 except: cnt += 1 if cnt < 10: print( " enter the dec and inc of the pole on one line ") else: print( "ummm - you are doing something wrong - i give up") sys.exit() pmagplotlib.plot_circ(ANIS['data'], PDir, 90., 'g') pmagplotlib.plot_circ(ANIS['conf'], PDir, 90., 'g') if verbose and plots == 0: pmagplotlib.draw_figs(ANIS) if ans == "p": k -= 2 goon = 0 if ans == "q": k = plt goon = 0 if ans == "s": keepon = 1 site = input(" print site or part of site desired: ") while keepon == 1: try: k = sitelist.index(site) keepon = 0 except: tmplist = [] for qq in range(len(sitelist)): if site in sitelist[qq]: tmplist.append(sitelist[qq]) print(site, " not found, but this was: ") print(tmplist) site = input('Select one or try again\n ') k = sitelist.index(site) goon, ans = 0, "" if ans == "a": locs = pmag.makelist(Locs) if pmagplotlib.isServer: # use server plot naming convention title = "LO:_"+locs+'_SI:__'+'_SA:__SP:__CO:_'+crd else: # use more readable plot naming convention title = "{}_{}".format(locs, crd) save(ANIS, fmt, title) goon = 0 else: if verbose: print('skipping plot - not enough data points') k += 1 # put rmag_results stuff here if len(ResRecs) > 0: ResOut, keylist = pmag.fillkeys(ResRecs) pmag.magic_write(outfile, ResOut, 'rmag_results') if verbose: print(" Good bye ")
NAME aniso_magic.py DESCRIPTION plots anisotropy data with either bootstrap or hext ellipses SYNTAX aniso_magic.py [-h] [command line options] OPTIONS -h plots help message and quits -usr USER: set the user name -f AFILE, specify rmag_anisotropy formatted file for input -F RFILE, specify rmag_results formatted file for output -x Hext [1963] and bootstrap -B DON'T do bootstrap, do Hext -par Tauxe [1998] parametric bootstrap -v plot bootstrap eigenvectors instead of ellipses -sit plot by site instead of entire file -crd [s,g,t] coordinate system, default is specimen (g=geographic, t=tilt corrected) -P don't make any plots - just make rmag_results table -sav don't make the rmag_results table - just save all the plots -fmt [svg, jpg, eps] format for output images, pdf default -gtc DEC INC dec,inc of pole to great circle [down(up) in green (cyan) -d Vi DEC INC; Vi (1,2,3) to compare to direction DEC INC -n N; specifies the number of bootstraps - default is 1000 DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt plot bootstrap ellipses of Constable & Tauxe [1987] NOTES minor axis: circles major axis: triangles principal axis: squares directions are plotted on the lower hemisphere for bootstrapped eigenvector components: Xs: blue, Ys: red, Zs: black
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/aniso_magic2.py#L20-L579
PmagPy/PmagPy
programs/di_geo.py
main
def main(): """ NAME di_geo.py DESCRIPTION rotates specimen coordinate dec, inc data to geographic coordinates using the azimuth and plunge of the X direction INPUT FORMAT declination inclination azimuth plunge SYNTAX di_geo.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') print(ofile, ' opened for output') else: ofile="" if '-i' in sys.argv: # interactive flag while 1: try: Dec=float(input("Declination: <cntrl-D> to quit ")) except EOFError: print("\n Good-bye\n") sys.exit() Inc=float(input("Inclination: ")) Az=float(input("Azimuth: ")) Pl=float(input("Plunge: ")) print('%7.1f %7.1f'%(pmag.dogeo(Dec,Inc,Az,Pl))) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: data=numpy.loadtxt(sys.stdin,dtype=numpy.float) # read in the data from the datafile D,I=pmag.dogeo_V(data) for k in range(len(D)): if ofile=="": print('%7.1f %7.1f'%(D[k],I[k])) else: out.write('%7.1f %7.1f\n'%(D[k],I[k]))
python
def main(): """ NAME di_geo.py DESCRIPTION rotates specimen coordinate dec, inc data to geographic coordinates using the azimuth and plunge of the X direction INPUT FORMAT declination inclination azimuth plunge SYNTAX di_geo.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') print(ofile, ' opened for output') else: ofile="" if '-i' in sys.argv: # interactive flag while 1: try: Dec=float(input("Declination: <cntrl-D> to quit ")) except EOFError: print("\n Good-bye\n") sys.exit() Inc=float(input("Inclination: ")) Az=float(input("Azimuth: ")) Pl=float(input("Plunge: ")) print('%7.1f %7.1f'%(pmag.dogeo(Dec,Inc,Az,Pl))) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: data=numpy.loadtxt(sys.stdin,dtype=numpy.float) # read in the data from the datafile D,I=pmag.dogeo_V(data) for k in range(len(D)): if ofile=="": print('%7.1f %7.1f'%(D[k],I[k])) else: out.write('%7.1f %7.1f\n'%(D[k],I[k]))
NAME di_geo.py DESCRIPTION rotates specimen coordinate dec, inc data to geographic coordinates using the azimuth and plunge of the X direction INPUT FORMAT declination inclination azimuth plunge SYNTAX di_geo.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/di_geo.py#L9-L64
PmagPy/PmagPy
programs/eqarea_ell.py
main
def main(): """ NAME eqarea_ell.py DESCRIPTION makes equal area projections from declination/inclination data and plot ellipses SYNTAX eqarea_ell.py -h [command line options] INPUT takes space delimited Dec/Inc data OPTIONS -h prints help message and quits -f FILE -fmt [svg,png,jpg] format for output plots -sav saves figures and quits -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors """ FIG={} # plot dictionary FIG['eq']=1 # eqarea is figure 1 fmt,dist,mode,plot='svg','F',1,0 sym={'lower':['o','r'],'upper':['o','w'],'size':10} plotE=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if not set_env.IS_WIN: pmagplotlib.plot_init(FIG['eq'],5,5) if '-sav' in sys.argv:plot=1 if '-f' in sys.argv: ind=sys.argv.index("-f") title=sys.argv[ind+1] data=numpy.loadtxt(title).transpose() if '-ell' in sys.argv: plotE=1 ind=sys.argv.index('-ell') ell_type=sys.argv[ind+1] if ell_type=='F':dist='F' if ell_type=='K':dist='K' if ell_type=='B':dist='B' if ell_type=='Be':dist='BE' if ell_type=='Bv': dist='BV' FIG['bdirs']=2 pmagplotlib.plot_init(FIG['bdirs'],5,5) if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] DIblock=numpy.array([data[0],data[1]]).transpose() if len(DIblock)>0: pmagplotlib.plot_eq_sym(FIG['eq'],DIblock,title,sym) #if plot==0:pmagplotlib.draw_figs(FIG) else: print("no data to plot") sys.exit() if plotE==1: ppars=pmag.doprinc(DIblock) # get principal directions nDIs,rDIs,npars,rpars=[],[],[],[] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in list(bpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(bpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>3: fpars=pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>3: fpars=pmag.fisher_mean(rDIs) if pmagplotlib.verbose:print("mode ",mode) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if len(nDIs)<10 and len(rDIs)<10: print('too few data points for bootstrap') sys.exit() if dist=='BE': print('Be patient for bootstrap...') if len(nDIs)>=10: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>=10: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': print('Be patient for bootstrap...') vsym={'lower':['+','k'],'upper':['x','k'],'size':5} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors',vsym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'],BrDIs,vsym) else: pmagplotlib.plot_eq(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors',vsym) if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) #if plot==0:pmagplotlib.draw_figs(FIG) if plot==0:pmagplotlib.draw_figs(FIG) # files={} for key in list(FIG.keys()): files[key]=title+'_'+key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.add_borders(FIG,titles,black,purple) pmagplotlib.save_plots(FIG,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": pmagplotlib.save_plots(FIG,files) else: pmagplotlib.save_plots(FIG,files)
python
def main(): """ NAME eqarea_ell.py DESCRIPTION makes equal area projections from declination/inclination data and plot ellipses SYNTAX eqarea_ell.py -h [command line options] INPUT takes space delimited Dec/Inc data OPTIONS -h prints help message and quits -f FILE -fmt [svg,png,jpg] format for output plots -sav saves figures and quits -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors """ FIG={} # plot dictionary FIG['eq']=1 # eqarea is figure 1 fmt,dist,mode,plot='svg','F',1,0 sym={'lower':['o','r'],'upper':['o','w'],'size':10} plotE=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if not set_env.IS_WIN: pmagplotlib.plot_init(FIG['eq'],5,5) if '-sav' in sys.argv:plot=1 if '-f' in sys.argv: ind=sys.argv.index("-f") title=sys.argv[ind+1] data=numpy.loadtxt(title).transpose() if '-ell' in sys.argv: plotE=1 ind=sys.argv.index('-ell') ell_type=sys.argv[ind+1] if ell_type=='F':dist='F' if ell_type=='K':dist='K' if ell_type=='B':dist='B' if ell_type=='Be':dist='BE' if ell_type=='Bv': dist='BV' FIG['bdirs']=2 pmagplotlib.plot_init(FIG['bdirs'],5,5) if '-fmt' in sys.argv: ind=sys.argv.index("-fmt") fmt=sys.argv[ind+1] DIblock=numpy.array([data[0],data[1]]).transpose() if len(DIblock)>0: pmagplotlib.plot_eq_sym(FIG['eq'],DIblock,title,sym) #if plot==0:pmagplotlib.draw_figs(FIG) else: print("no data to plot") sys.exit() if plotE==1: ppars=pmag.doprinc(DIblock) # get principal directions nDIs,rDIs,npars,rpars=[],[],[],[] for rec in DIblock: angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']]) if angle>90.: rDIs.append(rec) else: nDIs.append(rec) if dist=='B': # do on whole dataset etitle="Bingham confidence ellipse" bpars=pmag.dobingham(DIblock) for key in list(bpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(bpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(bpars[key])) npars.append(bpars['dec']) npars.append(bpars['inc']) npars.append(bpars['Zeta']) npars.append(bpars['Zdec']) npars.append(bpars['Zinc']) npars.append(bpars['Eta']) npars.append(bpars['Edec']) npars.append(bpars['Einc']) if dist=='F': etitle="Fisher confidence cone" if len(nDIs)>3: fpars=pmag.fisher_mean(nDIs) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 npars.append(fpars['dec']) npars.append(fpars['inc']) npars.append(fpars['alpha95']) # Beta npars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] npars.append(fpars['inc']-isign*90.) #Beta inc npars.append(fpars['alpha95']) # gamma npars.append(fpars['dec']+90.) # Beta dec npars.append(0.) #Beta inc if len(rDIs)>3: fpars=pmag.fisher_mean(rDIs) if pmagplotlib.verbose:print("mode ",mode) for key in list(fpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(fpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(fpars[key])) mode+=1 rpars.append(fpars['dec']) rpars.append(fpars['inc']) rpars.append(fpars['alpha95']) # Beta rpars.append(fpars['dec']) isign=abs(fpars['inc']) / fpars['inc'] rpars.append(fpars['inc']-isign*90.) #Beta inc rpars.append(fpars['alpha95']) # gamma rpars.append(fpars['dec']+90.) # Beta dec rpars.append(0.) #Beta inc if dist=='K': etitle="Kent confidence ellipse" if len(nDIs)>3: kpars=pmag.dokent(nDIs,len(nDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 npars.append(kpars['dec']) npars.append(kpars['inc']) npars.append(kpars['Zeta']) npars.append(kpars['Zdec']) npars.append(kpars['Zinc']) npars.append(kpars['Eta']) npars.append(kpars['Edec']) npars.append(kpars['Einc']) if len(rDIs)>3: kpars=pmag.dokent(rDIs,len(rDIs)) if pmagplotlib.verbose:print("mode ",mode) for key in list(kpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(kpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(kpars[key])) mode+=1 rpars.append(kpars['dec']) rpars.append(kpars['inc']) rpars.append(kpars['Zeta']) rpars.append(kpars['Zdec']) rpars.append(kpars['Zinc']) rpars.append(kpars['Eta']) rpars.append(kpars['Edec']) rpars.append(kpars['Einc']) else: # assume bootstrap if len(nDIs)<10 and len(rDIs)<10: print('too few data points for bootstrap') sys.exit() if dist=='BE': print('Be patient for bootstrap...') if len(nDIs)>=10: BnDIs=pmag.di_boot(nDIs) Bkpars=pmag.dokent(BnDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 npars.append(Bkpars['dec']) npars.append(Bkpars['inc']) npars.append(Bkpars['Zeta']) npars.append(Bkpars['Zdec']) npars.append(Bkpars['Zinc']) npars.append(Bkpars['Eta']) npars.append(Bkpars['Edec']) npars.append(Bkpars['Einc']) if len(rDIs)>=10: BrDIs=pmag.di_boot(rDIs) Bkpars=pmag.dokent(BrDIs,1.) if pmagplotlib.verbose:print("mode ",mode) for key in list(Bkpars.keys()): if key!='n' and pmagplotlib.verbose:print(" ",key, '%7.1f'%(Bkpars[key])) if key=='n' and pmagplotlib.verbose:print(" ",key, ' %i'%(Bkpars[key])) mode+=1 rpars.append(Bkpars['dec']) rpars.append(Bkpars['inc']) rpars.append(Bkpars['Zeta']) rpars.append(Bkpars['Zdec']) rpars.append(Bkpars['Zinc']) rpars.append(Bkpars['Eta']) rpars.append(Bkpars['Edec']) rpars.append(Bkpars['Einc']) etitle="Bootstrapped confidence ellipse" elif dist=='BV': print('Be patient for bootstrap...') vsym={'lower':['+','k'],'upper':['x','k'],'size':5} if len(nDIs)>5: BnDIs=pmag.di_boot(nDIs) pmagplotlib.plot_eq_sym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors',vsym) if len(rDIs)>5: BrDIs=pmag.di_boot(rDIs) if len(nDIs)>5: # plot on existing plots pmagplotlib.plot_di_sym(FIG['bdirs'],BrDIs,vsym) else: pmagplotlib.plot_eq(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors',vsym) if dist=='B': if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) elif len(nDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],npars,0) if len(rDIs)>3: pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) elif len(rDIs)>3 and dist!='BV': pmagplotlib.plot_conf(FIG['eq'],etitle,[],rpars,0) #if plot==0:pmagplotlib.draw_figs(FIG) if plot==0:pmagplotlib.draw_figs(FIG) # files={} for key in list(FIG.keys()): files[key]=title+'_'+key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Equal Area Plot' FIG = pmagplotlib.add_borders(FIG,titles,black,purple) pmagplotlib.save_plots(FIG,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit, Return to continue: ") if ans=="q": sys.exit() if ans=="a": pmagplotlib.save_plots(FIG,files) else: pmagplotlib.save_plots(FIG,files)
NAME eqarea_ell.py DESCRIPTION makes equal area projections from declination/inclination data and plot ellipses SYNTAX eqarea_ell.py -h [command line options] INPUT takes space delimited Dec/Inc data OPTIONS -h prints help message and quits -f FILE -fmt [svg,png,jpg] format for output plots -sav saves figures and quits -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/eqarea_ell.py#L12-L237
PmagPy/PmagPy
programs/di_eq.py
main
def main(): """ NAME di_eq.py DESCRIPTION converts dec, inc pairs to x,y pairs using equal area projection NB: do only upper or lower hemisphere at a time: does not distinguish between up and down. SYNTAX di_eq.py [command line options] [< filename] OPTIONS -h prints help message and quits -f FILE, input file """ out="" UP=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] DI=numpy.loadtxt(file,dtype=numpy.float) else: DI = numpy.loadtxt(sys.stdin,dtype=numpy.float) # read from standard input Ds=DI.transpose()[0] Is=DI.transpose()[1] if len(DI)>1: #array of data XY=pmag.dimap_V(Ds,Is) for xy in XY: print('%f %f'%(xy[0],xy[1])) else: # single data point XY=pmag.dimap(Ds,Is) print('%f %f'%(XY[0],XY[1]))
python
def main(): """ NAME di_eq.py DESCRIPTION converts dec, inc pairs to x,y pairs using equal area projection NB: do only upper or lower hemisphere at a time: does not distinguish between up and down. SYNTAX di_eq.py [command line options] [< filename] OPTIONS -h prints help message and quits -f FILE, input file """ out="" UP=0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] DI=numpy.loadtxt(file,dtype=numpy.float) else: DI = numpy.loadtxt(sys.stdin,dtype=numpy.float) # read from standard input Ds=DI.transpose()[0] Is=DI.transpose()[1] if len(DI)>1: #array of data XY=pmag.dimap_V(Ds,Is) for xy in XY: print('%f %f'%(xy[0],xy[1])) else: # single data point XY=pmag.dimap(Ds,Is) print('%f %f'%(XY[0],XY[1]))
NAME di_eq.py DESCRIPTION converts dec, inc pairs to x,y pairs using equal area projection NB: do only upper or lower hemisphere at a time: does not distinguish between up and down. SYNTAX di_eq.py [command line options] [< filename] OPTIONS -h prints help message and quits -f FILE, input file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/di_eq.py#L7-L42
PmagPy/PmagPy
pmagpy/spline.py
spline_interpolate
def spline_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ sp = Spline(x1, y1) return sp(x2)
python
def spline_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ sp = Spline(x1, y1) return sp(x2)
Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/spline.py#L163-L169
PmagPy/PmagPy
pmagpy/spline.py
logspline_interpolate
def logspline_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ sp = Spline(log(x1), log(y1)) return exp(sp(log(x2)))
python
def logspline_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ sp = Spline(log(x1), log(y1)) return exp(sp(log(x2)))
Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/spline.py#L171-L177
PmagPy/PmagPy
pmagpy/spline.py
linear_interpolate
def linear_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ li = LinInt(x1, y1) return li(x2)
python
def linear_interpolate(x1, y1, x2): """ Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2. """ li = LinInt(x1, y1) return li(x2)
Given a function at a set of points (x1, y1), interpolate to evaluate it at points x2.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/spline.py#L180-L186
PmagPy/PmagPy
pmagpy/spline.py
LinInt.call
def call(self, x): """ Evaluate the interpolant, assuming x is a scalar. """ # if out of range, return endpoint if x <= self.x_vals[0]: return self.y_vals[0] if x >= self.x_vals[-1]: return self.y_vals[-1] pos = numpy.searchsorted(self.x_vals, x) h = self.x_vals[pos]-self.x_vals[pos-1] if h == 0.0: raise BadInput a = old_div((self.x_vals[pos] - x), h) b = old_div((x - self.x_vals[pos-1]), h) return a*self.y_vals[pos-1] + b*self.y_vals[pos]
python
def call(self, x): """ Evaluate the interpolant, assuming x is a scalar. """ # if out of range, return endpoint if x <= self.x_vals[0]: return self.y_vals[0] if x >= self.x_vals[-1]: return self.y_vals[-1] pos = numpy.searchsorted(self.x_vals, x) h = self.x_vals[pos]-self.x_vals[pos-1] if h == 0.0: raise BadInput a = old_div((self.x_vals[pos] - x), h) b = old_div((x - self.x_vals[pos-1]), h) return a*self.y_vals[pos-1] + b*self.y_vals[pos]
Evaluate the interpolant, assuming x is a scalar.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/spline.py#L143-L161
PmagPy/PmagPy
programs/aarm_magic.py
main
def main(): """ NAME aarm_magic.py DESCRIPTION Converts AARM data to best-fit tensor (6 elements plus sigma) Original program ARMcrunch written to accomodate ARM anisotropy data collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the off-axis remanence terms to construct the tensor. A better way to do the anisotropy of ARMs is to use 9,12 or 15 measurements in the Hext rotational scheme. SYNTAX aarm_magic.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is aarm_measurements.txt -crd [s,g,t] specify coordinate system, requires samples file -fsa FILE: specify er_samples.txt file, default is er_samples.txt (2.5) or samples.txt (3.0) -Fa FILE: specify anisotropy output file, default is arm_anisotropy.txt (MagIC 2.5 only) -Fr FILE: specify results output file, default is aarm_results.txt (MagIC 2.5 only) -Fsi FILE: specify output file, default is specimens.txt (MagIC 3 only) -DM DATA_MODEL: specify MagIC 2 or MagIC 3, default is 3 INPUT Input for the present program is a series of baseline, ARM pairs. The baseline should be the AF demagnetized state (3 axis demag is preferable) for the following ARM acquisition. The order of the measurements is: positions 1,2,3, 6,7,8, 11,12,13 (for 9 positions) positions 1,2,3,4, 6,7,8,9, 11,12,13,14 (for 12 positions) positions 1-15 (for 15 positions) """ # initialize some parameters args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() #meas_file = "aarm_measurements.txt" #rmag_anis = "arm_anisotropy.txt" #rmag_res = "aarm_results.txt" # # get name of file from command line # data_model_num = int(pmag.get_named_arg("-DM", 3)) spec_file = pmag.get_named_arg("-Fsi", "specimens.txt") if data_model_num == 3: samp_file = pmag.get_named_arg("-fsa", "samples.txt") else: samp_file = pmag.get_named_arg("-fsa", "er_samples.txt") dir_path = pmag.get_named_arg('-WD', '.') input_dir_path = pmag.get_named_arg('-ID', '') infile = pmag.get_named_arg('-f', reqd=True) coord = pmag.get_named_arg('-crd', '-1') #if "-Fa" in args: # ind = args.index("-Fa") # rmag_anis = args[ind + 1] #if "-Fr" in args: # ind = args.index("-Fr") # rmag_res = args[ind + 1] ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file, data_model_num, coord)
python
def main(): """ NAME aarm_magic.py DESCRIPTION Converts AARM data to best-fit tensor (6 elements plus sigma) Original program ARMcrunch written to accomodate ARM anisotropy data collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the off-axis remanence terms to construct the tensor. A better way to do the anisotropy of ARMs is to use 9,12 or 15 measurements in the Hext rotational scheme. SYNTAX aarm_magic.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is aarm_measurements.txt -crd [s,g,t] specify coordinate system, requires samples file -fsa FILE: specify er_samples.txt file, default is er_samples.txt (2.5) or samples.txt (3.0) -Fa FILE: specify anisotropy output file, default is arm_anisotropy.txt (MagIC 2.5 only) -Fr FILE: specify results output file, default is aarm_results.txt (MagIC 2.5 only) -Fsi FILE: specify output file, default is specimens.txt (MagIC 3 only) -DM DATA_MODEL: specify MagIC 2 or MagIC 3, default is 3 INPUT Input for the present program is a series of baseline, ARM pairs. The baseline should be the AF demagnetized state (3 axis demag is preferable) for the following ARM acquisition. The order of the measurements is: positions 1,2,3, 6,7,8, 11,12,13 (for 9 positions) positions 1,2,3,4, 6,7,8,9, 11,12,13,14 (for 12 positions) positions 1-15 (for 15 positions) """ # initialize some parameters args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() #meas_file = "aarm_measurements.txt" #rmag_anis = "arm_anisotropy.txt" #rmag_res = "aarm_results.txt" # # get name of file from command line # data_model_num = int(pmag.get_named_arg("-DM", 3)) spec_file = pmag.get_named_arg("-Fsi", "specimens.txt") if data_model_num == 3: samp_file = pmag.get_named_arg("-fsa", "samples.txt") else: samp_file = pmag.get_named_arg("-fsa", "er_samples.txt") dir_path = pmag.get_named_arg('-WD', '.') input_dir_path = pmag.get_named_arg('-ID', '') infile = pmag.get_named_arg('-f', reqd=True) coord = pmag.get_named_arg('-crd', '-1') #if "-Fa" in args: # ind = args.index("-Fa") # rmag_anis = args[ind + 1] #if "-Fr" in args: # ind = args.index("-Fr") # rmag_res = args[ind + 1] ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file, data_model_num, coord)
NAME aarm_magic.py DESCRIPTION Converts AARM data to best-fit tensor (6 elements plus sigma) Original program ARMcrunch written to accomodate ARM anisotropy data collected from 6 axial directions (+X,+Y,+Z,-X,-Y,-Z) using the off-axis remanence terms to construct the tensor. A better way to do the anisotropy of ARMs is to use 9,12 or 15 measurements in the Hext rotational scheme. SYNTAX aarm_magic.py [-h][command line options] OPTIONS -h prints help message and quits -f FILE: specify input file, default is aarm_measurements.txt -crd [s,g,t] specify coordinate system, requires samples file -fsa FILE: specify er_samples.txt file, default is er_samples.txt (2.5) or samples.txt (3.0) -Fa FILE: specify anisotropy output file, default is arm_anisotropy.txt (MagIC 2.5 only) -Fr FILE: specify results output file, default is aarm_results.txt (MagIC 2.5 only) -Fsi FILE: specify output file, default is specimens.txt (MagIC 3 only) -DM DATA_MODEL: specify MagIC 2 or MagIC 3, default is 3 INPUT Input for the present program is a series of baseline, ARM pairs. The baseline should be the AF demagnetized state (3 axis demag is preferable) for the following ARM acquisition. The order of the measurements is: positions 1,2,3, 6,7,8, 11,12,13 (for 9 positions) positions 1,2,3,4, 6,7,8,9, 11,12,13,14 (for 12 positions) positions 1-15 (for 15 positions)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/aarm_magic.py#L7-L75
PmagPy/PmagPy
programs/dmag_magic2.py
main
def main(): """ NAME dmag_magic2.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted magic_measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: magic_measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen """ FIG = {} # plot dictionary FIG['demag'] = 1 # demag is figure 1 in_file, plot_key, LT = 'magic_measurements.txt', 'er_location_name', "LT-AF-Z" XLP = "" norm = 1 LT = 'LT-AF-Z' units, dmag_key = 'T', 'treatment_ac_field' plot = 0 fmt = 'svg' if len(sys.argv) > 1: if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-N' in sys.argv: norm = 0 if '-sav' in sys.argv: plot = 1 if '-f' in sys.argv: ind = sys.argv.index("-f") in_file = sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind+1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') plot_by = sys.argv[ind+1] if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if '-XLP' in sys.argv: ind = sys.argv.index("-XLP") XLP = sys.argv[ind+1] # get lab protocol for excluding if '-LT' in sys.argv: ind = sys.argv.index("-LT") LT = 'LT-'+sys.argv[ind+1]+'-Z' # get lab treatment for plotting if LT == 'LT-T-Z': units, dmag_key = 'K', 'treatment_temp' elif LT == 'LT-AF-Z': units, dmag_key = 'T', 'treatment_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treatment_mw_energy' else: units = 'U' data, file_type = pmag.magic_read(in_file) sids = pmag.get_specs(data) pmagplotlib.plot_init(FIG['demag'], 5, 5) print(len(data), ' records read from ', in_file) # # # find desired intensity data # # plotlist, intlist = [], ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] IntMeths = [] FixData = [] for rec in data: meths = [] methcodes = rec['magic_method_codes'].split(':') for meth in methcodes: meths.append(meth.strip()) for key in rec.keys(): if key in intlist and rec[key] != "": if key not in IntMeths: IntMeths.append(key) if rec[plot_key] not in plotlist and LT in meths: plotlist.append(rec[plot_key]) if 'measurement_flag' not in rec.keys(): rec['measurement_flag'] = 'g' FixData.append(rec) plotlist.sort() if len(IntMeths) == 0: print('No intensity information found') sys.exit() data = FixData # plot first intensity method found - normalized to initial value anyway - doesn't matter which used int_key = IntMeths[0] for plt in plotlist: if plot == 0: print(plt, 'plotting by: ', plot_key) # fish out all the data for this type of plot PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T') # fish out all the dmag for this experiment type PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has') # get all with this intensity key non-blank PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F') if XLP != "": # reject data with XLP in method_code PLTblock = pmag.get_dictitem( PLTblock, 'magic_method_codes', XLP, 'not') if len(PLTblock) > 2: title = PLTblock[0][plot_key] spcs = [] for rec in PLTblock: if rec['er_specimen_name'] not in spcs: spcs.append(rec['er_specimen_name']) for spc in spcs: # plot specimen by specimen SPCblock = pmag.get_dictitem( PLTblock, 'er_specimen_name', spc, 'T') INTblock = [] for rec in SPCblock: INTblock.append([float(rec[dmag_key]), 0, 0, float( rec[int_key]), 1, rec['measurement_flag']]) if len(INTblock) > 2: pmagplotlib.plot_mag( FIG['demag'], INTblock, title, 0, units, norm) if plot == 1: files = {} for key in FIG.keys(): files[key] = title+'_'+LT+'.'+fmt pmagplotlib.save_plots(FIG, files) sys.exit() else: pmagplotlib.draw_figs(FIG) ans = input( " S[a]ve to save plot, [q]uit, Return to continue: ") if ans == 'q': sys.exit() if ans == "a": files = {} for key in FIG.keys(): files[key] = title+'_'+LT+'.'+fmt pmagplotlib.save_plots(FIG, files) pmagplotlib.clearFIG(FIG['demag'])
python
def main(): """ NAME dmag_magic2.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted magic_measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: magic_measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen """ FIG = {} # plot dictionary FIG['demag'] = 1 # demag is figure 1 in_file, plot_key, LT = 'magic_measurements.txt', 'er_location_name', "LT-AF-Z" XLP = "" norm = 1 LT = 'LT-AF-Z' units, dmag_key = 'T', 'treatment_ac_field' plot = 0 fmt = 'svg' if len(sys.argv) > 1: if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-N' in sys.argv: norm = 0 if '-sav' in sys.argv: plot = 1 if '-f' in sys.argv: ind = sys.argv.index("-f") in_file = sys.argv[ind+1] if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind+1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') plot_by = sys.argv[ind+1] if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if '-XLP' in sys.argv: ind = sys.argv.index("-XLP") XLP = sys.argv[ind+1] # get lab protocol for excluding if '-LT' in sys.argv: ind = sys.argv.index("-LT") LT = 'LT-'+sys.argv[ind+1]+'-Z' # get lab treatment for plotting if LT == 'LT-T-Z': units, dmag_key = 'K', 'treatment_temp' elif LT == 'LT-AF-Z': units, dmag_key = 'T', 'treatment_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treatment_mw_energy' else: units = 'U' data, file_type = pmag.magic_read(in_file) sids = pmag.get_specs(data) pmagplotlib.plot_init(FIG['demag'], 5, 5) print(len(data), ' records read from ', in_file) # # # find desired intensity data # # plotlist, intlist = [], ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] IntMeths = [] FixData = [] for rec in data: meths = [] methcodes = rec['magic_method_codes'].split(':') for meth in methcodes: meths.append(meth.strip()) for key in rec.keys(): if key in intlist and rec[key] != "": if key not in IntMeths: IntMeths.append(key) if rec[plot_key] not in plotlist and LT in meths: plotlist.append(rec[plot_key]) if 'measurement_flag' not in rec.keys(): rec['measurement_flag'] = 'g' FixData.append(rec) plotlist.sort() if len(IntMeths) == 0: print('No intensity information found') sys.exit() data = FixData # plot first intensity method found - normalized to initial value anyway - doesn't matter which used int_key = IntMeths[0] for plt in plotlist: if plot == 0: print(plt, 'plotting by: ', plot_key) # fish out all the data for this type of plot PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T') # fish out all the dmag for this experiment type PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has') # get all with this intensity key non-blank PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F') if XLP != "": # reject data with XLP in method_code PLTblock = pmag.get_dictitem( PLTblock, 'magic_method_codes', XLP, 'not') if len(PLTblock) > 2: title = PLTblock[0][plot_key] spcs = [] for rec in PLTblock: if rec['er_specimen_name'] not in spcs: spcs.append(rec['er_specimen_name']) for spc in spcs: # plot specimen by specimen SPCblock = pmag.get_dictitem( PLTblock, 'er_specimen_name', spc, 'T') INTblock = [] for rec in SPCblock: INTblock.append([float(rec[dmag_key]), 0, 0, float( rec[int_key]), 1, rec['measurement_flag']]) if len(INTblock) > 2: pmagplotlib.plot_mag( FIG['demag'], INTblock, title, 0, units, norm) if plot == 1: files = {} for key in FIG.keys(): files[key] = title+'_'+LT+'.'+fmt pmagplotlib.save_plots(FIG, files) sys.exit() else: pmagplotlib.draw_figs(FIG) ans = input( " S[a]ve to save plot, [q]uit, Return to continue: ") if ans == 'q': sys.exit() if ans == "a": files = {} for key in FIG.keys(): files[key] = title+'_'+LT+'.'+fmt pmagplotlib.save_plots(FIG, files) pmagplotlib.clearFIG(FIG['demag'])
NAME dmag_magic2.py DESCRIPTION plots intensity decay curves for demagnetization experiments SYNTAX dmag_magic -h [command line options] INPUT takes magic formatted magic_measurements.txt files OPTIONS -h prints help message and quits -f FILE: specify input file, default is: magic_measurements.txt -obj OBJ: specify object [loc, sit, sam, spc] for plot, default is by location -LT [AF,T,M]: specify lab treatment type, default AF -XLP [PI]: exclude specific lab protocols (for example, method codes like LP-PI) -N do not normalize by NRM magnetization -sav save plots silently and quit -fmt [svg,jpg,png,pdf] set figure format [default is svg] NOTE loc: location (study); sit: site; sam: sample; spc: specimen
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/dmag_magic2.py#L11-L164
PmagPy/PmagPy
programs/deprecated/mini_magic.py
main
def main(): """ NAME mini_magic.py DESCRIPTION converts the Yale minispin format to magic_measurements format files SYNTAX mini_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify input file, required -F FILE: specify output file, default is magic_measurements.txt -LP [colon delimited list of protocols, include all that apply] AF: af demag T: thermal including thellier but not trm acquisition -A: don't average replicate measurements -vol: volume assumed for measurement in cm^3 (default 12 cc) -DM NUM: MagIC data model (2 or 3, default 3) INPUT Must put separate experiments (all AF, thermal, etc.) in seperate files Format of Yale MINI files: LL-SI-SP_STEP, Declination, Inclination, Intensity (mA/m), X,Y,Z """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() # initialize some stuff methcode = "LP-NO" demag = "N" # # get command line arguments # data_model_num = int(float(pmag.get_named_arg("-DM", 3))) user = pmag.get_named_arg("-usr", "") dir_path = pmag.get_named_arg("-WD", ".") inst = pmag.get_named_arg("-inst", "") magfile = pmag.get_named_arg("-f", reqd=True) magfile = pmag.resolve_file_name(magfile, dir_path) if "-A" in args: noave = 1 else: noave = 0 if data_model_num == 2: meas_file = pmag.get_named_arg("-F", "magic_measurements.txt") else: meas_file = pmag.get_named_arg("-F", "measurements.txt") meas_file = pmag.resolve_file_name(meas_file, dir_path) volume = pmag.get_named_arg("-vol", 12) # assume a volume of 12 cc if not provided methcode = pmag.get_named_arg("-LP", "LP-NO") #ind = args.index("-LP") #codelist = args[ind+1] #codes = codelist.split(':') #if "AF" in codes: # demag = 'AF' # methcode = "LT-AF-Z" #if "T" in codes: # demag = "T" convert.mini(magfile, dir_path, meas_file, data_model_num, volume, noave, inst, user, methcode)
python
def main(): """ NAME mini_magic.py DESCRIPTION converts the Yale minispin format to magic_measurements format files SYNTAX mini_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify input file, required -F FILE: specify output file, default is magic_measurements.txt -LP [colon delimited list of protocols, include all that apply] AF: af demag T: thermal including thellier but not trm acquisition -A: don't average replicate measurements -vol: volume assumed for measurement in cm^3 (default 12 cc) -DM NUM: MagIC data model (2 or 3, default 3) INPUT Must put separate experiments (all AF, thermal, etc.) in seperate files Format of Yale MINI files: LL-SI-SP_STEP, Declination, Inclination, Intensity (mA/m), X,Y,Z """ args = sys.argv if "-h" in args: print(main.__doc__) sys.exit() # initialize some stuff methcode = "LP-NO" demag = "N" # # get command line arguments # data_model_num = int(float(pmag.get_named_arg("-DM", 3))) user = pmag.get_named_arg("-usr", "") dir_path = pmag.get_named_arg("-WD", ".") inst = pmag.get_named_arg("-inst", "") magfile = pmag.get_named_arg("-f", reqd=True) magfile = pmag.resolve_file_name(magfile, dir_path) if "-A" in args: noave = 1 else: noave = 0 if data_model_num == 2: meas_file = pmag.get_named_arg("-F", "magic_measurements.txt") else: meas_file = pmag.get_named_arg("-F", "measurements.txt") meas_file = pmag.resolve_file_name(meas_file, dir_path) volume = pmag.get_named_arg("-vol", 12) # assume a volume of 12 cc if not provided methcode = pmag.get_named_arg("-LP", "LP-NO") #ind = args.index("-LP") #codelist = args[ind+1] #codes = codelist.split(':') #if "AF" in codes: # demag = 'AF' # methcode = "LT-AF-Z" #if "T" in codes: # demag = "T" convert.mini(magfile, dir_path, meas_file, data_model_num, volume, noave, inst, user, methcode)
NAME mini_magic.py DESCRIPTION converts the Yale minispin format to magic_measurements format files SYNTAX mini_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify input file, required -F FILE: specify output file, default is magic_measurements.txt -LP [colon delimited list of protocols, include all that apply] AF: af demag T: thermal including thellier but not trm acquisition -A: don't average replicate measurements -vol: volume assumed for measurement in cm^3 (default 12 cc) -DM NUM: MagIC data model (2 or 3, default 3) INPUT Must put separate experiments (all AF, thermal, etc.) in seperate files Format of Yale MINI files: LL-SI-SP_STEP, Declination, Inclination, Intensity (mA/m), X,Y,Z
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/mini_magic.py#L7-L78
PmagPy/PmagPy
programs/deprecated/customize_criteria.py
main
def main(): """ NAME customize_criteria.py NB: This program has been deprecated - use demag_gui or thellier_gui to customize acceptance criteria - OR pandas from within a jupyter notebook DESCRIPTION Allows user to specify acceptance criteria, saves them in pmag_criteria.txt SYNTAX customize_criteria.py [-h][command line options] OPTIONS -h prints help message and quits -f IFILE, reads in existing criteria -F OFILE, writes to pmag_criteria format file DEFAULTS IFILE: pmag_criteria.txt OFILE: pmag_criteria.txt OUTPUT creates a pmag_criteria.txt formatted output file """ infile,critout="","pmag_criteria.txt" # parse command line options if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') infile=sys.argv[ind+1] crit_data,file_type=pmag.magic_read(infile) if file_type!='pmag_criteria': print('bad input file') print(main.__doc__) sys.exit() print("Acceptance criteria read in from ", infile) if '-F' in sys.argv: ind=sys.argv.index('-F') critout=sys.argv[ind+1] Dcrit,Icrit,nocrit=0,0,0 custom='1' crit=input(" [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n ") if crit=='0': print('Very very loose criteria saved in ',critout) crit_data=pmag.default_criteria(1) pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() crit_data=pmag.default_criteria(0) if crit=='1': print('Default criteria saved in ',critout) pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() CritRec=crit_data[0] crit_keys=list(CritRec.keys()) crit_keys.sort() print("Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n ") for key in crit_keys: if key!='pmag_criteria_code' and key!='er_citation_names' and key!='criteria_definition' and CritRec[key]!="": print(key, CritRec[key]) new=input('new value: ') if new != "": CritRec[key]=(new) pmag.magic_write(critout,[CritRec],'pmag_criteria') print("Criteria saved in pmag_criteria.txt")
python
def main(): """ NAME customize_criteria.py NB: This program has been deprecated - use demag_gui or thellier_gui to customize acceptance criteria - OR pandas from within a jupyter notebook DESCRIPTION Allows user to specify acceptance criteria, saves them in pmag_criteria.txt SYNTAX customize_criteria.py [-h][command line options] OPTIONS -h prints help message and quits -f IFILE, reads in existing criteria -F OFILE, writes to pmag_criteria format file DEFAULTS IFILE: pmag_criteria.txt OFILE: pmag_criteria.txt OUTPUT creates a pmag_criteria.txt formatted output file """ infile,critout="","pmag_criteria.txt" # parse command line options if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind=sys.argv.index('-f') infile=sys.argv[ind+1] crit_data,file_type=pmag.magic_read(infile) if file_type!='pmag_criteria': print('bad input file') print(main.__doc__) sys.exit() print("Acceptance criteria read in from ", infile) if '-F' in sys.argv: ind=sys.argv.index('-F') critout=sys.argv[ind+1] Dcrit,Icrit,nocrit=0,0,0 custom='1' crit=input(" [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n ") if crit=='0': print('Very very loose criteria saved in ',critout) crit_data=pmag.default_criteria(1) pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() crit_data=pmag.default_criteria(0) if crit=='1': print('Default criteria saved in ',critout) pmag.magic_write(critout,crit_data,'pmag_criteria') sys.exit() CritRec=crit_data[0] crit_keys=list(CritRec.keys()) crit_keys.sort() print("Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n ") for key in crit_keys: if key!='pmag_criteria_code' and key!='er_citation_names' and key!='criteria_definition' and CritRec[key]!="": print(key, CritRec[key]) new=input('new value: ') if new != "": CritRec[key]=(new) pmag.magic_write(critout,[CritRec],'pmag_criteria') print("Criteria saved in pmag_criteria.txt")
NAME customize_criteria.py NB: This program has been deprecated - use demag_gui or thellier_gui to customize acceptance criteria - OR pandas from within a jupyter notebook DESCRIPTION Allows user to specify acceptance criteria, saves them in pmag_criteria.txt SYNTAX customize_criteria.py [-h][command line options] OPTIONS -h prints help message and quits -f IFILE, reads in existing criteria -F OFILE, writes to pmag_criteria format file DEFAULTS IFILE: pmag_criteria.txt OFILE: pmag_criteria.txt OUTPUT creates a pmag_criteria.txt formatted output file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/customize_criteria.py#L7-L72
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.get_DIR
def get_DIR(self, WD=None): """ open dialog box for choosing a working directory """ if "-WD" in sys.argv and FIRST_RUN: ind = sys.argv.index('-WD') self.WD = sys.argv[ind + 1] elif not WD: # if no arg was passed in for WD, make a dialog to choose one dialog = wx.DirDialog(None, "Choose a directory:", defaultPath=self.currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR) ok = self.show_dlg(dialog) if ok == wx.ID_OK: self.WD = dialog.GetPath() else: self.WD = os.getcwd() dialog.Destroy() self.WD = os.path.realpath(self.WD) # name measurement file if self.data_model == 3: meas_file = 'measurements.txt' else: meas_file = 'magic_measurements.txt' self.magic_file = os.path.join(self.WD, meas_file) # intialize GUI_log self.GUI_log = open(os.path.join(self.WD, "thellier_GUI.log"), 'w+') self.GUI_log.write("starting...\n") self.GUI_log.close() self.GUI_log = open(os.path.join(self.WD, "thellier_GUI.log"), 'a') os.chdir(self.WD) self.WD = os.getcwd()
python
def get_DIR(self, WD=None): """ open dialog box for choosing a working directory """ if "-WD" in sys.argv and FIRST_RUN: ind = sys.argv.index('-WD') self.WD = sys.argv[ind + 1] elif not WD: # if no arg was passed in for WD, make a dialog to choose one dialog = wx.DirDialog(None, "Choose a directory:", defaultPath=self.currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR) ok = self.show_dlg(dialog) if ok == wx.ID_OK: self.WD = dialog.GetPath() else: self.WD = os.getcwd() dialog.Destroy() self.WD = os.path.realpath(self.WD) # name measurement file if self.data_model == 3: meas_file = 'measurements.txt' else: meas_file = 'magic_measurements.txt' self.magic_file = os.path.join(self.WD, meas_file) # intialize GUI_log self.GUI_log = open(os.path.join(self.WD, "thellier_GUI.log"), 'w+') self.GUI_log.write("starting...\n") self.GUI_log.close() self.GUI_log = open(os.path.join(self.WD, "thellier_GUI.log"), 'a') os.chdir(self.WD) self.WD = os.getcwd()
open dialog box for choosing a working directory
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L465-L495
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.Main_Frame
def Main_Frame(self): """ Build main frame od panel: buttons, etc. choose the first specimen and display data """ #-------------------------------------------------------------------- # initialize first specimen in list as current specimen #-------------------------------------------------------------------- try: self.s = self.specimens[0] except: self.s = "" print("No specimens during UI build") #-------------------------------------------------------------------- # create main panel in the right size #-------------------------------------------------------------------- dw, dh = wx.DisplaySize() w, h = self.GetSize() r1 = dw / 1250. r2 = dw / 750. GUI_RESOLUTION = min(r1, r2, 1.3) if 'gui_resolution' in list(self.preferences.keys()): if float(self.preferences['gui_resolution']) != 1: self.GUI_RESOLUTION = float( self.preferences['gui_resolution']) / 100 else: self.GUI_RESOLUTION = min(r1, r2, 1.3) else: self.GUI_RESOLUTION = min(r1, r2, 1.3) #-------------------------------------------------------------------- # adjust font size #-------------------------------------------------------------------- self.font_type = "Arial" if sys.platform.startswith("linux"): self.font_type = "Liberation Serif" if self.GUI_RESOLUTION >= 1.1 and self.GUI_RESOLUTION <= 1.3: font2 = wx.Font(13, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9 and self.GUI_RESOLUTION < 1.0: font2 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9: font2 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) else: font2 = wx.Font(12, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) print(" self.GUI_RESOLUTION", self.GUI_RESOLUTION) h_space = 4 v_space = 4 # set font size and style #font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, u'Comic Sans MS') FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 font1 = wx.Font(9 + FONT_RATIO, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) # GUI headers font3 = wx.Font(11 + FONT_RATIO, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) font = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT) font.SetPointSize(10 + FONT_RATIO) #-------------------------------------------------------------------- # Create Figures and FigCanvas objects. #-------------------------------------------------------------------- self.fig1 = Figure((5. * self.GUI_RESOLUTION, 5. * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas1 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig1) self.fig1.text(0.01, 0.98, "Arai plot", { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar1 = NavigationToolbar(self.canvas1) self.toolbar1.Hide() self.fig1_setting = "Zoom" self.toolbar1.zoom() self.canvas1.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas1.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig2 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas2 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig2) self.fig2.text(0.02, 0.96, "Zijderveld", { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar2 = NavigationToolbar(self.canvas2) self.toolbar2.Hide() self.fig2_setting = "Zoom" self.toolbar2.zoom() self.canvas2.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas2.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig3 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas3 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig3) #self.fig3.text(0.02,0.96,"Equal area",{'family':self.font_type, 'fontsize':10*self.GUI_RESOLUTION, 'style':'normal','va':'center', 'ha':'left' }) self.toolbar3 = NavigationToolbar(self.canvas3) self.toolbar3.Hide() self.fig3_setting = "Zoom" self.toolbar3.zoom() self.canvas3.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas3.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig4 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas4 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig4) if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'site': TEXT = "Site data" else: TEXT = "Sample data" self.fig4.text(0.02, 0.96, TEXT, { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar4 = NavigationToolbar(self.canvas4) self.toolbar4.Hide() self.fig4_setting = "Zoom" self.toolbar4.zoom() self.canvas4.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas4.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig5 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas5 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig5) #self.fig5.text(0.02,0.96,"M/M0",{'family':self.font_type, 'fontsize':10, 'style':'normal','va':'center', 'ha':'left' }) self.toolbar5 = NavigationToolbar(self.canvas5) self.toolbar5.Hide() self.fig5_setting = "Zoom" self.toolbar5.zoom() self.canvas5.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas5.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) # make axes of the figures self.araiplot = self.fig1.add_axes([0.1, 0.1, 0.8, 0.8]) self.zijplot = self.fig2.add_subplot(111) self.eqplot = self.fig3.add_subplot(111) self.sampleplot = self.fig4.add_axes( [0.2, 0.3, 0.7, 0.6], frameon=True, facecolor='None') self.mplot = self.fig5.add_axes( [0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None') #-------------------------------------------------------------------- # text box displaying measurement data #-------------------------------------------------------------------- self.logger = wx.ListCtrl(self.side_panel, id=wx.ID_ANY, size=( 100 * self.GUI_RESOLUTION, 100 * self.GUI_RESOLUTION), style=wx.LC_REPORT) self.logger.SetFont(font1) self.logger.InsertColumn(0, 'i', width=45 * self.GUI_RESOLUTION) self.logger.InsertColumn(1, 'Step', width=45 * self.GUI_RESOLUTION) self.logger.InsertColumn(2, 'Tr', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(3, 'Dec', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(4, 'Inc', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(5, 'M', width=75 * self.GUI_RESOLUTION) self.Bind(wx.EVT_LIST_ITEM_ACTIVATED, self.on_click_listctrl, self.logger) self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK, self.on_right_click_listctrl, self.logger) #-------------------------------------------------------------------- # select a specimen box #-------------------------------------------------------------------- # Combo-box with a list of specimen self.specimens_box = wx.ComboBox(self.top_panel, wx.ID_ANY, self.s, (250 * self.GUI_RESOLUTION, 25), wx.DefaultSize, self.specimens, wx.CB_DROPDOWN | wx.TE_PROCESS_ENTER, name="specimen") self.specimens_box.SetFont(font2) self.Bind(wx.EVT_COMBOBOX, self.onSelect_specimen, self.specimens_box) self.Bind(wx.EVT_TEXT_ENTER, self.onSelect_specimen, self.specimens_box) # buttons to move forward and backwards from specimens nextbutton = wx.Button(self.top_panel, id=wx.ID_ANY, label='next', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.Bind(wx.EVT_BUTTON, self.on_next_button, nextbutton) nextbutton.SetFont(font2) prevbutton = wx.Button(self.top_panel, id=wx.ID_ANY, label='previous', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) prevbutton.SetFont(font2) self.Bind(wx.EVT_BUTTON, self.on_prev_button, prevbutton) #-------------------------------------------------------------------- # select temperature bounds #-------------------------------------------------------------------- try: if self.Data[self.s]['T_or_MW'] == "T": self.temperatures = np.array( self.Data[self.s]['t_Arai']) - 273. self.T_list = ["%.0f" % T for T in self.temperatures] elif self.Data[self.s]['T_or_MW'] == "MW": self.temperatures = np.array(self.Data[self.s]['t_Arai']) self.T_list = ["%.0f" % T for T in self.temperatures] except (ValueError, TypeError, KeyError) as e: self.T_list = [] self.tmin_box = wx.ComboBox(self.top_panel, wx.ID_ANY, size=( 100 * self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY) self.Bind(wx.EVT_COMBOBOX, self.get_new_T_PI_parameters, self.tmin_box) self.tmax_box = wx.ComboBox(self.top_panel, -1, size=(100 * self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY) self.Bind(wx.EVT_COMBOBOX, self.get_new_T_PI_parameters, self.tmax_box) #-------------------------------------------------------------------- # save/delete buttons #-------------------------------------------------------------------- # save/delete interpretation buttons self.save_interpretation_button = wx.Button(self.top_panel, id=-1, label='save', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.save_interpretation_button.SetFont(font2) self.delete_interpretation_button = wx.Button(self.top_panel, id=-1, label='delete', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.delete_interpretation_button.SetFont(font2) self.Bind(wx.EVT_BUTTON, self.on_save_interpretation_button, self.save_interpretation_button) self.Bind(wx.EVT_BUTTON, self.on_delete_interpretation_button, self.delete_interpretation_button) self.auto_save = wx.CheckBox(self.top_panel, wx.ID_ANY, 'auto-save') self.auto_save_info = wx.Button(self.top_panel, wx.ID_ANY, "?") self.Bind(wx.EVT_BUTTON, self.on_info_click, self.auto_save_info) #self.auto_save_text = wx.StaticText(self.top_panel, wx.ID_ANY, label="(saves with 'next')") #-------------------------------------------------------------------- # specimen interpretation and statistics window (Blab; Banc, Dec, Inc, correction factors etc.) #-------------------------------------------------------------------- self.Blab_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.Banc_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.Aniso_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.NLT_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.CR_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.declination_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.inclination_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) for stat in ['Blab', 'Banc', 'Aniso_factor', 'NLT_factor', 'CR_factor', 'declination', 'inclination']: exec("self.%s_window.SetBackgroundColour(wx.WHITE)" % stat) self.Blab_label = wx.StaticText( self.top_panel, label="\nB_lab", style=wx.ALIGN_CENTRE) self.Blab_label.SetFont(font2) self.Banc_label = wx.StaticText( self.top_panel, label="\nB_anc", style=wx.ALIGN_CENTRE) self.Banc_label.SetFont(font2) self.aniso_corr_label = wx.StaticText( self.top_panel, label="Aniso\ncorr", style=wx.ALIGN_CENTRE) self.aniso_corr_label.SetFont(font2) self.nlt_corr_label = wx.StaticText( self.top_panel, label="NLT\ncorr", style=wx.ALIGN_CENTRE) self.nlt_corr_label.SetFont(font2) self.cr_corr_label = wx.StaticText( self.top_panel, label="CR\ncorr", style=wx.ALIGN_CENTRE) self.cr_corr_label.SetFont(font2) self.dec_label = wx.StaticText( self.top_panel, label="\nDec", style=wx.ALIGN_CENTRE) self.dec_label.SetFont(font2) self.inc_label = wx.StaticText( self.top_panel, label="\nInc", style=wx.ALIGN_CENTRE) self.inc_label.SetFont(font2) # handle Specimen Results Sizer sizer_specimen_results = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "specimen results"), wx.HORIZONTAL) specimen_stat_window = wx.GridSizer(2, 7, h_space, v_space) specimen_stat_window.AddMany([(self.Blab_label, 1, wx.ALIGN_BOTTOM), ((self.Banc_label), 1, wx.ALIGN_BOTTOM), ((self.aniso_corr_label), 1, wx.ALIGN_BOTTOM), ((self.nlt_corr_label), 1, wx.ALIGN_BOTTOM), ((self.cr_corr_label), 1, wx.ALIGN_BOTTOM), ((self.dec_label), 1, wx.TE_CENTER | wx.ALIGN_BOTTOM), ((self.inc_label), 1, wx.ALIGN_BOTTOM), (self.Blab_window, 1, wx.EXPAND), (self.Banc_window, 1, wx.EXPAND), (self.Aniso_factor_window, 1, wx.EXPAND), (self.NLT_factor_window, 1, wx.EXPAND), (self.CR_factor_window, 1, wx.EXPAND), (self.declination_window, 1, wx.EXPAND), (self.inclination_window, 1, wx.EXPAND)]) sizer_specimen_results.Add( specimen_stat_window, 1, wx.EXPAND | wx.ALIGN_LEFT, 0) #-------------------------------------------------------------------- # Sample interpretation window #-------------------------------------------------------------------- for key in ["sample_int_n", "sample_int_uT", "sample_int_sigma", "sample_int_sigma_perc"]: command = "self.%s_window=wx.TextCtrl(self.top_panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(50*self.GUI_RESOLUTION,25))" % key exec(command) exec("self.%s_window.SetBackgroundColour(wx.WHITE)" % key) sample_mean_label = wx.StaticText( self.top_panel, label="\nmean", style=wx.TE_CENTER) sample_mean_label.SetFont(font2) sample_N_label = wx.StaticText( self.top_panel, label="\nN ", style=wx.TE_CENTER) sample_N_label.SetFont(font2) sample_std_label = wx.StaticText( self.top_panel, label="\nstd uT", style=wx.TE_CENTER) sample_std_label.SetFont(font2) sample_std_per_label = wx.StaticText( self.top_panel, label="\nstd %", style=wx.TE_CENTER) sample_std_per_label.SetFont(font2) # handle samples/sites results sizers sizer_sample_results = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "sample/site results"), wx.HORIZONTAL) sample_stat_window = wx.GridSizer(2, 4, h_space, v_space) sample_stat_window.AddMany([(sample_mean_label, 1, wx.ALIGN_BOTTOM), (sample_N_label, 1, wx.ALIGN_BOTTOM), (sample_std_label, 1, wx.ALIGN_BOTTOM), (sample_std_per_label, 1, wx.ALIGN_BOTTOM), (self.sample_int_uT_window, 1, wx.EXPAND), (self.sample_int_n_window, 1, wx.EXPAND), (self.sample_int_sigma_window, 1, wx.EXPAND), (self.sample_int_sigma_perc_window, 1, wx.EXPAND)]) sizer_sample_results.Add( sample_stat_window, 1, wx.EXPAND | wx.ALIGN_LEFT, 0) #-------------------------------------------------------------------- label_0 = wx.StaticText( self.bottom_panel, label=" ", style=wx.ALIGN_CENTER, size=(180, 25)) label_1 = wx.StaticText( self.bottom_panel, label="Acceptance criteria:", style=wx.ALIGN_CENTER, size=(180, 25)) label_2 = wx.StaticText( self.bottom_panel, label="Specimen statistics:", style=wx.ALIGN_CENTER, size=(180, 25)) for statistic in self.preferences['show_statistics_on_gui']: self.stat_windows[statistic] = wx.TextCtrl( self.bottom_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.stat_windows[statistic].SetBackgroundColour(wx.WHITE) self.stat_windows[statistic].SetFont(font2) self.threshold_windows[statistic] = wx.TextCtrl( self.bottom_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.threshold_windows[statistic].SetFont(font2) self.threshold_windows[statistic].SetBackgroundColour(wx.WHITE) label = statistic.replace("specimen_", "").replace("int_", "") self.stat_labels[statistic] = wx.StaticText( self.bottom_panel, label=label, style=wx.ALIGN_CENTRE_HORIZONTAL | wx.ALIGN_BOTTOM) self.stat_labels[statistic].SetFont(font2) #------------------------------------------------------------------- # Design the panels #------------------------------------------------------------------- # Plots Panel-------------------------------------------------------- sizer_grid_plots = wx.GridSizer(2, 2, 0, 0) sizer_grid_plots.AddMany([(self.canvas2, 1, wx.EXPAND), (self.canvas4, 1, wx.EXPAND), (self.canvas3, 1, wx.EXPAND), (self.canvas5, 1, wx.EXPAND)]) sizer_plots_outer = wx.BoxSizer(wx.HORIZONTAL) sizer_plots_outer.Add(self.canvas1, 1, wx.EXPAND) sizer_plots_outer.Add(sizer_grid_plots, 1, wx.EXPAND) # Top Bar Sizer------------------------------------------------------- #-------------Specimens Sizer---------------------------------------- sizer_prev_next_btns = wx.BoxSizer(wx.HORIZONTAL) sizer_prev_next_btns.Add(prevbutton, 1, wx.EXPAND | wx.RIGHT, h_space) sizer_prev_next_btns.Add(nextbutton, 1, wx.EXPAND | wx.LEFT, h_space) sizer_select_specimen = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "specimen"), wx.VERTICAL) sizer_select_specimen.Add( self.specimens_box, 1, wx.EXPAND | wx.BOTTOM, v_space) sizer_select_specimen.Add( sizer_prev_next_btns, 1, wx.EXPAND | wx.TOP, v_space) #-------------Bounds Sizer---------------------------------------- sizer_grid_bounds_btns = wx.GridSizer(2, 3, 2 * h_space, 2 * v_space) sizer_grid_bounds_btns.AddMany([(self.tmin_box, 1, wx.EXPAND), (self.save_interpretation_button, 1, wx.EXPAND), (self.auto_save, 1, wx.EXPAND), (self.tmax_box, 1, wx.EXPAND), (self.delete_interpretation_button, 1, wx.EXPAND), (self.auto_save_info, 1, wx.EXPAND)]) if self.s in list(self.Data.keys()) and self.Data[self.s]['T_or_MW'] == "T": sizer_select_temp = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "temperatures"), wx.HORIZONTAL) else: sizer_select_temp = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "MW power"), wx.HORIZONTAL) sizer_select_temp.Add(sizer_grid_bounds_btns, 1, wx.EXPAND) #-------------Top Bar Outer Sizer------------------------------------ sizer_top_bar = wx.BoxSizer(wx.HORIZONTAL) sizer_top_bar.AddMany([(sizer_select_specimen, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_select_temp, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_specimen_results, 2, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_sample_results, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 0)]) # Bottom Bar Sizer---------------------------------------------------- #----------------Criteria Labels Sizer------------------------------- sizer_criteria_labels = wx.BoxSizer(wx.HORIZONTAL) sizer_criteria_labels.Add(label_0, 3, wx.EXPAND | wx.LEFT, 2 * h_space) sizer_criteria_boxes = wx.BoxSizer(wx.HORIZONTAL) sizer_criteria_boxes.Add(label_1, 3, wx.EXPAND | wx.LEFT, 2 * h_space) sizer_stats_boxes = wx.BoxSizer(wx.HORIZONTAL) sizer_stats_boxes.Add(label_2, 3, wx.EXPAND | wx.LEFT, 2 * h_space) for statistic in self.preferences['show_statistics_on_gui']: sizer_criteria_labels.Add( self.stat_labels[statistic], 1, wx.ALIGN_BOTTOM, 0) #----------------Acceptance Criteria Boxes--------------------------- sizer_criteria_boxes.Add( self.threshold_windows[statistic], 1, wx.EXPAND | wx.LEFT, h_space) #----------------Specimen Statistics Boxes--------------------------- sizer_stats_boxes.Add( self.stat_windows[statistic], 1, wx.EXPAND | wx.LEFT, h_space) #----------------Bottom Outer Sizer---------------------------------- sizer_bottom_bar = wx.BoxSizer(wx.VERTICAL) sizer_bottom_bar.AddMany([(sizer_criteria_labels, 1, wx.EXPAND | wx.ALIGN_BOTTOM | wx.BOTTOM, v_space), (sizer_criteria_boxes, 1, wx.EXPAND | wx.BOTTOM | wx.ALIGN_TOP, v_space), (sizer_stats_boxes, 1, wx.EXPAND | wx.ALIGN_TOP)]) # Logger Sizer-------------------------------------------------------- sizer_logger = wx.BoxSizer(wx.HORIZONTAL) sizer_logger.Add(self.logger, 1, wx.EXPAND) # Set Panel Sizers---------------------------------------------------- self.plot_panel.SetSizer(sizer_plots_outer) self.side_panel.SetSizerAndFit(sizer_logger) self.top_panel.SetSizerAndFit(sizer_top_bar) self.bottom_panel.SetSizerAndFit(sizer_bottom_bar) # Outer Sizer for Frame----------------------------------------------- sizer_logger_plots = wx.BoxSizer(wx.HORIZONTAL) sizer_logger_plots.Add(self.side_panel, 1, wx.EXPAND | wx.ALIGN_LEFT) sizer_logger_plots.Add(self.plot_panel, 3, wx.EXPAND | wx.ALIGN_LEFT) sizer_outer = wx.BoxSizer(wx.VERTICAL) sizer_outer.AddMany([(self.top_panel, 1, wx.EXPAND | wx.ALIGN_TOP | wx.BOTTOM, v_space / 2), (sizer_logger_plots, 4, wx.EXPAND | wx.ALIGN_TOP | wx.BOTTOM, v_space / 2), (self.bottom_panel, 1, wx.EXPAND | wx.ALIGN_TOP)]) self.SetSizer(sizer_outer) sizer_outer.Fit(self) self.Layout()
python
def Main_Frame(self): """ Build main frame od panel: buttons, etc. choose the first specimen and display data """ #-------------------------------------------------------------------- # initialize first specimen in list as current specimen #-------------------------------------------------------------------- try: self.s = self.specimens[0] except: self.s = "" print("No specimens during UI build") #-------------------------------------------------------------------- # create main panel in the right size #-------------------------------------------------------------------- dw, dh = wx.DisplaySize() w, h = self.GetSize() r1 = dw / 1250. r2 = dw / 750. GUI_RESOLUTION = min(r1, r2, 1.3) if 'gui_resolution' in list(self.preferences.keys()): if float(self.preferences['gui_resolution']) != 1: self.GUI_RESOLUTION = float( self.preferences['gui_resolution']) / 100 else: self.GUI_RESOLUTION = min(r1, r2, 1.3) else: self.GUI_RESOLUTION = min(r1, r2, 1.3) #-------------------------------------------------------------------- # adjust font size #-------------------------------------------------------------------- self.font_type = "Arial" if sys.platform.startswith("linux"): self.font_type = "Liberation Serif" if self.GUI_RESOLUTION >= 1.1 and self.GUI_RESOLUTION <= 1.3: font2 = wx.Font(13, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9 and self.GUI_RESOLUTION < 1.0: font2 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9: font2 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) else: font2 = wx.Font(12, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) print(" self.GUI_RESOLUTION", self.GUI_RESOLUTION) h_space = 4 v_space = 4 # set font size and style #font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, u'Comic Sans MS') FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 font1 = wx.Font(9 + FONT_RATIO, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) # GUI headers font3 = wx.Font(11 + FONT_RATIO, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) font = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT) font.SetPointSize(10 + FONT_RATIO) #-------------------------------------------------------------------- # Create Figures and FigCanvas objects. #-------------------------------------------------------------------- self.fig1 = Figure((5. * self.GUI_RESOLUTION, 5. * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas1 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig1) self.fig1.text(0.01, 0.98, "Arai plot", { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar1 = NavigationToolbar(self.canvas1) self.toolbar1.Hide() self.fig1_setting = "Zoom" self.toolbar1.zoom() self.canvas1.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas1.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig2 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas2 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig2) self.fig2.text(0.02, 0.96, "Zijderveld", { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar2 = NavigationToolbar(self.canvas2) self.toolbar2.Hide() self.fig2_setting = "Zoom" self.toolbar2.zoom() self.canvas2.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas2.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig3 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas3 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig3) #self.fig3.text(0.02,0.96,"Equal area",{'family':self.font_type, 'fontsize':10*self.GUI_RESOLUTION, 'style':'normal','va':'center', 'ha':'left' }) self.toolbar3 = NavigationToolbar(self.canvas3) self.toolbar3.Hide() self.fig3_setting = "Zoom" self.toolbar3.zoom() self.canvas3.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas3.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig4 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas4 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig4) if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'site': TEXT = "Site data" else: TEXT = "Sample data" self.fig4.text(0.02, 0.96, TEXT, { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.toolbar4 = NavigationToolbar(self.canvas4) self.toolbar4.Hide() self.fig4_setting = "Zoom" self.toolbar4.zoom() self.canvas4.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas4.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) self.fig5 = Figure((2.5 * self.GUI_RESOLUTION, 2.5 * self.GUI_RESOLUTION), dpi=self.dpi) self.canvas5 = FigCanvas(self.plot_panel, wx.ID_ANY, self.fig5) #self.fig5.text(0.02,0.96,"M/M0",{'family':self.font_type, 'fontsize':10, 'style':'normal','va':'center', 'ha':'left' }) self.toolbar5 = NavigationToolbar(self.canvas5) self.toolbar5.Hide() self.fig5_setting = "Zoom" self.toolbar5.zoom() self.canvas5.Bind(wx.EVT_RIGHT_DOWN, self.on_right_click_fig) self.canvas5.Bind(wx.EVT_MIDDLE_DOWN, self.on_home_fig) # make axes of the figures self.araiplot = self.fig1.add_axes([0.1, 0.1, 0.8, 0.8]) self.zijplot = self.fig2.add_subplot(111) self.eqplot = self.fig3.add_subplot(111) self.sampleplot = self.fig4.add_axes( [0.2, 0.3, 0.7, 0.6], frameon=True, facecolor='None') self.mplot = self.fig5.add_axes( [0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None') #-------------------------------------------------------------------- # text box displaying measurement data #-------------------------------------------------------------------- self.logger = wx.ListCtrl(self.side_panel, id=wx.ID_ANY, size=( 100 * self.GUI_RESOLUTION, 100 * self.GUI_RESOLUTION), style=wx.LC_REPORT) self.logger.SetFont(font1) self.logger.InsertColumn(0, 'i', width=45 * self.GUI_RESOLUTION) self.logger.InsertColumn(1, 'Step', width=45 * self.GUI_RESOLUTION) self.logger.InsertColumn(2, 'Tr', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(3, 'Dec', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(4, 'Inc', width=65 * self.GUI_RESOLUTION) self.logger.InsertColumn(5, 'M', width=75 * self.GUI_RESOLUTION) self.Bind(wx.EVT_LIST_ITEM_ACTIVATED, self.on_click_listctrl, self.logger) self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK, self.on_right_click_listctrl, self.logger) #-------------------------------------------------------------------- # select a specimen box #-------------------------------------------------------------------- # Combo-box with a list of specimen self.specimens_box = wx.ComboBox(self.top_panel, wx.ID_ANY, self.s, (250 * self.GUI_RESOLUTION, 25), wx.DefaultSize, self.specimens, wx.CB_DROPDOWN | wx.TE_PROCESS_ENTER, name="specimen") self.specimens_box.SetFont(font2) self.Bind(wx.EVT_COMBOBOX, self.onSelect_specimen, self.specimens_box) self.Bind(wx.EVT_TEXT_ENTER, self.onSelect_specimen, self.specimens_box) # buttons to move forward and backwards from specimens nextbutton = wx.Button(self.top_panel, id=wx.ID_ANY, label='next', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.Bind(wx.EVT_BUTTON, self.on_next_button, nextbutton) nextbutton.SetFont(font2) prevbutton = wx.Button(self.top_panel, id=wx.ID_ANY, label='previous', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) prevbutton.SetFont(font2) self.Bind(wx.EVT_BUTTON, self.on_prev_button, prevbutton) #-------------------------------------------------------------------- # select temperature bounds #-------------------------------------------------------------------- try: if self.Data[self.s]['T_or_MW'] == "T": self.temperatures = np.array( self.Data[self.s]['t_Arai']) - 273. self.T_list = ["%.0f" % T for T in self.temperatures] elif self.Data[self.s]['T_or_MW'] == "MW": self.temperatures = np.array(self.Data[self.s]['t_Arai']) self.T_list = ["%.0f" % T for T in self.temperatures] except (ValueError, TypeError, KeyError) as e: self.T_list = [] self.tmin_box = wx.ComboBox(self.top_panel, wx.ID_ANY, size=( 100 * self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY) self.Bind(wx.EVT_COMBOBOX, self.get_new_T_PI_parameters, self.tmin_box) self.tmax_box = wx.ComboBox(self.top_panel, -1, size=(100 * self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY) self.Bind(wx.EVT_COMBOBOX, self.get_new_T_PI_parameters, self.tmax_box) #-------------------------------------------------------------------- # save/delete buttons #-------------------------------------------------------------------- # save/delete interpretation buttons self.save_interpretation_button = wx.Button(self.top_panel, id=-1, label='save', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.save_interpretation_button.SetFont(font2) self.delete_interpretation_button = wx.Button(self.top_panel, id=-1, label='delete', size=( 75 * self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28)) self.delete_interpretation_button.SetFont(font2) self.Bind(wx.EVT_BUTTON, self.on_save_interpretation_button, self.save_interpretation_button) self.Bind(wx.EVT_BUTTON, self.on_delete_interpretation_button, self.delete_interpretation_button) self.auto_save = wx.CheckBox(self.top_panel, wx.ID_ANY, 'auto-save') self.auto_save_info = wx.Button(self.top_panel, wx.ID_ANY, "?") self.Bind(wx.EVT_BUTTON, self.on_info_click, self.auto_save_info) #self.auto_save_text = wx.StaticText(self.top_panel, wx.ID_ANY, label="(saves with 'next')") #-------------------------------------------------------------------- # specimen interpretation and statistics window (Blab; Banc, Dec, Inc, correction factors etc.) #-------------------------------------------------------------------- self.Blab_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.Banc_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.Aniso_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.NLT_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.CR_factor_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.declination_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.inclination_window = wx.TextCtrl( self.top_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) for stat in ['Blab', 'Banc', 'Aniso_factor', 'NLT_factor', 'CR_factor', 'declination', 'inclination']: exec("self.%s_window.SetBackgroundColour(wx.WHITE)" % stat) self.Blab_label = wx.StaticText( self.top_panel, label="\nB_lab", style=wx.ALIGN_CENTRE) self.Blab_label.SetFont(font2) self.Banc_label = wx.StaticText( self.top_panel, label="\nB_anc", style=wx.ALIGN_CENTRE) self.Banc_label.SetFont(font2) self.aniso_corr_label = wx.StaticText( self.top_panel, label="Aniso\ncorr", style=wx.ALIGN_CENTRE) self.aniso_corr_label.SetFont(font2) self.nlt_corr_label = wx.StaticText( self.top_panel, label="NLT\ncorr", style=wx.ALIGN_CENTRE) self.nlt_corr_label.SetFont(font2) self.cr_corr_label = wx.StaticText( self.top_panel, label="CR\ncorr", style=wx.ALIGN_CENTRE) self.cr_corr_label.SetFont(font2) self.dec_label = wx.StaticText( self.top_panel, label="\nDec", style=wx.ALIGN_CENTRE) self.dec_label.SetFont(font2) self.inc_label = wx.StaticText( self.top_panel, label="\nInc", style=wx.ALIGN_CENTRE) self.inc_label.SetFont(font2) # handle Specimen Results Sizer sizer_specimen_results = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "specimen results"), wx.HORIZONTAL) specimen_stat_window = wx.GridSizer(2, 7, h_space, v_space) specimen_stat_window.AddMany([(self.Blab_label, 1, wx.ALIGN_BOTTOM), ((self.Banc_label), 1, wx.ALIGN_BOTTOM), ((self.aniso_corr_label), 1, wx.ALIGN_BOTTOM), ((self.nlt_corr_label), 1, wx.ALIGN_BOTTOM), ((self.cr_corr_label), 1, wx.ALIGN_BOTTOM), ((self.dec_label), 1, wx.TE_CENTER | wx.ALIGN_BOTTOM), ((self.inc_label), 1, wx.ALIGN_BOTTOM), (self.Blab_window, 1, wx.EXPAND), (self.Banc_window, 1, wx.EXPAND), (self.Aniso_factor_window, 1, wx.EXPAND), (self.NLT_factor_window, 1, wx.EXPAND), (self.CR_factor_window, 1, wx.EXPAND), (self.declination_window, 1, wx.EXPAND), (self.inclination_window, 1, wx.EXPAND)]) sizer_specimen_results.Add( specimen_stat_window, 1, wx.EXPAND | wx.ALIGN_LEFT, 0) #-------------------------------------------------------------------- # Sample interpretation window #-------------------------------------------------------------------- for key in ["sample_int_n", "sample_int_uT", "sample_int_sigma", "sample_int_sigma_perc"]: command = "self.%s_window=wx.TextCtrl(self.top_panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(50*self.GUI_RESOLUTION,25))" % key exec(command) exec("self.%s_window.SetBackgroundColour(wx.WHITE)" % key) sample_mean_label = wx.StaticText( self.top_panel, label="\nmean", style=wx.TE_CENTER) sample_mean_label.SetFont(font2) sample_N_label = wx.StaticText( self.top_panel, label="\nN ", style=wx.TE_CENTER) sample_N_label.SetFont(font2) sample_std_label = wx.StaticText( self.top_panel, label="\nstd uT", style=wx.TE_CENTER) sample_std_label.SetFont(font2) sample_std_per_label = wx.StaticText( self.top_panel, label="\nstd %", style=wx.TE_CENTER) sample_std_per_label.SetFont(font2) # handle samples/sites results sizers sizer_sample_results = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "sample/site results"), wx.HORIZONTAL) sample_stat_window = wx.GridSizer(2, 4, h_space, v_space) sample_stat_window.AddMany([(sample_mean_label, 1, wx.ALIGN_BOTTOM), (sample_N_label, 1, wx.ALIGN_BOTTOM), (sample_std_label, 1, wx.ALIGN_BOTTOM), (sample_std_per_label, 1, wx.ALIGN_BOTTOM), (self.sample_int_uT_window, 1, wx.EXPAND), (self.sample_int_n_window, 1, wx.EXPAND), (self.sample_int_sigma_window, 1, wx.EXPAND), (self.sample_int_sigma_perc_window, 1, wx.EXPAND)]) sizer_sample_results.Add( sample_stat_window, 1, wx.EXPAND | wx.ALIGN_LEFT, 0) #-------------------------------------------------------------------- label_0 = wx.StaticText( self.bottom_panel, label=" ", style=wx.ALIGN_CENTER, size=(180, 25)) label_1 = wx.StaticText( self.bottom_panel, label="Acceptance criteria:", style=wx.ALIGN_CENTER, size=(180, 25)) label_2 = wx.StaticText( self.bottom_panel, label="Specimen statistics:", style=wx.ALIGN_CENTER, size=(180, 25)) for statistic in self.preferences['show_statistics_on_gui']: self.stat_windows[statistic] = wx.TextCtrl( self.bottom_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.stat_windows[statistic].SetBackgroundColour(wx.WHITE) self.stat_windows[statistic].SetFont(font2) self.threshold_windows[statistic] = wx.TextCtrl( self.bottom_panel, style=wx.TE_CENTER | wx.TE_READONLY, size=(50 * self.GUI_RESOLUTION, 25)) self.threshold_windows[statistic].SetFont(font2) self.threshold_windows[statistic].SetBackgroundColour(wx.WHITE) label = statistic.replace("specimen_", "").replace("int_", "") self.stat_labels[statistic] = wx.StaticText( self.bottom_panel, label=label, style=wx.ALIGN_CENTRE_HORIZONTAL | wx.ALIGN_BOTTOM) self.stat_labels[statistic].SetFont(font2) #------------------------------------------------------------------- # Design the panels #------------------------------------------------------------------- # Plots Panel-------------------------------------------------------- sizer_grid_plots = wx.GridSizer(2, 2, 0, 0) sizer_grid_plots.AddMany([(self.canvas2, 1, wx.EXPAND), (self.canvas4, 1, wx.EXPAND), (self.canvas3, 1, wx.EXPAND), (self.canvas5, 1, wx.EXPAND)]) sizer_plots_outer = wx.BoxSizer(wx.HORIZONTAL) sizer_plots_outer.Add(self.canvas1, 1, wx.EXPAND) sizer_plots_outer.Add(sizer_grid_plots, 1, wx.EXPAND) # Top Bar Sizer------------------------------------------------------- #-------------Specimens Sizer---------------------------------------- sizer_prev_next_btns = wx.BoxSizer(wx.HORIZONTAL) sizer_prev_next_btns.Add(prevbutton, 1, wx.EXPAND | wx.RIGHT, h_space) sizer_prev_next_btns.Add(nextbutton, 1, wx.EXPAND | wx.LEFT, h_space) sizer_select_specimen = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "specimen"), wx.VERTICAL) sizer_select_specimen.Add( self.specimens_box, 1, wx.EXPAND | wx.BOTTOM, v_space) sizer_select_specimen.Add( sizer_prev_next_btns, 1, wx.EXPAND | wx.TOP, v_space) #-------------Bounds Sizer---------------------------------------- sizer_grid_bounds_btns = wx.GridSizer(2, 3, 2 * h_space, 2 * v_space) sizer_grid_bounds_btns.AddMany([(self.tmin_box, 1, wx.EXPAND), (self.save_interpretation_button, 1, wx.EXPAND), (self.auto_save, 1, wx.EXPAND), (self.tmax_box, 1, wx.EXPAND), (self.delete_interpretation_button, 1, wx.EXPAND), (self.auto_save_info, 1, wx.EXPAND)]) if self.s in list(self.Data.keys()) and self.Data[self.s]['T_or_MW'] == "T": sizer_select_temp = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "temperatures"), wx.HORIZONTAL) else: sizer_select_temp = wx.StaticBoxSizer(wx.StaticBox( self.top_panel, wx.ID_ANY, "MW power"), wx.HORIZONTAL) sizer_select_temp.Add(sizer_grid_bounds_btns, 1, wx.EXPAND) #-------------Top Bar Outer Sizer------------------------------------ sizer_top_bar = wx.BoxSizer(wx.HORIZONTAL) sizer_top_bar.AddMany([(sizer_select_specimen, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_select_temp, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_specimen_results, 2, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 2 * h_space), (sizer_sample_results, 1, wx.EXPAND | wx.ALIGN_LEFT | wx.RIGHT, 0)]) # Bottom Bar Sizer---------------------------------------------------- #----------------Criteria Labels Sizer------------------------------- sizer_criteria_labels = wx.BoxSizer(wx.HORIZONTAL) sizer_criteria_labels.Add(label_0, 3, wx.EXPAND | wx.LEFT, 2 * h_space) sizer_criteria_boxes = wx.BoxSizer(wx.HORIZONTAL) sizer_criteria_boxes.Add(label_1, 3, wx.EXPAND | wx.LEFT, 2 * h_space) sizer_stats_boxes = wx.BoxSizer(wx.HORIZONTAL) sizer_stats_boxes.Add(label_2, 3, wx.EXPAND | wx.LEFT, 2 * h_space) for statistic in self.preferences['show_statistics_on_gui']: sizer_criteria_labels.Add( self.stat_labels[statistic], 1, wx.ALIGN_BOTTOM, 0) #----------------Acceptance Criteria Boxes--------------------------- sizer_criteria_boxes.Add( self.threshold_windows[statistic], 1, wx.EXPAND | wx.LEFT, h_space) #----------------Specimen Statistics Boxes--------------------------- sizer_stats_boxes.Add( self.stat_windows[statistic], 1, wx.EXPAND | wx.LEFT, h_space) #----------------Bottom Outer Sizer---------------------------------- sizer_bottom_bar = wx.BoxSizer(wx.VERTICAL) sizer_bottom_bar.AddMany([(sizer_criteria_labels, 1, wx.EXPAND | wx.ALIGN_BOTTOM | wx.BOTTOM, v_space), (sizer_criteria_boxes, 1, wx.EXPAND | wx.BOTTOM | wx.ALIGN_TOP, v_space), (sizer_stats_boxes, 1, wx.EXPAND | wx.ALIGN_TOP)]) # Logger Sizer-------------------------------------------------------- sizer_logger = wx.BoxSizer(wx.HORIZONTAL) sizer_logger.Add(self.logger, 1, wx.EXPAND) # Set Panel Sizers---------------------------------------------------- self.plot_panel.SetSizer(sizer_plots_outer) self.side_panel.SetSizerAndFit(sizer_logger) self.top_panel.SetSizerAndFit(sizer_top_bar) self.bottom_panel.SetSizerAndFit(sizer_bottom_bar) # Outer Sizer for Frame----------------------------------------------- sizer_logger_plots = wx.BoxSizer(wx.HORIZONTAL) sizer_logger_plots.Add(self.side_panel, 1, wx.EXPAND | wx.ALIGN_LEFT) sizer_logger_plots.Add(self.plot_panel, 3, wx.EXPAND | wx.ALIGN_LEFT) sizer_outer = wx.BoxSizer(wx.VERTICAL) sizer_outer.AddMany([(self.top_panel, 1, wx.EXPAND | wx.ALIGN_TOP | wx.BOTTOM, v_space / 2), (sizer_logger_plots, 4, wx.EXPAND | wx.ALIGN_TOP | wx.BOTTOM, v_space / 2), (self.bottom_panel, 1, wx.EXPAND | wx.ALIGN_TOP)]) self.SetSizer(sizer_outer) sizer_outer.Fit(self) self.Layout()
Build main frame od panel: buttons, etc. choose the first specimen and display data
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L497-L961
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_save_interpretation_button
def on_save_interpretation_button(self, event): """ save the current interpretation temporarily (not to a file) """ if "specimen_int_uT" not in self.Data[self.s]['pars']: return if 'deleted' in self.Data[self.s]['pars']: self.Data[self.s]['pars'].pop('deleted') self.Data[self.s]['pars']['saved'] = True # collect all interpretation by sample sample = self.Data_hierarchy['specimens'][self.s] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if self.s not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][self.s] = {} self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars']["specimen_int_uT"] # collect all interpretation by site # site=thellier_gui_lib.get_site_from_hierarchy(sample,self.Data_hierarchy) site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if self.s not in list(self.Data_sites[site].keys()): self.Data_sites[site][self.s] = {} self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars']["specimen_int_uT"] self.draw_sample_mean() self.write_sample_box() self.close_warning = True
python
def on_save_interpretation_button(self, event): """ save the current interpretation temporarily (not to a file) """ if "specimen_int_uT" not in self.Data[self.s]['pars']: return if 'deleted' in self.Data[self.s]['pars']: self.Data[self.s]['pars'].pop('deleted') self.Data[self.s]['pars']['saved'] = True # collect all interpretation by sample sample = self.Data_hierarchy['specimens'][self.s] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if self.s not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][self.s] = {} self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars']["specimen_int_uT"] # collect all interpretation by site # site=thellier_gui_lib.get_site_from_hierarchy(sample,self.Data_hierarchy) site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if self.s not in list(self.Data_sites[site].keys()): self.Data_sites[site][self.s] = {} self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars']["specimen_int_uT"] self.draw_sample_mean() self.write_sample_box() self.close_warning = True
save the current interpretation temporarily (not to a file)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L963-L993
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_delete_interpretation_button
def on_delete_interpretation_button(self, event): """ delete the current interpretation temporarily (not to a file) """ del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['deleted'] = True self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s]['lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s]['er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] sample = self.Data_hierarchy['specimens'][self.s] if sample in list(self.Data_samples.keys()): if self.s in list(self.Data_samples[sample].keys()): if 'B' in list(self.Data_samples[sample][self.s].keys()): del self.Data_samples[sample][self.s]['B'] site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site in list(self.Data_sites.keys()): if self.s in list(self.Data_sites[site].keys()): del self.Data_sites[site][self.s]['B'] # if 'B' in self.Data_sites[site][self.s].keys(): # del self.Data_sites[site][self.s]['B'] self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.clear_boxes() self.draw_figure(self.s) self.draw_sample_mean() self.write_sample_box() self.close_warning = True
python
def on_delete_interpretation_button(self, event): """ delete the current interpretation temporarily (not to a file) """ del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['deleted'] = True self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s]['lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s]['er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] sample = self.Data_hierarchy['specimens'][self.s] if sample in list(self.Data_samples.keys()): if self.s in list(self.Data_samples[sample].keys()): if 'B' in list(self.Data_samples[sample][self.s].keys()): del self.Data_samples[sample][self.s]['B'] site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site in list(self.Data_sites.keys()): if self.s in list(self.Data_sites[site].keys()): del self.Data_sites[site][self.s]['B'] # if 'B' in self.Data_sites[site][self.s].keys(): # del self.Data_sites[site][self.s]['B'] self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.clear_boxes() self.draw_figure(self.s) self.draw_sample_mean() self.write_sample_box() self.close_warning = True
delete the current interpretation temporarily (not to a file)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L995-L1027
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.write_acceptance_criteria_to_boxes
def write_acceptance_criteria_to_boxes(self): """ Update paleointensity statistics in acceptance criteria boxes. (after changing temperature bounds or changing specimen) """ self.ignore_parameters, value = {}, '' for crit_short_name in self.preferences['show_statistics_on_gui']: crit = "specimen_" + crit_short_name if self.acceptance_criteria[crit]['value'] == -999: self.threshold_windows[crit_short_name].SetValue("") self.threshold_windows[crit_short_name].SetBackgroundColour( wx.Colour(128, 128, 128)) self.ignore_parameters[crit] = True continue elif crit == "specimen_scat": if self.acceptance_criteria[crit]['value'] in ['g', 1, '1', True, "True", "t"]: value = "True" value = "t" #self.scat_threshold_window.SetBackgroundColour(wx.SetBackgroundColour(128, 128, 128)) else: value = "" value = "f" self.threshold_windows['scat'].SetBackgroundColour( (128, 128, 128)) #self.scat_threshold_window.SetBackgroundColour((128, 128, 128)) elif type(self.acceptance_criteria[crit]['value']) == int: value = "%i" % self.acceptance_criteria[crit]['value'] elif type(self.acceptance_criteria[crit]['value']) == float: if self.acceptance_criteria[crit]['decimal_points'] == -999: value = "%.3e" % self.acceptance_criteria[crit]['value'] else: value = "{:.{}f}".format(self.acceptance_criteria[crit]['value'], self.acceptance_criteria[crit]['decimal_points']) else: continue self.threshold_windows[crit_short_name].SetValue(value) self.threshold_windows[crit_short_name].SetBackgroundColour( wx.WHITE)
python
def write_acceptance_criteria_to_boxes(self): """ Update paleointensity statistics in acceptance criteria boxes. (after changing temperature bounds or changing specimen) """ self.ignore_parameters, value = {}, '' for crit_short_name in self.preferences['show_statistics_on_gui']: crit = "specimen_" + crit_short_name if self.acceptance_criteria[crit]['value'] == -999: self.threshold_windows[crit_short_name].SetValue("") self.threshold_windows[crit_short_name].SetBackgroundColour( wx.Colour(128, 128, 128)) self.ignore_parameters[crit] = True continue elif crit == "specimen_scat": if self.acceptance_criteria[crit]['value'] in ['g', 1, '1', True, "True", "t"]: value = "True" value = "t" #self.scat_threshold_window.SetBackgroundColour(wx.SetBackgroundColour(128, 128, 128)) else: value = "" value = "f" self.threshold_windows['scat'].SetBackgroundColour( (128, 128, 128)) #self.scat_threshold_window.SetBackgroundColour((128, 128, 128)) elif type(self.acceptance_criteria[crit]['value']) == int: value = "%i" % self.acceptance_criteria[crit]['value'] elif type(self.acceptance_criteria[crit]['value']) == float: if self.acceptance_criteria[crit]['decimal_points'] == -999: value = "%.3e" % self.acceptance_criteria[crit]['value'] else: value = "{:.{}f}".format(self.acceptance_criteria[crit]['value'], self.acceptance_criteria[crit]['decimal_points']) else: continue self.threshold_windows[crit_short_name].SetValue(value) self.threshold_windows[crit_short_name].SetBackgroundColour( wx.WHITE)
Update paleointensity statistics in acceptance criteria boxes. (after changing temperature bounds or changing specimen)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1079-L1119
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.Add_text
def Add_text(self, s): """ Add text to measurement data window. """ self.logger.DeleteAllItems() FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 if self.GUI_RESOLUTION > 1.1: font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9: font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) else: font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) # get temperature indecies to display current interp steps in logger t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() # microwave or thermal if "LP-PI-M" in self.Data[s]['datablock'][0]['magic_method_codes']: MICROWAVE = True THERMAL = False steps_tr = [] for rec in self.Data[s]['datablock']: if "measurement_description" in rec: MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: temp = float(STEP.split("-")[-1]) steps_tr.append(temp) else: power = rec['treatment_mw_power'] if '-' in str(power): power = power.split('-')[-1] steps_tr.append(int(power)) #steps_tr = [float(d['treatment_mw_power'].split("-")[-1]) # for d in self.Data[s]['datablock']] else: MICROWAVE = False THERMAL = True steps_tr = [float(d['treatment_temp']) - 273 for d in self.Data[s]['datablock']] if (t1 == "" or t2 == "") or float(t2) < float(t1): tmin_index, tmax_index = -1, -1 else: tmin_index = steps_tr.index(int(t1)) tmax_index = steps_tr.index(int(t2)) self.logger.SetFont(font1) for i, rec in enumerate(self.Data[s]['datablock']): if "LT-NO" in rec['magic_method_codes']: step = "N" elif "LT-AF-Z" in rec['magic_method_codes']: step = "AFD" elif "LT-T-Z" in rec['magic_method_codes'] or 'LT-M-Z' in rec['magic_method_codes']: step = "Z" elif "LT-T-I" in rec['magic_method_codes'] or 'LT-M-I' in rec['magic_method_codes']: step = "I" elif "LT-PTRM-I" in rec['magic_method_codes'] or "LT-PMRM-I" in rec['magic_method_codes']: step = "P" elif "LT-PTRM-MD" in rec['magic_method_codes'] or "LT-PMRM-MD" in rec['magic_method_codes']: step = "T" elif "LT-PTRM-AC" in rec['magic_method_codes'] or "LT-PMRM-AC" in rec['magic_method_codes']: step = "A" else: print(("unrecognized step in specimen %s Method codes: %s" % (str(rec['magic_method_codes']), s))) if THERMAL: self.logger.InsertItem(i, "%i" % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, "%1.0f" % (float(rec['treatment_temp']) - 273.)) self.logger.SetItem(i, 3, "%.1f" % float(rec['measurement_dec'])) self.logger.SetItem(i, 4, "%.1f" % float(rec['measurement_inc'])) self.logger.SetItem(i, 5, "%.2e" % float(rec['measurement_magn_moment'])) elif MICROWAVE: # mcrowave if "measurement_description" in list(rec.keys()): MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" not in STEP: continue temp = float(STEP.split("-")[-1]) self.logger.InsertItem(i, "%i" % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, "%1.0f" % temp) self.logger.SetItem(i, 3, "%.1f" % float(rec['measurement_dec'])) self.logger.SetItem(i, 4, "%.1f" % float(rec['measurement_inc'])) self.logger.SetItem(i, 5, "%.2e" % float( rec['measurement_magn_moment'])) self.logger.SetItemBackgroundColour(i, "WHITE") if i >= tmin_index and i <= tmax_index: self.logger.SetItemBackgroundColour(i, "LIGHT BLUE") if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g'
python
def Add_text(self, s): """ Add text to measurement data window. """ self.logger.DeleteAllItems() FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 if self.GUI_RESOLUTION > 1.1: font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) elif self.GUI_RESOLUTION <= 0.9: font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) else: font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.font_type) # get temperature indecies to display current interp steps in logger t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() # microwave or thermal if "LP-PI-M" in self.Data[s]['datablock'][0]['magic_method_codes']: MICROWAVE = True THERMAL = False steps_tr = [] for rec in self.Data[s]['datablock']: if "measurement_description" in rec: MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: temp = float(STEP.split("-")[-1]) steps_tr.append(temp) else: power = rec['treatment_mw_power'] if '-' in str(power): power = power.split('-')[-1] steps_tr.append(int(power)) #steps_tr = [float(d['treatment_mw_power'].split("-")[-1]) # for d in self.Data[s]['datablock']] else: MICROWAVE = False THERMAL = True steps_tr = [float(d['treatment_temp']) - 273 for d in self.Data[s]['datablock']] if (t1 == "" or t2 == "") or float(t2) < float(t1): tmin_index, tmax_index = -1, -1 else: tmin_index = steps_tr.index(int(t1)) tmax_index = steps_tr.index(int(t2)) self.logger.SetFont(font1) for i, rec in enumerate(self.Data[s]['datablock']): if "LT-NO" in rec['magic_method_codes']: step = "N" elif "LT-AF-Z" in rec['magic_method_codes']: step = "AFD" elif "LT-T-Z" in rec['magic_method_codes'] or 'LT-M-Z' in rec['magic_method_codes']: step = "Z" elif "LT-T-I" in rec['magic_method_codes'] or 'LT-M-I' in rec['magic_method_codes']: step = "I" elif "LT-PTRM-I" in rec['magic_method_codes'] or "LT-PMRM-I" in rec['magic_method_codes']: step = "P" elif "LT-PTRM-MD" in rec['magic_method_codes'] or "LT-PMRM-MD" in rec['magic_method_codes']: step = "T" elif "LT-PTRM-AC" in rec['magic_method_codes'] or "LT-PMRM-AC" in rec['magic_method_codes']: step = "A" else: print(("unrecognized step in specimen %s Method codes: %s" % (str(rec['magic_method_codes']), s))) if THERMAL: self.logger.InsertItem(i, "%i" % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, "%1.0f" % (float(rec['treatment_temp']) - 273.)) self.logger.SetItem(i, 3, "%.1f" % float(rec['measurement_dec'])) self.logger.SetItem(i, 4, "%.1f" % float(rec['measurement_inc'])) self.logger.SetItem(i, 5, "%.2e" % float(rec['measurement_magn_moment'])) elif MICROWAVE: # mcrowave if "measurement_description" in list(rec.keys()): MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" not in STEP: continue temp = float(STEP.split("-")[-1]) self.logger.InsertItem(i, "%i" % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, "%1.0f" % temp) self.logger.SetItem(i, 3, "%.1f" % float(rec['measurement_dec'])) self.logger.SetItem(i, 4, "%.1f" % float(rec['measurement_inc'])) self.logger.SetItem(i, 5, "%.2e" % float( rec['measurement_magn_moment'])) self.logger.SetItemBackgroundColour(i, "WHITE") if i >= tmin_index and i <= tmax_index: self.logger.SetItemBackgroundColour(i, "LIGHT BLUE") if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g'
Add text to measurement data window.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1123-L1233
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.select_bounds_in_logger
def select_bounds_in_logger(self, index): """ sets index as the upper or lower bound of a fit based on what the other bound is and selects it in the logger. Requires 2 calls to completely update a interpretation. NOTE: Requires an interpretation to exist before it is called. @param: index - index of the step to select in the logger """ tmin_index, tmax_index = "", "" if str(self.tmin_box.GetValue()) != "": tmin_index = self.tmin_box.GetSelection() if str(self.tmax_box.GetValue()) != "": tmax_index = self.tmax_box.GetSelection() # if there is no prior interpretation, assume first click is # tmin and set highest possible temp as tmax if not tmin_index and not tmax_index: tmin_index = index self.tmin_box.SetSelection(index) # set to the highest step max_step_data = self.Data[self.s]['datablock'][-1] step_key = 'treatment_temp' if MICROWAVE: step_key = 'treatment_mw_power' max_step = max_step_data[step_key] tmax_index = self.tmax_box.GetCount() - 1 self.tmax_box.SetSelection(tmax_index) elif self.list_bound_loc != 0: if self.list_bound_loc == 1: if index < tmin_index: self.tmin_box.SetSelection(index) self.tmax_box.SetSelection(tmin_index) elif index == tmin_index: pass else: self.tmax_box.SetSelection(index) else: if index > tmax_index: self.tmin_box.SetSelection(tmax_index) self.tmax_box.SetSelection(index) elif index == tmax_index: pass else: self.tmin_box.SetSelection(index) self.list_bound_loc = 0 else: if index < tmax_index: self.tmin_box.SetSelection(index) self.list_bound_loc = 1 else: self.tmax_box.SetSelection(index) self.list_bound_loc = 2 self.logger.Select(index, on=0) self.get_new_T_PI_parameters(-1)
python
def select_bounds_in_logger(self, index): """ sets index as the upper or lower bound of a fit based on what the other bound is and selects it in the logger. Requires 2 calls to completely update a interpretation. NOTE: Requires an interpretation to exist before it is called. @param: index - index of the step to select in the logger """ tmin_index, tmax_index = "", "" if str(self.tmin_box.GetValue()) != "": tmin_index = self.tmin_box.GetSelection() if str(self.tmax_box.GetValue()) != "": tmax_index = self.tmax_box.GetSelection() # if there is no prior interpretation, assume first click is # tmin and set highest possible temp as tmax if not tmin_index and not tmax_index: tmin_index = index self.tmin_box.SetSelection(index) # set to the highest step max_step_data = self.Data[self.s]['datablock'][-1] step_key = 'treatment_temp' if MICROWAVE: step_key = 'treatment_mw_power' max_step = max_step_data[step_key] tmax_index = self.tmax_box.GetCount() - 1 self.tmax_box.SetSelection(tmax_index) elif self.list_bound_loc != 0: if self.list_bound_loc == 1: if index < tmin_index: self.tmin_box.SetSelection(index) self.tmax_box.SetSelection(tmin_index) elif index == tmin_index: pass else: self.tmax_box.SetSelection(index) else: if index > tmax_index: self.tmin_box.SetSelection(tmax_index) self.tmax_box.SetSelection(index) elif index == tmax_index: pass else: self.tmin_box.SetSelection(index) self.list_bound_loc = 0 else: if index < tmax_index: self.tmin_box.SetSelection(index) self.list_bound_loc = 1 else: self.tmax_box.SetSelection(index) self.list_bound_loc = 2 self.logger.Select(index, on=0) self.get_new_T_PI_parameters(-1)
sets index as the upper or lower bound of a fit based on what the other bound is and selects it in the logger. Requires 2 calls to completely update a interpretation. NOTE: Requires an interpretation to exist before it is called. @param: index - index of the step to select in the logger
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1246-L1296
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.create_menu
def create_menu(self): """ Create menu bar """ self.menubar = wx.MenuBar() menu_preferences = wx.Menu() m_preferences_apperance = menu_preferences.Append( -1, "&Appearence preferences", "") self.Bind(wx.EVT_MENU, self.on_menu_appearance_preferences, m_preferences_apperance) m_preferences_spd = menu_preferences.Append( -1, "&Specimen paleointensity statistics (from SPD list)", "") self.Bind(wx.EVT_MENU, self.on_menu_m_preferences_spd, m_preferences_spd) #m_preferences_stat = menu_preferences.Append(-1, "&Statistical preferences", "") #self.Bind(wx.EVT_MENU, self.on_menu_preferences_stat, m_preferences_stat) #m_save_preferences = menu_preferences.Append(-1, "&Save preferences", "") #self.Bind(wx.EVT_MENU, self.on_menu_save_preferences, m_save_preferences) menu_file = wx.Menu() m_change_working_directory = menu_file.Append( -1, "&Change project directory", "") self.Bind(wx.EVT_MENU, self.on_menu_change_working_directory, m_change_working_directory) #m_add_working_directory = menu_file.Append(-1, "&Add a MagIC project directory", "") #self.Bind(wx.EVT_MENU, self.on_menu_add_working_directory, m_add_working_directory) m_open_magic_file = menu_file.Append(-1, "&Open MagIC measurement file", "") self.Bind(wx.EVT_MENU, self.on_menu_open_magic_file, m_open_magic_file) m_open_magic_tree = menu_file.Append( -1, "&Open all MagIC project directories in path", "") self.Bind(wx.EVT_MENU, self.on_menu_m_open_magic_tree, m_open_magic_tree) menu_file.AppendSeparator() m_prepare_MagIC_results_tables = menu_file.Append( -1, "&Save MagIC tables", "") self.Bind(wx.EVT_MENU, self.on_menu_prepare_magic_results_tables, m_prepare_MagIC_results_tables) submenu_save_plots = wx.Menu() m_save_Arai_plot = submenu_save_plots.Append(-1, "&Save Arai plot", "") self.Bind(wx.EVT_MENU, self.on_save_Arai_plot, m_save_Arai_plot) m_save_zij_plot = submenu_save_plots.Append( -1, "&Save Zijderveld plot", "") self.Bind(wx.EVT_MENU, self.on_save_Zij_plot, m_save_zij_plot, "Zij") m_save_eq_plot = submenu_save_plots.Append( -1, "&Save equal area plot", "") self.Bind(wx.EVT_MENU, self.on_save_Eq_plot, m_save_eq_plot, "Eq") m_save_M_t_plot = submenu_save_plots.Append(-1, "&Save M-t plot", "") self.Bind(wx.EVT_MENU, self.on_save_M_t_plot, m_save_M_t_plot, "M_t") m_save_NLT_plot = submenu_save_plots.Append(-1, "&Save NLT plot", "") self.Bind(wx.EVT_MENU, self.on_save_NLT_plot, m_save_NLT_plot, "NLT") m_save_CR_plot = submenu_save_plots.Append( -1, "&Save cooling rate plot", "") self.Bind(wx.EVT_MENU, self.on_save_CR_plot, m_save_CR_plot, "CR") m_save_sample_plot = submenu_save_plots.Append( -1, "&Save sample plot", "") self.Bind(wx.EVT_MENU, self.on_save_sample_plot, m_save_sample_plot, "Samp") #m_save_all_plots = submenu_save_plots.Append(-1, "&Save all plots", "") #self.Bind(wx.EVT_MENU, self.on_save_all_plots, m_save_all_plots) menu_file.AppendSeparator() m_new_sub_plots = menu_file.AppendSubMenu(submenu_save_plots, "&Save plot") menu_file.AppendSeparator() m_exit = menu_file.Append(wx.ID_EXIT, "Quit", "Quit application") self.Bind(wx.EVT_MENU, self.on_menu_exit, m_exit) menu_anisotropy = wx.Menu() m_calculate_aniso_tensor = menu_anisotropy.Append( -1, "&Calculate anisotropy tensors", "") self.Bind(wx.EVT_MENU, self.on_menu_calculate_aniso_tensor, m_calculate_aniso_tensor) m_show_anisotropy_errors = menu_anisotropy.Append( -1, "&Show anisotropy calculation Warnings/Errors", "") self.Bind(wx.EVT_MENU, self.on_show_anisotropy_errors, m_show_anisotropy_errors) menu_Analysis = wx.Menu() submenu_criteria = wx.Menu() # m_set_criteria_to_default = submenu_criteria.Append(-1, "&Set acceptance criteria to default", "") # self.Bind(wx.EVT_MENU, self.on_menu_default_criteria, m_set_criteria_to_default) m_change_criteria_file = submenu_criteria.Append( -1, "&Change acceptance criteria", "") self.Bind(wx.EVT_MENU, self.on_menu_criteria, m_change_criteria_file) m_import_criteria_file = submenu_criteria.Append( -1, "&Import criteria file", "") self.Bind(wx.EVT_MENU, self.on_menu_criteria_file, m_import_criteria_file) m_new_sub = menu_Analysis.AppendSubMenu(submenu_criteria, "Acceptance criteria") m_previous_interpretation = menu_Analysis.Append( -1, "&Import previous interpretation from a 'redo' file", "") self.Bind(wx.EVT_MENU, self.on_menu_previous_interpretation, m_previous_interpretation) m_save_interpretation = menu_Analysis.Append( -1, "&Save current interpretations to a 'redo' file", "") self.Bind(wx.EVT_MENU, self.on_menu_save_interpretation, m_save_interpretation) m_delete_interpretation = menu_Analysis.Append( -1, "&Clear all current interpretations", "") self.Bind(wx.EVT_MENU, self.on_menu_clear_interpretation, m_delete_interpretation) menu_Tools = wx.Menu() #m_prev_interpretation = menu_file.Append(-1, "&Save plot\tCtrl-S", "Save plot to file") menu_Auto_Interpreter = wx.Menu() m_interpreter = menu_Auto_Interpreter.Append( -1, "&Run Thellier auto interpreter", "Run auto interpter") self.Bind(wx.EVT_MENU, self.on_menu_run_interpreter, m_interpreter) m_open_interpreter_file = menu_Auto_Interpreter.Append( -1, "&Open auto-interpreter output files", "") self.Bind(wx.EVT_MENU, self.on_menu_open_interpreter_file, m_open_interpreter_file) m_open_interpreter_log = menu_Auto_Interpreter.Append( -1, "&Open auto-interpreter Warnings/Errors", "") self.Bind(wx.EVT_MENU, self.on_menu_open_interpreter_log, m_open_interpreter_log) #menu_consistency_test = wx.Menu() #m_run_consistency_test = menu_consistency_test.Append( # -1, "&Run Consistency test", "") #self.Bind(wx.EVT_MENU, self.on_menu_run_consistency_test, # m_run_consistency_test) #m_run_consistency_test_b = menu_Optimizer.Append(-1, "&Run Consistency test beta version", "") #self.Bind(wx.EVT_MENU, self.on_menu_run_consistency_test_b, m_run_consistency_test_b) menu_Plot = wx.Menu() m_plot_data = menu_Plot.Append(-1, "&Plot paleointensity curve", "") self.Bind(wx.EVT_MENU, self.on_menu_plot_data, m_plot_data) menu_Help = wx.Menu() m_cookbook = menu_Help.Append(-1, "&PmagPy Cookbook\tCtrl-Shift-W", "") self.Bind(wx.EVT_MENU, self.on_menu_cookbook, m_cookbook) m_docs = menu_Help.Append(-1, "&Open Docs\tCtrl-Shift-H", "") self.Bind(wx.EVT_MENU, self.on_menu_docs, m_docs) m_git = menu_Help.Append(-1, "&Github Page\tCtrl-Shift-G", "") self.Bind(wx.EVT_MENU, self.on_menu_git, m_git) m_debug = menu_Help.Append(-1, "&Open Debugger\tCtrl-Shift-D", "") self.Bind(wx.EVT_MENU, self.on_menu_debug, m_debug) #menu_results_table= wx.Menu() #m_make_results_table = menu_results_table.Append(-1, "&Make results table", "") #self.Bind(wx.EVT_MENU, self.on_menu_results_data, m_make_results_table) #menu_MagIC= wx.Menu() #m_convert_to_magic= menu_MagIC.Append(-1, "&Convert generic files to MagIC format", "") #self.Bind(wx.EVT_MENU, self.on_menu_convert_to_magic, m_convert_to_magic) #m_build_magic_model= menu_MagIC.Append(-1, "&Run MagIC model builder", "") #self.Bind(wx.EVT_MENU, self.on_menu_MagIC_model_builder, m_build_magic_model) #m_prepare_MagIC_results_tables= menu_MagIC.Append(-1, "&Make MagIC results Table", "") #self.Bind(wx.EVT_MENU, self.on_menu_prepare_magic_results_tables, m_prepare_MagIC_results_tables) #menu_help = wx.Menu() #m_about = menu_help.Append(-1, "&About\tF1", "About this program") self.menubar.Append(menu_preferences, "& Preferences") self.menubar.Append(menu_file, "&File") self.menubar.Append(menu_anisotropy, "&Anisotropy") self.menubar.Append(menu_Analysis, "&Analysis") self.menubar.Append(menu_Auto_Interpreter, "&Auto Interpreter") #self.menubar.Append(menu_consistency_test, "&Consistency Test") self.menubar.Append(menu_Plot, "&Plot") self.menubar.Append(menu_Help, "&Help") #self.menubar.Append(menu_results_table, "&Table") #self.menubar.Append(menu_MagIC, "&MagIC") self.SetMenuBar(self.menubar)
python
def create_menu(self): """ Create menu bar """ self.menubar = wx.MenuBar() menu_preferences = wx.Menu() m_preferences_apperance = menu_preferences.Append( -1, "&Appearence preferences", "") self.Bind(wx.EVT_MENU, self.on_menu_appearance_preferences, m_preferences_apperance) m_preferences_spd = menu_preferences.Append( -1, "&Specimen paleointensity statistics (from SPD list)", "") self.Bind(wx.EVT_MENU, self.on_menu_m_preferences_spd, m_preferences_spd) #m_preferences_stat = menu_preferences.Append(-1, "&Statistical preferences", "") #self.Bind(wx.EVT_MENU, self.on_menu_preferences_stat, m_preferences_stat) #m_save_preferences = menu_preferences.Append(-1, "&Save preferences", "") #self.Bind(wx.EVT_MENU, self.on_menu_save_preferences, m_save_preferences) menu_file = wx.Menu() m_change_working_directory = menu_file.Append( -1, "&Change project directory", "") self.Bind(wx.EVT_MENU, self.on_menu_change_working_directory, m_change_working_directory) #m_add_working_directory = menu_file.Append(-1, "&Add a MagIC project directory", "") #self.Bind(wx.EVT_MENU, self.on_menu_add_working_directory, m_add_working_directory) m_open_magic_file = menu_file.Append(-1, "&Open MagIC measurement file", "") self.Bind(wx.EVT_MENU, self.on_menu_open_magic_file, m_open_magic_file) m_open_magic_tree = menu_file.Append( -1, "&Open all MagIC project directories in path", "") self.Bind(wx.EVT_MENU, self.on_menu_m_open_magic_tree, m_open_magic_tree) menu_file.AppendSeparator() m_prepare_MagIC_results_tables = menu_file.Append( -1, "&Save MagIC tables", "") self.Bind(wx.EVT_MENU, self.on_menu_prepare_magic_results_tables, m_prepare_MagIC_results_tables) submenu_save_plots = wx.Menu() m_save_Arai_plot = submenu_save_plots.Append(-1, "&Save Arai plot", "") self.Bind(wx.EVT_MENU, self.on_save_Arai_plot, m_save_Arai_plot) m_save_zij_plot = submenu_save_plots.Append( -1, "&Save Zijderveld plot", "") self.Bind(wx.EVT_MENU, self.on_save_Zij_plot, m_save_zij_plot, "Zij") m_save_eq_plot = submenu_save_plots.Append( -1, "&Save equal area plot", "") self.Bind(wx.EVT_MENU, self.on_save_Eq_plot, m_save_eq_plot, "Eq") m_save_M_t_plot = submenu_save_plots.Append(-1, "&Save M-t plot", "") self.Bind(wx.EVT_MENU, self.on_save_M_t_plot, m_save_M_t_plot, "M_t") m_save_NLT_plot = submenu_save_plots.Append(-1, "&Save NLT plot", "") self.Bind(wx.EVT_MENU, self.on_save_NLT_plot, m_save_NLT_plot, "NLT") m_save_CR_plot = submenu_save_plots.Append( -1, "&Save cooling rate plot", "") self.Bind(wx.EVT_MENU, self.on_save_CR_plot, m_save_CR_plot, "CR") m_save_sample_plot = submenu_save_plots.Append( -1, "&Save sample plot", "") self.Bind(wx.EVT_MENU, self.on_save_sample_plot, m_save_sample_plot, "Samp") #m_save_all_plots = submenu_save_plots.Append(-1, "&Save all plots", "") #self.Bind(wx.EVT_MENU, self.on_save_all_plots, m_save_all_plots) menu_file.AppendSeparator() m_new_sub_plots = menu_file.AppendSubMenu(submenu_save_plots, "&Save plot") menu_file.AppendSeparator() m_exit = menu_file.Append(wx.ID_EXIT, "Quit", "Quit application") self.Bind(wx.EVT_MENU, self.on_menu_exit, m_exit) menu_anisotropy = wx.Menu() m_calculate_aniso_tensor = menu_anisotropy.Append( -1, "&Calculate anisotropy tensors", "") self.Bind(wx.EVT_MENU, self.on_menu_calculate_aniso_tensor, m_calculate_aniso_tensor) m_show_anisotropy_errors = menu_anisotropy.Append( -1, "&Show anisotropy calculation Warnings/Errors", "") self.Bind(wx.EVT_MENU, self.on_show_anisotropy_errors, m_show_anisotropy_errors) menu_Analysis = wx.Menu() submenu_criteria = wx.Menu() # m_set_criteria_to_default = submenu_criteria.Append(-1, "&Set acceptance criteria to default", "") # self.Bind(wx.EVT_MENU, self.on_menu_default_criteria, m_set_criteria_to_default) m_change_criteria_file = submenu_criteria.Append( -1, "&Change acceptance criteria", "") self.Bind(wx.EVT_MENU, self.on_menu_criteria, m_change_criteria_file) m_import_criteria_file = submenu_criteria.Append( -1, "&Import criteria file", "") self.Bind(wx.EVT_MENU, self.on_menu_criteria_file, m_import_criteria_file) m_new_sub = menu_Analysis.AppendSubMenu(submenu_criteria, "Acceptance criteria") m_previous_interpretation = menu_Analysis.Append( -1, "&Import previous interpretation from a 'redo' file", "") self.Bind(wx.EVT_MENU, self.on_menu_previous_interpretation, m_previous_interpretation) m_save_interpretation = menu_Analysis.Append( -1, "&Save current interpretations to a 'redo' file", "") self.Bind(wx.EVT_MENU, self.on_menu_save_interpretation, m_save_interpretation) m_delete_interpretation = menu_Analysis.Append( -1, "&Clear all current interpretations", "") self.Bind(wx.EVT_MENU, self.on_menu_clear_interpretation, m_delete_interpretation) menu_Tools = wx.Menu() #m_prev_interpretation = menu_file.Append(-1, "&Save plot\tCtrl-S", "Save plot to file") menu_Auto_Interpreter = wx.Menu() m_interpreter = menu_Auto_Interpreter.Append( -1, "&Run Thellier auto interpreter", "Run auto interpter") self.Bind(wx.EVT_MENU, self.on_menu_run_interpreter, m_interpreter) m_open_interpreter_file = menu_Auto_Interpreter.Append( -1, "&Open auto-interpreter output files", "") self.Bind(wx.EVT_MENU, self.on_menu_open_interpreter_file, m_open_interpreter_file) m_open_interpreter_log = menu_Auto_Interpreter.Append( -1, "&Open auto-interpreter Warnings/Errors", "") self.Bind(wx.EVT_MENU, self.on_menu_open_interpreter_log, m_open_interpreter_log) #menu_consistency_test = wx.Menu() #m_run_consistency_test = menu_consistency_test.Append( # -1, "&Run Consistency test", "") #self.Bind(wx.EVT_MENU, self.on_menu_run_consistency_test, # m_run_consistency_test) #m_run_consistency_test_b = menu_Optimizer.Append(-1, "&Run Consistency test beta version", "") #self.Bind(wx.EVT_MENU, self.on_menu_run_consistency_test_b, m_run_consistency_test_b) menu_Plot = wx.Menu() m_plot_data = menu_Plot.Append(-1, "&Plot paleointensity curve", "") self.Bind(wx.EVT_MENU, self.on_menu_plot_data, m_plot_data) menu_Help = wx.Menu() m_cookbook = menu_Help.Append(-1, "&PmagPy Cookbook\tCtrl-Shift-W", "") self.Bind(wx.EVT_MENU, self.on_menu_cookbook, m_cookbook) m_docs = menu_Help.Append(-1, "&Open Docs\tCtrl-Shift-H", "") self.Bind(wx.EVT_MENU, self.on_menu_docs, m_docs) m_git = menu_Help.Append(-1, "&Github Page\tCtrl-Shift-G", "") self.Bind(wx.EVT_MENU, self.on_menu_git, m_git) m_debug = menu_Help.Append(-1, "&Open Debugger\tCtrl-Shift-D", "") self.Bind(wx.EVT_MENU, self.on_menu_debug, m_debug) #menu_results_table= wx.Menu() #m_make_results_table = menu_results_table.Append(-1, "&Make results table", "") #self.Bind(wx.EVT_MENU, self.on_menu_results_data, m_make_results_table) #menu_MagIC= wx.Menu() #m_convert_to_magic= menu_MagIC.Append(-1, "&Convert generic files to MagIC format", "") #self.Bind(wx.EVT_MENU, self.on_menu_convert_to_magic, m_convert_to_magic) #m_build_magic_model= menu_MagIC.Append(-1, "&Run MagIC model builder", "") #self.Bind(wx.EVT_MENU, self.on_menu_MagIC_model_builder, m_build_magic_model) #m_prepare_MagIC_results_tables= menu_MagIC.Append(-1, "&Make MagIC results Table", "") #self.Bind(wx.EVT_MENU, self.on_menu_prepare_magic_results_tables, m_prepare_MagIC_results_tables) #menu_help = wx.Menu() #m_about = menu_help.Append(-1, "&About\tF1", "About this program") self.menubar.Append(menu_preferences, "& Preferences") self.menubar.Append(menu_file, "&File") self.menubar.Append(menu_anisotropy, "&Anisotropy") self.menubar.Append(menu_Analysis, "&Analysis") self.menubar.Append(menu_Auto_Interpreter, "&Auto Interpreter") #self.menubar.Append(menu_consistency_test, "&Consistency Test") self.menubar.Append(menu_Plot, "&Plot") self.menubar.Append(menu_Help, "&Help") #self.menubar.Append(menu_results_table, "&Table") #self.menubar.Append(menu_MagIC, "&MagIC") self.SetMenuBar(self.menubar)
Create menu bar
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1353-L1559
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.update_selection
def update_selection(self): """ update figures and statistics windows with a new selection of specimen """ # clear all boxes self.clear_boxes() self.draw_figure(self.s) # update temperature list if self.Data[self.s]['T_or_MW'] == "T": self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273. else: self.temperatures = np.array(self.Data[self.s]['t_Arai']) self.T_list = ["%.0f" % T for T in self.temperatures] self.tmin_box.SetItems(self.T_list) self.tmax_box.SetItems(self.T_list) self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.Blab_window.SetValue( "%.0f" % (float(self.Data[self.s]['pars']['lab_dc_field']) * 1e6)) if "saved" in self.Data[self.s]['pars']: self.pars = self.Data[self.s]['pars'] self.update_GUI_with_new_interpretation() self.Add_text(self.s) self.write_sample_box()
python
def update_selection(self): """ update figures and statistics windows with a new selection of specimen """ # clear all boxes self.clear_boxes() self.draw_figure(self.s) # update temperature list if self.Data[self.s]['T_or_MW'] == "T": self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273. else: self.temperatures = np.array(self.Data[self.s]['t_Arai']) self.T_list = ["%.0f" % T for T in self.temperatures] self.tmin_box.SetItems(self.T_list) self.tmax_box.SetItems(self.T_list) self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.Blab_window.SetValue( "%.0f" % (float(self.Data[self.s]['pars']['lab_dc_field']) * 1e6)) if "saved" in self.Data[self.s]['pars']: self.pars = self.Data[self.s]['pars'] self.update_GUI_with_new_interpretation() self.Add_text(self.s) self.write_sample_box()
update figures and statistics windows with a new selection of specimen
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1564-L1590
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.onSelect_specimen
def onSelect_specimen(self, event): """ update figures and text when a new specimen is selected """ new_s = self.specimens_box.GetValue() if self.select_specimen(new_s): self.update_selection() else: self.specimens_box.SetValue(self.s) self.user_warning( "no specimen %s reverting to old specimen %s" % (new_s, self.s))
python
def onSelect_specimen(self, event): """ update figures and text when a new specimen is selected """ new_s = self.specimens_box.GetValue() if self.select_specimen(new_s): self.update_selection() else: self.specimens_box.SetValue(self.s) self.user_warning( "no specimen %s reverting to old specimen %s" % (new_s, self.s))
update figures and text when a new specimen is selected
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1615-L1625
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_info_click
def on_info_click(self, event): """ Show popup info window when user clicks "?" """ def on_close(event, wind): wind.Close() wind.Destroy() event.Skip() wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER) if self.auto_save.GetValue(): info = "'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'." else: info = "'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'." text = wx.StaticText(wind, -1, info) box = wx.StaticBox(wind, -1, 'Info:') boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL) boxSizer.Add(text, 5, wx.ALL | wx.CENTER) exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close') wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn) boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER) wind.SetSizer(boxSizer) wind.Layout() wind.Popup()
python
def on_info_click(self, event): """ Show popup info window when user clicks "?" """ def on_close(event, wind): wind.Close() wind.Destroy() event.Skip() wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER) if self.auto_save.GetValue(): info = "'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'." else: info = "'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'." text = wx.StaticText(wind, -1, info) box = wx.StaticBox(wind, -1, 'Info:') boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL) boxSizer.Add(text, 5, wx.ALL | wx.CENTER) exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close') wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn) boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER) wind.SetSizer(boxSizer) wind.Layout() wind.Popup()
Show popup info window when user clicks "?"
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1683-L1705
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_prev_button
def on_prev_button(self, event): """ update figures and text when a previous button is selected """ if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars']['saved'] != True: # check preferences if self.auto_save.GetValue(): self.on_save_interpretation_button(None) else: del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s]['lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s]['er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] # return to last saved interpretation if exist if 'er_specimen_name' in list(self.last_saved_pars.keys()) and self.last_saved_pars['er_specimen_name'] == self.s: for key in list(self.last_saved_pars.keys()): self.Data[self.s]['pars'][key] = self.last_saved_pars[key] self.last_saved_pars = {} index = self.specimens.index(self.s) if index == 0: index = len(self.specimens) index -= 1 self.s = self.specimens[index] self.specimens_box.SetStringSelection(self.s) self.update_selection()
python
def on_prev_button(self, event): """ update figures and text when a previous button is selected """ if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars']['saved'] != True: # check preferences if self.auto_save.GetValue(): self.on_save_interpretation_button(None) else: del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s]['lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s]['er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s]['er_sample_name'] # return to last saved interpretation if exist if 'er_specimen_name' in list(self.last_saved_pars.keys()) and self.last_saved_pars['er_specimen_name'] == self.s: for key in list(self.last_saved_pars.keys()): self.Data[self.s]['pars'][key] = self.last_saved_pars[key] self.last_saved_pars = {} index = self.specimens.index(self.s) if index == 0: index = len(self.specimens) index -= 1 self.s = self.specimens[index] self.specimens_box.SetStringSelection(self.s) self.update_selection()
update figures and text when a previous button is selected
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1707-L1733
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.clear_boxes
def clear_boxes(self): """ Clear all boxes """ self.tmin_box.Clear() self.tmin_box.SetItems(self.T_list) self.tmin_box.SetSelection(-1) self.tmax_box.Clear() self.tmax_box.SetItems(self.T_list) self.tmax_box.SetSelection(-1) self.Blab_window.SetValue("") self.Banc_window.SetValue("") self.Banc_window.SetBackgroundColour(wx.Colour('grey')) self.Aniso_factor_window.SetValue("") self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey')) self.NLT_factor_window.SetValue("") self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey')) self.CR_factor_window.SetValue("") self.CR_factor_window.SetBackgroundColour(wx.Colour('grey')) self.declination_window.SetValue("") self.declination_window.SetBackgroundColour(wx.Colour('grey')) self.inclination_window.SetValue("") self.inclination_window.SetBackgroundColour(wx.Colour('grey')) window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma', 'sample_int_sigma_perc'] for key in window_list: command = "self.%s_window.SetValue(\"\")" % key exec(command) command = "self.%s_window.SetBackgroundColour(wx.Colour('grey'))" % key exec(command) # window_list=['int_n','int_ptrm_n','frac','scat','gmax','f','fvds','b_beta','g','q','int_mad','int_dang','drats','md','ptrms_dec','ptrms_inc','ptrms_mad','ptrms_angle'] # for key in window_list: for key in self.preferences['show_statistics_on_gui']: self.stat_windows[key].SetValue("") self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))
python
def clear_boxes(self): """ Clear all boxes """ self.tmin_box.Clear() self.tmin_box.SetItems(self.T_list) self.tmin_box.SetSelection(-1) self.tmax_box.Clear() self.tmax_box.SetItems(self.T_list) self.tmax_box.SetSelection(-1) self.Blab_window.SetValue("") self.Banc_window.SetValue("") self.Banc_window.SetBackgroundColour(wx.Colour('grey')) self.Aniso_factor_window.SetValue("") self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey')) self.NLT_factor_window.SetValue("") self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey')) self.CR_factor_window.SetValue("") self.CR_factor_window.SetBackgroundColour(wx.Colour('grey')) self.declination_window.SetValue("") self.declination_window.SetBackgroundColour(wx.Colour('grey')) self.inclination_window.SetValue("") self.inclination_window.SetBackgroundColour(wx.Colour('grey')) window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma', 'sample_int_sigma_perc'] for key in window_list: command = "self.%s_window.SetValue(\"\")" % key exec(command) command = "self.%s_window.SetBackgroundColour(wx.Colour('grey'))" % key exec(command) # window_list=['int_n','int_ptrm_n','frac','scat','gmax','f','fvds','b_beta','g','q','int_mad','int_dang','drats','md','ptrms_dec','ptrms_inc','ptrms_mad','ptrms_angle'] # for key in window_list: for key in self.preferences['show_statistics_on_gui']: self.stat_windows[key].SetValue("") self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))
Clear all boxes
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L1737-L1775
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.read_preferences_file
def read_preferences_file(self): """ If json preferences file exists, read it in. """ user_data_dir = find_pmag_dir.find_user_data_dir("thellier_gui") if not user_data_dir: return {} if os.path.exists(user_data_dir): pref_file = os.path.join(user_data_dir, "thellier_gui_preferences.json") if os.path.exists(pref_file): with open(pref_file, "r") as pfile: return json.load(pfile) return {}
python
def read_preferences_file(self): """ If json preferences file exists, read it in. """ user_data_dir = find_pmag_dir.find_user_data_dir("thellier_gui") if not user_data_dir: return {} if os.path.exists(user_data_dir): pref_file = os.path.join(user_data_dir, "thellier_gui_preferences.json") if os.path.exists(pref_file): with open(pref_file, "r") as pfile: return json.load(pfile) return {}
If json preferences file exists, read it in.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2174-L2186
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.write_preferences_file
def write_preferences_file(self): """ Write json preferences file to (platform specific) user data directory, or PmagPy directory if appdirs module is missing. """ user_data_dir = find_pmag_dir.find_user_data_dir("thellier_gui") if not os.path.exists(user_data_dir): find_pmag_dir.make_user_data_dir(user_data_dir) pref_file = os.path.join(user_data_dir, "thellier_gui_preferences.json") with open(pref_file, "w+") as pfile: print('-I- writing preferences to {}'.format(pref_file)) json.dump(self.preferences, pfile)
python
def write_preferences_file(self): """ Write json preferences file to (platform specific) user data directory, or PmagPy directory if appdirs module is missing. """ user_data_dir = find_pmag_dir.find_user_data_dir("thellier_gui") if not os.path.exists(user_data_dir): find_pmag_dir.make_user_data_dir(user_data_dir) pref_file = os.path.join(user_data_dir, "thellier_gui_preferences.json") with open(pref_file, "w+") as pfile: print('-I- writing preferences to {}'.format(pref_file)) json.dump(self.preferences, pfile)
Write json preferences file to (platform specific) user data directory, or PmagPy directory if appdirs module is missing.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2188-L2199
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_exit
def on_menu_exit(self, event): """ Runs whenever Thellier GUI exits """ if self.close_warning: TEXT = "Data is not saved to a file yet!\nTo properly save your data:\n1) Analysis --> Save current interpretations to a redo file.\nor\n1) File --> Save MagIC tables.\n\n Press OK to exit without saving." dlg1 = wx.MessageDialog( None, caption="Warning:", message=TEXT, style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION) if self.show_dlg(dlg1) == wx.ID_OK: dlg1.Destroy() self.GUI_log.close() self.Destroy() # if a custom quit event is specified, fire it if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit() else: self.GUI_log.close() self.Destroy() # if a custom quit event is specified, fire it if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit()
python
def on_menu_exit(self, event): """ Runs whenever Thellier GUI exits """ if self.close_warning: TEXT = "Data is not saved to a file yet!\nTo properly save your data:\n1) Analysis --> Save current interpretations to a redo file.\nor\n1) File --> Save MagIC tables.\n\n Press OK to exit without saving." dlg1 = wx.MessageDialog( None, caption="Warning:", message=TEXT, style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION) if self.show_dlg(dlg1) == wx.ID_OK: dlg1.Destroy() self.GUI_log.close() self.Destroy() # if a custom quit event is specified, fire it if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit() else: self.GUI_log.close() self.Destroy() # if a custom quit event is specified, fire it if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit()
Runs whenever Thellier GUI exits
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2283-L2309
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_previous_interpretation
def on_menu_previous_interpretation(self, event): """ Create and show the Open FileDialog for upload previous interpretation input should be a valid "redo file": [specimen name] [tmin(kelvin)] [tmax(kelvin)] """ save_current_specimen = self.s dlg = wx.FileDialog( self, message="choose a file in a pmagpy redo format", defaultDir=self.WD, defaultFile="thellier_GUI.redo", wildcard="*.redo", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if self.show_dlg(dlg) == wx.ID_OK: redo_file = dlg.GetPath() if self.test_mode: redo_file = "thellier_GUI.redo" else: redo_file = None dlg.Destroy() print("redo_file", redo_file) if redo_file: self.read_redo_file(redo_file)
python
def on_menu_previous_interpretation(self, event): """ Create and show the Open FileDialog for upload previous interpretation input should be a valid "redo file": [specimen name] [tmin(kelvin)] [tmax(kelvin)] """ save_current_specimen = self.s dlg = wx.FileDialog( self, message="choose a file in a pmagpy redo format", defaultDir=self.WD, defaultFile="thellier_GUI.redo", wildcard="*.redo", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if self.show_dlg(dlg) == wx.ID_OK: redo_file = dlg.GetPath() if self.test_mode: redo_file = "thellier_GUI.redo" else: redo_file = None dlg.Destroy() print("redo_file", redo_file) if redo_file: self.read_redo_file(redo_file)
Create and show the Open FileDialog for upload previous interpretation input should be a valid "redo file": [specimen name] [tmin(kelvin)] [tmax(kelvin)]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2420-L2444
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_criteria_file
def on_menu_criteria_file(self, event): """ read pmag_criteria.txt file and open change criteria dialog """ if self.data_model == 3: dlg = wx.FileDialog( self, message="choose a file in MagIC Data Model 3.0 format", defaultDir=self.WD, defaultFile="criteria.txt", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) else: dlg = wx.FileDialog( self, message="choose a file in a MagIC Data Model 2.5 pmagpy format", defaultDir=self.WD, defaultFile="pmag_criteria.txt", # wildcard=wildcard, style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if self.show_dlg(dlg) == wx.ID_OK: criteria_file = dlg.GetPath() self.GUI_log.write( "-I- Read new criteria file: %s\n" % criteria_file) dlg.Destroy() replace_acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) try: if self.data_model == 3: self.read_criteria_file(criteria_file) replace_acceptance_criteria = self.acceptance_criteria # replace_acceptance_criteria=pmag.read_criteria_from_file(criteria_file,replace_acceptance_criteria,data_model=self.data_model) # # just to see if file exists print(replace_acceptance_criteria) else: replace_acceptance_criteria = pmag.read_criteria_from_file( criteria_file, replace_acceptance_criteria, data_model=self.data_model) # just to see if file exists except Exception as ex: print('-W-', ex) dlg1 = wx.MessageDialog( self, caption="Error:", message="error in reading file", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() return self.add_thellier_gui_criteria() self.read_criteria_file(criteria_file) # check if some statistics are in the new criteria but not in old. If # yes, add to self.preferences['show_statistics_on_gui'] crit_list_not_in_pref = [] for crit in list(self.acceptance_criteria.keys()): if self.acceptance_criteria[crit]['category'] == "IE-SPEC": if self.acceptance_criteria[crit]['value'] != -999: short_crit = crit.split('specimen_')[-1] if short_crit not in self.preferences['show_statistics_on_gui']: print("-I- statistic %s is not in your preferences" % crit) self.preferences['show_statistics_on_gui'].append( short_crit) crit_list_not_in_pref.append(crit) if len(crit_list_not_in_pref) > 0: stat_list = ":".join(crit_list_not_in_pref) dlg1 = wx.MessageDialog(self, caption="WARNING:", message="statistics '%s' is in the imported criteria file but not in your appearence preferences.\nThis statistic will not appear on the gui panel.\n The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it " % stat_list, style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() dia = thellier_gui_dialogs.Criteria_Dialog( None, self.acceptance_criteria, self.preferences, title='Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: # Until the user clicks OK, show the message self.On_close_criteria_box(dia) if len(crit_list_not_in_pref) > 0: dlg1 = wx.MessageDialog(self, caption="WARNING:", message="Exiting now! When you restart the gui all the new statistics will be added.", style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() self.on_menu_exit(None) # self.Destroy() # sys.exit() if result == wx.ID_CANCEL: # Until the user clicks OK, show the message for crit in crit_list_not_in_pref: short_crit = crit.split('specimen_')[-1] self.preferences['show_statistics_on_gui'].remove(short_crit)
python
def on_menu_criteria_file(self, event): """ read pmag_criteria.txt file and open change criteria dialog """ if self.data_model == 3: dlg = wx.FileDialog( self, message="choose a file in MagIC Data Model 3.0 format", defaultDir=self.WD, defaultFile="criteria.txt", style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) else: dlg = wx.FileDialog( self, message="choose a file in a MagIC Data Model 2.5 pmagpy format", defaultDir=self.WD, defaultFile="pmag_criteria.txt", # wildcard=wildcard, style=wx.FD_OPEN | wx.FD_CHANGE_DIR ) if self.show_dlg(dlg) == wx.ID_OK: criteria_file = dlg.GetPath() self.GUI_log.write( "-I- Read new criteria file: %s\n" % criteria_file) dlg.Destroy() replace_acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) try: if self.data_model == 3: self.read_criteria_file(criteria_file) replace_acceptance_criteria = self.acceptance_criteria # replace_acceptance_criteria=pmag.read_criteria_from_file(criteria_file,replace_acceptance_criteria,data_model=self.data_model) # # just to see if file exists print(replace_acceptance_criteria) else: replace_acceptance_criteria = pmag.read_criteria_from_file( criteria_file, replace_acceptance_criteria, data_model=self.data_model) # just to see if file exists except Exception as ex: print('-W-', ex) dlg1 = wx.MessageDialog( self, caption="Error:", message="error in reading file", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() return self.add_thellier_gui_criteria() self.read_criteria_file(criteria_file) # check if some statistics are in the new criteria but not in old. If # yes, add to self.preferences['show_statistics_on_gui'] crit_list_not_in_pref = [] for crit in list(self.acceptance_criteria.keys()): if self.acceptance_criteria[crit]['category'] == "IE-SPEC": if self.acceptance_criteria[crit]['value'] != -999: short_crit = crit.split('specimen_')[-1] if short_crit not in self.preferences['show_statistics_on_gui']: print("-I- statistic %s is not in your preferences" % crit) self.preferences['show_statistics_on_gui'].append( short_crit) crit_list_not_in_pref.append(crit) if len(crit_list_not_in_pref) > 0: stat_list = ":".join(crit_list_not_in_pref) dlg1 = wx.MessageDialog(self, caption="WARNING:", message="statistics '%s' is in the imported criteria file but not in your appearence preferences.\nThis statistic will not appear on the gui panel.\n The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it " % stat_list, style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() dia = thellier_gui_dialogs.Criteria_Dialog( None, self.acceptance_criteria, self.preferences, title='Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: # Until the user clicks OK, show the message self.On_close_criteria_box(dia) if len(crit_list_not_in_pref) > 0: dlg1 = wx.MessageDialog(self, caption="WARNING:", message="Exiting now! When you restart the gui all the new statistics will be added.", style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() self.on_menu_exit(None) # self.Destroy() # sys.exit() if result == wx.ID_CANCEL: # Until the user clicks OK, show the message for crit in crit_list_not_in_pref: short_crit = crit.split('specimen_')[-1] self.preferences['show_statistics_on_gui'].remove(short_crit)
read pmag_criteria.txt file and open change criteria dialog
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2617-L2704
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_criteria
def on_menu_criteria(self, event): """ Change acceptance criteria and save it to the criteria file (data_model=2: pmag_criteria.txt; data_model=3: criteria.txt) """ dia = thellier_gui_dialogs.Criteria_Dialog( None, self.acceptance_criteria, self.preferences, title='Set Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: # Until the user clicks OK, show the message self.On_close_criteria_box(dia)
python
def on_menu_criteria(self, event): """ Change acceptance criteria and save it to the criteria file (data_model=2: pmag_criteria.txt; data_model=3: criteria.txt) """ dia = thellier_gui_dialogs.Criteria_Dialog( None, self.acceptance_criteria, self.preferences, title='Set Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: # Until the user clicks OK, show the message self.On_close_criteria_box(dia)
Change acceptance criteria and save it to the criteria file (data_model=2: pmag_criteria.txt; data_model=3: criteria.txt)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2708-L2720
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.On_close_criteria_box
def On_close_criteria_box(self, dia): """ after criteria dialog window is closed. Take the acceptance criteria values and update self.acceptance_criteria """ criteria_list = list(self.acceptance_criteria.keys()) criteria_list.sort() #--------------------------------------- # check if averaging by sample or by site # and intialize sample/site criteria #--------------------------------------- avg_by = dia.set_average_by_sample_or_site.GetValue() if avg_by == 'sample': for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc', 'site_aniso_mean', 'site_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 if avg_by == 'site': for crit in ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc', 'sample_aniso_mean', 'sample_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 #--------- # get value for each criterion for i in range(len(criteria_list)): crit = criteria_list[i] value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria) if accept: self.acceptance_criteria.update(accept) #--------- # thellier interpreter calculation type if dia.set_stdev_opt.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt' elif dia.set_bs.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs' elif dia.set_bs_par.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs_par' # message dialog dlg1 = wx.MessageDialog( self, caption="Warning:", message="changes are saved to the criteria file\n ", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: try: self.clear_boxes() except IndexError: pass try: self.write_acceptance_criteria_to_boxes() except IOError: pass if self.data_model == 3: crit_file = 'criteria.txt' else: crit_file = 'pmag_criteria.txt' try: pmag.write_criteria_to_file(os.path.join( self.WD, crit_file), self.acceptance_criteria, data_model=self.data_model, prior_crits=self.crit_data) except AttributeError as ex: print(ex) print("no criteria given to save") dlg1.Destroy() dia.Destroy() self.fig4.texts[0].remove() txt = "{} data".format(avg_by).capitalize() self.fig4.text(0.02, 0.96, txt, { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.recalculate_satistics() try: self.update_GUI_with_new_interpretation() except KeyError: pass
python
def On_close_criteria_box(self, dia): """ after criteria dialog window is closed. Take the acceptance criteria values and update self.acceptance_criteria """ criteria_list = list(self.acceptance_criteria.keys()) criteria_list.sort() #--------------------------------------- # check if averaging by sample or by site # and intialize sample/site criteria #--------------------------------------- avg_by = dia.set_average_by_sample_or_site.GetValue() if avg_by == 'sample': for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc', 'site_aniso_mean', 'site_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 if avg_by == 'site': for crit in ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc', 'sample_aniso_mean', 'sample_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 #--------- # get value for each criterion for i in range(len(criteria_list)): crit = criteria_list[i] value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria) if accept: self.acceptance_criteria.update(accept) #--------- # thellier interpreter calculation type if dia.set_stdev_opt.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt' elif dia.set_bs.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs' elif dia.set_bs_par.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs_par' # message dialog dlg1 = wx.MessageDialog( self, caption="Warning:", message="changes are saved to the criteria file\n ", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: try: self.clear_boxes() except IndexError: pass try: self.write_acceptance_criteria_to_boxes() except IOError: pass if self.data_model == 3: crit_file = 'criteria.txt' else: crit_file = 'pmag_criteria.txt' try: pmag.write_criteria_to_file(os.path.join( self.WD, crit_file), self.acceptance_criteria, data_model=self.data_model, prior_crits=self.crit_data) except AttributeError as ex: print(ex) print("no criteria given to save") dlg1.Destroy() dia.Destroy() self.fig4.texts[0].remove() txt = "{} data".format(avg_by).capitalize() self.fig4.text(0.02, 0.96, txt, { 'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.recalculate_satistics() try: self.update_GUI_with_new_interpretation() except KeyError: pass
after criteria dialog window is closed. Take the acceptance criteria values and update self.acceptance_criteria
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2722-L2794
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.recalculate_satistics
def recalculate_satistics(self): ''' update self.Data[specimen]['pars'] for all specimens. ''' gframe = wx.BusyInfo( "Re-calculating statistics for all specimens\n Please wait..", self) for specimen in list(self.Data.keys()): if 'pars' not in list(self.Data[specimen].keys()): continue if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()): continue tmin = self.Data[specimen]['pars']['measurement_step_min'] tmax = self.Data[specimen]['pars']['measurement_step_max'] pars = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, tmin, tmax, self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars'] = pars self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen]['lab_dc_field'] self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen]['er_specimen_name'] self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen]['er_sample_name'] del gframe
python
def recalculate_satistics(self): ''' update self.Data[specimen]['pars'] for all specimens. ''' gframe = wx.BusyInfo( "Re-calculating statistics for all specimens\n Please wait..", self) for specimen in list(self.Data.keys()): if 'pars' not in list(self.Data[specimen].keys()): continue if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()): continue tmin = self.Data[specimen]['pars']['measurement_step_min'] tmax = self.Data[specimen]['pars']['measurement_step_max'] pars = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, tmin, tmax, self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars'] = pars self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen]['lab_dc_field'] self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen]['er_specimen_name'] self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen]['er_sample_name'] del gframe
update self.Data[specimen]['pars'] for all specimens.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2800-L2820
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.read_criteria_file
def read_criteria_file(self, criteria_file): ''' read criteria file. initialize self.acceptance_criteria try to guess if averaging by sample or by site. ''' if self.data_model == 3: self.acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) self.add_thellier_gui_criteria() fnames = {'criteria': criteria_file} contribution = cb.Contribution( self.WD, custom_filenames=fnames, read_tables=['criteria']) if 'criteria' in contribution.tables: crit_container = contribution.tables['criteria'] crit_data = crit_container.df crit_data['definition'] = 'acceptance criteria for study' # convert to list of dictionaries self.crit_data = crit_data.to_dict('records') for crit in self.crit_data: # step through and rename every f-ing one # magic2[magic3.index(crit['table_column'])] # find data # model 2.5 name m2_name = map_magic.convert_intensity_criteria( 'magic2', crit['table_column']) if not m2_name: pass elif m2_name not in self.acceptance_criteria: print('-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.'.format(m2_name)) print(' This record will be skipped:\n {}'.format(crit)) else: if m2_name != crit['table_column'] and 'scat' not in m2_name != "": self.acceptance_criteria[m2_name]['value'] = float( crit['criterion_value']) self.acceptance_criteria[m2_name]['pmag_criteria_code'] = crit['criterion'] if m2_name != crit['table_column'] and 'scat' in m2_name != "": if crit['criterion_value'] == 'True': self.acceptance_criteria[m2_name]['value'] = 1 else: self.acceptance_criteria[m2_name]['value'] = 0 else: print("-E- Can't read criteria file") else: # Do it the data model 2.5 way: self.crit_data = {} try: self.acceptance_criteria = pmag.read_criteria_from_file( criteria_file, self.acceptance_criteria) except: print("-E- Can't read pmag criteria file") # guesss if average by site or sample: by_sample = True flag = False for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']: if self.acceptance_criteria[crit]['value'] == -999: flag = True if flag: for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']: if self.acceptance_criteria[crit]['value'] != -999: by_sample = False if not by_sample: self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'
python
def read_criteria_file(self, criteria_file): ''' read criteria file. initialize self.acceptance_criteria try to guess if averaging by sample or by site. ''' if self.data_model == 3: self.acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) self.add_thellier_gui_criteria() fnames = {'criteria': criteria_file} contribution = cb.Contribution( self.WD, custom_filenames=fnames, read_tables=['criteria']) if 'criteria' in contribution.tables: crit_container = contribution.tables['criteria'] crit_data = crit_container.df crit_data['definition'] = 'acceptance criteria for study' # convert to list of dictionaries self.crit_data = crit_data.to_dict('records') for crit in self.crit_data: # step through and rename every f-ing one # magic2[magic3.index(crit['table_column'])] # find data # model 2.5 name m2_name = map_magic.convert_intensity_criteria( 'magic2', crit['table_column']) if not m2_name: pass elif m2_name not in self.acceptance_criteria: print('-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.'.format(m2_name)) print(' This record will be skipped:\n {}'.format(crit)) else: if m2_name != crit['table_column'] and 'scat' not in m2_name != "": self.acceptance_criteria[m2_name]['value'] = float( crit['criterion_value']) self.acceptance_criteria[m2_name]['pmag_criteria_code'] = crit['criterion'] if m2_name != crit['table_column'] and 'scat' in m2_name != "": if crit['criterion_value'] == 'True': self.acceptance_criteria[m2_name]['value'] = 1 else: self.acceptance_criteria[m2_name]['value'] = 0 else: print("-E- Can't read criteria file") else: # Do it the data model 2.5 way: self.crit_data = {} try: self.acceptance_criteria = pmag.read_criteria_from_file( criteria_file, self.acceptance_criteria) except: print("-E- Can't read pmag criteria file") # guesss if average by site or sample: by_sample = True flag = False for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']: if self.acceptance_criteria[crit]['value'] == -999: flag = True if flag: for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']: if self.acceptance_criteria[crit]['value'] != -999: by_sample = False if not by_sample: self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'
read criteria file. initialize self.acceptance_criteria try to guess if averaging by sample or by site.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2824-L2884
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_save_interpretation
def on_menu_save_interpretation(self, event): ''' save interpretations to a redo file ''' thellier_gui_redo_file = open( os.path.join(self.WD, "thellier_GUI.redo"), 'w') #-------------------------------------------------- # write interpretations to thellier_GUI.redo #-------------------------------------------------- spec_list = list(self.Data.keys()) spec_list.sort() redo_specimens_list = [] for sp in spec_list: if 'saved' not in self.Data[sp]['pars']: continue if not self.Data[sp]['pars']['saved']: continue redo_specimens_list.append(sp) thellier_gui_redo_file.write("%s %.0f %.0f\n" % ( sp, self.Data[sp]['pars']['measurement_step_min'], self.Data[sp]['pars']['measurement_step_max'])) dlg1 = wx.MessageDialog( self, caption="Saved:", message="File thellier_GUI.redo is saved in MagIC working folder", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() thellier_gui_redo_file.close() return thellier_gui_redo_file.close() self.close_warning = False
python
def on_menu_save_interpretation(self, event): ''' save interpretations to a redo file ''' thellier_gui_redo_file = open( os.path.join(self.WD, "thellier_GUI.redo"), 'w') #-------------------------------------------------- # write interpretations to thellier_GUI.redo #-------------------------------------------------- spec_list = list(self.Data.keys()) spec_list.sort() redo_specimens_list = [] for sp in spec_list: if 'saved' not in self.Data[sp]['pars']: continue if not self.Data[sp]['pars']['saved']: continue redo_specimens_list.append(sp) thellier_gui_redo_file.write("%s %.0f %.0f\n" % ( sp, self.Data[sp]['pars']['measurement_step_min'], self.Data[sp]['pars']['measurement_step_max'])) dlg1 = wx.MessageDialog( self, caption="Saved:", message="File thellier_GUI.redo is saved in MagIC working folder", style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() thellier_gui_redo_file.close() return thellier_gui_redo_file.close() self.close_warning = False
save interpretations to a redo file
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2886-L2918
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_clear_interpretation
def on_menu_clear_interpretation(self, event): ''' clear all current interpretations. ''' # delete all previous interpretation for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp]['er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp]['er_sample_name'] self.Data_samples = {} self.Data_sites = {} self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.clear_boxes() self.draw_figure(self.s)
python
def on_menu_clear_interpretation(self, event): ''' clear all current interpretations. ''' # delete all previous interpretation for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp]['er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp]['er_sample_name'] self.Data_samples = {} self.Data_sites = {} self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.clear_boxes() self.draw_figure(self.s)
clear all current interpretations.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L2920-L2937
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.read_redo_file
def read_redo_file(self, redo_file): """ Read previous interpretation from a redo file and update gui with the new interpretation """ self.GUI_log.write( "-I- reading redo file and processing new temperature bounds") self.redo_specimens = {} # first delete all previous interpretation for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp]['er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp]['er_sample_name'] # print sp # print self.Data[sp]['pars'] self.Data_samples = {} self.Data_sites = {} fin = open(redo_file, 'r') lines = fin.readlines() fin.close() for Line in lines: line = Line.strip('\n').split() specimen = line[0] tmin_kelvin = float(line[1]) tmax_kelvin = float(line[2]) if specimen not in list(self.redo_specimens.keys()): self.redo_specimens[specimen] = {} self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin) self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin) if specimen in list(self.Data.keys()): if tmin_kelvin not in self.Data[specimen]['t_Arai'] or tmax_kelvin not in self.Data[specimen]['t_Arai']: self.GUI_log.write( "-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s\n" % specimen) else: self.Data[specimen]['pars'] = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, float(tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) try: self.Data[specimen]['pars'] = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, float(tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars']['saved'] = True # write intrepretation into sample data sample = self.Data_hierarchy['specimens'][specimen] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if specimen not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][specimen] = {} self.Data_samples[sample][specimen]['B'] = self.Data[specimen]['pars']['specimen_int_uT'] site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if specimen not in list(self.Data_sites[site].keys()): self.Data_sites[site][specimen] = {} self.Data_sites[site][specimen]['B'] = self.Data[specimen]['pars']['specimen_int_uT'] except: print("-E- ERROR 1") self.GUI_log.write( "-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check!\n" % (specimen)) else: self.GUI_log.write( "-W- WARNING: Can't find specimen %s from redo file in measurement file!\n" % specimen) print( "-W- WARNING: Can't find specimen %s from redo file in measurement file!\n" % specimen) if not fin.closed: fin.close() self.pars = self.Data[self.s]['pars'] self.clear_boxes() self.draw_figure(self.s) self.update_GUI_with_new_interpretation()
python
def read_redo_file(self, redo_file): """ Read previous interpretation from a redo file and update gui with the new interpretation """ self.GUI_log.write( "-I- reading redo file and processing new temperature bounds") self.redo_specimens = {} # first delete all previous interpretation for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp]['er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp]['er_sample_name'] # print sp # print self.Data[sp]['pars'] self.Data_samples = {} self.Data_sites = {} fin = open(redo_file, 'r') lines = fin.readlines() fin.close() for Line in lines: line = Line.strip('\n').split() specimen = line[0] tmin_kelvin = float(line[1]) tmax_kelvin = float(line[2]) if specimen not in list(self.redo_specimens.keys()): self.redo_specimens[specimen] = {} self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin) self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin) if specimen in list(self.Data.keys()): if tmin_kelvin not in self.Data[specimen]['t_Arai'] or tmax_kelvin not in self.Data[specimen]['t_Arai']: self.GUI_log.write( "-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s\n" % specimen) else: self.Data[specimen]['pars'] = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, float(tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) try: self.Data[specimen]['pars'] = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, specimen, float(tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars']['saved'] = True # write intrepretation into sample data sample = self.Data_hierarchy['specimens'][specimen] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if specimen not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][specimen] = {} self.Data_samples[sample][specimen]['B'] = self.Data[specimen]['pars']['specimen_int_uT'] site = thellier_gui_lib.get_site_from_hierarchy( sample, self.Data_hierarchy) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if specimen not in list(self.Data_sites[site].keys()): self.Data_sites[site][specimen] = {} self.Data_sites[site][specimen]['B'] = self.Data[specimen]['pars']['specimen_int_uT'] except: print("-E- ERROR 1") self.GUI_log.write( "-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check!\n" % (specimen)) else: self.GUI_log.write( "-W- WARNING: Can't find specimen %s from redo file in measurement file!\n" % specimen) print( "-W- WARNING: Can't find specimen %s from redo file in measurement file!\n" % specimen) if not fin.closed: fin.close() self.pars = self.Data[self.s]['pars'] self.clear_boxes() self.draw_figure(self.s) self.update_GUI_with_new_interpretation()
Read previous interpretation from a redo file and update gui with the new interpretation
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L3683-L3755
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.on_menu_prepare_magic_results_tables
def on_menu_prepare_magic_results_tables(self, event): """ Menubar --> File --> Save MagIC tables """ # write a redo file try: self.on_menu_save_interpretation(None) except Exception as ex: print('-W-', ex) pass if self.data_model != 3: # data model 3 data already read in to contribution #------------------ # read existing pmag results data and sort out the directional data. # The directional data will be merged to one combined pmag table. # these data will be merged later #-----------------------. PmagRecsOld = {} for FILE in ['pmag_specimens.txt', 'pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']: PmagRecsOld[FILE], meas_data = [], [] try: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, FILE)) self.GUI_log.write( "-I- Read existing magic file %s\n" % (os.path.join(self.WD, FILE))) # if FILE !='pmag_specimens.txt': os.rename(os.path.join(self.WD, FILE), os.path.join(self.WD, FILE + ".backup")) self.GUI_log.write( "-I- rename old magic file %s.backup\n" % (os.path.join(self.WD, FILE))) except: self.GUI_log.write( "-I- Can't read existing magic file %s\n" % (os.path.join(self.WD, FILE))) continue for rec in meas_data: if "magic_method_codes" in list(rec.keys()): if "LP-PI" not in rec['magic_method_codes'] and "IE-" not in rec['magic_method_codes']: PmagRecsOld[FILE].append(rec) pmag_specimens_header_1 = [ "er_location_name", "er_site_name", "er_sample_name", "er_specimen_name"] pmag_specimens_header_2 = [ 'measurement_step_min', 'measurement_step_max', 'specimen_int'] pmag_specimens_header_3 = ["specimen_correction", "specimen_int_corr_anisotropy", "specimen_int_corr_nlt", "specimen_int_corr_cooling_rate"] pmag_specimens_header_4 = [] for short_stat in self.preferences['show_statistics_on_gui']: stat = "specimen_" + short_stat pmag_specimens_header_4.append(stat) pmag_specimens_header_5 = [ "magic_experiment_names", "magic_method_codes", "measurement_step_unit", "specimen_lab_field_dc"] pmag_specimens_header_6 = ["er_citation_names"] specimens_list = [] for specimen in list(self.Data.keys()): if 'pars' in list(self.Data[specimen].keys()): if 'saved' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['saved']: specimens_list.append(specimen) elif 'deleted' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['deleted']: specimens_list.append(specimen) # Empty pmag tables: MagIC_results_data = {} MagIC_results_data['pmag_specimens'] = {} MagIC_results_data['pmag_samples_or_sites'] = {} MagIC_results_data['pmag_results'] = {} # write down pmag_specimens.txt specimens_list.sort() for specimen in specimens_list: if 'pars' in self.Data[specimen] and 'deleted' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['deleted']: print('-I- Deleting interpretation for {}'.format(specimen)) this_spec_data = self.spec_data.loc[specimen] # there are multiple rows for this specimen if isinstance(this_spec_data, pd.DataFrame): # delete the intensity rows for specimen cond1 = self.spec_container.df.specimen == specimen cond2 = self.spec_container.df.int_abs.notnull() cond = cond1 & cond2 self.spec_container.df = self.spec_container.df[-cond] # there is only one record for this specimen else: # delete all intensity data for that specimen columns = list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity')) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Tail Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Additivity Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity Arai Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity Directional Statistics'))) int_columns = set(columns).intersection(self.spec_data.columns) int_columns.update(['method_codes', 'result_quality', 'meas_step_max', 'meas_step_min', 'software_packages', 'meas_step_unit', 'experiments']) new_data = {col: "" for col in int_columns} cond1 = self.spec_container.df.specimen == specimen for col in int_columns: self.spec_container.df.loc[specimen, col] = "" elif 'pars' in self.Data[specimen] and 'saved' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['saved']: sample_name = self.Data_hierarchy['specimens'][specimen] site_name = thellier_gui_lib.get_site_from_hierarchy( sample_name, self.Data_hierarchy) location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_specimens'][specimen] = {} if version != "unknown": MagIC_results_data['pmag_specimens'][specimen]['magic_software_packages'] = version MagIC_results_data['pmag_specimens'][specimen]['er_citation_names'] = "This study" # MagIC_results_data['pmag_specimens'][specimen]['er_analyst_mail_names']="unknown" MagIC_results_data['pmag_specimens'][specimen]['er_specimen_name'] = specimen MagIC_results_data['pmag_specimens'][specimen]['er_sample_name'] = sample_name MagIC_results_data['pmag_specimens'][specimen]['er_site_name'] = site_name MagIC_results_data['pmag_specimens'][specimen]['er_location_name'] = location_name MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'] = self.Data[ specimen]['pars']['magic_method_codes'] + ":IE-TT" tmp = MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'].split( ":") # magic_experiment_names=specimen magic_experiment_names = "" # for m in tmp: # this is incorrect - it should be a concatenated list of the experiment names from the measurement table. # if "LP-" in m: # magic_experiment_names=magic_experiment_names+":" + m MagIC_results_data['pmag_specimens'][specimen]['magic_experiment_names'] = magic_experiment_names MagIC_results_data['pmag_specimens'][specimen]['measurement_step_unit'] = 'K' MagIC_results_data['pmag_specimens'][specimen]['specimen_lab_field_dc'] = "%.2e" % ( self.Data[specimen]['pars']['lab_dc_field']) MagIC_results_data['pmag_specimens'][specimen]['specimen_correction'] = self.Data[specimen]['pars']['specimen_correction'] for key in pmag_specimens_header_4: if key in ['specimen_int_ptrm_n', 'specimen_int_n']: MagIC_results_data['pmag_specimens'][specimen][key] = "%i" % ( self.Data[specimen]['pars'][key]) elif key in ['specimen_scat'] and self.Data[specimen]['pars'][key] in ["Fail", 'f']: MagIC_results_data['pmag_specimens'][specimen][key] = "f" elif key in ['specimen_scat'] and self.Data[specimen]['pars'][key] in ["Pass", 't']: MagIC_results_data['pmag_specimens'][specimen][key] = "t" else: MagIC_results_data['pmag_specimens'][specimen][key] = "%.2f" % ( self.Data[specimen]['pars'][key]) MagIC_results_data['pmag_specimens'][specimen]['specimen_int'] = "%.2e" % ( self.Data[specimen]['pars']['specimen_int']) MagIC_results_data['pmag_specimens'][specimen]['measurement_step_min'] = "%i" % ( self.Data[specimen]['pars']['measurement_step_min']) MagIC_results_data['pmag_specimens'][specimen]['measurement_step_max'] = "%i" % ( self.Data[specimen]['pars']['measurement_step_max']) if "specimen_int_corr_anisotropy" in list(self.Data[specimen]['pars'].keys()): MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_anisotropy'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_anisotropy']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_anisotropy'] = "" if "specimen_int_corr_nlt" in list(self.Data[specimen]['pars'].keys()): MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_nlt'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_nlt']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_nlt'] = "" if "specimen_int_corr_cooling_rate" in list(self.Data[specimen]['pars'].keys()) and self.Data[specimen]['pars']['specimen_int_corr_cooling_rate'] != -999: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_cooling_rate'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_cooling_rate']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_cooling_rate'] = "" MagIC_results_data['pmag_specimens'][specimen]['criteria'] = "IE-SPEC" if self.data_model == 3: # convert pmag_specimen format to data model 3 and replace existing specimen record or add new & delete blank records new_spec_data = MagIC_results_data['pmag_specimens'][specimen] # turn new_specimen data to 3.0 new_data = map_magic.convert_spec('magic3', new_spec_data) # check if interpretation passes criteria and set flag spec_pars = thellier_gui_lib.check_specimen_PI_criteria( self.Data[specimen]['pars'], self.acceptance_criteria) if len(spec_pars['specimen_fail_criteria']) > 0: new_data['result_quality'] = 'b' else: new_data['result_quality'] = 'g' # reformat all the keys cond1 = self.spec_container.df['specimen'].str.contains( specimen + "$") == True if 'int_abs' not in self.spec_container.df.columns: self.spec_container.df['int_abs'] = None print("-W- No intensity data found for specimens") cond2 = self.spec_container.df['int_abs'].apply(lambda x: cb.not_null(x, False)) #notnull() == True condition = (cond1 & cond2) # update intensity records self.spec_data = self.spec_container.update_record( specimen, new_data, condition) ## delete essentially blank records #condition = self.spec_data['method_codes'].isnull().astype( #bool) # find the blank records #info_str = "specimen rows with blank method codes" #self.spec_data = self.spec_container.delete_rows( # condition, info_str) # delete them if self.data_model != 3: # write out pmag_specimens.txt file fout = open(os.path.join(self.WD, "pmag_specimens.txt"), 'w') fout.write("tab\tpmag_specimens\n") headers = pmag_specimens_header_1 + pmag_specimens_header_2 + pmag_specimens_header_3 + \ pmag_specimens_header_4 + pmag_specimens_header_5 + pmag_specimens_header_6 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") for specimen in specimens_list: String = "" for key in headers: String = String + \ MagIC_results_data['pmag_specimens'][specimen][key] + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data # read the new pmag_specimens.txt meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_specimens.txt")) # add the old non-PI lines from pmag_specimens.txt for rec in PmagRecsOld["pmag_specimens.txt"]: meas_data.append(rec) # fix headers, so all headers in all lines meas_data = self.converge_pmag_rec_headers(meas_data) # write the combined pmag_specimens.txt pmag.magic_write(os.path.join( self.WD, "pmag_specimens.txt"), meas_data, 'pmag_specimens') try: os.remove(os.path.join(self.WD, "pmag_specimens.txt.backup")) except: pass #------------- # message dialog #------------- TEXT = "specimens interpretations are saved in pmag_specimens.txt.\nPress OK for pmag_samples/pmag_sites/pmag_results tables." else: # data model 3, so merge with spec_data and save as specimens.txt file # remove unwanted columns (site, location). for col in ['site', 'location']: if col in self.spec_data.columns: del self.spec_data[col] self.spec_container.drop_duplicate_rows() # write out the data self.spec_container.write_magic_file(dir_path=self.WD) TEXT = "specimens interpretations are saved in specimens.txt.\nPress OK for samples/sites tables." dlg = wx.MessageDialog(self, caption="Saved", message=TEXT, style=wx.OK | wx.CANCEL) result = self.show_dlg(dlg) if result == wx.ID_OK: dlg.Destroy() if result == wx.ID_CANCEL: dlg.Destroy() return() #------------- # pmag_samples.txt or pmag_sites.txt #------------- if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': BY_SITES = False BY_SAMPLES = True else: BY_SITES = True BY_SAMPLES = False pmag_samples_header_1 = ["er_location_name", "er_site_name"] if BY_SAMPLES: pmag_samples_header_1.append("er_sample_name") if BY_SAMPLES: pmag_samples_header_2 = ["er_specimen_names", "sample_int", "sample_int_n", "sample_int_sigma", "sample_int_sigma_perc", "sample_description"] else: pmag_samples_header_2 = ["er_specimen_names", "site_int", "site_int_n", "site_int_sigma", "site_int_sigma_perc", "site_description"] pmag_samples_header_3 = [ "magic_method_codes", "magic_software_packages"] pmag_samples_header_4 = ["er_citation_names"] pmag_samples_or_sites_list = [] if BY_SAMPLES: samples_or_sites = list(self.Data_samples.keys()) Data_samples_or_sites = copy.deepcopy(self.Data_samples) else: samples_or_sites = list(self.Data_sites.keys()) Data_samples_or_sites = copy.deepcopy(self.Data_sites) samples_or_sites.sort() for sample_or_site in samples_or_sites: if True: specimens_names = "" B = [] specimens_LP_codes = [] for specimen in list(Data_samples_or_sites[sample_or_site].keys()): B.append(Data_samples_or_sites[sample_or_site][specimen]) if specimen not in MagIC_results_data['pmag_specimens']: continue magic_codes = MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'] codes = magic_codes.replace(" ", "").split(":") for code in codes: if "LP-" in code and code not in specimens_LP_codes: specimens_LP_codes.append(code) specimens_names = specimens_names + specimen + ":" magic_codes = ":".join(specimens_LP_codes) + ":IE-TT" specimens_names = specimens_names[:-1] if specimens_names != "": # sample_pass_criteria=False sample_or_site_pars = self.calculate_sample_mean( Data_samples_or_sites[sample_or_site]) if sample_or_site_pars['pass_or_fail'] == 'fail': continue N = sample_or_site_pars['N'] B_uT = sample_or_site_pars['B_uT'] B_std_uT = sample_or_site_pars['B_std_uT'] B_std_perc = sample_or_site_pars['B_std_perc'] pmag_samples_or_sites_list.append(sample_or_site) MagIC_results_data['pmag_samples_or_sites'][sample_or_site] = { } MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_specimen_names'] = specimens_names if BY_SAMPLES: name = "sample_" else: name = "site_" MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int'] = "%.2e" % (B_uT * 1e-6) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_n'] = "%i" % (N) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_sigma'] = "%.2e" % (B_std_uT * 1e-6) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_sigma_perc'] = "%.2f" % (B_std_perc) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'description'] = "paleointensity mean" if BY_SAMPLES: sample_name = sample_or_site site_name = thellier_gui_lib.get_site_from_hierarchy( sample_name, self.Data_hierarchy) location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_sample_name'] = sample_name if BY_SITES: site_name = sample_or_site location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_site_name'] = site_name MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_location_name'] = location_name MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["pmag_criteria_codes"] = "" MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['magic_method_codes'] = magic_codes MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["magic_software_packages"] = version MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["er_citation_names"] = "This study" # prepare pmag_samples.txt pmag_samples_or_sites_list.sort() if self.data_model != 3: # save 2.5 way if BY_SAMPLES: fout = open(os.path.join(self.WD, "pmag_samples.txt"), 'w') fout.write("tab\tpmag_samples\n") else: fout = open(os.path.join(self.WD, "pmag_sites.txt"), 'w') fout.write("tab\tpmag_sites\n") headers = pmag_samples_header_1 + pmag_samples_header_2 + \ pmag_samples_header_3 + pmag_samples_header_4 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") for sample_or_site in pmag_samples_or_sites_list: String = "" for key in headers: String = String + \ MagIC_results_data['pmag_samples_or_sites'][sample_or_site][key] + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data if BY_SAMPLES: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_samples.txt")) for rec in PmagRecsOld["pmag_samples.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_samples.txt"), meas_data, 'pmag_samples') try: os.remove(os.path.join(self.WD, "pmag_samples.txt.backup")) except: pass pmag.magic_write(os.path.join( self.WD, "pmag_sites.txt"), PmagRecsOld["pmag_sites.txt"], 'pmag_sites') try: os.remove(os.path.join(self.WD, "pmag_sites.txt.backup")) except: pass else: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_sites.txt")) for rec in PmagRecsOld["pmag_sites.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_sites.txt"), meas_data, 'pmag_sites') try: os.remove(os.path.join(self.WD, "pmag_sites.txt.backup")) except: pass pmag.magic_write(os.path.join( self.WD, "pmag_samples.txt"), PmagRecsOld["pmag_samples.txt"], 'pmag_samples') try: os.remove(os.path.join(self.WD, "pmag_samples.txt.backup")) except: pass else: # don't do anything yet = need vdm data pass #------------- # pmag_results.txt #------------- pmag_results_header_1 = ["er_location_names", "er_site_names"] if BY_SAMPLES: pmag_results_header_1.append("er_sample_names") pmag_results_header_1.append("er_specimen_names") pmag_results_header_2 = ["average_lat", "average_lon", ] pmag_results_header_3 = [ "average_int_n", "average_int", "average_int_sigma", "average_int_sigma_perc"] if self.preferences['VDM_or_VADM'] == "VDM": pmag_results_header_4 = ["vdm", "vdm_sigma"] else: pmag_results_header_4 = ["vadm", "vadm_sigma"] pmag_results_header_5 = ["data_type", "pmag_result_name", "magic_method_codes", "result_description", "er_citation_names", "magic_software_packages", "pmag_criteria_codes"] for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue MagIC_results_data['pmag_results'][sample_or_site] = {} if self.data_model == 3: if BY_SAMPLES: if len(self.test_for_criteria()): MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "IE-SPEC:IE-SAMP" if BY_SITES: if len(self.test_for_criteria()): MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "IE-SPEC:IE-SITE" else: MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "ACCEPT" MagIC_results_data['pmag_results'][sample_or_site]["er_location_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_location_name'] MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_site_name'] MagIC_results_data['pmag_results'][sample_or_site]["er_specimen_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_specimen_names'] if BY_SAMPLES: MagIC_results_data['pmag_results'][sample_or_site]["er_sample_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_sample_name'] site = MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] lat, lon = "", "" if site in list(self.Data_info["er_sites"].keys()) and "site_lat" in list(self.Data_info["er_sites"][site].keys()): # MagIC_results_data['pmag_results'][sample_or_site]["average_lat"]=self.Data_info["er_sites"][site]["site_lat"] lat = self.Data_info["er_sites"][site]["site_lat"] if site in list(self.Data_info["er_sites"].keys()) and "site_lon" in list(self.Data_info["er_sites"][site].keys()): # MagIC_results_data['pmag_results'][sample_or_site]["average_lon"]=self.Data_info["er_sites"][site]["site_lon"] lon = self.Data_info["er_sites"][site]["site_lon"] MagIC_results_data['pmag_results'][sample_or_site]["average_lat"] = lat MagIC_results_data['pmag_results'][sample_or_site]["average_lon"] = lon if BY_SAMPLES: name = 'sample' else: name = 'site' MagIC_results_data['pmag_results'][sample_or_site]["average_int_n"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_n'] MagIC_results_data['pmag_results'][sample_or_site]["average_int"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int'] MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_sigma'] MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma_perc"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_sigma_perc'] if self.preferences['VDM_or_VADM'] == "VDM": pass # to be done else: if lat != "": lat = float(lat) # B=float(MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['sample_int']) B = float( MagIC_results_data['pmag_results'][sample_or_site]["average_int"]) # B_sigma=float(MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['sample_int_sigma']) B_sigma = float( MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma"]) VADM = pmag.b_vdm(B, lat) VADM_plus = pmag.b_vdm(B + B_sigma, lat) VADM_minus = pmag.b_vdm(B - B_sigma, lat) VADM_sigma = (VADM_plus - VADM_minus) / 2 MagIC_results_data['pmag_results'][sample_or_site]["vadm"] = "%.2e" % VADM MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] = "%.2e" % VADM_sigma if self.data_model == 3: # stick vadm into site_or_sample record MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm"] = "%.2e" % VADM MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm_sigma"] = "%.2e" % VADM_sigma else: MagIC_results_data['pmag_results'][sample_or_site]["vadm"] = "" MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] = "" if self.data_model == 3: # stick vadm into site_or_sample record MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm"] = "" MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm_sigma"] = "" if MagIC_results_data['pmag_results'][sample_or_site]["vadm"] != "": MagIC_results_data['pmag_results'][sample_or_site]["pmag_result_name"] = "Paleointensity;V[A]DM;" + sample_or_site MagIC_results_data['pmag_results'][sample_or_site]["result_description"] = "Paleointensity; V[A]DM" else: MagIC_results_data['pmag_results'][sample_or_site]["pmag_result_name"] = "Paleointensity;" + sample_or_site MagIC_results_data['pmag_results'][sample_or_site]["result_description"] = "Paleointensity" MagIC_results_data['pmag_results'][sample_or_site]["magic_software_packages"] = version MagIC_results_data['pmag_results'][sample_or_site]["magic_method_codes"] = magic_codes # try to make a more meaningful name MagIC_results_data['pmag_results'][sample_or_site]["data_type"] = "i" MagIC_results_data['pmag_results'][sample_or_site]["er_citation_names"] = "This study" if self.data_model != 3: # look for ages in er_ages - otherwise they are in sites.txt already # add ages found_age = False site = MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] if sample_or_site in list(self.Data_info["er_ages"].keys()): sample_or_site_with_age = sample_or_site found_age = True elif site in list(self.Data_info["er_ages"].keys()): sample_or_site_with_age = site found_age = True if found_age: for header in ["age", "age_unit", "age_sigma", "age_range_low", "age_range_high"]: if sample_or_site_with_age in list(self.Data_info["er_ages"].keys()) and header in list(self.Data_info["er_ages"][sample_or_site_with_age].keys()): if self.Data_info["er_ages"][sample_or_site_with_age][header] != "": value = self.Data_info["er_ages"][sample_or_site_with_age][header] header_result = "average_" + header if header_result == "average_age_range_high": header_result = "average_age_high" if header_result == "average_age_range_low": header_result = "average_age_low" MagIC_results_data['pmag_results'][sample_or_site][header_result] = value if header_result not in pmag_results_header_4: pmag_results_header_4.append(header_result) else: found_age = False if BY_SAMPLES and sample_or_site in list(self.Data_info["er_ages"].keys()): element_with_age = sample_or_site found_age = True elif BY_SAMPLES and sample_or_site not in list(self.Data_info["er_ages"].keys()): site = self.Data_hierarchy['site_of_sample'][sample_or_site] if site in list(self.Data_info["er_ages"].keys()): element_with_age = site found_age = True elif BY_SITES and sample_or_site in list(self.Data_info["er_ages"].keys()): element_with_age = sample_or_site found_age = True else: continue if not found_age: continue foundkeys = False # print "element_with_age",element_with_age for key in ['age', 'age_sigma', 'age_range_low', 'age_range_high', 'age_unit']: # print "Ron debug" # print element_with_age # print sample_or_site if "er_ages" in list(self.Data_info.keys()) and element_with_age in list(self.Data_info["er_ages"].keys()): if key in list(self.Data_info["er_ages"][element_with_age].keys()): if self.Data_info["er_ages"][element_with_age][key] != "": # print self.Data_info["er_ages"][element_with_age] # print self.Data_info["er_ages"][element_with_age][key] # print # MagIC_results_data['pmag_results'][sample_or_site] MagIC_results_data['pmag_results'][sample_or_site][ key] = self.Data_info["er_ages"][element_with_age][key] foundkeys = True if foundkeys == True: if "er_ages" in list(self.Data_info.keys()) and element_with_age in list(self.Data_info["er_ages"].keys()): if 'magic_method_codes' in list(self.Data_info["er_ages"][element_with_age].keys()): methods = self.Data_info["er_ages"][element_with_age]['magic_method_codes'].replace( " ", "").strip('\n').split(":") for meth in methods: MagIC_results_data['pmag_results'][sample_or_site]["magic_method_codes"] = MagIC_results_data[ 'pmag_results'][sample_or_site]["magic_method_codes"] + ":" + meth if self.data_model != 3: # write pmag_results.txt fout = open(os.path.join(self.WD, "pmag_results.txt"), 'w') fout.write("tab\tpmag_results\n") headers = pmag_results_header_1 + pmag_results_header_2 + \ pmag_results_header_3 + pmag_results_header_4 + pmag_results_header_5 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") # pmag_samples_list.sort() for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue String = "" for key in headers: if key in list(MagIC_results_data['pmag_results'][sample_or_site].keys()): String = String + \ MagIC_results_data['pmag_results'][sample_or_site][key] + "\t" else: String = String + "" + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_results.txt")) for rec in PmagRecsOld["pmag_results.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_results.txt"), meas_data, 'pmag_results') try: os.remove(os.path.join(self.WD, "pmag_results.txt.backup")) except: pass else: # write out samples/sites in data model 3.0 for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue # convert, delete, add and save new_sample_or_site_data = MagIC_results_data['pmag_samples_or_sites'][sample_or_site] if BY_SAMPLES: new_data = map_magic.convert_samp( 'magic3', new_sample_or_site_data) # convert to 3.0 if len(self.test_for_criteria()): new_data['criteria'] = 'IE-SPEC:IE-SAMP' new_data['result_quality'] = 'g' self.samp_data = self.samp_container.df cond1 = self.samp_data['sample'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.samp_data.columns: self.samp_data['int_abs'] = None print('-W- No intensity data found for samples') cond2 = self.samp_data['int_abs'].notnull() == True condition = (cond1 & cond2) # update record self.samp_data = self.samp_container.update_record( sample_or_site, new_data, condition) self.site_data = self.site_container.df # remove intensity data from site level. if 'int_abs' not in self.site_data.columns: self.site_data['int_abs'] = None print('-W- No intensity data found for sites') site = self.Data_hierarchy['site_of_sample'][sample_or_site] try: # if site name is blank will skip cond1 = self.site_data['site'].str.contains( site + "$") == True cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) site_keys = ['samples', 'int_abs', 'int_sigma', 'int_n_samples', 'int_sigma_perc', 'specimens', 'int_abs_sigma', 'int_abs_sigma_perc', 'vadm'] # zero these out but keep the rest blank_data = {} for key in site_keys: blank_data[key] = "" self.site_data = self.site_container.update_record( site, blank_data, condition, update_only=True) # add record for sample in the site table cond1 = self.site_data['site'].str.contains( sample_or_site + "$") == True cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) # change 'site' column to reflect sample name, # since we are putting this sample at the site level new_data['site'] = sample_or_site new_data['samples'] = sample_or_site new_data['int_n_samples'] = '1' # get rid of this key for site table del new_data['sample'] new_data['vadm'] = MagIC_results_data['pmag_results'][sample_or_site]["vadm"] new_data['vadm_sigma'] = MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] new_data['result_quality'] = 'g' self.site_data = self.site_container.update_record( sample_or_site, new_data, condition, debug=True) except: pass # no site else: # do this by site and not by sample START HERE cond1 = self.site_data['site'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.site_data.columns: self.site_data['int_abs'] = None cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) loc = None locs = self.site_data[cond1]['location'] if any(locs): loc = locs.values[0] new_data['site'] = sample_or_site new_data['location'] = loc self.site_data = self.site_container.update_record( sample_or_site, new_data, condition) # remove intensity data from sample level. # need to look # up samples from this site cond1 = self.samp_data['site'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.samp_data.columns: self.samp_data['int_abs'] = None cond2 = self.samp_data['int_abs'].notnull() == True condition = (cond1 & cond2) new_data = {} # zero these out but keep the rest # zero these out but keep the rest samp_keys = ['int_abs', 'int_sigma', 'int_n_specimens', 'int_sigma_perc'] for key in samp_keys: new_data[key] = "" samples = self.samp_data[condition].index.unique() for samp_name in samples: self.samp_container.update_record( samp_name, new_data, cond2) for col in ['location']: if col in list(self.samp_data.keys()): del self.samp_data[col] # if BY_SAMPLES: # replace 'site' with 'sample' # self.samp_data['site']=self.samp_data['sample'] # condition= self.samp_container.df['specimens'].notnull()==True # find all the blank specimens rows # self.samp_container.df = self.samp_container.df.loc[condition] # remove sample only columns that have been put into sites if BY_SAMPLES: #ignore = ['cooling_rate_corr', 'cooling_rate_mcd'] self.site_container.remove_non_magic_cols_from_table(ignore_cols=[]) #ignore) # write out the data self.samp_container.write_magic_file(dir_path=self.WD) self.site_container.write_magic_file(dir_path=self.WD) #------------- # MagIC_methods.txt #------------- # search for all magic_methods in all files: magic_method_codes = [] for F in ["magic_measurements.txt", "rmag_anisotropy.txt", "rmag_results.txt", "rmag_results.txt", "pmag_samples.txt", "pmag_specimens.txt", "pmag_sites.txt", "er_ages.txt"]: try: fin = open(os.path.join(self.WD, F), 'r') except: continue line = fin.readline() line = fin.readline() header = line.strip('\n').split('\t') if "magic_method_codes" not in header: continue else: index = header.index("magic_method_codes") for line in fin.readlines(): tmp = line.strip('\n').split('\t') if len(tmp) >= index: codes = tmp[index].replace(" ", "").split(":") for code in codes: if code != "" and code not in magic_method_codes: magic_method_codes.append(code) fin.close() if self.data_model == 2: magic_method_codes.sort() # print magic_method_codes magic_methods_header_1 = ["magic_method_code"] fout = open(os.path.join(self.WD, "magic_methods.txt"), 'w') fout.write("tab\tmagic_methods\n") fout.write("magic_method_code\n") for code in magic_method_codes: fout.write("%s\n" % code) fout.close # make pmag_criteria.txt if it does not exist if not os.path.isfile(os.path.join(self.WD, "pmag_criteria.txt")): Fout = open(os.path.join(self.WD, "pmag_criteria.txt"), 'w') Fout.write("tab\tpmag_criteria\n") Fout.write("er_citation_names\tpmag_criteria_code\n") Fout.write("This study\tACCEPT\n") dlg1 = wx.MessageDialog( self, caption="Message:", message="MagIC files are saved in MagIC project folder", style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() self.close_warning = False
python
def on_menu_prepare_magic_results_tables(self, event): """ Menubar --> File --> Save MagIC tables """ # write a redo file try: self.on_menu_save_interpretation(None) except Exception as ex: print('-W-', ex) pass if self.data_model != 3: # data model 3 data already read in to contribution #------------------ # read existing pmag results data and sort out the directional data. # The directional data will be merged to one combined pmag table. # these data will be merged later #-----------------------. PmagRecsOld = {} for FILE in ['pmag_specimens.txt', 'pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']: PmagRecsOld[FILE], meas_data = [], [] try: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, FILE)) self.GUI_log.write( "-I- Read existing magic file %s\n" % (os.path.join(self.WD, FILE))) # if FILE !='pmag_specimens.txt': os.rename(os.path.join(self.WD, FILE), os.path.join(self.WD, FILE + ".backup")) self.GUI_log.write( "-I- rename old magic file %s.backup\n" % (os.path.join(self.WD, FILE))) except: self.GUI_log.write( "-I- Can't read existing magic file %s\n" % (os.path.join(self.WD, FILE))) continue for rec in meas_data: if "magic_method_codes" in list(rec.keys()): if "LP-PI" not in rec['magic_method_codes'] and "IE-" not in rec['magic_method_codes']: PmagRecsOld[FILE].append(rec) pmag_specimens_header_1 = [ "er_location_name", "er_site_name", "er_sample_name", "er_specimen_name"] pmag_specimens_header_2 = [ 'measurement_step_min', 'measurement_step_max', 'specimen_int'] pmag_specimens_header_3 = ["specimen_correction", "specimen_int_corr_anisotropy", "specimen_int_corr_nlt", "specimen_int_corr_cooling_rate"] pmag_specimens_header_4 = [] for short_stat in self.preferences['show_statistics_on_gui']: stat = "specimen_" + short_stat pmag_specimens_header_4.append(stat) pmag_specimens_header_5 = [ "magic_experiment_names", "magic_method_codes", "measurement_step_unit", "specimen_lab_field_dc"] pmag_specimens_header_6 = ["er_citation_names"] specimens_list = [] for specimen in list(self.Data.keys()): if 'pars' in list(self.Data[specimen].keys()): if 'saved' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['saved']: specimens_list.append(specimen) elif 'deleted' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['deleted']: specimens_list.append(specimen) # Empty pmag tables: MagIC_results_data = {} MagIC_results_data['pmag_specimens'] = {} MagIC_results_data['pmag_samples_or_sites'] = {} MagIC_results_data['pmag_results'] = {} # write down pmag_specimens.txt specimens_list.sort() for specimen in specimens_list: if 'pars' in self.Data[specimen] and 'deleted' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['deleted']: print('-I- Deleting interpretation for {}'.format(specimen)) this_spec_data = self.spec_data.loc[specimen] # there are multiple rows for this specimen if isinstance(this_spec_data, pd.DataFrame): # delete the intensity rows for specimen cond1 = self.spec_container.df.specimen == specimen cond2 = self.spec_container.df.int_abs.notnull() cond = cond1 & cond2 self.spec_container.df = self.spec_container.df[-cond] # there is only one record for this specimen else: # delete all intensity data for that specimen columns = list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity')) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Tail Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity pTRM Additivity Check Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity Arai Statistics'))) columns.extend(list(self.contribution.data_model.get_group_headers('specimens', 'Paleointensity Directional Statistics'))) int_columns = set(columns).intersection(self.spec_data.columns) int_columns.update(['method_codes', 'result_quality', 'meas_step_max', 'meas_step_min', 'software_packages', 'meas_step_unit', 'experiments']) new_data = {col: "" for col in int_columns} cond1 = self.spec_container.df.specimen == specimen for col in int_columns: self.spec_container.df.loc[specimen, col] = "" elif 'pars' in self.Data[specimen] and 'saved' in self.Data[specimen]['pars'] and self.Data[specimen]['pars']['saved']: sample_name = self.Data_hierarchy['specimens'][specimen] site_name = thellier_gui_lib.get_site_from_hierarchy( sample_name, self.Data_hierarchy) location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_specimens'][specimen] = {} if version != "unknown": MagIC_results_data['pmag_specimens'][specimen]['magic_software_packages'] = version MagIC_results_data['pmag_specimens'][specimen]['er_citation_names'] = "This study" # MagIC_results_data['pmag_specimens'][specimen]['er_analyst_mail_names']="unknown" MagIC_results_data['pmag_specimens'][specimen]['er_specimen_name'] = specimen MagIC_results_data['pmag_specimens'][specimen]['er_sample_name'] = sample_name MagIC_results_data['pmag_specimens'][specimen]['er_site_name'] = site_name MagIC_results_data['pmag_specimens'][specimen]['er_location_name'] = location_name MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'] = self.Data[ specimen]['pars']['magic_method_codes'] + ":IE-TT" tmp = MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'].split( ":") # magic_experiment_names=specimen magic_experiment_names = "" # for m in tmp: # this is incorrect - it should be a concatenated list of the experiment names from the measurement table. # if "LP-" in m: # magic_experiment_names=magic_experiment_names+":" + m MagIC_results_data['pmag_specimens'][specimen]['magic_experiment_names'] = magic_experiment_names MagIC_results_data['pmag_specimens'][specimen]['measurement_step_unit'] = 'K' MagIC_results_data['pmag_specimens'][specimen]['specimen_lab_field_dc'] = "%.2e" % ( self.Data[specimen]['pars']['lab_dc_field']) MagIC_results_data['pmag_specimens'][specimen]['specimen_correction'] = self.Data[specimen]['pars']['specimen_correction'] for key in pmag_specimens_header_4: if key in ['specimen_int_ptrm_n', 'specimen_int_n']: MagIC_results_data['pmag_specimens'][specimen][key] = "%i" % ( self.Data[specimen]['pars'][key]) elif key in ['specimen_scat'] and self.Data[specimen]['pars'][key] in ["Fail", 'f']: MagIC_results_data['pmag_specimens'][specimen][key] = "f" elif key in ['specimen_scat'] and self.Data[specimen]['pars'][key] in ["Pass", 't']: MagIC_results_data['pmag_specimens'][specimen][key] = "t" else: MagIC_results_data['pmag_specimens'][specimen][key] = "%.2f" % ( self.Data[specimen]['pars'][key]) MagIC_results_data['pmag_specimens'][specimen]['specimen_int'] = "%.2e" % ( self.Data[specimen]['pars']['specimen_int']) MagIC_results_data['pmag_specimens'][specimen]['measurement_step_min'] = "%i" % ( self.Data[specimen]['pars']['measurement_step_min']) MagIC_results_data['pmag_specimens'][specimen]['measurement_step_max'] = "%i" % ( self.Data[specimen]['pars']['measurement_step_max']) if "specimen_int_corr_anisotropy" in list(self.Data[specimen]['pars'].keys()): MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_anisotropy'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_anisotropy']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_anisotropy'] = "" if "specimen_int_corr_nlt" in list(self.Data[specimen]['pars'].keys()): MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_nlt'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_nlt']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_nlt'] = "" if "specimen_int_corr_cooling_rate" in list(self.Data[specimen]['pars'].keys()) and self.Data[specimen]['pars']['specimen_int_corr_cooling_rate'] != -999: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_cooling_rate'] = "%.2f" % ( self.Data[specimen]['pars']['specimen_int_corr_cooling_rate']) else: MagIC_results_data['pmag_specimens'][specimen]['specimen_int_corr_cooling_rate'] = "" MagIC_results_data['pmag_specimens'][specimen]['criteria'] = "IE-SPEC" if self.data_model == 3: # convert pmag_specimen format to data model 3 and replace existing specimen record or add new & delete blank records new_spec_data = MagIC_results_data['pmag_specimens'][specimen] # turn new_specimen data to 3.0 new_data = map_magic.convert_spec('magic3', new_spec_data) # check if interpretation passes criteria and set flag spec_pars = thellier_gui_lib.check_specimen_PI_criteria( self.Data[specimen]['pars'], self.acceptance_criteria) if len(spec_pars['specimen_fail_criteria']) > 0: new_data['result_quality'] = 'b' else: new_data['result_quality'] = 'g' # reformat all the keys cond1 = self.spec_container.df['specimen'].str.contains( specimen + "$") == True if 'int_abs' not in self.spec_container.df.columns: self.spec_container.df['int_abs'] = None print("-W- No intensity data found for specimens") cond2 = self.spec_container.df['int_abs'].apply(lambda x: cb.not_null(x, False)) #notnull() == True condition = (cond1 & cond2) # update intensity records self.spec_data = self.spec_container.update_record( specimen, new_data, condition) ## delete essentially blank records #condition = self.spec_data['method_codes'].isnull().astype( #bool) # find the blank records #info_str = "specimen rows with blank method codes" #self.spec_data = self.spec_container.delete_rows( # condition, info_str) # delete them if self.data_model != 3: # write out pmag_specimens.txt file fout = open(os.path.join(self.WD, "pmag_specimens.txt"), 'w') fout.write("tab\tpmag_specimens\n") headers = pmag_specimens_header_1 + pmag_specimens_header_2 + pmag_specimens_header_3 + \ pmag_specimens_header_4 + pmag_specimens_header_5 + pmag_specimens_header_6 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") for specimen in specimens_list: String = "" for key in headers: String = String + \ MagIC_results_data['pmag_specimens'][specimen][key] + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data # read the new pmag_specimens.txt meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_specimens.txt")) # add the old non-PI lines from pmag_specimens.txt for rec in PmagRecsOld["pmag_specimens.txt"]: meas_data.append(rec) # fix headers, so all headers in all lines meas_data = self.converge_pmag_rec_headers(meas_data) # write the combined pmag_specimens.txt pmag.magic_write(os.path.join( self.WD, "pmag_specimens.txt"), meas_data, 'pmag_specimens') try: os.remove(os.path.join(self.WD, "pmag_specimens.txt.backup")) except: pass #------------- # message dialog #------------- TEXT = "specimens interpretations are saved in pmag_specimens.txt.\nPress OK for pmag_samples/pmag_sites/pmag_results tables." else: # data model 3, so merge with spec_data and save as specimens.txt file # remove unwanted columns (site, location). for col in ['site', 'location']: if col in self.spec_data.columns: del self.spec_data[col] self.spec_container.drop_duplicate_rows() # write out the data self.spec_container.write_magic_file(dir_path=self.WD) TEXT = "specimens interpretations are saved in specimens.txt.\nPress OK for samples/sites tables." dlg = wx.MessageDialog(self, caption="Saved", message=TEXT, style=wx.OK | wx.CANCEL) result = self.show_dlg(dlg) if result == wx.ID_OK: dlg.Destroy() if result == wx.ID_CANCEL: dlg.Destroy() return() #------------- # pmag_samples.txt or pmag_sites.txt #------------- if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': BY_SITES = False BY_SAMPLES = True else: BY_SITES = True BY_SAMPLES = False pmag_samples_header_1 = ["er_location_name", "er_site_name"] if BY_SAMPLES: pmag_samples_header_1.append("er_sample_name") if BY_SAMPLES: pmag_samples_header_2 = ["er_specimen_names", "sample_int", "sample_int_n", "sample_int_sigma", "sample_int_sigma_perc", "sample_description"] else: pmag_samples_header_2 = ["er_specimen_names", "site_int", "site_int_n", "site_int_sigma", "site_int_sigma_perc", "site_description"] pmag_samples_header_3 = [ "magic_method_codes", "magic_software_packages"] pmag_samples_header_4 = ["er_citation_names"] pmag_samples_or_sites_list = [] if BY_SAMPLES: samples_or_sites = list(self.Data_samples.keys()) Data_samples_or_sites = copy.deepcopy(self.Data_samples) else: samples_or_sites = list(self.Data_sites.keys()) Data_samples_or_sites = copy.deepcopy(self.Data_sites) samples_or_sites.sort() for sample_or_site in samples_or_sites: if True: specimens_names = "" B = [] specimens_LP_codes = [] for specimen in list(Data_samples_or_sites[sample_or_site].keys()): B.append(Data_samples_or_sites[sample_or_site][specimen]) if specimen not in MagIC_results_data['pmag_specimens']: continue magic_codes = MagIC_results_data['pmag_specimens'][specimen]['magic_method_codes'] codes = magic_codes.replace(" ", "").split(":") for code in codes: if "LP-" in code and code not in specimens_LP_codes: specimens_LP_codes.append(code) specimens_names = specimens_names + specimen + ":" magic_codes = ":".join(specimens_LP_codes) + ":IE-TT" specimens_names = specimens_names[:-1] if specimens_names != "": # sample_pass_criteria=False sample_or_site_pars = self.calculate_sample_mean( Data_samples_or_sites[sample_or_site]) if sample_or_site_pars['pass_or_fail'] == 'fail': continue N = sample_or_site_pars['N'] B_uT = sample_or_site_pars['B_uT'] B_std_uT = sample_or_site_pars['B_std_uT'] B_std_perc = sample_or_site_pars['B_std_perc'] pmag_samples_or_sites_list.append(sample_or_site) MagIC_results_data['pmag_samples_or_sites'][sample_or_site] = { } MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_specimen_names'] = specimens_names if BY_SAMPLES: name = "sample_" else: name = "site_" MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int'] = "%.2e" % (B_uT * 1e-6) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_n'] = "%i" % (N) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_sigma'] = "%.2e" % (B_std_uT * 1e-6) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'int_sigma_perc'] = "%.2f" % (B_std_perc) MagIC_results_data['pmag_samples_or_sites'][sample_or_site][name + 'description'] = "paleointensity mean" if BY_SAMPLES: sample_name = sample_or_site site_name = thellier_gui_lib.get_site_from_hierarchy( sample_name, self.Data_hierarchy) location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_sample_name'] = sample_name if BY_SITES: site_name = sample_or_site location_name = thellier_gui_lib.get_location_from_hierarchy( site_name, self.Data_hierarchy) MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_site_name'] = site_name MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['er_location_name'] = location_name MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["pmag_criteria_codes"] = "" MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['magic_method_codes'] = magic_codes MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["magic_software_packages"] = version MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["er_citation_names"] = "This study" # prepare pmag_samples.txt pmag_samples_or_sites_list.sort() if self.data_model != 3: # save 2.5 way if BY_SAMPLES: fout = open(os.path.join(self.WD, "pmag_samples.txt"), 'w') fout.write("tab\tpmag_samples\n") else: fout = open(os.path.join(self.WD, "pmag_sites.txt"), 'w') fout.write("tab\tpmag_sites\n") headers = pmag_samples_header_1 + pmag_samples_header_2 + \ pmag_samples_header_3 + pmag_samples_header_4 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") for sample_or_site in pmag_samples_or_sites_list: String = "" for key in headers: String = String + \ MagIC_results_data['pmag_samples_or_sites'][sample_or_site][key] + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data if BY_SAMPLES: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_samples.txt")) for rec in PmagRecsOld["pmag_samples.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_samples.txt"), meas_data, 'pmag_samples') try: os.remove(os.path.join(self.WD, "pmag_samples.txt.backup")) except: pass pmag.magic_write(os.path.join( self.WD, "pmag_sites.txt"), PmagRecsOld["pmag_sites.txt"], 'pmag_sites') try: os.remove(os.path.join(self.WD, "pmag_sites.txt.backup")) except: pass else: meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_sites.txt")) for rec in PmagRecsOld["pmag_sites.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_sites.txt"), meas_data, 'pmag_sites') try: os.remove(os.path.join(self.WD, "pmag_sites.txt.backup")) except: pass pmag.magic_write(os.path.join( self.WD, "pmag_samples.txt"), PmagRecsOld["pmag_samples.txt"], 'pmag_samples') try: os.remove(os.path.join(self.WD, "pmag_samples.txt.backup")) except: pass else: # don't do anything yet = need vdm data pass #------------- # pmag_results.txt #------------- pmag_results_header_1 = ["er_location_names", "er_site_names"] if BY_SAMPLES: pmag_results_header_1.append("er_sample_names") pmag_results_header_1.append("er_specimen_names") pmag_results_header_2 = ["average_lat", "average_lon", ] pmag_results_header_3 = [ "average_int_n", "average_int", "average_int_sigma", "average_int_sigma_perc"] if self.preferences['VDM_or_VADM'] == "VDM": pmag_results_header_4 = ["vdm", "vdm_sigma"] else: pmag_results_header_4 = ["vadm", "vadm_sigma"] pmag_results_header_5 = ["data_type", "pmag_result_name", "magic_method_codes", "result_description", "er_citation_names", "magic_software_packages", "pmag_criteria_codes"] for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue MagIC_results_data['pmag_results'][sample_or_site] = {} if self.data_model == 3: if BY_SAMPLES: if len(self.test_for_criteria()): MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "IE-SPEC:IE-SAMP" if BY_SITES: if len(self.test_for_criteria()): MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "IE-SPEC:IE-SITE" else: MagIC_results_data['pmag_results'][sample_or_site]['pmag_criteria_codes'] = "ACCEPT" MagIC_results_data['pmag_results'][sample_or_site]["er_location_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_location_name'] MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_site_name'] MagIC_results_data['pmag_results'][sample_or_site]["er_specimen_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_specimen_names'] if BY_SAMPLES: MagIC_results_data['pmag_results'][sample_or_site]["er_sample_names"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site]['er_sample_name'] site = MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] lat, lon = "", "" if site in list(self.Data_info["er_sites"].keys()) and "site_lat" in list(self.Data_info["er_sites"][site].keys()): # MagIC_results_data['pmag_results'][sample_or_site]["average_lat"]=self.Data_info["er_sites"][site]["site_lat"] lat = self.Data_info["er_sites"][site]["site_lat"] if site in list(self.Data_info["er_sites"].keys()) and "site_lon" in list(self.Data_info["er_sites"][site].keys()): # MagIC_results_data['pmag_results'][sample_or_site]["average_lon"]=self.Data_info["er_sites"][site]["site_lon"] lon = self.Data_info["er_sites"][site]["site_lon"] MagIC_results_data['pmag_results'][sample_or_site]["average_lat"] = lat MagIC_results_data['pmag_results'][sample_or_site]["average_lon"] = lon if BY_SAMPLES: name = 'sample' else: name = 'site' MagIC_results_data['pmag_results'][sample_or_site]["average_int_n"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_n'] MagIC_results_data['pmag_results'][sample_or_site]["average_int"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int'] MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_sigma'] MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma_perc"] = MagIC_results_data[ 'pmag_samples_or_sites'][sample_or_site][name + '_int_sigma_perc'] if self.preferences['VDM_or_VADM'] == "VDM": pass # to be done else: if lat != "": lat = float(lat) # B=float(MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['sample_int']) B = float( MagIC_results_data['pmag_results'][sample_or_site]["average_int"]) # B_sigma=float(MagIC_results_data['pmag_samples_or_sites'][sample_or_site]['sample_int_sigma']) B_sigma = float( MagIC_results_data['pmag_results'][sample_or_site]["average_int_sigma"]) VADM = pmag.b_vdm(B, lat) VADM_plus = pmag.b_vdm(B + B_sigma, lat) VADM_minus = pmag.b_vdm(B - B_sigma, lat) VADM_sigma = (VADM_plus - VADM_minus) / 2 MagIC_results_data['pmag_results'][sample_or_site]["vadm"] = "%.2e" % VADM MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] = "%.2e" % VADM_sigma if self.data_model == 3: # stick vadm into site_or_sample record MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm"] = "%.2e" % VADM MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm_sigma"] = "%.2e" % VADM_sigma else: MagIC_results_data['pmag_results'][sample_or_site]["vadm"] = "" MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] = "" if self.data_model == 3: # stick vadm into site_or_sample record MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm"] = "" MagIC_results_data['pmag_samples_or_sites'][sample_or_site]["vadm_sigma"] = "" if MagIC_results_data['pmag_results'][sample_or_site]["vadm"] != "": MagIC_results_data['pmag_results'][sample_or_site]["pmag_result_name"] = "Paleointensity;V[A]DM;" + sample_or_site MagIC_results_data['pmag_results'][sample_or_site]["result_description"] = "Paleointensity; V[A]DM" else: MagIC_results_data['pmag_results'][sample_or_site]["pmag_result_name"] = "Paleointensity;" + sample_or_site MagIC_results_data['pmag_results'][sample_or_site]["result_description"] = "Paleointensity" MagIC_results_data['pmag_results'][sample_or_site]["magic_software_packages"] = version MagIC_results_data['pmag_results'][sample_or_site]["magic_method_codes"] = magic_codes # try to make a more meaningful name MagIC_results_data['pmag_results'][sample_or_site]["data_type"] = "i" MagIC_results_data['pmag_results'][sample_or_site]["er_citation_names"] = "This study" if self.data_model != 3: # look for ages in er_ages - otherwise they are in sites.txt already # add ages found_age = False site = MagIC_results_data['pmag_results'][sample_or_site]["er_site_names"] if sample_or_site in list(self.Data_info["er_ages"].keys()): sample_or_site_with_age = sample_or_site found_age = True elif site in list(self.Data_info["er_ages"].keys()): sample_or_site_with_age = site found_age = True if found_age: for header in ["age", "age_unit", "age_sigma", "age_range_low", "age_range_high"]: if sample_or_site_with_age in list(self.Data_info["er_ages"].keys()) and header in list(self.Data_info["er_ages"][sample_or_site_with_age].keys()): if self.Data_info["er_ages"][sample_or_site_with_age][header] != "": value = self.Data_info["er_ages"][sample_or_site_with_age][header] header_result = "average_" + header if header_result == "average_age_range_high": header_result = "average_age_high" if header_result == "average_age_range_low": header_result = "average_age_low" MagIC_results_data['pmag_results'][sample_or_site][header_result] = value if header_result not in pmag_results_header_4: pmag_results_header_4.append(header_result) else: found_age = False if BY_SAMPLES and sample_or_site in list(self.Data_info["er_ages"].keys()): element_with_age = sample_or_site found_age = True elif BY_SAMPLES and sample_or_site not in list(self.Data_info["er_ages"].keys()): site = self.Data_hierarchy['site_of_sample'][sample_or_site] if site in list(self.Data_info["er_ages"].keys()): element_with_age = site found_age = True elif BY_SITES and sample_or_site in list(self.Data_info["er_ages"].keys()): element_with_age = sample_or_site found_age = True else: continue if not found_age: continue foundkeys = False # print "element_with_age",element_with_age for key in ['age', 'age_sigma', 'age_range_low', 'age_range_high', 'age_unit']: # print "Ron debug" # print element_with_age # print sample_or_site if "er_ages" in list(self.Data_info.keys()) and element_with_age in list(self.Data_info["er_ages"].keys()): if key in list(self.Data_info["er_ages"][element_with_age].keys()): if self.Data_info["er_ages"][element_with_age][key] != "": # print self.Data_info["er_ages"][element_with_age] # print self.Data_info["er_ages"][element_with_age][key] # print # MagIC_results_data['pmag_results'][sample_or_site] MagIC_results_data['pmag_results'][sample_or_site][ key] = self.Data_info["er_ages"][element_with_age][key] foundkeys = True if foundkeys == True: if "er_ages" in list(self.Data_info.keys()) and element_with_age in list(self.Data_info["er_ages"].keys()): if 'magic_method_codes' in list(self.Data_info["er_ages"][element_with_age].keys()): methods = self.Data_info["er_ages"][element_with_age]['magic_method_codes'].replace( " ", "").strip('\n').split(":") for meth in methods: MagIC_results_data['pmag_results'][sample_or_site]["magic_method_codes"] = MagIC_results_data[ 'pmag_results'][sample_or_site]["magic_method_codes"] + ":" + meth if self.data_model != 3: # write pmag_results.txt fout = open(os.path.join(self.WD, "pmag_results.txt"), 'w') fout.write("tab\tpmag_results\n") headers = pmag_results_header_1 + pmag_results_header_2 + \ pmag_results_header_3 + pmag_results_header_4 + pmag_results_header_5 String = "" for key in headers: String = String + key + "\t" fout.write(String[:-1] + "\n") # pmag_samples_list.sort() for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue String = "" for key in headers: if key in list(MagIC_results_data['pmag_results'][sample_or_site].keys()): String = String + \ MagIC_results_data['pmag_results'][sample_or_site][key] + "\t" else: String = String + "" + "\t" fout.write(String[:-1] + "\n") fout.close() # merge with non-intensity data meas_data, file_type = pmag.magic_read( os.path.join(self.WD, "pmag_results.txt")) for rec in PmagRecsOld["pmag_results.txt"]: meas_data.append(rec) meas_data = self.converge_pmag_rec_headers(meas_data) pmag.magic_write(os.path.join( self.WD, "pmag_results.txt"), meas_data, 'pmag_results') try: os.remove(os.path.join(self.WD, "pmag_results.txt.backup")) except: pass else: # write out samples/sites in data model 3.0 for sample_or_site in pmag_samples_or_sites_list: if sample_or_site is None: continue if isinstance(sample_or_site, type(np.nan)): continue # convert, delete, add and save new_sample_or_site_data = MagIC_results_data['pmag_samples_or_sites'][sample_or_site] if BY_SAMPLES: new_data = map_magic.convert_samp( 'magic3', new_sample_or_site_data) # convert to 3.0 if len(self.test_for_criteria()): new_data['criteria'] = 'IE-SPEC:IE-SAMP' new_data['result_quality'] = 'g' self.samp_data = self.samp_container.df cond1 = self.samp_data['sample'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.samp_data.columns: self.samp_data['int_abs'] = None print('-W- No intensity data found for samples') cond2 = self.samp_data['int_abs'].notnull() == True condition = (cond1 & cond2) # update record self.samp_data = self.samp_container.update_record( sample_or_site, new_data, condition) self.site_data = self.site_container.df # remove intensity data from site level. if 'int_abs' not in self.site_data.columns: self.site_data['int_abs'] = None print('-W- No intensity data found for sites') site = self.Data_hierarchy['site_of_sample'][sample_or_site] try: # if site name is blank will skip cond1 = self.site_data['site'].str.contains( site + "$") == True cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) site_keys = ['samples', 'int_abs', 'int_sigma', 'int_n_samples', 'int_sigma_perc', 'specimens', 'int_abs_sigma', 'int_abs_sigma_perc', 'vadm'] # zero these out but keep the rest blank_data = {} for key in site_keys: blank_data[key] = "" self.site_data = self.site_container.update_record( site, blank_data, condition, update_only=True) # add record for sample in the site table cond1 = self.site_data['site'].str.contains( sample_or_site + "$") == True cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) # change 'site' column to reflect sample name, # since we are putting this sample at the site level new_data['site'] = sample_or_site new_data['samples'] = sample_or_site new_data['int_n_samples'] = '1' # get rid of this key for site table del new_data['sample'] new_data['vadm'] = MagIC_results_data['pmag_results'][sample_or_site]["vadm"] new_data['vadm_sigma'] = MagIC_results_data['pmag_results'][sample_or_site]["vadm_sigma"] new_data['result_quality'] = 'g' self.site_data = self.site_container.update_record( sample_or_site, new_data, condition, debug=True) except: pass # no site else: # do this by site and not by sample START HERE cond1 = self.site_data['site'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.site_data.columns: self.site_data['int_abs'] = None cond2 = self.site_data['int_abs'].notnull() == True condition = (cond1 & cond2) loc = None locs = self.site_data[cond1]['location'] if any(locs): loc = locs.values[0] new_data['site'] = sample_or_site new_data['location'] = loc self.site_data = self.site_container.update_record( sample_or_site, new_data, condition) # remove intensity data from sample level. # need to look # up samples from this site cond1 = self.samp_data['site'].str.contains( sample_or_site + "$") == True if 'int_abs' not in self.samp_data.columns: self.samp_data['int_abs'] = None cond2 = self.samp_data['int_abs'].notnull() == True condition = (cond1 & cond2) new_data = {} # zero these out but keep the rest # zero these out but keep the rest samp_keys = ['int_abs', 'int_sigma', 'int_n_specimens', 'int_sigma_perc'] for key in samp_keys: new_data[key] = "" samples = self.samp_data[condition].index.unique() for samp_name in samples: self.samp_container.update_record( samp_name, new_data, cond2) for col in ['location']: if col in list(self.samp_data.keys()): del self.samp_data[col] # if BY_SAMPLES: # replace 'site' with 'sample' # self.samp_data['site']=self.samp_data['sample'] # condition= self.samp_container.df['specimens'].notnull()==True # find all the blank specimens rows # self.samp_container.df = self.samp_container.df.loc[condition] # remove sample only columns that have been put into sites if BY_SAMPLES: #ignore = ['cooling_rate_corr', 'cooling_rate_mcd'] self.site_container.remove_non_magic_cols_from_table(ignore_cols=[]) #ignore) # write out the data self.samp_container.write_magic_file(dir_path=self.WD) self.site_container.write_magic_file(dir_path=self.WD) #------------- # MagIC_methods.txt #------------- # search for all magic_methods in all files: magic_method_codes = [] for F in ["magic_measurements.txt", "rmag_anisotropy.txt", "rmag_results.txt", "rmag_results.txt", "pmag_samples.txt", "pmag_specimens.txt", "pmag_sites.txt", "er_ages.txt"]: try: fin = open(os.path.join(self.WD, F), 'r') except: continue line = fin.readline() line = fin.readline() header = line.strip('\n').split('\t') if "magic_method_codes" not in header: continue else: index = header.index("magic_method_codes") for line in fin.readlines(): tmp = line.strip('\n').split('\t') if len(tmp) >= index: codes = tmp[index].replace(" ", "").split(":") for code in codes: if code != "" and code not in magic_method_codes: magic_method_codes.append(code) fin.close() if self.data_model == 2: magic_method_codes.sort() # print magic_method_codes magic_methods_header_1 = ["magic_method_code"] fout = open(os.path.join(self.WD, "magic_methods.txt"), 'w') fout.write("tab\tmagic_methods\n") fout.write("magic_method_code\n") for code in magic_method_codes: fout.write("%s\n" % code) fout.close # make pmag_criteria.txt if it does not exist if not os.path.isfile(os.path.join(self.WD, "pmag_criteria.txt")): Fout = open(os.path.join(self.WD, "pmag_criteria.txt"), 'w') Fout.write("tab\tpmag_criteria\n") Fout.write("er_citation_names\tpmag_criteria_code\n") Fout.write("This study\tACCEPT\n") dlg1 = wx.MessageDialog( self, caption="Message:", message="MagIC files are saved in MagIC project folder", style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() self.close_warning = False
Menubar --> File --> Save MagIC tables
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L3791-L4588
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.read_er_ages_file
def read_er_ages_file(self, path, ignore_lines_n, sort_by_these_names): ''' read er_ages, sort it by site or sample (the header that is not empty) and convert ages to calendar year ''' DATA = {} fin = open(path, 'r') # ignore first lines for i in range(ignore_lines_n): fin.readline() # header line = fin.readline() header = line.strip('\n').split('\t') # print header for line in fin.readlines(): if line[0] == "#": continue tmp_data = {} tmp_line = line.strip('\n').split('\t') for i in range(len(tmp_line)): if i >= len(header): continue tmp_data[header[i]] = tmp_line[i] for name in sort_by_these_names: if name in list(tmp_data.keys()) and tmp_data[name] != "": er_ages_rec = self.convert_ages_to_calendar_year(tmp_data) DATA[tmp_data[name]] = er_ages_rec fin.close() return(DATA)
python
def read_er_ages_file(self, path, ignore_lines_n, sort_by_these_names): ''' read er_ages, sort it by site or sample (the header that is not empty) and convert ages to calendar year ''' DATA = {} fin = open(path, 'r') # ignore first lines for i in range(ignore_lines_n): fin.readline() # header line = fin.readline() header = line.strip('\n').split('\t') # print header for line in fin.readlines(): if line[0] == "#": continue tmp_data = {} tmp_line = line.strip('\n').split('\t') for i in range(len(tmp_line)): if i >= len(header): continue tmp_data[header[i]] = tmp_line[i] for name in sort_by_these_names: if name in list(tmp_data.keys()) and tmp_data[name] != "": er_ages_rec = self.convert_ages_to_calendar_year(tmp_data) DATA[tmp_data[name]] = er_ages_rec fin.close() return(DATA)
read er_ages, sort it by site or sample (the header that is not empty) and convert ages to calendar year
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L4629-L4658
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.calculate_sample_mean
def calculate_sample_mean(self, Data_sample_or_site): ''' Data_sample_or_site is a dictonary holding the samples_or_sites mean Data_sample_or_site ={} Data_sample_or_site[specimen]=B (in units of microT) ''' pars = {} tmp_B = [] for spec in list(Data_sample_or_site.keys()): if 'B' in list(Data_sample_or_site[spec].keys()): tmp_B.append(Data_sample_or_site[spec]['B']) if len(tmp_B) < 1: pars['N'] = 0 pars['pass_or_fail'] = 'fail' return pars tmp_B = np.array(tmp_B) pars['pass_or_fail'] = 'pass' pars['N'] = len(tmp_B) pars['B_uT'] = np.mean(tmp_B) if len(tmp_B) > 1: pars['B_std_uT'] = np.std(tmp_B, ddof=1) pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT']) else: pars['B_std_uT'] = 0 pars['B_std_perc'] = 0 pars['sample_int_interval_uT'] = (max(tmp_B) - min(tmp_B)) pars['sample_int_interval_perc'] = 100 * \ (pars['sample_int_interval_uT'] / pars['B_uT']) pars['fail_list'] = [] # check if pass criteria #---------- # int_n if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': average_by_sample_or_site = 'sample' else: average_by_sample_or_site = 'site' if average_by_sample_or_site == 'sample': cutoff_value = self.acceptance_criteria['sample_int_n']['value'] else: cutoff_value = self.acceptance_criteria['site_int_n']['value'] if cutoff_value != -999: if pars['N'] < cutoff_value: pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_n") #---------- # int_sigma ; int_sigma_perc pass_sigma, pass_sigma_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma']['value'] else: sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value'] if sigma_cutoff_value != -999: if pars['B_std_uT'] * 1e-6 <= sigma_cutoff_value: pass_sigma = True if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': sigma_perc_cutoff_value = self.acceptance_criteria['sample_int_sigma_perc']['value'] else: sigma_perc_cutoff_value = self.acceptance_criteria['site_int_sigma_perc']['value'] if sigma_perc_cutoff_value != -999: if pars['B_std_perc'] <= sigma_perc_cutoff_value: pass_sigma_perc = True if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999): if not (pass_sigma or pass_sigma_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_sigma") pass_int_interval, pass_int_interval_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': cutoff_value = self.acceptance_criteria['sample_int_interval_uT']['value'] if cutoff_value != -999: if pars['sample_int_interval_uT'] <= cutoff_value: pass_int_interval = True cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc']['value'] if cutoff_value_perc != -999: if pars['sample_int_interval_perc'] <= cutoff_value_perc: pass_int_interval_perc = True if not (cutoff_value == -999 and cutoff_value_perc == -999): if not (pass_int_interval or pass_int_interval_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_interval") # if cutoff_value != -999 or cutoff_value_perc != -999: # if not (pass_int_interval or pass_int_interval_perc): # pars['pass_or_fail']='fail' # pars['fail_list'].append("int_interval") # # # # # if (acceptance_criteria['sample_int_sigma_uT']==0 and acceptance_criteria['sample_int_sigma_perc']==0) or\ # (pars['B_uT'] <= acceptance_criteria['sample_int_sigma_uT'] or pars['B_std_perc'] <= acceptance_criteria['sample_int_sigma_perc']): # if ( pars['sample_int_interval_uT'] <= acceptance_criteria['sample_int_interval_uT'] or pars['sample_int_interval_perc'] <= acceptance_criteria['sample_int_interval_perc']): # pars['pass_or_fail']='pass' return(pars)
python
def calculate_sample_mean(self, Data_sample_or_site): ''' Data_sample_or_site is a dictonary holding the samples_or_sites mean Data_sample_or_site ={} Data_sample_or_site[specimen]=B (in units of microT) ''' pars = {} tmp_B = [] for spec in list(Data_sample_or_site.keys()): if 'B' in list(Data_sample_or_site[spec].keys()): tmp_B.append(Data_sample_or_site[spec]['B']) if len(tmp_B) < 1: pars['N'] = 0 pars['pass_or_fail'] = 'fail' return pars tmp_B = np.array(tmp_B) pars['pass_or_fail'] = 'pass' pars['N'] = len(tmp_B) pars['B_uT'] = np.mean(tmp_B) if len(tmp_B) > 1: pars['B_std_uT'] = np.std(tmp_B, ddof=1) pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT']) else: pars['B_std_uT'] = 0 pars['B_std_perc'] = 0 pars['sample_int_interval_uT'] = (max(tmp_B) - min(tmp_B)) pars['sample_int_interval_perc'] = 100 * \ (pars['sample_int_interval_uT'] / pars['B_uT']) pars['fail_list'] = [] # check if pass criteria #---------- # int_n if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': average_by_sample_or_site = 'sample' else: average_by_sample_or_site = 'site' if average_by_sample_or_site == 'sample': cutoff_value = self.acceptance_criteria['sample_int_n']['value'] else: cutoff_value = self.acceptance_criteria['site_int_n']['value'] if cutoff_value != -999: if pars['N'] < cutoff_value: pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_n") #---------- # int_sigma ; int_sigma_perc pass_sigma, pass_sigma_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma']['value'] else: sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value'] if sigma_cutoff_value != -999: if pars['B_std_uT'] * 1e-6 <= sigma_cutoff_value: pass_sigma = True if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': sigma_perc_cutoff_value = self.acceptance_criteria['sample_int_sigma_perc']['value'] else: sigma_perc_cutoff_value = self.acceptance_criteria['site_int_sigma_perc']['value'] if sigma_perc_cutoff_value != -999: if pars['B_std_perc'] <= sigma_perc_cutoff_value: pass_sigma_perc = True if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999): if not (pass_sigma or pass_sigma_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_sigma") pass_int_interval, pass_int_interval_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample': cutoff_value = self.acceptance_criteria['sample_int_interval_uT']['value'] if cutoff_value != -999: if pars['sample_int_interval_uT'] <= cutoff_value: pass_int_interval = True cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc']['value'] if cutoff_value_perc != -999: if pars['sample_int_interval_perc'] <= cutoff_value_perc: pass_int_interval_perc = True if not (cutoff_value == -999 and cutoff_value_perc == -999): if not (pass_int_interval or pass_int_interval_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append("int_interval") # if cutoff_value != -999 or cutoff_value_perc != -999: # if not (pass_int_interval or pass_int_interval_perc): # pars['pass_or_fail']='fail' # pars['fail_list'].append("int_interval") # # # # # if (acceptance_criteria['sample_int_sigma_uT']==0 and acceptance_criteria['sample_int_sigma_perc']==0) or\ # (pars['B_uT'] <= acceptance_criteria['sample_int_sigma_uT'] or pars['B_std_perc'] <= acceptance_criteria['sample_int_sigma_perc']): # if ( pars['sample_int_interval_uT'] <= acceptance_criteria['sample_int_interval_uT'] or pars['sample_int_interval_perc'] <= acceptance_criteria['sample_int_interval_perc']): # pars['pass_or_fail']='pass' return(pars)
Data_sample_or_site is a dictonary holding the samples_or_sites mean Data_sample_or_site ={} Data_sample_or_site[specimen]=B (in units of microT)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L4673-L4775
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.convert_ages_to_calendar_year
def convert_ages_to_calendar_year(self, er_ages_rec): ''' convert all age units to calendar year ''' if ("age" not in list(er_ages_rec.keys())) or (cb.is_null(er_ages_rec['age'], False)): return(er_ages_rec) if ("age_unit" not in list(er_ages_rec.keys())) or (cb.is_null(er_ages_rec['age_unit'])): return(er_ages_rec) if cb.is_null(er_ages_rec["age"], False): if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec["age_range_high"], False) and cb.not_null(er_ages_rec["age_range_low"], False): er_ages_rec["age"] = np.mean( [float(er_ages_rec["age_range_high"]), float(er_ages_rec["age_range_low"])]) if cb.is_null(er_ages_rec["age"], False): return(er_ages_rec) # age_descriptier_ages_recon=er_ages_rec["age_description"] age_unit = er_ages_rec["age_unit"] # Fix 'age': mutliplier = 1 if age_unit == "Ga": mutliplier = -1e9 if age_unit == "Ma": mutliplier = -1e6 if age_unit == "Ka": mutliplier = -1e3 if age_unit == "Years AD (+/-)" or age_unit == "Years Cal AD (+/-)": mutliplier = 1 if age_unit == "Years BP" or age_unit == "Years Cal BP": mutliplier = 1 age = float(er_ages_rec["age"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age = 1950 - age er_ages_rec['age_cal_year'] = age # Fix 'age_range_low': age_range_low = age age_range_high = age age_sigma = 0 if "age_sigma" in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec["age_sigma"], False): age_sigma = float(er_ages_rec["age_sigma"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_sigma = 1950 - age_sigma age_range_low = age - age_sigma age_range_high = age + age_sigma if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec["age_range_high"], False) and cb.not_null(er_ages_rec["age_range_low"], False): age_range_high = float( er_ages_rec["age_range_high"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_range_high = 1950 - age_range_high age_range_low = float( er_ages_rec["age_range_low"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_range_low = 1950 - age_range_low er_ages_rec['age_cal_year_range_low'] = age_range_low er_ages_rec['age_cal_year_range_high'] = age_range_high return(er_ages_rec)
python
def convert_ages_to_calendar_year(self, er_ages_rec): ''' convert all age units to calendar year ''' if ("age" not in list(er_ages_rec.keys())) or (cb.is_null(er_ages_rec['age'], False)): return(er_ages_rec) if ("age_unit" not in list(er_ages_rec.keys())) or (cb.is_null(er_ages_rec['age_unit'])): return(er_ages_rec) if cb.is_null(er_ages_rec["age"], False): if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec["age_range_high"], False) and cb.not_null(er_ages_rec["age_range_low"], False): er_ages_rec["age"] = np.mean( [float(er_ages_rec["age_range_high"]), float(er_ages_rec["age_range_low"])]) if cb.is_null(er_ages_rec["age"], False): return(er_ages_rec) # age_descriptier_ages_recon=er_ages_rec["age_description"] age_unit = er_ages_rec["age_unit"] # Fix 'age': mutliplier = 1 if age_unit == "Ga": mutliplier = -1e9 if age_unit == "Ma": mutliplier = -1e6 if age_unit == "Ka": mutliplier = -1e3 if age_unit == "Years AD (+/-)" or age_unit == "Years Cal AD (+/-)": mutliplier = 1 if age_unit == "Years BP" or age_unit == "Years Cal BP": mutliplier = 1 age = float(er_ages_rec["age"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age = 1950 - age er_ages_rec['age_cal_year'] = age # Fix 'age_range_low': age_range_low = age age_range_high = age age_sigma = 0 if "age_sigma" in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec["age_sigma"], False): age_sigma = float(er_ages_rec["age_sigma"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_sigma = 1950 - age_sigma age_range_low = age - age_sigma age_range_high = age + age_sigma if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec["age_range_high"], False) and cb.not_null(er_ages_rec["age_range_low"], False): age_range_high = float( er_ages_rec["age_range_high"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_range_high = 1950 - age_range_high age_range_low = float( er_ages_rec["age_range_low"]) * mutliplier if age_unit == "Years BP" or age_unit == "Years Cal BP": age_range_low = 1950 - age_range_low er_ages_rec['age_cal_year_range_low'] = age_range_low er_ages_rec['age_cal_year_range_high'] = age_range_high return(er_ages_rec)
convert all age units to calendar year
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L4777-L4839
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.get_new_T_PI_parameters
def get_new_T_PI_parameters(self, event): """ calcualte statisics when temperatures are selected """ # remember the last saved interpretation if "saved" in list(self.pars.keys()): if self.pars['saved']: self.last_saved_pars = {} for key in list(self.pars.keys()): self.last_saved_pars[key] = self.pars[key] self.pars['saved'] = False t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() if (t1 == "" or t2 == ""): print("empty interpretation bounds") return if float(t2) < float(t1): print("upper bound less than lower bound") return index_1 = self.T_list.index(t1) index_2 = self.T_list.index(t2) # if (index_2-index_1)+1 >= self.acceptance_criteria['specimen_int_n']: if (index_2 - index_1) + 1 >= 3: if self.Data[self.s]['T_or_MW'] != "MW": self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.acceptance_criteria, self.preferences, self.s, float( t1) + 273., float(t2) + 273., self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars else: self.pars = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, self.s, float(t1), float(t2), self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars self.update_GUI_with_new_interpretation() self.Add_text(self.s)
python
def get_new_T_PI_parameters(self, event): """ calcualte statisics when temperatures are selected """ # remember the last saved interpretation if "saved" in list(self.pars.keys()): if self.pars['saved']: self.last_saved_pars = {} for key in list(self.pars.keys()): self.last_saved_pars[key] = self.pars[key] self.pars['saved'] = False t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() if (t1 == "" or t2 == ""): print("empty interpretation bounds") return if float(t2) < float(t1): print("upper bound less than lower bound") return index_1 = self.T_list.index(t1) index_2 = self.T_list.index(t2) # if (index_2-index_1)+1 >= self.acceptance_criteria['specimen_int_n']: if (index_2 - index_1) + 1 >= 3: if self.Data[self.s]['T_or_MW'] != "MW": self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.acceptance_criteria, self.preferences, self.s, float( t1) + 273., float(t2) + 273., self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars else: self.pars = thellier_gui_lib.get_PI_parameters( self.Data, self.acceptance_criteria, self.preferences, self.s, float(t1), float(t2), self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars self.update_GUI_with_new_interpretation() self.Add_text(self.s)
calcualte statisics when temperatures are selected
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L6066-L6102
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.add_thellier_gui_criteria
def add_thellier_gui_criteria(self): '''criteria used only in thellier gui these criteria are not written to pmag_criteria.txt ''' category = "thellier_gui" for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = "low" self.acceptance_criteria[crit]['decimal_points'] = 0 for crit in ['sample_int_interval_uT', 'sample_int_interval_perc', 'site_int_interval_uT', 'site_int_interval_perc', 'sample_int_BS_68_uT', 'sample_int_BS_95_uT', 'sample_int_BS_68_perc', 'sample_int_BS_95_perc', 'specimen_int_max_slope_diff']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = "high" if crit in ['specimen_int_max_slope_diff']: self.acceptance_criteria[crit]['decimal_points'] = -999 else: self.acceptance_criteria[crit]['decimal_points'] = 1 self.acceptance_criteria[crit]['comments'] = "thellier_gui_only" for crit in ['average_by_sample_or_site', 'interpreter_method']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit if crit in ['average_by_sample_or_site']: self.acceptance_criteria[crit]['value'] = 'sample' if crit in ['interpreter_method']: self.acceptance_criteria[crit]['value'] = 'stdev_opt' self.acceptance_criteria[crit]['threshold_type'] = "flag" self.acceptance_criteria[crit]['decimal_points'] = -999 for crit in ['include_nrm']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = True self.acceptance_criteria[crit]['threshold_type'] = "bool" self.acceptance_criteria[crit]['decimal_points'] = -999 # define internal Thellier-GUI definitions: self.average_by_sample_or_site = 'sample' self.stdev_opt = True self.bs = False self.bs_par = False
python
def add_thellier_gui_criteria(self): '''criteria used only in thellier gui these criteria are not written to pmag_criteria.txt ''' category = "thellier_gui" for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = "low" self.acceptance_criteria[crit]['decimal_points'] = 0 for crit in ['sample_int_interval_uT', 'sample_int_interval_perc', 'site_int_interval_uT', 'site_int_interval_perc', 'sample_int_BS_68_uT', 'sample_int_BS_95_uT', 'sample_int_BS_68_perc', 'sample_int_BS_95_perc', 'specimen_int_max_slope_diff']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = "high" if crit in ['specimen_int_max_slope_diff']: self.acceptance_criteria[crit]['decimal_points'] = -999 else: self.acceptance_criteria[crit]['decimal_points'] = 1 self.acceptance_criteria[crit]['comments'] = "thellier_gui_only" for crit in ['average_by_sample_or_site', 'interpreter_method']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit if crit in ['average_by_sample_or_site']: self.acceptance_criteria[crit]['value'] = 'sample' if crit in ['interpreter_method']: self.acceptance_criteria[crit]['value'] = 'stdev_opt' self.acceptance_criteria[crit]['threshold_type'] = "flag" self.acceptance_criteria[crit]['decimal_points'] = -999 for crit in ['include_nrm']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = True self.acceptance_criteria[crit]['threshold_type'] = "bool" self.acceptance_criteria[crit]['decimal_points'] = -999 # define internal Thellier-GUI definitions: self.average_by_sample_or_site = 'sample' self.stdev_opt = True self.bs = False self.bs_par = False
criteria used only in thellier gui these criteria are not written to pmag_criteria.txt
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L6383-L6433
PmagPy/PmagPy
programs/thellier_gui.py
Arai_GUI.sortarai
def sortarai(self, datablock, s, Zdiff): """ sorts data block in to first_Z, first_I, etc. """ first_Z, first_I, zptrm_check, ptrm_check, ptrm_tail = [], [], [], [], [] field, phi, theta = "", "", "" starthere = 0 Treat_I, Treat_Z, Treat_PZ, Treat_PI, Treat_M, Treat_AC = [], [], [], [], [], [] ISteps, ZSteps, PISteps, PZSteps, MSteps, ACSteps = [], [], [], [], [], [] GammaChecks = [] # comparison of pTRM direction acquired and lab field Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] rec = datablock[0] for key in Mkeys: if key in list(rec.keys()) and rec[key] != "": momkey = key break # first find all the steps for k in range(len(datablock)): rec = datablock[k] if "treatment_temp" in list(rec.keys()) and rec["treatment_temp"] != "": temp = float(rec["treatment_temp"]) THERMAL = True MICROWAVE = False elif "treatment_mw_power" in list(rec.keys()) and rec["treatment_mw_power"] != "": THERMAL = False MICROWAVE = True if "measurement_description" in list(rec.keys()): MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: temp = float(STEP.split("-")[-1]) methcodes = [] tmp = rec["magic_method_codes"].split(":") for meth in tmp: methcodes.append(meth.strip()) # for thellier-thellier if 'LT-T-I' in methcodes and 'LP-PI-TRM' in methcodes and 'LP-TRM' not in methcodes: Treat_I.append(temp) ISteps.append(k) if field == "": field = float(rec["treatment_dc_field"]) if phi == "": phi = float(rec['treatment_dc_field_phi']) theta = float(rec['treatment_dc_field_theta']) # for Microwave if 'LT-M-I' in methcodes and 'LP-PI-M' in methcodes: Treat_I.append(temp) ISteps.append(k) if field == "": field = float(rec["treatment_dc_field"]) if phi == "": phi = float(rec['treatment_dc_field_phi']) theta = float(rec['treatment_dc_field_theta']) # stick first zero field stuff into first_Z if 'LT-NO' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if "LT-AF-Z" in methcodes and 'treatment_ac_field' in list(rec.keys()): if rec['treatment_ac_field'] != "": AFD_after_NRM = True # consider AFD before T-T experiment ONLY if it comes before # the experiment for i in range(len(first_I)): # check if there was an infield step before the AFD if float(first_I[i][3]) != 0: AFD_after_NRM = False if AFD_after_NRM: AF_field = 0 if 'treatment_ac_field' in rec: try: AF_field = float(rec['treatment_ac_field']) * 1000 except ValueError: pass dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) intensity = float(rec[momkey]) first_I.append([273. - AF_field, 0., 0., 0., 1]) first_Z.append( [273. - AF_field, dec, inc, intensity, 1]) # NRM step if 'LT-T-Z' in methcodes or 'LT-M-Z' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if 'LT-PTRM-Z': Treat_PZ.append(temp) PZSteps.append(k) if 'LT-PTRM-I' in methcodes or 'LT-PMRM-I' in methcodes: Treat_PI.append(temp) PISteps.append(k) if 'LT-PTRM-MD' in methcodes or 'LT-PMRM-MD' in methcodes: Treat_M.append(temp) MSteps.append(k) if 'LT-PTRM-AC' in methcodes or 'LT-PMRM-AC' in methcodes: Treat_AC.append(temp) ACSteps.append(k) if 'LT-NO' in methcodes: dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) if 'LP-PI-M' not in methcodes: first_I.append([273, 0., 0., 0., 1]) first_Z.append([273, dec, inc, moment, 1]) # NRM step else: first_I.append([0, 0., 0., 0., 1]) first_Z.append([0, dec, inc, moment, 1]) # NRM step #--------------------- # find IZ and ZI #--------------------- for temp in Treat_I: # look through infield steps and find matching Z step if temp in Treat_Z: # found a match istep = ISteps[Treat_I.index(temp)] irec = datablock[istep] methcodes = [] tmp = irec["magic_method_codes"].split(":") for meth in tmp: methcodes.append(meth.strip()) # take last record as baseline to subtract brec = datablock[istep - 1] zstep = ZSteps[Treat_Z.index(temp)] zrec = datablock[zstep] # sort out first_Z records # check if ZI/IZ in in method codes: ZI = "" if "LP-PI-TRM-IZ" in methcodes or "LP-PI-M-IZ" in methcodes or "LP-PI-IZ" in methcodes: ZI = 0 elif "LP-PI-TRM-ZI" in methcodes or "LP-PI-M-ZI" in methcodes or "LP-PI-ZI" in methcodes: ZI = 1 elif "LP-PI-BT-IZZI" in methcodes: ZI == "" i_intex, z_intex = 0, 0 foundit = False for i in range(len(datablock)): if THERMAL: if ('treatment_temp' in list(datablock[i].keys()) and float(temp) == float(datablock[i]['treatment_temp'])): foundit = True if MICROWAVE: if ('measurement_description' in list(datablock[i].keys())): MW_step = datablock[i]["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: ThisStep = float(STEP.split("-")[-1]) if ThisStep == float(temp): foundit = True if foundit: if "LT-T-Z" in datablock[i]['magic_method_codes'].split(":") or "LT-M-Z" in datablock[i]['magic_method_codes'].split(":"): z_intex = i if "LT-T-I" in datablock[i]['magic_method_codes'].split(":") or "LT-M-I" in datablock[i]['magic_method_codes'].split(":"): i_intex = i foundit = False if z_intex < i_intex: ZI = 1 else: ZI = 0 dec = float(zrec["measurement_dec"]) inc = float(zrec["measurement_inc"]) str = float(zrec[momkey]) first_Z.append([temp, dec, inc, str, ZI]) # sort out first_I records idec = float(irec["measurement_dec"]) iinc = float(irec["measurement_inc"]) istr = float(irec[momkey]) X = pmag.dir2cart([idec, iinc, istr]) BL = pmag.dir2cart([dec, inc, str]) I = [] for c in range(3): I.append((X[c] - BL[c])) if I[2] != 0: iDir = pmag.cart2dir(I) if Zdiff == 0: first_I.append([temp, iDir[0], iDir[1], iDir[2], ZI]) else: first_I.append([temp, 0., 0., I[2], ZI]) # gamma=angle([iDir[0],iDir[1]],[phi,theta]) else: first_I.append([temp, 0., 0., 0., ZI]) # gamma=0.0 # put in Gamma check (infield trm versus lab field) # if 180.-gamma<gamma: # gamma=180.-gamma # GammaChecks.append([temp-273.,gamma]) #--------------------- # find Thellier Thellier protocol #--------------------- if 'LP-PI-II'in methcodes or 'LP-PI-T-II' in methcodes or 'LP-PI-M-II' in methcodes: # look through infield steps and find matching Z step for i in range(1, len(Treat_I)): if Treat_I[i] == Treat_I[i - 1]: # ignore, if there are more than temp = Treat_I[i] irec1 = datablock[ISteps[i - 1]] dec1 = float(irec1["measurement_dec"]) inc1 = float(irec1["measurement_inc"]) moment1 = float(irec1["measurement_magn_moment"]) if len(first_I) < 2: dec_initial = dec1 inc_initial = inc1 cart1 = np.array(pmag.dir2cart([dec1, inc1, moment1])) irec2 = datablock[ISteps[i]] dec2 = float(irec2["measurement_dec"]) inc2 = float(irec2["measurement_inc"]) moment2 = float(irec2["measurement_magn_moment"]) cart2 = np.array(pmag.dir2cart([dec2, inc2, moment2])) # check if its in the same treatment if Treat_I[i] == Treat_I[i - 2] and dec2 != dec_initial and inc2 != inc_initial: continue if dec1 != dec2 and inc1 != inc2: zerofield = (cart2 + cart1) / 2 infield = (cart2 - cart1) / 2 DIR_zerofield = pmag.cart2dir(zerofield) DIR_infield = pmag.cart2dir(infield) first_Z.append( [temp, DIR_zerofield[0], DIR_zerofield[1], DIR_zerofield[2], 0]) first_I.append( [temp, DIR_infield[0], DIR_infield[1], DIR_infield[2], 0]) #--------------------- # find pTRM checks #--------------------- for i in range(len(Treat_PI)): # look through infield steps and find matching Z step temp = Treat_PI[i] k = PISteps[i] rec = datablock[k] dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) phi = float(rec["treatment_dc_field_phi"]) theta = float(rec["treatment_dc_field_theta"]) M = np.array(pmag.dir2cart([dec, inc, moment])) foundit = False if 'LP-PI-II' not in methcodes: # Important: suport several pTRM checks in a row, but # does not support pTRM checks after infield step for j in range(k, 1, -1): if "LT-M-I" in datablock[j]['magic_method_codes'] or "LT-T-I" in datablock[j]['magic_method_codes']: after_zerofield = 0. foundit = True prev_rec = datablock[j] zerofield_index = j break if float(datablock[j]['treatment_dc_field']) == 0: after_zerofield = 1. foundit = True prev_rec = datablock[j] zerofield_index = j break else: # Thellier-Thellier protocol foundit = True prev_rec = datablock[k - 1] zerofield_index = k - 1 if foundit: prev_dec = float(prev_rec["measurement_dec"]) prev_inc = float(prev_rec["measurement_inc"]) prev_moment = float(prev_rec["measurement_magn_moment"]) prev_phi = float(prev_rec["treatment_dc_field_phi"]) prev_theta = float(prev_rec["treatment_dc_field_theta"]) prev_M = np.array(pmag.dir2cart( [prev_dec, prev_inc, prev_moment])) if 'LP-PI-II' not in methcodes: diff_cart = M - prev_M diff_dir = pmag.cart2dir(diff_cart) if after_zerofield == 0: ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, after_zerofield]) else: ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, after_zerofield]) else: # health check for T-T protocol: if theta != prev_theta: diff = (M - prev_M) / 2 diff_dir = pmag.cart2dir(diff) ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, ""]) else: print( "-W- WARNING: specimen. pTRM check not in place in Thellier Thellier protocol. step please check") #--------------------- # find Tail checks #--------------------- for temp in Treat_M: # print temp step = MSteps[Treat_M.index(temp)] rec = datablock[step] dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) foundit = False for i in range(1, len(datablock)): if 'LT-T-Z' in datablock[i]['magic_method_codes'] or 'LT-M-Z' in datablock[i]['magic_method_codes']: if (THERMAL and "treatment_temp" in list(datablock[i].keys()) and float(datablock[i]["treatment_temp"]) == float(temp))\ or (MICROWAVE and "measurement_description" in list(datablock[i].keys()) and "Step Number-%.0f" % float(temp) in datablock[i]["measurement_description"]): prev_rec = datablock[i] prev_dec = float(prev_rec["measurement_dec"]) prev_inc = float(prev_rec["measurement_inc"]) prev_moment = float( prev_rec["measurement_magn_moment"]) foundit = True break if foundit: ptrm_tail.append([temp, 0, 0, moment - prev_moment]) # # final check # if len(first_Z) != len(first_I): print(len(first_Z), len(first_I)) print(" Something wrong with this specimen! Better fix it or delete it ") input(" press return to acknowledge message") #--------------------- # find Additivity (patch by rshaar) #--------------------- additivity_check = [] for i in range(len(Treat_AC)): step_0 = ACSteps[i] temp = Treat_AC[i] dec0 = float(datablock[step_0]["measurement_dec"]) inc0 = float(datablock[step_0]["measurement_inc"]) moment0 = float(datablock[step_0]['measurement_magn_moment']) V0 = pmag.dir2cart([dec0, inc0, moment0]) # find the infield step that comes before the additivity check foundit = False for j in range(step_0, 1, -1): if "LT-T-I" in datablock[j]['magic_method_codes']: foundit = True break if foundit: dec1 = float(datablock[j]["measurement_dec"]) inc1 = float(datablock[j]["measurement_inc"]) moment1 = float(datablock[j]['measurement_magn_moment']) V1 = pmag.dir2cart([dec1, inc1, moment1]) # print "additivity check: ",s # print j # print "ACC=V1-V0:" # print "V1=",[dec1,inc1,moment1],pmag.dir2cart([dec1,inc1,moment1])/float(datablock[0]["measurement_magn_moment"]) # print "V1=",pmag.dir2cart([dec1,inc1,moment1])/float(datablock[0]["measurement_magn_moment"]) # print "V0=",[dec0,inc0,moment0],pmag.dir2cart([dec0,inc0,moment0])/float(datablock[0]["measurement_magn_moment"]) # print "NRM=",float(datablock[0]["measurement_magn_moment"]) # print "-------" I = [] for c in range(3): I.append(V1[c] - V0[c]) dir1 = pmag.cart2dir(I) additivity_check.append([temp, dir1[0], dir1[1], dir1[2]]) # print # "I",np.array(I)/float(datablock[0]["measurement_magn_moment"]),dir1,"(dir1 # unnormalized)" X = np.array(I) / \ float(datablock[0]["measurement_magn_moment"]) # print "I",np.sqrt(sum(X**2)) araiblock = (first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks, additivity_check) return araiblock, field
python
def sortarai(self, datablock, s, Zdiff): """ sorts data block in to first_Z, first_I, etc. """ first_Z, first_I, zptrm_check, ptrm_check, ptrm_tail = [], [], [], [], [] field, phi, theta = "", "", "" starthere = 0 Treat_I, Treat_Z, Treat_PZ, Treat_PI, Treat_M, Treat_AC = [], [], [], [], [], [] ISteps, ZSteps, PISteps, PZSteps, MSteps, ACSteps = [], [], [], [], [], [] GammaChecks = [] # comparison of pTRM direction acquired and lab field Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] rec = datablock[0] for key in Mkeys: if key in list(rec.keys()) and rec[key] != "": momkey = key break # first find all the steps for k in range(len(datablock)): rec = datablock[k] if "treatment_temp" in list(rec.keys()) and rec["treatment_temp"] != "": temp = float(rec["treatment_temp"]) THERMAL = True MICROWAVE = False elif "treatment_mw_power" in list(rec.keys()) and rec["treatment_mw_power"] != "": THERMAL = False MICROWAVE = True if "measurement_description" in list(rec.keys()): MW_step = rec["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: temp = float(STEP.split("-")[-1]) methcodes = [] tmp = rec["magic_method_codes"].split(":") for meth in tmp: methcodes.append(meth.strip()) # for thellier-thellier if 'LT-T-I' in methcodes and 'LP-PI-TRM' in methcodes and 'LP-TRM' not in methcodes: Treat_I.append(temp) ISteps.append(k) if field == "": field = float(rec["treatment_dc_field"]) if phi == "": phi = float(rec['treatment_dc_field_phi']) theta = float(rec['treatment_dc_field_theta']) # for Microwave if 'LT-M-I' in methcodes and 'LP-PI-M' in methcodes: Treat_I.append(temp) ISteps.append(k) if field == "": field = float(rec["treatment_dc_field"]) if phi == "": phi = float(rec['treatment_dc_field_phi']) theta = float(rec['treatment_dc_field_theta']) # stick first zero field stuff into first_Z if 'LT-NO' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if "LT-AF-Z" in methcodes and 'treatment_ac_field' in list(rec.keys()): if rec['treatment_ac_field'] != "": AFD_after_NRM = True # consider AFD before T-T experiment ONLY if it comes before # the experiment for i in range(len(first_I)): # check if there was an infield step before the AFD if float(first_I[i][3]) != 0: AFD_after_NRM = False if AFD_after_NRM: AF_field = 0 if 'treatment_ac_field' in rec: try: AF_field = float(rec['treatment_ac_field']) * 1000 except ValueError: pass dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) intensity = float(rec[momkey]) first_I.append([273. - AF_field, 0., 0., 0., 1]) first_Z.append( [273. - AF_field, dec, inc, intensity, 1]) # NRM step if 'LT-T-Z' in methcodes or 'LT-M-Z' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if 'LT-PTRM-Z': Treat_PZ.append(temp) PZSteps.append(k) if 'LT-PTRM-I' in methcodes or 'LT-PMRM-I' in methcodes: Treat_PI.append(temp) PISteps.append(k) if 'LT-PTRM-MD' in methcodes or 'LT-PMRM-MD' in methcodes: Treat_M.append(temp) MSteps.append(k) if 'LT-PTRM-AC' in methcodes or 'LT-PMRM-AC' in methcodes: Treat_AC.append(temp) ACSteps.append(k) if 'LT-NO' in methcodes: dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) if 'LP-PI-M' not in methcodes: first_I.append([273, 0., 0., 0., 1]) first_Z.append([273, dec, inc, moment, 1]) # NRM step else: first_I.append([0, 0., 0., 0., 1]) first_Z.append([0, dec, inc, moment, 1]) # NRM step #--------------------- # find IZ and ZI #--------------------- for temp in Treat_I: # look through infield steps and find matching Z step if temp in Treat_Z: # found a match istep = ISteps[Treat_I.index(temp)] irec = datablock[istep] methcodes = [] tmp = irec["magic_method_codes"].split(":") for meth in tmp: methcodes.append(meth.strip()) # take last record as baseline to subtract brec = datablock[istep - 1] zstep = ZSteps[Treat_Z.index(temp)] zrec = datablock[zstep] # sort out first_Z records # check if ZI/IZ in in method codes: ZI = "" if "LP-PI-TRM-IZ" in methcodes or "LP-PI-M-IZ" in methcodes or "LP-PI-IZ" in methcodes: ZI = 0 elif "LP-PI-TRM-ZI" in methcodes or "LP-PI-M-ZI" in methcodes or "LP-PI-ZI" in methcodes: ZI = 1 elif "LP-PI-BT-IZZI" in methcodes: ZI == "" i_intex, z_intex = 0, 0 foundit = False for i in range(len(datablock)): if THERMAL: if ('treatment_temp' in list(datablock[i].keys()) and float(temp) == float(datablock[i]['treatment_temp'])): foundit = True if MICROWAVE: if ('measurement_description' in list(datablock[i].keys())): MW_step = datablock[i]["measurement_description"].strip( '\n').split(":") for STEP in MW_step: if "Number" in STEP: ThisStep = float(STEP.split("-")[-1]) if ThisStep == float(temp): foundit = True if foundit: if "LT-T-Z" in datablock[i]['magic_method_codes'].split(":") or "LT-M-Z" in datablock[i]['magic_method_codes'].split(":"): z_intex = i if "LT-T-I" in datablock[i]['magic_method_codes'].split(":") or "LT-M-I" in datablock[i]['magic_method_codes'].split(":"): i_intex = i foundit = False if z_intex < i_intex: ZI = 1 else: ZI = 0 dec = float(zrec["measurement_dec"]) inc = float(zrec["measurement_inc"]) str = float(zrec[momkey]) first_Z.append([temp, dec, inc, str, ZI]) # sort out first_I records idec = float(irec["measurement_dec"]) iinc = float(irec["measurement_inc"]) istr = float(irec[momkey]) X = pmag.dir2cart([idec, iinc, istr]) BL = pmag.dir2cart([dec, inc, str]) I = [] for c in range(3): I.append((X[c] - BL[c])) if I[2] != 0: iDir = pmag.cart2dir(I) if Zdiff == 0: first_I.append([temp, iDir[0], iDir[1], iDir[2], ZI]) else: first_I.append([temp, 0., 0., I[2], ZI]) # gamma=angle([iDir[0],iDir[1]],[phi,theta]) else: first_I.append([temp, 0., 0., 0., ZI]) # gamma=0.0 # put in Gamma check (infield trm versus lab field) # if 180.-gamma<gamma: # gamma=180.-gamma # GammaChecks.append([temp-273.,gamma]) #--------------------- # find Thellier Thellier protocol #--------------------- if 'LP-PI-II'in methcodes or 'LP-PI-T-II' in methcodes or 'LP-PI-M-II' in methcodes: # look through infield steps and find matching Z step for i in range(1, len(Treat_I)): if Treat_I[i] == Treat_I[i - 1]: # ignore, if there are more than temp = Treat_I[i] irec1 = datablock[ISteps[i - 1]] dec1 = float(irec1["measurement_dec"]) inc1 = float(irec1["measurement_inc"]) moment1 = float(irec1["measurement_magn_moment"]) if len(first_I) < 2: dec_initial = dec1 inc_initial = inc1 cart1 = np.array(pmag.dir2cart([dec1, inc1, moment1])) irec2 = datablock[ISteps[i]] dec2 = float(irec2["measurement_dec"]) inc2 = float(irec2["measurement_inc"]) moment2 = float(irec2["measurement_magn_moment"]) cart2 = np.array(pmag.dir2cart([dec2, inc2, moment2])) # check if its in the same treatment if Treat_I[i] == Treat_I[i - 2] and dec2 != dec_initial and inc2 != inc_initial: continue if dec1 != dec2 and inc1 != inc2: zerofield = (cart2 + cart1) / 2 infield = (cart2 - cart1) / 2 DIR_zerofield = pmag.cart2dir(zerofield) DIR_infield = pmag.cart2dir(infield) first_Z.append( [temp, DIR_zerofield[0], DIR_zerofield[1], DIR_zerofield[2], 0]) first_I.append( [temp, DIR_infield[0], DIR_infield[1], DIR_infield[2], 0]) #--------------------- # find pTRM checks #--------------------- for i in range(len(Treat_PI)): # look through infield steps and find matching Z step temp = Treat_PI[i] k = PISteps[i] rec = datablock[k] dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) phi = float(rec["treatment_dc_field_phi"]) theta = float(rec["treatment_dc_field_theta"]) M = np.array(pmag.dir2cart([dec, inc, moment])) foundit = False if 'LP-PI-II' not in methcodes: # Important: suport several pTRM checks in a row, but # does not support pTRM checks after infield step for j in range(k, 1, -1): if "LT-M-I" in datablock[j]['magic_method_codes'] or "LT-T-I" in datablock[j]['magic_method_codes']: after_zerofield = 0. foundit = True prev_rec = datablock[j] zerofield_index = j break if float(datablock[j]['treatment_dc_field']) == 0: after_zerofield = 1. foundit = True prev_rec = datablock[j] zerofield_index = j break else: # Thellier-Thellier protocol foundit = True prev_rec = datablock[k - 1] zerofield_index = k - 1 if foundit: prev_dec = float(prev_rec["measurement_dec"]) prev_inc = float(prev_rec["measurement_inc"]) prev_moment = float(prev_rec["measurement_magn_moment"]) prev_phi = float(prev_rec["treatment_dc_field_phi"]) prev_theta = float(prev_rec["treatment_dc_field_theta"]) prev_M = np.array(pmag.dir2cart( [prev_dec, prev_inc, prev_moment])) if 'LP-PI-II' not in methcodes: diff_cart = M - prev_M diff_dir = pmag.cart2dir(diff_cart) if after_zerofield == 0: ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, after_zerofield]) else: ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, after_zerofield]) else: # health check for T-T protocol: if theta != prev_theta: diff = (M - prev_M) / 2 diff_dir = pmag.cart2dir(diff) ptrm_check.append( [temp, diff_dir[0], diff_dir[1], diff_dir[2], zerofield_index, ""]) else: print( "-W- WARNING: specimen. pTRM check not in place in Thellier Thellier protocol. step please check") #--------------------- # find Tail checks #--------------------- for temp in Treat_M: # print temp step = MSteps[Treat_M.index(temp)] rec = datablock[step] dec = float(rec["measurement_dec"]) inc = float(rec["measurement_inc"]) moment = float(rec["measurement_magn_moment"]) foundit = False for i in range(1, len(datablock)): if 'LT-T-Z' in datablock[i]['magic_method_codes'] or 'LT-M-Z' in datablock[i]['magic_method_codes']: if (THERMAL and "treatment_temp" in list(datablock[i].keys()) and float(datablock[i]["treatment_temp"]) == float(temp))\ or (MICROWAVE and "measurement_description" in list(datablock[i].keys()) and "Step Number-%.0f" % float(temp) in datablock[i]["measurement_description"]): prev_rec = datablock[i] prev_dec = float(prev_rec["measurement_dec"]) prev_inc = float(prev_rec["measurement_inc"]) prev_moment = float( prev_rec["measurement_magn_moment"]) foundit = True break if foundit: ptrm_tail.append([temp, 0, 0, moment - prev_moment]) # # final check # if len(first_Z) != len(first_I): print(len(first_Z), len(first_I)) print(" Something wrong with this specimen! Better fix it or delete it ") input(" press return to acknowledge message") #--------------------- # find Additivity (patch by rshaar) #--------------------- additivity_check = [] for i in range(len(Treat_AC)): step_0 = ACSteps[i] temp = Treat_AC[i] dec0 = float(datablock[step_0]["measurement_dec"]) inc0 = float(datablock[step_0]["measurement_inc"]) moment0 = float(datablock[step_0]['measurement_magn_moment']) V0 = pmag.dir2cart([dec0, inc0, moment0]) # find the infield step that comes before the additivity check foundit = False for j in range(step_0, 1, -1): if "LT-T-I" in datablock[j]['magic_method_codes']: foundit = True break if foundit: dec1 = float(datablock[j]["measurement_dec"]) inc1 = float(datablock[j]["measurement_inc"]) moment1 = float(datablock[j]['measurement_magn_moment']) V1 = pmag.dir2cart([dec1, inc1, moment1]) # print "additivity check: ",s # print j # print "ACC=V1-V0:" # print "V1=",[dec1,inc1,moment1],pmag.dir2cart([dec1,inc1,moment1])/float(datablock[0]["measurement_magn_moment"]) # print "V1=",pmag.dir2cart([dec1,inc1,moment1])/float(datablock[0]["measurement_magn_moment"]) # print "V0=",[dec0,inc0,moment0],pmag.dir2cart([dec0,inc0,moment0])/float(datablock[0]["measurement_magn_moment"]) # print "NRM=",float(datablock[0]["measurement_magn_moment"]) # print "-------" I = [] for c in range(3): I.append(V1[c] - V0[c]) dir1 = pmag.cart2dir(I) additivity_check.append([temp, dir1[0], dir1[1], dir1[2]]) # print # "I",np.array(I)/float(datablock[0]["measurement_magn_moment"]),dir1,"(dir1 # unnormalized)" X = np.array(I) / \ float(datablock[0]["measurement_magn_moment"]) # print "I",np.sqrt(sum(X**2)) araiblock = (first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks, additivity_check) return araiblock, field
sorts data block in to first_Z, first_I, etc.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/thellier_gui.py#L7913-L8290
PmagPy/PmagPy
programs/cart_dir.py
main
def main(): """ NAME cart_dir.py DESCRIPTION converts cartesian coordinates to geomagnetic elements INPUT (COMMAND LINE ENTRY) x1 x2 x3 if only two columns, assumes magnitude of unity OUTPUT declination inclination magnitude SYNTAX cart_dir.py [command line options] [< filename] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE to specify input filename -F OFILE to specify output filename (also prints to screen) """ ofile="" if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] outfile=open(ofile,'w') if '-i' in sys.argv: cont=1 while cont==1: cart=[] try: ans=input('X: [ctrl-D to quit] ') cart.append(float(ans)) ans=input('Y: ') cart.append(float(ans)) ans=input('Z: ') cart.append(float(ans)) except: print("\n Good-bye \n") sys.exit() dir= pmag.cart2dir(cart) # send dir to dir2cart and spit out result print('%7.1f %7.1f %10.3e'%(dir[0],dir[1],dir[2])) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inp=numpy.loadtxt(file) # read from a file else: inp = numpy.loadtxt(sys.stdin,dtype=numpy.float) # read from standard input dir=pmag.cart2dir(inp) if len(dir.shape)==1: line=dir print('%7.1f %7.1f %10.3e'%(line[0],line[1],line[2])) if ofile!="": outstring='%7.1f %7.1f %10.8e\n' %(line[0],line[1],line[2]) outfile.write(outstring) else: for line in dir: print('%7.1f %7.1f %10.3e'%(line[0],line[1],line[2])) if ofile!="": outstring='%7.1f %7.1f %10.8e\n' %(line[0],line[1],line[2]) outfile.write(outstring)
python
def main(): """ NAME cart_dir.py DESCRIPTION converts cartesian coordinates to geomagnetic elements INPUT (COMMAND LINE ENTRY) x1 x2 x3 if only two columns, assumes magnitude of unity OUTPUT declination inclination magnitude SYNTAX cart_dir.py [command line options] [< filename] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE to specify input filename -F OFILE to specify output filename (also prints to screen) """ ofile="" if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] outfile=open(ofile,'w') if '-i' in sys.argv: cont=1 while cont==1: cart=[] try: ans=input('X: [ctrl-D to quit] ') cart.append(float(ans)) ans=input('Y: ') cart.append(float(ans)) ans=input('Z: ') cart.append(float(ans)) except: print("\n Good-bye \n") sys.exit() dir= pmag.cart2dir(cart) # send dir to dir2cart and spit out result print('%7.1f %7.1f %10.3e'%(dir[0],dir[1],dir[2])) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] inp=numpy.loadtxt(file) # read from a file else: inp = numpy.loadtxt(sys.stdin,dtype=numpy.float) # read from standard input dir=pmag.cart2dir(inp) if len(dir.shape)==1: line=dir print('%7.1f %7.1f %10.3e'%(line[0],line[1],line[2])) if ofile!="": outstring='%7.1f %7.1f %10.8e\n' %(line[0],line[1],line[2]) outfile.write(outstring) else: for line in dir: print('%7.1f %7.1f %10.3e'%(line[0],line[1],line[2])) if ofile!="": outstring='%7.1f %7.1f %10.8e\n' %(line[0],line[1],line[2]) outfile.write(outstring)
NAME cart_dir.py DESCRIPTION converts cartesian coordinates to geomagnetic elements INPUT (COMMAND LINE ENTRY) x1 x2 x3 if only two columns, assumes magnitude of unity OUTPUT declination inclination magnitude SYNTAX cart_dir.py [command line options] [< filename] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE to specify input filename -F OFILE to specify output filename (also prints to screen)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/cart_dir.py#L8-L74
PmagPy/PmagPy
programs/deprecated/susar4_asc_magic.py
main
def main(): """ NAME susar4-asc_magic.py DESCRIPTION converts ascii files generated by SUSAR ver.4.0 to MagIC formated files for use with PmagPy plotting software SYNTAX susar4-asc_magic.py -h [command line options] OPTIONS -h: prints the help message and quits -f FILE: specify .asc input file name -F MFILE: specify magic_measurements output file -Fa AFILE: specify rmag_anisotropy output file -Fr RFILE: specify rmag_results output file -Fs SFILE: specify er_specimens output file with location, sample, site, etc. information -usr USER: specify who made the measurements -loc LOC: specify location name for study -ins INST: specify instrument used -spc SPEC: specify number of characters to specify specimen from sample -ncn NCON: specify naming convention: default is #2 below -k15 : specify static 15 position mode - default is spinning -new : replace all existing magic files DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt SFILE: default is to create new er_specimen.txt file USER: "" LOC: "unknown" INST: "" SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character) appends to 'er_specimens.txt, er_samples.txt, er_sites.txt' files Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. """ citation='This study' cont=0 samp_con,Z="1",1 AniRecSs,AniRecs,SpecRecs,SampRecs,SiteRecs,MeasRecs=[],[],[],[],[],[] user,locname,specfile="","unknown","er_specimens.txt" isspec,inst,specnum='0',"",0 spin,new=1,0 dir_path='.' if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] aoutput,routput,moutput=dir_path+'/rmag_anisotropy.txt',dir_path+'/rmag_results.txt',dir_path+'/magic_measurements.txt' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-usr' in sys.argv: ind=sys.argv.index('-usr') user=sys.argv[ind+1] if "-ncn" in sys.argv: ind=sys.argv.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" if '-k15' in sys.argv:spin=0 if '-f' in sys.argv: ind=sys.argv.index('-f') ascfile=dir_path+'/'+sys.argv[ind+1] if '-F' in sys.argv: ind=sys.argv.index('-F') moutput=dir_path+'/'+sys.argv[ind+1] if '-Fa' in sys.argv: ind=sys.argv.index('-Fa') aoutput=dir_path+'/'+sys.argv[ind+1] if '-Fr' in sys.argv: ind=sys.argv.index('-Fr') routput=dir_path+'/'+sys.argv[ind+1] if '-Fs' in sys.argv: ind=sys.argv.index('-Fs') specfile=dir_path+'/'+sys.argv[ind+1] isspec='1' elif '-loc' in sys.argv: ind=sys.argv.index('-loc') locname=sys.argv[ind+1] if '-spc' in sys.argv: ind=sys.argv.index('-spc') specnum=-(int(sys.argv[ind+1])) if specnum!=0:specnum=-specnum if isspec=="1": specs,file_type=pmag.magic_read(specfile) specnames,sampnames,sitenames=[],[],[] if '-new' not in sys.argv: # see if there are already specimen,sample, site files lying around try: SpecRecs,file_type=pmag.magic_read(dir_path+'/er_specimens.txt') for spec in SpecRecs: if spec['er_specimen_name'] not in specnames:specnames.append(samp['er_specimen_name']) except: SpecRecs,specs=[],[] try: SampRecs,file_type=pmag.magic_read(dir_path+'/er_samples.txt') for samp in SampRecs: if samp['er_sample_name'] not in sampnames:sampnames.append(samp['er_sample_name']) except: sampnames,SampRecs=[],[] try: SiteRecs,file_type=pmag.magic_read(dir_path+'/er_sites.txt') for site in SiteRecs: if site['er_site_names'] not in sitenames:sitenames.append(site['er_site_name']) except: sitenames,SiteRecs=[],[] try: input=open(ascfile,'r') except: print('Error opening file: ', ascfile) Data=input.readlines() k=0 while k<len(Data): line = Data[k] words=line.split() if "ANISOTROPY" in words: # first line of data for the spec MeasRec,AniRec,SpecRec,SampRec,SiteRec={},{},{},{},{} specname=words[0] AniRec['er_specimen_name']=specname if isspec=="1": for spec in specs: if spec['er_specimen_name']==specname: AniRec['er_sample_name']=spec['er_sample_name'] AniRec['er_site_name']=spec['er_site_name'] AniRec['er_location_name']=spec['er_location_name'] break elif isspec=="0": if specnum!=0: sampname=specname[:specnum] else: sampname=specname AniRec['er_sample_name']=sampname SpecRec['er_specimen_name']=specname SpecRec['er_sample_name']=sampname SampRec['er_sample_name']=sampname SiteRec['er_sample_name']=sampname SiteRec['site_description']='s' AniRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SpecRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SampRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SiteRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) AniRec['er_location_name']=locname SpecRec['er_location_name']=locname SampRec['er_location_name']=locname SiteRec['er_location_name']=locname AniRec['er_citation_names']="This study" SpecRec['er_citation_names']="This study" SampRec['er_citation_names']="This study" SiteRec['er_citation_names']="This study" AniRec['er_citation_names']="This study" AniRec['magic_instrument_codes']=inst AniRec['magic_method_codes']="LP-X:AE-H:LP-AN-MS" AniRec['magic_experiment_names']=specname+":"+"LP-AN-MS" AniRec['er_analyst_mail_names']=user for key in list(AniRec.keys()):MeasRec[key]=AniRec[key] MeasRec['measurement_flag']='g' AniRec['anisotropy_flag']='g' MeasRec['measurement_standard']='u' MeasRec['measurement_description']='Bulk sucsecptibility measurement' AniRec['anisotropy_type']="AMS" AniRec['anisotropy_unit']="Normalized by trace" if spin==1: AniRec['anisotropy_n']="192" else: AniRec['anisotropy_n']="15" if 'Azi' in words and isspec=='0': SampRec['sample_azimuth']=words[1] labaz=float(words[1]) if 'Dip' in words: SampRec['sample_dip']='%7.1f'%(-float(words[1])) SpecRec['specimen_vol']='%8.3e'%(float(words[10])*1e-6) # convert actual volume to m^3 from cm^3 labdip=float(words[1]) if 'T1' in words and 'F1' in words: k+=2 # read in fourth line down line=Data[k] rec=line.split() dd=rec[1].split('/') dip_direction=int(dd[0])+90 SampRec['sample_bed_dip_direction']='%i'%(dip_direction) SampRec['sample_bed_dip']=dd[1] bed_dip=float(dd[1]) if "Mean" in words: k+=4 # read in fourth line down line=Data[k] rec=line.split() MeasRec['measurement_chi_volume']=rec[1] sigma=.01*float(rec[2])/3. AniRec['anisotropy_sigma']='%7.4f'%(sigma) AniRec['anisotropy_unit']='SI' if "factors" in words: k+=4 # read in second line down line=Data[k] rec=line.split() if "Specimen" in words: # first part of specimen data AniRec['anisotropy_s1']='%7.4f'%(old_div(float(words[5]),3.)) # eigenvalues sum to unity - not 3 AniRec['anisotropy_s2']='%7.4f'%(old_div(float(words[6]),3.)) AniRec['anisotropy_s3']='%7.4f'%(old_div(float(words[7]),3.)) k+=1 line=Data[k] rec=line.split() AniRec['anisotropy_s4']='%7.4f'%(old_div(float(rec[5]),3.)) # eigenvalues sum to unity - not 3 AniRec['anisotropy_s5']='%7.4f'%(old_div(float(rec[6]),3.)) AniRec['anisotropy_s6']='%7.4f'%(old_div(float(rec[7]),3.)) AniRec['anisotropy_tilt_correction']='-1' AniRecs.append(AniRec) AniRecG,AniRecT={},{} for key in list(AniRec.keys()):AniRecG[key]=AniRec[key] for key in list(AniRec.keys()):AniRecT[key]=AniRec[key] sbar=[] sbar.append(float(AniRec['anisotropy_s1'])) sbar.append(float(AniRec['anisotropy_s2'])) sbar.append(float(AniRec['anisotropy_s3'])) sbar.append(float(AniRec['anisotropy_s4'])) sbar.append(float(AniRec['anisotropy_s5'])) sbar.append(float(AniRec['anisotropy_s6'])) sbarg=pmag.dosgeo(sbar,labaz,labdip) AniRecG["anisotropy_s1"]='%12.10f'%(sbarg[0]) AniRecG["anisotropy_s2"]='%12.10f'%(sbarg[1]) AniRecG["anisotropy_s3"]='%12.10f'%(sbarg[2]) AniRecG["anisotropy_s4"]='%12.10f'%(sbarg[3]) AniRecG["anisotropy_s5"]='%12.10f'%(sbarg[4]) AniRecG["anisotropy_s6"]='%12.10f'%(sbarg[5]) AniRecG["anisotropy_tilt_correction"]='0' AniRecs.append(AniRecG) if bed_dip!="" and bed_dip!=0: # have tilt correction sbart=pmag.dostilt(sbarg,dip_direction,bed_dip) AniRecT["anisotropy_s1"]='%12.10f'%(sbart[0]) AniRecT["anisotropy_s2"]='%12.10f'%(sbart[1]) AniRecT["anisotropy_s3"]='%12.10f'%(sbart[2]) AniRecT["anisotropy_s4"]='%12.10f'%(sbart[3]) AniRecT["anisotropy_s5"]='%12.10f'%(sbart[4]) AniRecT["anisotropy_s6"]='%12.10f'%(sbart[5]) AniRecT["anisotropy_tilt_correction"]='100' AniRecs.append(AniRecT) MeasRecs.append(MeasRec) if SpecRec['er_specimen_name'] not in specnames: SpecRecs.append(SpecRec) specnames.append(SpecRec['er_specimen_name']) if SampRec['er_sample_name'] not in sampnames: SampRecs.append(SampRec) sampnames.append(SampRec['er_sample_name']) if SiteRec['er_site_name'] not in sitenames: SiteRecs.append(SiteRec) sitenames.append(SiteRec['er_site_name']) k+=1 # skip to next specimen pmag.magic_write(aoutput,AniRecs,'rmag_anisotropy') print("anisotropy tensors put in ",aoutput) pmag.magic_write(moutput,MeasRecs,'magic_measurements') print("bulk measurements put in ",moutput) if isspec=="0": SpecOut,keys=pmag.fillkeys(SpecRecs) output=dir_path+"/er_specimens.txt" pmag.magic_write(output,SpecOut,'er_specimens') print("specimen info put in ",output) output=dir_path+"/er_samples.txt" SampOut,keys=pmag.fillkeys(SampRecs) pmag.magic_write(output,SampOut,'er_samples') print("sample info put in ",output) output=dir_path+"/er_sites.txt" SiteOut,keys=pmag.fillkeys(SiteRecs) pmag.magic_write(output,SiteOut,'er_sites') print("site info put in ",output) print("""" You can now import your data into the Magic Console and complete data entry, for example the site locations, lithologies, etc. plotting can be done with aniso_magic.py """)
python
def main(): """ NAME susar4-asc_magic.py DESCRIPTION converts ascii files generated by SUSAR ver.4.0 to MagIC formated files for use with PmagPy plotting software SYNTAX susar4-asc_magic.py -h [command line options] OPTIONS -h: prints the help message and quits -f FILE: specify .asc input file name -F MFILE: specify magic_measurements output file -Fa AFILE: specify rmag_anisotropy output file -Fr RFILE: specify rmag_results output file -Fs SFILE: specify er_specimens output file with location, sample, site, etc. information -usr USER: specify who made the measurements -loc LOC: specify location name for study -ins INST: specify instrument used -spc SPEC: specify number of characters to specify specimen from sample -ncn NCON: specify naming convention: default is #2 below -k15 : specify static 15 position mode - default is spinning -new : replace all existing magic files DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt SFILE: default is to create new er_specimen.txt file USER: "" LOC: "unknown" INST: "" SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character) appends to 'er_specimens.txt, er_samples.txt, er_sites.txt' files Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. """ citation='This study' cont=0 samp_con,Z="1",1 AniRecSs,AniRecs,SpecRecs,SampRecs,SiteRecs,MeasRecs=[],[],[],[],[],[] user,locname,specfile="","unknown","er_specimens.txt" isspec,inst,specnum='0',"",0 spin,new=1,0 dir_path='.' if '-WD' in sys.argv: ind=sys.argv.index('-WD') dir_path=sys.argv[ind+1] aoutput,routput,moutput=dir_path+'/rmag_anisotropy.txt',dir_path+'/rmag_results.txt',dir_path+'/magic_measurements.txt' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-usr' in sys.argv: ind=sys.argv.index('-usr') user=sys.argv[ind+1] if "-ncn" in sys.argv: ind=sys.argv.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" if '-k15' in sys.argv:spin=0 if '-f' in sys.argv: ind=sys.argv.index('-f') ascfile=dir_path+'/'+sys.argv[ind+1] if '-F' in sys.argv: ind=sys.argv.index('-F') moutput=dir_path+'/'+sys.argv[ind+1] if '-Fa' in sys.argv: ind=sys.argv.index('-Fa') aoutput=dir_path+'/'+sys.argv[ind+1] if '-Fr' in sys.argv: ind=sys.argv.index('-Fr') routput=dir_path+'/'+sys.argv[ind+1] if '-Fs' in sys.argv: ind=sys.argv.index('-Fs') specfile=dir_path+'/'+sys.argv[ind+1] isspec='1' elif '-loc' in sys.argv: ind=sys.argv.index('-loc') locname=sys.argv[ind+1] if '-spc' in sys.argv: ind=sys.argv.index('-spc') specnum=-(int(sys.argv[ind+1])) if specnum!=0:specnum=-specnum if isspec=="1": specs,file_type=pmag.magic_read(specfile) specnames,sampnames,sitenames=[],[],[] if '-new' not in sys.argv: # see if there are already specimen,sample, site files lying around try: SpecRecs,file_type=pmag.magic_read(dir_path+'/er_specimens.txt') for spec in SpecRecs: if spec['er_specimen_name'] not in specnames:specnames.append(samp['er_specimen_name']) except: SpecRecs,specs=[],[] try: SampRecs,file_type=pmag.magic_read(dir_path+'/er_samples.txt') for samp in SampRecs: if samp['er_sample_name'] not in sampnames:sampnames.append(samp['er_sample_name']) except: sampnames,SampRecs=[],[] try: SiteRecs,file_type=pmag.magic_read(dir_path+'/er_sites.txt') for site in SiteRecs: if site['er_site_names'] not in sitenames:sitenames.append(site['er_site_name']) except: sitenames,SiteRecs=[],[] try: input=open(ascfile,'r') except: print('Error opening file: ', ascfile) Data=input.readlines() k=0 while k<len(Data): line = Data[k] words=line.split() if "ANISOTROPY" in words: # first line of data for the spec MeasRec,AniRec,SpecRec,SampRec,SiteRec={},{},{},{},{} specname=words[0] AniRec['er_specimen_name']=specname if isspec=="1": for spec in specs: if spec['er_specimen_name']==specname: AniRec['er_sample_name']=spec['er_sample_name'] AniRec['er_site_name']=spec['er_site_name'] AniRec['er_location_name']=spec['er_location_name'] break elif isspec=="0": if specnum!=0: sampname=specname[:specnum] else: sampname=specname AniRec['er_sample_name']=sampname SpecRec['er_specimen_name']=specname SpecRec['er_sample_name']=sampname SampRec['er_sample_name']=sampname SiteRec['er_sample_name']=sampname SiteRec['site_description']='s' AniRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SpecRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SampRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) SiteRec['er_site_name']=pmag.parse_site(AniRec['er_sample_name'],samp_con,Z) AniRec['er_location_name']=locname SpecRec['er_location_name']=locname SampRec['er_location_name']=locname SiteRec['er_location_name']=locname AniRec['er_citation_names']="This study" SpecRec['er_citation_names']="This study" SampRec['er_citation_names']="This study" SiteRec['er_citation_names']="This study" AniRec['er_citation_names']="This study" AniRec['magic_instrument_codes']=inst AniRec['magic_method_codes']="LP-X:AE-H:LP-AN-MS" AniRec['magic_experiment_names']=specname+":"+"LP-AN-MS" AniRec['er_analyst_mail_names']=user for key in list(AniRec.keys()):MeasRec[key]=AniRec[key] MeasRec['measurement_flag']='g' AniRec['anisotropy_flag']='g' MeasRec['measurement_standard']='u' MeasRec['measurement_description']='Bulk sucsecptibility measurement' AniRec['anisotropy_type']="AMS" AniRec['anisotropy_unit']="Normalized by trace" if spin==1: AniRec['anisotropy_n']="192" else: AniRec['anisotropy_n']="15" if 'Azi' in words and isspec=='0': SampRec['sample_azimuth']=words[1] labaz=float(words[1]) if 'Dip' in words: SampRec['sample_dip']='%7.1f'%(-float(words[1])) SpecRec['specimen_vol']='%8.3e'%(float(words[10])*1e-6) # convert actual volume to m^3 from cm^3 labdip=float(words[1]) if 'T1' in words and 'F1' in words: k+=2 # read in fourth line down line=Data[k] rec=line.split() dd=rec[1].split('/') dip_direction=int(dd[0])+90 SampRec['sample_bed_dip_direction']='%i'%(dip_direction) SampRec['sample_bed_dip']=dd[1] bed_dip=float(dd[1]) if "Mean" in words: k+=4 # read in fourth line down line=Data[k] rec=line.split() MeasRec['measurement_chi_volume']=rec[1] sigma=.01*float(rec[2])/3. AniRec['anisotropy_sigma']='%7.4f'%(sigma) AniRec['anisotropy_unit']='SI' if "factors" in words: k+=4 # read in second line down line=Data[k] rec=line.split() if "Specimen" in words: # first part of specimen data AniRec['anisotropy_s1']='%7.4f'%(old_div(float(words[5]),3.)) # eigenvalues sum to unity - not 3 AniRec['anisotropy_s2']='%7.4f'%(old_div(float(words[6]),3.)) AniRec['anisotropy_s3']='%7.4f'%(old_div(float(words[7]),3.)) k+=1 line=Data[k] rec=line.split() AniRec['anisotropy_s4']='%7.4f'%(old_div(float(rec[5]),3.)) # eigenvalues sum to unity - not 3 AniRec['anisotropy_s5']='%7.4f'%(old_div(float(rec[6]),3.)) AniRec['anisotropy_s6']='%7.4f'%(old_div(float(rec[7]),3.)) AniRec['anisotropy_tilt_correction']='-1' AniRecs.append(AniRec) AniRecG,AniRecT={},{} for key in list(AniRec.keys()):AniRecG[key]=AniRec[key] for key in list(AniRec.keys()):AniRecT[key]=AniRec[key] sbar=[] sbar.append(float(AniRec['anisotropy_s1'])) sbar.append(float(AniRec['anisotropy_s2'])) sbar.append(float(AniRec['anisotropy_s3'])) sbar.append(float(AniRec['anisotropy_s4'])) sbar.append(float(AniRec['anisotropy_s5'])) sbar.append(float(AniRec['anisotropy_s6'])) sbarg=pmag.dosgeo(sbar,labaz,labdip) AniRecG["anisotropy_s1"]='%12.10f'%(sbarg[0]) AniRecG["anisotropy_s2"]='%12.10f'%(sbarg[1]) AniRecG["anisotropy_s3"]='%12.10f'%(sbarg[2]) AniRecG["anisotropy_s4"]='%12.10f'%(sbarg[3]) AniRecG["anisotropy_s5"]='%12.10f'%(sbarg[4]) AniRecG["anisotropy_s6"]='%12.10f'%(sbarg[5]) AniRecG["anisotropy_tilt_correction"]='0' AniRecs.append(AniRecG) if bed_dip!="" and bed_dip!=0: # have tilt correction sbart=pmag.dostilt(sbarg,dip_direction,bed_dip) AniRecT["anisotropy_s1"]='%12.10f'%(sbart[0]) AniRecT["anisotropy_s2"]='%12.10f'%(sbart[1]) AniRecT["anisotropy_s3"]='%12.10f'%(sbart[2]) AniRecT["anisotropy_s4"]='%12.10f'%(sbart[3]) AniRecT["anisotropy_s5"]='%12.10f'%(sbart[4]) AniRecT["anisotropy_s6"]='%12.10f'%(sbart[5]) AniRecT["anisotropy_tilt_correction"]='100' AniRecs.append(AniRecT) MeasRecs.append(MeasRec) if SpecRec['er_specimen_name'] not in specnames: SpecRecs.append(SpecRec) specnames.append(SpecRec['er_specimen_name']) if SampRec['er_sample_name'] not in sampnames: SampRecs.append(SampRec) sampnames.append(SampRec['er_sample_name']) if SiteRec['er_site_name'] not in sitenames: SiteRecs.append(SiteRec) sitenames.append(SiteRec['er_site_name']) k+=1 # skip to next specimen pmag.magic_write(aoutput,AniRecs,'rmag_anisotropy') print("anisotropy tensors put in ",aoutput) pmag.magic_write(moutput,MeasRecs,'magic_measurements') print("bulk measurements put in ",moutput) if isspec=="0": SpecOut,keys=pmag.fillkeys(SpecRecs) output=dir_path+"/er_specimens.txt" pmag.magic_write(output,SpecOut,'er_specimens') print("specimen info put in ",output) output=dir_path+"/er_samples.txt" SampOut,keys=pmag.fillkeys(SampRecs) pmag.magic_write(output,SampOut,'er_samples') print("sample info put in ",output) output=dir_path+"/er_sites.txt" SiteOut,keys=pmag.fillkeys(SiteRecs) pmag.magic_write(output,SiteOut,'er_sites') print("site info put in ",output) print("""" You can now import your data into the Magic Console and complete data entry, for example the site locations, lithologies, etc. plotting can be done with aniso_magic.py """)
NAME susar4-asc_magic.py DESCRIPTION converts ascii files generated by SUSAR ver.4.0 to MagIC formated files for use with PmagPy plotting software SYNTAX susar4-asc_magic.py -h [command line options] OPTIONS -h: prints the help message and quits -f FILE: specify .asc input file name -F MFILE: specify magic_measurements output file -Fa AFILE: specify rmag_anisotropy output file -Fr RFILE: specify rmag_results output file -Fs SFILE: specify er_specimens output file with location, sample, site, etc. information -usr USER: specify who made the measurements -loc LOC: specify location name for study -ins INST: specify instrument used -spc SPEC: specify number of characters to specify specimen from sample -ncn NCON: specify naming convention: default is #2 below -k15 : specify static 15 position mode - default is spinning -new : replace all existing magic files DEFAULTS AFILE: rmag_anisotropy.txt RFILE: rmag_results.txt SFILE: default is to create new er_specimen.txt file USER: "" LOC: "unknown" INST: "" SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character) appends to 'er_specimens.txt, er_samples.txt, er_sites.txt' files Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help.
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/susar4_asc_magic.py#L6-L297
PmagPy/PmagPy
programs/histplot.py
main
def main(): """ NAME histplot.py DESCRIPTION makes histograms for data OPTIONS -h prints help message and quits -f input file name -b binsize -fmt [svg,png,pdf,eps,jpg] specify format for image, default is svg -sav save figure and quit -F output file name, default is hist.fmt -N don't normalize -twin plot both normalized and un-normalized y axes -xlab Label of X axis -ylab Label of Y axis INPUT FORMAT single variable SYNTAX histplot.py [command line options] [<file] """ save_plots = False if '-sav' in sys.argv: save_plots = True interactive = False if '-h' in sys.argv: print(main.__doc__) sys.exit() fmt = pmag.get_named_arg('-fmt', 'svg') fname = pmag.get_named_arg('-f', '') outfile = pmag.get_named_arg("-F", "") norm = 1 if '-N' in sys.argv: norm = 0 if '-twin' in sys.argv: norm = - 1 binsize = pmag.get_named_arg('-b', 0) if '-xlab' in sys.argv: ind = sys.argv.index('-xlab') xlab = sys.argv[ind+1] else: xlab = 'x' data = [] if not fname: print('-I- Trying to read from stdin... <ctrl>-c to quit') data = np.loadtxt(sys.stdin, dtype=np.float) ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt, save_plots, interactive)
python
def main(): """ NAME histplot.py DESCRIPTION makes histograms for data OPTIONS -h prints help message and quits -f input file name -b binsize -fmt [svg,png,pdf,eps,jpg] specify format for image, default is svg -sav save figure and quit -F output file name, default is hist.fmt -N don't normalize -twin plot both normalized and un-normalized y axes -xlab Label of X axis -ylab Label of Y axis INPUT FORMAT single variable SYNTAX histplot.py [command line options] [<file] """ save_plots = False if '-sav' in sys.argv: save_plots = True interactive = False if '-h' in sys.argv: print(main.__doc__) sys.exit() fmt = pmag.get_named_arg('-fmt', 'svg') fname = pmag.get_named_arg('-f', '') outfile = pmag.get_named_arg("-F", "") norm = 1 if '-N' in sys.argv: norm = 0 if '-twin' in sys.argv: norm = - 1 binsize = pmag.get_named_arg('-b', 0) if '-xlab' in sys.argv: ind = sys.argv.index('-xlab') xlab = sys.argv[ind+1] else: xlab = 'x' data = [] if not fname: print('-I- Trying to read from stdin... <ctrl>-c to quit') data = np.loadtxt(sys.stdin, dtype=np.float) ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt, save_plots, interactive)
NAME histplot.py DESCRIPTION makes histograms for data OPTIONS -h prints help message and quits -f input file name -b binsize -fmt [svg,png,pdf,eps,jpg] specify format for image, default is svg -sav save figure and quit -F output file name, default is hist.fmt -N don't normalize -twin plot both normalized and un-normalized y axes -xlab Label of X axis -ylab Label of Y axis INPUT FORMAT single variable SYNTAX histplot.py [command line options] [<file]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/histplot.py#L14-L69
PmagPy/PmagPy
pmagpy/command_line_extractor.py
extract_args
def extract_args(argv): """ take sys.argv that is used to call a command-line script and return a correctly split list of arguments for example, this input: ["eqarea.py", "-f", "infile", "-F", "outfile", "-A"] will return this output: [['f', 'infile'], ['F', 'outfile'], ['A']] """ string = " ".join(argv) string = string.split(' -') program = string[0] arguments = [s.split() for s in string[1:]] return arguments
python
def extract_args(argv): """ take sys.argv that is used to call a command-line script and return a correctly split list of arguments for example, this input: ["eqarea.py", "-f", "infile", "-F", "outfile", "-A"] will return this output: [['f', 'infile'], ['F', 'outfile'], ['A']] """ string = " ".join(argv) string = string.split(' -') program = string[0] arguments = [s.split() for s in string[1:]] return arguments
take sys.argv that is used to call a command-line script and return a correctly split list of arguments for example, this input: ["eqarea.py", "-f", "infile", "-F", "outfile", "-A"] will return this output: [['f', 'infile'], ['F', 'outfile'], ['A']]
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/command_line_extractor.py#L38-L48
PmagPy/PmagPy
pmagpy/command_line_extractor.py
check_args
def check_args(arguments, data_frame): """ check arguments against a command_line_dataframe. checks that: all arguments are valid all required arguments are present default values are used where needed """ stripped_args = [a[0] for a in arguments] df = data_frame.df # first make sure all args are valid for a in arguments: if a[0] not in df.index: print("-I- ignoring invalid argument: {}".format(a[0])) print("-") # next make sure required arguments are present condition = df['reqd'] reqd_args = df[condition] for arg in reqd_args['arg_name']: if arg not in stripped_args: raise pmag.MissingCommandLineArgException("-"+arg) #next, assign any default values as needed #condition = df['default'] != '' # don't need this, and sometimes the correct default argument IS '' default_args = df #[condition] using_defaults = [] for arg_name, row in default_args.iterrows(): default = row['default'] if arg_name not in stripped_args: using_defaults.append(arg_name) arguments.append([arg_name, default]) using_defaults = ["-" + arg for arg in using_defaults] print('Using default arguments for: {}'.format(', '.join(using_defaults))) return arguments
python
def check_args(arguments, data_frame): """ check arguments against a command_line_dataframe. checks that: all arguments are valid all required arguments are present default values are used where needed """ stripped_args = [a[0] for a in arguments] df = data_frame.df # first make sure all args are valid for a in arguments: if a[0] not in df.index: print("-I- ignoring invalid argument: {}".format(a[0])) print("-") # next make sure required arguments are present condition = df['reqd'] reqd_args = df[condition] for arg in reqd_args['arg_name']: if arg not in stripped_args: raise pmag.MissingCommandLineArgException("-"+arg) #next, assign any default values as needed #condition = df['default'] != '' # don't need this, and sometimes the correct default argument IS '' default_args = df #[condition] using_defaults = [] for arg_name, row in default_args.iterrows(): default = row['default'] if arg_name not in stripped_args: using_defaults.append(arg_name) arguments.append([arg_name, default]) using_defaults = ["-" + arg for arg in using_defaults] print('Using default arguments for: {}'.format(', '.join(using_defaults))) return arguments
check arguments against a command_line_dataframe. checks that: all arguments are valid all required arguments are present default values are used where needed
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/command_line_extractor.py#L50-L83
PmagPy/PmagPy
dialogs/drop_down_menus3.py
Menus.InitUI
def InitUI(self): """ Initialize interface for drop down menu """ if self.data_type in ['orient', 'ages']: belongs_to = [] else: parent_table_name = self.parent_type + "s" if parent_table_name in self.contribution.tables: belongs_to = sorted(self.contribution.tables[parent_table_name].df.index.unique()) else: belongs_to = [] self.choices = {} if self.data_type in ['specimens', 'samples', 'sites']: self.choices = {1: (belongs_to, False)} if self.data_type == 'orient': self.choices = {1: (['g', 'b'], False)} if self.data_type == 'ages': for level in ['specimen', 'sample', 'site', 'location']: if level in self.grid.col_labels: level_names = [] if level + "s" in self.contribution.tables: level_names = list(self.contribution.tables[level+"s"].df.index.unique()) num = self.grid.col_labels.index(level) self.choices[num] = (level_names, False) # Bind left click to drop-down menu popping out self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self.on_left_click(event, self.grid, self.choices)) cols = self.grid.GetNumberCols() col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)] # check if any additional columns have controlled vocabularies # if so, get the vocabulary list for col_number, label in enumerate(col_labels): self.add_drop_down(col_number, label)
python
def InitUI(self): """ Initialize interface for drop down menu """ if self.data_type in ['orient', 'ages']: belongs_to = [] else: parent_table_name = self.parent_type + "s" if parent_table_name in self.contribution.tables: belongs_to = sorted(self.contribution.tables[parent_table_name].df.index.unique()) else: belongs_to = [] self.choices = {} if self.data_type in ['specimens', 'samples', 'sites']: self.choices = {1: (belongs_to, False)} if self.data_type == 'orient': self.choices = {1: (['g', 'b'], False)} if self.data_type == 'ages': for level in ['specimen', 'sample', 'site', 'location']: if level in self.grid.col_labels: level_names = [] if level + "s" in self.contribution.tables: level_names = list(self.contribution.tables[level+"s"].df.index.unique()) num = self.grid.col_labels.index(level) self.choices[num] = (level_names, False) # Bind left click to drop-down menu popping out self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self.on_left_click(event, self.grid, self.choices)) cols = self.grid.GetNumberCols() col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)] # check if any additional columns have controlled vocabularies # if so, get the vocabulary list for col_number, label in enumerate(col_labels): self.add_drop_down(col_number, label)
Initialize interface for drop down menu
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/drop_down_menus3.py#L51-L87
PmagPy/PmagPy
dialogs/drop_down_menus3.py
Menus.add_drop_down
def add_drop_down(self, col_number, col_label): """ Add a correctly formatted drop-down-menu for given col_label, if required or suggested. Otherwise do nothing. Parameters ---------- col_number : int grid position at which to add a drop down menu col_label : str column name """ if col_label.endswith('**') or col_label.endswith('^^'): col_label = col_label[:-2] # add drop-down for experiments if col_label == "experiments": if 'measurements' in self.contribution.tables: meas_table = self.contribution.tables['measurements'].df if 'experiment' in meas_table.columns: exps = meas_table['experiment'].unique() self.choices[col_number] = (sorted(exps), False) self.grid.SetColLabelValue(col_number, col_label + "**") return # if col_label == 'method_codes': self.add_method_drop_down(col_number, col_label) elif col_label == 'magic_method_codes': self.add_method_drop_down(col_number, 'method_codes') elif col_label in ['specimens', 'samples', 'sites', 'locations']: if col_label in self.contribution.tables: item_df = self.contribution.tables[col_label].df item_names = item_df.index.unique() #[col_label[:-1]].unique() self.choices[col_number] = (sorted(item_names), False) elif col_label in ['specimen', 'sample', 'site', 'location']: if col_label + "s" in self.contribution.tables: item_df = self.contribution.tables[col_label + "s"].df item_names = item_df.index.unique() #[col_label[:-1]].unique() self.choices[col_number] = (sorted(item_names), False) # add vocabularies if col_label in self.contribution.vocab.suggested: typ = 'suggested' elif col_label in self.contribution.vocab.vocabularies: typ = 'controlled' else: return # add menu, if not already set if col_number not in list(self.choices.keys()): if typ == 'suggested': self.grid.SetColLabelValue(col_number, col_label + "^^") controlled_vocabulary = self.contribution.vocab.suggested[col_label] else: self.grid.SetColLabelValue(col_number, col_label + "**") controlled_vocabulary = self.contribution.vocab.vocabularies[col_label] # stripped_list = [] for item in controlled_vocabulary: try: stripped_list.append(str(item)) except UnicodeEncodeError: # skips items with non ASCII characters pass if len(stripped_list) > 100: # split out the list alphabetically, into a dict of lists {'A': ['alpha', 'artist'], 'B': ['beta', 'beggar']...} dictionary = {} for item in stripped_list: letter = item[0].upper() if letter not in list(dictionary.keys()): dictionary[letter] = [] dictionary[letter].append(item) stripped_list = dictionary two_tiered = True if isinstance(stripped_list, dict) else False self.choices[col_number] = (stripped_list, two_tiered) return
python
def add_drop_down(self, col_number, col_label): """ Add a correctly formatted drop-down-menu for given col_label, if required or suggested. Otherwise do nothing. Parameters ---------- col_number : int grid position at which to add a drop down menu col_label : str column name """ if col_label.endswith('**') or col_label.endswith('^^'): col_label = col_label[:-2] # add drop-down for experiments if col_label == "experiments": if 'measurements' in self.contribution.tables: meas_table = self.contribution.tables['measurements'].df if 'experiment' in meas_table.columns: exps = meas_table['experiment'].unique() self.choices[col_number] = (sorted(exps), False) self.grid.SetColLabelValue(col_number, col_label + "**") return # if col_label == 'method_codes': self.add_method_drop_down(col_number, col_label) elif col_label == 'magic_method_codes': self.add_method_drop_down(col_number, 'method_codes') elif col_label in ['specimens', 'samples', 'sites', 'locations']: if col_label in self.contribution.tables: item_df = self.contribution.tables[col_label].df item_names = item_df.index.unique() #[col_label[:-1]].unique() self.choices[col_number] = (sorted(item_names), False) elif col_label in ['specimen', 'sample', 'site', 'location']: if col_label + "s" in self.contribution.tables: item_df = self.contribution.tables[col_label + "s"].df item_names = item_df.index.unique() #[col_label[:-1]].unique() self.choices[col_number] = (sorted(item_names), False) # add vocabularies if col_label in self.contribution.vocab.suggested: typ = 'suggested' elif col_label in self.contribution.vocab.vocabularies: typ = 'controlled' else: return # add menu, if not already set if col_number not in list(self.choices.keys()): if typ == 'suggested': self.grid.SetColLabelValue(col_number, col_label + "^^") controlled_vocabulary = self.contribution.vocab.suggested[col_label] else: self.grid.SetColLabelValue(col_number, col_label + "**") controlled_vocabulary = self.contribution.vocab.vocabularies[col_label] # stripped_list = [] for item in controlled_vocabulary: try: stripped_list.append(str(item)) except UnicodeEncodeError: # skips items with non ASCII characters pass if len(stripped_list) > 100: # split out the list alphabetically, into a dict of lists {'A': ['alpha', 'artist'], 'B': ['beta', 'beggar']...} dictionary = {} for item in stripped_list: letter = item[0].upper() if letter not in list(dictionary.keys()): dictionary[letter] = [] dictionary[letter].append(item) stripped_list = dictionary two_tiered = True if isinstance(stripped_list, dict) else False self.choices[col_number] = (stripped_list, two_tiered) return
Add a correctly formatted drop-down-menu for given col_label, if required or suggested. Otherwise do nothing. Parameters ---------- col_number : int grid position at which to add a drop down menu col_label : str column name
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/drop_down_menus3.py#L96-L172
PmagPy/PmagPy
dialogs/drop_down_menus3.py
Menus.add_method_drop_down
def add_method_drop_down(self, col_number, col_label): """ Add drop-down-menu options for magic_method_codes columns """ if self.data_type == 'ages': method_list = self.contribution.vocab.age_methods else: method_list = self.contribution.vocab.age_methods.copy() method_list.update(self.contribution.vocab.methods) self.choices[col_number] = (method_list, True)
python
def add_method_drop_down(self, col_number, col_label): """ Add drop-down-menu options for magic_method_codes columns """ if self.data_type == 'ages': method_list = self.contribution.vocab.age_methods else: method_list = self.contribution.vocab.age_methods.copy() method_list.update(self.contribution.vocab.methods) self.choices[col_number] = (method_list, True)
Add drop-down-menu options for magic_method_codes columns
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/drop_down_menus3.py#L174-L183
PmagPy/PmagPy
dialogs/drop_down_menus3.py
Menus.on_left_click
def on_left_click(self, event, grid, choices): """ creates popup menu when user clicks on the column if that column is in the list of choices that get a drop-down menu. allows user to edit the column, but only from available values """ row, col = event.GetRow(), event.GetCol() if col == 0 and self.grid.name != 'ages': default_val = self.grid.GetCellValue(row, col) msg = "Choose a new name for {}.\nThe new value will propagate throughout the contribution.".format(default_val) dia = wx.TextEntryDialog(self.grid, msg, "Rename {}".format(self.grid.name, default_val), default_val) res = dia.ShowModal() if res == wx.ID_OK: new_val = dia.GetValue() # update the contribution with new name self.contribution.rename_item(self.grid.name, default_val, new_val) # don't propagate changes if we are just assigning a new name # and not really renaming # (i.e., if a blank row was added then named) if default_val == '': self.grid.SetCellValue(row, 0, new_val) return # update the current grid with new name for row in range(self.grid.GetNumberRows()): cell_value = self.grid.GetCellValue(row, 0) if cell_value == default_val: self.grid.SetCellValue(row, 0, new_val) else: continue return color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol()) # allow user to cherry-pick cells for editing. # gets selection of meta key for mac, ctrl key for pc if event.ControlDown() or event.MetaDown(): row, col = event.GetRow(), event.GetCol() if (row, col) not in self.dispersed_selection: self.dispersed_selection.append((row, col)) self.grid.SetCellBackgroundColour(row, col, 'light blue') else: self.dispersed_selection.remove((row, col)) self.grid.SetCellBackgroundColour(row, col, color)# 'white' self.grid.ForceRefresh() return if event.ShiftDown(): # allow user to highlight multiple consecutive cells in a column previous_col = self.grid.GetGridCursorCol() previous_row = self.grid.GetGridCursorRow() col = event.GetCol() row = event.GetRow() if col != previous_col: return else: if row > previous_row: row_range = list(range(previous_row, row+1)) else: row_range = list(range(row, previous_row+1)) for r in row_range: self.grid.SetCellBackgroundColour(r, col, 'light blue') self.selection.append((r, col)) self.grid.ForceRefresh() return selection = False if self.dispersed_selection: is_dispersed = True selection = self.dispersed_selection if self.selection: is_dispersed = False selection = self.selection try: col = event.GetCol() row = event.GetRow() except AttributeError: row, col = selection[0][0], selection[0][1] self.grid.SetGridCursor(row, col) if col in list(choices.keys()): # column should have a pop-up menu menu = wx.Menu() two_tiered = choices[col][1] choices = choices[col][0] if not two_tiered: # menu is one tiered if 'CLEAR cell of all values' not in choices: choices.insert(0, 'CLEAR cell of all values') for choice in choices: if not choice: choice = " " # prevents error if choice is an empty string menuitem = menu.Append(wx.ID_ANY, str(choice)) self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), menuitem) self.show_menu(event, menu) else: # menu is two_tiered clear = menu.Append(-1, 'CLEAR cell of all values') self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), clear) for choice in sorted(choices.items()): submenu = wx.Menu() for item in choice[1]: menuitem = submenu.Append(-1, str(item)) self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), menuitem) menu.Append(-1, choice[0], submenu) self.show_menu(event, menu) if selection: # re-whiten the cells that were previously highlighted for row, col in selection: self.grid.SetCellBackgroundColour(row, col, self.col_color) self.dispersed_selection = [] self.selection = [] self.grid.ForceRefresh()
python
def on_left_click(self, event, grid, choices): """ creates popup menu when user clicks on the column if that column is in the list of choices that get a drop-down menu. allows user to edit the column, but only from available values """ row, col = event.GetRow(), event.GetCol() if col == 0 and self.grid.name != 'ages': default_val = self.grid.GetCellValue(row, col) msg = "Choose a new name for {}.\nThe new value will propagate throughout the contribution.".format(default_val) dia = wx.TextEntryDialog(self.grid, msg, "Rename {}".format(self.grid.name, default_val), default_val) res = dia.ShowModal() if res == wx.ID_OK: new_val = dia.GetValue() # update the contribution with new name self.contribution.rename_item(self.grid.name, default_val, new_val) # don't propagate changes if we are just assigning a new name # and not really renaming # (i.e., if a blank row was added then named) if default_val == '': self.grid.SetCellValue(row, 0, new_val) return # update the current grid with new name for row in range(self.grid.GetNumberRows()): cell_value = self.grid.GetCellValue(row, 0) if cell_value == default_val: self.grid.SetCellValue(row, 0, new_val) else: continue return color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol()) # allow user to cherry-pick cells for editing. # gets selection of meta key for mac, ctrl key for pc if event.ControlDown() or event.MetaDown(): row, col = event.GetRow(), event.GetCol() if (row, col) not in self.dispersed_selection: self.dispersed_selection.append((row, col)) self.grid.SetCellBackgroundColour(row, col, 'light blue') else: self.dispersed_selection.remove((row, col)) self.grid.SetCellBackgroundColour(row, col, color)# 'white' self.grid.ForceRefresh() return if event.ShiftDown(): # allow user to highlight multiple consecutive cells in a column previous_col = self.grid.GetGridCursorCol() previous_row = self.grid.GetGridCursorRow() col = event.GetCol() row = event.GetRow() if col != previous_col: return else: if row > previous_row: row_range = list(range(previous_row, row+1)) else: row_range = list(range(row, previous_row+1)) for r in row_range: self.grid.SetCellBackgroundColour(r, col, 'light blue') self.selection.append((r, col)) self.grid.ForceRefresh() return selection = False if self.dispersed_selection: is_dispersed = True selection = self.dispersed_selection if self.selection: is_dispersed = False selection = self.selection try: col = event.GetCol() row = event.GetRow() except AttributeError: row, col = selection[0][0], selection[0][1] self.grid.SetGridCursor(row, col) if col in list(choices.keys()): # column should have a pop-up menu menu = wx.Menu() two_tiered = choices[col][1] choices = choices[col][0] if not two_tiered: # menu is one tiered if 'CLEAR cell of all values' not in choices: choices.insert(0, 'CLEAR cell of all values') for choice in choices: if not choice: choice = " " # prevents error if choice is an empty string menuitem = menu.Append(wx.ID_ANY, str(choice)) self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), menuitem) self.show_menu(event, menu) else: # menu is two_tiered clear = menu.Append(-1, 'CLEAR cell of all values') self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), clear) for choice in sorted(choices.items()): submenu = wx.Menu() for item in choice[1]: menuitem = submenu.Append(-1, str(item)) self.window.Bind(wx.EVT_MENU, lambda event: self.on_select_menuitem(event, grid, row, col, selection), menuitem) menu.Append(-1, choice[0], submenu) self.show_menu(event, menu) if selection: # re-whiten the cells that were previously highlighted for row, col in selection: self.grid.SetCellBackgroundColour(row, col, self.col_color) self.dispersed_selection = [] self.selection = [] self.grid.ForceRefresh()
creates popup menu when user clicks on the column if that column is in the list of choices that get a drop-down menu. allows user to edit the column, but only from available values
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/drop_down_menus3.py#L284-L397
PmagPy/PmagPy
programs/di_tilt.py
main
def main(): """ NAME di_tilt.py DESCRIPTION rotates geographic coordinate dec, inc data to stratigraphic coordinates using the dip and dip direction (strike+90, dip if dip to right of strike) INPUT FORMAT declination inclination dip_direction dip SYNTAX di_tilt.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') print(ofile, ' opened for output') else: ofile="" if '-i' in sys.argv: # interactive flag while 1: try: Dec=float(input("Declination: <cntl-D> to quit ")) except: print("\n Good-bye\n") sys.exit() Inc=float(input("Inclination: ")) Dip_dir=float(input("Dip direction: ")) Dip=float(input("Dip: ")) print('%7.1f %7.1f'%(pmag.dotilt(Dec,Inc,Dip_dir,Dip))) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: data=numpy.loadtxt(sys.stdin,dtype=numpy.float) # read in the data from the datafile D,I=pmag.dotilt_V(data) for k in range(len(D)): if ofile=="": print('%7.1f %7.1f'%(D[k],I[k])) else: out.write('%7.1f %7.1f\n'%(D[k],I[k]))
python
def main(): """ NAME di_tilt.py DESCRIPTION rotates geographic coordinate dec, inc data to stratigraphic coordinates using the dip and dip direction (strike+90, dip if dip to right of strike) INPUT FORMAT declination inclination dip_direction dip SYNTAX di_tilt.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination """ if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind=sys.argv.index('-F') ofile=sys.argv[ind+1] out=open(ofile,'w') print(ofile, ' opened for output') else: ofile="" if '-i' in sys.argv: # interactive flag while 1: try: Dec=float(input("Declination: <cntl-D> to quit ")) except: print("\n Good-bye\n") sys.exit() Inc=float(input("Inclination: ")) Dip_dir=float(input("Dip direction: ")) Dip=float(input("Dip: ")) print('%7.1f %7.1f'%(pmag.dotilt(Dec,Inc,Dip_dir,Dip))) elif '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] data=numpy.loadtxt(file) else: data=numpy.loadtxt(sys.stdin,dtype=numpy.float) # read in the data from the datafile D,I=pmag.dotilt_V(data) for k in range(len(D)): if ofile=="": print('%7.1f %7.1f'%(D[k],I[k])) else: out.write('%7.1f %7.1f\n'%(D[k],I[k]))
NAME di_tilt.py DESCRIPTION rotates geographic coordinate dec, inc data to stratigraphic coordinates using the dip and dip direction (strike+90, dip if dip to right of strike) INPUT FORMAT declination inclination dip_direction dip SYNTAX di_tilt.py [-h][-i][-f FILE] [< filename ] OPTIONS -h prints help message and quits -i for interactive data entry -f FILE command line entry of file name -F OFILE, specify output file, default is standard output OUTPUT: declination inclination
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/di_tilt.py#L9-L65
PmagPy/PmagPy
programs/convert2unix.py
main
def main(): """ NAME convert2unix.py DESCRIPTION converts mac or dos formatted file to unix file in place SYNTAX convert2unix.py FILE OPTIONS -h prints help and quits """ if '-h' in sys.argv: print(main.__doc__) sys.exit() file=sys.argv[1] f=open(file,'r') Input=f.readlines() f.close() out=open(file,'w') for line in Input: out.write(line) out.close()
python
def main(): """ NAME convert2unix.py DESCRIPTION converts mac or dos formatted file to unix file in place SYNTAX convert2unix.py FILE OPTIONS -h prints help and quits """ if '-h' in sys.argv: print(main.__doc__) sys.exit() file=sys.argv[1] f=open(file,'r') Input=f.readlines() f.close() out=open(file,'w') for line in Input: out.write(line) out.close()
NAME convert2unix.py DESCRIPTION converts mac or dos formatted file to unix file in place SYNTAX convert2unix.py FILE OPTIONS -h prints help and quits
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/convert2unix.py#L5-L30
PmagPy/PmagPy
programs/igrf.py
main
def main(): """ NAME igrf.py DESCRIPTION This program calculates igrf field values using the routine of Malin and Barraclough (1981) based on d/igrfs from 1900 to 2010. between 1900 and 1000BCE, it uses CALS3K.4, ARCH3K.1 Prior to 1000BCE, it uses PFM9k or CALS10k-4b Calculates reference field vector at specified location and time. SYNTAX igrf.py [-h] [-i] -f FILE [< filename] OPTIONS: -h prints help message and quits -i for interactive data entry -f FILE specify file name with input data -fgh FILE specify file with custom field coefficients in format: l m g h -F FILE specify output file name -ages MIN MAX INCR: specify age minimum in years (+/- AD), maximum and increment, default is line by line -loc LAT LON; specify location, default is line by line -alt ALT; specify altitude in km, default is sealevel (0) -plt; make a plot of the time series -sav, saves plot and quits -fmt [pdf,jpg,eps,svg] specify format for output figure (default is svg) -mod [arch3k,cals3k,pfm9k,hfm10k,cals10k.2,shadif14k,cals10k.1b] specify model for 3ka to 1900 AD, default is cals10k NB: program uses IGRF12 for dates 1900 to 2015. INPUT FORMAT interactive entry: date: decimal year alt: altitude in km lat: positive north lon: positive east for file entry: space delimited string: date alt lat long OUTPUT FORMAT Declination Inclination Intensity (nT) date alt lat long MODELS: ARCH3K: (Korte et al., 2009);CALS3K (Korte & Contable, 2011); CALS10k (is .1b of Korte et al., 2011); PFM9K (Nilsson et al., 2014); HFM10k (is HFM.OL1.A1 of Constable et al., 2016); CALS10k_2 (is cals10k.2 of Constable et al., 2016), SHADIF14k (SHA.DIF.14K of Pavon-Carrasco et al., 2014). """ plot, fmt = 0, 'svg' mod, alt, make_plot, lat, lon = 'cals10k', 0, 0, 0, 0 if '-loc' in sys.argv: ind = sys.argv.index('-loc') lat = float(sys.argv[ind+1]) lon = float(sys.argv[ind+2]) if '-alt' in sys.argv: ind = sys.argv.index('-alt') alt = float(sys.argv[ind+1]) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if len(sys.argv) != 0 and '-h' in sys.argv: print(main.__doc__) sys.exit() if '-mod' in sys.argv: ind = sys.argv.index('-mod') mod = sys.argv[ind+1] if '-fgh' in sys.argv: ind = sys.argv.index('-fgh') ghfile = sys.argv[ind+1] lmgh = numpy.loadtxt(ghfile) gh = [] lmgh = numpy.loadtxt(ghfile).transpose() gh.append(lmgh[2][0]) for i in range(1, lmgh.shape[1]): gh.append(lmgh[2][i]) gh.append(lmgh[3][i]) mod = 'custom' inp = [[0, alt, lat, lon]] elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind+1] inp = numpy.loadtxt(file) elif '-i' in sys.argv: while 1: try: line = [] if mod != 'custom': line.append( float(input("Decimal year: <cntrl-D to quit> "))) else: line.append(0) alt = input("Elevation in km [0] ") if alt == "": alt = "0" line.append(float(alt)) line.append(float(input("Latitude (positive north) "))) line.append(float(input("Longitude (positive east) "))) if mod == '': x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0]) elif mod == 'custom': x, y, z, f = pmag.docustom( line[3] % 360., line[2], line[1], gh) else: x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0], mod=mod) Dir = pmag.cart2dir((x, y, z)) print('%8.2f %8.2f %8.0f' % (Dir[0], Dir[1], f)) except EOFError: print("\n Good-bye\n") sys.exit() elif '-ages' in sys.argv: ind = sys.argv.index('-ages') agemin = float(sys.argv[ind+1]) agemax = float(sys.argv[ind+2]) ageincr = float(sys.argv[ind+3]) ages = numpy.arange(agemin, agemax, ageincr) lats = numpy.ones(len(ages))*lat lons = numpy.ones(len(ages))*lon alts = numpy.ones(len(ages))*alt inp = numpy.array([ages, alts, lats, lons]).transpose() else: inp = numpy.loadtxt(sys.stdin, dtype=numpy.float) if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = sys.argv[ind+1] out = open(outfile, 'w') else: outfile = "" if '-sav' in sys.argv: plot = 1 if '-plt' in sys.argv: make_plot = 1 Ages, Decs, Incs, Ints, VADMs = [], [], [], [], [] for line in inp: if mod != 'custom': x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0], mod=mod) else: x, y, z, f = pmag.docustom(line[3] % 360., line[2], line[1], gh) Dir = pmag.cart2dir((x, y, z)) if outfile != "": out.write('%8.2f %8.2f %8.0f %7.1f %7.1f %7.1f %7.1f\n' % (Dir[0], Dir[1], f, line[0], line[1], line[2], line[3])) elif make_plot: Ages.append(line[0]) if Dir[0] > 180: Dir[0] = Dir[0]-360.0 Decs.append(Dir[0]) Incs.append(Dir[1]) Ints.append(f*1e-3) VADMs.append(pmag.b_vdm(f*1e-9, line[2])*1e-21) else: print('%8.2f %8.2f %8.0f %7.1f %7.1f %7.1f %7.1f' % (Dir[0], Dir[1], f, line[0], line[1], line[2], line[3])) if make_plot: pmagplotlib.plot_init(1, 7, 9) fig = plt.figure(num=1, figsize=(7, 9)) fig.add_subplot(411) plt.plot(Ages, Decs) plt.ylabel('Declination ($^{\circ}$)') fig.add_subplot(412) plt.plot(Ages, Incs) plt.ylabel('Inclination ($^{\circ}$)') fig.add_subplot(413) plt.plot(Ages, Ints) plt.ylabel('Intensity ($\mu$T)') fig.add_subplot(414) plt.plot(Ages, VADMs) plt.ylabel('VADMs (ZAm$^2$)') plt.xlabel('Ages') # show plot if plot == 0: pmagplotlib.draw_figs({'time series': 1}) ans = input("S[a]ve to save figure, <Return> to quit ") if ans == 'a': plt.savefig('igrf.'+fmt) print('Figure saved as: ', 'igrf.'+fmt) # save plot without showing else: plt.savefig('igrf.'+fmt) print('Figure saved as: ', 'igrf.'+fmt) sys.exit()
python
def main(): """ NAME igrf.py DESCRIPTION This program calculates igrf field values using the routine of Malin and Barraclough (1981) based on d/igrfs from 1900 to 2010. between 1900 and 1000BCE, it uses CALS3K.4, ARCH3K.1 Prior to 1000BCE, it uses PFM9k or CALS10k-4b Calculates reference field vector at specified location and time. SYNTAX igrf.py [-h] [-i] -f FILE [< filename] OPTIONS: -h prints help message and quits -i for interactive data entry -f FILE specify file name with input data -fgh FILE specify file with custom field coefficients in format: l m g h -F FILE specify output file name -ages MIN MAX INCR: specify age minimum in years (+/- AD), maximum and increment, default is line by line -loc LAT LON; specify location, default is line by line -alt ALT; specify altitude in km, default is sealevel (0) -plt; make a plot of the time series -sav, saves plot and quits -fmt [pdf,jpg,eps,svg] specify format for output figure (default is svg) -mod [arch3k,cals3k,pfm9k,hfm10k,cals10k.2,shadif14k,cals10k.1b] specify model for 3ka to 1900 AD, default is cals10k NB: program uses IGRF12 for dates 1900 to 2015. INPUT FORMAT interactive entry: date: decimal year alt: altitude in km lat: positive north lon: positive east for file entry: space delimited string: date alt lat long OUTPUT FORMAT Declination Inclination Intensity (nT) date alt lat long MODELS: ARCH3K: (Korte et al., 2009);CALS3K (Korte & Contable, 2011); CALS10k (is .1b of Korte et al., 2011); PFM9K (Nilsson et al., 2014); HFM10k (is HFM.OL1.A1 of Constable et al., 2016); CALS10k_2 (is cals10k.2 of Constable et al., 2016), SHADIF14k (SHA.DIF.14K of Pavon-Carrasco et al., 2014). """ plot, fmt = 0, 'svg' mod, alt, make_plot, lat, lon = 'cals10k', 0, 0, 0, 0 if '-loc' in sys.argv: ind = sys.argv.index('-loc') lat = float(sys.argv[ind+1]) lon = float(sys.argv[ind+2]) if '-alt' in sys.argv: ind = sys.argv.index('-alt') alt = float(sys.argv[ind+1]) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if len(sys.argv) != 0 and '-h' in sys.argv: print(main.__doc__) sys.exit() if '-mod' in sys.argv: ind = sys.argv.index('-mod') mod = sys.argv[ind+1] if '-fgh' in sys.argv: ind = sys.argv.index('-fgh') ghfile = sys.argv[ind+1] lmgh = numpy.loadtxt(ghfile) gh = [] lmgh = numpy.loadtxt(ghfile).transpose() gh.append(lmgh[2][0]) for i in range(1, lmgh.shape[1]): gh.append(lmgh[2][i]) gh.append(lmgh[3][i]) mod = 'custom' inp = [[0, alt, lat, lon]] elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind+1] inp = numpy.loadtxt(file) elif '-i' in sys.argv: while 1: try: line = [] if mod != 'custom': line.append( float(input("Decimal year: <cntrl-D to quit> "))) else: line.append(0) alt = input("Elevation in km [0] ") if alt == "": alt = "0" line.append(float(alt)) line.append(float(input("Latitude (positive north) "))) line.append(float(input("Longitude (positive east) "))) if mod == '': x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0]) elif mod == 'custom': x, y, z, f = pmag.docustom( line[3] % 360., line[2], line[1], gh) else: x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0], mod=mod) Dir = pmag.cart2dir((x, y, z)) print('%8.2f %8.2f %8.0f' % (Dir[0], Dir[1], f)) except EOFError: print("\n Good-bye\n") sys.exit() elif '-ages' in sys.argv: ind = sys.argv.index('-ages') agemin = float(sys.argv[ind+1]) agemax = float(sys.argv[ind+2]) ageincr = float(sys.argv[ind+3]) ages = numpy.arange(agemin, agemax, ageincr) lats = numpy.ones(len(ages))*lat lons = numpy.ones(len(ages))*lon alts = numpy.ones(len(ages))*alt inp = numpy.array([ages, alts, lats, lons]).transpose() else: inp = numpy.loadtxt(sys.stdin, dtype=numpy.float) if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = sys.argv[ind+1] out = open(outfile, 'w') else: outfile = "" if '-sav' in sys.argv: plot = 1 if '-plt' in sys.argv: make_plot = 1 Ages, Decs, Incs, Ints, VADMs = [], [], [], [], [] for line in inp: if mod != 'custom': x, y, z, f = pmag.doigrf( line[3] % 360., line[2], line[1], line[0], mod=mod) else: x, y, z, f = pmag.docustom(line[3] % 360., line[2], line[1], gh) Dir = pmag.cart2dir((x, y, z)) if outfile != "": out.write('%8.2f %8.2f %8.0f %7.1f %7.1f %7.1f %7.1f\n' % (Dir[0], Dir[1], f, line[0], line[1], line[2], line[3])) elif make_plot: Ages.append(line[0]) if Dir[0] > 180: Dir[0] = Dir[0]-360.0 Decs.append(Dir[0]) Incs.append(Dir[1]) Ints.append(f*1e-3) VADMs.append(pmag.b_vdm(f*1e-9, line[2])*1e-21) else: print('%8.2f %8.2f %8.0f %7.1f %7.1f %7.1f %7.1f' % (Dir[0], Dir[1], f, line[0], line[1], line[2], line[3])) if make_plot: pmagplotlib.plot_init(1, 7, 9) fig = plt.figure(num=1, figsize=(7, 9)) fig.add_subplot(411) plt.plot(Ages, Decs) plt.ylabel('Declination ($^{\circ}$)') fig.add_subplot(412) plt.plot(Ages, Incs) plt.ylabel('Inclination ($^{\circ}$)') fig.add_subplot(413) plt.plot(Ages, Ints) plt.ylabel('Intensity ($\mu$T)') fig.add_subplot(414) plt.plot(Ages, VADMs) plt.ylabel('VADMs (ZAm$^2$)') plt.xlabel('Ages') # show plot if plot == 0: pmagplotlib.draw_figs({'time series': 1}) ans = input("S[a]ve to save figure, <Return> to quit ") if ans == 'a': plt.savefig('igrf.'+fmt) print('Figure saved as: ', 'igrf.'+fmt) # save plot without showing else: plt.savefig('igrf.'+fmt) print('Figure saved as: ', 'igrf.'+fmt) sys.exit()
NAME igrf.py DESCRIPTION This program calculates igrf field values using the routine of Malin and Barraclough (1981) based on d/igrfs from 1900 to 2010. between 1900 and 1000BCE, it uses CALS3K.4, ARCH3K.1 Prior to 1000BCE, it uses PFM9k or CALS10k-4b Calculates reference field vector at specified location and time. SYNTAX igrf.py [-h] [-i] -f FILE [< filename] OPTIONS: -h prints help message and quits -i for interactive data entry -f FILE specify file name with input data -fgh FILE specify file with custom field coefficients in format: l m g h -F FILE specify output file name -ages MIN MAX INCR: specify age minimum in years (+/- AD), maximum and increment, default is line by line -loc LAT LON; specify location, default is line by line -alt ALT; specify altitude in km, default is sealevel (0) -plt; make a plot of the time series -sav, saves plot and quits -fmt [pdf,jpg,eps,svg] specify format for output figure (default is svg) -mod [arch3k,cals3k,pfm9k,hfm10k,cals10k.2,shadif14k,cals10k.1b] specify model for 3ka to 1900 AD, default is cals10k NB: program uses IGRF12 for dates 1900 to 2015. INPUT FORMAT interactive entry: date: decimal year alt: altitude in km lat: positive north lon: positive east for file entry: space delimited string: date alt lat long OUTPUT FORMAT Declination Inclination Intensity (nT) date alt lat long MODELS: ARCH3K: (Korte et al., 2009);CALS3K (Korte & Contable, 2011); CALS10k (is .1b of Korte et al., 2011); PFM9K (Nilsson et al., 2014); HFM10k (is HFM.OL1.A1 of Constable et al., 2016); CALS10k_2 (is cals10k.2 of Constable et al., 2016), SHADIF14k (SHA.DIF.14K of Pavon-Carrasco et al., 2014).
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/igrf.py#L15-L190
PmagPy/PmagPy
programs/vgpmap_magic2.py
main
def main(): """ NAME vgpmap_magic.py DESCRIPTION makes a map of vgps and a95/dp,dm for site means in a pmag_results table SYNTAX vgpmap_magic.py [command line options] OPTIONS -h prints help and quits -eye ELAT ELON [specify eyeball location], default is 90., 0. -f FILE pmag_results format file, [default is pmag_results.txt] -res [c,l,i,h] specify resolution (crude, low, intermediate, high] -etp plot the etopo20 topographpy data (requires high resolution data set) -prj PROJ, specify one of the following: ortho = orthographic lcc = lambert conformal moll = molweide merc = mercator -sym SYM SIZE: choose a symbol and size, examples: ro 5 : small red circles bs 10 : intermediate blue squares g^ 20 : large green triangles -ell plot dp/dm or a95 ellipses -rev RSYM RSIZE : flip reverse poles to normal antipode -S: plot antipodes of all poles -age : plot the ages next to the poles -crd [g,t] : choose coordinate system, default is to plot all site VGPs -fmt [pdf, png, eps...] specify output format, default is pdf -sav save and quit DEFAULTS FILE: pmag_results.txt res: c prj: ortho ELAT,ELON = 0,0 SYM SIZE: ro 8 RSYM RSIZE: g^ 8 """ dir_path = '.' res, ages = 'c', 0 plot = 0 proj = 'ortho' results_file = 'pmag_results.txt' ell, flip = 0, 0 lat_0, lon_0 = 90., 0. fmt = 'pdf' sym, size = 'ro', 8 rsym, rsize = 'g^', 8 anti = 0 fancy = 0 coord = "" if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-S' in sys.argv: anti = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if '-sav' in sys.argv: plot = 1 if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind+1] if '-etp' in sys.argv: fancy = 1 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind+1] if '-rev' in sys.argv: flip = 1 ind = sys.argv.index('-rev') rsym = (sys.argv[ind+1]) rsize = int(sys.argv[ind+2]) if '-sym' in sys.argv: ind = sys.argv.index('-sym') sym = (sys.argv[ind+1]) size = int(sys.argv[ind+2]) if '-eye' in sys.argv: ind = sys.argv.index('-eye') lat_0 = float(sys.argv[ind+1]) lon_0 = float(sys.argv[ind+2]) if '-ell' in sys.argv: ell = 1 if '-age' in sys.argv: ages = 1 if '-f' in sys.argv: ind = sys.argv.index('-f') results_file = sys.argv[ind+1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': coord = '0' if crd == 't': coord = '100' results_file = dir_path+'/'+results_file data, file_type = pmag.magic_read(results_file) if file_type != 'pmag_results': print("bad results file") sys.exit() FIG = {'map': 1} pmagplotlib.plot_init(FIG['map'], 6, 6) # read in er_sites file lats, lons, dp, dm, a95 = [], [], [], [], [] Pars = [] dates, rlats, rlons = [], [], [] if 'data_type' in data[0].keys(): # get all site level data Results = pmag.get_dictitem(data, 'data_type', 'i', 'T') else: Results = data # get all non-blank latitudes Results = pmag.get_dictitem(Results, 'vgp_lat', '', 'F') # get all non-blank longitudes Results = pmag.get_dictitem(Results, 'vgp_lon', '', 'F') if coord != "": # get specified coordinate system Results = pmag.get_dictitem(Results, 'tilt_correction', coord, 'T') location = "" for rec in Results: if rec['er_location_names'] not in location: location = location+':'+rec['er_location_names'] if 'average_age' in rec.keys() and rec['average_age'] != "" and ages == 1: dates.append(rec['average_age']) lat = float(rec['vgp_lat']) lon = float(rec['vgp_lon']) if flip == 0: lats.append(lat) lons.append(lon) elif flip == 1: if lat < 0: rlats.append(-lat) lon = lon+180. if lon > 360: lon = lon-360. rlons.append(lon) else: lats.append(lat) lons.append(lon) elif anti == 1: lats.append(-lat) lon = lon+180. if lon > 360: lon = lon-360. lons.append(lon) ppars = [] ppars.append(lon) ppars.append(lat) ell1, ell2 = "", "" if 'vgp_dm' in rec.keys() and rec['vgp_dm'] != "": ell1 = float(rec['vgp_dm']) if 'vgp_dp' in rec.keys() and rec['vgp_dp'] != "": ell2 = float(rec['vgp_dp']) if 'vgp_alpha95' in rec.keys() and rec['vgp_alpha95'] != "": ell1, ell2 = float(rec['vgp_alpha95']), float(rec['vgp_alpha95']) if ell1 != "" and ell2 != "": ppars = [] ppars.append(lons[-1]) ppars.append(lats[-1]) ppars.append(ell1) ppars.append(lons[-1]) isign = abs(lats[-1])/lats[-1] ppars.append(lats[-1]-isign*90.) ppars.append(ell2) ppars.append(lons[-1]+90.) ppars.append(0.) Pars.append(ppars) location = location.strip(':') Opts = {'latmin': -90, 'latmax': 90, 'lonmin': 0., 'lonmax': 360., 'lat_0': lat_0, 'lon_0': lon_0, 'proj': proj, 'sym': 'bs', 'symsize': 3, 'pltgrid': 0, 'res': res, 'boundinglat': 0.} Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0, 'countries': 0, 'ocean': 1, 'fancy': fancy} # make the base map with a blue triangle at the pole` pmagplotlib.plot_map(FIG['map'], [90.], [0.], Opts) Opts['pltgrid'] = -1 Opts['sym'] = sym Opts['symsize'] = size if len(dates) > 0: Opts['names'] = dates if len(lats) > 0: # add the lats and lons of the poles pmagplotlib.plot_map(FIG['map'], lats, lons, Opts) Opts['names'] = [] if len(rlats) > 0: Opts['sym'] = rsym Opts['symsize'] = rsize # add the lats and lons of the poles pmagplotlib.plot_map(FIG['map'], rlats, rlons, Opts) if plot == 0: pmagplotlib.draw_figs(FIG) if ell == 1: # add ellipses if desired. Opts['details'] = {'coasts': 0, 'rivers': 0, 'states': 0, 'countries': 0, 'ocean': 0} Opts['pltgrid'] = -1 # turn off meridian replotting Opts['symsize'] = 2 Opts['sym'] = 'g-' for ppars in Pars: if ppars[2] != 0: PTS = pmagplotlib.plot_ell(FIG['map'], ppars, 'g.', 0, 0) elats, elons = [], [] for pt in PTS: elons.append(pt[0]) elats.append(pt[1]) # make the base map with a blue triangle at the pole` pmagplotlib.plot_map(FIG['map'], elats, elons, Opts) if plot == 0: pmagplotlib.draw_figs(FIG) files = {} for key in FIG.keys(): if pmagplotlib.isServer: # use server plot naming convention files[key] = 'LO:_'+location+'_VGP_map.'+fmt else: # use more readable plot naming convention files[key] = '{}_VGP_map.{}'.format( location.replace(' ', '_'), fmt) if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'LO:_'+location+'_VGP_map' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif plot == 0: pmagplotlib.draw_figs(FIG) ans = input(" S[a]ve to save plot, Return to quit: ") if ans == "a": pmagplotlib.save_plots(FIG, files) else: print("Good bye") sys.exit() else: pmagplotlib.save_plots(FIG, files)
python
def main(): """ NAME vgpmap_magic.py DESCRIPTION makes a map of vgps and a95/dp,dm for site means in a pmag_results table SYNTAX vgpmap_magic.py [command line options] OPTIONS -h prints help and quits -eye ELAT ELON [specify eyeball location], default is 90., 0. -f FILE pmag_results format file, [default is pmag_results.txt] -res [c,l,i,h] specify resolution (crude, low, intermediate, high] -etp plot the etopo20 topographpy data (requires high resolution data set) -prj PROJ, specify one of the following: ortho = orthographic lcc = lambert conformal moll = molweide merc = mercator -sym SYM SIZE: choose a symbol and size, examples: ro 5 : small red circles bs 10 : intermediate blue squares g^ 20 : large green triangles -ell plot dp/dm or a95 ellipses -rev RSYM RSIZE : flip reverse poles to normal antipode -S: plot antipodes of all poles -age : plot the ages next to the poles -crd [g,t] : choose coordinate system, default is to plot all site VGPs -fmt [pdf, png, eps...] specify output format, default is pdf -sav save and quit DEFAULTS FILE: pmag_results.txt res: c prj: ortho ELAT,ELON = 0,0 SYM SIZE: ro 8 RSYM RSIZE: g^ 8 """ dir_path = '.' res, ages = 'c', 0 plot = 0 proj = 'ortho' results_file = 'pmag_results.txt' ell, flip = 0, 0 lat_0, lon_0 = 90., 0. fmt = 'pdf' sym, size = 'ro', 8 rsym, rsize = 'g^', 8 anti = 0 fancy = 0 coord = "" if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind+1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-S' in sys.argv: anti = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind+1] if '-sav' in sys.argv: plot = 1 if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind+1] if '-etp' in sys.argv: fancy = 1 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind+1] if '-rev' in sys.argv: flip = 1 ind = sys.argv.index('-rev') rsym = (sys.argv[ind+1]) rsize = int(sys.argv[ind+2]) if '-sym' in sys.argv: ind = sys.argv.index('-sym') sym = (sys.argv[ind+1]) size = int(sys.argv[ind+2]) if '-eye' in sys.argv: ind = sys.argv.index('-eye') lat_0 = float(sys.argv[ind+1]) lon_0 = float(sys.argv[ind+2]) if '-ell' in sys.argv: ell = 1 if '-age' in sys.argv: ages = 1 if '-f' in sys.argv: ind = sys.argv.index('-f') results_file = sys.argv[ind+1] if '-crd' in sys.argv: ind = sys.argv.index('-crd') crd = sys.argv[ind+1] if crd == 'g': coord = '0' if crd == 't': coord = '100' results_file = dir_path+'/'+results_file data, file_type = pmag.magic_read(results_file) if file_type != 'pmag_results': print("bad results file") sys.exit() FIG = {'map': 1} pmagplotlib.plot_init(FIG['map'], 6, 6) # read in er_sites file lats, lons, dp, dm, a95 = [], [], [], [], [] Pars = [] dates, rlats, rlons = [], [], [] if 'data_type' in data[0].keys(): # get all site level data Results = pmag.get_dictitem(data, 'data_type', 'i', 'T') else: Results = data # get all non-blank latitudes Results = pmag.get_dictitem(Results, 'vgp_lat', '', 'F') # get all non-blank longitudes Results = pmag.get_dictitem(Results, 'vgp_lon', '', 'F') if coord != "": # get specified coordinate system Results = pmag.get_dictitem(Results, 'tilt_correction', coord, 'T') location = "" for rec in Results: if rec['er_location_names'] not in location: location = location+':'+rec['er_location_names'] if 'average_age' in rec.keys() and rec['average_age'] != "" and ages == 1: dates.append(rec['average_age']) lat = float(rec['vgp_lat']) lon = float(rec['vgp_lon']) if flip == 0: lats.append(lat) lons.append(lon) elif flip == 1: if lat < 0: rlats.append(-lat) lon = lon+180. if lon > 360: lon = lon-360. rlons.append(lon) else: lats.append(lat) lons.append(lon) elif anti == 1: lats.append(-lat) lon = lon+180. if lon > 360: lon = lon-360. lons.append(lon) ppars = [] ppars.append(lon) ppars.append(lat) ell1, ell2 = "", "" if 'vgp_dm' in rec.keys() and rec['vgp_dm'] != "": ell1 = float(rec['vgp_dm']) if 'vgp_dp' in rec.keys() and rec['vgp_dp'] != "": ell2 = float(rec['vgp_dp']) if 'vgp_alpha95' in rec.keys() and rec['vgp_alpha95'] != "": ell1, ell2 = float(rec['vgp_alpha95']), float(rec['vgp_alpha95']) if ell1 != "" and ell2 != "": ppars = [] ppars.append(lons[-1]) ppars.append(lats[-1]) ppars.append(ell1) ppars.append(lons[-1]) isign = abs(lats[-1])/lats[-1] ppars.append(lats[-1]-isign*90.) ppars.append(ell2) ppars.append(lons[-1]+90.) ppars.append(0.) Pars.append(ppars) location = location.strip(':') Opts = {'latmin': -90, 'latmax': 90, 'lonmin': 0., 'lonmax': 360., 'lat_0': lat_0, 'lon_0': lon_0, 'proj': proj, 'sym': 'bs', 'symsize': 3, 'pltgrid': 0, 'res': res, 'boundinglat': 0.} Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0, 'countries': 0, 'ocean': 1, 'fancy': fancy} # make the base map with a blue triangle at the pole` pmagplotlib.plot_map(FIG['map'], [90.], [0.], Opts) Opts['pltgrid'] = -1 Opts['sym'] = sym Opts['symsize'] = size if len(dates) > 0: Opts['names'] = dates if len(lats) > 0: # add the lats and lons of the poles pmagplotlib.plot_map(FIG['map'], lats, lons, Opts) Opts['names'] = [] if len(rlats) > 0: Opts['sym'] = rsym Opts['symsize'] = rsize # add the lats and lons of the poles pmagplotlib.plot_map(FIG['map'], rlats, rlons, Opts) if plot == 0: pmagplotlib.draw_figs(FIG) if ell == 1: # add ellipses if desired. Opts['details'] = {'coasts': 0, 'rivers': 0, 'states': 0, 'countries': 0, 'ocean': 0} Opts['pltgrid'] = -1 # turn off meridian replotting Opts['symsize'] = 2 Opts['sym'] = 'g-' for ppars in Pars: if ppars[2] != 0: PTS = pmagplotlib.plot_ell(FIG['map'], ppars, 'g.', 0, 0) elats, elons = [], [] for pt in PTS: elons.append(pt[0]) elats.append(pt[1]) # make the base map with a blue triangle at the pole` pmagplotlib.plot_map(FIG['map'], elats, elons, Opts) if plot == 0: pmagplotlib.draw_figs(FIG) files = {} for key in FIG.keys(): if pmagplotlib.isServer: # use server plot naming convention files[key] = 'LO:_'+location+'_VGP_map.'+fmt else: # use more readable plot naming convention files[key] = '{}_VGP_map.{}'.format( location.replace(' ', '_'), fmt) if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['eq'] = 'LO:_'+location+'_VGP_map' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif plot == 0: pmagplotlib.draw_figs(FIG) ans = input(" S[a]ve to save plot, Return to quit: ") if ans == "a": pmagplotlib.save_plots(FIG, files) else: print("Good bye") sys.exit() else: pmagplotlib.save_plots(FIG, files)
NAME vgpmap_magic.py DESCRIPTION makes a map of vgps and a95/dp,dm for site means in a pmag_results table SYNTAX vgpmap_magic.py [command line options] OPTIONS -h prints help and quits -eye ELAT ELON [specify eyeball location], default is 90., 0. -f FILE pmag_results format file, [default is pmag_results.txt] -res [c,l,i,h] specify resolution (crude, low, intermediate, high] -etp plot the etopo20 topographpy data (requires high resolution data set) -prj PROJ, specify one of the following: ortho = orthographic lcc = lambert conformal moll = molweide merc = mercator -sym SYM SIZE: choose a symbol and size, examples: ro 5 : small red circles bs 10 : intermediate blue squares g^ 20 : large green triangles -ell plot dp/dm or a95 ellipses -rev RSYM RSIZE : flip reverse poles to normal antipode -S: plot antipodes of all poles -age : plot the ages next to the poles -crd [g,t] : choose coordinate system, default is to plot all site VGPs -fmt [pdf, png, eps...] specify output format, default is pdf -sav save and quit DEFAULTS FILE: pmag_results.txt res: c prj: ortho ELAT,ELON = 0,0 SYM SIZE: ro 8 RSYM RSIZE: g^ 8
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/vgpmap_magic2.py#L13-L251
PmagPy/PmagPy
programs/gokent.py
main
def main(): """ NAME gokent.py DESCRIPTION calculates Kent parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gokent.py [options] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify filename -F FILE, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N """ if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() elif '-i' in sys.argv: # ask for filename file=input("Enter file name with dec, inc data: ") f=open(file,'r') data=f.readlines() else: # data=sys.stdin.readlines() # read in data from standard input ofile = "" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') DIs= [] # set up list for dec inc data for line in data: # read in the data from standard input if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]))) # kpars=pmag.dokent(DIs,len(DIs)) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars["dec"],kpars["inc"],kpars["Eta"],kpars["Edec"],kpars["Einc"],kpars["Zeta"],kpars["Zdec"],kpars["Zinc"],kpars["n"]) if ofile == "": print(output) else: out.write(output+'\n')
python
def main(): """ NAME gokent.py DESCRIPTION calculates Kent parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gokent.py [options] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify filename -F FILE, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N """ if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() elif '-i' in sys.argv: # ask for filename file=input("Enter file name with dec, inc data: ") f=open(file,'r') data=f.readlines() else: # data=sys.stdin.readlines() # read in data from standard input ofile = "" if '-F' in sys.argv: ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') DIs= [] # set up list for dec inc data for line in data: # read in the data from standard input if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]))) # kpars=pmag.dokent(DIs,len(DIs)) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars["dec"],kpars["inc"],kpars["Eta"],kpars["Edec"],kpars["Einc"],kpars["Zeta"],kpars["Zdec"],kpars["Zinc"],kpars["n"]) if ofile == "": print(output) else: out.write(output+'\n')
NAME gokent.py DESCRIPTION calculates Kent parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gokent.py [options] OPTIONS -h prints help message and quits -i for interactive filename entry -f FILE, specify filename -F FILE, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/gokent.py#L7-L65
PmagPy/PmagPy
pmagpy/pmagplotlib.py
draw_figs
def draw_figs(FIGS): """ Can only be used if matplotlib backend is set to TKAgg Does not play well with wxPython Parameters _________ FIGS : dictionary of figure names as keys and numbers as values """ is_win = True if sys.platform in ['win32', 'win64'] else False if not is_win: plt.ion() for fig in list(FIGS.keys()): plt.draw() plt.show() plt.ioff() if is_win: # this style basically works for Windows plt.draw() print("You must manually close all plots to continue") plt.show()
python
def draw_figs(FIGS): """ Can only be used if matplotlib backend is set to TKAgg Does not play well with wxPython Parameters _________ FIGS : dictionary of figure names as keys and numbers as values """ is_win = True if sys.platform in ['win32', 'win64'] else False if not is_win: plt.ion() for fig in list(FIGS.keys()): plt.draw() plt.show() plt.ioff() if is_win: # this style basically works for Windows plt.draw() print("You must manually close all plots to continue") plt.show()
Can only be used if matplotlib backend is set to TKAgg Does not play well with wxPython Parameters _________ FIGS : dictionary of figure names as keys and numbers as values
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L63-L83
PmagPy/PmagPy
pmagpy/pmagplotlib.py
delticks
def delticks(fig): """ deletes half the x-axis tick marks Parameters ___________ fig : matplotlib figure number """ locs = fig.xaxis.get_ticklocs() nlocs = np.delete(locs, list(range(0, len(locs), 2))) fig.set_xticks(nlocs)
python
def delticks(fig): """ deletes half the x-axis tick marks Parameters ___________ fig : matplotlib figure number """ locs = fig.xaxis.get_ticklocs() nlocs = np.delete(locs, list(range(0, len(locs), 2))) fig.set_xticks(nlocs)
deletes half the x-axis tick marks Parameters ___________ fig : matplotlib figure number
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L105-L115
PmagPy/PmagPy
pmagpy/pmagplotlib.py
plot_init
def plot_init(fignum, w, h): """ initializes plot number fignum with width w and height h Parameters __________ fignum : matplotlib figure number w : width h : height """ global fig_x_pos, fig_y_pos, plt_num dpi = 80 if isServer: dpi = 240 # plt.ion() plt_num += 1 fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi) if (not isServer) and (not set_env.IS_NOTEBOOK): plt.get_current_fig_manager().show() # plt.get_current_fig_manager().window.wm_geometry('+%d+%d' % # (fig_x_pos,fig_y_pos)) # this only works with matplotlib.use('TKAgg') fig_x_pos = fig_x_pos + dpi * (w) + 25 if plt_num == 3: plt_num = 0 fig_x_pos = 25 fig_y_pos = fig_y_pos + dpi * (h) + 25 plt.figtext(.02, .01, version_num) # plt.connect('button_press_event',click) # # plt.ioff() return fig
python
def plot_init(fignum, w, h): """ initializes plot number fignum with width w and height h Parameters __________ fignum : matplotlib figure number w : width h : height """ global fig_x_pos, fig_y_pos, plt_num dpi = 80 if isServer: dpi = 240 # plt.ion() plt_num += 1 fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi) if (not isServer) and (not set_env.IS_NOTEBOOK): plt.get_current_fig_manager().show() # plt.get_current_fig_manager().window.wm_geometry('+%d+%d' % # (fig_x_pos,fig_y_pos)) # this only works with matplotlib.use('TKAgg') fig_x_pos = fig_x_pos + dpi * (w) + 25 if plt_num == 3: plt_num = 0 fig_x_pos = 25 fig_y_pos = fig_y_pos + dpi * (h) + 25 plt.figtext(.02, .01, version_num) # plt.connect('button_press_event',click) # # plt.ioff() return fig
initializes plot number fignum with width w and height h Parameters __________ fignum : matplotlib figure number w : width h : height
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L123-L152
PmagPy/PmagPy
pmagpy/pmagplotlib.py
plot3d_init
def plot3d_init(fignum): """ initializes 3D plot """ from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(fignum) ax = fig.add_subplot(111, projection='3d') return ax
python
def plot3d_init(fignum): """ initializes 3D plot """ from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(fignum) ax = fig.add_subplot(111, projection='3d') return ax
initializes 3D plot
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L155-L162
PmagPy/PmagPy
pmagpy/pmagplotlib.py
gaussfunc
def gaussfunc(y, ybar, sigma): """ cumulative normal distribution function of the variable y with mean ybar,standard deviation sigma uses expression 7.1.26 from Abramowitz & Stegun accuracy better than 1.5e-7 absolute Parameters _________ y : input variable ybar : mean sigma : standard deviation """ x = old_div((y - ybar), (np.sqrt(2.) * sigma)) t = old_div(1.0, (1.0 + .3275911 * abs(x))) erf = 1.0 - np.exp(-x * x) * t * (.254829592 - t * (.284496736 - t * (1.421413741 - t * (1.453152027 - t * 1.061405429)))) erf = abs(erf) sign = old_div(x, abs(x)) return 0.5 * (1.0 + sign * erf)
python
def gaussfunc(y, ybar, sigma): """ cumulative normal distribution function of the variable y with mean ybar,standard deviation sigma uses expression 7.1.26 from Abramowitz & Stegun accuracy better than 1.5e-7 absolute Parameters _________ y : input variable ybar : mean sigma : standard deviation """ x = old_div((y - ybar), (np.sqrt(2.) * sigma)) t = old_div(1.0, (1.0 + .3275911 * abs(x))) erf = 1.0 - np.exp(-x * x) * t * (.254829592 - t * (.284496736 - t * (1.421413741 - t * (1.453152027 - t * 1.061405429)))) erf = abs(erf) sign = old_div(x, abs(x)) return 0.5 * (1.0 + sign * erf)
cumulative normal distribution function of the variable y with mean ybar,standard deviation sigma uses expression 7.1.26 from Abramowitz & Stegun accuracy better than 1.5e-7 absolute Parameters _________ y : input variable ybar : mean sigma : standard deviation
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L176-L195
PmagPy/PmagPy
pmagpy/pmagplotlib.py
k_s
def k_s(X): """ Kolmorgorov-Smirnov statistic. Finds the probability that the data are distributed as func - used method of Numerical Recipes (Press et al., 1986) """ xbar, sigma = pmag.gausspars(X) d, f = 0, 0. for i in range(1, len(X) + 1): b = old_div(float(i), float(len(X))) a = gaussfunc(X[i - 1], xbar, sigma) if abs(f - a) > abs(b - a): delta = abs(f - a) else: delta = abs(b - a) if delta > d: d = delta f = b return d, xbar, sigma
python
def k_s(X): """ Kolmorgorov-Smirnov statistic. Finds the probability that the data are distributed as func - used method of Numerical Recipes (Press et al., 1986) """ xbar, sigma = pmag.gausspars(X) d, f = 0, 0. for i in range(1, len(X) + 1): b = old_div(float(i), float(len(X))) a = gaussfunc(X[i - 1], xbar, sigma) if abs(f - a) > abs(b - a): delta = abs(f - a) else: delta = abs(b - a) if delta > d: d = delta f = b return d, xbar, sigma
Kolmorgorov-Smirnov statistic. Finds the probability that the data are distributed as func - used method of Numerical Recipes (Press et al., 1986)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L198-L216
PmagPy/PmagPy
pmagpy/pmagplotlib.py
qsnorm
def qsnorm(p): """ rational approximation for x where q(x)=d, q being the cumulative normal distribution function. taken from Abramowitz & Stegun p. 933 |error(x)| < 4.5*10**-4 """ d = p if d < 0. or d > 1.: print('d not in (1,1) ') sys.exit() x = 0. if (d - 0.5) > 0: d = 1. - d if (d - 0.5) < 0: t2 = -2. * np.log(d) t = np.sqrt(t2) x = t - old_div((2.515517 + .802853 * t + .010328 * t2), (1. + 1.432788 * t + .189269 * t2 + .001308 * t * t2)) if p < 0.5: x = -x return x
python
def qsnorm(p): """ rational approximation for x where q(x)=d, q being the cumulative normal distribution function. taken from Abramowitz & Stegun p. 933 |error(x)| < 4.5*10**-4 """ d = p if d < 0. or d > 1.: print('d not in (1,1) ') sys.exit() x = 0. if (d - 0.5) > 0: d = 1. - d if (d - 0.5) < 0: t2 = -2. * np.log(d) t = np.sqrt(t2) x = t - old_div((2.515517 + .802853 * t + .010328 * t2), (1. + 1.432788 * t + .189269 * t2 + .001308 * t * t2)) if p < 0.5: x = -x return x
rational approximation for x where q(x)=d, q being the cumulative normal distribution function. taken from Abramowitz & Stegun p. 933 |error(x)| < 4.5*10**-4
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L219-L239
PmagPy/PmagPy
pmagpy/pmagplotlib.py
plot_xy
def plot_xy(fignum, X, Y, **kwargs): """ deprecated, used in curie """ plt.figure(num=fignum) # if 'poly' in kwargs.keys(): # coeffs=np.polyfit(X,Y,kwargs['poly']) # polynomial=np.poly1d(coeffs) # xs=np.arange(np.min(X),np.max(X)) # ys=polynomial(xs) # plt.plot(xs,ys) # print coefs # print polynomial if 'sym' in list(kwargs.keys()): sym = kwargs['sym'] else: sym = 'ro' if 'lw' in list(kwargs.keys()): lw = kwargs['lw'] else: lw = 1 if 'xerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr']) if 'yerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr']) if 'axis' in list(kwargs.keys()): if kwargs['axis'] == 'semilogx': plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'semilogy': plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'loglog': plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0]) else: plt.plot(X, Y, sym, linewidth=lw) if 'xlab' in list(kwargs.keys()): plt.xlabel(kwargs['xlab']) if 'ylab' in list(kwargs.keys()): plt.ylabel(kwargs['ylab']) if 'title' in list(kwargs.keys()): plt.title(kwargs['title']) if 'xmin' in list(kwargs.keys()): plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs['ymax']]) if 'notes' in list(kwargs.keys()): for note in kwargs['notes']: plt.text(note[0], note[1], note[2])
python
def plot_xy(fignum, X, Y, **kwargs): """ deprecated, used in curie """ plt.figure(num=fignum) # if 'poly' in kwargs.keys(): # coeffs=np.polyfit(X,Y,kwargs['poly']) # polynomial=np.poly1d(coeffs) # xs=np.arange(np.min(X),np.max(X)) # ys=polynomial(xs) # plt.plot(xs,ys) # print coefs # print polynomial if 'sym' in list(kwargs.keys()): sym = kwargs['sym'] else: sym = 'ro' if 'lw' in list(kwargs.keys()): lw = kwargs['lw'] else: lw = 1 if 'xerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr']) if 'yerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr']) if 'axis' in list(kwargs.keys()): if kwargs['axis'] == 'semilogx': plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'semilogy': plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'loglog': plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0]) else: plt.plot(X, Y, sym, linewidth=lw) if 'xlab' in list(kwargs.keys()): plt.xlabel(kwargs['xlab']) if 'ylab' in list(kwargs.keys()): plt.ylabel(kwargs['ylab']) if 'title' in list(kwargs.keys()): plt.title(kwargs['title']) if 'xmin' in list(kwargs.keys()): plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs['ymax']]) if 'notes' in list(kwargs.keys()): for note in kwargs['notes']: plt.text(note[0], note[1], note[2])
deprecated, used in curie
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L247-L292
PmagPy/PmagPy
pmagpy/pmagplotlib.py
plot_site
def plot_site(fignum, SiteRec, data, key): """ deprecated (used in ipmag) """ print('Site mean data: ') print(' dec inc n_lines n_planes kappa R alpha_95 comp coord') print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'], SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'], SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec['site_tilt_correction']) print('sample/specimen, dec, inc, n_specs/a95,| method codes ') for i in range(len(data)): print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'], data[i][key + '_dec'], data[i] [key + '_inc'], data[i][key + '_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes'])) plot_slnp(fignum, SiteRec, data, key) plot = input("s[a]ve plot, [q]uit or <return> to continue: ") if plot == 'q': print("CUL8R") sys.exit() if plot == 'a': files = {} for key in list(EQ.keys()): files[key] = site + '_' + key + '.' + fmt save_plots(EQ, files)
python
def plot_site(fignum, SiteRec, data, key): """ deprecated (used in ipmag) """ print('Site mean data: ') print(' dec inc n_lines n_planes kappa R alpha_95 comp coord') print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'], SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'], SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec['site_tilt_correction']) print('sample/specimen, dec, inc, n_specs/a95,| method codes ') for i in range(len(data)): print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'], data[i][key + '_dec'], data[i] [key + '_inc'], data[i][key + '_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes'])) plot_slnp(fignum, SiteRec, data, key) plot = input("s[a]ve plot, [q]uit or <return> to continue: ") if plot == 'q': print("CUL8R") sys.exit() if plot == 'a': files = {} for key in list(EQ.keys()): files[key] = site + '_' + key + '.' + fmt save_plots(EQ, files)
deprecated (used in ipmag)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L295-L316
PmagPy/PmagPy
pmagpy/pmagplotlib.py
plot_qq_norm
def plot_qq_norm(fignum, Y, title): """ makes a Quantile-Quantile plot for data Parameters _________ fignum : matplotlib figure number Y : list or array of data title : title string for plot Returns ___________ d,dc : the values for D and Dc (the critical value) if d>dc, likely to be normally distributed (95\% confidence) """ plt.figure(num=fignum) if type(Y) == list: Y = np.array(Y) Y = np.sort(Y) # sort the data n = len(Y) d, mean, sigma = k_s(Y) dc = old_div(0.886, np.sqrt(float(n))) X = [] # list for normal quantile for i in range(1, n + 1): p = old_div(float(i), float(n + 1)) X.append(qsnorm(p)) plt.plot(X, Y, 'ro') plt.title(title) plt.xlabel('Normal Quantile') plt.ylabel('Data Quantile') bounds = plt.axis() notestr = 'N: ' + '%i' % (n) plt.text(-.9 * bounds[1], .9 * bounds[3], notestr) notestr = 'mean: ' + '%8.3e' % (mean) plt.text(-.9 * bounds[1], .8 * bounds[3], notestr) notestr = 'std dev: ' + '%8.3e' % (sigma) plt.text(-.9 * bounds[1], .7 * bounds[3], notestr) notestr = 'D: ' + '%8.3e' % (d) plt.text(-.9 * bounds[1], .6 * bounds[3], notestr) notestr = 'Dc: ' + '%8.3e' % (dc) plt.text(-.9 * bounds[1], .5 * bounds[3], notestr) return d, dc
python
def plot_qq_norm(fignum, Y, title): """ makes a Quantile-Quantile plot for data Parameters _________ fignum : matplotlib figure number Y : list or array of data title : title string for plot Returns ___________ d,dc : the values for D and Dc (the critical value) if d>dc, likely to be normally distributed (95\% confidence) """ plt.figure(num=fignum) if type(Y) == list: Y = np.array(Y) Y = np.sort(Y) # sort the data n = len(Y) d, mean, sigma = k_s(Y) dc = old_div(0.886, np.sqrt(float(n))) X = [] # list for normal quantile for i in range(1, n + 1): p = old_div(float(i), float(n + 1)) X.append(qsnorm(p)) plt.plot(X, Y, 'ro') plt.title(title) plt.xlabel('Normal Quantile') plt.ylabel('Data Quantile') bounds = plt.axis() notestr = 'N: ' + '%i' % (n) plt.text(-.9 * bounds[1], .9 * bounds[3], notestr) notestr = 'mean: ' + '%8.3e' % (mean) plt.text(-.9 * bounds[1], .8 * bounds[3], notestr) notestr = 'std dev: ' + '%8.3e' % (sigma) plt.text(-.9 * bounds[1], .7 * bounds[3], notestr) notestr = 'D: ' + '%8.3e' % (d) plt.text(-.9 * bounds[1], .6 * bounds[3], notestr) notestr = 'Dc: ' + '%8.3e' % (dc) plt.text(-.9 * bounds[1], .5 * bounds[3], notestr) return d, dc
makes a Quantile-Quantile plot for data Parameters _________ fignum : matplotlib figure number Y : list or array of data title : title string for plot Returns ___________ d,dc : the values for D and Dc (the critical value) if d>dc, likely to be normally distributed (95\% confidence)
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmagplotlib.py#L319-L359