repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
PmagPy/PmagPy | dialogs/thellier_interpreter.py | thellier_auto_interpreter.find_close_value | def find_close_value(self, LIST, value):
'''
take a LIST and find the nearest value in LIST to 'value'
'''
diff = inf
for a in LIST:
if abs(value - a) < diff:
diff = abs(value - a)
result = a
return(result) | python | def find_close_value(self, LIST, value):
'''
take a LIST and find the nearest value in LIST to 'value'
'''
diff = inf
for a in LIST:
if abs(value - a) < diff:
diff = abs(value - a)
result = a
return(result) | take a LIST and find the nearest value in LIST to 'value' | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/thellier_interpreter.py#L1000-L1009 |
PmagPy/PmagPy | dialogs/thellier_interpreter.py | thellier_auto_interpreter.find_sample_min_std | def find_sample_min_std(self, Intensities):
'''
find the best interpretation with the minimum stratard deviation (in units of percent % !)
'''
Best_array = []
best_array_std_perc = inf
Best_array_tmp = []
Best_interpretations = {}
Best_interpretations_tmp = {}
for this_specimen in list(Intensities.keys()):
for value in Intensities[this_specimen]:
Best_interpretations_tmp[this_specimen] = value
Best_array_tmp = [value]
all_other_specimens = list(Intensities.keys())
all_other_specimens.remove(this_specimen)
for other_specimen in all_other_specimens:
closest_value = self.find_close_value(
Intensities[other_specimen], value)
Best_array_tmp.append(closest_value)
Best_interpretations_tmp[other_specimen] = closest_value
if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp) < best_array_std_perc:
Best_array = Best_array_tmp
best_array_std_perc = std(
Best_array, ddof=1) / mean(Best_array_tmp)
Best_interpretations = copy.deepcopy(
Best_interpretations_tmp)
Best_interpretations_tmp = {}
return Best_interpretations, mean(Best_array), std(Best_array, ddof=1) | python | def find_sample_min_std(self, Intensities):
'''
find the best interpretation with the minimum stratard deviation (in units of percent % !)
'''
Best_array = []
best_array_std_perc = inf
Best_array_tmp = []
Best_interpretations = {}
Best_interpretations_tmp = {}
for this_specimen in list(Intensities.keys()):
for value in Intensities[this_specimen]:
Best_interpretations_tmp[this_specimen] = value
Best_array_tmp = [value]
all_other_specimens = list(Intensities.keys())
all_other_specimens.remove(this_specimen)
for other_specimen in all_other_specimens:
closest_value = self.find_close_value(
Intensities[other_specimen], value)
Best_array_tmp.append(closest_value)
Best_interpretations_tmp[other_specimen] = closest_value
if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp) < best_array_std_perc:
Best_array = Best_array_tmp
best_array_std_perc = std(
Best_array, ddof=1) / mean(Best_array_tmp)
Best_interpretations = copy.deepcopy(
Best_interpretations_tmp)
Best_interpretations_tmp = {}
return Best_interpretations, mean(Best_array), std(Best_array, ddof=1) | find the best interpretation with the minimum stratard deviation (in units of percent % !) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/thellier_interpreter.py#L1011-L1041 |
PmagPy/PmagPy | dialogs/thellier_interpreter.py | thellier_auto_interpreter.find_sample_min_max_interpretation | def find_sample_min_max_interpretation(self, Intensities):
'''
find the minimum and maximum acceptable sample mean
Intensities={}
Intensities[specimen_name]=[] array of acceptable interpretations ( units of uT)
'''
# acceptance criteria
if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['sample_int_sigma_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc']['value']
if int_n_cutoff == -999:
int_n_cutoff = 2
# if int_sigma_cutoff==-999:
# int_sigma_cutoff=999
# if int_sigma_perc_cutoff==-999:
# int_sigma_perc_cutoff=999
# make a new dictionary named "tmp_Intensities" with all grade A
# interpretation sorted.
tmp_Intensities = {}
Acceptable_sample_min_mean, Acceptable_sample_max_mean = "", ""
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
# find the minmum acceptable values
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_min = 1e10
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(min(tmp_Intensities[specimen]))
if min(tmp_Intensities[specimen]) < B_tmp_min:
specimen_to_remove = specimen
B_tmp_min = min(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(
B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
Acceptable_sample_min_mean = mean(B_tmp)
Acceptable_sample_min_std = std(B_tmp, ddof=1)
# print "min
# value,std,",mean(B_tmp),std(B_tmp),100*(std(B_tmp)/mean(B_tmp))
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_min)
if len(tmp_Intensities[specimen_to_remove]) == 0:
break
tmp_Intensities = {}
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_max = 0
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(max(tmp_Intensities[specimen]))
if max(tmp_Intensities[specimen]) > B_tmp_max:
specimen_to_remove = specimen
B_tmp_max = max(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(
B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
# if std(B_tmp,ddof=1)<=int_sigma_cutoff*1e6 or
# 100*(std(B_tmp,ddof=1)/mean(B_tmp))<=int_sigma_perc_cutoff:
Acceptable_sample_max_mean = mean(B_tmp)
Acceptable_sample_max_std = std(B_tmp, ddof=1)
# print "max
# value,std,",mean(B_tmp),std(B_tmp),100*(std(B_tmp)/mean(B_tmp))
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_max)
if len(tmp_Intensities[specimen_to_remove]) < 1:
break
if Acceptable_sample_min_mean == "" or Acceptable_sample_max_mean == "":
return(0., 0., 0., 0.)
return(Acceptable_sample_min_mean, Acceptable_sample_min_std, Acceptable_sample_max_mean, Acceptable_sample_max_std) | python | def find_sample_min_max_interpretation(self, Intensities):
'''
find the minimum and maximum acceptable sample mean
Intensities={}
Intensities[specimen_name]=[] array of acceptable interpretations ( units of uT)
'''
# acceptance criteria
if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['sample_int_sigma_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc']['value']
if int_n_cutoff == -999:
int_n_cutoff = 2
# if int_sigma_cutoff==-999:
# int_sigma_cutoff=999
# if int_sigma_perc_cutoff==-999:
# int_sigma_perc_cutoff=999
# make a new dictionary named "tmp_Intensities" with all grade A
# interpretation sorted.
tmp_Intensities = {}
Acceptable_sample_min_mean, Acceptable_sample_max_mean = "", ""
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
# find the minmum acceptable values
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_min = 1e10
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(min(tmp_Intensities[specimen]))
if min(tmp_Intensities[specimen]) < B_tmp_min:
specimen_to_remove = specimen
B_tmp_min = min(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(
B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
Acceptable_sample_min_mean = mean(B_tmp)
Acceptable_sample_min_std = std(B_tmp, ddof=1)
# print "min
# value,std,",mean(B_tmp),std(B_tmp),100*(std(B_tmp)/mean(B_tmp))
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_min)
if len(tmp_Intensities[specimen_to_remove]) == 0:
break
tmp_Intensities = {}
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_max = 0
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(max(tmp_Intensities[specimen]))
if max(tmp_Intensities[specimen]) > B_tmp_max:
specimen_to_remove = specimen
B_tmp_max = max(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(
B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
# if std(B_tmp,ddof=1)<=int_sigma_cutoff*1e6 or
# 100*(std(B_tmp,ddof=1)/mean(B_tmp))<=int_sigma_perc_cutoff:
Acceptable_sample_max_mean = mean(B_tmp)
Acceptable_sample_max_std = std(B_tmp, ddof=1)
# print "max
# value,std,",mean(B_tmp),std(B_tmp),100*(std(B_tmp)/mean(B_tmp))
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_max)
if len(tmp_Intensities[specimen_to_remove]) < 1:
break
if Acceptable_sample_min_mean == "" or Acceptable_sample_max_mean == "":
return(0., 0., 0., 0.)
return(Acceptable_sample_min_mean, Acceptable_sample_min_std, Acceptable_sample_max_mean, Acceptable_sample_max_std) | find the minimum and maximum acceptable sample mean
Intensities={}
Intensities[specimen_name]=[] array of acceptable interpretations ( units of uT) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/thellier_interpreter.py#L1064-L1152 |
PmagPy/PmagPy | dialogs/thellier_interpreter.py | thellier_auto_interpreter.thellier_interpreter_pars_calc | def thellier_interpreter_pars_calc(self, Grade_As):
'''
calcualte sample or site STDEV-OPT paleointensities
and statistics
Grade_As={}
'''
thellier_interpreter_pars = {}
thellier_interpreter_pars['stdev-opt'] = {}
# thellier_interpreter_pars['stdev-opt']['B']=
# thellier_interpreter_pars['stdev-opt']['std']=
thellier_interpreter_pars['min-value'] = {}
# thellier_interpreter_pars['min-value']['B']=
# thellier_interpreter_pars['min-value']['std']=
thellier_interpreter_pars['max-value'] = {}
# thellier_interpreter_pars['max-value']['B']=
# thellier_interpreter_pars['max-value']['std']=
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
# acceptance criteria
if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['sample_int_sigma_perc']['value']
int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT']['value']
int_interval_perc_cutoff = self.acceptance_criteria['sample_int_interval_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc']['value']
int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT']['value']
int_interval_perc_cutoff = self.acceptance_criteria['site_int_interval_perc']['value']
N = len(list(Grade_As.keys()))
if N <= 1:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_n")
return(thellier_interpreter_pars)
Best_interpretations, best_mean, best_std = self.find_sample_min_std(
Grade_As)
sample_acceptable_min, sample_acceptable_min_std, sample_acceptable_max, sample_acceptable_max_std = self.find_sample_min_max_interpretation(
Grade_As)
sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min
sample_int_interval_perc = 100 * \
((sample_acceptable_max - sample_acceptable_min) / best_mean)
thellier_interpreter_pars['stdev_opt_interpretations'] = Best_interpretations
thellier_interpreter_pars['stdev-opt']['B'] = best_mean
thellier_interpreter_pars['stdev-opt']['std'] = best_std
thellier_interpreter_pars['stdev-opt']['std_perc'] = 100. * \
(best_std / best_mean)
thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min
thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std
thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max
thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std
thellier_interpreter_pars['sample_int_interval_uT'] = sample_int_interval_uT
thellier_interpreter_pars['sample_int_interval_perc'] = sample_int_interval_perc
if N < int_n_cutoff:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_n")
pass_int_sigma, pass_int_sigma_perc = True, True
pass_int_interval, pass_int_interval_perc = True, True
if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999):
if best_std <= int_sigma_cutoff * 1e6 and int_sigma_cutoff != -999:
pass_sigma = True
else:
pass_sigma = False
if 100. * (best_std / best_mean) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999:
pass_sigma_perc = True
else:
pass_sigma_perc = False
if not (pass_sigma or pass_sigma_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_sigma")
if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999):
if sample_int_interval_uT <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999:
pass_interval = True
else:
pass_interval = False
if sample_int_interval_perc <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999:
pass_interval_perc = True
else:
pass_interval_perc = False
if not (pass_interval or pass_interval_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append(
"int_interval")
return(thellier_interpreter_pars) | python | def thellier_interpreter_pars_calc(self, Grade_As):
'''
calcualte sample or site STDEV-OPT paleointensities
and statistics
Grade_As={}
'''
thellier_interpreter_pars = {}
thellier_interpreter_pars['stdev-opt'] = {}
# thellier_interpreter_pars['stdev-opt']['B']=
# thellier_interpreter_pars['stdev-opt']['std']=
thellier_interpreter_pars['min-value'] = {}
# thellier_interpreter_pars['min-value']['B']=
# thellier_interpreter_pars['min-value']['std']=
thellier_interpreter_pars['max-value'] = {}
# thellier_interpreter_pars['max-value']['B']=
# thellier_interpreter_pars['max-value']['std']=
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
# acceptance criteria
if self.acceptance_criteria['average_by_sample_or_site']['value'] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['sample_int_sigma_perc']['value']
int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT']['value']
int_interval_perc_cutoff = self.acceptance_criteria['sample_int_interval_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc']['value']
int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT']['value']
int_interval_perc_cutoff = self.acceptance_criteria['site_int_interval_perc']['value']
N = len(list(Grade_As.keys()))
if N <= 1:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_n")
return(thellier_interpreter_pars)
Best_interpretations, best_mean, best_std = self.find_sample_min_std(
Grade_As)
sample_acceptable_min, sample_acceptable_min_std, sample_acceptable_max, sample_acceptable_max_std = self.find_sample_min_max_interpretation(
Grade_As)
sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min
sample_int_interval_perc = 100 * \
((sample_acceptable_max - sample_acceptable_min) / best_mean)
thellier_interpreter_pars['stdev_opt_interpretations'] = Best_interpretations
thellier_interpreter_pars['stdev-opt']['B'] = best_mean
thellier_interpreter_pars['stdev-opt']['std'] = best_std
thellier_interpreter_pars['stdev-opt']['std_perc'] = 100. * \
(best_std / best_mean)
thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min
thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std
thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max
thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std
thellier_interpreter_pars['sample_int_interval_uT'] = sample_int_interval_uT
thellier_interpreter_pars['sample_int_interval_perc'] = sample_int_interval_perc
if N < int_n_cutoff:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_n")
pass_int_sigma, pass_int_sigma_perc = True, True
pass_int_interval, pass_int_interval_perc = True, True
if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999):
if best_std <= int_sigma_cutoff * 1e6 and int_sigma_cutoff != -999:
pass_sigma = True
else:
pass_sigma = False
if 100. * (best_std / best_mean) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999:
pass_sigma_perc = True
else:
pass_sigma_perc = False
if not (pass_sigma or pass_sigma_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append("int_sigma")
if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999):
if sample_int_interval_uT <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999:
pass_interval = True
else:
pass_interval = False
if sample_int_interval_perc <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999:
pass_interval_perc = True
else:
pass_interval_perc = False
if not (pass_interval or pass_interval_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append(
"int_interval")
return(thellier_interpreter_pars) | calcualte sample or site STDEV-OPT paleointensities
and statistics
Grade_As={} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/thellier_interpreter.py#L1158-L1251 |
PmagPy/PmagPy | dialogs/thellier_interpreter.py | thellier_auto_interpreter.thellier_interpreter_BS_pars_calc | def thellier_interpreter_BS_pars_calc(self, Grade_As):
'''
calcualte sample or site bootstrap paleointensities
and statistics
Grade_As={}
'''
thellier_interpreter_pars = {}
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N'])
Grade_A_samples_BS = {}
if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n']['value']:
for specimen in list(Grade_As.keys()):
if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As[specimen]) > 0:
Grade_A_samples_BS[specimen] = []
for B in Grade_As[specimen]:
Grade_A_samples_BS[specimen].append(B)
Grade_A_samples_BS[specimen].sort()
specimen_int_max_slope_diff = max(
Grade_A_samples_BS[specimen]) / min(Grade_A_samples_BS[specimen])
if specimen_int_max_slope_diff > self.acceptance_criteria['specimen_int_max_slope_diff']:
self.thellier_interpreter_log.write(
"-I- specimen %s Failed specimen_int_max_slope_diff\n" % specimen, Grade_A_samples_BS[specimen])
del Grade_A_samples_BS[specimen]
if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria['sample_int_n']['value']:
BS_means_collection = []
for i in range(BOOTSTRAP_N):
B_BS = []
for j in range(len(list(Grade_A_samples_BS.keys()))):
LIST = list(Grade_A_samples_BS.keys())
specimen = random.choice(LIST)
if self.acceptance_criteria['interpreter_method']['value'] == 'bs':
B = random.choice(Grade_A_samples_BS[specimen])
if self.acceptance_criteria['interpreter_method']['value'] == 'bs_par':
B = random.uniform(min(Grade_A_samples_BS[specimen]), max(
Grade_A_samples_BS[specimen]))
B_BS.append(B)
BS_means_collection.append(mean(B_BS))
BS_means = array(BS_means_collection)
BS_means.sort()
sample_median = median(BS_means)
sample_std = std(BS_means, ddof=1)
sample_68 = [BS_means[(0.16) * len(BS_means)],
BS_means[(0.84) * len(BS_means)]]
sample_95 = [BS_means[(0.025) * len(BS_means)],
BS_means[(0.975) * len(BS_means)]]
else:
String = "-I- sample %s FAIL: not enough specimen int_n= %i < %i " % (sample, len(
list(Grade_A_samples_BS.keys())), int(self.acceptance_criteria['sample_int_n']['value']))
# print String
self.thellier_interpreter_log.write(String)
thellier_interpreter_pars['bs_bedian'] = sample_median
thellier_interpreter_pars['bs_std'] = sample_std
thellier_interpreter_pars['bs_68'] = sample_68
thellier_interpreter_pars['bs_95'] = sample_95
thellier_interpreter_pars['bs_n'] = len(
list(Grade_A_samples_BS.keys())) | python | def thellier_interpreter_BS_pars_calc(self, Grade_As):
'''
calcualte sample or site bootstrap paleointensities
and statistics
Grade_As={}
'''
thellier_interpreter_pars = {}
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N'])
Grade_A_samples_BS = {}
if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n']['value']:
for specimen in list(Grade_As.keys()):
if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As[specimen]) > 0:
Grade_A_samples_BS[specimen] = []
for B in Grade_As[specimen]:
Grade_A_samples_BS[specimen].append(B)
Grade_A_samples_BS[specimen].sort()
specimen_int_max_slope_diff = max(
Grade_A_samples_BS[specimen]) / min(Grade_A_samples_BS[specimen])
if specimen_int_max_slope_diff > self.acceptance_criteria['specimen_int_max_slope_diff']:
self.thellier_interpreter_log.write(
"-I- specimen %s Failed specimen_int_max_slope_diff\n" % specimen, Grade_A_samples_BS[specimen])
del Grade_A_samples_BS[specimen]
if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria['sample_int_n']['value']:
BS_means_collection = []
for i in range(BOOTSTRAP_N):
B_BS = []
for j in range(len(list(Grade_A_samples_BS.keys()))):
LIST = list(Grade_A_samples_BS.keys())
specimen = random.choice(LIST)
if self.acceptance_criteria['interpreter_method']['value'] == 'bs':
B = random.choice(Grade_A_samples_BS[specimen])
if self.acceptance_criteria['interpreter_method']['value'] == 'bs_par':
B = random.uniform(min(Grade_A_samples_BS[specimen]), max(
Grade_A_samples_BS[specimen]))
B_BS.append(B)
BS_means_collection.append(mean(B_BS))
BS_means = array(BS_means_collection)
BS_means.sort()
sample_median = median(BS_means)
sample_std = std(BS_means, ddof=1)
sample_68 = [BS_means[(0.16) * len(BS_means)],
BS_means[(0.84) * len(BS_means)]]
sample_95 = [BS_means[(0.025) * len(BS_means)],
BS_means[(0.975) * len(BS_means)]]
else:
String = "-I- sample %s FAIL: not enough specimen int_n= %i < %i " % (sample, len(
list(Grade_A_samples_BS.keys())), int(self.acceptance_criteria['sample_int_n']['value']))
# print String
self.thellier_interpreter_log.write(String)
thellier_interpreter_pars['bs_bedian'] = sample_median
thellier_interpreter_pars['bs_std'] = sample_std
thellier_interpreter_pars['bs_68'] = sample_68
thellier_interpreter_pars['bs_95'] = sample_95
thellier_interpreter_pars['bs_n'] = len(
list(Grade_A_samples_BS.keys())) | calcualte sample or site bootstrap paleointensities
and statistics
Grade_As={} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/thellier_interpreter.py#L1253-L1314 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | mapping | def mapping(dictionary, mapping):
"""
takes in a dictionary and a mapping which contains new key names,
and returns a new dictionary with the updated key names, i.e.:
dictionary = {'a': 1, 'b': 2, 'c': 3}
mapping = {'a': 'aa', 'c': 'cc'}
mapped_dictionary = mapping(dictionary, mapping)
mapped_dictionary = {'aa': 1, b, 2, 'cc': 3}
"""
mapped_dictionary = {}
for key, value in dictionary.items():
if key in list(mapping.keys()):
new_key = mapping[key]
# if there is already a mapped value, try to figure out which value to use
# (i.e., if both er_synthetic_name and er_specimen_name are in one measurement file)
if new_key in mapped_dictionary:
if hasattr(value, 'any'):
if not value.any():
# if new value is null, leave the old value there
continue
if hasattr(mapped_dictionary, 'any'):
if value.any() and not mapped_dictionary[new_key].any():
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
else:
if value.any() and not mapped_dictionary[new_key].any():
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
else:
if not value:
# if new value is null, leave the old value there
continue
elif value and not mapped_dictionary[new_key]:
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value and mapped_dictionary[new_key]:
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
# if there is no mapped_value already:
else:
mapped_dictionary[new_key] = value
else:
# if this line is left in, it gives everything from the original dictionary
mapped_dictionary[key] = value
return mapped_dictionary | python | def mapping(dictionary, mapping):
"""
takes in a dictionary and a mapping which contains new key names,
and returns a new dictionary with the updated key names, i.e.:
dictionary = {'a': 1, 'b': 2, 'c': 3}
mapping = {'a': 'aa', 'c': 'cc'}
mapped_dictionary = mapping(dictionary, mapping)
mapped_dictionary = {'aa': 1, b, 2, 'cc': 3}
"""
mapped_dictionary = {}
for key, value in dictionary.items():
if key in list(mapping.keys()):
new_key = mapping[key]
# if there is already a mapped value, try to figure out which value to use
# (i.e., if both er_synthetic_name and er_specimen_name are in one measurement file)
if new_key in mapped_dictionary:
if hasattr(value, 'any'):
if not value.any():
# if new value is null, leave the old value there
continue
if hasattr(mapped_dictionary, 'any'):
if value.any() and not mapped_dictionary[new_key].any():
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
else:
if value.any() and not mapped_dictionary[new_key].any():
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
else:
if not value:
# if new value is null, leave the old value there
continue
elif value and not mapped_dictionary[new_key]:
# choose the one that has a non-null value
mapped_dictionary[new_key] = value
elif value and mapped_dictionary[new_key]:
# if both have values, choose which one to replace and warn
#print('-W- Two possible values found for {}'.format(new_key))
#print(' Replacing {} with {}'.format(mapped_dictionary[new_key], value))
mapped_dictionary[new_key] = value
# if there is no mapped_value already:
else:
mapped_dictionary[new_key] = value
else:
# if this line is left in, it gives everything from the original dictionary
mapped_dictionary[key] = value
return mapped_dictionary | takes in a dictionary and a mapping which contains new key names,
and returns a new dictionary with the updated key names, i.e.:
dictionary = {'a': 1, 'b': 2, 'c': 3}
mapping = {'a': 'aa', 'c': 'cc'}
mapped_dictionary = mapping(dictionary, mapping)
mapped_dictionary = {'aa': 1, b, 2, 'cc': 3} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L13-L69 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | cache_mappings | def cache_mappings(file_path):
"""
Make a full mapping for 2 --> 3 columns.
Output the mapping to json in the specified file_path.
Note: This file is currently called maps.py,
full path is PmagPy/pmagpy/mapping/maps.py.
Parameters
----------
file_path : string with full file path to dump mapping json.
Returns
---------
maps : nested dictionary with format {table_name: {magic2_col_name: magic3_col_name, ...}, ...}
"""
def get_2_to_3(dm_type, dm):
table_names3_2_table_names2 = {'measurements': ['magic_measurements'],
'locations': ['er_locations'],
'sites': ['er_sites', 'pmag_sites'],
'samples': ['er_samples', 'pmag_samples'],
'specimens': ['er_specimens', 'pmag_specimens'],
'ages': ['er_ages'],
'criteria': ['pmag_criteria'],
'images': ['er_images'],
'contribution': []}
table_names3 = table_names3_2_table_names2[dm_type]
dictionary = {}
for label, row in dm.iterrows():
# if there are one or more corresponding 2.5 columns:
if isinstance(row['previous_columns'], list):
for previous_values in row['previous_columns']:
previous_table = previous_values['table']
previous_value = previous_values['column']
if previous_table in table_names3:
add_to_dict(previous_value, label, dictionary)
elif previous_table in ["pmag_results", "rmag_results"]:
if label not in dictionary.values():
if previous_value not in dictionary.keys():
add_to_dict(previous_value, label, dictionary)
return dictionary
def add_to_dict(key, value, dictionary):
if key in dictionary:
if value != dictionary[key]:
print('W- OVERWRITING')
print('was:', key, dictionary[key])
print('now:', key, value)
dictionary[key] = value
# begin
data_model = DataModel()
maps = {}
for table_name in data_model.dm:
dm = data_model.dm[table_name]
new_mapping = get_2_to_3(table_name, dm)
maps[table_name] = new_mapping
# write maps out to file
f = open(file_path, 'w')
f.write("all_maps = ")
json.dump(maps, f)
f.close()
return maps | python | def cache_mappings(file_path):
"""
Make a full mapping for 2 --> 3 columns.
Output the mapping to json in the specified file_path.
Note: This file is currently called maps.py,
full path is PmagPy/pmagpy/mapping/maps.py.
Parameters
----------
file_path : string with full file path to dump mapping json.
Returns
---------
maps : nested dictionary with format {table_name: {magic2_col_name: magic3_col_name, ...}, ...}
"""
def get_2_to_3(dm_type, dm):
table_names3_2_table_names2 = {'measurements': ['magic_measurements'],
'locations': ['er_locations'],
'sites': ['er_sites', 'pmag_sites'],
'samples': ['er_samples', 'pmag_samples'],
'specimens': ['er_specimens', 'pmag_specimens'],
'ages': ['er_ages'],
'criteria': ['pmag_criteria'],
'images': ['er_images'],
'contribution': []}
table_names3 = table_names3_2_table_names2[dm_type]
dictionary = {}
for label, row in dm.iterrows():
# if there are one or more corresponding 2.5 columns:
if isinstance(row['previous_columns'], list):
for previous_values in row['previous_columns']:
previous_table = previous_values['table']
previous_value = previous_values['column']
if previous_table in table_names3:
add_to_dict(previous_value, label, dictionary)
elif previous_table in ["pmag_results", "rmag_results"]:
if label not in dictionary.values():
if previous_value not in dictionary.keys():
add_to_dict(previous_value, label, dictionary)
return dictionary
def add_to_dict(key, value, dictionary):
if key in dictionary:
if value != dictionary[key]:
print('W- OVERWRITING')
print('was:', key, dictionary[key])
print('now:', key, value)
dictionary[key] = value
# begin
data_model = DataModel()
maps = {}
for table_name in data_model.dm:
dm = data_model.dm[table_name]
new_mapping = get_2_to_3(table_name, dm)
maps[table_name] = new_mapping
# write maps out to file
f = open(file_path, 'w')
f.write("all_maps = ")
json.dump(maps, f)
f.close()
return maps | Make a full mapping for 2 --> 3 columns.
Output the mapping to json in the specified file_path.
Note: This file is currently called maps.py,
full path is PmagPy/pmagpy/mapping/maps.py.
Parameters
----------
file_path : string with full file path to dump mapping json.
Returns
---------
maps : nested dictionary with format {table_name: {magic2_col_name: magic3_col_name, ...}, ...} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L85-L146 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | get_thellier_gui_meas_mapping | def get_thellier_gui_meas_mapping(input_df, output=2):
"""
Get the appropriate mapping for translating measurements in Thellier GUI.
This requires special handling for treat_step_num/measurement/measurement_number.
Parameters
----------
input_df : pandas DataFrame
MagIC records
output : int
output to this MagIC data model (2 or 3)
Output
--------
mapping : dict (used in convert_meas_df_thellier_gui)
"""
if int(output) == 2:
thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy()
if 'treat_step_num' in input_df.columns:
thellier_gui_meas3_2_meas2_map.update(
{'treat_step_num': 'measurement_number'})
thellier_gui_meas3_2_meas2_map.pop('measurement')
return thellier_gui_meas3_2_meas2_map
# 2 --> 3
else:
thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy()
if 'measurement' in input_df.columns:
thellier_gui_meas2_2_meas3_map.pop('measurement_number')
try:
res = int(input_df.iloc[0]['measurement_number'])
if res < 100:
thellier_gui_meas2_2_meas3_map['measurement_number'] = 'treat_step_num'
except ValueError as ex:
pass
return thellier_gui_meas2_2_meas3_map | python | def get_thellier_gui_meas_mapping(input_df, output=2):
"""
Get the appropriate mapping for translating measurements in Thellier GUI.
This requires special handling for treat_step_num/measurement/measurement_number.
Parameters
----------
input_df : pandas DataFrame
MagIC records
output : int
output to this MagIC data model (2 or 3)
Output
--------
mapping : dict (used in convert_meas_df_thellier_gui)
"""
if int(output) == 2:
thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy()
if 'treat_step_num' in input_df.columns:
thellier_gui_meas3_2_meas2_map.update(
{'treat_step_num': 'measurement_number'})
thellier_gui_meas3_2_meas2_map.pop('measurement')
return thellier_gui_meas3_2_meas2_map
# 2 --> 3
else:
thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy()
if 'measurement' in input_df.columns:
thellier_gui_meas2_2_meas3_map.pop('measurement_number')
try:
res = int(input_df.iloc[0]['measurement_number'])
if res < 100:
thellier_gui_meas2_2_meas3_map['measurement_number'] = 'treat_step_num'
except ValueError as ex:
pass
return thellier_gui_meas2_2_meas3_map | Get the appropriate mapping for translating measurements in Thellier GUI.
This requires special handling for treat_step_num/measurement/measurement_number.
Parameters
----------
input_df : pandas DataFrame
MagIC records
output : int
output to this MagIC data model (2 or 3)
Output
--------
mapping : dict (used in convert_meas_df_thellier_gui) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L168-L202 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | convert_meas_df_thellier_gui | def convert_meas_df_thellier_gui(meas_df_in, output):
"""
Take a measurement dataframe and convert column names
from MagIC 2 --> 3 or vice versa.
Use treat_step_num --> measurement_number if available,
otherwise measurement --> measurement_number.
Parameters
----------
meas_df_in : pandas DataFrame
input dataframe with measurement data
output : int
output to MagIC 2 or MagIC 3
"""
output = int(output)
meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)
meas_df_out = meas_df_in.rename(columns=meas_mapping)
if 'measurement' not in meas_df_out.columns:
meas_df_out['measurement'] = meas_df_in['measurement']
return meas_df_out | python | def convert_meas_df_thellier_gui(meas_df_in, output):
"""
Take a measurement dataframe and convert column names
from MagIC 2 --> 3 or vice versa.
Use treat_step_num --> measurement_number if available,
otherwise measurement --> measurement_number.
Parameters
----------
meas_df_in : pandas DataFrame
input dataframe with measurement data
output : int
output to MagIC 2 or MagIC 3
"""
output = int(output)
meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)
meas_df_out = meas_df_in.rename(columns=meas_mapping)
if 'measurement' not in meas_df_out.columns:
meas_df_out['measurement'] = meas_df_in['measurement']
return meas_df_out | Take a measurement dataframe and convert column names
from MagIC 2 --> 3 or vice versa.
Use treat_step_num --> measurement_number if available,
otherwise measurement --> measurement_number.
Parameters
----------
meas_df_in : pandas DataFrame
input dataframe with measurement data
output : int
output to MagIC 2 or MagIC 3 | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L205-L224 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | convert_meas | def convert_meas(direction, Rec):
"""
converts measurments tables from magic 2 to 3 (direction=magic3)
or from model 3 to 2.5 (direction=magic2) [not available]
"""
if direction == 'magic3':
columns = meas_magic2_2_magic3_map
MeasRec = {}
for key in columns:
if key in list(Rec.keys()):
# transfer info and change column name to data model 3.0
MeasRec[columns[key]] = Rec[key]
return MeasRec
else: # haven't added this way yet
pass | python | def convert_meas(direction, Rec):
"""
converts measurments tables from magic 2 to 3 (direction=magic3)
or from model 3 to 2.5 (direction=magic2) [not available]
"""
if direction == 'magic3':
columns = meas_magic2_2_magic3_map
MeasRec = {}
for key in columns:
if key in list(Rec.keys()):
# transfer info and change column name to data model 3.0
MeasRec[columns[key]] = Rec[key]
return MeasRec
else: # haven't added this way yet
pass | converts measurments tables from magic 2 to 3 (direction=magic3)
or from model 3 to 2.5 (direction=magic2) [not available] | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L368-L382 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | convert_site_dm3_table_intensity | def convert_site_dm3_table_intensity(sites_df):
"""
Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Intensity data only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
int_df : pandas DataFrame
intensity site data with easily readable headers
"""
# now for the intensities
has_vadms, has_vdms = False, False
if 'int_abs' not in sites_df:
sites_df['int_abs'] = None
if 'int_n_samples' not in sites_df:
sites_df['int_n_samples'] = None
int_df = sites_df.copy().dropna(subset=['int_abs'])
int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int')
if len(int_df) > 0:
int_df['int_abs_uT'] = 1e6*int_df.int_abs.values # convert to uT
int_df['int_abs_sigma_uT'] = 1e6 * \
int_df.int_abs_sigma.values # convert to uT
int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int')
int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype(
'int')
int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc'].values.astype(
'int')
IntCols = ["Site", "N", "B", "B sigma", "sigma (%)"]
if 'vadm' in int_df.columns:
test_vadm = int_df.dropna(subset=['vadm'])
if len(test_vadm) > 0:
has_vadms = True
if 'vdm' in int_df.columns:
test_vdm = int_df.dropna(subset=['vdm'])
if len(test_vdm) > 0:
has_vdms = True
if has_vadms:
IntCols.append("VADM")
IntCols.append("VADM sigma")
if has_vdms:
IntCols.append("VDM")
IntCols.append("VDM sigma")
if not has_vadms and not has_vdms:
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc']]
if has_vadms and not has_vdms:
int_df.sort_values(by=['site', 'vadm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21*int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21*int_df.vadm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_ZAm2_sigma']]
if not has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vdm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vdm_ZAm2'] = 1e-21*int_df.vdm.values()
int_df['vdm_sigma_ZAm2'] = 1e-21*int_df.vdm_sigma.values()
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vdm_ZAm2', 'vdm_ZAm2_sigma']]
if has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vadm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21*int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21*int_df.vadm_sigma.values
int_df['vdm_ZAm2'] = 1e-21*int_df.vdm.values
int_df['vdm_sigma_ZAm2'] = 1e-21*int_df.vdm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']]
int_df.columns = IntCols
int_df.sort_values(by=['Site'], inplace=True, ascending=True)
int_df.fillna(value='', inplace=True)
return int_df | python | def convert_site_dm3_table_intensity(sites_df):
"""
Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Intensity data only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
int_df : pandas DataFrame
intensity site data with easily readable headers
"""
# now for the intensities
has_vadms, has_vdms = False, False
if 'int_abs' not in sites_df:
sites_df['int_abs'] = None
if 'int_n_samples' not in sites_df:
sites_df['int_n_samples'] = None
int_df = sites_df.copy().dropna(subset=['int_abs'])
int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int')
if len(int_df) > 0:
int_df['int_abs_uT'] = 1e6*int_df.int_abs.values # convert to uT
int_df['int_abs_sigma_uT'] = 1e6 * \
int_df.int_abs_sigma.values # convert to uT
int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int')
int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype(
'int')
int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc'].values.astype(
'int')
IntCols = ["Site", "N", "B", "B sigma", "sigma (%)"]
if 'vadm' in int_df.columns:
test_vadm = int_df.dropna(subset=['vadm'])
if len(test_vadm) > 0:
has_vadms = True
if 'vdm' in int_df.columns:
test_vdm = int_df.dropna(subset=['vdm'])
if len(test_vdm) > 0:
has_vdms = True
if has_vadms:
IntCols.append("VADM")
IntCols.append("VADM sigma")
if has_vdms:
IntCols.append("VDM")
IntCols.append("VDM sigma")
if not has_vadms and not has_vdms:
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc']]
if has_vadms and not has_vdms:
int_df.sort_values(by=['site', 'vadm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21*int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21*int_df.vadm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_ZAm2_sigma']]
if not has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vdm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vdm_ZAm2'] = 1e-21*int_df.vdm.values()
int_df['vdm_sigma_ZAm2'] = 1e-21*int_df.vdm_sigma.values()
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vdm_ZAm2', 'vdm_ZAm2_sigma']]
if has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vadm'],
ascending=False, inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21*int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21*int_df.vadm_sigma.values
int_df['vdm_ZAm2'] = 1e-21*int_df.vdm.values
int_df['vdm_sigma_ZAm2'] = 1e-21*int_df.vdm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT',
'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']]
int_df.columns = IntCols
int_df.sort_values(by=['Site'], inplace=True, ascending=True)
int_df.fillna(value='', inplace=True)
return int_df | Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Intensity data only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
int_df : pandas DataFrame
intensity site data with easily readable headers | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L477-L562 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | convert_site_dm3_table_directions | def convert_site_dm3_table_directions(sites_df):
"""
Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Directional table only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
dir_df : pandas DataFrame
directional site data with easily readable headers
"""
# directional
# do directional stuff first
# a few things need cleaning up
dir_df = sites_df.copy().dropna(
subset=['dir_dec', 'dir_inc']) # delete blank directions
# sort by absolute value of vgp_lat in order to eliminate duplicate rows for
# directions put in by accident on intensity rows
DirCols = ["Site", "TC (%)", "Dec.", "Inc.", "N",
"k ", "R", "a95", "VGP Lat", "VGP Long"]
columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',
'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon']
dm3_to_readable = dict(zip(columns, DirCols))
if len(dir_df) > 0:
for col in ['dir_n_samples', 'dir_tilt_correction']:
if col in dir_df.columns:
dir_df[col] = dir_df[col].values.astype('int')
columns = dir_df.columns.intersection(columns)
has_vgps = False
if 'vgp_lat' in dir_df.columns:
test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon'])
if len(test_vgp) > 0:
has_vgps = True
if has_vgps:
dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs()
dir_df.sort_values(by=['site', 'vgp_lat_abs'],
ascending=False, inplace=True)
dir_df = dir_df[columns]
# this will take the first record for each site's directions (including VGP lat if present)
dir_df.drop_duplicates(
subset=['dir_dec', 'dir_inc', 'site'], inplace=True)
else:
dir_df.drop_duplicates(
subset=['dir_dec', 'dir_inc', 'site'], inplace=True)
dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',
'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']]
dir_df.rename(dm3_to_readable, axis='columns', inplace=True)
dir_df.sort_values(by=['Site'], inplace=True, ascending=True)
new_cols = list(dir_df.columns.drop('Site'))
dir_df = dir_df[['Site'] + new_cols]
return dir_df | python | def convert_site_dm3_table_directions(sites_df):
"""
Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Directional table only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
dir_df : pandas DataFrame
directional site data with easily readable headers
"""
# directional
# do directional stuff first
# a few things need cleaning up
dir_df = sites_df.copy().dropna(
subset=['dir_dec', 'dir_inc']) # delete blank directions
# sort by absolute value of vgp_lat in order to eliminate duplicate rows for
# directions put in by accident on intensity rows
DirCols = ["Site", "TC (%)", "Dec.", "Inc.", "N",
"k ", "R", "a95", "VGP Lat", "VGP Long"]
columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',
'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon']
dm3_to_readable = dict(zip(columns, DirCols))
if len(dir_df) > 0:
for col in ['dir_n_samples', 'dir_tilt_correction']:
if col in dir_df.columns:
dir_df[col] = dir_df[col].values.astype('int')
columns = dir_df.columns.intersection(columns)
has_vgps = False
if 'vgp_lat' in dir_df.columns:
test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon'])
if len(test_vgp) > 0:
has_vgps = True
if has_vgps:
dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs()
dir_df.sort_values(by=['site', 'vgp_lat_abs'],
ascending=False, inplace=True)
dir_df = dir_df[columns]
# this will take the first record for each site's directions (including VGP lat if present)
dir_df.drop_duplicates(
subset=['dir_dec', 'dir_inc', 'site'], inplace=True)
else:
dir_df.drop_duplicates(
subset=['dir_dec', 'dir_inc', 'site'], inplace=True)
dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',
'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']]
dir_df.rename(dm3_to_readable, axis='columns', inplace=True)
dir_df.sort_values(by=['Site'], inplace=True, ascending=True)
new_cols = list(dir_df.columns.drop('Site'))
dir_df = dir_df[['Site'] + new_cols]
return dir_df | Convert MagIC site headers to short/readable
headers for a figure (used by ipmag.sites_extract)
Directional table only.
Parameters
----------
sites_df : pandas DataFrame
sites information
Returns
---------
dir_df : pandas DataFrame
directional site data with easily readable headers | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L565-L622 |
PmagPy/PmagPy | pmagpy/mapping/map_magic.py | convert_specimen_dm3_table | def convert_specimen_dm3_table(spec_df):
"""
Convert MagIC specimen headers to short/readable
headers for a figure (used by ipmag.specimens_extract)
"""
from pmagpy import data_model3 as dm3
# get the data model
dm = dm3.DataModel()
# get the specimen absolute intensity column headers
meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group = dm.get_group_headers('specimens', 'Paleointensity')
arai_group = dm.get_group_headers(
'specimens', 'Paleointensity Arai Statistics')
# filter out the relative intensity stuff
dm3_columns = list(meas_group)+list(pint_group)+list(arai_group)
dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns)
# apply to specimen dataframe
meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group_columns = list(spec_df.columns.intersection(pint_group))
arai_group_columns = list(spec_df.columns.intersection(arai_group))
columns = ['specimen', 'sample']+meas_group_columns + \
pint_group_columns+arai_group_columns
spec_df = spec_df.copy()[columns]
muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field']
meas_list = ['meas_step_min', 'meas_step_max']
for el in muT_list:
if el in columns:
spec_df[el] = 1e6*spec_df[el]
if 'meas_step_unit' in columns:
for el in meas_list:
spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el]-273
spec_df.loc[spec_df['meas_step_unit'] == 'T', el] = 1e3*spec_df[el]
spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C'
spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT'
spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int')
spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int')
dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit', 'int_abs', 'int_abs_sigma',
'int_abs_sigma_perc', 'int_n_measurements', 'int_corr', 'int_corr_cooling_rate',
'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm', 'int_viscosity_index', 'int_treat_dc_field',
'int_b', 'int_b_sigma', 'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac',
'int_g', 'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime', 'int_k_prime_sse',
'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z', 'int_z_md']
table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent', 'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field',
'b', 'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q', 'w', 'k', 'k sse', 'k prime', 'k prime sse',
'scat', 'r2 corr', 'r2 det', 'Z', 'Z md']
spec_mapping = dict(list(zip(dm3_columns, table_columns)))
spec_df_out = spec_df.rename(columns=spec_mapping)
if 'N' in spec_df_out.columns:
spec_df_out['N'] = spec_df_out['N'].astype('int')
if 'Lab Field' in spec_df_out.columns:
spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype('int')
return spec_df_out | python | def convert_specimen_dm3_table(spec_df):
"""
Convert MagIC specimen headers to short/readable
headers for a figure (used by ipmag.specimens_extract)
"""
from pmagpy import data_model3 as dm3
# get the data model
dm = dm3.DataModel()
# get the specimen absolute intensity column headers
meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group = dm.get_group_headers('specimens', 'Paleointensity')
arai_group = dm.get_group_headers(
'specimens', 'Paleointensity Arai Statistics')
# filter out the relative intensity stuff
dm3_columns = list(meas_group)+list(pint_group)+list(arai_group)
dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns)
# apply to specimen dataframe
meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group_columns = list(spec_df.columns.intersection(pint_group))
arai_group_columns = list(spec_df.columns.intersection(arai_group))
columns = ['specimen', 'sample']+meas_group_columns + \
pint_group_columns+arai_group_columns
spec_df = spec_df.copy()[columns]
muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field']
meas_list = ['meas_step_min', 'meas_step_max']
for el in muT_list:
if el in columns:
spec_df[el] = 1e6*spec_df[el]
if 'meas_step_unit' in columns:
for el in meas_list:
spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el]-273
spec_df.loc[spec_df['meas_step_unit'] == 'T', el] = 1e3*spec_df[el]
spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C'
spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT'
spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int')
spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int')
dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit', 'int_abs', 'int_abs_sigma',
'int_abs_sigma_perc', 'int_n_measurements', 'int_corr', 'int_corr_cooling_rate',
'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm', 'int_viscosity_index', 'int_treat_dc_field',
'int_b', 'int_b_sigma', 'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac',
'int_g', 'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime', 'int_k_prime_sse',
'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z', 'int_z_md']
table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent', 'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field',
'b', 'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q', 'w', 'k', 'k sse', 'k prime', 'k prime sse',
'scat', 'r2 corr', 'r2 det', 'Z', 'Z md']
spec_mapping = dict(list(zip(dm3_columns, table_columns)))
spec_df_out = spec_df.rename(columns=spec_mapping)
if 'N' in spec_df_out.columns:
spec_df_out['N'] = spec_df_out['N'].astype('int')
if 'Lab Field' in spec_df_out.columns:
spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype('int')
return spec_df_out | Convert MagIC specimen headers to short/readable
headers for a figure (used by ipmag.specimens_extract) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/mapping/map_magic.py#L625-L676 |
PmagPy/PmagPy | programs/conversion_scripts/sufar4_asc_magic.py | main | def main():
"""
NAME
sufar4-asc_magic.py
DESCRIPTION
converts ascii files generated by SUFAR ver.4.0 to MagIC formated
files for use with PmagPy plotting software
SYNTAX
sufar4-asc_magic.py -h [command line options]
OPTIONS
-h: prints the help message and quits
-f FILE: specify .asc input file name
-fsp SINFILE: specify er_specimens input file with location, sample, site, etc. information
-F MFILE: specify measurements output file
-Fa AFILE: specify rmag_anisotropy output file # MagIC 2 only
-Fsi SFILE: specify specimens output file
-usr USER: specify who made the measurements
-loc LOC: specify location name for study
-ins INST: specify instrument used
-spc SPEC: specify number of characters to specify specimen from sample
-ncn NCON: specify naming convention: default is #2 below
-k15 : specify static 15 position mode - default is spinning
-new : replace all existing magic files
DEFAULTS
AFILE: rmag_anisotropy.txt # MagIC 2 only
SFILE: default is to create new specimen file
USER: ""
LOC: "unknown"
INST: ""
SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character)
appends to specimen/sample/site files
Sample naming convention:
[1] XXXXY: where XXXX is an arbitrary length site designation and Y
is the single character sample designation. e.g., TG001a is the
first sample from site TG001. [default]
[2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
[3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
[4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX
[5] site name same as sample
[6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED
[7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY
NB: all others you will have to customize your self
or e-mail [email protected] for help.
[8] This is a synthetic
[9] ODP naming convention
"""
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
dataframe = extractor.command_line_dataframe([ ['WD', False, '.'], ['ID', False, ''],
['usr', False, ''], ['ncn', False, '1'],
['k15', False, False], ['ins', False, ''],
['f', True, ''], ['F', False, 'measurements.txt'],
['Fa', False, 'rmag_anisotropy.txt'],
['Fsi', False, 'specimens.txt'],
['loc', False, 'unknown'], ['spc', False, 0],
['fsi', False, None], ['DM', False, 3] ])
#'WD', 'ID', 'usr', 'ncn', 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc',
checked_args = extractor.extract_and_check_args(args, dataframe)
output_dir_path, input_dir_path, user, sample_naming_con, static_15_position_mode, instrument, ascfile, meas_output, aniso_output, spec_outfile, locname, specnum, spec_infile, data_model_num = extractor.get_vars(['WD', 'ID', 'usr', 'ncn', 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'], checked_args)
convert.sufar4(ascfile, meas_output, aniso_output, spec_infile,
spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con,
user=user, locname=locname, instrument=instrument,
static_15_position_mode=static_15_position_mode, dir_path=output_dir_path,
input_dir_path=input_dir_path, data_model_num=data_model_num) | python | def main():
"""
NAME
sufar4-asc_magic.py
DESCRIPTION
converts ascii files generated by SUFAR ver.4.0 to MagIC formated
files for use with PmagPy plotting software
SYNTAX
sufar4-asc_magic.py -h [command line options]
OPTIONS
-h: prints the help message and quits
-f FILE: specify .asc input file name
-fsp SINFILE: specify er_specimens input file with location, sample, site, etc. information
-F MFILE: specify measurements output file
-Fa AFILE: specify rmag_anisotropy output file # MagIC 2 only
-Fsi SFILE: specify specimens output file
-usr USER: specify who made the measurements
-loc LOC: specify location name for study
-ins INST: specify instrument used
-spc SPEC: specify number of characters to specify specimen from sample
-ncn NCON: specify naming convention: default is #2 below
-k15 : specify static 15 position mode - default is spinning
-new : replace all existing magic files
DEFAULTS
AFILE: rmag_anisotropy.txt # MagIC 2 only
SFILE: default is to create new specimen file
USER: ""
LOC: "unknown"
INST: ""
SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character)
appends to specimen/sample/site files
Sample naming convention:
[1] XXXXY: where XXXX is an arbitrary length site designation and Y
is the single character sample designation. e.g., TG001a is the
first sample from site TG001. [default]
[2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
[3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
[4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX
[5] site name same as sample
[6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED
[7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY
NB: all others you will have to customize your self
or e-mail [email protected] for help.
[8] This is a synthetic
[9] ODP naming convention
"""
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
dataframe = extractor.command_line_dataframe([ ['WD', False, '.'], ['ID', False, ''],
['usr', False, ''], ['ncn', False, '1'],
['k15', False, False], ['ins', False, ''],
['f', True, ''], ['F', False, 'measurements.txt'],
['Fa', False, 'rmag_anisotropy.txt'],
['Fsi', False, 'specimens.txt'],
['loc', False, 'unknown'], ['spc', False, 0],
['fsi', False, None], ['DM', False, 3] ])
#'WD', 'ID', 'usr', 'ncn', 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc',
checked_args = extractor.extract_and_check_args(args, dataframe)
output_dir_path, input_dir_path, user, sample_naming_con, static_15_position_mode, instrument, ascfile, meas_output, aniso_output, spec_outfile, locname, specnum, spec_infile, data_model_num = extractor.get_vars(['WD', 'ID', 'usr', 'ncn', 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'], checked_args)
convert.sufar4(ascfile, meas_output, aniso_output, spec_infile,
spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con,
user=user, locname=locname, instrument=instrument,
static_15_position_mode=static_15_position_mode, dir_path=output_dir_path,
input_dir_path=input_dir_path, data_model_num=data_model_num) | NAME
sufar4-asc_magic.py
DESCRIPTION
converts ascii files generated by SUFAR ver.4.0 to MagIC formated
files for use with PmagPy plotting software
SYNTAX
sufar4-asc_magic.py -h [command line options]
OPTIONS
-h: prints the help message and quits
-f FILE: specify .asc input file name
-fsp SINFILE: specify er_specimens input file with location, sample, site, etc. information
-F MFILE: specify measurements output file
-Fa AFILE: specify rmag_anisotropy output file # MagIC 2 only
-Fsi SFILE: specify specimens output file
-usr USER: specify who made the measurements
-loc LOC: specify location name for study
-ins INST: specify instrument used
-spc SPEC: specify number of characters to specify specimen from sample
-ncn NCON: specify naming convention: default is #2 below
-k15 : specify static 15 position mode - default is spinning
-new : replace all existing magic files
DEFAULTS
AFILE: rmag_anisotropy.txt # MagIC 2 only
SFILE: default is to create new specimen file
USER: ""
LOC: "unknown"
INST: ""
SPEC: 0 sample name is same as site (if SPEC is 1, sample is all but last character)
appends to specimen/sample/site files
Sample naming convention:
[1] XXXXY: where XXXX is an arbitrary length site designation and Y
is the single character sample designation. e.g., TG001a is the
first sample from site TG001. [default]
[2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
[3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
[4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX
[5] site name same as sample
[6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED
[7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY
NB: all others you will have to customize your self
or e-mail [email protected] for help.
[8] This is a synthetic
[9] ODP naming convention | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts/sufar4_asc_magic.py#L6-L79 |
PmagPy/PmagPy | programs/deprecated/make_magic_plots2.py | main | def main():
"""
NAME
make_magic_plots.py
DESCRIPTION
inspects magic directory for available plots.
SYNTAX
make_magic_plots.py [command line options]
INPUT
magic files
OPTIONS
-h prints help message and quits
-f FILE specifies input file name
-fmt [png,eps,svg,jpg,pdf] specify format, default is png
"""
dirlist = ['./']
dir_path = os.getcwd()
names = os.listdir(dir_path)
for n in names:
if 'Location' in n:
dirlist.append(n)
if '-fmt' in sys.argv:
ind = sys.argv.index("-fmt")
fmt = sys.argv[ind+1]
else:
fmt = 'png'
if '-f' in sys.argv:
ind = sys.argv.index("-f")
filelist = [sys.argv[ind+1]]
else:
filelist = os.listdir(dir_path)
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
for loc in dirlist:
print('working on: ', loc)
os.chdir(loc) # change working directories to each location
crd = 's'
if 'er_samples.txt' in filelist: # find coordinate systems
samps, file_type = pmag.magic_read(
'er_samples.txt') # read in data
# get all none blank sample orientations
Srecs = pmag.get_dictitem(samps, 'sample_azimuth', '', 'F')
if len(Srecs) > 0:
crd = 'g'
if 'magic_measurements.txt' in filelist: # start with measurement data
print('working on measurements data')
data, file_type = pmag.magic_read(
'magic_measurements.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
# looking for zeq_magic possibilities
# get all none blank method codes
AFZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-AF-Z', 'has')
# get all none blank method codes
TZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-T-Z', 'has')
# get all none blank method codes
MZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-M-Z', 'has')
# get all dec measurements
Drecs = pmag.get_dictitem(data, 'measurement_dec', '', 'F')
# get all dec measurements
Irecs = pmag.get_dictitem(data, 'measurement_inc', '', 'F')
Mkeys = ['measurement_magnitude', 'measurement_magn_moment',
'measurement_magn_volume', 'measurement_magn_mass']
for key in Mkeys:
Mrecs = pmag.get_dictitem(
data, key, '', 'F') # get intensity data
if len(Mrecs) > 0:
break
# potential for stepwise demag curves
if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
print('zeq_magic.py -fsp pmag_specimens.txt -sav -fmt ' +
fmt+' -crd '+crd)
os.system('zeq_magic.py -sav -fmt '+fmt+' -crd '+crd)
# looking for thellier_magic possibilities
if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-PI-TRM', 'has')) > 0:
print('thellier_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt)
os.system('thellier_magic.py -sav -fmt '+fmt)
# looking for hysteresis possibilities
if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-HYS', 'has')) > 0: # find hyst experiments
print('quick_hyst.py -sav -fmt '+fmt)
os.system('quick_hyst.py -sav -fmt '+fmt)
if 'pmag_results.txt' in filelist: # start with measurement data
data, file_type = pmag.magic_read(
'pmag_results.txt') # read in data
print('number of datapoints: ', len(data))
if loc == './':
# get all the concatenated location names from data file
data = pmag.get_dictitem(data, 'er_location_names', ':', 'has')
print('number of datapoints: ', len(data), loc)
print('working on pmag_results directions')
SiteDIs = pmag.get_dictitem(
data, 'average_dec', "", 'F') # find decs
print('number of directions: ', len(SiteDIs))
SiteDIs = pmag.get_dictitem(
SiteDIs, 'average_inc', "", 'F') # find decs and incs
print('number of directions: ', len(SiteDIs))
# only individual results - not poles
SiteDIs = pmag.get_dictitem(SiteDIs, 'data_type', 'i', 'has')
print('number of directions: ', len(SiteDIs))
# tilt corrected coordinates
SiteDIs_t = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '100', 'T')
print('number of directions: ', len(SiteDIs))
if len(SiteDIs_t) > 0:
print('eqarea_magic.py -sav -crd t -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd t -fmt '+fmt)
elif len(SiteDIs) > 0 and 'tilt_correction' not in SiteDIs[0].keys():
print('eqarea_magic.py -sav -fmt '+fmt)
os.system('eqarea_magic.py -sav -fmt '+fmt)
else:
SiteDIs_g = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '0', 'T') # geographic coordinates
if len(SiteDIs_g) > 0:
print('eqarea_magic.py -sav -crd g -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd g -fmt '+fmt)
else:
SiteDIs_s = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '-1', 'T') # sample coordinates
if len(SiteDIs_s) > 0:
print('eqarea_magic.py -sav -crd s -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd s -fmt '+fmt)
else:
SiteDIs_x = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '', 'T') # no coordinates
if len(SiteDIs_x) > 0:
print('eqarea_magic.py -sav -fmt '+fmt)
os.system('eqarea_magic.py -sav -fmt '+fmt)
print('working on pmag_results VGP map')
VGPs = pmag.get_dictitem(
SiteDIs, 'vgp_lat', "", 'F') # are there any VGPs?
if len(VGPs) > 0: # YES!
os.system(
'vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
print('working on pmag_results intensities')
os.system(
'magic_select.py -f pmag_results.txt -key data_type i T -F tmp.txt')
os.system(
'magic_select.py -f tmp.txt -key average_int 0. has -F tmp1.txt')
os.system(
"grab_magic_key.py -f tmp1.txt -key average_int | awk '{print $1*1e6}' >tmp2.txt")
data, file_type = pmag.magic_read('tmp1.txt') # read in data
locations = pmag.get_dictkey(data, 'er_location_names', "")
histfile = 'LO:_'+locations[0]+'_intensities_histogram:_.'+fmt
os.system(
"histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile)
print(
"histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile)
os.system('rm tmp*.txt')
if 'rmag_hysteresis.txt' in filelist: # start with measurement data
print('working on rmag_hysteresis')
data, file_type = pmag.magic_read(
'rmag_hysteresis.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
hdata = pmag.get_dictitem(data, 'hysteresis_bcr', '', 'F')
hdata = pmag.get_dictitem(hdata, 'hysteresis_mr_moment', '', 'F')
hdata = pmag.get_dictitem(hdata, 'hysteresis_ms_moment', '', 'F')
# there are data for a dayplot
hdata = pmag.get_dictitem(hdata, 'hysteresis_bc', '', 'F')
if len(hdata) > 0:
print('dayplot_magic.py -sav -fmt '+fmt)
os.system('dayplot_magic.py -sav -fmt '+fmt)
# if 'er_sites.txt' in filelist: # start with measurement data
# print 'working on er_sites'
#os.system('basemap_magic.py -sav -fmt '+fmt)
if 'rmag_anisotropy.txt' in filelist: # do anisotropy plots if possible
print('working on rmag_anisotropy')
data, file_type = pmag.magic_read(
'rmag_anisotropy.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
# get specimen coordinates
sdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '-1', 'T')
# get specimen coordinates
gdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '0', 'T')
# get specimen coordinates
tdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '100', 'T')
if len(sdata) > 3:
print('aniso_magic.py -x -B -crd s -sav -fmt '+fmt)
os.system('aniso_magic.py -x -B -crd s -sav -fmt '+fmt)
if len(gdata) > 3:
os.system('aniso_magic.py -x -B -crd g -sav -fmt '+fmt)
if len(tdata) > 3:
os.system('aniso_magic.py -x -B -crd t -sav -fmt '+fmt)
if loc != './':
os.chdir('..') | python | def main():
"""
NAME
make_magic_plots.py
DESCRIPTION
inspects magic directory for available plots.
SYNTAX
make_magic_plots.py [command line options]
INPUT
magic files
OPTIONS
-h prints help message and quits
-f FILE specifies input file name
-fmt [png,eps,svg,jpg,pdf] specify format, default is png
"""
dirlist = ['./']
dir_path = os.getcwd()
names = os.listdir(dir_path)
for n in names:
if 'Location' in n:
dirlist.append(n)
if '-fmt' in sys.argv:
ind = sys.argv.index("-fmt")
fmt = sys.argv[ind+1]
else:
fmt = 'png'
if '-f' in sys.argv:
ind = sys.argv.index("-f")
filelist = [sys.argv[ind+1]]
else:
filelist = os.listdir(dir_path)
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
for loc in dirlist:
print('working on: ', loc)
os.chdir(loc) # change working directories to each location
crd = 's'
if 'er_samples.txt' in filelist: # find coordinate systems
samps, file_type = pmag.magic_read(
'er_samples.txt') # read in data
# get all none blank sample orientations
Srecs = pmag.get_dictitem(samps, 'sample_azimuth', '', 'F')
if len(Srecs) > 0:
crd = 'g'
if 'magic_measurements.txt' in filelist: # start with measurement data
print('working on measurements data')
data, file_type = pmag.magic_read(
'magic_measurements.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
# looking for zeq_magic possibilities
# get all none blank method codes
AFZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-AF-Z', 'has')
# get all none blank method codes
TZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-T-Z', 'has')
# get all none blank method codes
MZrecs = pmag.get_dictitem(
data, 'magic_method_codes', 'LT-M-Z', 'has')
# get all dec measurements
Drecs = pmag.get_dictitem(data, 'measurement_dec', '', 'F')
# get all dec measurements
Irecs = pmag.get_dictitem(data, 'measurement_inc', '', 'F')
Mkeys = ['measurement_magnitude', 'measurement_magn_moment',
'measurement_magn_volume', 'measurement_magn_mass']
for key in Mkeys:
Mrecs = pmag.get_dictitem(
data, key, '', 'F') # get intensity data
if len(Mrecs) > 0:
break
# potential for stepwise demag curves
if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0:
print('zeq_magic.py -fsp pmag_specimens.txt -sav -fmt ' +
fmt+' -crd '+crd)
os.system('zeq_magic.py -sav -fmt '+fmt+' -crd '+crd)
# looking for thellier_magic possibilities
if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-PI-TRM', 'has')) > 0:
print('thellier_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt)
os.system('thellier_magic.py -sav -fmt '+fmt)
# looking for hysteresis possibilities
if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-HYS', 'has')) > 0: # find hyst experiments
print('quick_hyst.py -sav -fmt '+fmt)
os.system('quick_hyst.py -sav -fmt '+fmt)
if 'pmag_results.txt' in filelist: # start with measurement data
data, file_type = pmag.magic_read(
'pmag_results.txt') # read in data
print('number of datapoints: ', len(data))
if loc == './':
# get all the concatenated location names from data file
data = pmag.get_dictitem(data, 'er_location_names', ':', 'has')
print('number of datapoints: ', len(data), loc)
print('working on pmag_results directions')
SiteDIs = pmag.get_dictitem(
data, 'average_dec', "", 'F') # find decs
print('number of directions: ', len(SiteDIs))
SiteDIs = pmag.get_dictitem(
SiteDIs, 'average_inc', "", 'F') # find decs and incs
print('number of directions: ', len(SiteDIs))
# only individual results - not poles
SiteDIs = pmag.get_dictitem(SiteDIs, 'data_type', 'i', 'has')
print('number of directions: ', len(SiteDIs))
# tilt corrected coordinates
SiteDIs_t = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '100', 'T')
print('number of directions: ', len(SiteDIs))
if len(SiteDIs_t) > 0:
print('eqarea_magic.py -sav -crd t -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd t -fmt '+fmt)
elif len(SiteDIs) > 0 and 'tilt_correction' not in SiteDIs[0].keys():
print('eqarea_magic.py -sav -fmt '+fmt)
os.system('eqarea_magic.py -sav -fmt '+fmt)
else:
SiteDIs_g = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '0', 'T') # geographic coordinates
if len(SiteDIs_g) > 0:
print('eqarea_magic.py -sav -crd g -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd g -fmt '+fmt)
else:
SiteDIs_s = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '-1', 'T') # sample coordinates
if len(SiteDIs_s) > 0:
print('eqarea_magic.py -sav -crd s -fmt '+fmt)
os.system('eqarea_magic.py -sav -crd s -fmt '+fmt)
else:
SiteDIs_x = pmag.get_dictitem(
SiteDIs, 'tilt_correction', '', 'T') # no coordinates
if len(SiteDIs_x) > 0:
print('eqarea_magic.py -sav -fmt '+fmt)
os.system('eqarea_magic.py -sav -fmt '+fmt)
print('working on pmag_results VGP map')
VGPs = pmag.get_dictitem(
SiteDIs, 'vgp_lat', "", 'F') # are there any VGPs?
if len(VGPs) > 0: # YES!
os.system(
'vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png')
print('working on pmag_results intensities')
os.system(
'magic_select.py -f pmag_results.txt -key data_type i T -F tmp.txt')
os.system(
'magic_select.py -f tmp.txt -key average_int 0. has -F tmp1.txt')
os.system(
"grab_magic_key.py -f tmp1.txt -key average_int | awk '{print $1*1e6}' >tmp2.txt")
data, file_type = pmag.magic_read('tmp1.txt') # read in data
locations = pmag.get_dictkey(data, 'er_location_names', "")
histfile = 'LO:_'+locations[0]+'_intensities_histogram:_.'+fmt
os.system(
"histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile)
print(
"histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile)
os.system('rm tmp*.txt')
if 'rmag_hysteresis.txt' in filelist: # start with measurement data
print('working on rmag_hysteresis')
data, file_type = pmag.magic_read(
'rmag_hysteresis.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
hdata = pmag.get_dictitem(data, 'hysteresis_bcr', '', 'F')
hdata = pmag.get_dictitem(hdata, 'hysteresis_mr_moment', '', 'F')
hdata = pmag.get_dictitem(hdata, 'hysteresis_ms_moment', '', 'F')
# there are data for a dayplot
hdata = pmag.get_dictitem(hdata, 'hysteresis_bc', '', 'F')
if len(hdata) > 0:
print('dayplot_magic.py -sav -fmt '+fmt)
os.system('dayplot_magic.py -sav -fmt '+fmt)
# if 'er_sites.txt' in filelist: # start with measurement data
# print 'working on er_sites'
#os.system('basemap_magic.py -sav -fmt '+fmt)
if 'rmag_anisotropy.txt' in filelist: # do anisotropy plots if possible
print('working on rmag_anisotropy')
data, file_type = pmag.magic_read(
'rmag_anisotropy.txt') # read in data
if loc == './':
# get all the blank location names from data file
data = pmag.get_dictitem(data, 'er_location_name', '', 'T')
# get specimen coordinates
sdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '-1', 'T')
# get specimen coordinates
gdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '0', 'T')
# get specimen coordinates
tdata = pmag.get_dictitem(
data, 'anisotropy_tilt_correction', '100', 'T')
if len(sdata) > 3:
print('aniso_magic.py -x -B -crd s -sav -fmt '+fmt)
os.system('aniso_magic.py -x -B -crd s -sav -fmt '+fmt)
if len(gdata) > 3:
os.system('aniso_magic.py -x -B -crd g -sav -fmt '+fmt)
if len(tdata) > 3:
os.system('aniso_magic.py -x -B -crd t -sav -fmt '+fmt)
if loc != './':
os.chdir('..') | NAME
make_magic_plots.py
DESCRIPTION
inspects magic directory for available plots.
SYNTAX
make_magic_plots.py [command line options]
INPUT
magic files
OPTIONS
-h prints help message and quits
-f FILE specifies input file name
-fmt [png,eps,svg,jpg,pdf] specify format, default is png | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/deprecated/make_magic_plots2.py#L8-L207 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.init_UI | def init_UI(self):
"""
Set display variables (font, resolution of GUI, sizer proportions)
then builds the Side bar panel, Top bar panel, and Plots scrolleing
panel which are then placed placed together in a sizer and fit to
the GUI wx.Frame
"""
# --------------------------------------------------------------------------
# Setup ScrolledPanel Ctrls---------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# set ctrl size and style variables
# ----------------------------------------------------------------------
dw, dh = wx.DisplaySize()
r1 = dw/1210.
r2 = dw/640.
self.GUI_RESOLUTION = min(r1, r2, 1)
top_bar_2v_space = 5
top_bar_h_space = 10
spec_button_space = 10
side_bar_v_space = 10
# ----------------------------------------------------------------------
# set font size and style
# ----------------------------------------------------------------------
FONT_WEIGHT = 1
if sys.platform.startswith('win'):
FONT_WEIGHT = -1
font1 = wx.Font(9+FONT_WEIGHT, wx.SWISS, wx.NORMAL,
wx.NORMAL, False, self.font_type)
font2 = wx.Font(12+FONT_WEIGHT, wx.SWISS, wx.NORMAL,
wx.NORMAL, False, self.font_type)
font = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT)
font.SetPointSize(10+FONT_WEIGHT)
# --------------------------------------------------------------------------
# Setup ScrolledPanel Ctrls---------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# Create Figures and FigCanvas objects.
# ----------------------------------------------------------------------
self.fig1 = Figure((5.*self.GUI_RESOLUTION, 5. *
self.GUI_RESOLUTION), dpi=self.dpi)
self.canvas1 = FigCanvas(self.scrolled_panel, -1, self.fig1)
self.toolbar1 = NavigationToolbar(self.canvas1)
self.toolbar1.Hide()
self.zijderveld_setting = "Zoom"
self.toolbar1.zoom()
self.canvas1.Bind(wx.EVT_RIGHT_DOWN, self.right_click_zijderveld)
self.canvas1.Bind(wx.EVT_MIDDLE_DOWN, self.home_zijderveld)
self.canvas1.Bind(wx.EVT_LEFT_DCLICK, self.on_zijd_select)
self.canvas1.Bind(wx.EVT_RIGHT_DCLICK, self.on_zijd_mark)
self.canvas1.Bind(wx.EVT_MOTION, self.on_change_zijd_mouse_cursor)
self.canvas1.SetHelpText(dgh.zij_help)
self.fig2 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.specimen_eqarea = self.fig2.add_subplot(111)
draw_net(self.specimen_eqarea)
self.canvas2 = FigCanvas(self.scrolled_panel, -1, self.fig2)
self.toolbar2 = NavigationToolbar(self.canvas2)
self.toolbar2.Hide()
self.toolbar2.zoom()
self.specimen_EA_setting = "Zoom"
self.canvas2.Bind(wx.EVT_LEFT_DCLICK,
self.on_equalarea_specimen_select)
self.canvas2.Bind(wx.EVT_RIGHT_DOWN,
self.right_click_specimen_equalarea)
self.canvas2.Bind(wx.EVT_MOTION, self.on_change_specimen_mouse_cursor)
self.canvas2.Bind(wx.EVT_MIDDLE_DOWN, self.home_specimen_equalarea)
self.canvas2.SetHelpText(dgh.spec_eqarea_help)
self.specimen_EA_xdata = []
self.specimen_EA_ydata = []
self.fig3 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.mplot = self.fig3.add_axes(
[0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None')
self.canvas3 = FigCanvas(self.scrolled_panel, -1, self.fig3)
self.toolbar3 = NavigationToolbar(self.canvas3)
self.toolbar3.Hide()
self.toolbar3.zoom()
self.MM0_setting = "Zoom"
self.canvas3.Bind(wx.EVT_RIGHT_DOWN, self.right_click_MM0)
self.canvas3.Bind(wx.EVT_MIDDLE_DOWN, self.home_MM0)
self.canvas3.SetHelpText(dgh.MM0_help)
self.fig4 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.canvas4 = FigCanvas(self.scrolled_panel, -1, self.fig4)
self.toolbar4 = NavigationToolbar(self.canvas4)
self.toolbar4.Hide()
self.toolbar4.zoom()
self.high_EA_setting = "Zoom"
self.canvas4.Bind(wx.EVT_LEFT_DCLICK, self.on_equalarea_high_select)
self.canvas4.Bind(wx.EVT_RIGHT_DOWN, self.right_click_high_equalarea)
self.canvas4.Bind(wx.EVT_MOTION, self.on_change_high_mouse_cursor)
self.canvas4.Bind(wx.EVT_MIDDLE_DOWN, self.home_high_equalarea)
self.canvas4.SetHelpText(dgh.high_level_eqarea_help)
self.old_pos = None
self.high_EA_xdata = []
self.high_EA_ydata = []
self.high_level_eqarea = self.fig4.add_subplot(111)
draw_net(self.high_level_eqarea)
# ----------------------------------------------------------------------
# High level Stats Sizer and Switch Stats Button
# ----------------------------------------------------------------------
self.stats_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "mean statistics"), wx.VERTICAL)
for parameter in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = "self.%s_window=wx.TextCtrl(self.scrolled_panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(50*self.GUI_RESOLUTION,25))" % parameter
exec(COMMAND)
COMMAND = "self.%s_window.SetBackgroundColour(wx.WHITE)" % parameter
exec(COMMAND)
COMMAND = "self.%s_window.SetFont(font2)" % parameter
exec(COMMAND)
COMMAND = "self.%s_outer_window = wx.GridSizer(1,2,5*self.GUI_RESOLUTION,15*self.GUI_RESOLUTION)" % parameter
exec(COMMAND)
COMMAND = """self.%s_outer_window.AddMany([
(wx.StaticText(self.scrolled_panel,label='%s',style=wx.TE_CENTER),1,wx.EXPAND),
(self.%s_window, 1, wx.EXPAND)])""" % (parameter, parameter, parameter)
exec(COMMAND)
COMMAND = "self.stats_sizer.Add(self.%s_outer_window, 1, wx.ALIGN_LEFT|wx.EXPAND)" % parameter
exec(COMMAND)
self.switch_stats_button = wx.SpinButton(
self.scrolled_panel, id=wx.ID_ANY, style=wx.SP_HORIZONTAL | wx.SP_ARROW_KEYS | wx.SP_WRAP, name="change stats")
self.Bind(wx.EVT_SPIN, self.on_select_stats_button,
self.switch_stats_button)
self.switch_stats_button.SetHelpText(dgh.switch_stats_btn_help)
# --------------------------------------------------------------------------
# Side Bar Options and Logger-----------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# Create text_box for presenting the measurements
# ----------------------------------------------------------------------
self.logger = wx.ListCtrl(self.side_panel, id=wx.ID_ANY, size=(
100*self.GUI_RESOLUTION, 100*self.GUI_RESOLUTION), style=wx.LC_REPORT)
self.logger.SetFont(font1)
self.logger.InsertColumn(0, 'i', width=25*self.GUI_RESOLUTION)
self.logger.InsertColumn(1, 'Step', width=25*self.GUI_RESOLUTION)
self.logger.InsertColumn(2, 'Tr', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(3, 'Dec', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(4, 'Inc', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(5, 'M', width=45*self.GUI_RESOLUTION)
self.logger.InsertColumn(6, 'csd', width=45*self.GUI_RESOLUTION)
self.Bind(wx.EVT_LIST_ITEM_ACTIVATED,
self.on_click_listctrl, self.logger)
self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,
self.on_right_click_listctrl, self.logger)
self.Bind(wx.EVT_LIST_ITEM_SELECTED,
self.on_select_measurement, self.logger)
self.logger.SetHelpText(dgh.logger_help)
# ----------------------------------------------------------------------
# select specimen box
# ----------------------------------------------------------------------
# Combo-box with a list of specimen
self.specimens_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, value=self.s, size=(
200*self.GUI_RESOLUTION, 25), choices=self.specimens, style=wx.CB_DROPDOWN | wx.TE_PROCESS_ENTER, name="specimen")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_specimen, self.specimens_box)
self.Bind(wx.EVT_TEXT_ENTER, self.on_enter_specimen,
self.specimens_box)
self.specimens_box.SetHelpText(dgh.specimens_box_help)
# buttons to move forward and backwards from specimens
self.nextbutton = wx.Button(
self.side_panel, id=wx.ID_ANY, label='next', size=(100*self.GUI_RESOLUTION, 25))
self.Bind(wx.EVT_BUTTON, self.on_next_button, self.nextbutton)
self.nextbutton.SetFont(font2)
self.nextbutton.SetHelpText(dgh.nextbutton_help)
self.prevbutton = wx.Button(
self.side_panel, id=wx.ID_ANY, label='previous', size=(100*self.GUI_RESOLUTION, 25))
self.prevbutton.SetFont(font2)
self.Bind(wx.EVT_BUTTON, self.on_prev_button, self.prevbutton)
self.prevbutton.SetHelpText(dgh.prevbutton_help)
# ----------------------------------------------------------------------
# select coordinate box
# ----------------------------------------------------------------------
self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()
self.coordinates_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, size=(
200*self.GUI_RESOLUTION, 25), choices=self.coordinate_list, value=self.COORDINATE_SYSTEM, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="coordinates")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_coordinates,
self.coordinates_box)
self.coordinates_box.SetHelpText(dgh.coordinates_box_help)
# ----------------------------------------------------------------------
# Orthogonal Zijderveld Options box
# ----------------------------------------------------------------------
self.orthogonal_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, value='X=East', size=(
200*self.GUI_RESOLUTION, 25), choices=['X=NRM dec', 'X=East', 'X=North'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="orthogonal_plot")
# remove 'X=best fit line dec' as option given that is isn't implemented for multiple components
self.Bind(wx.EVT_COMBOBOX, self.onSelect_orthogonal_box,
self.orthogonal_box)
self.orthogonal_box.SetHelpText(dgh.orthogonal_box_help)
# --------------------------------------------------------------------------
# Top Bar Options ----------------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# select bounds box
# ----------------------------------------------------------------------
self.T_list = []
self.tmin_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY)
self.Bind(wx.EVT_COMBOBOX, self.get_new_PCA_parameters, self.tmin_box)
self.tmin_box.SetHelpText(dgh.tmin_box_help)
self.tmax_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY)
self.Bind(wx.EVT_COMBOBOX, self.get_new_PCA_parameters, self.tmax_box)
self.tmax_box.SetHelpText(dgh.tmax_box_help)
# ----------------------------------------------------------------------
# Specimens interpretations Management box
# ----------------------------------------------------------------------
list_fits = []
self.fit_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=list_fits, style=wx.TE_PROCESS_ENTER)
self.Bind(wx.EVT_COMBOBOX, self.on_select_fit, self.fit_box)
self.Bind(wx.EVT_TEXT_ENTER, self.on_enter_fit_name, self.fit_box)
self.fit_box.SetHelpText(dgh.fit_box_help)
self.add_fit_button = wx.Button(
self.panel, id=wx.ID_ANY, label='add fit', size=(50*self.GUI_RESOLUTION, 25))
self.add_fit_button.SetFont(font2)
self.Bind(wx.EVT_BUTTON, self.on_btn_add_fit, self.add_fit_button)
self.add_fit_button.SetHelpText(dgh.add_fit_button_help)
# save/delete interpretation buttons
self.save_fit_button = wx.Button(self.panel, id=wx.ID_ANY, label='save', size=(
50*self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28))
self.save_fit_button.SetFont(font2)
self.save_fit_button.SetHelpText(dgh.save_fit_btn_help)
self.delete_fit_button = wx.Button(self.panel, id=wx.ID_ANY, label='delete fit', size=(
50*self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28))
self.delete_fit_button.SetFont(font2)
self.delete_fit_button.SetHelpText(dgh.delete_fit_btn_help)
self.Bind(wx.EVT_BUTTON, self.on_save_interpretation_button,
self.save_fit_button)
self.Bind(wx.EVT_BUTTON, self.on_btn_delete_fit,
self.delete_fit_button)
# auto-save interpretation buttons
self.auto_save = wx.CheckBox(self.panel, wx.ID_ANY, 'auto-save')
if self.preferences['auto_save']:
self.auto_save.SetValue(True)
self.auto_save_info = wx.Button(self.panel, wx.ID_ANY, "?")
self.Bind(wx.EVT_BUTTON, self.on_btn_info_click, self.auto_save_info)
# ----------------------------------------------------------------------
# Interpretation Type and Display window
# ----------------------------------------------------------------------
self.PCA_type_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='line', choices=[
'line', 'line-anchored', 'line-with-origin', 'plane', 'Fisher'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="coordinates")
self.Bind(wx.EVT_COMBOBOX,
self.on_select_specimen_mean_type_box, self.PCA_type_box)
self.PCA_type_box.SetHelpText(dgh.PCA_type_help)
self.plane_display_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='whole plane', choices=[
'whole plane', 'u. hemisphere', 'l. hemisphere', 'poles', 'bfv', 'wp + bfv'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="PlaneType")
self.Bind(wx.EVT_COMBOBOX, self.on_select_plane_display_box,
self.plane_display_box)
self.plane_display_box.SetHelpText(dgh.plane_display_help)
# ----------------------------------------------------------------------
# Interpretation Statistics StaticSizer
# ----------------------------------------------------------------------
box_sizer_specimen_stat = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Direction and Statistics"), wx.HORIZONTAL)
for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:
COMMAND = "self.s%s_window=wx.TextCtrl(self.panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(25*self.GUI_RESOLUTION,25))" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetBackgroundColour(wx.WHITE)" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetFont(font2)" % parameter
exec(COMMAND)
specimen_stat_window = wx.GridSizer(2, 6, 0, 5)
specimen_stat_window.AddMany([(wx.StaticText(self.panel, label="dec", style=wx.TE_CENTER), 1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="inc", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="n", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="mad", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="dang", style=wx.TE_CENTER),
1, wx.TE_CENTER | wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="a95", style=wx.TE_CENTER),
1, wx.TE_CENTER | wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(self.sdec_window, 1, wx.EXPAND),
(self.sinc_window, 1, wx.EXPAND),
(self.sn_window, 1, wx.EXPAND),
(self.smad_window, 1, wx.EXPAND),
(self.sdang_window, 1, wx.EXPAND),
(self.salpha95_window, 1, wx.EXPAND)])
box_sizer_specimen_stat.Add(
specimen_stat_window, 1, wx.ALIGN_LEFT | wx.EXPAND)
# ----------------------------------------------------------------------
# High level mean window
# ----------------------------------------------------------------------
self.level_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='site', choices=[
'sample', 'site', 'location', 'study'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_level")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_high_level, self.level_box)
self.level_box.SetHelpText(dgh.level_box_help)
self.level_names = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), value=self.site, choices=self.sites, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_level_names")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_level_name, self.level_names)
self.level_names.SetHelpText(dgh.level_names_help)
# ----------------------------------------------------------------------
# mean types box
# ----------------------------------------------------------------------
self.mean_type_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='None', choices=[
'Fisher', 'Fisher by polarity', 'None'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_type")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_mean_type_box,
self.mean_type_box)
self.mean_type_box.SetHelpText(dgh.mean_type_help)
self.mean_fit_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='None', choices=[
'None', 'All'] + list_fits, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_type")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_mean_fit_box,
self.mean_fit_box)
self.mean_fit_box.SetHelpText(dgh.mean_fit_help)
self.mean_fit = 'None'
# ----------------------------------------------------------------------
# Warnings TextCtrl
# ----------------------------------------------------------------------
warning_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Current Data Warnings"), wx.VERTICAL)
self.warning_box = wx.TextCtrl(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 50 + 2*top_bar_2v_space),
value="No Problems", style=wx.TE_MULTILINE | wx.TE_READONLY | wx.HSCROLL, name="warning_box")
self.warning_box.SetHelpText(dgh.warning_help)
warning_sizer.Add(self.warning_box, 1, wx.TOP | wx.EXPAND)
# ----------------------------------------------------------------------
# Design the panel
# ----------------------------------------------------------------------
# Top Bar-----------------------------------------------------------
top_bar_sizer = wx.BoxSizer(wx.HORIZONTAL)
bounds_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Bounds"), wx.VERTICAL)
bounds_sizer.AddMany([(self.tmin_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.tmax_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(bounds_sizer, 1, wx.ALIGN_LEFT)
fit_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Options"), wx.VERTICAL)
fit_grid = wx.GridSizer(2, 3, top_bar_h_space, 2*top_bar_2v_space)
fit_grid.AddMany([(self.add_fit_button, 1, wx.ALIGN_TOP | wx.ALIGN_LEFT | wx.EXPAND),
(self.save_fit_button, 1, wx.ALIGN_TOP |
wx.ALIGN_LEFT | wx.EXPAND),
(self.auto_save, 1, wx.ALIGN_CENTER),
(self.fit_box, 1, wx.ALIGN_BOTTOM |
wx.ALIGN_LEFT | wx.EXPAND),
(self.delete_fit_button, 1, wx.ALIGN_BOTTOM | wx.ALIGN_LEFT | wx.EXPAND),
(self.auto_save_info, 1, wx.ALIGN_CENTER)])
fit_sizer.Add(fit_grid, 1, wx.EXPAND)
top_bar_sizer.Add(fit_sizer, 2, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
fit_type_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Type"), wx.VERTICAL)
fit_type_sizer.AddMany([(self.PCA_type_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.plane_display_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(fit_type_sizer, 1, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
top_bar_sizer.Add(box_sizer_specimen_stat, 3,
wx.ALIGN_LEFT | wx.LEFT, top_bar_h_space)
level_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Display Level"), wx.VERTICAL)
level_sizer.AddMany([(self.level_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.level_names, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(level_sizer, 1, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
mean_options_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Mean Options"), wx.VERTICAL)
mean_options_sizer.AddMany([(self.mean_type_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.mean_fit_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(mean_options_sizer, 1,
wx.ALIGN_LEFT | wx.LEFT, top_bar_h_space)
top_bar_sizer.Add(warning_sizer, 2, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
# Side Bar------------------------------------------------------------
side_bar_sizer = wx.BoxSizer(wx.VERTICAL)
spec_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Specimen"), wx.VERTICAL)
spec_buttons_sizer = wx.GridSizer(1, 2, 0, spec_button_space)
spec_buttons_sizer.AddMany([(self.prevbutton, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.nextbutton, 1, wx.ALIGN_RIGHT | wx.EXPAND)])
spec_sizer.AddMany([(self.specimens_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, side_bar_v_space/2),
(spec_buttons_sizer, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, side_bar_v_space/2)])
side_bar_sizer.Add(spec_sizer, .5, wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(wx.StaticLine(self.side_panel), .5,
wx.ALL | wx.EXPAND, side_bar_v_space)
coordinate_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Coordinate System"), wx.VERTICAL)
coordinate_sizer.Add(self.coordinates_box, .5, wx.EXPAND)
side_bar_sizer.Add(coordinate_sizer, .5, wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(wx.StaticLine(self.side_panel), .5,
wx.ALL | wx.EXPAND, side_bar_v_space)
zijderveld_option_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Zijderveld Plot Options"), wx.VERTICAL)
zijderveld_option_sizer.Add(self.orthogonal_box, 1, wx.EXPAND)
side_bar_sizer.Add(zijderveld_option_sizer, .5,
wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(self.logger, proportion=1,
flag=wx.ALIGN_TOP | wx.TOP | wx.EXPAND, border=8)
# Mean Stats and button Sizer-----------------------------------------
stats_and_button_sizer = wx.BoxSizer(wx.HORIZONTAL)
stats_and_button_sizer.AddMany([(self.stats_sizer, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.switch_stats_button, .3, wx.ALIGN_RIGHT | wx.EXPAND)])
# EQ area MM0 and stats sizer-----------------------------------------
eqarea_MM0_stats_sizer = wx.GridSizer(2, 2, 0, 0)
eqarea_MM0_stats_sizer.AddMany([(self.canvas2, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.canvas4, 1, wx.ALIGN_RIGHT | wx.EXPAND),
(self.canvas3, 1, wx.ALIGN_LEFT | wx.EXPAND),
(stats_and_button_sizer, 1, wx.ALIGN_RIGHT | wx.EXPAND)])
# Plots and Stats Sizer-----------------------------------------------
full_plots_sizer = wx.BoxSizer(wx.HORIZONTAL)
full_plots_sizer.Add(self.canvas1, 1, wx.ALIGN_LEFT | wx.EXPAND)
full_plots_sizer.Add(eqarea_MM0_stats_sizer, 1.5,
wx.ALIGN_RIGHT | wx.EXPAND)
self.panel.SetSizerAndFit(top_bar_sizer)
self.side_panel.SetSizerAndFit(side_bar_sizer)
self.scrolled_panel.SetSizer(full_plots_sizer)
# Outer Sizer---------------------------------------------------------
add_side_bar_sizer = wx.BoxSizer(wx.HORIZONTAL)
add_side_bar_sizer.Add(self.side_panel, 1, wx.ALIGN_LEFT | wx.EXPAND)
add_side_bar_sizer.Add(self.scrolled_panel, 5,
wx.ALIGN_RIGHT | wx.EXPAND)
outersizer = wx.BoxSizer(wx.VERTICAL)
outersizer.Add(self.panel, .2, wx.ALIGN_TOP | wx.EXPAND)
outersizer.Add(add_side_bar_sizer, 1, wx.ALIGN_BOTTOM | wx.EXPAND)
self.SetSizer(outersizer)
outersizer.Fit(self)
self.GUI_SIZE = self.GetSize() | python | def init_UI(self):
"""
Set display variables (font, resolution of GUI, sizer proportions)
then builds the Side bar panel, Top bar panel, and Plots scrolleing
panel which are then placed placed together in a sizer and fit to
the GUI wx.Frame
"""
# --------------------------------------------------------------------------
# Setup ScrolledPanel Ctrls---------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# set ctrl size and style variables
# ----------------------------------------------------------------------
dw, dh = wx.DisplaySize()
r1 = dw/1210.
r2 = dw/640.
self.GUI_RESOLUTION = min(r1, r2, 1)
top_bar_2v_space = 5
top_bar_h_space = 10
spec_button_space = 10
side_bar_v_space = 10
# ----------------------------------------------------------------------
# set font size and style
# ----------------------------------------------------------------------
FONT_WEIGHT = 1
if sys.platform.startswith('win'):
FONT_WEIGHT = -1
font1 = wx.Font(9+FONT_WEIGHT, wx.SWISS, wx.NORMAL,
wx.NORMAL, False, self.font_type)
font2 = wx.Font(12+FONT_WEIGHT, wx.SWISS, wx.NORMAL,
wx.NORMAL, False, self.font_type)
font = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT)
font.SetPointSize(10+FONT_WEIGHT)
# --------------------------------------------------------------------------
# Setup ScrolledPanel Ctrls---------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# Create Figures and FigCanvas objects.
# ----------------------------------------------------------------------
self.fig1 = Figure((5.*self.GUI_RESOLUTION, 5. *
self.GUI_RESOLUTION), dpi=self.dpi)
self.canvas1 = FigCanvas(self.scrolled_panel, -1, self.fig1)
self.toolbar1 = NavigationToolbar(self.canvas1)
self.toolbar1.Hide()
self.zijderveld_setting = "Zoom"
self.toolbar1.zoom()
self.canvas1.Bind(wx.EVT_RIGHT_DOWN, self.right_click_zijderveld)
self.canvas1.Bind(wx.EVT_MIDDLE_DOWN, self.home_zijderveld)
self.canvas1.Bind(wx.EVT_LEFT_DCLICK, self.on_zijd_select)
self.canvas1.Bind(wx.EVT_RIGHT_DCLICK, self.on_zijd_mark)
self.canvas1.Bind(wx.EVT_MOTION, self.on_change_zijd_mouse_cursor)
self.canvas1.SetHelpText(dgh.zij_help)
self.fig2 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.specimen_eqarea = self.fig2.add_subplot(111)
draw_net(self.specimen_eqarea)
self.canvas2 = FigCanvas(self.scrolled_panel, -1, self.fig2)
self.toolbar2 = NavigationToolbar(self.canvas2)
self.toolbar2.Hide()
self.toolbar2.zoom()
self.specimen_EA_setting = "Zoom"
self.canvas2.Bind(wx.EVT_LEFT_DCLICK,
self.on_equalarea_specimen_select)
self.canvas2.Bind(wx.EVT_RIGHT_DOWN,
self.right_click_specimen_equalarea)
self.canvas2.Bind(wx.EVT_MOTION, self.on_change_specimen_mouse_cursor)
self.canvas2.Bind(wx.EVT_MIDDLE_DOWN, self.home_specimen_equalarea)
self.canvas2.SetHelpText(dgh.spec_eqarea_help)
self.specimen_EA_xdata = []
self.specimen_EA_ydata = []
self.fig3 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.mplot = self.fig3.add_axes(
[0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None')
self.canvas3 = FigCanvas(self.scrolled_panel, -1, self.fig3)
self.toolbar3 = NavigationToolbar(self.canvas3)
self.toolbar3.Hide()
self.toolbar3.zoom()
self.MM0_setting = "Zoom"
self.canvas3.Bind(wx.EVT_RIGHT_DOWN, self.right_click_MM0)
self.canvas3.Bind(wx.EVT_MIDDLE_DOWN, self.home_MM0)
self.canvas3.SetHelpText(dgh.MM0_help)
self.fig4 = Figure((2.5*self.GUI_RESOLUTION, 2.5 *
self.GUI_RESOLUTION), dpi=self.dpi)
self.canvas4 = FigCanvas(self.scrolled_panel, -1, self.fig4)
self.toolbar4 = NavigationToolbar(self.canvas4)
self.toolbar4.Hide()
self.toolbar4.zoom()
self.high_EA_setting = "Zoom"
self.canvas4.Bind(wx.EVT_LEFT_DCLICK, self.on_equalarea_high_select)
self.canvas4.Bind(wx.EVT_RIGHT_DOWN, self.right_click_high_equalarea)
self.canvas4.Bind(wx.EVT_MOTION, self.on_change_high_mouse_cursor)
self.canvas4.Bind(wx.EVT_MIDDLE_DOWN, self.home_high_equalarea)
self.canvas4.SetHelpText(dgh.high_level_eqarea_help)
self.old_pos = None
self.high_EA_xdata = []
self.high_EA_ydata = []
self.high_level_eqarea = self.fig4.add_subplot(111)
draw_net(self.high_level_eqarea)
# ----------------------------------------------------------------------
# High level Stats Sizer and Switch Stats Button
# ----------------------------------------------------------------------
self.stats_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "mean statistics"), wx.VERTICAL)
for parameter in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = "self.%s_window=wx.TextCtrl(self.scrolled_panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(50*self.GUI_RESOLUTION,25))" % parameter
exec(COMMAND)
COMMAND = "self.%s_window.SetBackgroundColour(wx.WHITE)" % parameter
exec(COMMAND)
COMMAND = "self.%s_window.SetFont(font2)" % parameter
exec(COMMAND)
COMMAND = "self.%s_outer_window = wx.GridSizer(1,2,5*self.GUI_RESOLUTION,15*self.GUI_RESOLUTION)" % parameter
exec(COMMAND)
COMMAND = """self.%s_outer_window.AddMany([
(wx.StaticText(self.scrolled_panel,label='%s',style=wx.TE_CENTER),1,wx.EXPAND),
(self.%s_window, 1, wx.EXPAND)])""" % (parameter, parameter, parameter)
exec(COMMAND)
COMMAND = "self.stats_sizer.Add(self.%s_outer_window, 1, wx.ALIGN_LEFT|wx.EXPAND)" % parameter
exec(COMMAND)
self.switch_stats_button = wx.SpinButton(
self.scrolled_panel, id=wx.ID_ANY, style=wx.SP_HORIZONTAL | wx.SP_ARROW_KEYS | wx.SP_WRAP, name="change stats")
self.Bind(wx.EVT_SPIN, self.on_select_stats_button,
self.switch_stats_button)
self.switch_stats_button.SetHelpText(dgh.switch_stats_btn_help)
# --------------------------------------------------------------------------
# Side Bar Options and Logger-----------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# Create text_box for presenting the measurements
# ----------------------------------------------------------------------
self.logger = wx.ListCtrl(self.side_panel, id=wx.ID_ANY, size=(
100*self.GUI_RESOLUTION, 100*self.GUI_RESOLUTION), style=wx.LC_REPORT)
self.logger.SetFont(font1)
self.logger.InsertColumn(0, 'i', width=25*self.GUI_RESOLUTION)
self.logger.InsertColumn(1, 'Step', width=25*self.GUI_RESOLUTION)
self.logger.InsertColumn(2, 'Tr', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(3, 'Dec', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(4, 'Inc', width=35*self.GUI_RESOLUTION)
self.logger.InsertColumn(5, 'M', width=45*self.GUI_RESOLUTION)
self.logger.InsertColumn(6, 'csd', width=45*self.GUI_RESOLUTION)
self.Bind(wx.EVT_LIST_ITEM_ACTIVATED,
self.on_click_listctrl, self.logger)
self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,
self.on_right_click_listctrl, self.logger)
self.Bind(wx.EVT_LIST_ITEM_SELECTED,
self.on_select_measurement, self.logger)
self.logger.SetHelpText(dgh.logger_help)
# ----------------------------------------------------------------------
# select specimen box
# ----------------------------------------------------------------------
# Combo-box with a list of specimen
self.specimens_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, value=self.s, size=(
200*self.GUI_RESOLUTION, 25), choices=self.specimens, style=wx.CB_DROPDOWN | wx.TE_PROCESS_ENTER, name="specimen")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_specimen, self.specimens_box)
self.Bind(wx.EVT_TEXT_ENTER, self.on_enter_specimen,
self.specimens_box)
self.specimens_box.SetHelpText(dgh.specimens_box_help)
# buttons to move forward and backwards from specimens
self.nextbutton = wx.Button(
self.side_panel, id=wx.ID_ANY, label='next', size=(100*self.GUI_RESOLUTION, 25))
self.Bind(wx.EVT_BUTTON, self.on_next_button, self.nextbutton)
self.nextbutton.SetFont(font2)
self.nextbutton.SetHelpText(dgh.nextbutton_help)
self.prevbutton = wx.Button(
self.side_panel, id=wx.ID_ANY, label='previous', size=(100*self.GUI_RESOLUTION, 25))
self.prevbutton.SetFont(font2)
self.Bind(wx.EVT_BUTTON, self.on_prev_button, self.prevbutton)
self.prevbutton.SetHelpText(dgh.prevbutton_help)
# ----------------------------------------------------------------------
# select coordinate box
# ----------------------------------------------------------------------
self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()
self.coordinates_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, size=(
200*self.GUI_RESOLUTION, 25), choices=self.coordinate_list, value=self.COORDINATE_SYSTEM, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="coordinates")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_coordinates,
self.coordinates_box)
self.coordinates_box.SetHelpText(dgh.coordinates_box_help)
# ----------------------------------------------------------------------
# Orthogonal Zijderveld Options box
# ----------------------------------------------------------------------
self.orthogonal_box = wx.ComboBox(self.side_panel, id=wx.ID_ANY, value='X=East', size=(
200*self.GUI_RESOLUTION, 25), choices=['X=NRM dec', 'X=East', 'X=North'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="orthogonal_plot")
# remove 'X=best fit line dec' as option given that is isn't implemented for multiple components
self.Bind(wx.EVT_COMBOBOX, self.onSelect_orthogonal_box,
self.orthogonal_box)
self.orthogonal_box.SetHelpText(dgh.orthogonal_box_help)
# --------------------------------------------------------------------------
# Top Bar Options ----------------------------------------------------
# --------------------------------------------------------------------------
# ----------------------------------------------------------------------
# select bounds box
# ----------------------------------------------------------------------
self.T_list = []
self.tmin_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY)
self.Bind(wx.EVT_COMBOBOX, self.get_new_PCA_parameters, self.tmin_box)
self.tmin_box.SetHelpText(dgh.tmin_box_help)
self.tmax_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=self.T_list, style=wx.CB_DROPDOWN | wx.TE_READONLY)
self.Bind(wx.EVT_COMBOBOX, self.get_new_PCA_parameters, self.tmax_box)
self.tmax_box.SetHelpText(dgh.tmax_box_help)
# ----------------------------------------------------------------------
# Specimens interpretations Management box
# ----------------------------------------------------------------------
list_fits = []
self.fit_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), choices=list_fits, style=wx.TE_PROCESS_ENTER)
self.Bind(wx.EVT_COMBOBOX, self.on_select_fit, self.fit_box)
self.Bind(wx.EVT_TEXT_ENTER, self.on_enter_fit_name, self.fit_box)
self.fit_box.SetHelpText(dgh.fit_box_help)
self.add_fit_button = wx.Button(
self.panel, id=wx.ID_ANY, label='add fit', size=(50*self.GUI_RESOLUTION, 25))
self.add_fit_button.SetFont(font2)
self.Bind(wx.EVT_BUTTON, self.on_btn_add_fit, self.add_fit_button)
self.add_fit_button.SetHelpText(dgh.add_fit_button_help)
# save/delete interpretation buttons
self.save_fit_button = wx.Button(self.panel, id=wx.ID_ANY, label='save', size=(
50*self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28))
self.save_fit_button.SetFont(font2)
self.save_fit_button.SetHelpText(dgh.save_fit_btn_help)
self.delete_fit_button = wx.Button(self.panel, id=wx.ID_ANY, label='delete fit', size=(
50*self.GUI_RESOLUTION, 25)) # ,style=wx.BU_EXACTFIT)#, size=(175, 28))
self.delete_fit_button.SetFont(font2)
self.delete_fit_button.SetHelpText(dgh.delete_fit_btn_help)
self.Bind(wx.EVT_BUTTON, self.on_save_interpretation_button,
self.save_fit_button)
self.Bind(wx.EVT_BUTTON, self.on_btn_delete_fit,
self.delete_fit_button)
# auto-save interpretation buttons
self.auto_save = wx.CheckBox(self.panel, wx.ID_ANY, 'auto-save')
if self.preferences['auto_save']:
self.auto_save.SetValue(True)
self.auto_save_info = wx.Button(self.panel, wx.ID_ANY, "?")
self.Bind(wx.EVT_BUTTON, self.on_btn_info_click, self.auto_save_info)
# ----------------------------------------------------------------------
# Interpretation Type and Display window
# ----------------------------------------------------------------------
self.PCA_type_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='line', choices=[
'line', 'line-anchored', 'line-with-origin', 'plane', 'Fisher'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="coordinates")
self.Bind(wx.EVT_COMBOBOX,
self.on_select_specimen_mean_type_box, self.PCA_type_box)
self.PCA_type_box.SetHelpText(dgh.PCA_type_help)
self.plane_display_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='whole plane', choices=[
'whole plane', 'u. hemisphere', 'l. hemisphere', 'poles', 'bfv', 'wp + bfv'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="PlaneType")
self.Bind(wx.EVT_COMBOBOX, self.on_select_plane_display_box,
self.plane_display_box)
self.plane_display_box.SetHelpText(dgh.plane_display_help)
# ----------------------------------------------------------------------
# Interpretation Statistics StaticSizer
# ----------------------------------------------------------------------
box_sizer_specimen_stat = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Direction and Statistics"), wx.HORIZONTAL)
for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:
COMMAND = "self.s%s_window=wx.TextCtrl(self.panel,style=wx.TE_CENTER|wx.TE_READONLY,size=(25*self.GUI_RESOLUTION,25))" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetBackgroundColour(wx.WHITE)" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetFont(font2)" % parameter
exec(COMMAND)
specimen_stat_window = wx.GridSizer(2, 6, 0, 5)
specimen_stat_window.AddMany([(wx.StaticText(self.panel, label="dec", style=wx.TE_CENTER), 1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="inc", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="n", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="mad", style=wx.TE_CENTER),
1, wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="dang", style=wx.TE_CENTER),
1, wx.TE_CENTER | wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(wx.StaticText(self.panel, label="a95", style=wx.TE_CENTER),
1, wx.TE_CENTER | wx.EXPAND | wx.TOP, 2*top_bar_2v_space),
(self.sdec_window, 1, wx.EXPAND),
(self.sinc_window, 1, wx.EXPAND),
(self.sn_window, 1, wx.EXPAND),
(self.smad_window, 1, wx.EXPAND),
(self.sdang_window, 1, wx.EXPAND),
(self.salpha95_window, 1, wx.EXPAND)])
box_sizer_specimen_stat.Add(
specimen_stat_window, 1, wx.ALIGN_LEFT | wx.EXPAND)
# ----------------------------------------------------------------------
# High level mean window
# ----------------------------------------------------------------------
self.level_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='site', choices=[
'sample', 'site', 'location', 'study'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_level")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_high_level, self.level_box)
self.level_box.SetHelpText(dgh.level_box_help)
self.level_names = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(
50*self.GUI_RESOLUTION, 25), value=self.site, choices=self.sites, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_level_names")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_level_name, self.level_names)
self.level_names.SetHelpText(dgh.level_names_help)
# ----------------------------------------------------------------------
# mean types box
# ----------------------------------------------------------------------
self.mean_type_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='None', choices=[
'Fisher', 'Fisher by polarity', 'None'], style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_type")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_mean_type_box,
self.mean_type_box)
self.mean_type_box.SetHelpText(dgh.mean_type_help)
self.mean_fit_box = wx.ComboBox(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 25), value='None', choices=[
'None', 'All'] + list_fits, style=wx.CB_DROPDOWN | wx.TE_READONLY, name="high_type")
self.Bind(wx.EVT_COMBOBOX, self.onSelect_mean_fit_box,
self.mean_fit_box)
self.mean_fit_box.SetHelpText(dgh.mean_fit_help)
self.mean_fit = 'None'
# ----------------------------------------------------------------------
# Warnings TextCtrl
# ----------------------------------------------------------------------
warning_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Current Data Warnings"), wx.VERTICAL)
self.warning_box = wx.TextCtrl(self.panel, id=wx.ID_ANY, size=(50*self.GUI_RESOLUTION, 50 + 2*top_bar_2v_space),
value="No Problems", style=wx.TE_MULTILINE | wx.TE_READONLY | wx.HSCROLL, name="warning_box")
self.warning_box.SetHelpText(dgh.warning_help)
warning_sizer.Add(self.warning_box, 1, wx.TOP | wx.EXPAND)
# ----------------------------------------------------------------------
# Design the panel
# ----------------------------------------------------------------------
# Top Bar-----------------------------------------------------------
top_bar_sizer = wx.BoxSizer(wx.HORIZONTAL)
bounds_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Bounds"), wx.VERTICAL)
bounds_sizer.AddMany([(self.tmin_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.tmax_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(bounds_sizer, 1, wx.ALIGN_LEFT)
fit_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Options"), wx.VERTICAL)
fit_grid = wx.GridSizer(2, 3, top_bar_h_space, 2*top_bar_2v_space)
fit_grid.AddMany([(self.add_fit_button, 1, wx.ALIGN_TOP | wx.ALIGN_LEFT | wx.EXPAND),
(self.save_fit_button, 1, wx.ALIGN_TOP |
wx.ALIGN_LEFT | wx.EXPAND),
(self.auto_save, 1, wx.ALIGN_CENTER),
(self.fit_box, 1, wx.ALIGN_BOTTOM |
wx.ALIGN_LEFT | wx.EXPAND),
(self.delete_fit_button, 1, wx.ALIGN_BOTTOM | wx.ALIGN_LEFT | wx.EXPAND),
(self.auto_save_info, 1, wx.ALIGN_CENTER)])
fit_sizer.Add(fit_grid, 1, wx.EXPAND)
top_bar_sizer.Add(fit_sizer, 2, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
fit_type_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Interpretation Type"), wx.VERTICAL)
fit_type_sizer.AddMany([(self.PCA_type_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.plane_display_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(fit_type_sizer, 1, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
top_bar_sizer.Add(box_sizer_specimen_stat, 3,
wx.ALIGN_LEFT | wx.LEFT, top_bar_h_space)
level_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Display Level"), wx.VERTICAL)
level_sizer.AddMany([(self.level_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.level_names, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(level_sizer, 1, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
mean_options_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.panel, wx.ID_ANY, "Mean Options"), wx.VERTICAL)
mean_options_sizer.AddMany([(self.mean_type_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, top_bar_2v_space),
(self.mean_fit_box, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, top_bar_2v_space)])
top_bar_sizer.Add(mean_options_sizer, 1,
wx.ALIGN_LEFT | wx.LEFT, top_bar_h_space)
top_bar_sizer.Add(warning_sizer, 2, wx.ALIGN_LEFT |
wx.LEFT, top_bar_h_space)
# Side Bar------------------------------------------------------------
side_bar_sizer = wx.BoxSizer(wx.VERTICAL)
spec_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Specimen"), wx.VERTICAL)
spec_buttons_sizer = wx.GridSizer(1, 2, 0, spec_button_space)
spec_buttons_sizer.AddMany([(self.prevbutton, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.nextbutton, 1, wx.ALIGN_RIGHT | wx.EXPAND)])
spec_sizer.AddMany([(self.specimens_box, 1, wx.ALIGN_TOP | wx.EXPAND | wx.BOTTOM, side_bar_v_space/2),
(spec_buttons_sizer, 1, wx.ALIGN_BOTTOM | wx.EXPAND | wx.TOP, side_bar_v_space/2)])
side_bar_sizer.Add(spec_sizer, .5, wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(wx.StaticLine(self.side_panel), .5,
wx.ALL | wx.EXPAND, side_bar_v_space)
coordinate_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Coordinate System"), wx.VERTICAL)
coordinate_sizer.Add(self.coordinates_box, .5, wx.EXPAND)
side_bar_sizer.Add(coordinate_sizer, .5, wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(wx.StaticLine(self.side_panel), .5,
wx.ALL | wx.EXPAND, side_bar_v_space)
zijderveld_option_sizer = wx.StaticBoxSizer(wx.StaticBox(
self.side_panel, wx.ID_ANY, "Zijderveld Plot Options"), wx.VERTICAL)
zijderveld_option_sizer.Add(self.orthogonal_box, 1, wx.EXPAND)
side_bar_sizer.Add(zijderveld_option_sizer, .5,
wx.ALIGN_TOP | wx.EXPAND)
side_bar_sizer.Add(self.logger, proportion=1,
flag=wx.ALIGN_TOP | wx.TOP | wx.EXPAND, border=8)
# Mean Stats and button Sizer-----------------------------------------
stats_and_button_sizer = wx.BoxSizer(wx.HORIZONTAL)
stats_and_button_sizer.AddMany([(self.stats_sizer, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.switch_stats_button, .3, wx.ALIGN_RIGHT | wx.EXPAND)])
# EQ area MM0 and stats sizer-----------------------------------------
eqarea_MM0_stats_sizer = wx.GridSizer(2, 2, 0, 0)
eqarea_MM0_stats_sizer.AddMany([(self.canvas2, 1, wx.ALIGN_LEFT | wx.EXPAND),
(self.canvas4, 1, wx.ALIGN_RIGHT | wx.EXPAND),
(self.canvas3, 1, wx.ALIGN_LEFT | wx.EXPAND),
(stats_and_button_sizer, 1, wx.ALIGN_RIGHT | wx.EXPAND)])
# Plots and Stats Sizer-----------------------------------------------
full_plots_sizer = wx.BoxSizer(wx.HORIZONTAL)
full_plots_sizer.Add(self.canvas1, 1, wx.ALIGN_LEFT | wx.EXPAND)
full_plots_sizer.Add(eqarea_MM0_stats_sizer, 1.5,
wx.ALIGN_RIGHT | wx.EXPAND)
self.panel.SetSizerAndFit(top_bar_sizer)
self.side_panel.SetSizerAndFit(side_bar_sizer)
self.scrolled_panel.SetSizer(full_plots_sizer)
# Outer Sizer---------------------------------------------------------
add_side_bar_sizer = wx.BoxSizer(wx.HORIZONTAL)
add_side_bar_sizer.Add(self.side_panel, 1, wx.ALIGN_LEFT | wx.EXPAND)
add_side_bar_sizer.Add(self.scrolled_panel, 5,
wx.ALIGN_RIGHT | wx.EXPAND)
outersizer = wx.BoxSizer(wx.VERTICAL)
outersizer.Add(self.panel, .2, wx.ALIGN_TOP | wx.EXPAND)
outersizer.Add(add_side_bar_sizer, 1, wx.ALIGN_BOTTOM | wx.EXPAND)
self.SetSizer(outersizer)
outersizer.Fit(self)
self.GUI_SIZE = self.GetSize() | Set display variables (font, resolution of GUI, sizer proportions)
then builds the Side bar panel, Top bar panel, and Plots scrolleing
panel which are then placed placed together in a sizer and fit to
the GUI wx.Frame | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L332-L821 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_coordinate_system | def get_coordinate_system(self):
"""
Check self.Data for available coordinate systems.
Returns
---------
initial_coordinate, coordinate_list : str, list
i.e., 'geographic', ['specimen', 'geographic']
"""
coordinate_list = ['specimen']
initial_coordinate = 'specimen'
for specimen in self.specimens:
if 'geographic' not in coordinate_list and self.Data[specimen]['zijdblock_geo']:
coordinate_list.append('geographic')
initial_coordinate = 'geographic'
if 'tilt-corrected' not in coordinate_list and self.Data[specimen]['zijdblock_tilt']:
coordinate_list.append('tilt-corrected')
return initial_coordinate, coordinate_list | python | def get_coordinate_system(self):
"""
Check self.Data for available coordinate systems.
Returns
---------
initial_coordinate, coordinate_list : str, list
i.e., 'geographic', ['specimen', 'geographic']
"""
coordinate_list = ['specimen']
initial_coordinate = 'specimen'
for specimen in self.specimens:
if 'geographic' not in coordinate_list and self.Data[specimen]['zijdblock_geo']:
coordinate_list.append('geographic')
initial_coordinate = 'geographic'
if 'tilt-corrected' not in coordinate_list and self.Data[specimen]['zijdblock_tilt']:
coordinate_list.append('tilt-corrected')
return initial_coordinate, coordinate_list | Check self.Data for available coordinate systems.
Returns
---------
initial_coordinate, coordinate_list : str, list
i.e., 'geographic', ['specimen', 'geographic'] | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L824-L841 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.create_menu | def create_menu(self):
"""
Create the MenuBar for the GUI current structure is:
File : Change Working Directory, Import Interpretations from LSQ
file, Import interpretations from a redo file, Save interpretations
to a redo file, Save MagIC tables, Save Plots
Edit : New Interpretation, Delete Interpretation, Next
Interpretation, Previous Interpretation, Next Specimen, Previous
Speciemen, Flag Measurement Data, Coordinate Systems
Analysis : Acceptance Criteria, Sample Orientation, Flag
Interpretaions
Tools : Interpretation Editor, VGP Viewer
Help : Usage and Tips, PmagPy Cookbook, Open Docs, Github Page, Open
Debugger
"""
self.menubar = wx.MenuBar()
# -----------------
# File Menu
# -----------------
menu_file = wx.Menu()
m_change_WD = menu_file.Append(-1,
"Change Working Directory\tCtrl-W", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_working_directory, m_change_WD)
m_import_meas_file = menu_file.Append(-1,
"Change measurements file", "")
self.Bind(wx.EVT_MENU, self.on_menu_import_meas_file, m_import_meas_file)
m_import_LSQ = menu_file.Append(-1,
"&Import Interpretations from LSQ file\tCtrl-L", "")
self.Bind(wx.EVT_MENU, self.on_menu_read_from_LSQ, m_import_LSQ)
m_previous_interpretation = menu_file.Append(
-1, "&Import interpretations from a redo file\tCtrl-R", "")
self.Bind(wx.EVT_MENU, self.on_menu_previous_interpretation,
m_previous_interpretation)
m_save_interpretation = menu_file.Append(
-1, "&Save interpretations to a redo file\tCtrl-S", "")
self.Bind(wx.EVT_MENU, self.on_menu_save_interpretation,
m_save_interpretation)
m_make_MagIC_results_tables = menu_file.Append(
-1, "&Save MagIC tables\tCtrl-Shift-S", "")
self.Bind(wx.EVT_MENU, self.on_menu_make_MagIC_results_tables,
m_make_MagIC_results_tables)
submenu_save_plots = wx.Menu()
m_save_zij_plot = submenu_save_plots.Append(
-1, "&Save Zijderveld plot", "")
self.Bind(wx.EVT_MENU, self.on_save_Zij_plot, m_save_zij_plot, "Zij")
m_save_eq_plot = submenu_save_plots.Append(
-1, "&Save specimen equal area plot", "")
self.Bind(wx.EVT_MENU, self.on_save_Eq_plot,
m_save_eq_plot, "specimen-Eq")
m_save_M_t_plot = submenu_save_plots.Append(-1, "&Save M-t plot", "")
self.Bind(wx.EVT_MENU, self.on_save_M_t_plot, m_save_M_t_plot, "M_t")
m_save_high_level = submenu_save_plots.Append(
-1, "&Save high level plot", "")
self.Bind(wx.EVT_MENU, self.on_save_high_level,
m_save_high_level, "Eq")
m_save_all_plots = submenu_save_plots.Append(-1, "&Save all plots", "")
self.Bind(wx.EVT_MENU, self.on_save_all_figures, m_save_all_plots)
m_new_sub_plots = menu_file.AppendSubMenu(submenu_save_plots, "&Save plot")
menu_file.AppendSeparator()
m_exit = menu_file.Append(-1, "E&xit\tCtrl-Q", "Exit")
self.Bind(wx.EVT_MENU, self.on_menu_exit, m_exit)
# -----------------
# Edit Menu
# -----------------
menu_edit = wx.Menu()
m_new = menu_edit.Append(-1, "&New interpretation\tCtrl-N", "")
self.Bind(wx.EVT_MENU, self.on_btn_add_fit, m_new)
m_delete = menu_edit.Append(-1, "&Delete interpretation\tCtrl-D", "")
self.Bind(wx.EVT_MENU, self.on_btn_delete_fit, m_delete)
m_next_interp = menu_edit.Append(-1,
"&Next interpretation\tCtrl-Up", "")
self.Bind(wx.EVT_MENU, self.on_menu_next_interp, m_next_interp)
m_previous_interp = menu_edit.Append(-1,
"&Previous interpretation\tCtrl-Down", "")
self.Bind(wx.EVT_MENU, self.on_menu_prev_interp, m_previous_interp)
m_next_specimen = menu_edit.Append(-1,
"&Next Specimen\tCtrl-Right", "")
self.Bind(wx.EVT_MENU, self.on_next_button, m_next_specimen)
m_previous_specimen = menu_edit.Append(-1,
"&Previous Specimen\tCtrl-Left", "")
self.Bind(wx.EVT_MENU, self.on_prev_button, m_previous_specimen)
menu_flag_meas = wx.Menu()
m_good = menu_flag_meas.Append(-1, "&Good Measurement\tCtrl-Alt-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_meas_good, m_good)
m_bad = menu_flag_meas.Append(-1, "&Bad Measurement\tCtrl-Alt-B", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_meas_bad, m_bad)
m_flag_meas = menu_edit.AppendSubMenu(menu_flag_meas, "&Flag Measurement Data")
menu_coordinates = wx.Menu()
m_speci = menu_coordinates.Append(-1,
"&Specimen Coordinates\tCtrl-P", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_speci_coord, m_speci)
if "geographic" in self.coordinate_list:
m_geo = menu_coordinates.Append(-1,
"&Geographic Coordinates\tCtrl-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_geo_coord, m_geo)
if "tilt-corrected" in self.coordinate_list:
m_tilt = menu_coordinates.Append(-1,
"&Tilt-Corrected Coordinates\tCtrl-T", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_tilt_coord, m_tilt)
m_coords = menu_edit.AppendSubMenu(menu_coordinates, "&Coordinate Systems")
# -----------------
# Analysis Menu
# -----------------
menu_Analysis = wx.Menu()
submenu_criteria = wx.Menu()
m_change_criteria_file = submenu_criteria.Append(
-1, "&Change acceptance criteria", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_criteria,
m_change_criteria_file)
m_import_criteria_file = submenu_criteria.Append(
-1, "&Import criteria file", "")
self.Bind(wx.EVT_MENU, self.on_menu_criteria_file,
m_import_criteria_file)
m_new_sub = menu_Analysis.AppendSubMenu(submenu_criteria, "Acceptance criteria")
menu_flag_fit = wx.Menu()
m_good_fit = menu_flag_fit.Append(-1,
"&Good Interpretation\tCtrl-Shift-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_fit_good, m_good_fit)
m_bad_fit = menu_flag_fit.Append(-1,
"&Bad Interpretation\tCtrl-Shift-B", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_fit_bad, m_bad_fit)
m_flag_fit = menu_Analysis.AppendSubMenu(menu_flag_fit, "&Flag Interpretations")
submenu_sample_check = wx.Menu()
m_check_orient = submenu_sample_check.Append(
-1, "&Check Sample Orientations\tCtrl-O", "")
self.Bind(wx.EVT_MENU, self.on_menu_check_orient, m_check_orient)
m_mark_samp_bad = submenu_sample_check.Append(
-1, "&Mark Sample Bad\tCtrl-.", "")
self.Bind(wx.EVT_MENU, self.on_menu_mark_samp_bad, m_mark_samp_bad)
m_mark_samp_good = submenu_sample_check.Append(
-1, "&Mark Sample Good\tCtrl-,", "")
self.Bind(wx.EVT_MENU, self.on_menu_mark_samp_good, m_mark_samp_good)
m_submenu = menu_Analysis.AppendSubMenu(submenu_sample_check, "Sample Orientation")
submenu_toggle_mean_display = wx.Menu()
lines = ["m_%s_toggle_mean = submenu_toggle_mean_display.AppendCheckItem(-1, '&%s', ''); self.Bind(wx.EVT_MENU, self.on_menu_toggle_mean, m_%s_toggle_mean)" % (
f, f) for f in self.all_fits_list]
for line in lines:
exec(line)
menu_Analysis.AppendSubMenu(submenu_toggle_mean_display, "Toggle Mean Display")
# -----------------
# Tools Menu
# -----------------
menu_Tools = wx.Menu()
# m_auto_interpret = menu_Tools.Append(-1, "&Auto interpret (alpha version)\tCtrl-A", "")
# self.Bind(wx.EVT_MENU, self.autointerpret, m_auto_interpret)
m_edit_interpretations = menu_Tools.Append(
-1, "&Interpretation editor\tCtrl-E", "")
self.Bind(wx.EVT_MENU, self.on_menu_edit_interpretations,
m_edit_interpretations)
m_view_VGP = menu_Tools.Append(-1, "&View VGPs\tCtrl-Shift-V", "")
self.Bind(wx.EVT_MENU, self.on_menu_view_vgps, m_view_VGP)
# -----------------
# Help Menu
# -----------------
menu_Help = wx.Menu()
m_help = menu_Help.Append(-1, "&Usage and Tips\tCtrl-H", "")
self.Bind(wx.EVT_MENU, self.on_menu_help, m_help)
m_cookbook = menu_Help.Append(-1, "&PmagPy Cookbook\tCtrl-Shift-W", "")
self.Bind(wx.EVT_MENU, self.on_menu_cookbook, m_cookbook)
m_docs = menu_Help.Append(-1, "&Open Docs\tCtrl-Shift-H", "")
self.Bind(wx.EVT_MENU, self.on_menu_docs, m_docs)
m_git = menu_Help.Append(-1, "&Github Page\tCtrl-Shift-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_git, m_git)
m_debug = menu_Help.Append(-1, "&Open Debugger\tCtrl-Shift-D", "")
self.Bind(wx.EVT_MENU, self.on_menu_debug, m_debug)
# -----------------
#self.menubar.Append(menu_preferences, "& Preferences")
self.menubar.Append(menu_file, "&File")
self.menubar.Append(menu_edit, "&Edit")
self.menubar.Append(menu_Analysis, "&Analysis")
self.menubar.Append(menu_Tools, "&Tools")
self.menubar.Append(menu_Help, "&Help")
#self.menubar.Append(menu_Plot, "&Plot")
#self.menubar.Append(menu_results_table, "&Table")
#self.menubar.Append(menu_MagIC, "&MagIC")
self.SetMenuBar(self.menubar) | python | def create_menu(self):
"""
Create the MenuBar for the GUI current structure is:
File : Change Working Directory, Import Interpretations from LSQ
file, Import interpretations from a redo file, Save interpretations
to a redo file, Save MagIC tables, Save Plots
Edit : New Interpretation, Delete Interpretation, Next
Interpretation, Previous Interpretation, Next Specimen, Previous
Speciemen, Flag Measurement Data, Coordinate Systems
Analysis : Acceptance Criteria, Sample Orientation, Flag
Interpretaions
Tools : Interpretation Editor, VGP Viewer
Help : Usage and Tips, PmagPy Cookbook, Open Docs, Github Page, Open
Debugger
"""
self.menubar = wx.MenuBar()
# -----------------
# File Menu
# -----------------
menu_file = wx.Menu()
m_change_WD = menu_file.Append(-1,
"Change Working Directory\tCtrl-W", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_working_directory, m_change_WD)
m_import_meas_file = menu_file.Append(-1,
"Change measurements file", "")
self.Bind(wx.EVT_MENU, self.on_menu_import_meas_file, m_import_meas_file)
m_import_LSQ = menu_file.Append(-1,
"&Import Interpretations from LSQ file\tCtrl-L", "")
self.Bind(wx.EVT_MENU, self.on_menu_read_from_LSQ, m_import_LSQ)
m_previous_interpretation = menu_file.Append(
-1, "&Import interpretations from a redo file\tCtrl-R", "")
self.Bind(wx.EVT_MENU, self.on_menu_previous_interpretation,
m_previous_interpretation)
m_save_interpretation = menu_file.Append(
-1, "&Save interpretations to a redo file\tCtrl-S", "")
self.Bind(wx.EVT_MENU, self.on_menu_save_interpretation,
m_save_interpretation)
m_make_MagIC_results_tables = menu_file.Append(
-1, "&Save MagIC tables\tCtrl-Shift-S", "")
self.Bind(wx.EVT_MENU, self.on_menu_make_MagIC_results_tables,
m_make_MagIC_results_tables)
submenu_save_plots = wx.Menu()
m_save_zij_plot = submenu_save_plots.Append(
-1, "&Save Zijderveld plot", "")
self.Bind(wx.EVT_MENU, self.on_save_Zij_plot, m_save_zij_plot, "Zij")
m_save_eq_plot = submenu_save_plots.Append(
-1, "&Save specimen equal area plot", "")
self.Bind(wx.EVT_MENU, self.on_save_Eq_plot,
m_save_eq_plot, "specimen-Eq")
m_save_M_t_plot = submenu_save_plots.Append(-1, "&Save M-t plot", "")
self.Bind(wx.EVT_MENU, self.on_save_M_t_plot, m_save_M_t_plot, "M_t")
m_save_high_level = submenu_save_plots.Append(
-1, "&Save high level plot", "")
self.Bind(wx.EVT_MENU, self.on_save_high_level,
m_save_high_level, "Eq")
m_save_all_plots = submenu_save_plots.Append(-1, "&Save all plots", "")
self.Bind(wx.EVT_MENU, self.on_save_all_figures, m_save_all_plots)
m_new_sub_plots = menu_file.AppendSubMenu(submenu_save_plots, "&Save plot")
menu_file.AppendSeparator()
m_exit = menu_file.Append(-1, "E&xit\tCtrl-Q", "Exit")
self.Bind(wx.EVT_MENU, self.on_menu_exit, m_exit)
# -----------------
# Edit Menu
# -----------------
menu_edit = wx.Menu()
m_new = menu_edit.Append(-1, "&New interpretation\tCtrl-N", "")
self.Bind(wx.EVT_MENU, self.on_btn_add_fit, m_new)
m_delete = menu_edit.Append(-1, "&Delete interpretation\tCtrl-D", "")
self.Bind(wx.EVT_MENU, self.on_btn_delete_fit, m_delete)
m_next_interp = menu_edit.Append(-1,
"&Next interpretation\tCtrl-Up", "")
self.Bind(wx.EVT_MENU, self.on_menu_next_interp, m_next_interp)
m_previous_interp = menu_edit.Append(-1,
"&Previous interpretation\tCtrl-Down", "")
self.Bind(wx.EVT_MENU, self.on_menu_prev_interp, m_previous_interp)
m_next_specimen = menu_edit.Append(-1,
"&Next Specimen\tCtrl-Right", "")
self.Bind(wx.EVT_MENU, self.on_next_button, m_next_specimen)
m_previous_specimen = menu_edit.Append(-1,
"&Previous Specimen\tCtrl-Left", "")
self.Bind(wx.EVT_MENU, self.on_prev_button, m_previous_specimen)
menu_flag_meas = wx.Menu()
m_good = menu_flag_meas.Append(-1, "&Good Measurement\tCtrl-Alt-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_meas_good, m_good)
m_bad = menu_flag_meas.Append(-1, "&Bad Measurement\tCtrl-Alt-B", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_meas_bad, m_bad)
m_flag_meas = menu_edit.AppendSubMenu(menu_flag_meas, "&Flag Measurement Data")
menu_coordinates = wx.Menu()
m_speci = menu_coordinates.Append(-1,
"&Specimen Coordinates\tCtrl-P", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_speci_coord, m_speci)
if "geographic" in self.coordinate_list:
m_geo = menu_coordinates.Append(-1,
"&Geographic Coordinates\tCtrl-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_geo_coord, m_geo)
if "tilt-corrected" in self.coordinate_list:
m_tilt = menu_coordinates.Append(-1,
"&Tilt-Corrected Coordinates\tCtrl-T", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_tilt_coord, m_tilt)
m_coords = menu_edit.AppendSubMenu(menu_coordinates, "&Coordinate Systems")
# -----------------
# Analysis Menu
# -----------------
menu_Analysis = wx.Menu()
submenu_criteria = wx.Menu()
m_change_criteria_file = submenu_criteria.Append(
-1, "&Change acceptance criteria", "")
self.Bind(wx.EVT_MENU, self.on_menu_change_criteria,
m_change_criteria_file)
m_import_criteria_file = submenu_criteria.Append(
-1, "&Import criteria file", "")
self.Bind(wx.EVT_MENU, self.on_menu_criteria_file,
m_import_criteria_file)
m_new_sub = menu_Analysis.AppendSubMenu(submenu_criteria, "Acceptance criteria")
menu_flag_fit = wx.Menu()
m_good_fit = menu_flag_fit.Append(-1,
"&Good Interpretation\tCtrl-Shift-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_fit_good, m_good_fit)
m_bad_fit = menu_flag_fit.Append(-1,
"&Bad Interpretation\tCtrl-Shift-B", "")
self.Bind(wx.EVT_MENU, self.on_menu_flag_fit_bad, m_bad_fit)
m_flag_fit = menu_Analysis.AppendSubMenu(menu_flag_fit, "&Flag Interpretations")
submenu_sample_check = wx.Menu()
m_check_orient = submenu_sample_check.Append(
-1, "&Check Sample Orientations\tCtrl-O", "")
self.Bind(wx.EVT_MENU, self.on_menu_check_orient, m_check_orient)
m_mark_samp_bad = submenu_sample_check.Append(
-1, "&Mark Sample Bad\tCtrl-.", "")
self.Bind(wx.EVT_MENU, self.on_menu_mark_samp_bad, m_mark_samp_bad)
m_mark_samp_good = submenu_sample_check.Append(
-1, "&Mark Sample Good\tCtrl-,", "")
self.Bind(wx.EVT_MENU, self.on_menu_mark_samp_good, m_mark_samp_good)
m_submenu = menu_Analysis.AppendSubMenu(submenu_sample_check, "Sample Orientation")
submenu_toggle_mean_display = wx.Menu()
lines = ["m_%s_toggle_mean = submenu_toggle_mean_display.AppendCheckItem(-1, '&%s', ''); self.Bind(wx.EVT_MENU, self.on_menu_toggle_mean, m_%s_toggle_mean)" % (
f, f) for f in self.all_fits_list]
for line in lines:
exec(line)
menu_Analysis.AppendSubMenu(submenu_toggle_mean_display, "Toggle Mean Display")
# -----------------
# Tools Menu
# -----------------
menu_Tools = wx.Menu()
# m_auto_interpret = menu_Tools.Append(-1, "&Auto interpret (alpha version)\tCtrl-A", "")
# self.Bind(wx.EVT_MENU, self.autointerpret, m_auto_interpret)
m_edit_interpretations = menu_Tools.Append(
-1, "&Interpretation editor\tCtrl-E", "")
self.Bind(wx.EVT_MENU, self.on_menu_edit_interpretations,
m_edit_interpretations)
m_view_VGP = menu_Tools.Append(-1, "&View VGPs\tCtrl-Shift-V", "")
self.Bind(wx.EVT_MENU, self.on_menu_view_vgps, m_view_VGP)
# -----------------
# Help Menu
# -----------------
menu_Help = wx.Menu()
m_help = menu_Help.Append(-1, "&Usage and Tips\tCtrl-H", "")
self.Bind(wx.EVT_MENU, self.on_menu_help, m_help)
m_cookbook = menu_Help.Append(-1, "&PmagPy Cookbook\tCtrl-Shift-W", "")
self.Bind(wx.EVT_MENU, self.on_menu_cookbook, m_cookbook)
m_docs = menu_Help.Append(-1, "&Open Docs\tCtrl-Shift-H", "")
self.Bind(wx.EVT_MENU, self.on_menu_docs, m_docs)
m_git = menu_Help.Append(-1, "&Github Page\tCtrl-Shift-G", "")
self.Bind(wx.EVT_MENU, self.on_menu_git, m_git)
m_debug = menu_Help.Append(-1, "&Open Debugger\tCtrl-Shift-D", "")
self.Bind(wx.EVT_MENU, self.on_menu_debug, m_debug)
# -----------------
#self.menubar.Append(menu_preferences, "& Preferences")
self.menubar.Append(menu_file, "&File")
self.menubar.Append(menu_edit, "&Edit")
self.menubar.Append(menu_Analysis, "&Analysis")
self.menubar.Append(menu_Tools, "&Tools")
self.menubar.Append(menu_Help, "&Help")
#self.menubar.Append(menu_Plot, "&Plot")
#self.menubar.Append(menu_results_table, "&Table")
#self.menubar.Append(menu_MagIC, "&MagIC")
self.SetMenuBar(self.menubar) | Create the MenuBar for the GUI current structure is:
File : Change Working Directory, Import Interpretations from LSQ
file, Import interpretations from a redo file, Save interpretations
to a redo file, Save MagIC tables, Save Plots
Edit : New Interpretation, Delete Interpretation, Next
Interpretation, Previous Interpretation, Next Specimen, Previous
Speciemen, Flag Measurement Data, Coordinate Systems
Analysis : Acceptance Criteria, Sample Orientation, Flag
Interpretaions
Tools : Interpretation Editor, VGP Viewer
Help : Usage and Tips, PmagPy Cookbook, Open Docs, Github Page, Open
Debugger | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L844-L1085 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.draw_figure | def draw_figure(self, s, update_high_plots=True):
"""
Convenience function that sets current specimen to s and calculates
data for that specimen then redraws all plots.
Parameters
----------
s : specimen to set current specimen too
update_high_plots : bool which decides if high level mean plot
updates (default: False)
"""
self.initialize_CART_rot(s)
# Draw Zij plot
self.draw_zijderveld()
# Draw specimen equal area
self.draw_spec_eqarea()
# Draw M/M0 plot ( or NLT data on the same area in the GUI)
self.draw_MM0()
# If measurements are selected redisplay selected data
if len(self.selected_meas) > 0:
self.plot_selected_meas()
# Draw high level equal area
if update_high_plots:
self.plot_high_levels_data()
self.canvas4.draw() | python | def draw_figure(self, s, update_high_plots=True):
"""
Convenience function that sets current specimen to s and calculates
data for that specimen then redraws all plots.
Parameters
----------
s : specimen to set current specimen too
update_high_plots : bool which decides if high level mean plot
updates (default: False)
"""
self.initialize_CART_rot(s)
# Draw Zij plot
self.draw_zijderveld()
# Draw specimen equal area
self.draw_spec_eqarea()
# Draw M/M0 plot ( or NLT data on the same area in the GUI)
self.draw_MM0()
# If measurements are selected redisplay selected data
if len(self.selected_meas) > 0:
self.plot_selected_meas()
# Draw high level equal area
if update_high_plots:
self.plot_high_levels_data()
self.canvas4.draw() | Convenience function that sets current specimen to s and calculates
data for that specimen then redraws all plots.
Parameters
----------
s : specimen to set current specimen too
update_high_plots : bool which decides if high level mean plot
updates (default: False) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1091-L1120 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.draw_zijderveld | def draw_zijderveld(self):
"""
Draws the zijderveld plot in the GUI on canvas1
"""
self.fig1.clf()
axis_bounds = [0, .1, 1, .85]
self.zijplot = self.fig1.add_axes(
axis_bounds, frameon=False, facecolor='None', label='zig_orig', zorder=0)
self.zijplot.clear()
self.zijplot.axis('equal')
self.zijplot.xaxis.set_visible(False)
self.zijplot.yaxis.set_visible(False)
self.MS = 6*self.GUI_RESOLUTION
self.dec_MEC = 'k'
self.dec_MFC = 'r'
self.inc_MEC = 'k'
self.inc_MFC = 'b'
self.MS = 6*self.GUI_RESOLUTION
self.zijdblock_steps = self.Data[self.s]['zijdblock_steps']
self.vds = self.Data[self.s]['vds']
self.zijplot.plot(self.CART_rot_good[:, 0], -1*self.CART_rot_good[:, 1], 'ro-',
markersize=self.MS, clip_on=False, picker=True, zorder=1) # x,y or N,E
self.zijplot.plot(self.CART_rot_good[:, 0], -1*self.CART_rot_good[:, 2], 'bs-',
markersize=self.MS, clip_on=False, picker=True, zorder=1) # x-z or N,D
for i in range(len(self.CART_rot_bad)):
self.zijplot.plot(self.CART_rot_bad[:, 0][i], -1 * self.CART_rot_bad[:, 1][i], 'o', mfc='None',
mec=self.dec_MEC, markersize=self.MS, clip_on=False, picker=False) # x,y or N,E
self.zijplot.plot(self.CART_rot_bad[:, 0][i], -1 * self.CART_rot_bad[:, 2][i], 's', mfc='None',
mec=self.inc_MEC, markersize=self.MS, clip_on=False, picker=False) # x-z or N,D
if self.preferences['show_Zij_treatments']:
for i in range(len(self.zijdblock_steps)):
if int(self.preferences['show_Zij_treatments_steps']) != 1:
if i != 0 and (i+1) % int(self.preferences['show_Zij_treatments_steps']) == 0:
self.zijplot.text(self.CART_rot[i][0], -1*self.CART_rot[i][2], " %s" % (
self.zijdblock_steps[i]), fontsize=8*self.GUI_RESOLUTION, color='gray', ha='left', va='center') # inc
else:
self.zijplot.text(self.CART_rot[i][0], -1*self.CART_rot[i][2], " %s" % (
self.zijdblock_steps[i]), fontsize=10*self.GUI_RESOLUTION, color='gray', ha='left', va='center') # inc
# -----
xmin, xmax = self.zijplot.get_xlim()
if xmax < 0:
xmax = 0
if xmin > 0:
xmin = 0
# else:
# xmin=xmin+xmin%0.2
props = dict(color='black', linewidth=1.0, markeredgewidth=0.5)
xlocs = array(list(arange(0.2, xmax, 0.2)) +
list(arange(-0.2, xmin, -0.2)))
if len(xlocs) > 0:
xtickline, = self.zijplot.plot(
xlocs, [0]*len(xlocs), linestyle='', marker='+', **props)
xtickline.set_clip_on(False)
axxline, = self.zijplot.plot([xmin, xmax], [0, 0], **props)
axxline.set_clip_on(False)
TEXT = ""
if self.COORDINATE_SYSTEM == 'specimen':
self.zijplot.text(xmax, 0, ' x', fontsize=10,
verticalalignment='bottom')
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
TEXT = " N"
elif self.ORTHO_PLOT_TYPE == 'E-W':
TEXT = " E"
else:
TEXT = " x"
self.zijplot.text(xmax, 0, TEXT, fontsize=10,
verticalalignment='bottom')
# -----
ymin, ymax = self.zijplot.get_ylim()
if ymax < 0:
ymax = 0
if ymin > 0:
ymin = 0
ylocs = array(list(arange(0.2, ymax, 0.2)) +
list(arange(-0.2, ymin, -0.2)))
if len(ylocs) > 0:
ytickline, = self.zijplot.plot(
[0]*len(ylocs), ylocs, linestyle='', marker='+', **props)
ytickline.set_clip_on(False)
axyline, = self.zijplot.plot([0, 0], [ymin, ymax], **props)
axyline.set_clip_on(False)
TEXT1, TEXT2 = "", ""
if self.COORDINATE_SYSTEM == 'specimen':
TEXT1, TEXT2 = " y", " z"
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
TEXT1, TEXT2 = " E", " D"
elif self.ORTHO_PLOT_TYPE == 'E-W':
TEXT1, TEXT2 = " S", " D"
else:
TEXT1, TEXT2 = " y", " z"
self.zijplot.text(0, ymin, TEXT1, fontsize=10,
color='r', verticalalignment='top')
self.zijplot.text(0, ymin, ' ,', fontsize=10,
color='k', verticalalignment='top')
self.zijplot.text(0, ymin, TEXT2, fontsize=10,
color='b', verticalalignment='top')
# ----
if self.ORTHO_PLOT_TYPE == 'N-S':
STRING = ""
#STRING1="N-S orthogonal plot"
self.fig1.text(0.01, 0.98, "Zijderveld plot: x = North", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
elif self.ORTHO_PLOT_TYPE == 'E-W':
STRING = ""
#STRING1="E-W orthogonal plot"
self.fig1.text(0.01, 0.98, "Zijderveld plot:: x = East", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
self.fig1.text(0.01, 0.98, "Zijderveld plot", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
STRING = "X-axis rotated to best fit line declination (%.0f); " % (
self.current_fit.pars['specimen_dec'])
else:
STRING = "X-axis rotated to NRM (%.0f); " % (
self.zijblock[0][1])
else:
self.fig1.text(0.01, 0.98, "Zijderveld plot", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
STRING = "X-axis rotated to NRM (%.0f); " % (self.zijblock[0][1])
#STRING1="Zijderveld plot"
STRING = STRING+"NRM=%.2e " % (self.zijblock[0][3]) + 'Am^2'
self.fig1.text(0.01, 0.95, STRING, {'family': self.font_type, 'fontsize': 8 *
self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
xmin, xmax = self.zijplot.get_xlim()
ymin, ymax = self.zijplot.get_ylim()
self.zij_xlim_initial = (xmin, xmax)
self.zij_ylim_initial = (ymin, ymax)
self.canvas1.draw() | python | def draw_zijderveld(self):
"""
Draws the zijderveld plot in the GUI on canvas1
"""
self.fig1.clf()
axis_bounds = [0, .1, 1, .85]
self.zijplot = self.fig1.add_axes(
axis_bounds, frameon=False, facecolor='None', label='zig_orig', zorder=0)
self.zijplot.clear()
self.zijplot.axis('equal')
self.zijplot.xaxis.set_visible(False)
self.zijplot.yaxis.set_visible(False)
self.MS = 6*self.GUI_RESOLUTION
self.dec_MEC = 'k'
self.dec_MFC = 'r'
self.inc_MEC = 'k'
self.inc_MFC = 'b'
self.MS = 6*self.GUI_RESOLUTION
self.zijdblock_steps = self.Data[self.s]['zijdblock_steps']
self.vds = self.Data[self.s]['vds']
self.zijplot.plot(self.CART_rot_good[:, 0], -1*self.CART_rot_good[:, 1], 'ro-',
markersize=self.MS, clip_on=False, picker=True, zorder=1) # x,y or N,E
self.zijplot.plot(self.CART_rot_good[:, 0], -1*self.CART_rot_good[:, 2], 'bs-',
markersize=self.MS, clip_on=False, picker=True, zorder=1) # x-z or N,D
for i in range(len(self.CART_rot_bad)):
self.zijplot.plot(self.CART_rot_bad[:, 0][i], -1 * self.CART_rot_bad[:, 1][i], 'o', mfc='None',
mec=self.dec_MEC, markersize=self.MS, clip_on=False, picker=False) # x,y or N,E
self.zijplot.plot(self.CART_rot_bad[:, 0][i], -1 * self.CART_rot_bad[:, 2][i], 's', mfc='None',
mec=self.inc_MEC, markersize=self.MS, clip_on=False, picker=False) # x-z or N,D
if self.preferences['show_Zij_treatments']:
for i in range(len(self.zijdblock_steps)):
if int(self.preferences['show_Zij_treatments_steps']) != 1:
if i != 0 and (i+1) % int(self.preferences['show_Zij_treatments_steps']) == 0:
self.zijplot.text(self.CART_rot[i][0], -1*self.CART_rot[i][2], " %s" % (
self.zijdblock_steps[i]), fontsize=8*self.GUI_RESOLUTION, color='gray', ha='left', va='center') # inc
else:
self.zijplot.text(self.CART_rot[i][0], -1*self.CART_rot[i][2], " %s" % (
self.zijdblock_steps[i]), fontsize=10*self.GUI_RESOLUTION, color='gray', ha='left', va='center') # inc
# -----
xmin, xmax = self.zijplot.get_xlim()
if xmax < 0:
xmax = 0
if xmin > 0:
xmin = 0
# else:
# xmin=xmin+xmin%0.2
props = dict(color='black', linewidth=1.0, markeredgewidth=0.5)
xlocs = array(list(arange(0.2, xmax, 0.2)) +
list(arange(-0.2, xmin, -0.2)))
if len(xlocs) > 0:
xtickline, = self.zijplot.plot(
xlocs, [0]*len(xlocs), linestyle='', marker='+', **props)
xtickline.set_clip_on(False)
axxline, = self.zijplot.plot([xmin, xmax], [0, 0], **props)
axxline.set_clip_on(False)
TEXT = ""
if self.COORDINATE_SYSTEM == 'specimen':
self.zijplot.text(xmax, 0, ' x', fontsize=10,
verticalalignment='bottom')
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
TEXT = " N"
elif self.ORTHO_PLOT_TYPE == 'E-W':
TEXT = " E"
else:
TEXT = " x"
self.zijplot.text(xmax, 0, TEXT, fontsize=10,
verticalalignment='bottom')
# -----
ymin, ymax = self.zijplot.get_ylim()
if ymax < 0:
ymax = 0
if ymin > 0:
ymin = 0
ylocs = array(list(arange(0.2, ymax, 0.2)) +
list(arange(-0.2, ymin, -0.2)))
if len(ylocs) > 0:
ytickline, = self.zijplot.plot(
[0]*len(ylocs), ylocs, linestyle='', marker='+', **props)
ytickline.set_clip_on(False)
axyline, = self.zijplot.plot([0, 0], [ymin, ymax], **props)
axyline.set_clip_on(False)
TEXT1, TEXT2 = "", ""
if self.COORDINATE_SYSTEM == 'specimen':
TEXT1, TEXT2 = " y", " z"
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
TEXT1, TEXT2 = " E", " D"
elif self.ORTHO_PLOT_TYPE == 'E-W':
TEXT1, TEXT2 = " S", " D"
else:
TEXT1, TEXT2 = " y", " z"
self.zijplot.text(0, ymin, TEXT1, fontsize=10,
color='r', verticalalignment='top')
self.zijplot.text(0, ymin, ' ,', fontsize=10,
color='k', verticalalignment='top')
self.zijplot.text(0, ymin, TEXT2, fontsize=10,
color='b', verticalalignment='top')
# ----
if self.ORTHO_PLOT_TYPE == 'N-S':
STRING = ""
#STRING1="N-S orthogonal plot"
self.fig1.text(0.01, 0.98, "Zijderveld plot: x = North", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
elif self.ORTHO_PLOT_TYPE == 'E-W':
STRING = ""
#STRING1="E-W orthogonal plot"
self.fig1.text(0.01, 0.98, "Zijderveld plot:: x = East", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
self.fig1.text(0.01, 0.98, "Zijderveld plot", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
STRING = "X-axis rotated to best fit line declination (%.0f); " % (
self.current_fit.pars['specimen_dec'])
else:
STRING = "X-axis rotated to NRM (%.0f); " % (
self.zijblock[0][1])
else:
self.fig1.text(0.01, 0.98, "Zijderveld plot", {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
STRING = "X-axis rotated to NRM (%.0f); " % (self.zijblock[0][1])
#STRING1="Zijderveld plot"
STRING = STRING+"NRM=%.2e " % (self.zijblock[0][3]) + 'Am^2'
self.fig1.text(0.01, 0.95, STRING, {'family': self.font_type, 'fontsize': 8 *
self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
xmin, xmax = self.zijplot.get_xlim()
ymin, ymax = self.zijplot.get_ylim()
self.zij_xlim_initial = (xmin, xmax)
self.zij_ylim_initial = (ymin, ymax)
self.canvas1.draw() | Draws the zijderveld plot in the GUI on canvas1 | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1122-L1274 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.draw_spec_eqarea | def draw_spec_eqarea(self):
"""
Calculates point positions and draws the Specimen eqarea plot on
canvas2
"""
draw_net(self.specimen_eqarea)
self.specimen_eqarea.text(-1.2, 1.15, "specimen: %s" % self.s, {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
x_eq = array([row[0] for row in self.zij_norm])
y_eq = array([row[1] for row in self.zij_norm])
z_eq = abs(array([row[2] for row in self.zij_norm]))
# remove bad data from plotting:
x_eq_good, y_eq_good, z_eq_good = [], [], []
x_eq_bad, y_eq_bad, z_eq_bad = [], [], []
for i in range(len(list(self.zij_norm))):
if self.Data[self.s]['measurement_flag'][i] == 'g':
x_eq_good.append(self.zij_norm[i][0])
y_eq_good.append(self.zij_norm[i][1])
z_eq_good.append(abs(self.zij_norm[i][2]))
else:
x_eq_bad.append(self.zij_norm[i][0])
y_eq_bad.append(self.zij_norm[i][1])
z_eq_bad.append(abs(self.zij_norm[i][2]))
x_eq_good, y_eq_good, z_eq_good = array(
x_eq_good), array(y_eq_good), array(z_eq_good)
x_eq_bad, y_eq_bad, z_eq_bad = array(
x_eq_bad), array(y_eq_bad), array(z_eq_bad)
R_good = array(sqrt(1-z_eq_good)/sqrt(x_eq_good**2 +
y_eq_good**2)) # from Collinson 1983
# from Collinson 1983
R_bad = array(sqrt(1-z_eq_bad)/sqrt(x_eq_bad**2+y_eq_bad**2))
eqarea_data_x_good = y_eq_good*R_good
eqarea_data_y_good = x_eq_good*R_good
eqarea_data_x_bad = y_eq_bad*R_bad
eqarea_data_y_bad = x_eq_bad*R_bad
self.specimen_eqarea.plot(
eqarea_data_x_good, eqarea_data_y_good, lw=0.5, color='gray') # ,zorder=0)
# --------------------
# scatter plot
# --------------------
x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], []
x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0])
y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0])
z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0]))
if len(x_eq_dn) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq_dn)/sqrt(x_eq_dn**2+y_eq_dn**2))
eqarea_data_x_dn = y_eq_dn*R
eqarea_data_y_dn = x_eq_dn*R
self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn], marker='o',
edgecolor='black', facecolor="#808080", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False)
x_eq_up, y_eq_up, z_eq_up = [], [], []
x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0])
y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0])
z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0]))
if len(x_eq_up) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq_up)/sqrt(x_eq_up**2+y_eq_up**2))
eqarea_data_x_up = y_eq_up*R
eqarea_data_y_up = x_eq_up*R
self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up], marker='o',
edgecolor='black', facecolor="#FFFFFF", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False)
# self.preferences['show_eqarea_treatments']=True
if self.preferences['show_eqarea_treatments']:
for i in range(len(self.zijdblock_steps)):
self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i], "%.1f" % float(
self.zijdblock_steps[i]), fontsize=8*self.GUI_RESOLUTION, color="0.5")
# add line to show the direction of the x axis in the Zijderveld plot
if str(self.orthogonal_box.GetValue()) in ["X=best fit line dec", "X=NRM dec"]:
XY = []
if str(self.orthogonal_box.GetValue()) == "X=NRM dec":
dec_zij = self.zijblock[0][1]
XY = pmag.dimap(dec_zij, 0)
if str(self.orthogonal_box.GetValue()) == "X=best fit line dec":
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
dec_zij = self.current_fit.pars['specimen_dec']
XY = pmag.dimap(dec_zij, 0)
if XY != []:
self.specimen_eqarea.plot(
[0, XY[0]], [0, XY[1]], ls='-', c='gray', lw=0.5) # ,zorder=0)
self.canvas2.draw() | python | def draw_spec_eqarea(self):
"""
Calculates point positions and draws the Specimen eqarea plot on
canvas2
"""
draw_net(self.specimen_eqarea)
self.specimen_eqarea.text(-1.2, 1.15, "specimen: %s" % self.s, {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
x_eq = array([row[0] for row in self.zij_norm])
y_eq = array([row[1] for row in self.zij_norm])
z_eq = abs(array([row[2] for row in self.zij_norm]))
# remove bad data from plotting:
x_eq_good, y_eq_good, z_eq_good = [], [], []
x_eq_bad, y_eq_bad, z_eq_bad = [], [], []
for i in range(len(list(self.zij_norm))):
if self.Data[self.s]['measurement_flag'][i] == 'g':
x_eq_good.append(self.zij_norm[i][0])
y_eq_good.append(self.zij_norm[i][1])
z_eq_good.append(abs(self.zij_norm[i][2]))
else:
x_eq_bad.append(self.zij_norm[i][0])
y_eq_bad.append(self.zij_norm[i][1])
z_eq_bad.append(abs(self.zij_norm[i][2]))
x_eq_good, y_eq_good, z_eq_good = array(
x_eq_good), array(y_eq_good), array(z_eq_good)
x_eq_bad, y_eq_bad, z_eq_bad = array(
x_eq_bad), array(y_eq_bad), array(z_eq_bad)
R_good = array(sqrt(1-z_eq_good)/sqrt(x_eq_good**2 +
y_eq_good**2)) # from Collinson 1983
# from Collinson 1983
R_bad = array(sqrt(1-z_eq_bad)/sqrt(x_eq_bad**2+y_eq_bad**2))
eqarea_data_x_good = y_eq_good*R_good
eqarea_data_y_good = x_eq_good*R_good
eqarea_data_x_bad = y_eq_bad*R_bad
eqarea_data_y_bad = x_eq_bad*R_bad
self.specimen_eqarea.plot(
eqarea_data_x_good, eqarea_data_y_good, lw=0.5, color='gray') # ,zorder=0)
# --------------------
# scatter plot
# --------------------
x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], []
x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0])
y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0])
z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0]))
if len(x_eq_dn) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq_dn)/sqrt(x_eq_dn**2+y_eq_dn**2))
eqarea_data_x_dn = y_eq_dn*R
eqarea_data_y_dn = x_eq_dn*R
self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn], marker='o',
edgecolor='black', facecolor="#808080", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False)
x_eq_up, y_eq_up, z_eq_up = [], [], []
x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0])
y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0])
z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0]))
if len(x_eq_up) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq_up)/sqrt(x_eq_up**2+y_eq_up**2))
eqarea_data_x_up = y_eq_up*R
eqarea_data_y_up = x_eq_up*R
self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up], marker='o',
edgecolor='black', facecolor="#FFFFFF", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False)
# self.preferences['show_eqarea_treatments']=True
if self.preferences['show_eqarea_treatments']:
for i in range(len(self.zijdblock_steps)):
self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i], "%.1f" % float(
self.zijdblock_steps[i]), fontsize=8*self.GUI_RESOLUTION, color="0.5")
# add line to show the direction of the x axis in the Zijderveld plot
if str(self.orthogonal_box.GetValue()) in ["X=best fit line dec", "X=NRM dec"]:
XY = []
if str(self.orthogonal_box.GetValue()) == "X=NRM dec":
dec_zij = self.zijblock[0][1]
XY = pmag.dimap(dec_zij, 0)
if str(self.orthogonal_box.GetValue()) == "X=best fit line dec":
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
dec_zij = self.current_fit.pars['specimen_dec']
XY = pmag.dimap(dec_zij, 0)
if XY != []:
self.specimen_eqarea.plot(
[0, XY[0]], [0, XY[1]], ls='-', c='gray', lw=0.5) # ,zorder=0)
self.canvas2.draw() | Calculates point positions and draws the Specimen eqarea plot on
canvas2 | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1276-L1371 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.draw_MM0 | def draw_MM0(self):
"""
Draws the M/M0 plot in the GUI on canvas3
"""
self.fig3.clf()
self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type, 'fontsize': 10 *
self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
self.mplot = self.fig3.add_axes(
[0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None')
thermal_x, thermal_y = [], []
thermal_x_bad, thermal_y_bad = [], []
af_x, af_y = [], []
af_x_bad, af_y_bad = [], []
for i in range(len(self.Data[self.s]['zijdblock'])):
step = self.Data[self.s]['zijdblock_steps'][i]
# bad point
if self.Data[self.s]['measurement_flag'][i] == 'b':
if step == "0":
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
af_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "C" in step:
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "T" in step:
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
else:
continue
else:
if step == "0":
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
af_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
af_y.append(self.Data[self.s]['zijdblock'][i]
[3]/self.Data[self.s]['zijdblock'][0][3])
elif "C" in step:
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "T" in step:
af_x.append(self.Data[self.s]['zijdblock'][i][0])
af_y.append(self.Data[self.s]['zijdblock'][i]
[3]/self.Data[self.s]['zijdblock'][0][3])
else:
continue
if len(thermal_x)+len(thermal_x_bad) > self.Data[self.s]['zijdblock_steps'].count('0'):
self.mplot.plot(thermal_x, thermal_y, 'ro-',
markersize=self.MS, lw=1, clip_on=False, zorder=1)
for i in range(len(thermal_x_bad)):
self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o',
mfc='None', mec='k', markersize=self.MS, clip_on=False, zorder=1)
self.mplot.set_xlabel('Thermal (C)', color='r')
for tl in self.mplot.get_xticklabels():
tl.set_color('r')
self.mplot_af = self.mplot.twiny()
if len(af_x)+len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count('0'):
self.mplot_af.plot(
af_x, af_y, 'bo-', markersize=self.MS, lw=1, clip_on=False, zorder=1)
for i in range(len(af_x_bad)):
self.mplot_af.plot([af_x_bad[i]], [
af_y_bad[i]], 'o', mfc='None', mec='k', markersize=self.MS, clip_on=False, zorder=1)
self.mplot_af.set_xlabel('AF (mT)', color='b')
for tl in self.mplot_af.get_xticklabels():
tl.set_color('b')
self.mplot.tick_params(axis='both', which='major', labelsize=7)
self.mplot_af.tick_params(axis='both', which='major', labelsize=7)
self.mplot.spines["right"].set_visible(False)
self.mplot_af.spines["right"].set_visible(False)
self.mplot.get_xaxis().tick_bottom()
self.mplot.get_yaxis().tick_left()
self.mplot.set_ylabel("M / NRM0", fontsize=8*self.GUI_RESOLUTION)
self.canvas3.draw() | python | def draw_MM0(self):
"""
Draws the M/M0 plot in the GUI on canvas3
"""
self.fig3.clf()
self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type, 'fontsize': 10 *
self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
self.mplot = self.fig3.add_axes(
[0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None')
thermal_x, thermal_y = [], []
thermal_x_bad, thermal_y_bad = [], []
af_x, af_y = [], []
af_x_bad, af_y_bad = [], []
for i in range(len(self.Data[self.s]['zijdblock'])):
step = self.Data[self.s]['zijdblock_steps'][i]
# bad point
if self.Data[self.s]['measurement_flag'][i] == 'b':
if step == "0":
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
af_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "C" in step:
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "T" in step:
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_y_bad.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
else:
continue
else:
if step == "0":
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
af_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
af_y.append(self.Data[self.s]['zijdblock'][i]
[3]/self.Data[self.s]['zijdblock'][0][3])
elif "C" in step:
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(
self.Data[self.s]['zijdblock'][i][3]/self.Data[self.s]['zijdblock'][0][3])
elif "T" in step:
af_x.append(self.Data[self.s]['zijdblock'][i][0])
af_y.append(self.Data[self.s]['zijdblock'][i]
[3]/self.Data[self.s]['zijdblock'][0][3])
else:
continue
if len(thermal_x)+len(thermal_x_bad) > self.Data[self.s]['zijdblock_steps'].count('0'):
self.mplot.plot(thermal_x, thermal_y, 'ro-',
markersize=self.MS, lw=1, clip_on=False, zorder=1)
for i in range(len(thermal_x_bad)):
self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o',
mfc='None', mec='k', markersize=self.MS, clip_on=False, zorder=1)
self.mplot.set_xlabel('Thermal (C)', color='r')
for tl in self.mplot.get_xticklabels():
tl.set_color('r')
self.mplot_af = self.mplot.twiny()
if len(af_x)+len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count('0'):
self.mplot_af.plot(
af_x, af_y, 'bo-', markersize=self.MS, lw=1, clip_on=False, zorder=1)
for i in range(len(af_x_bad)):
self.mplot_af.plot([af_x_bad[i]], [
af_y_bad[i]], 'o', mfc='None', mec='k', markersize=self.MS, clip_on=False, zorder=1)
self.mplot_af.set_xlabel('AF (mT)', color='b')
for tl in self.mplot_af.get_xticklabels():
tl.set_color('b')
self.mplot.tick_params(axis='both', which='major', labelsize=7)
self.mplot_af.tick_params(axis='both', which='major', labelsize=7)
self.mplot.spines["right"].set_visible(False)
self.mplot_af.spines["right"].set_visible(False)
self.mplot.get_xaxis().tick_bottom()
self.mplot.get_yaxis().tick_left()
self.mplot.set_ylabel("M / NRM0", fontsize=8*self.GUI_RESOLUTION)
self.canvas3.draw() | Draws the M/M0 plot in the GUI on canvas3 | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1373-L1459 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.plot_selected_meas | def plot_selected_meas(self):
"""
Goes through all measurements selected in logger and draws darker
marker over all specimen plots to display which measurements have
been selected
"""
self.close_warning = True
# set hex colors for cover and size of selected meas marker
blue_cover = "#9999FF"
red_cover = "#FF9999"
eqarea_outline = "#FF0000"
MS_selected = 40
# remove old selected points
for a in self.selected_meas_artists:
if a in self.zijplot.collections:
self.zijplot.collections.remove(a)
if a in self.specimen_eqarea.collections:
self.specimen_eqarea.collections.remove(a)
if a in self.mplot.collections:
self.mplot.collections.remove(a)
if a in self.mplot_af.collections:
self.mplot_af.collections.remove(a)
# do zijderveld plot
self.selected_meas_artists = []
x, y, z = self.CART_rot[self.selected_meas,
0], self.CART_rot[self.selected_meas, 1], self.CART_rot[self.selected_meas, 2]
self.selected_meas_artists.append(self.zijplot.scatter(
x, -1*y, c=red_cover, marker='o', s=MS_selected, zorder=2))
self.selected_meas_artists.append(self.zijplot.scatter(
x, -1*z, c=blue_cover, marker='s', s=MS_selected, zorder=2))
# do down data for eqarea
x_eq = array([row[0] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] > 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] > 0])
z_eq = abs(array([row[2] for i, row in enumerate(
self.zij_norm) if i in self.selected_meas and row[2] > 0]))
if len(x_eq) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq)/sqrt(x_eq**2+y_eq**2))
eqarea_data_x = y_eq*R
eqarea_data_y = x_eq*R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([eqarea_data_x], [
eqarea_data_y], marker='o', edgecolor=eqarea_outline, facecolor="#808080", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False))
# do up data for eqarea
x_eq = array([row[0] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] < 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] < 0])
z_eq = abs(array([row[2] for i, row in enumerate(
self.zij_norm) if i in self.selected_meas and row[2] < 0]))
if len(x_eq) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq)/sqrt(x_eq**2+y_eq**2))
eqarea_data_x = y_eq*R
eqarea_data_y = x_eq*R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([eqarea_data_x], [
eqarea_data_y], marker='o', edgecolor=eqarea_outline, facecolor="#FFFFFF", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False))
# do M/M0 plot
steps = self.Data[self.s]['zijdblock_steps']
flags = self.Data[self.s]['measurement_flag']
selected_af_meas = [
i for i in self.selected_meas if "T" in steps[i] or steps[i] == "0" and flags[i] != "b"]
selected_T_meas = [i for i in self.selected_meas if "C" in steps[i]
or steps[i] == "0" and flags[i] != "b"]
data = array(self.Data[self.s]['zijdblock'])
af_x = array(list(map(float, data[selected_af_meas, 0])))
af_y = array(
list(map(float, data[selected_af_meas, 3])))/float(data[0, 3])
T_x = array(list(map(float, data[selected_T_meas, 0])))
T_y = array(
list(map(float, data[selected_T_meas, 3])))/float(data[0, 3])
xmin, xmax = self.mplot.get_xlim()
ymin, ymax = self.mplot.get_ylim()
if T_x.astype(float).any() or T_y.astype(float).any():
self.selected_meas_artists.append(self.mplot.scatter(
T_x, T_y, facecolor=red_cover, edgecolor="#000000", marker='o', s=30, lw=1, clip_on=False, zorder=3))
self.mplot.set_xlim([xmin, xmax])
self.mplot.set_ylim([ymin, ymax])
xmin, xmax = self.mplot_af.get_xlim()
ymin, ymax = self.mplot_af.get_ylim()
if af_x.astype(float).any() or af_y.astype(float).any():
self.selected_meas_artists.append(self.mplot_af.scatter(
af_x, af_y, facecolor=blue_cover, edgecolor="#000000", marker='o', s=30, lw=1, clip_on=False, zorder=3))
self.mplot_af.set_xlim([xmin, xmax])
self.mplot_af.set_ylim([ymin, ymax])
self.canvas1.draw()
self.canvas2.draw()
self.canvas3.draw() | python | def plot_selected_meas(self):
"""
Goes through all measurements selected in logger and draws darker
marker over all specimen plots to display which measurements have
been selected
"""
self.close_warning = True
# set hex colors for cover and size of selected meas marker
blue_cover = "#9999FF"
red_cover = "#FF9999"
eqarea_outline = "#FF0000"
MS_selected = 40
# remove old selected points
for a in self.selected_meas_artists:
if a in self.zijplot.collections:
self.zijplot.collections.remove(a)
if a in self.specimen_eqarea.collections:
self.specimen_eqarea.collections.remove(a)
if a in self.mplot.collections:
self.mplot.collections.remove(a)
if a in self.mplot_af.collections:
self.mplot_af.collections.remove(a)
# do zijderveld plot
self.selected_meas_artists = []
x, y, z = self.CART_rot[self.selected_meas,
0], self.CART_rot[self.selected_meas, 1], self.CART_rot[self.selected_meas, 2]
self.selected_meas_artists.append(self.zijplot.scatter(
x, -1*y, c=red_cover, marker='o', s=MS_selected, zorder=2))
self.selected_meas_artists.append(self.zijplot.scatter(
x, -1*z, c=blue_cover, marker='s', s=MS_selected, zorder=2))
# do down data for eqarea
x_eq = array([row[0] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] > 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] > 0])
z_eq = abs(array([row[2] for i, row in enumerate(
self.zij_norm) if i in self.selected_meas and row[2] > 0]))
if len(x_eq) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq)/sqrt(x_eq**2+y_eq**2))
eqarea_data_x = y_eq*R
eqarea_data_y = x_eq*R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([eqarea_data_x], [
eqarea_data_y], marker='o', edgecolor=eqarea_outline, facecolor="#808080", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False))
# do up data for eqarea
x_eq = array([row[0] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] < 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm)
if i in self.selected_meas and row[2] < 0])
z_eq = abs(array([row[2] for i, row in enumerate(
self.zij_norm) if i in self.selected_meas and row[2] < 0]))
if len(x_eq) > 0:
# from Collinson 1983
R = array(sqrt(1-z_eq)/sqrt(x_eq**2+y_eq**2))
eqarea_data_x = y_eq*R
eqarea_data_y = x_eq*R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([eqarea_data_x], [
eqarea_data_y], marker='o', edgecolor=eqarea_outline, facecolor="#FFFFFF", s=15*self.GUI_RESOLUTION, lw=1, clip_on=False))
# do M/M0 plot
steps = self.Data[self.s]['zijdblock_steps']
flags = self.Data[self.s]['measurement_flag']
selected_af_meas = [
i for i in self.selected_meas if "T" in steps[i] or steps[i] == "0" and flags[i] != "b"]
selected_T_meas = [i for i in self.selected_meas if "C" in steps[i]
or steps[i] == "0" and flags[i] != "b"]
data = array(self.Data[self.s]['zijdblock'])
af_x = array(list(map(float, data[selected_af_meas, 0])))
af_y = array(
list(map(float, data[selected_af_meas, 3])))/float(data[0, 3])
T_x = array(list(map(float, data[selected_T_meas, 0])))
T_y = array(
list(map(float, data[selected_T_meas, 3])))/float(data[0, 3])
xmin, xmax = self.mplot.get_xlim()
ymin, ymax = self.mplot.get_ylim()
if T_x.astype(float).any() or T_y.astype(float).any():
self.selected_meas_artists.append(self.mplot.scatter(
T_x, T_y, facecolor=red_cover, edgecolor="#000000", marker='o', s=30, lw=1, clip_on=False, zorder=3))
self.mplot.set_xlim([xmin, xmax])
self.mplot.set_ylim([ymin, ymax])
xmin, xmax = self.mplot_af.get_xlim()
ymin, ymax = self.mplot_af.get_ylim()
if af_x.astype(float).any() or af_y.astype(float).any():
self.selected_meas_artists.append(self.mplot_af.scatter(
af_x, af_y, facecolor=blue_cover, edgecolor="#000000", marker='o', s=30, lw=1, clip_on=False, zorder=3))
self.mplot_af.set_xlim([xmin, xmax])
self.mplot_af.set_ylim([ymin, ymax])
self.canvas1.draw()
self.canvas2.draw()
self.canvas3.draw() | Goes through all measurements selected in logger and draws darker
marker over all specimen plots to display which measurements have
been selected | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1461-L1557 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.draw_interpretations | def draw_interpretations(self):
"""
draw the specimen interpretations on the zijderveld, the specimen
equal area, and the M/M0 plots
Alters
------
fit.lines, fit.points, fit.eqarea_data, fit.mm0_data,
zijplot, specimen_eqarea_interpretation, mplot_interpretation
"""
problems = {}
if self.s in self.pmag_results_data['specimens'] and \
self.pmag_results_data['specimens'][self.s] != []:
# self.zijplot.collections=[] # delete fit points
self.specimen_EA_xdata = [] # clear saved x positions on specimen equal area
self.specimen_EA_ydata = [] # clear saved y positions on specimen equal area
# check to see if there's a results log or not
if not (self.s in list(self.pmag_results_data['specimens'].keys())):
self.pmag_results_data['specimens'][self.s] = []
for fit in self.pmag_results_data['specimens'][self.s]:
pars = fit.get(self.COORDINATE_SYSTEM)
if (fit.tmin == None or fit.tmax == None or not pars):
if 'no bounds' not in list(problems.keys()):
problems['no bounds'] = []
problems['no bounds'].append(fit)
continue
for line in fit.lines:
if line in self.zijplot.lines:
self.zijplot.lines.remove(line)
for point in fit.points:
if point in self.zijplot.collections:
self.zijplot.collections.remove(point)
PCA_type = fit.PCA_type
tmin_index, tmax_index = self.get_indices(fit)
marker_shape = 'o'
SIZE = 20
if fit == self.current_fit:
marker_shape = 'D'
if pars['calculation_type'] == "DE-BFP":
marker_shape = 's'
if "bfv" in self.plane_display_box.GetValue():
marker_shape = '>'
if fit in self.bad_fits:
marker_shape = (4, 1, 0)
SIZE = 30*self.GUI_RESOLUTION
# Zijderveld plot
ymin, ymax = self.zijplot.get_ylim()
xmin, xmax = self.zijplot.get_xlim()
for i in range(1):
if (len(self.CART_rot[:, i]) <= tmin_index or
len(self.CART_rot[:, i]) <= tmax_index):
self.Add_text()
self.zijplot.scatter([self.CART_rot[:, 0][tmin_index], self.CART_rot[:, 0][tmax_index]], [-1 * self.CART_rot[:, 1][tmin_index], -
1 * self.CART_rot[:, 1][tmax_index]], marker=marker_shape, s=40, facecolor=fit.color, edgecolor='k', zorder=100, clip_on=False)
self.zijplot.scatter([self.CART_rot[:, 0][tmin_index], self.CART_rot[:, 0][tmax_index]], [-1 * self.CART_rot[:, 2][tmin_index], -
1 * self.CART_rot[:, 2][tmax_index]], marker=marker_shape, s=40, facecolor=fit.color, edgecolor='k', zorder=100, clip_on=False)
fit.points[0] = self.zijplot.collections[-1]
fit.points[1] = self.zijplot.collections[-2]
if pars['calculation_type'] in ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O']:
# rotated zijderveld
if self.COORDINATE_SYSTEM == 'geographic' and len(self.Data[self.s]['zdata_geo']) > 0:
first_data = self.Data[self.s]['zdata_geo'][0]
elif self.COORDINATE_SYSTEM == 'tilt-corrected' and len(self.Data[self.s]['zdata_tilt']) > 0:
first_data = self.Data[self.s]['zdata_tilt'][0]
else:
first_data = self.Data[self.s]['zdata'][0]
if self.COORDINATE_SYSTEM != 'specimen':
self.on_menu_change_speci_coord(-1)
pars = fit.get(self.COORDINATE_SYSTEM)
if self.ORTHO_PLOT_TYPE == 'N-S':
rotation_declination = 0.
elif self.ORTHO_PLOT_TYPE == 'E-W':
rotation_declination = 90.
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(pars.keys()) and type(pars['specimen_dec']) != str:
rotation_declination = pars['specimen_dec']
else:
rotation_declination = pmag.cart2dir(first_data)[0]
else: # Zijderveld
rotation_declination = pmag.cart2dir(first_data)[0]
PCA_dir = [pars['specimen_dec'], pars['specimen_inc'], 1]
PCA_dir_rotated = [PCA_dir[0] -
rotation_declination, PCA_dir[1], 1]
PCA_CART_rotated = pmag.dir2cart(PCA_dir_rotated)
slop_xy_PCA = -1*PCA_CART_rotated[1]/PCA_CART_rotated[0]
slop_xz_PCA = -1*PCA_CART_rotated[2]/PCA_CART_rotated[0]
# Center of mass rotated for plotting
CM_x = mean(self.CART_rot_good[:, 0][tmin_index:tmax_index+1])
CM_y = mean(self.CART_rot_good[:, 1][tmin_index:tmax_index+1])
CM_z = mean(self.CART_rot_good[:, 2][tmin_index:tmax_index+1])
# intercpet from the center of mass
intercept_xy_PCA = -1*CM_y - slop_xy_PCA*CM_x
intercept_xz_PCA = -1*CM_z - slop_xz_PCA*CM_x
xx = array([self.CART_rot[:, 0][tmax_index],
self.CART_rot[:, 0][tmin_index]])
yy = slop_xy_PCA*xx+intercept_xy_PCA
zz = slop_xz_PCA*xx+intercept_xz_PCA
if (pars['calculation_type'] in ['DE-BFL-A']): # CHECK
xx = [0.] + xx
yy = [0.] + yy
zz = [0.] + zz
self.zijplot.plot(xx, yy, '-', color=fit.color,
lw=3, alpha=0.5, zorder=0)
self.zijplot.plot(xx, zz, '-', color=fit.color,
lw=3, alpha=0.5, zorder=0)
fit.lines[0] = self.zijplot.lines[-2]
fit.lines[1] = self.zijplot.lines[-1]
# Equal Area plot
self.toolbar2.home()
# delete old interpretation data
for d in fit.eqarea_data:
if d in self.specimen_eqarea.lines:
self.specimen_eqarea.lines.remove(d)
if d in self.specimen_eqarea.collections:
self.specimen_eqarea.collections.remove(d)
if pars['calculation_type'] == 'DE-BFP' and \
self.plane_display_box.GetValue() != "poles":
# draw a best-fit plane
ymin, ymax = self.specimen_eqarea.get_ylim()
xmin, xmax = self.specimen_eqarea.get_xlim()
D_c, I_c = pmag.circ(
pars["specimen_dec"], pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
if self.plane_display_box.GetValue() == "u. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
"wp" in self.plane_display_box.GetValue():
self.specimen_eqarea.plot(X_c_d, Y_c_d, 'b')
if self.plane_display_box.GetValue() == "l. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
"wp" in self.plane_display_box.GetValue():
self.specimen_eqarea.plot(X_c_up, Y_c_up, 'c')
eqarea_x = XY[0]
eqarea_y = XY[1]
z = 1
fit.eqarea_data[0] = self.specimen_eqarea.lines[-1]
fit.eqarea_data[1] = self.specimen_eqarea.lines[-2]
if "bfv" in self.plane_display_box.GetValue():
if 'bfv_dec' not in list(pars.keys()) or 'bfv_inc' not in list(pars.keys()):
self.calculate_best_fit_vectors()
pars = fit.get(self.COORDINATE_SYSTEM)
try:
CART = pmag.dir2cart(
[pars['bfv_dec'], pars['bfv_inc'], 1])
x = CART[0]
y = CART[1]
z = CART[2]
R = array(sqrt(1-abs(z))/sqrt(x**2+y**2))
eqarea_x = y*R
eqarea_y = x*R
except KeyError:
print(("specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead" % (
element, fit.name)))
else:
CART = pmag.dir2cart(
[pars['specimen_dec'], pars['specimen_inc'], 1])
x = CART[0]
y = CART[1]
z = CART[2]
R = array(sqrt(1-abs(z))/sqrt(x**2+y**2))
eqarea_x = y*R
eqarea_y = x*R
self.specimen_EA_xdata.append(eqarea_x)
self.specimen_EA_ydata.append(eqarea_y)
if z > 0:
FC = fit.color
EC = '0.1'
else:
FC = (1, 1, 1)
EC = fit.color
self.specimen_eqarea.scatter([eqarea_x], [
eqarea_y], marker=marker_shape, edgecolor=EC, facecolor=FC, s=SIZE, lw=1, clip_on=False)
fit.eqarea_data[0] = self.specimen_eqarea.collections[-1]
# M/M0 plot (only if C or mT - not both)
for d in fit.mm0_data:
if d in self.mplot.collections:
self.mplot.collections.remove(d)
elif d in self.mplot_af.collections:
self.mplot_af.collections.remove(d)
temp_data_exists = any(
['C' in step for step in self.Data[self.s]['zijdblock_steps']])
af_data_exists = any(
['T' in step for step in self.Data[self.s]['zijdblock_steps']])
if "C" in fit.tmin and temp_data_exists:
tmin_ax = self.mplot
elif af_data_exists:
tmin_ax = self.mplot_af
else:
tmin_ax = self.mplot
if "C" in fit.tmax and temp_data_exists:
tmax_ax = self.mplot
elif af_data_exists:
tmax_ax = self.mplot_af
else:
tmax_ax = self.mplot
tmin_ymin, tmin_ymax = tmin_ax.get_ylim()
tmin_xmin, tmin_xmax = tmin_ax.get_xlim()
tmax_ymin, tmax_ymax = tmax_ax.get_ylim()
tmax_xmin, tmax_xmax = tmax_ax.get_xlim()
fit.mm0_data[0] = tmin_ax.scatter([self.Data[self.s]['zijdblock'][tmin_index][0]], [self.Data[self.s]['zijdblock'][tmin_index][3] /
self.Data[self.s]['zijdblock'][0][3]], marker=marker_shape, s=30, facecolor=fit.color, edgecolor='k', zorder=10000, clip_on=False)
fit.mm0_data[1] = tmax_ax.scatter([self.Data[self.s]['zijdblock'][tmax_index][0]], [self.Data[self.s]['zijdblock'][tmax_index][3] /
self.Data[self.s]['zijdblock'][0][3]], marker=marker_shape, s=30, facecolor=fit.color, edgecolor='k', zorder=10000, clip_on=False)
tmin_ax.set_xlim(tmin_xmin, tmin_xmax)
tmin_ax.set_ylim(tmin_ymin, tmin_ymax)
tmax_ax.set_xlim(tmax_xmin, tmax_xmax)
tmax_ax.set_ylim(tmax_ymin, tmax_ymax)
# logger
if fit == self.current_fit:
for item in range(self.logger.GetItemCount()):
if item >= tmin_index and item <= tmax_index:
self.logger.SetItemBackgroundColour(item, "LIGHT BLUE")
else:
self.logger.SetItemBackgroundColour(item, "WHITE")
try:
relability = self.Data[self.s]['measurement_flag'][item]
except IndexError:
relability = 'b'
if relability == 'b':
self.logger.SetItemBackgroundColour(item, "red")
if problems != {}:
if 'no bounds' in list(problems.keys()):
text = "Fits "
for problem in problems['no bounds']:
text += fit.name + ' '
text += " for the current specimen are missing bounds and will not be displayed."
self.canvas1.draw()
self.canvas2.draw()
self.canvas3.draw() | python | def draw_interpretations(self):
"""
draw the specimen interpretations on the zijderveld, the specimen
equal area, and the M/M0 plots
Alters
------
fit.lines, fit.points, fit.eqarea_data, fit.mm0_data,
zijplot, specimen_eqarea_interpretation, mplot_interpretation
"""
problems = {}
if self.s in self.pmag_results_data['specimens'] and \
self.pmag_results_data['specimens'][self.s] != []:
# self.zijplot.collections=[] # delete fit points
self.specimen_EA_xdata = [] # clear saved x positions on specimen equal area
self.specimen_EA_ydata = [] # clear saved y positions on specimen equal area
# check to see if there's a results log or not
if not (self.s in list(self.pmag_results_data['specimens'].keys())):
self.pmag_results_data['specimens'][self.s] = []
for fit in self.pmag_results_data['specimens'][self.s]:
pars = fit.get(self.COORDINATE_SYSTEM)
if (fit.tmin == None or fit.tmax == None or not pars):
if 'no bounds' not in list(problems.keys()):
problems['no bounds'] = []
problems['no bounds'].append(fit)
continue
for line in fit.lines:
if line in self.zijplot.lines:
self.zijplot.lines.remove(line)
for point in fit.points:
if point in self.zijplot.collections:
self.zijplot.collections.remove(point)
PCA_type = fit.PCA_type
tmin_index, tmax_index = self.get_indices(fit)
marker_shape = 'o'
SIZE = 20
if fit == self.current_fit:
marker_shape = 'D'
if pars['calculation_type'] == "DE-BFP":
marker_shape = 's'
if "bfv" in self.plane_display_box.GetValue():
marker_shape = '>'
if fit in self.bad_fits:
marker_shape = (4, 1, 0)
SIZE = 30*self.GUI_RESOLUTION
# Zijderveld plot
ymin, ymax = self.zijplot.get_ylim()
xmin, xmax = self.zijplot.get_xlim()
for i in range(1):
if (len(self.CART_rot[:, i]) <= tmin_index or
len(self.CART_rot[:, i]) <= tmax_index):
self.Add_text()
self.zijplot.scatter([self.CART_rot[:, 0][tmin_index], self.CART_rot[:, 0][tmax_index]], [-1 * self.CART_rot[:, 1][tmin_index], -
1 * self.CART_rot[:, 1][tmax_index]], marker=marker_shape, s=40, facecolor=fit.color, edgecolor='k', zorder=100, clip_on=False)
self.zijplot.scatter([self.CART_rot[:, 0][tmin_index], self.CART_rot[:, 0][tmax_index]], [-1 * self.CART_rot[:, 2][tmin_index], -
1 * self.CART_rot[:, 2][tmax_index]], marker=marker_shape, s=40, facecolor=fit.color, edgecolor='k', zorder=100, clip_on=False)
fit.points[0] = self.zijplot.collections[-1]
fit.points[1] = self.zijplot.collections[-2]
if pars['calculation_type'] in ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O']:
# rotated zijderveld
if self.COORDINATE_SYSTEM == 'geographic' and len(self.Data[self.s]['zdata_geo']) > 0:
first_data = self.Data[self.s]['zdata_geo'][0]
elif self.COORDINATE_SYSTEM == 'tilt-corrected' and len(self.Data[self.s]['zdata_tilt']) > 0:
first_data = self.Data[self.s]['zdata_tilt'][0]
else:
first_data = self.Data[self.s]['zdata'][0]
if self.COORDINATE_SYSTEM != 'specimen':
self.on_menu_change_speci_coord(-1)
pars = fit.get(self.COORDINATE_SYSTEM)
if self.ORTHO_PLOT_TYPE == 'N-S':
rotation_declination = 0.
elif self.ORTHO_PLOT_TYPE == 'E-W':
rotation_declination = 90.
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(pars.keys()) and type(pars['specimen_dec']) != str:
rotation_declination = pars['specimen_dec']
else:
rotation_declination = pmag.cart2dir(first_data)[0]
else: # Zijderveld
rotation_declination = pmag.cart2dir(first_data)[0]
PCA_dir = [pars['specimen_dec'], pars['specimen_inc'], 1]
PCA_dir_rotated = [PCA_dir[0] -
rotation_declination, PCA_dir[1], 1]
PCA_CART_rotated = pmag.dir2cart(PCA_dir_rotated)
slop_xy_PCA = -1*PCA_CART_rotated[1]/PCA_CART_rotated[0]
slop_xz_PCA = -1*PCA_CART_rotated[2]/PCA_CART_rotated[0]
# Center of mass rotated for plotting
CM_x = mean(self.CART_rot_good[:, 0][tmin_index:tmax_index+1])
CM_y = mean(self.CART_rot_good[:, 1][tmin_index:tmax_index+1])
CM_z = mean(self.CART_rot_good[:, 2][tmin_index:tmax_index+1])
# intercpet from the center of mass
intercept_xy_PCA = -1*CM_y - slop_xy_PCA*CM_x
intercept_xz_PCA = -1*CM_z - slop_xz_PCA*CM_x
xx = array([self.CART_rot[:, 0][tmax_index],
self.CART_rot[:, 0][tmin_index]])
yy = slop_xy_PCA*xx+intercept_xy_PCA
zz = slop_xz_PCA*xx+intercept_xz_PCA
if (pars['calculation_type'] in ['DE-BFL-A']): # CHECK
xx = [0.] + xx
yy = [0.] + yy
zz = [0.] + zz
self.zijplot.plot(xx, yy, '-', color=fit.color,
lw=3, alpha=0.5, zorder=0)
self.zijplot.plot(xx, zz, '-', color=fit.color,
lw=3, alpha=0.5, zorder=0)
fit.lines[0] = self.zijplot.lines[-2]
fit.lines[1] = self.zijplot.lines[-1]
# Equal Area plot
self.toolbar2.home()
# delete old interpretation data
for d in fit.eqarea_data:
if d in self.specimen_eqarea.lines:
self.specimen_eqarea.lines.remove(d)
if d in self.specimen_eqarea.collections:
self.specimen_eqarea.collections.remove(d)
if pars['calculation_type'] == 'DE-BFP' and \
self.plane_display_box.GetValue() != "poles":
# draw a best-fit plane
ymin, ymax = self.specimen_eqarea.get_ylim()
xmin, xmax = self.specimen_eqarea.get_xlim()
D_c, I_c = pmag.circ(
pars["specimen_dec"], pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
if self.plane_display_box.GetValue() == "u. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
"wp" in self.plane_display_box.GetValue():
self.specimen_eqarea.plot(X_c_d, Y_c_d, 'b')
if self.plane_display_box.GetValue() == "l. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
"wp" in self.plane_display_box.GetValue():
self.specimen_eqarea.plot(X_c_up, Y_c_up, 'c')
eqarea_x = XY[0]
eqarea_y = XY[1]
z = 1
fit.eqarea_data[0] = self.specimen_eqarea.lines[-1]
fit.eqarea_data[1] = self.specimen_eqarea.lines[-2]
if "bfv" in self.plane_display_box.GetValue():
if 'bfv_dec' not in list(pars.keys()) or 'bfv_inc' not in list(pars.keys()):
self.calculate_best_fit_vectors()
pars = fit.get(self.COORDINATE_SYSTEM)
try:
CART = pmag.dir2cart(
[pars['bfv_dec'], pars['bfv_inc'], 1])
x = CART[0]
y = CART[1]
z = CART[2]
R = array(sqrt(1-abs(z))/sqrt(x**2+y**2))
eqarea_x = y*R
eqarea_y = x*R
except KeyError:
print(("specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead" % (
element, fit.name)))
else:
CART = pmag.dir2cart(
[pars['specimen_dec'], pars['specimen_inc'], 1])
x = CART[0]
y = CART[1]
z = CART[2]
R = array(sqrt(1-abs(z))/sqrt(x**2+y**2))
eqarea_x = y*R
eqarea_y = x*R
self.specimen_EA_xdata.append(eqarea_x)
self.specimen_EA_ydata.append(eqarea_y)
if z > 0:
FC = fit.color
EC = '0.1'
else:
FC = (1, 1, 1)
EC = fit.color
self.specimen_eqarea.scatter([eqarea_x], [
eqarea_y], marker=marker_shape, edgecolor=EC, facecolor=FC, s=SIZE, lw=1, clip_on=False)
fit.eqarea_data[0] = self.specimen_eqarea.collections[-1]
# M/M0 plot (only if C or mT - not both)
for d in fit.mm0_data:
if d in self.mplot.collections:
self.mplot.collections.remove(d)
elif d in self.mplot_af.collections:
self.mplot_af.collections.remove(d)
temp_data_exists = any(
['C' in step for step in self.Data[self.s]['zijdblock_steps']])
af_data_exists = any(
['T' in step for step in self.Data[self.s]['zijdblock_steps']])
if "C" in fit.tmin and temp_data_exists:
tmin_ax = self.mplot
elif af_data_exists:
tmin_ax = self.mplot_af
else:
tmin_ax = self.mplot
if "C" in fit.tmax and temp_data_exists:
tmax_ax = self.mplot
elif af_data_exists:
tmax_ax = self.mplot_af
else:
tmax_ax = self.mplot
tmin_ymin, tmin_ymax = tmin_ax.get_ylim()
tmin_xmin, tmin_xmax = tmin_ax.get_xlim()
tmax_ymin, tmax_ymax = tmax_ax.get_ylim()
tmax_xmin, tmax_xmax = tmax_ax.get_xlim()
fit.mm0_data[0] = tmin_ax.scatter([self.Data[self.s]['zijdblock'][tmin_index][0]], [self.Data[self.s]['zijdblock'][tmin_index][3] /
self.Data[self.s]['zijdblock'][0][3]], marker=marker_shape, s=30, facecolor=fit.color, edgecolor='k', zorder=10000, clip_on=False)
fit.mm0_data[1] = tmax_ax.scatter([self.Data[self.s]['zijdblock'][tmax_index][0]], [self.Data[self.s]['zijdblock'][tmax_index][3] /
self.Data[self.s]['zijdblock'][0][3]], marker=marker_shape, s=30, facecolor=fit.color, edgecolor='k', zorder=10000, clip_on=False)
tmin_ax.set_xlim(tmin_xmin, tmin_xmax)
tmin_ax.set_ylim(tmin_ymin, tmin_ymax)
tmax_ax.set_xlim(tmax_xmin, tmax_xmax)
tmax_ax.set_ylim(tmax_ymin, tmax_ymax)
# logger
if fit == self.current_fit:
for item in range(self.logger.GetItemCount()):
if item >= tmin_index and item <= tmax_index:
self.logger.SetItemBackgroundColour(item, "LIGHT BLUE")
else:
self.logger.SetItemBackgroundColour(item, "WHITE")
try:
relability = self.Data[self.s]['measurement_flag'][item]
except IndexError:
relability = 'b'
if relability == 'b':
self.logger.SetItemBackgroundColour(item, "red")
if problems != {}:
if 'no bounds' in list(problems.keys()):
text = "Fits "
for problem in problems['no bounds']:
text += fit.name + ' '
text += " for the current specimen are missing bounds and will not be displayed."
self.canvas1.draw()
self.canvas2.draw()
self.canvas3.draw() | draw the specimen interpretations on the zijderveld, the specimen
equal area, and the M/M0 plots
Alters
------
fit.lines, fit.points, fit.eqarea_data, fit.mm0_data,
zijplot, specimen_eqarea_interpretation, mplot_interpretation | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1559-L1833 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.plot_high_levels_data | def plot_high_levels_data(self):
"""
Complicated function that draws the high level mean plot on canvas4,
draws all specimen, sample, or site interpretations according to the
UPPER_LEVEL_SHOW variable, draws the fisher mean or fisher mean by
polarity of all interpretations displayed, draws sample orientation
check if on, and if interpretation editor is open it calls the
interpretation editor to have it draw the same things.
"""
# self.toolbar4.home()
high_level = self.level_box.GetValue()
self.UPPER_LEVEL_NAME = self.level_names.GetValue()
self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue()
draw_net(self.high_level_eqarea)
what_is_it = self.level_box.GetValue()+": "+self.level_names.GetValue()
self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
if self.ie_open:
self.ie.draw_net()
self.ie.write(what_is_it)
# plot elements directions
self.plot_high_level_elements()
# plot elements means
self.plot_high_level_means()
# update high level stats after plotting in case of change
self.update_high_level_stats()
# check sample orietation
if self.check_orient_on:
self.calc_and_plot_sample_orient_check()
self.canvas4.draw()
if self.ie_open:
self.ie.draw() | python | def plot_high_levels_data(self):
"""
Complicated function that draws the high level mean plot on canvas4,
draws all specimen, sample, or site interpretations according to the
UPPER_LEVEL_SHOW variable, draws the fisher mean or fisher mean by
polarity of all interpretations displayed, draws sample orientation
check if on, and if interpretation editor is open it calls the
interpretation editor to have it draw the same things.
"""
# self.toolbar4.home()
high_level = self.level_box.GetValue()
self.UPPER_LEVEL_NAME = self.level_names.GetValue()
self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue()
draw_net(self.high_level_eqarea)
what_is_it = self.level_box.GetValue()+": "+self.level_names.GetValue()
self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {
'family': self.font_type, 'fontsize': 10*self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'})
if self.ie_open:
self.ie.draw_net()
self.ie.write(what_is_it)
# plot elements directions
self.plot_high_level_elements()
# plot elements means
self.plot_high_level_means()
# update high level stats after plotting in case of change
self.update_high_level_stats()
# check sample orietation
if self.check_orient_on:
self.calc_and_plot_sample_orient_check()
self.canvas4.draw()
if self.ie_open:
self.ie.draw() | Complicated function that draws the high level mean plot on canvas4,
draws all specimen, sample, or site interpretations according to the
UPPER_LEVEL_SHOW variable, draws the fisher mean or fisher mean by
polarity of all interpretations displayed, draws sample orientation
check if on, and if interpretation editor is open it calls the
interpretation editor to have it draw the same things. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1835-L1873 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_levels_and_coordinates_names | def get_levels_and_coordinates_names(self):
"""
Get the current level of the high level mean plot and the name of
the corrisponding site, study, etc. As well as the code for the
current coordinate system.
Returns
-------
(high_level_type,high_level_name,coordinate_system) : tuple object
containing current high level type, name, and coordinate system
being analyzed
"""
if self.COORDINATE_SYSTEM == "geographic":
dirtype = 'DA-DIR-GEO'
elif self.COORDINATE_SYSTEM == "tilt-corrected":
dirtype = 'DA-DIR-TILT'
else:
dirtype = 'DA-DIR'
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
return (high_level_type, high_level_name, dirtype) | python | def get_levels_and_coordinates_names(self):
"""
Get the current level of the high level mean plot and the name of
the corrisponding site, study, etc. As well as the code for the
current coordinate system.
Returns
-------
(high_level_type,high_level_name,coordinate_system) : tuple object
containing current high level type, name, and coordinate system
being analyzed
"""
if self.COORDINATE_SYSTEM == "geographic":
dirtype = 'DA-DIR-GEO'
elif self.COORDINATE_SYSTEM == "tilt-corrected":
dirtype = 'DA-DIR-TILT'
else:
dirtype = 'DA-DIR'
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
return (high_level_type, high_level_name, dirtype) | Get the current level of the high level mean plot and the name of
the corrisponding site, study, etc. As well as the code for the
current coordinate system.
Returns
-------
(high_level_type,high_level_name,coordinate_system) : tuple object
containing current high level type, name, and coordinate system
being analyzed | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1875-L1903 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.calc_and_plot_sample_orient_check | def calc_and_plot_sample_orient_check(self):
"""
If sample orientation is on plots the wrong arrow, wrong compass,
and rotated sample error directions for the current specimen
interpretation on the high level mean plot so that you can check
sample orientation good/bad.
"""
fit = self.current_fit
if fit == None:
return
pars = fit.get('specimen')
if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(pars.keys()):
fit.put(self.s, 'specimen', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.PCA_type))
pars = fit.get('specimen')
if not pars:
self.user_warning(
"could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data" % (fit.name, self.s))
return
dec, inc = pars['specimen_dec'], pars['specimen_inc']
sample = self.Data_hierarchy['sample_of_specimen'][self.s]
if sample not in list(self.Data_info["er_samples"].keys()) or "sample_azimuth" not in list(self.Data_info["er_samples"][sample].keys()) or "sample_dip" not in list(self.Data_info["er_samples"][sample].keys()):
self.user_warning(
"Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s" % sample)
self.check_orient_on = False # stop trying because this raises a ton of warnings
return
try:
azimuth = float(self.Data_info["er_samples"][sample]['sample_azimuth'])
dip = float(self.Data_info["er_samples"][sample]['sample_dip'])
except TypeError:
self.user_warning(
"Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s" % sample)
self.check_orient_on = False # stop trying because this raises a ton of warnings
return
# first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i)
d, i = pmag.dogeo(dec, inc, azimuth-180., -dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [
XY[1]], marker='^', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
# Then test wrong end of compass (take az-180.)
d, i = pmag.dogeo(dec, inc, azimuth-180., dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [
XY[1]], marker='v', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
# did the sample spin in the hole?
# now spin around specimen's z
X_up, Y_up, X_d, Y_d = [], [], [], []
for incr in range(0, 360, 5):
d, i = pmag.dogeo(dec+incr, inc, azimuth, dip)
XY = pmag.dimap(d, i)
if i >= 0:
X_d.append(XY[0])
Y_d.append(XY[1])
else:
X_up.append(XY[0])
Y_up.append(XY[1])
self.high_level_eqarea.scatter(
X_d, Y_d, marker='.', color=fit.color, alpha=.5, s=SIZE/2, lw=1, clip_on=False)
self.high_level_eqarea.scatter(
X_up, Y_up, marker='.', color=fit.color, s=SIZE/2, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter(X_d, Y_d, marker='.', color=fit.color,
alpha=.5, s=SIZE/2, lw=1, clip_on=False)
self.ie.scatter(X_up, Y_up, marker='.',
color=fit.color, s=SIZE/2, lw=1, clip_on=False) | python | def calc_and_plot_sample_orient_check(self):
"""
If sample orientation is on plots the wrong arrow, wrong compass,
and rotated sample error directions for the current specimen
interpretation on the high level mean plot so that you can check
sample orientation good/bad.
"""
fit = self.current_fit
if fit == None:
return
pars = fit.get('specimen')
if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(pars.keys()):
fit.put(self.s, 'specimen', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.PCA_type))
pars = fit.get('specimen')
if not pars:
self.user_warning(
"could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data" % (fit.name, self.s))
return
dec, inc = pars['specimen_dec'], pars['specimen_inc']
sample = self.Data_hierarchy['sample_of_specimen'][self.s]
if sample not in list(self.Data_info["er_samples"].keys()) or "sample_azimuth" not in list(self.Data_info["er_samples"][sample].keys()) or "sample_dip" not in list(self.Data_info["er_samples"][sample].keys()):
self.user_warning(
"Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s" % sample)
self.check_orient_on = False # stop trying because this raises a ton of warnings
return
try:
azimuth = float(self.Data_info["er_samples"][sample]['sample_azimuth'])
dip = float(self.Data_info["er_samples"][sample]['sample_dip'])
except TypeError:
self.user_warning(
"Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s" % sample)
self.check_orient_on = False # stop trying because this raises a ton of warnings
return
# first test wrong direction of drill arrows (flip drill direction in opposite direction and re-calculate d,i)
d, i = pmag.dogeo(dec, inc, azimuth-180., -dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [
XY[1]], marker='^', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
# Then test wrong end of compass (take az-180.)
d, i = pmag.dogeo(dec, inc, azimuth-180., dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [
XY[1]], marker='v', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
# did the sample spin in the hole?
# now spin around specimen's z
X_up, Y_up, X_d, Y_d = [], [], [], []
for incr in range(0, 360, 5):
d, i = pmag.dogeo(dec+incr, inc, azimuth, dip)
XY = pmag.dimap(d, i)
if i >= 0:
X_d.append(XY[0])
Y_d.append(XY[1])
else:
X_up.append(XY[0])
Y_up.append(XY[1])
self.high_level_eqarea.scatter(
X_d, Y_d, marker='.', color=fit.color, alpha=.5, s=SIZE/2, lw=1, clip_on=False)
self.high_level_eqarea.scatter(
X_up, Y_up, marker='.', color=fit.color, s=SIZE/2, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter(X_d, Y_d, marker='.', color=fit.color,
alpha=.5, s=SIZE/2, lw=1, clip_on=False)
self.ie.scatter(X_up, Y_up, marker='.',
color=fit.color, s=SIZE/2, lw=1, clip_on=False) | If sample orientation is on plots the wrong arrow, wrong compass,
and rotated sample error directions for the current specimen
interpretation on the high level mean plot so that you can check
sample orientation good/bad. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L1997-L2080 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.plot_high_level_equalarea | def plot_high_level_equalarea(self, element):
"""
Given a GUI element such as a sample or specimen tries to plot to
high level mean plot
"""
if self.ie_open:
high_level = self.ie.show_box.GetValue()
else:
high_level = self.UPPER_LEVEL_SHOW
fits = []
if high_level not in self.pmag_results_data:
print(("no level: " + str(high_level)))
return
if element not in self.pmag_results_data[high_level]:
print(("no element: " + str(element)))
return
if self.mean_fit == 'All':
fits = self.pmag_results_data[high_level][element]
elif self.mean_fit != 'None' and self.mean_fit != None:
fits = [fit for fit in self.pmag_results_data[high_level]
[element] if fit.name == self.mean_fit]
else:
fits = []
fig = self.high_level_eqarea
if fits:
for fit in fits:
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
if element in self.specimens:
fit.put(element, self.COORDINATE_SYSTEM, self.get_PCA_parameters(
element, fit, fit.tmin, fit.tmax, self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue()))
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
print(("No data for %s on element %s" %
(fit.name, element)))
return
if "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec = pars["specimen_dec"]
inc = pars["specimen_inc"]
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec = pars["dec"]
inc = pars["inc"]
else:
print(("-E- no dec and inc values for:\n" + str(fit)))
XY = pmag.dimap(dec, inc)
if inc > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
marker_shape = 'o'
if pars['calculation_type'] == "DE-BFP":
marker_shape = 's'
if 'bfv' in self.plane_display_box.GetValue():
marker_shape = '>'
SIZE = 25*self.GUI_RESOLUTION
if fit == self.current_fit:
marker_shape = 'D'
if fit in self.bad_fits:
marker_shape = (4, 1, 0)
SIZE = 25*self.GUI_RESOLUTION
# draw a best-fit plane
if pars['calculation_type'] == 'DE-BFP' and \
self.plane_display_box.GetValue() != "poles":
if "plane" in self.plane_display_box.GetValue() or "hemisphere" in self.plane_display_box.GetValue() or "wp" in self.plane_display_box.GetValue():
ymin, ymax = self.specimen_eqarea.get_ylim()
xmin, xmax = self.specimen_eqarea.get_xlim()
D_c, I_c = pmag.circ(
pars["specimen_dec"], pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
if self.plane_display_box.GetValue() == "u. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
self.plane_display_box.GetValue() == "wp + bfv":
fig.plot(X_c_d, Y_c_d, 'b')
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b')
if self.plane_display_box.GetValue() == "l. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
self.plane_display_box.GetValue() == "wp + bfv":
fig.plot(X_c_up, Y_c_up, 'c')
if self.ie_open:
self.ie.plot(X_c_up, Y_c_up, 'c')
if "bfv" in self.plane_display_box.GetValue():
if 'bfv_dec' not in list(pars.keys()) or 'bfv_inc' not in list(pars.keys()):
self.calculate_best_fit_vectors()
pars = fit.get(self.COORDINATE_SYSTEM)
try:
XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc'])
except KeyError:
print(("specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead" % (
element, fit.name)))
# self.user_warning("There was an error calculating bfv for %s of %s, please raise an issue on github and/or contact a dev about this problem and restart the GUI"%(fit.name,element))
if inc > 0:
FC = fit.color
else:
FC = 'white'
self.high_EA_xdata.append(XY[0])
self.high_EA_ydata.append(XY[1])
fig.scatter([XY[0]], [XY[1]], marker=marker_shape,
edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape,
edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) | python | def plot_high_level_equalarea(self, element):
"""
Given a GUI element such as a sample or specimen tries to plot to
high level mean plot
"""
if self.ie_open:
high_level = self.ie.show_box.GetValue()
else:
high_level = self.UPPER_LEVEL_SHOW
fits = []
if high_level not in self.pmag_results_data:
print(("no level: " + str(high_level)))
return
if element not in self.pmag_results_data[high_level]:
print(("no element: " + str(element)))
return
if self.mean_fit == 'All':
fits = self.pmag_results_data[high_level][element]
elif self.mean_fit != 'None' and self.mean_fit != None:
fits = [fit for fit in self.pmag_results_data[high_level]
[element] if fit.name == self.mean_fit]
else:
fits = []
fig = self.high_level_eqarea
if fits:
for fit in fits:
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
if element in self.specimens:
fit.put(element, self.COORDINATE_SYSTEM, self.get_PCA_parameters(
element, fit, fit.tmin, fit.tmax, self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue()))
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
print(("No data for %s on element %s" %
(fit.name, element)))
return
if "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec = pars["specimen_dec"]
inc = pars["specimen_inc"]
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec = pars["dec"]
inc = pars["inc"]
else:
print(("-E- no dec and inc values for:\n" + str(fit)))
XY = pmag.dimap(dec, inc)
if inc > 0:
FC = fit.color
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15*self.GUI_RESOLUTION
marker_shape = 'o'
if pars['calculation_type'] == "DE-BFP":
marker_shape = 's'
if 'bfv' in self.plane_display_box.GetValue():
marker_shape = '>'
SIZE = 25*self.GUI_RESOLUTION
if fit == self.current_fit:
marker_shape = 'D'
if fit in self.bad_fits:
marker_shape = (4, 1, 0)
SIZE = 25*self.GUI_RESOLUTION
# draw a best-fit plane
if pars['calculation_type'] == 'DE-BFP' and \
self.plane_display_box.GetValue() != "poles":
if "plane" in self.plane_display_box.GetValue() or "hemisphere" in self.plane_display_box.GetValue() or "wp" in self.plane_display_box.GetValue():
ymin, ymax = self.specimen_eqarea.get_ylim()
xmin, xmax = self.specimen_eqarea.get_xlim()
D_c, I_c = pmag.circ(
pars["specimen_dec"], pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
if self.plane_display_box.GetValue() == "u. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
self.plane_display_box.GetValue() == "wp + bfv":
fig.plot(X_c_d, Y_c_d, 'b')
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b')
if self.plane_display_box.GetValue() == "l. hemisphere" or \
self.plane_display_box.GetValue() == "whole plane" or \
self.plane_display_box.GetValue() == "wp + bfv":
fig.plot(X_c_up, Y_c_up, 'c')
if self.ie_open:
self.ie.plot(X_c_up, Y_c_up, 'c')
if "bfv" in self.plane_display_box.GetValue():
if 'bfv_dec' not in list(pars.keys()) or 'bfv_inc' not in list(pars.keys()):
self.calculate_best_fit_vectors()
pars = fit.get(self.COORDINATE_SYSTEM)
try:
XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc'])
except KeyError:
print(("specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead" % (
element, fit.name)))
# self.user_warning("There was an error calculating bfv for %s of %s, please raise an issue on github and/or contact a dev about this problem and restart the GUI"%(fit.name,element))
if inc > 0:
FC = fit.color
else:
FC = 'white'
self.high_EA_xdata.append(XY[0])
self.high_EA_ydata.append(XY[1])
fig.scatter([XY[0]], [XY[1]], marker=marker_shape,
edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape,
edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) | Given a GUI element such as a sample or specimen tries to plot to
high level mean plot | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2082-L2201 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.plot_eqarea_pars | def plot_eqarea_pars(self, pars, fig):
"""
Given a dictionary of parameters (pars) that is returned from
pmag.domean plots those pars to the given fig
"""
if pars == {}:
pass
elif 'calculation_type' in list(pars.keys()) and pars['calculation_type'] == 'DE-BFP':
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
D_c, I_c = pmag.circ(pars["specimen_dec"],
pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
fig.plot(X_c_d, Y_c_d, 'b', lw=0.5)
fig.plot(X_c_up, Y_c_up, 'c', lw=0.5)
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5)
self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax)
# plot best-fit direction
else:
if "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec = pars["specimen_dec"]
inc = pars["specimen_inc"]
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec = pars["dec"]
inc = pars["inc"]
else:
print(("either dec or inc missing from values recived for high level plot, was given %s, aborting" % (
str(pars))))
return
XY = pmag.dimap(float(dec), float(inc))
if inc > 0:
if 'color' in list(pars.keys()):
FC = pars['color']
EC = pars['color']
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'grey'
EC = 'grey'
SIZE = 15*self.GUI_RESOLUTION
else:
if 'color' in list(pars.keys()):
FC = 'white'
EC = pars['color']
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
EC = 'grey'
SIZE = 15*self.GUI_RESOLUTION
fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,
facecolor=FC, s=SIZE, lw=1, clip_on=False) | python | def plot_eqarea_pars(self, pars, fig):
"""
Given a dictionary of parameters (pars) that is returned from
pmag.domean plots those pars to the given fig
"""
if pars == {}:
pass
elif 'calculation_type' in list(pars.keys()) and pars['calculation_type'] == 'DE-BFP':
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
D_c, I_c = pmag.circ(pars["specimen_dec"],
pars["specimen_inc"], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
fig.plot(X_c_d, Y_c_d, 'b', lw=0.5)
fig.plot(X_c_up, Y_c_up, 'c', lw=0.5)
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5)
self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax)
# plot best-fit direction
else:
if "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec = pars["specimen_dec"]
inc = pars["specimen_inc"]
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec = pars["dec"]
inc = pars["inc"]
else:
print(("either dec or inc missing from values recived for high level plot, was given %s, aborting" % (
str(pars))))
return
XY = pmag.dimap(float(dec), float(inc))
if inc > 0:
if 'color' in list(pars.keys()):
FC = pars['color']
EC = pars['color']
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'grey'
EC = 'grey'
SIZE = 15*self.GUI_RESOLUTION
else:
if 'color' in list(pars.keys()):
FC = 'white'
EC = pars['color']
SIZE = 15*self.GUI_RESOLUTION
else:
FC = 'white'
EC = 'grey'
SIZE = 15*self.GUI_RESOLUTION
fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,
facecolor=FC, s=SIZE, lw=1, clip_on=False) | Given a dictionary of parameters (pars) that is returned from
pmag.domean plots those pars to the given fig | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2203-L2269 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.plot_eqarea_mean | def plot_eqarea_mean(self, meanpars, fig):
"""
Given a dictionary of parameters from pmag.dofisher, pmag.dolnp, or
pmag.dobingham (meanpars) plots parameters to fig
"""
mpars_to_plot = []
if meanpars == {}:
return
if meanpars['calculation_type'] == 'Fisher by polarity':
for mode in list(meanpars.keys()):
if type(meanpars[mode]) == dict and meanpars[mode] != {}:
mpars_to_plot.append(meanpars[mode])
else:
mpars_to_plot.append(meanpars)
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
if 'color' in meanpars:
color = meanpars['color']
else:
color = 'black'
size, alpha = 30, 1.
# put on the mean direction
for mpars in mpars_to_plot:
XYM = pmag.dimap(float(mpars["dec"]), float(mpars["inc"]))
if float(mpars["inc"]) > 0:
FC = color
EC = 'black'
else:
FC = 'white'
EC = color
self.displayed_means.append(fig.scatter([XYM[0]], [
XYM[1]], marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha))
if "alpha95" in list(mpars.keys()):
# get the alpha95
Xcirc, Ycirc = [], []
Da95, Ia95 = pmag.circ(float(mpars["dec"]), float(
mpars["inc"]), float(mpars["alpha95"]))
for k in range(len(Da95)):
XY = pmag.dimap(Da95[k], Ia95[k])
Xcirc.append(XY[0])
Ycirc.append(XY[1])
self.displayed_means.append(
fig.plot(Xcirc, Ycirc, color, alpha=alpha))
if self.ie_open:
self.displayed_means.append(self.ie.scatter([XYM[0]], [
XYM[1]], marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha))
if "alpha95" in list(mpars.keys()):
self.displayed_means.append(
self.ie.plot(Xcirc, Ycirc, color, alpha=alpha))
self.ie.eqarea.set_xlim(xmin, xmax)
self.ie.eqarea.set_ylim(ymin, ymax)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax) | python | def plot_eqarea_mean(self, meanpars, fig):
"""
Given a dictionary of parameters from pmag.dofisher, pmag.dolnp, or
pmag.dobingham (meanpars) plots parameters to fig
"""
mpars_to_plot = []
if meanpars == {}:
return
if meanpars['calculation_type'] == 'Fisher by polarity':
for mode in list(meanpars.keys()):
if type(meanpars[mode]) == dict and meanpars[mode] != {}:
mpars_to_plot.append(meanpars[mode])
else:
mpars_to_plot.append(meanpars)
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
if 'color' in meanpars:
color = meanpars['color']
else:
color = 'black'
size, alpha = 30, 1.
# put on the mean direction
for mpars in mpars_to_plot:
XYM = pmag.dimap(float(mpars["dec"]), float(mpars["inc"]))
if float(mpars["inc"]) > 0:
FC = color
EC = 'black'
else:
FC = 'white'
EC = color
self.displayed_means.append(fig.scatter([XYM[0]], [
XYM[1]], marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha))
if "alpha95" in list(mpars.keys()):
# get the alpha95
Xcirc, Ycirc = [], []
Da95, Ia95 = pmag.circ(float(mpars["dec"]), float(
mpars["inc"]), float(mpars["alpha95"]))
for k in range(len(Da95)):
XY = pmag.dimap(Da95[k], Ia95[k])
Xcirc.append(XY[0])
Ycirc.append(XY[1])
self.displayed_means.append(
fig.plot(Xcirc, Ycirc, color, alpha=alpha))
if self.ie_open:
self.displayed_means.append(self.ie.scatter([XYM[0]], [
XYM[1]], marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha))
if "alpha95" in list(mpars.keys()):
self.displayed_means.append(
self.ie.plot(Xcirc, Ycirc, color, alpha=alpha))
self.ie.eqarea.set_xlim(xmin, xmax)
self.ie.eqarea.set_ylim(ymin, ymax)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax) | Given a dictionary of parameters from pmag.dofisher, pmag.dolnp, or
pmag.dobingham (meanpars) plots parameters to fig | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2271-L2326 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.initialize_CART_rot | def initialize_CART_rot(self, s):
"""
Sets current specimen to s and calculates the data necessary to plot
the specimen plots (zijderveld, specimen eqarea, M/M0)
Parameters
----------
s: specimen to set as the GUI's current specimen
"""
self.s = s # only place in code where self.s is to be set directly
if self.orthogonal_box.GetValue() == "X=East":
self.ORTHO_PLOT_TYPE = 'E-W'
elif self.orthogonal_box.GetValue() == "X=North":
self.ORTHO_PLOT_TYPE = 'N-S'
elif self.orthogonal_box.GetValue() == "X=best fit line dec":
self.ORTHO_PLOT_TYPE = 'PCA_dec'
else:
self.ORTHO_PLOT_TYPE = 'ZIJ'
if self.COORDINATE_SYSTEM == 'geographic':
# self.CART_rot=self.Data[self.s]['zij_rotated_geo']
self.zij = array(self.Data[self.s]['zdata_geo'])
self.zijblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
# self.CART_rot=self.Data[self.s]['zij_rotated_tilt']
self.zij = array(self.Data[self.s]['zdata_tilt'])
self.zijblock = self.Data[self.s]['zijdblock_tilt']
else:
# self.CART_rot=self.Data[self.s]['zij_rotated']
self.zij = array(self.Data[self.s]['zdata'])
self.zijblock = self.Data[self.s]['zijdblock']
if self.COORDINATE_SYSTEM == 'geographic':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], 90.)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'], pmag.cart2dir(
self.Data[self.s]['zdata_geo'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'], pmag.cart2dir(
self.Data[self.s]['zdata_geo'][0])[0])
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_tilt'], pmag.cart2dir(
self.Data[self.s]['zdata_tilt'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_tilt'], pmag.cart2dir(
self.Data[self.s]['zdata_tilt'][0])[0])
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], self.current_fit.pars['specimen_dec'])
else: # Zijderveld
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])
else: # Zijderveld
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])
self.zij_norm = array([row/sqrt(sum(row**2)) for row in self.zij])
# remove bad data from plotting:
self.CART_rot_good = []
self.CART_rot_bad = []
for i in range(len(self.CART_rot)):
if self.Data[self.s]['measurement_flag'][i] == 'g':
self.CART_rot_good.append(list(self.CART_rot[i]))
else:
self.CART_rot_bad.append(list(self.CART_rot[i]))
self.CART_rot = array(self.CART_rot)
self.CART_rot_good = array(self.CART_rot_good)
self.CART_rot_bad = array(self.CART_rot_bad) | python | def initialize_CART_rot(self, s):
"""
Sets current specimen to s and calculates the data necessary to plot
the specimen plots (zijderveld, specimen eqarea, M/M0)
Parameters
----------
s: specimen to set as the GUI's current specimen
"""
self.s = s # only place in code where self.s is to be set directly
if self.orthogonal_box.GetValue() == "X=East":
self.ORTHO_PLOT_TYPE = 'E-W'
elif self.orthogonal_box.GetValue() == "X=North":
self.ORTHO_PLOT_TYPE = 'N-S'
elif self.orthogonal_box.GetValue() == "X=best fit line dec":
self.ORTHO_PLOT_TYPE = 'PCA_dec'
else:
self.ORTHO_PLOT_TYPE = 'ZIJ'
if self.COORDINATE_SYSTEM == 'geographic':
# self.CART_rot=self.Data[self.s]['zij_rotated_geo']
self.zij = array(self.Data[self.s]['zdata_geo'])
self.zijblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
# self.CART_rot=self.Data[self.s]['zij_rotated_tilt']
self.zij = array(self.Data[self.s]['zdata_tilt'])
self.zijblock = self.Data[self.s]['zijdblock_tilt']
else:
# self.CART_rot=self.Data[self.s]['zij_rotated']
self.zij = array(self.Data[self.s]['zdata'])
self.zijblock = self.Data[self.s]['zijdblock']
if self.COORDINATE_SYSTEM == 'geographic':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], 90.)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_geo'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'], pmag.cart2dir(
self.Data[self.s]['zdata_geo'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'], pmag.cart2dir(
self.Data[self.s]['zdata_geo'][0])[0])
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata_tilt'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_tilt'], pmag.cart2dir(
self.Data[self.s]['zdata_tilt'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_tilt'], pmag.cart2dir(
self.Data[self.s]['zdata_tilt'][0])[0])
else:
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], 0.)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], self.current_fit.pars['specimen_dec'])
else: # Zijderveld
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])
else: # Zijderveld
self.CART_rot = Rotate_zijderveld(
self.Data[self.s]['zdata'], pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])
self.zij_norm = array([row/sqrt(sum(row**2)) for row in self.zij])
# remove bad data from plotting:
self.CART_rot_good = []
self.CART_rot_bad = []
for i in range(len(self.CART_rot)):
if self.Data[self.s]['measurement_flag'][i] == 'g':
self.CART_rot_good.append(list(self.CART_rot[i]))
else:
self.CART_rot_bad.append(list(self.CART_rot[i]))
self.CART_rot = array(self.CART_rot)
self.CART_rot_good = array(self.CART_rot_good)
self.CART_rot_bad = array(self.CART_rot_bad) | Sets current specimen to s and calculates the data necessary to plot
the specimen plots (zijderveld, specimen eqarea, M/M0)
Parameters
----------
s: specimen to set as the GUI's current specimen | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2336-L2434 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.add_fit | def add_fit(self, specimen, name, fmin, fmax, PCA_type="DE-BFL", color=None, suppress_warnings=False, saved=True):
"""
Goes through the data checks required to add an interpretation to
the param specimen with the name param name, the bounds param fmin
and param fmax, and calculation type param PCA_type.
Parameters
----------
specimen : specimen with measurement data to add the
interpretation to
name : name of the new interpretation
fmin : lower bound of new interpretation
fmax : upper bound of new interpretation
PCA_type : type of regression or mean for new interpretaion
(default: DE-BFL or line)
color : color to plot the new interpretation in
Returns
-------
new Fit object or None if fit could not be added
"""
if specimen not in list(self.Data.keys()) and not suppress_warnings:
self.user_warning(
"there is no measurement data for %s and therefore no interpretation can be created for this specimen" % (specimen))
return
if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps'] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps']:
return
if not (specimen in list(self.pmag_results_data['specimens'].keys())):
self.pmag_results_data['specimens'][specimen] = []
next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1)
if name == None or name in [x.name for x in self.pmag_results_data['specimens'][specimen]] or name == "" or name.replace(" ", "") == "":
name = ('Fit ' + next_fit)
if name in [x.name for x in self.pmag_results_data['specimens'][specimen]]:
print('bad name')
return
if color == None:
color = self.colors[(int(next_fit)-1) % len(self.colors)]
new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved)
if fmin != None and fmax != None:
new_fit.put(specimen, self.COORDINATE_SYSTEM, self.get_PCA_parameters(
specimen, new_fit, fmin, fmax, self.COORDINATE_SYSTEM, PCA_type))
if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM).keys())
or 'specimen_inc' not in list(new_fit.get(self.COORDINATE_SYSTEM).keys()))\
and not suppress_warnings:
TEXT = "Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added" % (
specimen, name, fmin, fmax, self.COORDINATE_SYSTEM)
self.user_warning(TEXT)
print(TEXT)
return
self.pmag_results_data['specimens'][specimen].append(new_fit)
samp = self.Data_hierarchy['sample_of_specimen'][specimen]
if samp in list(self.Data_info['er_samples'].keys()):
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']
if samp_flag == 'b':
self.mark_fit_bad(new_fit)
self.close_warning = True
return new_fit | python | def add_fit(self, specimen, name, fmin, fmax, PCA_type="DE-BFL", color=None, suppress_warnings=False, saved=True):
"""
Goes through the data checks required to add an interpretation to
the param specimen with the name param name, the bounds param fmin
and param fmax, and calculation type param PCA_type.
Parameters
----------
specimen : specimen with measurement data to add the
interpretation to
name : name of the new interpretation
fmin : lower bound of new interpretation
fmax : upper bound of new interpretation
PCA_type : type of regression or mean for new interpretaion
(default: DE-BFL or line)
color : color to plot the new interpretation in
Returns
-------
new Fit object or None if fit could not be added
"""
if specimen not in list(self.Data.keys()) and not suppress_warnings:
self.user_warning(
"there is no measurement data for %s and therefore no interpretation can be created for this specimen" % (specimen))
return
if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps'] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps']:
return
if not (specimen in list(self.pmag_results_data['specimens'].keys())):
self.pmag_results_data['specimens'][specimen] = []
next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1)
if name == None or name in [x.name for x in self.pmag_results_data['specimens'][specimen]] or name == "" or name.replace(" ", "") == "":
name = ('Fit ' + next_fit)
if name in [x.name for x in self.pmag_results_data['specimens'][specimen]]:
print('bad name')
return
if color == None:
color = self.colors[(int(next_fit)-1) % len(self.colors)]
new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved)
if fmin != None and fmax != None:
new_fit.put(specimen, self.COORDINATE_SYSTEM, self.get_PCA_parameters(
specimen, new_fit, fmin, fmax, self.COORDINATE_SYSTEM, PCA_type))
if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM).keys())
or 'specimen_inc' not in list(new_fit.get(self.COORDINATE_SYSTEM).keys()))\
and not suppress_warnings:
TEXT = "Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added" % (
specimen, name, fmin, fmax, self.COORDINATE_SYSTEM)
self.user_warning(TEXT)
print(TEXT)
return
self.pmag_results_data['specimens'][specimen].append(new_fit)
samp = self.Data_hierarchy['sample_of_specimen'][specimen]
if samp in list(self.Data_info['er_samples'].keys()):
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']
if samp_flag == 'b':
self.mark_fit_bad(new_fit)
self.close_warning = True
return new_fit | Goes through the data checks required to add an interpretation to
the param specimen with the name param name, the bounds param fmin
and param fmax, and calculation type param PCA_type.
Parameters
----------
specimen : specimen with measurement data to add the
interpretation to
name : name of the new interpretation
fmin : lower bound of new interpretation
fmax : upper bound of new interpretation
PCA_type : type of regression or mean for new interpretaion
(default: DE-BFL or line)
color : color to plot the new interpretation in
Returns
-------
new Fit object or None if fit could not be added | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2436-L2494 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.delete_fit | def delete_fit(self, fit, specimen=None):
"""
removes fit from GUI results data
Parameters
----------
fit : fit to remove
specimen : specimen of fit to remove, if not provided and
set to None then the function will find the specimen itself
"""
if specimen == None:
for spec in self.pmag_results_data['specimens']:
if fit in self.pmag_results_data['specimens'][spec]:
specimen = spec
break
if specimen not in self.pmag_results_data['specimens']:
return
if fit in self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen].remove(fit)
if fit == self.current_fit:
if self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen][-1].select()
else:
self.current_fit = None
self.close_warning = True
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection() | python | def delete_fit(self, fit, specimen=None):
"""
removes fit from GUI results data
Parameters
----------
fit : fit to remove
specimen : specimen of fit to remove, if not provided and
set to None then the function will find the specimen itself
"""
if specimen == None:
for spec in self.pmag_results_data['specimens']:
if fit in self.pmag_results_data['specimens'][spec]:
specimen = spec
break
if specimen not in self.pmag_results_data['specimens']:
return
if fit in self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen].remove(fit)
if fit == self.current_fit:
if self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen][-1].select()
else:
self.current_fit = None
self.close_warning = True
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection() | removes fit from GUI results data
Parameters
----------
fit : fit to remove
specimen : specimen of fit to remove, if not provided and
set to None then the function will find the specimen itself | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2496-L2524 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.calculate_vgp_data | def calculate_vgp_data(self):
"""
Calculates VGPS for all samples, sites, and locations
Returns
-------
VGP_Data : dictionary of structure {sample: {comp: data},
site: {comp: data}, location: {comp: data}}
"""
# get criteria if it exists else use default
crit_data = self.read_criteria_file()
if crit_data == None:
crit_data = pmag.default_criteria(0)
accept = {}
for critrec in crit_data:
if type(critrec) != dict:
continue
for key in list(critrec.keys()):
# need to migrate specimen_dang to specimen_int_dang
if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()):
critrec['specimen_int_dang'] = critrec['specimen_dang']
del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
if 'sample_int_sigma_uT' in list(critrec.keys()):
critrec['sample_int_sigma'] = '%10.3e' % (
eval(critrec['sample_int_sigma_uT'])*1e-6)
if key not in list(accept.keys()) and critrec[key] != '':
accept[key] = critrec[key]
Ns = []
# retrieve specimen data to calculate VGPS with
for s in list(self.pmag_results_data['specimens'].keys()):
for fit in self.pmag_results_data['specimens'][s]:
if fit in self.bad_fits:
continue
pars = fit.get(self.COORDINATE_SYSTEM)
# check for interpretation data for fit
if not pars:
pars = self.get_PCA_parameters(
s, fit, fit.tmin, fit.tmax, self.COORDINATE_SYSTEM, fit.PCA_type)
if not pars or 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(pars.keys()):
print(("Could not calculate interpretation for specimen %s and fit %s while calculating VGP data, skipping this component" % (
s, fit.name)))
continue
pars['er_specimen_name'] = s
pars['specimen_comp_name'] = fit.name
Ns.append(pars)
SpecDirs = []
if crit_data != None: # use selection criteria
for rec in Ns: # look through everything with specimen_n for "good" data
kill = pmag.grade(rec, accept, 'specimen_dir', data_model=2.5)
if len(kill) == 0: # nothing killed it
SpecDirs.append(rec)
else: # no criteria
SpecDirs = Ns[:] # take them all
for i in range(len(SpecDirs)):
if SpecDirs[i] == {}:
continue
specimen = SpecDirs[i]['er_specimen_name']
SpecDirs[i]['er_sample_name'] = self.Data_hierarchy['sample_of_specimen'][specimen]
SpecDirs[i]['er_site_name'] = self.Data_hierarchy['site_of_specimen'][specimen]
SpecDirs[i]['er_location_name'] = self.Data_hierarchy['location_of_specimen'][specimen]
# init VGP data
VGP_Data = {'samples': [], 'sites': [], 'locations': []}
# obtain lat lon data
SiteNFO = list(self.Data_info['er_sites'].values())
for val in SiteNFO:
site = val['er_site_name']
not_found = []
# check that lat/lon columns are present and non-null
if 'site_lat' not in val:
not_found.append('latitude')
elif not val['site_lat'] and val['site_lat'] is not 0:
not_found.append('latitude')
if 'site_lon' not in val:
not_found.append('longitude')
elif not val['site_lon'] and val['site_lon'] is not 0:
not_found.append('longitude')
if not_found == []:
continue
TEXT = "%s not found for site %s. Select 'yes' to enter the values now or 'no' to skip this site and all samples contained in it." % (
str(not_found), val['er_site_name'])
dlg = wx.MessageDialog(
self, caption="Missing Data", message=TEXT, style=wx.YES_NO | wx.ICON_QUESTION)
result = self.show_dlg(dlg)
dlg.Destroy()
if result == wx.ID_YES:
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for site: %s" % val['er_site_name'])
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
self.Data_info['er_sites'][site]['site_lat'] = ui_data[1]['Latitude']
self.Data_info['er_sites'][site]['site_lon'] = ui_data[1]['Longitude']
val['site_lat'] = ui_data[1]['Latitude']
val['site_lon'] = ui_data[1]['Longitude']
# calculate sample vgps
for samp in self.samples:
SampDir = pmag.get_dictitem(SpecDirs, 'er_sample_name', samp, 'T')
if len(SampDir) <= 0:
continue
for comp in self.all_fits_list:
CompDir = pmag.get_dictitem(
SampDir, 'specimen_comp_name', comp, 'T')
if len(CompDir) <= 0:
continue # no data for comp
samp_mean = pmag.lnpbykey(CompDir, 'sample', 'specimen')
site = pmag.get_dictitem(
SiteNFO, 'er_site_name', CompDir[0]['er_site_name'], 'T')
dec = float(samp_mean['sample_dec'])
inc = float(samp_mean['sample_inc'])
if 'sample_alpha95' in samp_mean and samp_mean['sample_alpha95'] != "":
a95 = float(samp_mean['sample_alpha95'])
else:
a95 = 180.
try:
lat = float(site[0]['site_lat'])
lon = float(site[0]['site_lon'])
except (KeyError, IndexError, ValueError, TypeError) as e:
continue
plong, plat, dp, dm = pmag.dia_vgp(dec, inc, a95, lat, lon)
PmagResRec = {}
PmagResRec['name'] = samp
PmagResRec['comp_name'] = comp
PmagResRec['n'] = len(CompDir)
PmagResRec['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
PmagResRec['vgp_lon'] = plong
PmagResRec['vgp_lat'] = plat
PmagResRec['lon'] = lon
PmagResRec['lat'] = lat
PmagResRec['vgp_dp'] = dp
PmagResRec['vgp_dm'] = dm
VGP_Data['samples'].append(PmagResRec)
for site in self.sites:
SiteDir = pmag.get_dictitem(SpecDirs, 'er_site_name', site, 'T')
erSite = pmag.get_dictitem(SiteNFO, 'er_site_name', site, 'T')
for comp in self.all_fits_list:
siteD = pmag.get_dictitem(
SiteDir, 'specimen_comp_name', comp, 'T')
if len(siteD) <= 0:
print(("no data for comp %s and site %s" % (comp, site)))
continue
SiteData = pmag.lnpbykey(siteD, 'site', 'specimen')
dec = float(SiteData['site_dec'])
inc = float(SiteData['site_inc'])
if 'site_alpha95' in SiteData and SiteData['site_alpha95'] != "":
a95 = float(SiteData['site_alpha95'])
else:
a95 = 180.
try:
lat = float(erSite[0]['site_lat'])
lon = float(erSite[0]['site_lon'])
except (KeyError, IndexError, TypeError) as e:
continue
plong, plat, dp, dm = pmag.dia_vgp(dec, inc, a95, lat, lon)
SiteData['name'] = site
SiteData['comp_name'] = comp
SiteData['n'] = len(siteD)
SiteData['vgp_lon'] = plong
SiteData['vgp_lat'] = plat
SiteData['lon'] = lon
SiteData['lat'] = lat
SiteData['vgp_dp'] = dp
SiteData['vgp_dm'] = dm
SiteData['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
VGP_Data['sites'].append(SiteData)
for loc in self.locations:
LocDir = pmag.get_dictitem(SpecDirs, 'er_location_name', loc, 'T')
for comp in self.all_fits_list:
LocCompData = pmag.get_dictitem(
LocDir, 'specimen_comp_name', comp, 'T')
if len(LocCompData) < 3:
print(("insufficient data for comp %s" % comp))
continue
precs = []
for rec in LocCompData:
prec = {'dec': rec['specimen_dec'], 'inc': rec['specimen_inc'],
'name': rec['er_site_name'], 'loc': rec['er_location_name']}
prec = {k: v if v != None else '' for k,
v in list(prec.items())}
precs.append(prec)
# you need at least 3 records to get anything back from pmag.fisher_by_pol
polpars = pmag.fisher_by_pol(precs)
# hunt through all the modes (normal=A, reverse=B, all=ALL)
for mode in list(polpars.keys()):
PolRes = {}
PolRes['name'] = polpars[mode]['locs']
PolRes["comp_name"] = comp+':'+mode
PolRes["dec"] = '%7.1f' % (polpars[mode]['dec'])
PolRes["inc"] = '%7.1f' % (polpars[mode]['inc'])
PolRes["n"] = '%i' % (polpars[mode]['n'])
PolRes["r"] = '%5.4f' % (polpars[mode]['r'])
PolRes["k"] = '%6.0f' % (polpars[mode]['k'])
PolRes['a95'] = '%7.1f' % (polpars[mode]['alpha95'])
dec, inc, a95 = PolRes["dec"], PolRes["inc"], PolRes["a95"]
lat, lon, loc_data = "", "", self.Data_info['er_locations']
if loc in loc_data and 'location_begin_lat' in loc_data[loc]:
lat = loc_data[loc]['location_begin_lat']
elif loc in loc_data and 'location_end_lat' in loc_data[loc]:
lat = loc_data[loc]['location_end_lat']
if loc in loc_data and 'location_begin_lon' in loc_data[loc]:
lon = loc_data[loc]['location_begin_lon']
elif loc in loc_data and 'location_end_lon' in loc_data[loc]:
lon = loc_data[loc]['location_end_lon']
if lat == "" or lon == "" or lat == None or lon == None:
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for location: %s" % loc)
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
lat = ui_data[1]['Latitude']
lon = ui_data[1]['Longitude']
if loc not in loc_data:
loc_data[loc] = {}
if len(loc_data) > 0:
loc_data[loc]['location_begin_lat'] = lat
loc_data[loc]['location_begin_lon'] = lon
else:
continue
try:
plong, plat, dp, dm = pmag.dia_vgp(
*list(map(float, [dec, inc, a95, lat, lon])))
except TypeError:
print(("Not valid parameters for vgp calculation on location: %s" %
loc, dec, inc, a95, lat, lon))
continue
PolRes['vgp_lon'] = plong
PolRes['vgp_lat'] = plat
PolRes['lon'] = lon
PolRes['lat'] = lat
PolRes['vgp_dp'] = dp
PolRes['vgp_dm'] = dm
PolRes['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
VGP_Data['locations'].append(PolRes)
return VGP_Data | python | def calculate_vgp_data(self):
"""
Calculates VGPS for all samples, sites, and locations
Returns
-------
VGP_Data : dictionary of structure {sample: {comp: data},
site: {comp: data}, location: {comp: data}}
"""
# get criteria if it exists else use default
crit_data = self.read_criteria_file()
if crit_data == None:
crit_data = pmag.default_criteria(0)
accept = {}
for critrec in crit_data:
if type(critrec) != dict:
continue
for key in list(critrec.keys()):
# need to migrate specimen_dang to specimen_int_dang
if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()):
critrec['specimen_int_dang'] = critrec['specimen_dang']
del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
if 'sample_int_sigma_uT' in list(critrec.keys()):
critrec['sample_int_sigma'] = '%10.3e' % (
eval(critrec['sample_int_sigma_uT'])*1e-6)
if key not in list(accept.keys()) and critrec[key] != '':
accept[key] = critrec[key]
Ns = []
# retrieve specimen data to calculate VGPS with
for s in list(self.pmag_results_data['specimens'].keys()):
for fit in self.pmag_results_data['specimens'][s]:
if fit in self.bad_fits:
continue
pars = fit.get(self.COORDINATE_SYSTEM)
# check for interpretation data for fit
if not pars:
pars = self.get_PCA_parameters(
s, fit, fit.tmin, fit.tmax, self.COORDINATE_SYSTEM, fit.PCA_type)
if not pars or 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(pars.keys()):
print(("Could not calculate interpretation for specimen %s and fit %s while calculating VGP data, skipping this component" % (
s, fit.name)))
continue
pars['er_specimen_name'] = s
pars['specimen_comp_name'] = fit.name
Ns.append(pars)
SpecDirs = []
if crit_data != None: # use selection criteria
for rec in Ns: # look through everything with specimen_n for "good" data
kill = pmag.grade(rec, accept, 'specimen_dir', data_model=2.5)
if len(kill) == 0: # nothing killed it
SpecDirs.append(rec)
else: # no criteria
SpecDirs = Ns[:] # take them all
for i in range(len(SpecDirs)):
if SpecDirs[i] == {}:
continue
specimen = SpecDirs[i]['er_specimen_name']
SpecDirs[i]['er_sample_name'] = self.Data_hierarchy['sample_of_specimen'][specimen]
SpecDirs[i]['er_site_name'] = self.Data_hierarchy['site_of_specimen'][specimen]
SpecDirs[i]['er_location_name'] = self.Data_hierarchy['location_of_specimen'][specimen]
# init VGP data
VGP_Data = {'samples': [], 'sites': [], 'locations': []}
# obtain lat lon data
SiteNFO = list(self.Data_info['er_sites'].values())
for val in SiteNFO:
site = val['er_site_name']
not_found = []
# check that lat/lon columns are present and non-null
if 'site_lat' not in val:
not_found.append('latitude')
elif not val['site_lat'] and val['site_lat'] is not 0:
not_found.append('latitude')
if 'site_lon' not in val:
not_found.append('longitude')
elif not val['site_lon'] and val['site_lon'] is not 0:
not_found.append('longitude')
if not_found == []:
continue
TEXT = "%s not found for site %s. Select 'yes' to enter the values now or 'no' to skip this site and all samples contained in it." % (
str(not_found), val['er_site_name'])
dlg = wx.MessageDialog(
self, caption="Missing Data", message=TEXT, style=wx.YES_NO | wx.ICON_QUESTION)
result = self.show_dlg(dlg)
dlg.Destroy()
if result == wx.ID_YES:
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for site: %s" % val['er_site_name'])
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
self.Data_info['er_sites'][site]['site_lat'] = ui_data[1]['Latitude']
self.Data_info['er_sites'][site]['site_lon'] = ui_data[1]['Longitude']
val['site_lat'] = ui_data[1]['Latitude']
val['site_lon'] = ui_data[1]['Longitude']
# calculate sample vgps
for samp in self.samples:
SampDir = pmag.get_dictitem(SpecDirs, 'er_sample_name', samp, 'T')
if len(SampDir) <= 0:
continue
for comp in self.all_fits_list:
CompDir = pmag.get_dictitem(
SampDir, 'specimen_comp_name', comp, 'T')
if len(CompDir) <= 0:
continue # no data for comp
samp_mean = pmag.lnpbykey(CompDir, 'sample', 'specimen')
site = pmag.get_dictitem(
SiteNFO, 'er_site_name', CompDir[0]['er_site_name'], 'T')
dec = float(samp_mean['sample_dec'])
inc = float(samp_mean['sample_inc'])
if 'sample_alpha95' in samp_mean and samp_mean['sample_alpha95'] != "":
a95 = float(samp_mean['sample_alpha95'])
else:
a95 = 180.
try:
lat = float(site[0]['site_lat'])
lon = float(site[0]['site_lon'])
except (KeyError, IndexError, ValueError, TypeError) as e:
continue
plong, plat, dp, dm = pmag.dia_vgp(dec, inc, a95, lat, lon)
PmagResRec = {}
PmagResRec['name'] = samp
PmagResRec['comp_name'] = comp
PmagResRec['n'] = len(CompDir)
PmagResRec['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
PmagResRec['vgp_lon'] = plong
PmagResRec['vgp_lat'] = plat
PmagResRec['lon'] = lon
PmagResRec['lat'] = lat
PmagResRec['vgp_dp'] = dp
PmagResRec['vgp_dm'] = dm
VGP_Data['samples'].append(PmagResRec)
for site in self.sites:
SiteDir = pmag.get_dictitem(SpecDirs, 'er_site_name', site, 'T')
erSite = pmag.get_dictitem(SiteNFO, 'er_site_name', site, 'T')
for comp in self.all_fits_list:
siteD = pmag.get_dictitem(
SiteDir, 'specimen_comp_name', comp, 'T')
if len(siteD) <= 0:
print(("no data for comp %s and site %s" % (comp, site)))
continue
SiteData = pmag.lnpbykey(siteD, 'site', 'specimen')
dec = float(SiteData['site_dec'])
inc = float(SiteData['site_inc'])
if 'site_alpha95' in SiteData and SiteData['site_alpha95'] != "":
a95 = float(SiteData['site_alpha95'])
else:
a95 = 180.
try:
lat = float(erSite[0]['site_lat'])
lon = float(erSite[0]['site_lon'])
except (KeyError, IndexError, TypeError) as e:
continue
plong, plat, dp, dm = pmag.dia_vgp(dec, inc, a95, lat, lon)
SiteData['name'] = site
SiteData['comp_name'] = comp
SiteData['n'] = len(siteD)
SiteData['vgp_lon'] = plong
SiteData['vgp_lat'] = plat
SiteData['lon'] = lon
SiteData['lat'] = lat
SiteData['vgp_dp'] = dp
SiteData['vgp_dm'] = dm
SiteData['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
VGP_Data['sites'].append(SiteData)
for loc in self.locations:
LocDir = pmag.get_dictitem(SpecDirs, 'er_location_name', loc, 'T')
for comp in self.all_fits_list:
LocCompData = pmag.get_dictitem(
LocDir, 'specimen_comp_name', comp, 'T')
if len(LocCompData) < 3:
print(("insufficient data for comp %s" % comp))
continue
precs = []
for rec in LocCompData:
prec = {'dec': rec['specimen_dec'], 'inc': rec['specimen_inc'],
'name': rec['er_site_name'], 'loc': rec['er_location_name']}
prec = {k: v if v != None else '' for k,
v in list(prec.items())}
precs.append(prec)
# you need at least 3 records to get anything back from pmag.fisher_by_pol
polpars = pmag.fisher_by_pol(precs)
# hunt through all the modes (normal=A, reverse=B, all=ALL)
for mode in list(polpars.keys()):
PolRes = {}
PolRes['name'] = polpars[mode]['locs']
PolRes["comp_name"] = comp+':'+mode
PolRes["dec"] = '%7.1f' % (polpars[mode]['dec'])
PolRes["inc"] = '%7.1f' % (polpars[mode]['inc'])
PolRes["n"] = '%i' % (polpars[mode]['n'])
PolRes["r"] = '%5.4f' % (polpars[mode]['r'])
PolRes["k"] = '%6.0f' % (polpars[mode]['k'])
PolRes['a95'] = '%7.1f' % (polpars[mode]['alpha95'])
dec, inc, a95 = PolRes["dec"], PolRes["inc"], PolRes["a95"]
lat, lon, loc_data = "", "", self.Data_info['er_locations']
if loc in loc_data and 'location_begin_lat' in loc_data[loc]:
lat = loc_data[loc]['location_begin_lat']
elif loc in loc_data and 'location_end_lat' in loc_data[loc]:
lat = loc_data[loc]['location_end_lat']
if loc in loc_data and 'location_begin_lon' in loc_data[loc]:
lon = loc_data[loc]['location_begin_lon']
elif loc in loc_data and 'location_end_lon' in loc_data[loc]:
lon = loc_data[loc]['location_end_lon']
if lat == "" or lon == "" or lat == None or lon == None:
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for location: %s" % loc)
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
lat = ui_data[1]['Latitude']
lon = ui_data[1]['Longitude']
if loc not in loc_data:
loc_data[loc] = {}
if len(loc_data) > 0:
loc_data[loc]['location_begin_lat'] = lat
loc_data[loc]['location_begin_lon'] = lon
else:
continue
try:
plong, plat, dp, dm = pmag.dia_vgp(
*list(map(float, [dec, inc, a95, lat, lon])))
except TypeError:
print(("Not valid parameters for vgp calculation on location: %s" %
loc, dec, inc, a95, lat, lon))
continue
PolRes['vgp_lon'] = plong
PolRes['vgp_lat'] = plat
PolRes['lon'] = lon
PolRes['lat'] = lat
PolRes['vgp_dp'] = dp
PolRes['vgp_dm'] = dm
PolRes['color'] = [e.color for sl in list(self.pmag_results_data['specimens'].values(
)) for e in sl if e not in self.bad_fits and e.name == comp][0]
VGP_Data['locations'].append(PolRes)
return VGP_Data | Calculates VGPS for all samples, sites, and locations
Returns
-------
VGP_Data : dictionary of structure {sample: {comp: data},
site: {comp: data}, location: {comp: data}} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2526-L2771 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.convert_ages_to_calendar_year | def convert_ages_to_calendar_year(self, er_ages_rec):
"""
convert all age units to calendar year
Parameters
----------
er_ages_rec : Dict type object containing preferbly at least keys
'age', 'age_unit', and either 'age_range_high', 'age_range_low'
or 'age_sigma'
Returns
-------
er_ages_rec : Same dict object input but altered to have new records
'age_cal_year_range_low' and 'age_cal_year_range_high'
"""
if "age" not in list(er_ages_rec.keys()):
return(er_ages_rec)
if "age_unit" not in list(er_ages_rec.keys()):
return(er_ages_rec)
if er_ages_rec["age_unit"] == "":
return(er_ages_rec)
if er_ages_rec["age"] == "":
if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()):
if er_ages_rec["age_range_high"] != "" and er_ages_rec["age_range_low"] != "":
er_ages_rec["age"] = scipy.mean(
[float(er_ages_rec["age_range_high"]), float(er_ages_rec["age_range_low"])])
if er_ages_rec["age"] == "":
return(er_ages_rec)
age_unit = er_ages_rec["age_unit"]
# Fix 'age':
mutliplier = 1
if age_unit == "Ga":
mutliplier = -1e9
if age_unit == "Ma":
mutliplier = -1e6
if age_unit == "Ka":
mutliplier = -1e3
if age_unit == "Years AD (+/-)" or age_unit == "Years Cal AD (+/-)":
mutliplier = 1
if age_unit == "Years BP" or age_unit == "Years Cal BP":
mutliplier = 1
age = float(er_ages_rec["age"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age = 1950-age
er_ages_rec['age_cal_year'] = age
# Fix 'age_range_low':
age_range_low = age
age_range_high = age
age_sigma = 0
if "age_sigma" in list(er_ages_rec.keys()) and er_ages_rec["age_sigma"] != "":
age_sigma = float(er_ages_rec["age_sigma"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_sigma = 1950-age_sigma
age_range_low = age-age_sigma
age_range_high = age+age_sigma
if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()):
if er_ages_rec["age_range_high"] != "" and er_ages_rec["age_range_low"] != "":
age_range_high = float(
er_ages_rec["age_range_high"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_range_high = 1950-age_range_high
age_range_low = float(er_ages_rec["age_range_low"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_range_low = 1950-age_range_low
er_ages_rec['age_cal_year_range_low'] = age_range_low
er_ages_rec['age_cal_year_range_high'] = age_range_high
return(er_ages_rec) | python | def convert_ages_to_calendar_year(self, er_ages_rec):
"""
convert all age units to calendar year
Parameters
----------
er_ages_rec : Dict type object containing preferbly at least keys
'age', 'age_unit', and either 'age_range_high', 'age_range_low'
or 'age_sigma'
Returns
-------
er_ages_rec : Same dict object input but altered to have new records
'age_cal_year_range_low' and 'age_cal_year_range_high'
"""
if "age" not in list(er_ages_rec.keys()):
return(er_ages_rec)
if "age_unit" not in list(er_ages_rec.keys()):
return(er_ages_rec)
if er_ages_rec["age_unit"] == "":
return(er_ages_rec)
if er_ages_rec["age"] == "":
if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()):
if er_ages_rec["age_range_high"] != "" and er_ages_rec["age_range_low"] != "":
er_ages_rec["age"] = scipy.mean(
[float(er_ages_rec["age_range_high"]), float(er_ages_rec["age_range_low"])])
if er_ages_rec["age"] == "":
return(er_ages_rec)
age_unit = er_ages_rec["age_unit"]
# Fix 'age':
mutliplier = 1
if age_unit == "Ga":
mutliplier = -1e9
if age_unit == "Ma":
mutliplier = -1e6
if age_unit == "Ka":
mutliplier = -1e3
if age_unit == "Years AD (+/-)" or age_unit == "Years Cal AD (+/-)":
mutliplier = 1
if age_unit == "Years BP" or age_unit == "Years Cal BP":
mutliplier = 1
age = float(er_ages_rec["age"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age = 1950-age
er_ages_rec['age_cal_year'] = age
# Fix 'age_range_low':
age_range_low = age
age_range_high = age
age_sigma = 0
if "age_sigma" in list(er_ages_rec.keys()) and er_ages_rec["age_sigma"] != "":
age_sigma = float(er_ages_rec["age_sigma"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_sigma = 1950-age_sigma
age_range_low = age-age_sigma
age_range_high = age+age_sigma
if "age_range_high" in list(er_ages_rec.keys()) and "age_range_low" in list(er_ages_rec.keys()):
if er_ages_rec["age_range_high"] != "" and er_ages_rec["age_range_low"] != "":
age_range_high = float(
er_ages_rec["age_range_high"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_range_high = 1950-age_range_high
age_range_low = float(er_ages_rec["age_range_low"])*mutliplier
if age_unit == "Years BP" or age_unit == "Years Cal BP":
age_range_low = 1950-age_range_low
er_ages_rec['age_cal_year_range_low'] = age_range_low
er_ages_rec['age_cal_year_range_high'] = age_range_high
return(er_ages_rec) | convert all age units to calendar year
Parameters
----------
er_ages_rec : Dict type object containing preferbly at least keys
'age', 'age_unit', and either 'age_range_high', 'age_range_low'
or 'age_sigma'
Returns
-------
er_ages_rec : Same dict object input but altered to have new records
'age_cal_year_range_low' and 'age_cal_year_range_high' | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2773-L2846 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.generate_warning_text | def generate_warning_text(self):
"""
generates warnings for the current specimen then adds them to the
current warning text for the GUI which will be rendered on a call to
update_warning_box.
"""
self.warning_text = ""
if self.s in list(self.pmag_results_data['specimens'].keys()):
for fit in self.pmag_results_data['specimens'][self.s]:
beg_pca, end_pca = self.get_indices(
fit, fit.tmin, fit.tmax, self.s)
if beg_pca == None or end_pca == None:
self.warning_text += "%s to %s are invalid bounds, to fit %s.\n" % (
fit.tmin, fit.tmax, fit.name)
elif end_pca - beg_pca < 2:
self.warning_text += "there are not enough points between %s to %s, on fit %s.\n" % (
fit.tmin, fit.tmax, fit.name)
else:
check_duplicates = []
warning_issued = [] # keep track of warnings issued to avoid redundant warnings
# if within range, attempt to go one additional step beyond
# tmax so that duplicates at the upper bound are caught
if (end_pca + 2) < len(self.Data[self.s]['zijdblock_steps']):
check_endpoint = end_pca + 2
else:
check_endpoint = end_pca + 1
for s, f in zip(self.Data[self.s]['zijdblock_steps'][beg_pca:check_endpoint],
self.Data[self.s]['measurement_flag'][beg_pca:check_endpoint]):
if f == 'g' and [s, 'g'] in check_duplicates:
if s == fit.tmin and s not in warning_issued:
self.warning_text += ("There are multiple good %s " +
"steps at the upper bound of Fit %s. The first " +
"measurement will be used as the lower bound.\n") % (
s, fit.name)
# warning_issued_low.append(s)
warning_issued.append(s)
elif s == fit.tmax and s not in warning_issued:
self.warning_text += ("There are multiple good %s " +
"steps at the upper bound of Fit %s. The first " +
"measurement will be used as the upper bound.\n") % (
s, fit.name)
# warning_issued_high.append(s)
warning_issued.append(s)
elif s not in warning_issued:
self.warning_text += ("Within Fit %s, there are " +
"multiple good measurements at the %s step. All " +
"good measurements are included in the fit.\n") % (
fit.name, s)
warning_issued.append(s)
else:
pass
else:
check_duplicates.append([s, f])
if self.s in list(self.Data.keys()):
if not self.Data[self.s]['zijdblock_geo']:
self.warning_text += "There is no geographic data for this specimen.\n"
if not self.Data[self.s]['zijdblock_tilt']:
self.warning_text += "There is no tilt-corrected data for this specimen.\n" | python | def generate_warning_text(self):
"""
generates warnings for the current specimen then adds them to the
current warning text for the GUI which will be rendered on a call to
update_warning_box.
"""
self.warning_text = ""
if self.s in list(self.pmag_results_data['specimens'].keys()):
for fit in self.pmag_results_data['specimens'][self.s]:
beg_pca, end_pca = self.get_indices(
fit, fit.tmin, fit.tmax, self.s)
if beg_pca == None or end_pca == None:
self.warning_text += "%s to %s are invalid bounds, to fit %s.\n" % (
fit.tmin, fit.tmax, fit.name)
elif end_pca - beg_pca < 2:
self.warning_text += "there are not enough points between %s to %s, on fit %s.\n" % (
fit.tmin, fit.tmax, fit.name)
else:
check_duplicates = []
warning_issued = [] # keep track of warnings issued to avoid redundant warnings
# if within range, attempt to go one additional step beyond
# tmax so that duplicates at the upper bound are caught
if (end_pca + 2) < len(self.Data[self.s]['zijdblock_steps']):
check_endpoint = end_pca + 2
else:
check_endpoint = end_pca + 1
for s, f in zip(self.Data[self.s]['zijdblock_steps'][beg_pca:check_endpoint],
self.Data[self.s]['measurement_flag'][beg_pca:check_endpoint]):
if f == 'g' and [s, 'g'] in check_duplicates:
if s == fit.tmin and s not in warning_issued:
self.warning_text += ("There are multiple good %s " +
"steps at the upper bound of Fit %s. The first " +
"measurement will be used as the lower bound.\n") % (
s, fit.name)
# warning_issued_low.append(s)
warning_issued.append(s)
elif s == fit.tmax and s not in warning_issued:
self.warning_text += ("There are multiple good %s " +
"steps at the upper bound of Fit %s. The first " +
"measurement will be used as the upper bound.\n") % (
s, fit.name)
# warning_issued_high.append(s)
warning_issued.append(s)
elif s not in warning_issued:
self.warning_text += ("Within Fit %s, there are " +
"multiple good measurements at the %s step. All " +
"good measurements are included in the fit.\n") % (
fit.name, s)
warning_issued.append(s)
else:
pass
else:
check_duplicates.append([s, f])
if self.s in list(self.Data.keys()):
if not self.Data[self.s]['zijdblock_geo']:
self.warning_text += "There is no geographic data for this specimen.\n"
if not self.Data[self.s]['zijdblock_tilt']:
self.warning_text += "There is no tilt-corrected data for this specimen.\n" | generates warnings for the current specimen then adds them to the
current warning text for the GUI which will be rendered on a call to
update_warning_box. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2848-L2907 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.read_criteria_file | def read_criteria_file(self, criteria_file_name=None):
"""
reads 2.5 or 3.0 formatted PmagPy criteria file and returns a set of
nested dictionary 2.5 formated criteria data that can be passed into
pmag.grade to filter data.
Parameters
----------
criteria_file : name of criteria file to read in
Returns
-------
nested dictionary 2.5 formated criteria data
"""
# import pdb; pdb.set_trace()
acceptance_criteria = pmag.initialize_acceptance_criteria()
if self.data_model == 3:
if criteria_file_name == None:
criteria_file_name = "criteria.txt"
contribution = cb.Contribution(self.WD, read_tables=[
'criteria'], custom_filenames={'criteria': criteria_file_name})
if 'criteria' in contribution.tables:
crit_container = contribution.tables['criteria']
crit_data = crit_container.df
crit_data = crit_data.to_dict('records')
for crit in crit_data:
m2_name = map_magic.convert_direction_criteria(
'magic2', crit['table_column'])
if m2_name != "":
try:
if crit['criterion_value'] == 'True':
acceptance_criteria[m2_name]['value'] = 1
else:
acceptance_criteria[m2_name]['value'] = 0
acceptance_criteria[m2_name]['value'] = float(
crit['criterion_value'])
except ValueError:
self.user_warning("%s is not a valid comparitor for %s, skipping this criteria" % (
str(crit['criterion_value']), m2_name))
continue
acceptance_criteria[m2_name]['pmag_criteria_code'] = crit['criterion']
return acceptance_criteria
else:
if criteria_file_name == None:
criteria_file_name = "pmag_criteria.txt"
try:
acceptance_criteria = pmag.read_criteria_from_file(
os.path.join(self.WD, criteria_file_name), acceptance_criteria)
except (IOError, OSError) as e:
self.user_warning("File %s not found in directory %s aborting opperation" % (
criteria_file_name, self.WD))
return acceptance_criteria | python | def read_criteria_file(self, criteria_file_name=None):
"""
reads 2.5 or 3.0 formatted PmagPy criteria file and returns a set of
nested dictionary 2.5 formated criteria data that can be passed into
pmag.grade to filter data.
Parameters
----------
criteria_file : name of criteria file to read in
Returns
-------
nested dictionary 2.5 formated criteria data
"""
# import pdb; pdb.set_trace()
acceptance_criteria = pmag.initialize_acceptance_criteria()
if self.data_model == 3:
if criteria_file_name == None:
criteria_file_name = "criteria.txt"
contribution = cb.Contribution(self.WD, read_tables=[
'criteria'], custom_filenames={'criteria': criteria_file_name})
if 'criteria' in contribution.tables:
crit_container = contribution.tables['criteria']
crit_data = crit_container.df
crit_data = crit_data.to_dict('records')
for crit in crit_data:
m2_name = map_magic.convert_direction_criteria(
'magic2', crit['table_column'])
if m2_name != "":
try:
if crit['criterion_value'] == 'True':
acceptance_criteria[m2_name]['value'] = 1
else:
acceptance_criteria[m2_name]['value'] = 0
acceptance_criteria[m2_name]['value'] = float(
crit['criterion_value'])
except ValueError:
self.user_warning("%s is not a valid comparitor for %s, skipping this criteria" % (
str(crit['criterion_value']), m2_name))
continue
acceptance_criteria[m2_name]['pmag_criteria_code'] = crit['criterion']
return acceptance_criteria
else:
if criteria_file_name == None:
criteria_file_name = "pmag_criteria.txt"
try:
acceptance_criteria = pmag.read_criteria_from_file(
os.path.join(self.WD, criteria_file_name), acceptance_criteria)
except (IOError, OSError) as e:
self.user_warning("File %s not found in directory %s aborting opperation" % (
criteria_file_name, self.WD))
return acceptance_criteria | reads 2.5 or 3.0 formatted PmagPy criteria file and returns a set of
nested dictionary 2.5 formated criteria data that can be passed into
pmag.grade to filter data.
Parameters
----------
criteria_file : name of criteria file to read in
Returns
-------
nested dictionary 2.5 formated criteria data | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2909-L2960 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_PCA_parameters | def get_PCA_parameters(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type):
"""
Uses pmag.domean to preform a line, line-with-origin, line-anchored,
or plane least squared regression or a fisher mean on the
measurement data of specimen in coordinate system between bounds
tmin to tmax
Parameters
----------
specimen : specimen with measurement data in self.Data
fit : fit for which the regression or mean is being applied
(used for calculating measurement index of tmin and tmax)
tmin : lower bound of measurement data
tmax : upper bound of measurement data
coordinate_system : which coordinate system the measurement data
should be in
calculation_type : type of regression or mean to preform
(options - DE-BFL:line,DE-BFL-A:line-anchored,DE-BFL-O:line-with-
origin,DE-FM:fisher,DE-BFP:plane)
Returns
-------
mpars : a 2.5 data model dictionary type specimen record of the dec,
inc, etc of the regression or mean
"""
if tmin == '' or tmax == '':
return
beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen)
if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO':
block = self.Data[specimen]['zijdblock_geo']
elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if block == []:
print(("-E- no measurement data for specimen %s in coordinate system %s" %
(specimen, coordinate_system)))
mpars = {}
elif end_pca > beg_pca and end_pca - beg_pca > 1:
try:
# preformes regression
mpars = pmag.domean(block, beg_pca, end_pca, calculation_type)
except:
print((block, beg_pca, end_pca, calculation_type,
specimen, fit.name, tmin, tmax, coordinate_system))
return
if 'specimen_direction_type' in mpars and mpars['specimen_direction_type'] == 'Error':
print(("-E- no measurement data for specimen %s in coordinate system %s" %
(specimen, coordinate_system)))
return {}
else:
mpars = {}
for k in list(mpars.keys()):
try:
if math.isnan(float(mpars[k])):
mpars[k] = 0
except:
pass
if "DE-BFL" in calculation_type and 'specimen_dang' not in list(mpars.keys()):
mpars['specimen_dang'] = 0
if 'best fit vector' in self.plane_display_box.GetValue():
self.calculate_best_fit_vectors()
return(mpars) | python | def get_PCA_parameters(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type):
"""
Uses pmag.domean to preform a line, line-with-origin, line-anchored,
or plane least squared regression or a fisher mean on the
measurement data of specimen in coordinate system between bounds
tmin to tmax
Parameters
----------
specimen : specimen with measurement data in self.Data
fit : fit for which the regression or mean is being applied
(used for calculating measurement index of tmin and tmax)
tmin : lower bound of measurement data
tmax : upper bound of measurement data
coordinate_system : which coordinate system the measurement data
should be in
calculation_type : type of regression or mean to preform
(options - DE-BFL:line,DE-BFL-A:line-anchored,DE-BFL-O:line-with-
origin,DE-FM:fisher,DE-BFP:plane)
Returns
-------
mpars : a 2.5 data model dictionary type specimen record of the dec,
inc, etc of the regression or mean
"""
if tmin == '' or tmax == '':
return
beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen)
if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO':
block = self.Data[specimen]['zijdblock_geo']
elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if block == []:
print(("-E- no measurement data for specimen %s in coordinate system %s" %
(specimen, coordinate_system)))
mpars = {}
elif end_pca > beg_pca and end_pca - beg_pca > 1:
try:
# preformes regression
mpars = pmag.domean(block, beg_pca, end_pca, calculation_type)
except:
print((block, beg_pca, end_pca, calculation_type,
specimen, fit.name, tmin, tmax, coordinate_system))
return
if 'specimen_direction_type' in mpars and mpars['specimen_direction_type'] == 'Error':
print(("-E- no measurement data for specimen %s in coordinate system %s" %
(specimen, coordinate_system)))
return {}
else:
mpars = {}
for k in list(mpars.keys()):
try:
if math.isnan(float(mpars[k])):
mpars[k] = 0
except:
pass
if "DE-BFL" in calculation_type and 'specimen_dang' not in list(mpars.keys()):
mpars['specimen_dang'] = 0
if 'best fit vector' in self.plane_display_box.GetValue():
self.calculate_best_fit_vectors()
return(mpars) | Uses pmag.domean to preform a line, line-with-origin, line-anchored,
or plane least squared regression or a fisher mean on the
measurement data of specimen in coordinate system between bounds
tmin to tmax
Parameters
----------
specimen : specimen with measurement data in self.Data
fit : fit for which the regression or mean is being applied
(used for calculating measurement index of tmin and tmax)
tmin : lower bound of measurement data
tmax : upper bound of measurement data
coordinate_system : which coordinate system the measurement data
should be in
calculation_type : type of regression or mean to preform
(options - DE-BFL:line,DE-BFL-A:line-anchored,DE-BFL-O:line-with-
origin,DE-FM:fisher,DE-BFP:plane)
Returns
-------
mpars : a 2.5 data model dictionary type specimen record of the dec,
inc, etc of the regression or mean | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L2962-L3029 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.autointerpret | def autointerpret(self, event, step_size=None, calculation_type="DE-BFL"):
"""
Clears current interpretations and adds interpretations to every
specimen of type = calculation_type by attempting fits of size =
step size and type = calculation_type and testing the mad or a95
then finding peaks in these to note areas of maximum error then fits
between these peaks excluding them.
Parameters
----------
step_size : int that is the size of fits to make while stepping
through data if None then step size = len(meas data for
specimen)/10 rounded up if that value is greater than 3 else it
is 3 (default: None)
calculation_type : type of fit to make (default: DE-BFL or line)
"""
if not self.user_warning("This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?"):
return
if not self.clear_interpretations():
return
print("Autointerpretation Start")
self.set_test_mode(True)
for specimen in self.specimens:
self.autointerpret_specimen(specimen, step_size, calculation_type)
self.set_test_mode(False)
if self.pmag_results_data['specimens'][self.s] != []:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
else:
self.current_fit = None
print("Autointerpretation Complete")
self.update_selection()
if self.ie_open:
self.ie.update_editor() | python | def autointerpret(self, event, step_size=None, calculation_type="DE-BFL"):
"""
Clears current interpretations and adds interpretations to every
specimen of type = calculation_type by attempting fits of size =
step size and type = calculation_type and testing the mad or a95
then finding peaks in these to note areas of maximum error then fits
between these peaks excluding them.
Parameters
----------
step_size : int that is the size of fits to make while stepping
through data if None then step size = len(meas data for
specimen)/10 rounded up if that value is greater than 3 else it
is 3 (default: None)
calculation_type : type of fit to make (default: DE-BFL or line)
"""
if not self.user_warning("This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?"):
return
if not self.clear_interpretations():
return
print("Autointerpretation Start")
self.set_test_mode(True)
for specimen in self.specimens:
self.autointerpret_specimen(specimen, step_size, calculation_type)
self.set_test_mode(False)
if self.pmag_results_data['specimens'][self.s] != []:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
else:
self.current_fit = None
print("Autointerpretation Complete")
self.update_selection()
if self.ie_open:
self.ie.update_editor() | Clears current interpretations and adds interpretations to every
specimen of type = calculation_type by attempting fits of size =
step size and type = calculation_type and testing the mad or a95
then finding peaks in these to note areas of maximum error then fits
between these peaks excluding them.
Parameters
----------
step_size : int that is the size of fits to make while stepping
through data if None then step size = len(meas data for
specimen)/10 rounded up if that value is greater than 3 else it
is 3 (default: None)
calculation_type : type of fit to make (default: DE-BFL or line) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3031-L3066 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.autointerpret_specimen | def autointerpret_specimen(self, specimen, step_size, calculation_type):
"""In Dev"""
if self.COORDINATE_SYSTEM == 'geographic':
block = self.Data[specimen]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if step_size == None:
step_size = int(len(block)/10 + .5)
if step_size < 3:
step_size = 3
temps = []
mads = []
for i in range(len(block)-step_size):
if block[i][5] == 'b':
return
try:
mpars = pmag.domean(block, i, i+step_size, calculation_type)
except (IndexError, TypeError) as e:
return
if 'specimen_mad' in list(mpars.keys()):
temps.append(block[i][0])
mads.append(mpars['specimen_mad'])
if mads == []:
return
peaks = find_peaks_cwt(array(mads), arange(5, 10))
len_temps = len(self.Data[specimen]['zijdblock_steps'])
peaks = [0] + peaks + [len(temps)]
prev_peak = peaks[0]
for peak in peaks[1:]:
if peak - prev_peak < 3:
prev_peak = peak
continue
tmin = self.Data[specimen]['zijdblock_steps'][prev_peak]
tmax = self.Data[specimen]['zijdblock_steps'][peak]
self.add_fit(specimen, None, tmin, tmax, calculation_type)
prev_peak = peak+1 | python | def autointerpret_specimen(self, specimen, step_size, calculation_type):
"""In Dev"""
if self.COORDINATE_SYSTEM == 'geographic':
block = self.Data[specimen]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if step_size == None:
step_size = int(len(block)/10 + .5)
if step_size < 3:
step_size = 3
temps = []
mads = []
for i in range(len(block)-step_size):
if block[i][5] == 'b':
return
try:
mpars = pmag.domean(block, i, i+step_size, calculation_type)
except (IndexError, TypeError) as e:
return
if 'specimen_mad' in list(mpars.keys()):
temps.append(block[i][0])
mads.append(mpars['specimen_mad'])
if mads == []:
return
peaks = find_peaks_cwt(array(mads), arange(5, 10))
len_temps = len(self.Data[specimen]['zijdblock_steps'])
peaks = [0] + peaks + [len(temps)]
prev_peak = peaks[0]
for peak in peaks[1:]:
if peak - prev_peak < 3:
prev_peak = peak
continue
tmin = self.Data[specimen]['zijdblock_steps'][prev_peak]
tmax = self.Data[specimen]['zijdblock_steps'][peak]
self.add_fit(specimen, None, tmin, tmax, calculation_type)
prev_peak = peak+1 | In Dev | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3068-L3107 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_high_level_mean_pars | def get_high_level_mean_pars(self, high_level_type, high_level_name, calculation_type, elements_type, mean_fit, dirtype):
"""
Gets the Parameters of a mean of lower level data such as a Site
level Fisher mean of Specimen interpretations
Parameters
----------
high_level_type : 'samples','sites','locations','study'
high_level_name : sample, site, location, or study whose
data to which to apply the mean
calculation_type : 'Bingham','Fisher','Fisher by polarity'
elements_type : what to average: 'specimens', 'samples',
'sites' (Ron. ToDo allow VGP and maybe locations?)
mean_fit : name of interpretation to average if All uses all
figure out what level to average,and what elements to average
(specimen, samples, sites, vgp)
"""
elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type]
pars_for_mean = {}
pars_for_mean["All"] = []
for element in elements_list:
if elements_type == 'specimens' and element in self.pmag_results_data['specimens']:
for fit in self.pmag_results_data['specimens'][element]:
if fit in self.bad_fits:
continue
if fit.name not in list(pars_for_mean.keys()):
pars_for_mean[fit.name] = []
try:
# is this fit to be included in mean
if mean_fit == 'All' or mean_fit == fit.name:
pars = fit.get(dirtype)
if pars == {} or pars == None:
pars = self.get_PCA_parameters(
element, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type)
if pars == {} or pars == None:
print(("cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value." % (
element, fit.name)))
continue
fit.put(element, dirtype, pars)
else:
continue
if "calculation_type" in list(pars.keys()) and pars["calculation_type"] == 'DE-BFP':
dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'p'
elif "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'l'
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec, inc, direction_type = pars["dec"], pars["inc"], 'l'
else:
print(
("-E- ERROR: can't find mean for specimen interpertation: %s , %s" % (element, fit.name)))
print(pars)
continue
# add for calculation
pars_for_mean[fit.name].append({'dec': float(dec), 'inc': float(
inc), 'direction_type': direction_type, 'element_name': element})
pars_for_mean["All"].append({'dec': float(dec), 'inc': float(
inc), 'direction_type': direction_type, 'element_name': element})
except KeyError:
print(
("KeyError in calculate_high_level_mean for element: " + str(element)))
continue
else:
try:
pars = self.high_level_means[elements_type][element][mean_fit][dirtype]
if "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec, inc, direction_type = pars["dec"], pars["inc"], 'l'
else:
# print "-E- ERROR: can't find mean for element %s"%element
continue
except KeyError:
# print("KeyError in calculate_high_level_mean for element: " + str(element) + " please report to a dev")
continue
return pars_for_mean | python | def get_high_level_mean_pars(self, high_level_type, high_level_name, calculation_type, elements_type, mean_fit, dirtype):
"""
Gets the Parameters of a mean of lower level data such as a Site
level Fisher mean of Specimen interpretations
Parameters
----------
high_level_type : 'samples','sites','locations','study'
high_level_name : sample, site, location, or study whose
data to which to apply the mean
calculation_type : 'Bingham','Fisher','Fisher by polarity'
elements_type : what to average: 'specimens', 'samples',
'sites' (Ron. ToDo allow VGP and maybe locations?)
mean_fit : name of interpretation to average if All uses all
figure out what level to average,and what elements to average
(specimen, samples, sites, vgp)
"""
elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type]
pars_for_mean = {}
pars_for_mean["All"] = []
for element in elements_list:
if elements_type == 'specimens' and element in self.pmag_results_data['specimens']:
for fit in self.pmag_results_data['specimens'][element]:
if fit in self.bad_fits:
continue
if fit.name not in list(pars_for_mean.keys()):
pars_for_mean[fit.name] = []
try:
# is this fit to be included in mean
if mean_fit == 'All' or mean_fit == fit.name:
pars = fit.get(dirtype)
if pars == {} or pars == None:
pars = self.get_PCA_parameters(
element, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type)
if pars == {} or pars == None:
print(("cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value." % (
element, fit.name)))
continue
fit.put(element, dirtype, pars)
else:
continue
if "calculation_type" in list(pars.keys()) and pars["calculation_type"] == 'DE-BFP':
dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'p'
elif "specimen_dec" in list(pars.keys()) and "specimen_inc" in list(pars.keys()):
dec, inc, direction_type = pars["specimen_dec"], pars["specimen_inc"], 'l'
elif "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec, inc, direction_type = pars["dec"], pars["inc"], 'l'
else:
print(
("-E- ERROR: can't find mean for specimen interpertation: %s , %s" % (element, fit.name)))
print(pars)
continue
# add for calculation
pars_for_mean[fit.name].append({'dec': float(dec), 'inc': float(
inc), 'direction_type': direction_type, 'element_name': element})
pars_for_mean["All"].append({'dec': float(dec), 'inc': float(
inc), 'direction_type': direction_type, 'element_name': element})
except KeyError:
print(
("KeyError in calculate_high_level_mean for element: " + str(element)))
continue
else:
try:
pars = self.high_level_means[elements_type][element][mean_fit][dirtype]
if "dec" in list(pars.keys()) and "inc" in list(pars.keys()):
dec, inc, direction_type = pars["dec"], pars["inc"], 'l'
else:
# print "-E- ERROR: can't find mean for element %s"%element
continue
except KeyError:
# print("KeyError in calculate_high_level_mean for element: " + str(element) + " please report to a dev")
continue
return pars_for_mean | Gets the Parameters of a mean of lower level data such as a Site
level Fisher mean of Specimen interpretations
Parameters
----------
high_level_type : 'samples','sites','locations','study'
high_level_name : sample, site, location, or study whose
data to which to apply the mean
calculation_type : 'Bingham','Fisher','Fisher by polarity'
elements_type : what to average: 'specimens', 'samples',
'sites' (Ron. ToDo allow VGP and maybe locations?)
mean_fit : name of interpretation to average if All uses all
figure out what level to average,and what elements to average
(specimen, samples, sites, vgp) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3109-L3184 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.calculate_mean | def calculate_mean(self, pars_for_mean, calculation_type):
"""
Uses pmag.dolnp or pmag.fisher_by_pol to do a fisher mean or fisher
mean by polarity on the list of dictionaries in pars for mean
Parameters
----------
pars_for_mean : list of dictionaries with all data to average
calculation_type : type of mean to take (options: Fisher,
Fisher by polarity)
Returns
-------
mpars : dictionary with information of mean or empty dictionary
TODO : put Bingham statistics back in once a method for displaying
them is figured out
"""
if len(pars_for_mean) == 0:
return({})
elif len(pars_for_mean) == 1:
return ({"dec": float(pars_for_mean[0]['dec']), "inc": float(pars_for_mean[0]['inc']), "calculation_type": calculation_type, "n": 1})
# elif calculation_type =='Bingham':
# data=[]
# for pars in pars_for_mean:
# # ignore great circle
# if 'direction_type' in pars.keys() and 'direction_type'=='p':
# continue
# else:
# data.append([pars['dec'],pars['inc']])
# mpars=pmag.dobingham(data)
elif calculation_type == 'Fisher':
mpars = pmag.dolnp(pars_for_mean, 'direction_type')
elif calculation_type == 'Fisher by polarity':
mpars = pmag.fisher_by_pol(pars_for_mean)
for key in list(mpars.keys()):
mpars[key]['n_planes'] = 0
mpars[key]['calculation_type'] = 'Fisher'
mpars['calculation_type'] = calculation_type
return mpars | python | def calculate_mean(self, pars_for_mean, calculation_type):
"""
Uses pmag.dolnp or pmag.fisher_by_pol to do a fisher mean or fisher
mean by polarity on the list of dictionaries in pars for mean
Parameters
----------
pars_for_mean : list of dictionaries with all data to average
calculation_type : type of mean to take (options: Fisher,
Fisher by polarity)
Returns
-------
mpars : dictionary with information of mean or empty dictionary
TODO : put Bingham statistics back in once a method for displaying
them is figured out
"""
if len(pars_for_mean) == 0:
return({})
elif len(pars_for_mean) == 1:
return ({"dec": float(pars_for_mean[0]['dec']), "inc": float(pars_for_mean[0]['inc']), "calculation_type": calculation_type, "n": 1})
# elif calculation_type =='Bingham':
# data=[]
# for pars in pars_for_mean:
# # ignore great circle
# if 'direction_type' in pars.keys() and 'direction_type'=='p':
# continue
# else:
# data.append([pars['dec'],pars['inc']])
# mpars=pmag.dobingham(data)
elif calculation_type == 'Fisher':
mpars = pmag.dolnp(pars_for_mean, 'direction_type')
elif calculation_type == 'Fisher by polarity':
mpars = pmag.fisher_by_pol(pars_for_mean)
for key in list(mpars.keys()):
mpars[key]['n_planes'] = 0
mpars[key]['calculation_type'] = 'Fisher'
mpars['calculation_type'] = calculation_type
return mpars | Uses pmag.dolnp or pmag.fisher_by_pol to do a fisher mean or fisher
mean by polarity on the list of dictionaries in pars for mean
Parameters
----------
pars_for_mean : list of dictionaries with all data to average
calculation_type : type of mean to take (options: Fisher,
Fisher by polarity)
Returns
-------
mpars : dictionary with information of mean or empty dictionary
TODO : put Bingham statistics back in once a method for displaying
them is figured out | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3219-L3265 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.calculate_high_levels_data | def calculate_high_levels_data(self):
"""
calculates high level mean data for the high level mean plot using
information in level_box, level_names, mean_type_box, and
mean_fit_box also updates the information in the ie to match high
level mean data in main GUI.
"""
high_level_type = str(self.level_box.GetValue())
if high_level_type == 'sample':
high_level_type = 'samples'
if high_level_type == 'site':
high_level_type = 'sites'
if high_level_type == 'location':
high_level_type = 'locations'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if self.ie_open:
self.ie.mean_type_box.SetStringSelection(calculation_type)
self.calculate_high_level_mean(
high_level_type, high_level_name, calculation_type, elements_type, self.mean_fit) | python | def calculate_high_levels_data(self):
"""
calculates high level mean data for the high level mean plot using
information in level_box, level_names, mean_type_box, and
mean_fit_box also updates the information in the ie to match high
level mean data in main GUI.
"""
high_level_type = str(self.level_box.GetValue())
if high_level_type == 'sample':
high_level_type = 'samples'
if high_level_type == 'site':
high_level_type = 'sites'
if high_level_type == 'location':
high_level_type = 'locations'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if self.ie_open:
self.ie.mean_type_box.SetStringSelection(calculation_type)
self.calculate_high_level_mean(
high_level_type, high_level_name, calculation_type, elements_type, self.mean_fit) | calculates high level mean data for the high level mean plot using
information in level_box, level_names, mean_type_box, and
mean_fit_box also updates the information in the ie to match high
level mean data in main GUI. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3307-L3327 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.quiet_reset_backend | def quiet_reset_backend(self, reset_interps=True):
"""
Doesn't update plots or logger or any visable data but resets all
measurement data, hierarchy data, and optionally resets
intepretations.
Parameters
----------
reset_interps : bool to tell the function to reset fits or
not.
"""
new_Data_info = self.get_data_info()
new_Data, new_Data_hierarchy = self.get_data()
if not new_Data:
print("Data read in failed when reseting, aborting reset")
return
else:
self.Data, self.Data_hierarchy, self.Data_info = new_Data, new_Data_hierarchy, new_Data_info
if reset_interps:
self.pmag_results_data = {}
for level in ['specimens', 'samples', 'sites', 'locations', 'study']:
self.pmag_results_data[level] = {}
self.high_level_means = {}
high_level_means = {}
for high_level in ['samples', 'sites', 'locations', 'study']:
if high_level not in list(self.high_level_means.keys()):
self.high_level_means[high_level] = {}
# get list of sites
self.locations = list(self.Data_hierarchy['locations'].keys())
self.locations.sort() # get list of sites
# get list of sites
self.sites = list(self.Data_hierarchy['sites'].keys())
self.sites.sort(key=spec_key_func) # get list of sites
self.samples = [] # sort the samples within each site
for site in self.sites:
self.samples.extend(
sorted(self.Data_hierarchy['sites'][site]['samples'], key=spec_key_func))
self.specimens = [] # sort the specimens within each sample
for samp in self.samples:
self.specimens.extend(
sorted(self.Data_hierarchy['samples'][samp]['specimens'], key=spec_key_func))
# --------------------------------------------------------------------
# initialize first specimen in list as current specimen
# --------------------------------------------------------------------
if self.s in self.specimens:
pass
elif len(self.specimens) > 0:
self.select_specimen(str(self.specimens[0]))
else:
self.select_specimen("")
try:
self.sample = self.Data_hierarchy['sample_of_specimen'][self.s]
except KeyError:
self.sample = ""
try:
self.site = self.Data_hierarchy['site_of_specimen'][self.s]
except KeyError:
self.site = ""
if self.Data and reset_interps:
self.update_pmag_tables()
if self.ie_open:
self.ie.specimens_list = self.specimens | python | def quiet_reset_backend(self, reset_interps=True):
"""
Doesn't update plots or logger or any visable data but resets all
measurement data, hierarchy data, and optionally resets
intepretations.
Parameters
----------
reset_interps : bool to tell the function to reset fits or
not.
"""
new_Data_info = self.get_data_info()
new_Data, new_Data_hierarchy = self.get_data()
if not new_Data:
print("Data read in failed when reseting, aborting reset")
return
else:
self.Data, self.Data_hierarchy, self.Data_info = new_Data, new_Data_hierarchy, new_Data_info
if reset_interps:
self.pmag_results_data = {}
for level in ['specimens', 'samples', 'sites', 'locations', 'study']:
self.pmag_results_data[level] = {}
self.high_level_means = {}
high_level_means = {}
for high_level in ['samples', 'sites', 'locations', 'study']:
if high_level not in list(self.high_level_means.keys()):
self.high_level_means[high_level] = {}
# get list of sites
self.locations = list(self.Data_hierarchy['locations'].keys())
self.locations.sort() # get list of sites
# get list of sites
self.sites = list(self.Data_hierarchy['sites'].keys())
self.sites.sort(key=spec_key_func) # get list of sites
self.samples = [] # sort the samples within each site
for site in self.sites:
self.samples.extend(
sorted(self.Data_hierarchy['sites'][site]['samples'], key=spec_key_func))
self.specimens = [] # sort the specimens within each sample
for samp in self.samples:
self.specimens.extend(
sorted(self.Data_hierarchy['samples'][samp]['specimens'], key=spec_key_func))
# --------------------------------------------------------------------
# initialize first specimen in list as current specimen
# --------------------------------------------------------------------
if self.s in self.specimens:
pass
elif len(self.specimens) > 0:
self.select_specimen(str(self.specimens[0]))
else:
self.select_specimen("")
try:
self.sample = self.Data_hierarchy['sample_of_specimen'][self.s]
except KeyError:
self.sample = ""
try:
self.site = self.Data_hierarchy['site_of_specimen'][self.s]
except KeyError:
self.site = ""
if self.Data and reset_interps:
self.update_pmag_tables()
if self.ie_open:
self.ie.specimens_list = self.specimens | Doesn't update plots or logger or any visable data but resets all
measurement data, hierarchy data, and optionally resets
intepretations.
Parameters
----------
reset_interps : bool to tell the function to reset fits or
not. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3329-L3397 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.reset_backend | def reset_backend(self, warn_user=True, reset_interps=True):
"""
Resets GUI data and updates GUI displays such as plots, boxes, and
logger
Parameters
----------
warn_user : bool which decides if a warning dialog is displayed to
the user to ask about reseting data
reset_interps : bool which decides if interpretations are read in
for pmag tables or left alone
"""
if warn_user and not self.data_loss_warning():
return False
# reset backend, including get_data(), get_data_info()
self.quiet_reset_backend(reset_interps=reset_interps)
# reset specimens box
self.specimens_box.SetItems(self.specimens)
self.specimens_box.SetStringSelection(str(self.s))
# reset site level means box
self.level_names.Clear()
self.level_names.AppendItems(self.sites)
if self.sites:
self.level_names.SetSelection(0)
# reset coordinate system
self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()
self.coordinates_box.Clear()
self.coordinates_box.AppendItems(self.coordinate_list)
self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM)
# get cart rot
self.initialize_CART_rot(str(self.s))
# draw everything
if self.Data:
if not self.current_fit:
self.draw_figure(self.s)
self.update_selection()
else:
self.Add_text()
self.update_fit_boxes()
if self.ie_open:
self.ie.update_editor() | python | def reset_backend(self, warn_user=True, reset_interps=True):
"""
Resets GUI data and updates GUI displays such as plots, boxes, and
logger
Parameters
----------
warn_user : bool which decides if a warning dialog is displayed to
the user to ask about reseting data
reset_interps : bool which decides if interpretations are read in
for pmag tables or left alone
"""
if warn_user and not self.data_loss_warning():
return False
# reset backend, including get_data(), get_data_info()
self.quiet_reset_backend(reset_interps=reset_interps)
# reset specimens box
self.specimens_box.SetItems(self.specimens)
self.specimens_box.SetStringSelection(str(self.s))
# reset site level means box
self.level_names.Clear()
self.level_names.AppendItems(self.sites)
if self.sites:
self.level_names.SetSelection(0)
# reset coordinate system
self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()
self.coordinates_box.Clear()
self.coordinates_box.AppendItems(self.coordinate_list)
self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM)
# get cart rot
self.initialize_CART_rot(str(self.s))
# draw everything
if self.Data:
if not self.current_fit:
self.draw_figure(self.s)
self.update_selection()
else:
self.Add_text()
self.update_fit_boxes()
if self.ie_open:
self.ie.update_editor() | Resets GUI data and updates GUI displays such as plots, boxes, and
logger
Parameters
----------
warn_user : bool which decides if a warning dialog is displayed to
the user to ask about reseting data
reset_interps : bool which decides if interpretations are read in
for pmag tables or left alone | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3399-L3446 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.recalculate_current_specimen_interpreatations | def recalculate_current_specimen_interpreatations(self):
"""
recalculates all interpretations on all specimens for all coordinate
systems. Does not display recalcuated data.
"""
self.initialize_CART_rot(self.s)
if str(self.s) in self.pmag_results_data['specimens']:
for fit in self.pmag_results_data['specimens'][self.s]:
if fit.get('specimen') and 'calculation_type' in fit.get('specimen'):
fit.put(self.s, 'specimen', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen')['calculation_type']))
if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get('geographic') and 'calculation_type' in fit.get('geographic'):
fit.put(self.s, 'geographic', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'geographic', fit.get('geographic')['calculation_type']))
if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get('tilt-corrected') and 'calculation_type' in fit.get('tilt-corrected'):
fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters(self.s, fit, fit.tmin,
fit.tmax, 'tilt-corrected', fit.get('tilt-corrected')['calculation_type'])) | python | def recalculate_current_specimen_interpreatations(self):
"""
recalculates all interpretations on all specimens for all coordinate
systems. Does not display recalcuated data.
"""
self.initialize_CART_rot(self.s)
if str(self.s) in self.pmag_results_data['specimens']:
for fit in self.pmag_results_data['specimens'][self.s]:
if fit.get('specimen') and 'calculation_type' in fit.get('specimen'):
fit.put(self.s, 'specimen', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen')['calculation_type']))
if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get('geographic') and 'calculation_type' in fit.get('geographic'):
fit.put(self.s, 'geographic', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'geographic', fit.get('geographic')['calculation_type']))
if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get('tilt-corrected') and 'calculation_type' in fit.get('tilt-corrected'):
fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters(self.s, fit, fit.tmin,
fit.tmax, 'tilt-corrected', fit.get('tilt-corrected')['calculation_type'])) | recalculates all interpretations on all specimens for all coordinate
systems. Does not display recalcuated data. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3448-L3464 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.parse_bound_data | def parse_bound_data(self, tmin0, tmax0, specimen):
"""
converts Kelvin/Tesla temperature/AF data from the MagIC/Redo format
to that of Celsius/milliTesla which is used by the GUI as it is
often more intuitive
Parameters
----------
tmin0 : the input temperature/AF lower bound value to convert
tmax0 : the input temperature/AF upper bound value to convert
specimen : the specimen these bounds are for
tmin : the converted lower bound temperature/AF or None if input
format was wrong
tmax : the converted upper bound temperature/AF or None if the input
format was wrong
"""
if specimen not in self.Data:
print(
("no measurement data found loaded for specimen %s and will be ignored" % (specimen)))
return (None, None)
if self.Data[specimen]['measurement_step_unit'] == "C":
if float(tmin0) == 0 or float(tmin0) == 273:
tmin = "0"
else:
tmin = "%.0fC" % (float(tmin0)-273)
if float(tmax0) == 0 or float(tmax0) == 273:
tmax = "0"
else:
tmax = "%.0fC" % (float(tmax0)-273)
elif self.Data[specimen]['measurement_step_unit'] == "mT":
if float(tmin0) == 0:
tmin = "0"
else:
tmin = "%.1fmT" % (float(tmin0)*1000)
if float(tmax0) == 0:
tmax = "0"
else:
tmax = "%.1fmT" % (float(tmax0)*1000)
else: # combimned experiment T:AF
if float(tmin0) == 0:
tmin = "0"
elif "%.0fC" % (float(tmin0)-273) in self.Data[specimen]['zijdblock_steps']:
tmin = "%.0fC" % (float(tmin0)-273)
elif "%.1fmT" % (float(tmin0)*1000) in self.Data[specimen]['zijdblock_steps']:
tmin = "%.1fmT" % (float(tmin0)*1000)
else:
tmin = None
if float(tmax0) == 0:
tmax = "0"
elif "%.0fC" % (float(tmax0)-273) in self.Data[specimen]['zijdblock_steps']:
tmax = "%.0fC" % (float(tmax0)-273)
elif "%.1fmT" % (float(tmax0)*1000) in self.Data[specimen]['zijdblock_steps']:
tmax = "%.1fmT" % (float(tmax0)*1000)
else:
tmax = None
return tmin, tmax | python | def parse_bound_data(self, tmin0, tmax0, specimen):
"""
converts Kelvin/Tesla temperature/AF data from the MagIC/Redo format
to that of Celsius/milliTesla which is used by the GUI as it is
often more intuitive
Parameters
----------
tmin0 : the input temperature/AF lower bound value to convert
tmax0 : the input temperature/AF upper bound value to convert
specimen : the specimen these bounds are for
tmin : the converted lower bound temperature/AF or None if input
format was wrong
tmax : the converted upper bound temperature/AF or None if the input
format was wrong
"""
if specimen not in self.Data:
print(
("no measurement data found loaded for specimen %s and will be ignored" % (specimen)))
return (None, None)
if self.Data[specimen]['measurement_step_unit'] == "C":
if float(tmin0) == 0 or float(tmin0) == 273:
tmin = "0"
else:
tmin = "%.0fC" % (float(tmin0)-273)
if float(tmax0) == 0 or float(tmax0) == 273:
tmax = "0"
else:
tmax = "%.0fC" % (float(tmax0)-273)
elif self.Data[specimen]['measurement_step_unit'] == "mT":
if float(tmin0) == 0:
tmin = "0"
else:
tmin = "%.1fmT" % (float(tmin0)*1000)
if float(tmax0) == 0:
tmax = "0"
else:
tmax = "%.1fmT" % (float(tmax0)*1000)
else: # combimned experiment T:AF
if float(tmin0) == 0:
tmin = "0"
elif "%.0fC" % (float(tmin0)-273) in self.Data[specimen]['zijdblock_steps']:
tmin = "%.0fC" % (float(tmin0)-273)
elif "%.1fmT" % (float(tmin0)*1000) in self.Data[specimen]['zijdblock_steps']:
tmin = "%.1fmT" % (float(tmin0)*1000)
else:
tmin = None
if float(tmax0) == 0:
tmax = "0"
elif "%.0fC" % (float(tmax0)-273) in self.Data[specimen]['zijdblock_steps']:
tmax = "%.0fC" % (float(tmax0)-273)
elif "%.1fmT" % (float(tmax0)*1000) in self.Data[specimen]['zijdblock_steps']:
tmax = "%.1fmT" % (float(tmax0)*1000)
else:
tmax = None
return tmin, tmax | converts Kelvin/Tesla temperature/AF data from the MagIC/Redo format
to that of Celsius/milliTesla which is used by the GUI as it is
often more intuitive
Parameters
----------
tmin0 : the input temperature/AF lower bound value to convert
tmax0 : the input temperature/AF upper bound value to convert
specimen : the specimen these bounds are for
tmin : the converted lower bound temperature/AF or None if input
format was wrong
tmax : the converted upper bound temperature/AF or None if the input
format was wrong | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3466-L3522 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_indices | def get_indices(self, fit=None, tmin=None, tmax=None, specimen=None):
"""
Finds the appropriate indices in self.Data[self.s]['zijdplot_steps']
given a set of upper/lower bounds. This is to resolve duplicate
steps using the convention that the first good step of that name is
the indicated step by that bound if there are no steps of the names
tmin or tmax then it complains and reutrns a tuple (None,None).
Parameters
----------
fit : the fit who's bounds to find the indecies of if no upper or
lower bounds are specified
tmin : the lower bound to find the index of
tmax : the upper bound to find the index of
specimen : the specimen who's steps to search for indecies (defaults
to currently selected specimen)
Returns
-------
(tmin_index, tmax_index) : a tuple with the lower bound index then
the upper bound index
"""
if specimen == None:
specimen = self.s
if fit and not tmin and not tmax:
tmin = fit.tmin
tmax = fit.tmax
if specimen not in list(self.Data.keys()):
self.user_warning("No data for specimen " + specimen)
if tmin in self.Data[specimen]['zijdblock_steps']:
tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin)
elif type(tmin) == str or type(tmin) == str and tmin != '':
int_steps = [float(x.strip("C mT"))
for x in self.Data[specimen]['zijdblock_steps']]
if tmin == '':
tmin = self.Data[specimen]['zijdblock_steps'][0]
print(("No lower bound for %s on specimen %s using lowest step (%s) for lower bound" % (
fit.name, specimen, tmin)))
if fit != None:
fit.tmin = tmin
int_tmin = float(tmin.strip("C mT"))
diffs = [abs(x-int_tmin) for x in int_steps]
tmin_index = diffs.index(min(diffs))
else:
tmin_index = self.tmin_box.GetSelection()
if tmax in self.Data[specimen]['zijdblock_steps']:
tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax)
elif type(tmax) == str or type(tmax) == str and tmax != '':
int_steps = [float(x.strip("C mT"))
for x in self.Data[specimen]['zijdblock_steps']]
if tmax == '':
tmax = self.Data[specimen]['zijdblock_steps'][-1]
print(("No upper bound for fit %s on specimen %s using last step (%s) for upper bound" % (
fit.name, specimen, tmax)))
if fit != None:
fit.tmax = tmax
int_tmax = float(tmax.strip("C mT"))
diffs = [abs(x-int_tmax) for x in int_steps]
tmax_index = diffs.index(min(diffs))
else:
tmax_index = self.tmin_box.GetSelection()
max_index = len(self.Data[specimen]['zijdblock_steps'])-1
while (self.Data[specimen]['measurement_flag'][max_index] == 'b' and max_index-1 > 0):
max_index -= 1
if tmin_index >= max_index:
print(("lower bound is greater or equal to max step cannot determine bounds for specimen: " + specimen))
return (None, None)
if (tmin_index >= 0):
while (self.Data[specimen]['measurement_flag'][tmin_index] == 'b' and
tmin_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
if (self.Data[specimen]['zijdblock_steps'][tmin_index+1] == tmin):
tmin_index += 1
else:
tmin_old = tmin
while (self.Data[specimen]['measurement_flag'][tmin_index] == 'b' and
tmin_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
tmin_index += 1
tmin = self.Data[specimen]['zijdblock_steps'][tmin_index]
if fit != None:
fit.tmin = tmin
self.tmin_box.SetStringSelection(tmin)
print(("For specimen " + str(specimen) + " there are no good measurement steps with value - " +
str(tmin_old) + " using step " + str(tmin) + " as lower bound instead"))
break
if (tmax_index < max_index):
while (self.Data[specimen]['measurement_flag'][tmax_index] == 'b' and
tmax_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
if (self.Data[specimen]['zijdblock_steps'][tmax_index+1] == tmax):
tmax_index += 1
else:
tmax_old = tmax
while (self.Data[specimen]['measurement_flag'][tmax_index] == 'b' and
tmax_index >= 0):
tmax_index -= 1
tmax = self.Data[specimen]['zijdblock_steps'][tmax_index]
if fit != None:
fit.tmax = tmax
self.tmax_box.SetStringSelection(tmax)
print(("For specimen " + str(specimen) + " there are no good measurement steps with value - " +
str(tmax_old) + " using step " + str(tmax) + " as upper bound instead"))
break
if (tmin_index < 0):
tmin_index = 0
if (tmax_index > max_index):
tmax_index = max_index
return (tmin_index, tmax_index) | python | def get_indices(self, fit=None, tmin=None, tmax=None, specimen=None):
"""
Finds the appropriate indices in self.Data[self.s]['zijdplot_steps']
given a set of upper/lower bounds. This is to resolve duplicate
steps using the convention that the first good step of that name is
the indicated step by that bound if there are no steps of the names
tmin or tmax then it complains and reutrns a tuple (None,None).
Parameters
----------
fit : the fit who's bounds to find the indecies of if no upper or
lower bounds are specified
tmin : the lower bound to find the index of
tmax : the upper bound to find the index of
specimen : the specimen who's steps to search for indecies (defaults
to currently selected specimen)
Returns
-------
(tmin_index, tmax_index) : a tuple with the lower bound index then
the upper bound index
"""
if specimen == None:
specimen = self.s
if fit and not tmin and not tmax:
tmin = fit.tmin
tmax = fit.tmax
if specimen not in list(self.Data.keys()):
self.user_warning("No data for specimen " + specimen)
if tmin in self.Data[specimen]['zijdblock_steps']:
tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin)
elif type(tmin) == str or type(tmin) == str and tmin != '':
int_steps = [float(x.strip("C mT"))
for x in self.Data[specimen]['zijdblock_steps']]
if tmin == '':
tmin = self.Data[specimen]['zijdblock_steps'][0]
print(("No lower bound for %s on specimen %s using lowest step (%s) for lower bound" % (
fit.name, specimen, tmin)))
if fit != None:
fit.tmin = tmin
int_tmin = float(tmin.strip("C mT"))
diffs = [abs(x-int_tmin) for x in int_steps]
tmin_index = diffs.index(min(diffs))
else:
tmin_index = self.tmin_box.GetSelection()
if tmax in self.Data[specimen]['zijdblock_steps']:
tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax)
elif type(tmax) == str or type(tmax) == str and tmax != '':
int_steps = [float(x.strip("C mT"))
for x in self.Data[specimen]['zijdblock_steps']]
if tmax == '':
tmax = self.Data[specimen]['zijdblock_steps'][-1]
print(("No upper bound for fit %s on specimen %s using last step (%s) for upper bound" % (
fit.name, specimen, tmax)))
if fit != None:
fit.tmax = tmax
int_tmax = float(tmax.strip("C mT"))
diffs = [abs(x-int_tmax) for x in int_steps]
tmax_index = diffs.index(min(diffs))
else:
tmax_index = self.tmin_box.GetSelection()
max_index = len(self.Data[specimen]['zijdblock_steps'])-1
while (self.Data[specimen]['measurement_flag'][max_index] == 'b' and max_index-1 > 0):
max_index -= 1
if tmin_index >= max_index:
print(("lower bound is greater or equal to max step cannot determine bounds for specimen: " + specimen))
return (None, None)
if (tmin_index >= 0):
while (self.Data[specimen]['measurement_flag'][tmin_index] == 'b' and
tmin_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
if (self.Data[specimen]['zijdblock_steps'][tmin_index+1] == tmin):
tmin_index += 1
else:
tmin_old = tmin
while (self.Data[specimen]['measurement_flag'][tmin_index] == 'b' and
tmin_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
tmin_index += 1
tmin = self.Data[specimen]['zijdblock_steps'][tmin_index]
if fit != None:
fit.tmin = tmin
self.tmin_box.SetStringSelection(tmin)
print(("For specimen " + str(specimen) + " there are no good measurement steps with value - " +
str(tmin_old) + " using step " + str(tmin) + " as lower bound instead"))
break
if (tmax_index < max_index):
while (self.Data[specimen]['measurement_flag'][tmax_index] == 'b' and
tmax_index+1 < len(self.Data[specimen]['zijdblock_steps'])):
if (self.Data[specimen]['zijdblock_steps'][tmax_index+1] == tmax):
tmax_index += 1
else:
tmax_old = tmax
while (self.Data[specimen]['measurement_flag'][tmax_index] == 'b' and
tmax_index >= 0):
tmax_index -= 1
tmax = self.Data[specimen]['zijdblock_steps'][tmax_index]
if fit != None:
fit.tmax = tmax
self.tmax_box.SetStringSelection(tmax)
print(("For specimen " + str(specimen) + " there are no good measurement steps with value - " +
str(tmax_old) + " using step " + str(tmax) + " as upper bound instead"))
break
if (tmin_index < 0):
tmin_index = 0
if (tmax_index > max_index):
tmax_index = max_index
return (tmin_index, tmax_index) | Finds the appropriate indices in self.Data[self.s]['zijdplot_steps']
given a set of upper/lower bounds. This is to resolve duplicate
steps using the convention that the first good step of that name is
the indicated step by that bound if there are no steps of the names
tmin or tmax then it complains and reutrns a tuple (None,None).
Parameters
----------
fit : the fit who's bounds to find the indecies of if no upper or
lower bounds are specified
tmin : the lower bound to find the index of
tmax : the upper bound to find the index of
specimen : the specimen who's steps to search for indecies (defaults
to currently selected specimen)
Returns
-------
(tmin_index, tmax_index) : a tuple with the lower bound index then
the upper bound index | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3524-L3635 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.merge_pmag_recs | def merge_pmag_recs(self, old_recs):
"""
Takes in a list of dictionaries old_recs and returns a list of
dictionaries where every dictionary in the returned list has the
same keys as all the others.
Parameters
----------
old_recs : list of dictionaries to fix
Returns
-------
recs : list of dictionaries with same keys
"""
recs = {}
recs = deepcopy(old_recs)
headers = []
for rec in recs:
for key in list(rec.keys()):
if key not in headers:
headers.append(key)
for rec in recs:
for header in headers:
if header not in list(rec.keys()):
rec[header] = ""
return recs | python | def merge_pmag_recs(self, old_recs):
"""
Takes in a list of dictionaries old_recs and returns a list of
dictionaries where every dictionary in the returned list has the
same keys as all the others.
Parameters
----------
old_recs : list of dictionaries to fix
Returns
-------
recs : list of dictionaries with same keys
"""
recs = {}
recs = deepcopy(old_recs)
headers = []
for rec in recs:
for key in list(rec.keys()):
if key not in headers:
headers.append(key)
for rec in recs:
for header in headers:
if header not in list(rec.keys()):
rec[header] = ""
return recs | Takes in a list of dictionaries old_recs and returns a list of
dictionaries where every dictionary in the returned list has the
same keys as all the others.
Parameters
----------
old_recs : list of dictionaries to fix
Returns
-------
recs : list of dictionaries with same keys | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3637-L3662 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.select_specimen | def select_specimen(self, specimen):
"""
Goes through the calculations necessary to plot measurement data for
specimen and sets specimen as current GUI specimen, also attempts to
handle changing current fit.
"""
try:
fit_index = self.pmag_results_data['specimens'][self.s].index(
self.current_fit)
except KeyError:
fit_index = None
except ValueError:
fit_index = None
# sets self.s to specimen calculates params etc.
self.initialize_CART_rot(specimen)
self.list_bound_loc = 0
if fit_index != None and self.s in self.pmag_results_data['specimens']:
try:
self.current_fit = self.pmag_results_data['specimens'][self.s][fit_index]
except IndexError:
self.current_fit = None
else:
self.current_fit = None
if self.s != self.specimens_box.GetValue():
self.specimens_box.SetValue(self.s) | python | def select_specimen(self, specimen):
"""
Goes through the calculations necessary to plot measurement data for
specimen and sets specimen as current GUI specimen, also attempts to
handle changing current fit.
"""
try:
fit_index = self.pmag_results_data['specimens'][self.s].index(
self.current_fit)
except KeyError:
fit_index = None
except ValueError:
fit_index = None
# sets self.s to specimen calculates params etc.
self.initialize_CART_rot(specimen)
self.list_bound_loc = 0
if fit_index != None and self.s in self.pmag_results_data['specimens']:
try:
self.current_fit = self.pmag_results_data['specimens'][self.s][fit_index]
except IndexError:
self.current_fit = None
else:
self.current_fit = None
if self.s != self.specimens_box.GetValue():
self.specimens_box.SetValue(self.s) | Goes through the calculations necessary to plot measurement data for
specimen and sets specimen as current GUI specimen, also attempts to
handle changing current fit. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3668-L3692 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.clear_interpretations | def clear_interpretations(self, message=None):
"""
Clears all specimen interpretations
Parameters
----------
message : message to display when warning the user that all
fits will be deleted. If None default message is used (None is
default)
"""
if self.total_num_of_interpertations() == 0:
print("There are no interpretations")
return True
if message == None:
message = "All interpretations will be deleted all unsaved data will be irretrievable, continue?"
dlg = wx.MessageDialog(self, caption="Delete?",
message=message, style=wx.OK | wx.CANCEL)
result = self.show_dlg(dlg)
dlg.Destroy()
if result != wx.ID_OK:
return False
for specimen in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
# later on when high level means are fixed remove the bellow loop and loop over pmag_results_data
for high_level_type in ['samples', 'sites', 'locations', 'study']:
self.high_level_means[high_level_type] = {}
self.current_fit = None
if self.ie_open:
self.ie.update_editor()
return True | python | def clear_interpretations(self, message=None):
"""
Clears all specimen interpretations
Parameters
----------
message : message to display when warning the user that all
fits will be deleted. If None default message is used (None is
default)
"""
if self.total_num_of_interpertations() == 0:
print("There are no interpretations")
return True
if message == None:
message = "All interpretations will be deleted all unsaved data will be irretrievable, continue?"
dlg = wx.MessageDialog(self, caption="Delete?",
message=message, style=wx.OK | wx.CANCEL)
result = self.show_dlg(dlg)
dlg.Destroy()
if result != wx.ID_OK:
return False
for specimen in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
# later on when high level means are fixed remove the bellow loop and loop over pmag_results_data
for high_level_type in ['samples', 'sites', 'locations', 'study']:
self.high_level_means[high_level_type] = {}
self.current_fit = None
if self.ie_open:
self.ie.update_editor()
return True | Clears all specimen interpretations
Parameters
----------
message : message to display when warning the user that all
fits will be deleted. If None default message is used (None is
default) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3694-L3725 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.mark_meas_good | def mark_meas_good(self, g_index):
"""
Marks the g_index'th measuremnt of current specimen good
Parameters
----------
g_index : int that gives the index of the measurement to mark good,
indexed from 0
"""
meas_index, ind_data = 0, []
for i, meas_data in enumerate(self.mag_meas_data):
if meas_data['er_specimen_name'] == self.s:
ind_data.append(i)
meas_index = ind_data[g_index]
self.Data[self.s]['measurement_flag'][g_index] = 'g'
if len(self.Data[self.s]['zijdblock'][g_index]) < 6:
self.Data[self.s]['zijdblock'][g_index].append('g')
self.Data[self.s]['zijdblock'][g_index][5] = 'g'
if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[self.s]['zijdblock_geo']):
if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6:
self.Data[self.s]['zijdblock_geo'][g_index].append('g')
self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g'
if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[self.s]['zijdblock_tilt']):
if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6:
self.Data[self.s]['zijdblock_tilt'][g_index].append('g')
self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g'
self.mag_meas_data[meas_index]['measurement_flag'] = 'g'
if self.data_model == 3.0:
meas_name = str(self.Data[self.s]['measurement_names'][g_index])
mdf = self.con.tables['measurements'].df
# check for multiple measurements with the same name
if not isinstance(mdf.loc[meas_name], pd.Series):
res = self.user_warning("Your measurements table has non-unique measurement names.\nYou may end up marking more than one measurement as good.\nRight click this measurement again to undo.")
# mark measurement as good
mdf.loc[meas_name, 'quality'] = 'g' | python | def mark_meas_good(self, g_index):
"""
Marks the g_index'th measuremnt of current specimen good
Parameters
----------
g_index : int that gives the index of the measurement to mark good,
indexed from 0
"""
meas_index, ind_data = 0, []
for i, meas_data in enumerate(self.mag_meas_data):
if meas_data['er_specimen_name'] == self.s:
ind_data.append(i)
meas_index = ind_data[g_index]
self.Data[self.s]['measurement_flag'][g_index] = 'g'
if len(self.Data[self.s]['zijdblock'][g_index]) < 6:
self.Data[self.s]['zijdblock'][g_index].append('g')
self.Data[self.s]['zijdblock'][g_index][5] = 'g'
if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[self.s]['zijdblock_geo']):
if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6:
self.Data[self.s]['zijdblock_geo'][g_index].append('g')
self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g'
if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[self.s]['zijdblock_tilt']):
if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6:
self.Data[self.s]['zijdblock_tilt'][g_index].append('g')
self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g'
self.mag_meas_data[meas_index]['measurement_flag'] = 'g'
if self.data_model == 3.0:
meas_name = str(self.Data[self.s]['measurement_names'][g_index])
mdf = self.con.tables['measurements'].df
# check for multiple measurements with the same name
if not isinstance(mdf.loc[meas_name], pd.Series):
res = self.user_warning("Your measurements table has non-unique measurement names.\nYou may end up marking more than one measurement as good.\nRight click this measurement again to undo.")
# mark measurement as good
mdf.loc[meas_name, 'quality'] = 'g' | Marks the g_index'th measuremnt of current specimen good
Parameters
----------
g_index : int that gives the index of the measurement to mark good,
indexed from 0 | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3740-L3776 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.mark_fit_good | def mark_fit_good(self, fit, spec=None):
"""
Marks fit good so it is used in high level means
Parameters
----------
fit : fit to mark good
spec : specimen of fit to mark good (optional though runtime will
increase if not provided)
"""
if spec == None:
for spec, fits in list(self.pmag_results_data['specimens'].items()):
if fit in fits:
break
samp = self.Data_hierarchy['sample_of_specimen'][spec]
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']
if samp_flag == 'g':
self.bad_fits.remove(fit)
return True
else:
self.user_warning(
"Cannot mark this interpretation good its sample orientation has been marked bad")
return False | python | def mark_fit_good(self, fit, spec=None):
"""
Marks fit good so it is used in high level means
Parameters
----------
fit : fit to mark good
spec : specimen of fit to mark good (optional though runtime will
increase if not provided)
"""
if spec == None:
for spec, fits in list(self.pmag_results_data['specimens'].items()):
if fit in fits:
break
samp = self.Data_hierarchy['sample_of_specimen'][spec]
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']
if samp_flag == 'g':
self.bad_fits.remove(fit)
return True
else:
self.user_warning(
"Cannot mark this interpretation good its sample orientation has been marked bad")
return False | Marks fit good so it is used in high level means
Parameters
----------
fit : fit to mark good
spec : specimen of fit to mark good (optional though runtime will
increase if not provided) | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3817-L3841 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.mark_fit_bad | def mark_fit_bad(self, fit):
"""
Marks fit bad so it is excluded from high level means
Parameters
----------
fit : fit to mark bad
"""
if fit not in self.bad_fits:
self.bad_fits.append(fit)
return True
else:
return False | python | def mark_fit_bad(self, fit):
"""
Marks fit bad so it is excluded from high level means
Parameters
----------
fit : fit to mark bad
"""
if fit not in self.bad_fits:
self.bad_fits.append(fit)
return True
else:
return False | Marks fit bad so it is excluded from high level means
Parameters
----------
fit : fit to mark bad | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3843-L3855 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_data | def get_data(self):
"""
reads data from current WD measurement.txt or magic_measurements.txt
depending on data model and sorts it into main measurements data
structures given bellow:
Data - {specimen: {
zijdblock:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_geo:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_tilt:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_lab_treatments: [str],
zijdblock_steps: [str],
measurement_flag: [str ('b','g')],
mag_meas_data_index: [int],
csds: [float],
pars: {},
zdata: array.shape = 2x2 (float),
zdata_geo: array.shape = 2x2 (float),
zdata_tilt: array.shape = 2x2 (float),
vector_diffs: [float],
vds: float }}
Data_hierarchy - {specimen: {
study: {}
locations: {}
sites: {}
samples: {}
specimens: {}
sample_of_specimen: {}
site_of_specimen: {}
site_of_sample: {}
location_of_site: {}
location_of_specimen: {}
study_of_specimen: {}
expedition_name_of_specimen: {} }}
"""
# ------------------------------------------------
# Read magic measurement file and sort to blocks
# ------------------------------------------------
# All meas data information is stored in Data[secimen]={}
Data = {}
Data_hierarchy = {}
Data_hierarchy['study'] = {}
Data_hierarchy['locations'] = {}
Data_hierarchy['sites'] = {}
Data_hierarchy['samples'] = {}
Data_hierarchy['specimens'] = {}
Data_hierarchy['sample_of_specimen'] = {}
Data_hierarchy['site_of_specimen'] = {}
Data_hierarchy['site_of_sample'] = {}
Data_hierarchy['location_of_site'] = {}
Data_hierarchy['location_of_specimen'] = {}
Data_hierarchy['study_of_specimen'] = {}
Data_hierarchy['expedition_name_of_specimen'] = {}
if self.data_model == 3:
if 'measurements' not in self.con.tables:
self.user_warning(
"Measurement data file is empty and the GUI cannot start, aborting")
return Data, Data_hierarchy
if self.con.tables['measurements'].df.empty:
self.user_warning(
"Measurement data file is empty and the GUI cannot start, aborting")
return Data, Data_hierarchy
# extract specimen data from measurements table
if not len(self.spec_data):
specs = self.con.tables['measurements'].df['specimen'].unique()
df = pd.DataFrame(index=specs, columns=['specimen'])
df.index.name = 'specimen_name'
df['specimen'] = specs
self.con.tables['specimens'].df = df
self.spec_data = df
if not len(self.spec_data):
self.user_warning(
"Measurement data file does not seem to have specimen data and the GUI cannot start, aborting")
return Data, Data_hierarchy
if 'sample' not in self.spec_data.columns or 'sample' not in self.samp_data.columns:
if 'specimen' not in self.spec_data.columns:
self.spec_data['specimen'] = self.con.tables['measurements'].df['specimen']
self.spec_data.set_index('specimen', inplace=True)
self.spec_data['specimen'] = self.spec_data.index
ui_dialog = demag_dialogs.user_input(
self, ["# of characters to remove"], heading="Sample data could not be found attempting to generate sample names by removing characters from specimen names")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
try:
samp_ncr = int(ui_data[1]["# of characters to remove"])
except ValueError:
self.user_warning(
"Invalid input, specimen names will be used for sample names instead")
samp_ncr = 0
self.spec_data['sample'] = [x[:-samp_ncr]
for x in self.spec_data['specimen']]
self.samp_data['sample'] = self.spec_data['sample']
self.samp_data.set_index('sample', inplace=True)
self.samp_data['sample'] = self.samp_data.index
if 'site' not in self.samp_data.columns or 'site' not in self.site_data.columns:
ui_dialog = demag_dialogs.user_input(
self, ["# of characters to remove", "site delimiter"], heading="No Site Data found attempting to create site names from specimen names")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
try:
site_ncr = int(ui_data[1]["# of characters to remove"])
self.samp_data['site'] = [x[:-site_ncr]
for x in self.spec_data['specimen']]
except ValueError:
try:
sd = ui_data[1]["site delimiter"]
self.samp_data['site'] = [
x.split(sd)[0] for x in self.spec_data['specimen']]
except ValueError:
self.samp_data['site'] = [
x for x in self.spec_data['specimen']]
self.site_data['site'] = self.samp_data['site']
self.site_data.drop_duplicates(inplace=True)
self.site_data.set_index('site', inplace=True)
self.site_data['site'] = self.site_data.index
if 'location' not in self.site_data.columns or 'location' not in self.loc_data.columns:
ui_dialog = demag_dialogs.user_input(
self, ["location name for all sites"], heading="No Location found")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
self.site_data['location'] = ui_data[1]["location name for all sites"]
self.loc_data['location'] = self.site_data['location']
self.loc_data.drop_duplicates(inplace=True)
self.loc_data.set_index('location', inplace=True)
self.loc_data['location'] = self.loc_data.index
# add data to other dataframes
self.con.propagate_location_to_measurements()
self.con.propagate_location_to_specimens()
# get measurement data from contribution object
meas_container = self.con.tables['measurements']
meas_data3_0 = meas_container.df
meas_data3_0.replace({'specimen': {nan: 'unknown'}, 'sample': {nan: 'unknown'}, 'site': {
nan: 'unknown'}, 'location': {nan: 'unknown'}}, inplace=True)
meas_data3_0['specimen'] = meas_data3_0['specimen'].apply(str)
meas_data3_0['sample'] = meas_data3_0['sample'].apply(str)
meas_data3_0['site'] = meas_data3_0['site'].apply(str)
meas_data3_0['location'] = meas_data3_0['location'].apply(str)
# do some filtering
# if 'location' in meas_data3_0.columns:
# if any(meas_data3_0['location'].isnull()):
# print("-W- Some measurements are missing location data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['location'].notnull()]
# meas_data3_0.replace({'location':float('nan')},'unknown',inplace=True)
# if 'site' in meas_data3_0.columns:
# if any(meas_data3_0['site'].isnull()):
# print("-W- Some measurements are missing site data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['site'].notnull()]
# meas_data3_0.replace({'site':float('nan')},'unknown',inplace=True)
# if 'sample' in meas_data3_0.columns:
# if any(meas_data3_0['sample'].isnull()):
# print("-W- Some measurements are missing sample data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['sample'].notnull()]
# meas_data3_0.replace({'sample':float('nan')},'unknown',inplace=True)
# if 'specimen' in meas_data3_0.columns:
# missing = meas_data3_0[meas_data3_0['specimen'].isnull()]
# if len(missing):
# print("-W- {} measurements are missing specimen data, and will not be used".format(missing))
# meas_data3_0 = meas_data3_0[meas_data3_0['specimen'].notnull()]
# meas_data3_0.replace({'specimen':float('nan')},'unknown',inplace=True)
# col_names = ['specimen', 'sample', 'site', 'location']
# for col_name in col_names:
# if col_name in meas_data3_0.columns:
# pruned = meas_data3_0[meas_data3_0[col_name].apply(cb.not_null)]
# num_missing = len(meas_data3_0) - len(pruned)
# if num_missing:
# msg = "{} measurements cannot be associated with a {} and will be excluded\nTry using Pmag GUI (step 3) to make sure you have provided the full chain from specimen to location.".format(num_missing, col_name)
# pw.simple_warning(msg)
# print("-W- {} measurements are missing {} data and will be excluded".format(num_missing, col_name))
# meas_data3_0 = pruned
Mkeys = ['magn_moment', 'magn_volume', 'magn_mass']
# fish out all the relavent data
meas_data3_0 = meas_data3_0[meas_data3_0['method_codes'].str.contains(
'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z|LT-LT-Z') == True]
if not len(meas_data3_0):
self.user_warning("Your measurements table contains none of the required method codes to run Demag GUI: [LT-NO, LT-AF-Z, LT-T-Z, LT-M-Z, LT-LT-Z]")
return {}, {}
# now convert back to 2.5 changing only those keys that are necessary for thellier_gui
meas_con_dict = map_magic.get_thellier_gui_meas_mapping(
meas_data3_0, output=2)
intensity_col = cb.get_intensity_col(meas_data3_0)
if not intensity_col:
self.user_warning("Your measurements table must have one of the following columns to run Demag GUI: 'magn_moment', 'magn_volume', 'magn_mass',or 'magn_uncal'")
return {}, {}
print('-I- Using {} for intensity'.format(intensity_col))
self.intensity_col = meas_con_dict[intensity_col]
meas_data2_5 = meas_data3_0.rename(columns=meas_con_dict)
# make a list of dictionaries to maintain backward compatibility
mag_meas_data = meas_data2_5.to_dict("records")
else: # data model 2.5
try:
print(("-I- Read magic file %s" % self.magic_file))
except ValueError:
self.magic_measurement = self.choose_meas_file()
print(("-I- Read magic file %s" % self.magic_file))
mag_meas_data, file_type = pmag.magic_read(self.magic_file)
if file_type != "magic_measurements":
self.user_warning("You have selected data model 2.5, but your measurements file is either not in 2.5, or is not a measurements file.\n{} has file type: {}".format(self.magic_file, file_type))
return {}, {}
self.mag_meas_data = self.merge_pmag_recs(mag_meas_data)
# get list of unique specimen names with measurement data
CurrRec = []
sids = pmag.get_specs(self.mag_meas_data) # specimen ID's
for s in sids:
if s not in list(Data.keys()):
Data[s] = {}
Data[s]['zijdblock'] = []
Data[s]['zijdblock_geo'] = []
Data[s]['zijdblock_tilt'] = []
Data[s]['zijdblock_lab_treatments'] = []
Data[s]['pars'] = {}
Data[s]['csds'] = []
Data[s]['zijdblock_steps'] = []
Data[s]['measurement_flag'] = [] # a list of points 'g' or 'b'
# index in original magic_measurements.txt
Data[s]['mag_meas_data_index'] = []
Data[s]['measurement_names'] = []
prev_s = None
cnt = -1
# list of excluded lab protocols. copied from pmag.find_dmag_rec(s,data)
self.excluded_methods = ["LP-AN-ARM", "LP-AN-TRM", "LP-ARM-AFD",
"LP-ARM2-AFD", "LP-TRM-AFD", "LP-TRM", "LP-TRM-TD", "LP-X", "LP-PI-ARM"]
self.included_methods = [
"LT-NO", "LT-AF-Z", "LT-T-Z", "LT-M-Z", "LT-LT-Z"]
# self.mag_meas_data.sort(key=meas_key)
# asiigned default values for NRM
if len(self.mag_meas_data) > 0 and self.intensity_col in list(self.mag_meas_data[0].keys()):
NRM = float(self.mag_meas_data[0][self.intensity_col])
for rec in self.mag_meas_data:
# if "measurement_number" in rec.keys() and str(rec['measurement_number']) == '1' and "magic_method_codes" in rec.keys() and "LT-NO" not in rec["magic_method_codes"].split(':'):
# NRM = 1 #not really sure how to handle this case but assume that data is already normalized
cnt += 1 # index counter
s = rec["er_specimen_name"]
if "er_sample_name" in list(rec.keys()):
sample = rec["er_sample_name"]
else:
sample = ''
if "er_site_name" in list(rec.keys()):
site = rec["er_site_name"]
else:
site = ''
if "er_location_name" in list(rec.keys()):
location = rec["er_location_name"]
else:
location = ''
expedition_name = ""
if "er_expedition_name" in list(rec.keys()):
expedition_name = rec["er_expedition_name"]
methods = rec["magic_method_codes"].replace(
" ", "").strip("\n").split(":")
LP_methods = []
LT_methods = []
for k in ['zdata', 'zdata_geo', 'zdata_tilt', 'vector_diffs']:
if k not in Data[s]:
Data[s][k] = []
for i in range(len(methods)):
methods[i] = methods[i].strip()
if 'measurement_flag' not in list(rec.keys()):
rec['measurement_flag'] = 'g'
SKIP = True
lab_treatment = ""
for meth in methods:
if 'DIR' in meth:
SKIP = False
if meth in self.included_methods:
lab_treatment = meth
SKIP = False
if "LP" in meth:
LP_methods.append(meth)
for meth in self.excluded_methods:
if meth in methods:
SKIP = True
break
if SKIP:
continue
tr, LPcode, measurement_step_unit = "", "", ""
if "LT-NO" in methods:
tr = 0
if prev_s != s and self.intensity_col in rec:
try:
NRM = float(rec[self.intensity_col])
except ValueError:
NRM = 1
for method in methods:
if "AF" in method:
LPcode = "LP-DIR-AF"
measurement_step_unit = "mT"
if "TRM" in method:
LPcode = "LP-DIR-T"
measurement_step_unit = "C"
elif "LT-AF-Z" in methods:
try:
tr = float(rec["treatment_ac_field"])*1e3 # (mT)
except ValueError:
print(("Could not convert ac field for measurement, was given %s, skipping" %
rec["treatment_ac_field"]))
continue
measurement_step_unit = "mT" # in magic its T in GUI its mT
LPcode = "LP-DIR-AF"
elif "LT-T-Z" in methods or "LT-LT-Z" in methods:
try:
tr = float(rec["treatment_temp"])-273. # celsius
except ValueError:
print(
("Could not convert temperature for measurement, was given %s, skipping" % rec["treatment_temp"]))
continue
measurement_step_unit = "C" # in magic its K in GUI its C
LPcode = "LP-DIR-T"
elif "LT-M-Z" in methods:
# temporary for microwave
tr = float(rec["measurement_number"])
else:
# attempt to determine from treatment data
if all(im not in methods for im in self.included_methods):
if 'treatment_temp' in list(rec.keys()) and not str(rec['treatment_temp']).isalpha() and rec['treatment_temp'] != '' and float(rec['treatment_temp']) > 0:
tr = float(rec["treatment_temp"])-273. # celsius
measurement_step_unit = "C" # in magic its K in GUI its C
LPcode = "LP-DIR-T"
elif 'treatment_ac_field' in list(rec.keys()) and not str(rec['treatment_ac_field']).isalpha() and rec['treatment_ac_field'] != '' and float(rec['treatment_ac_field']) > 0:
tr = float(rec["treatment_ac_field"])*1e3 # (mT)
measurement_step_unit = "mT" # in magic its T in GUI its mT
LPcode = "LP-DIR-AF"
else:
tr = 0
if prev_s != s and self.intensity_col in rec:
try:
NRM = float(rec[self.intensity_col])
except ValueError:
NRM = 1
for method in methods:
if "AF" in method:
LPcode = "LP-DIR-AF"
measurement_step_unit = "mT"
if "TRM" in method:
LPcode = "LP-DIR-T"
measurement_step_unit = "C"
else:
tr = float(rec["measurement_number"])
if prev_s != s and len(Data[s]['zijdblock']) > 0:
NRM = Data[s]['zijdblock'][0][3]
ZI = 0
if tr != "":
Data[s]['mag_meas_data_index'].append(
cnt) # magic_measurement file intex
if not int(self.data_model) == 2:
try:
Data[s]['measurement_names'].append(rec['measurement'])
except KeyError:
Data[s]['measurement_names'].append(rec['measurement_number'])
Data[s]['zijdblock_lab_treatments'].append(lab_treatment)
if measurement_step_unit != "":
if 'measurement_step_unit' in list(Data[s].keys()):
if measurement_step_unit not in Data[s]['measurement_step_unit'].split(":"):
Data[s]['measurement_step_unit'] = Data[s]['measurement_step_unit'] + \
":"+measurement_step_unit
else:
Data[s]['measurement_step_unit'] = measurement_step_unit
dec, inc, inten = "", "", ""
if "measurement_dec" in list(rec.keys()) and cb.not_null(rec["measurement_dec"], False):
dec = float(rec["measurement_dec"])
else:
continue
if "measurement_inc" in list(rec.keys()) and cb.not_null(rec["measurement_inc"], False):
inc = float(rec["measurement_inc"])
else:
continue
if self.intensity_col in list(rec.keys()) and cb.not_null(rec[self.intensity_col], False):
intensity = float(rec[self.intensity_col])
else:
intensity = 1. # just assume a normal vector
if 'magic_instrument_codes' not in list(rec.keys()):
rec['magic_instrument_codes'] = ''
if 'measurement_csd' in list(rec.keys()):
csd = str(rec['measurement_csd'])
else:
csd = ''
Data[s]['zijdblock'].append(
[tr, dec, inc, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
Data[s]['csds'].append(csd)
DIR = [dec, inc, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata'].append(array([cart[0], cart[1], cart[2]]))
if 'magic_experiment_name' in list(Data[s].keys()) and Data[s]['magic_experiment_name'] != rec["magic_experiment_name"]:
print(("-E- ERROR: specimen %s has more than one demagnetization experiment name. You need to merge them to one experiment-name?" % (s)))
if float(tr) == 0 or float(tr) == 273:
Data[s]['zijdblock_steps'].append("0")
elif measurement_step_unit == "C":
Data[s]['zijdblock_steps'].append(
"%.0f%s" % (tr, measurement_step_unit))
else:
Data[s]['zijdblock_steps'].append(
"%.1f%s" % (tr, measurement_step_unit))
# --------------
if 'magic_experiment_name' in list(rec.keys()):
Data[s]['magic_experiment_name'] = rec["magic_experiment_name"]
if "magic_instrument_codes" in list(rec.keys()):
Data[s]['magic_instrument_codes'] = rec['magic_instrument_codes']
Data[s]["magic_method_codes"] = LPcode
# --------------
# ""good" or "bad" data
# --------------
flag = 'g'
if 'measurement_flag' in list(rec.keys()):
if str(rec["measurement_flag"]) == 'b':
flag = 'b'
Data[s]['measurement_flag'].append(flag)
# gegraphic coordinates
try:
sample_azimuth = float(
self.Data_info["er_samples"][sample]['sample_azimuth'])
sample_dip = float(
self.Data_info["er_samples"][sample]['sample_dip'])
d_geo, i_geo = pmag.dogeo(
dec, inc, sample_azimuth, sample_dip)
# if d_geo or i_geo is null, we can't do geographic coordinates
# otherwise, go ahead
if not any([np.isnan(val) for val in [d_geo, i_geo]]):
Data[s]['zijdblock_geo'].append(
[tr, d_geo, i_geo, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
DIR = [d_geo, i_geo, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata_geo'].append([cart[0], cart[1], cart[2]])
except (IOError, KeyError, ValueError, TypeError) as e:
pass
# if prev_s != s:
# print( "-W- can't find sample_azimuth,sample_dip for sample %s"%sample)
# tilt-corrected coordinates
try:
sample_bed_dip_direction = float(
self.Data_info["er_samples"][sample]['sample_bed_dip_direction'])
sample_bed_dip = float(
self.Data_info["er_samples"][sample]['sample_bed_dip'])
d_tilt, i_tilt = pmag.dotilt(
d_geo, i_geo, sample_bed_dip_direction, sample_bed_dip)
Data[s]['zijdblock_tilt'].append(
[tr, d_tilt, i_tilt, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
DIR = [d_tilt, i_tilt, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata_tilt'].append([cart[0], cart[1], cart[2]])
except (IOError, KeyError, TypeError, ValueError, UnboundLocalError) as e:
pass
# if prev_s != s:
# printd("-W- can't find tilt-corrected data for sample %s"%sample)
if len(Data[s]['zdata']) > 1:
Data[s]['vector_diffs'].append(
sqrt(sum((array(Data[s]['zdata'][-2])-array(Data[s]['zdata'][-1]))**2)))
# ---------------------
# hierarchy is determined from magic_measurements.txt
# ---------------------
if sample not in list(Data_hierarchy['samples'].keys()):
Data_hierarchy['samples'][sample] = {}
Data_hierarchy['samples'][sample]['specimens'] = []
if site not in list(Data_hierarchy['sites'].keys()):
Data_hierarchy['sites'][site] = {}
Data_hierarchy['sites'][site]['samples'] = []
Data_hierarchy['sites'][site]['specimens'] = []
if location not in list(Data_hierarchy['locations'].keys()):
Data_hierarchy['locations'][location] = {}
Data_hierarchy['locations'][location]['sites'] = []
Data_hierarchy['locations'][location]['samples'] = []
Data_hierarchy['locations'][location]['specimens'] = []
if 'this study' not in list(Data_hierarchy['study'].keys()):
Data_hierarchy['study']['this study'] = {}
Data_hierarchy['study']['this study']['sites'] = []
Data_hierarchy['study']['this study']['samples'] = []
Data_hierarchy['study']['this study']['specimens'] = []
if s not in Data_hierarchy['samples'][sample]['specimens']:
Data_hierarchy['samples'][sample]['specimens'].append(s)
if s not in Data_hierarchy['sites'][site]['specimens']:
Data_hierarchy['sites'][site]['specimens'].append(s)
if s not in Data_hierarchy['locations'][location]['specimens']:
Data_hierarchy['locations'][location]['specimens'].append(s)
if s not in Data_hierarchy['study']['this study']['specimens']:
Data_hierarchy['study']['this study']['specimens'].append(s)
if sample not in Data_hierarchy['sites'][site]['samples']:
Data_hierarchy['sites'][site]['samples'].append(sample)
if sample not in Data_hierarchy['locations'][location]['samples']:
Data_hierarchy['locations'][location]['samples'].append(sample)
if sample not in Data_hierarchy['study']['this study']['samples']:
Data_hierarchy['study']['this study']['samples'].append(sample)
if site not in Data_hierarchy['locations'][location]['sites']:
Data_hierarchy['locations'][location]['sites'].append(site)
if site not in Data_hierarchy['study']['this study']['sites']:
Data_hierarchy['study']['this study']['sites'].append(site)
# Data_hierarchy['specimens'][s]=sample
Data_hierarchy['sample_of_specimen'][s] = sample
Data_hierarchy['site_of_specimen'][s] = site
Data_hierarchy['site_of_sample'][sample] = site
Data_hierarchy['location_of_site'][site] = location
Data_hierarchy['location_of_specimen'][s] = location
if expedition_name != "":
Data_hierarchy['expedition_name_of_specimen'][s] = expedition_name
prev_s = s
print("-I- done sorting meas data")
self.specimens = list(Data.keys())
for s in self.specimens:
if len(Data[s]['zdata']) > 0:
Data[s]['vector_diffs'].append(
sqrt(sum(array(Data[s]['zdata'][-1])**2))) # last vector of the vds
vds = sum(Data[s]['vector_diffs']) # vds calculation
Data[s]['vector_diffs'] = array(Data[s]['vector_diffs'])
Data[s]['vds'] = vds
Data[s]['zdata'] = array(Data[s]['zdata'])
Data[s]['zdata_geo'] = array(Data[s]['zdata_geo'])
Data[s]['zdata_tilt'] = array(Data[s]['zdata_tilt'])
return(Data, Data_hierarchy) | python | def get_data(self):
"""
reads data from current WD measurement.txt or magic_measurements.txt
depending on data model and sorts it into main measurements data
structures given bellow:
Data - {specimen: {
zijdblock:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_geo:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_tilt:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_lab_treatments: [str],
zijdblock_steps: [str],
measurement_flag: [str ('b','g')],
mag_meas_data_index: [int],
csds: [float],
pars: {},
zdata: array.shape = 2x2 (float),
zdata_geo: array.shape = 2x2 (float),
zdata_tilt: array.shape = 2x2 (float),
vector_diffs: [float],
vds: float }}
Data_hierarchy - {specimen: {
study: {}
locations: {}
sites: {}
samples: {}
specimens: {}
sample_of_specimen: {}
site_of_specimen: {}
site_of_sample: {}
location_of_site: {}
location_of_specimen: {}
study_of_specimen: {}
expedition_name_of_specimen: {} }}
"""
# ------------------------------------------------
# Read magic measurement file and sort to blocks
# ------------------------------------------------
# All meas data information is stored in Data[secimen]={}
Data = {}
Data_hierarchy = {}
Data_hierarchy['study'] = {}
Data_hierarchy['locations'] = {}
Data_hierarchy['sites'] = {}
Data_hierarchy['samples'] = {}
Data_hierarchy['specimens'] = {}
Data_hierarchy['sample_of_specimen'] = {}
Data_hierarchy['site_of_specimen'] = {}
Data_hierarchy['site_of_sample'] = {}
Data_hierarchy['location_of_site'] = {}
Data_hierarchy['location_of_specimen'] = {}
Data_hierarchy['study_of_specimen'] = {}
Data_hierarchy['expedition_name_of_specimen'] = {}
if self.data_model == 3:
if 'measurements' not in self.con.tables:
self.user_warning(
"Measurement data file is empty and the GUI cannot start, aborting")
return Data, Data_hierarchy
if self.con.tables['measurements'].df.empty:
self.user_warning(
"Measurement data file is empty and the GUI cannot start, aborting")
return Data, Data_hierarchy
# extract specimen data from measurements table
if not len(self.spec_data):
specs = self.con.tables['measurements'].df['specimen'].unique()
df = pd.DataFrame(index=specs, columns=['specimen'])
df.index.name = 'specimen_name'
df['specimen'] = specs
self.con.tables['specimens'].df = df
self.spec_data = df
if not len(self.spec_data):
self.user_warning(
"Measurement data file does not seem to have specimen data and the GUI cannot start, aborting")
return Data, Data_hierarchy
if 'sample' not in self.spec_data.columns or 'sample' not in self.samp_data.columns:
if 'specimen' not in self.spec_data.columns:
self.spec_data['specimen'] = self.con.tables['measurements'].df['specimen']
self.spec_data.set_index('specimen', inplace=True)
self.spec_data['specimen'] = self.spec_data.index
ui_dialog = demag_dialogs.user_input(
self, ["# of characters to remove"], heading="Sample data could not be found attempting to generate sample names by removing characters from specimen names")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
try:
samp_ncr = int(ui_data[1]["# of characters to remove"])
except ValueError:
self.user_warning(
"Invalid input, specimen names will be used for sample names instead")
samp_ncr = 0
self.spec_data['sample'] = [x[:-samp_ncr]
for x in self.spec_data['specimen']]
self.samp_data['sample'] = self.spec_data['sample']
self.samp_data.set_index('sample', inplace=True)
self.samp_data['sample'] = self.samp_data.index
if 'site' not in self.samp_data.columns or 'site' not in self.site_data.columns:
ui_dialog = demag_dialogs.user_input(
self, ["# of characters to remove", "site delimiter"], heading="No Site Data found attempting to create site names from specimen names")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
try:
site_ncr = int(ui_data[1]["# of characters to remove"])
self.samp_data['site'] = [x[:-site_ncr]
for x in self.spec_data['specimen']]
except ValueError:
try:
sd = ui_data[1]["site delimiter"]
self.samp_data['site'] = [
x.split(sd)[0] for x in self.spec_data['specimen']]
except ValueError:
self.samp_data['site'] = [
x for x in self.spec_data['specimen']]
self.site_data['site'] = self.samp_data['site']
self.site_data.drop_duplicates(inplace=True)
self.site_data.set_index('site', inplace=True)
self.site_data['site'] = self.site_data.index
if 'location' not in self.site_data.columns or 'location' not in self.loc_data.columns:
ui_dialog = demag_dialogs.user_input(
self, ["location name for all sites"], heading="No Location found")
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
self.site_data['location'] = ui_data[1]["location name for all sites"]
self.loc_data['location'] = self.site_data['location']
self.loc_data.drop_duplicates(inplace=True)
self.loc_data.set_index('location', inplace=True)
self.loc_data['location'] = self.loc_data.index
# add data to other dataframes
self.con.propagate_location_to_measurements()
self.con.propagate_location_to_specimens()
# get measurement data from contribution object
meas_container = self.con.tables['measurements']
meas_data3_0 = meas_container.df
meas_data3_0.replace({'specimen': {nan: 'unknown'}, 'sample': {nan: 'unknown'}, 'site': {
nan: 'unknown'}, 'location': {nan: 'unknown'}}, inplace=True)
meas_data3_0['specimen'] = meas_data3_0['specimen'].apply(str)
meas_data3_0['sample'] = meas_data3_0['sample'].apply(str)
meas_data3_0['site'] = meas_data3_0['site'].apply(str)
meas_data3_0['location'] = meas_data3_0['location'].apply(str)
# do some filtering
# if 'location' in meas_data3_0.columns:
# if any(meas_data3_0['location'].isnull()):
# print("-W- Some measurements are missing location data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['location'].notnull()]
# meas_data3_0.replace({'location':float('nan')},'unknown',inplace=True)
# if 'site' in meas_data3_0.columns:
# if any(meas_data3_0['site'].isnull()):
# print("-W- Some measurements are missing site data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['site'].notnull()]
# meas_data3_0.replace({'site':float('nan')},'unknown',inplace=True)
# if 'sample' in meas_data3_0.columns:
# if any(meas_data3_0['sample'].isnull()):
# print("-W- Some measurements are missing sample data, and will not be used")
# meas_data3_0 = meas_data3_0[meas_data3_0['sample'].notnull()]
# meas_data3_0.replace({'sample':float('nan')},'unknown',inplace=True)
# if 'specimen' in meas_data3_0.columns:
# missing = meas_data3_0[meas_data3_0['specimen'].isnull()]
# if len(missing):
# print("-W- {} measurements are missing specimen data, and will not be used".format(missing))
# meas_data3_0 = meas_data3_0[meas_data3_0['specimen'].notnull()]
# meas_data3_0.replace({'specimen':float('nan')},'unknown',inplace=True)
# col_names = ['specimen', 'sample', 'site', 'location']
# for col_name in col_names:
# if col_name in meas_data3_0.columns:
# pruned = meas_data3_0[meas_data3_0[col_name].apply(cb.not_null)]
# num_missing = len(meas_data3_0) - len(pruned)
# if num_missing:
# msg = "{} measurements cannot be associated with a {} and will be excluded\nTry using Pmag GUI (step 3) to make sure you have provided the full chain from specimen to location.".format(num_missing, col_name)
# pw.simple_warning(msg)
# print("-W- {} measurements are missing {} data and will be excluded".format(num_missing, col_name))
# meas_data3_0 = pruned
Mkeys = ['magn_moment', 'magn_volume', 'magn_mass']
# fish out all the relavent data
meas_data3_0 = meas_data3_0[meas_data3_0['method_codes'].str.contains(
'LT-NO|LT-AF-Z|LT-T-Z|LT-M-Z|LT-LT-Z') == True]
if not len(meas_data3_0):
self.user_warning("Your measurements table contains none of the required method codes to run Demag GUI: [LT-NO, LT-AF-Z, LT-T-Z, LT-M-Z, LT-LT-Z]")
return {}, {}
# now convert back to 2.5 changing only those keys that are necessary for thellier_gui
meas_con_dict = map_magic.get_thellier_gui_meas_mapping(
meas_data3_0, output=2)
intensity_col = cb.get_intensity_col(meas_data3_0)
if not intensity_col:
self.user_warning("Your measurements table must have one of the following columns to run Demag GUI: 'magn_moment', 'magn_volume', 'magn_mass',or 'magn_uncal'")
return {}, {}
print('-I- Using {} for intensity'.format(intensity_col))
self.intensity_col = meas_con_dict[intensity_col]
meas_data2_5 = meas_data3_0.rename(columns=meas_con_dict)
# make a list of dictionaries to maintain backward compatibility
mag_meas_data = meas_data2_5.to_dict("records")
else: # data model 2.5
try:
print(("-I- Read magic file %s" % self.magic_file))
except ValueError:
self.magic_measurement = self.choose_meas_file()
print(("-I- Read magic file %s" % self.magic_file))
mag_meas_data, file_type = pmag.magic_read(self.magic_file)
if file_type != "magic_measurements":
self.user_warning("You have selected data model 2.5, but your measurements file is either not in 2.5, or is not a measurements file.\n{} has file type: {}".format(self.magic_file, file_type))
return {}, {}
self.mag_meas_data = self.merge_pmag_recs(mag_meas_data)
# get list of unique specimen names with measurement data
CurrRec = []
sids = pmag.get_specs(self.mag_meas_data) # specimen ID's
for s in sids:
if s not in list(Data.keys()):
Data[s] = {}
Data[s]['zijdblock'] = []
Data[s]['zijdblock_geo'] = []
Data[s]['zijdblock_tilt'] = []
Data[s]['zijdblock_lab_treatments'] = []
Data[s]['pars'] = {}
Data[s]['csds'] = []
Data[s]['zijdblock_steps'] = []
Data[s]['measurement_flag'] = [] # a list of points 'g' or 'b'
# index in original magic_measurements.txt
Data[s]['mag_meas_data_index'] = []
Data[s]['measurement_names'] = []
prev_s = None
cnt = -1
# list of excluded lab protocols. copied from pmag.find_dmag_rec(s,data)
self.excluded_methods = ["LP-AN-ARM", "LP-AN-TRM", "LP-ARM-AFD",
"LP-ARM2-AFD", "LP-TRM-AFD", "LP-TRM", "LP-TRM-TD", "LP-X", "LP-PI-ARM"]
self.included_methods = [
"LT-NO", "LT-AF-Z", "LT-T-Z", "LT-M-Z", "LT-LT-Z"]
# self.mag_meas_data.sort(key=meas_key)
# asiigned default values for NRM
if len(self.mag_meas_data) > 0 and self.intensity_col in list(self.mag_meas_data[0].keys()):
NRM = float(self.mag_meas_data[0][self.intensity_col])
for rec in self.mag_meas_data:
# if "measurement_number" in rec.keys() and str(rec['measurement_number']) == '1' and "magic_method_codes" in rec.keys() and "LT-NO" not in rec["magic_method_codes"].split(':'):
# NRM = 1 #not really sure how to handle this case but assume that data is already normalized
cnt += 1 # index counter
s = rec["er_specimen_name"]
if "er_sample_name" in list(rec.keys()):
sample = rec["er_sample_name"]
else:
sample = ''
if "er_site_name" in list(rec.keys()):
site = rec["er_site_name"]
else:
site = ''
if "er_location_name" in list(rec.keys()):
location = rec["er_location_name"]
else:
location = ''
expedition_name = ""
if "er_expedition_name" in list(rec.keys()):
expedition_name = rec["er_expedition_name"]
methods = rec["magic_method_codes"].replace(
" ", "").strip("\n").split(":")
LP_methods = []
LT_methods = []
for k in ['zdata', 'zdata_geo', 'zdata_tilt', 'vector_diffs']:
if k not in Data[s]:
Data[s][k] = []
for i in range(len(methods)):
methods[i] = methods[i].strip()
if 'measurement_flag' not in list(rec.keys()):
rec['measurement_flag'] = 'g'
SKIP = True
lab_treatment = ""
for meth in methods:
if 'DIR' in meth:
SKIP = False
if meth in self.included_methods:
lab_treatment = meth
SKIP = False
if "LP" in meth:
LP_methods.append(meth)
for meth in self.excluded_methods:
if meth in methods:
SKIP = True
break
if SKIP:
continue
tr, LPcode, measurement_step_unit = "", "", ""
if "LT-NO" in methods:
tr = 0
if prev_s != s and self.intensity_col in rec:
try:
NRM = float(rec[self.intensity_col])
except ValueError:
NRM = 1
for method in methods:
if "AF" in method:
LPcode = "LP-DIR-AF"
measurement_step_unit = "mT"
if "TRM" in method:
LPcode = "LP-DIR-T"
measurement_step_unit = "C"
elif "LT-AF-Z" in methods:
try:
tr = float(rec["treatment_ac_field"])*1e3 # (mT)
except ValueError:
print(("Could not convert ac field for measurement, was given %s, skipping" %
rec["treatment_ac_field"]))
continue
measurement_step_unit = "mT" # in magic its T in GUI its mT
LPcode = "LP-DIR-AF"
elif "LT-T-Z" in methods or "LT-LT-Z" in methods:
try:
tr = float(rec["treatment_temp"])-273. # celsius
except ValueError:
print(
("Could not convert temperature for measurement, was given %s, skipping" % rec["treatment_temp"]))
continue
measurement_step_unit = "C" # in magic its K in GUI its C
LPcode = "LP-DIR-T"
elif "LT-M-Z" in methods:
# temporary for microwave
tr = float(rec["measurement_number"])
else:
# attempt to determine from treatment data
if all(im not in methods for im in self.included_methods):
if 'treatment_temp' in list(rec.keys()) and not str(rec['treatment_temp']).isalpha() and rec['treatment_temp'] != '' and float(rec['treatment_temp']) > 0:
tr = float(rec["treatment_temp"])-273. # celsius
measurement_step_unit = "C" # in magic its K in GUI its C
LPcode = "LP-DIR-T"
elif 'treatment_ac_field' in list(rec.keys()) and not str(rec['treatment_ac_field']).isalpha() and rec['treatment_ac_field'] != '' and float(rec['treatment_ac_field']) > 0:
tr = float(rec["treatment_ac_field"])*1e3 # (mT)
measurement_step_unit = "mT" # in magic its T in GUI its mT
LPcode = "LP-DIR-AF"
else:
tr = 0
if prev_s != s and self.intensity_col in rec:
try:
NRM = float(rec[self.intensity_col])
except ValueError:
NRM = 1
for method in methods:
if "AF" in method:
LPcode = "LP-DIR-AF"
measurement_step_unit = "mT"
if "TRM" in method:
LPcode = "LP-DIR-T"
measurement_step_unit = "C"
else:
tr = float(rec["measurement_number"])
if prev_s != s and len(Data[s]['zijdblock']) > 0:
NRM = Data[s]['zijdblock'][0][3]
ZI = 0
if tr != "":
Data[s]['mag_meas_data_index'].append(
cnt) # magic_measurement file intex
if not int(self.data_model) == 2:
try:
Data[s]['measurement_names'].append(rec['measurement'])
except KeyError:
Data[s]['measurement_names'].append(rec['measurement_number'])
Data[s]['zijdblock_lab_treatments'].append(lab_treatment)
if measurement_step_unit != "":
if 'measurement_step_unit' in list(Data[s].keys()):
if measurement_step_unit not in Data[s]['measurement_step_unit'].split(":"):
Data[s]['measurement_step_unit'] = Data[s]['measurement_step_unit'] + \
":"+measurement_step_unit
else:
Data[s]['measurement_step_unit'] = measurement_step_unit
dec, inc, inten = "", "", ""
if "measurement_dec" in list(rec.keys()) and cb.not_null(rec["measurement_dec"], False):
dec = float(rec["measurement_dec"])
else:
continue
if "measurement_inc" in list(rec.keys()) and cb.not_null(rec["measurement_inc"], False):
inc = float(rec["measurement_inc"])
else:
continue
if self.intensity_col in list(rec.keys()) and cb.not_null(rec[self.intensity_col], False):
intensity = float(rec[self.intensity_col])
else:
intensity = 1. # just assume a normal vector
if 'magic_instrument_codes' not in list(rec.keys()):
rec['magic_instrument_codes'] = ''
if 'measurement_csd' in list(rec.keys()):
csd = str(rec['measurement_csd'])
else:
csd = ''
Data[s]['zijdblock'].append(
[tr, dec, inc, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
Data[s]['csds'].append(csd)
DIR = [dec, inc, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata'].append(array([cart[0], cart[1], cart[2]]))
if 'magic_experiment_name' in list(Data[s].keys()) and Data[s]['magic_experiment_name'] != rec["magic_experiment_name"]:
print(("-E- ERROR: specimen %s has more than one demagnetization experiment name. You need to merge them to one experiment-name?" % (s)))
if float(tr) == 0 or float(tr) == 273:
Data[s]['zijdblock_steps'].append("0")
elif measurement_step_unit == "C":
Data[s]['zijdblock_steps'].append(
"%.0f%s" % (tr, measurement_step_unit))
else:
Data[s]['zijdblock_steps'].append(
"%.1f%s" % (tr, measurement_step_unit))
# --------------
if 'magic_experiment_name' in list(rec.keys()):
Data[s]['magic_experiment_name'] = rec["magic_experiment_name"]
if "magic_instrument_codes" in list(rec.keys()):
Data[s]['magic_instrument_codes'] = rec['magic_instrument_codes']
Data[s]["magic_method_codes"] = LPcode
# --------------
# ""good" or "bad" data
# --------------
flag = 'g'
if 'measurement_flag' in list(rec.keys()):
if str(rec["measurement_flag"]) == 'b':
flag = 'b'
Data[s]['measurement_flag'].append(flag)
# gegraphic coordinates
try:
sample_azimuth = float(
self.Data_info["er_samples"][sample]['sample_azimuth'])
sample_dip = float(
self.Data_info["er_samples"][sample]['sample_dip'])
d_geo, i_geo = pmag.dogeo(
dec, inc, sample_azimuth, sample_dip)
# if d_geo or i_geo is null, we can't do geographic coordinates
# otherwise, go ahead
if not any([np.isnan(val) for val in [d_geo, i_geo]]):
Data[s]['zijdblock_geo'].append(
[tr, d_geo, i_geo, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
DIR = [d_geo, i_geo, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata_geo'].append([cart[0], cart[1], cart[2]])
except (IOError, KeyError, ValueError, TypeError) as e:
pass
# if prev_s != s:
# print( "-W- can't find sample_azimuth,sample_dip for sample %s"%sample)
# tilt-corrected coordinates
try:
sample_bed_dip_direction = float(
self.Data_info["er_samples"][sample]['sample_bed_dip_direction'])
sample_bed_dip = float(
self.Data_info["er_samples"][sample]['sample_bed_dip'])
d_tilt, i_tilt = pmag.dotilt(
d_geo, i_geo, sample_bed_dip_direction, sample_bed_dip)
Data[s]['zijdblock_tilt'].append(
[tr, d_tilt, i_tilt, intensity, ZI, rec['measurement_flag'], rec['magic_instrument_codes']])
DIR = [d_tilt, i_tilt, intensity/NRM]
cart = pmag.dir2cart(DIR)
Data[s]['zdata_tilt'].append([cart[0], cart[1], cart[2]])
except (IOError, KeyError, TypeError, ValueError, UnboundLocalError) as e:
pass
# if prev_s != s:
# printd("-W- can't find tilt-corrected data for sample %s"%sample)
if len(Data[s]['zdata']) > 1:
Data[s]['vector_diffs'].append(
sqrt(sum((array(Data[s]['zdata'][-2])-array(Data[s]['zdata'][-1]))**2)))
# ---------------------
# hierarchy is determined from magic_measurements.txt
# ---------------------
if sample not in list(Data_hierarchy['samples'].keys()):
Data_hierarchy['samples'][sample] = {}
Data_hierarchy['samples'][sample]['specimens'] = []
if site not in list(Data_hierarchy['sites'].keys()):
Data_hierarchy['sites'][site] = {}
Data_hierarchy['sites'][site]['samples'] = []
Data_hierarchy['sites'][site]['specimens'] = []
if location not in list(Data_hierarchy['locations'].keys()):
Data_hierarchy['locations'][location] = {}
Data_hierarchy['locations'][location]['sites'] = []
Data_hierarchy['locations'][location]['samples'] = []
Data_hierarchy['locations'][location]['specimens'] = []
if 'this study' not in list(Data_hierarchy['study'].keys()):
Data_hierarchy['study']['this study'] = {}
Data_hierarchy['study']['this study']['sites'] = []
Data_hierarchy['study']['this study']['samples'] = []
Data_hierarchy['study']['this study']['specimens'] = []
if s not in Data_hierarchy['samples'][sample]['specimens']:
Data_hierarchy['samples'][sample]['specimens'].append(s)
if s not in Data_hierarchy['sites'][site]['specimens']:
Data_hierarchy['sites'][site]['specimens'].append(s)
if s not in Data_hierarchy['locations'][location]['specimens']:
Data_hierarchy['locations'][location]['specimens'].append(s)
if s not in Data_hierarchy['study']['this study']['specimens']:
Data_hierarchy['study']['this study']['specimens'].append(s)
if sample not in Data_hierarchy['sites'][site]['samples']:
Data_hierarchy['sites'][site]['samples'].append(sample)
if sample not in Data_hierarchy['locations'][location]['samples']:
Data_hierarchy['locations'][location]['samples'].append(sample)
if sample not in Data_hierarchy['study']['this study']['samples']:
Data_hierarchy['study']['this study']['samples'].append(sample)
if site not in Data_hierarchy['locations'][location]['sites']:
Data_hierarchy['locations'][location]['sites'].append(site)
if site not in Data_hierarchy['study']['this study']['sites']:
Data_hierarchy['study']['this study']['sites'].append(site)
# Data_hierarchy['specimens'][s]=sample
Data_hierarchy['sample_of_specimen'][s] = sample
Data_hierarchy['site_of_specimen'][s] = site
Data_hierarchy['site_of_sample'][sample] = site
Data_hierarchy['location_of_site'][site] = location
Data_hierarchy['location_of_specimen'][s] = location
if expedition_name != "":
Data_hierarchy['expedition_name_of_specimen'][s] = expedition_name
prev_s = s
print("-I- done sorting meas data")
self.specimens = list(Data.keys())
for s in self.specimens:
if len(Data[s]['zdata']) > 0:
Data[s]['vector_diffs'].append(
sqrt(sum(array(Data[s]['zdata'][-1])**2))) # last vector of the vds
vds = sum(Data[s]['vector_diffs']) # vds calculation
Data[s]['vector_diffs'] = array(Data[s]['vector_diffs'])
Data[s]['vds'] = vds
Data[s]['zdata'] = array(Data[s]['zdata'])
Data[s]['zdata_geo'] = array(Data[s]['zdata_geo'])
Data[s]['zdata_tilt'] = array(Data[s]['zdata_tilt'])
return(Data, Data_hierarchy) | reads data from current WD measurement.txt or magic_measurements.txt
depending on data model and sorts it into main measurements data
structures given bellow:
Data - {specimen: {
zijdblock:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_geo:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_tilt:[[treatment temp-str,dec-float, inc-float,
mag_moment-float, ZI-float, meas_flag-str ('b','g'),
method_codes-str]],
zijdblock_lab_treatments: [str],
zijdblock_steps: [str],
measurement_flag: [str ('b','g')],
mag_meas_data_index: [int],
csds: [float],
pars: {},
zdata: array.shape = 2x2 (float),
zdata_geo: array.shape = 2x2 (float),
zdata_tilt: array.shape = 2x2 (float),
vector_diffs: [float],
vds: float }}
Data_hierarchy - {specimen: {
study: {}
locations: {}
sites: {}
samples: {}
specimens: {}
sample_of_specimen: {}
site_of_specimen: {}
site_of_sample: {}
location_of_site: {}
location_of_specimen: {}
study_of_specimen: {}
expedition_name_of_specimen: {} }} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L3861-L4422 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_interpretations3 | def get_interpretations3(self):
"""
Used instead of update_pmag_tables in data model 3.0 to fetch
interpretations from contribution objects
"""
if "specimen" not in self.spec_data.columns or \
"meas_step_min" not in self.spec_data.columns or \
"meas_step_max" not in self.spec_data.columns or \
"meas_step_unit" not in self.spec_data.columns or \
"method_codes" not in self.spec_data.columns:
return
if "dir_comp" in self.spec_data.columns:
fnames = 'dir_comp'
elif "dir_comp_name" in self.spec_data.columns:
fnames = 'dir_comp_name'
else:
fnames = 'dir_comp'
self.spec_data['dir_comp'] = 'Fit 1'
#print("No specimen interpretation name found in specimens.txt")
#return
if "result_quality" not in self.spec_data.columns:
self.spec_data["result_quality"] = "g"
if "dir_tilt_correction" not in self.spec_data.columns:
self.spec_data["dir_tilt_correction"] = ""
fdict = self.spec_data[['specimen', fnames, 'meas_step_min', 'meas_step_max', 'meas_step_unit',
'dir_tilt_correction', 'method_codes', 'result_quality']].to_dict("records")
for i in range(len(fdict)):
spec = fdict[i]['specimen']
if spec not in self.specimens:
print(("-E- specimen %s does not exist in measurement data" % (spec)))
continue
fname = fdict[i][fnames]
if fname == None or (spec in list(self.pmag_results_data['specimens'].keys()) and fname in [x.name for x in self.pmag_results_data['specimens'][spec]]):
continue
if fdict[i]['meas_step_unit'] == "K":
fmin = int(float(fdict[i]['meas_step_min'])-273)
fmax = int(float(fdict[i]['meas_step_max'])-273)
if fmin == 0:
fmin = str(fmin)
else:
fmin = str(fmin)+"C"
if fmax == 0:
fmax = str(fmax)
else:
fmax = str(fmax)+"C"
elif fdict[i]['meas_step_unit'] == "T":
fmin = float(fdict[i]['meas_step_min'])*1000
fmax = float(fdict[i]['meas_step_max'])*1000
if fmin == 0:
fmin = str(int(fmin))
else:
fmin = str(fmin)+"mT"
if fmax == 0:
fmax = str(int(fmax))
else:
fmax = str(fmax)+"mT"
else:
fmin = fdict[i]['meas_step_min']
fmax = fdict[i]['meas_step_max']
PCA_types = ["DE-BFL", "DE-BFL-A", "DE-BFL-O", "DE-FM", "DE-BFP"]
PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(
':') if x.strip() in PCA_types]
if len(PCA_type_list) > 0:
PCA_type = PCA_type_list[0].strip()
else:
PCA_type = "DE-BFL"
fit = self.add_fit(spec, fname, fmin, fmax, PCA_type)
if fdict[i]['result_quality'] == 'b':
self.bad_fits.append(fit) | python | def get_interpretations3(self):
"""
Used instead of update_pmag_tables in data model 3.0 to fetch
interpretations from contribution objects
"""
if "specimen" not in self.spec_data.columns or \
"meas_step_min" not in self.spec_data.columns or \
"meas_step_max" not in self.spec_data.columns or \
"meas_step_unit" not in self.spec_data.columns or \
"method_codes" not in self.spec_data.columns:
return
if "dir_comp" in self.spec_data.columns:
fnames = 'dir_comp'
elif "dir_comp_name" in self.spec_data.columns:
fnames = 'dir_comp_name'
else:
fnames = 'dir_comp'
self.spec_data['dir_comp'] = 'Fit 1'
#print("No specimen interpretation name found in specimens.txt")
#return
if "result_quality" not in self.spec_data.columns:
self.spec_data["result_quality"] = "g"
if "dir_tilt_correction" not in self.spec_data.columns:
self.spec_data["dir_tilt_correction"] = ""
fdict = self.spec_data[['specimen', fnames, 'meas_step_min', 'meas_step_max', 'meas_step_unit',
'dir_tilt_correction', 'method_codes', 'result_quality']].to_dict("records")
for i in range(len(fdict)):
spec = fdict[i]['specimen']
if spec not in self.specimens:
print(("-E- specimen %s does not exist in measurement data" % (spec)))
continue
fname = fdict[i][fnames]
if fname == None or (spec in list(self.pmag_results_data['specimens'].keys()) and fname in [x.name for x in self.pmag_results_data['specimens'][spec]]):
continue
if fdict[i]['meas_step_unit'] == "K":
fmin = int(float(fdict[i]['meas_step_min'])-273)
fmax = int(float(fdict[i]['meas_step_max'])-273)
if fmin == 0:
fmin = str(fmin)
else:
fmin = str(fmin)+"C"
if fmax == 0:
fmax = str(fmax)
else:
fmax = str(fmax)+"C"
elif fdict[i]['meas_step_unit'] == "T":
fmin = float(fdict[i]['meas_step_min'])*1000
fmax = float(fdict[i]['meas_step_max'])*1000
if fmin == 0:
fmin = str(int(fmin))
else:
fmin = str(fmin)+"mT"
if fmax == 0:
fmax = str(int(fmax))
else:
fmax = str(fmax)+"mT"
else:
fmin = fdict[i]['meas_step_min']
fmax = fdict[i]['meas_step_max']
PCA_types = ["DE-BFL", "DE-BFL-A", "DE-BFL-O", "DE-FM", "DE-BFP"]
PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(
':') if x.strip() in PCA_types]
if len(PCA_type_list) > 0:
PCA_type = PCA_type_list[0].strip()
else:
PCA_type = "DE-BFL"
fit = self.add_fit(spec, fname, fmin, fmax, PCA_type)
if fdict[i]['result_quality'] == 'b':
self.bad_fits.append(fit) | Used instead of update_pmag_tables in data model 3.0 to fetch
interpretations from contribution objects | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4424-L4495 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_data_info | def get_data_info(self):
"""
imports er tables and places data into Data_info data structure
outlined bellow:
Data_info - {er_samples: {er_samples.txt info}
er_sites: {er_sites.txt info}
er_locations: {er_locations.txt info}
er_ages: {er_ages.txt info}}
"""
Data_info = {}
data_er_samples = {}
data_er_sites = {}
data_er_locations = {}
data_er_ages = {}
if self.data_model == 3.0:
print(("data model: %1.1f" % (self.data_model)))
Data_info["er_samples"] = []
Data_info["er_sites"] = []
Data_info["er_locations"] = []
Data_info["er_ages"] = []
# self.magic_file may have a full path, but this breaks cb.Contribution
# determine if magic_file exists in WD, and if it doesn't, copy it in
magic_file_real = os.path.realpath(self.magic_file)
magic_file_short = os.path.split(self.magic_file)[1]
WD_file_real = os.path.realpath(
os.path.join(self.WD, magic_file_short))
if magic_file_real == WD_file_real:
fnames = {'measurements': magic_file_short}
else:
# copy measurements file to WD, keeping original name
shutil.copy(magic_file_real, WD_file_real)
fnames = {'measurements': magic_file_short}
self.con = cb.Contribution(self.WD, custom_filenames=fnames, read_tables=[
'measurements', 'specimens', 'samples', 'sites', 'locations', 'criteria', 'ages'])
if 'specimens' in self.con.tables:
spec_container = self.con.tables['specimens']
self.spec_data = spec_container.df
else:
self.con.add_empty_magic_table('specimens')
self.spec_data = self.con.tables['specimens'].df
if 'samples' in self.con.tables:
samp_container = self.con.tables['samples']
samp_container.front_and_backfill(['azimuth', 'dip'])
self.samp_data = samp_container.df
samp_data2 = self.samp_data.rename(
columns=map_magic.samp_magic3_2_magic2_map)
data_er_samples = samp_data2.T.to_dict()
else:
self.con.add_empty_magic_table('samples')
self.samp_data = self.con.tables['samples'].df
if 'sites' in self.con.tables:
site_container = self.con.tables['sites']
self.site_data = site_container.df
if 'age' in self.site_data.columns:
self.site_data = self.site_data[self.site_data['age'].notnull(
)]
age_ids = [col for col in self.site_data.columns if col.startswith(
"age") or col == "site"]
age_data = self.site_data[age_ids].rename(
columns=map_magic.site_magic3_2_magic2_map)
# save this in 2.5 format
er_ages = age_data.to_dict('records')
data_er_ages = {}
for s in er_ages:
s = self.convert_ages_to_calendar_year(s)
data_er_ages[s['er_site_name']] = s
sites = self.site_data.rename(
columns=map_magic.site_magic3_2_magic2_map)
# pick out what is needed by thellier_gui and put in 2.5 format
er_sites = sites.to_dict('records')
data_er_sites = {}
for s in er_sites:
data_er_sites[s['er_site_name']] = s
else:
self.con.add_empty_magic_table('sites')
self.site_data = self.con.tables['sites'].df
if 'locations' in self.con.tables:
location_container = self.con.tables["locations"]
self.loc_data = location_container.df # only need this for saving tables
if self.loc_data['location'].isnull().any():
self.loc_data.replace(
{'location': {None: 'unknown'}}, inplace=True)
self.loc_data.set_index('location', inplace=True)
self.loc_data['location'] = self.loc_data.index
loc2_data = self.loc_data.rename(
columns=map_magic.loc_magic3_2_magic2_map)
data_er_locations = loc2_data.to_dict('index')
else:
self.con.add_empty_magic_table('locations')
self.loc_data = self.con.tables['locations'].df
else: # try 2.5 data model
print(("data model: %1.1f" % (self.data_model)))
self.read_magic_file(os.path.join(
self.WD, "er_samples.txt"), 'er_sample_name')
try:
data_er_samples = self.read_magic_file(
os.path.join(self.WD, "er_samples.txt"), 'er_sample_name')
except:
print("-W- Can't find er_sample.txt in project directory")
try:
data_er_sites = self.read_magic_file(
os.path.join(self.WD, "er_sites.txt"), 'er_site_name')
except:
print("-W- Can't find er_sites.txt in project directory")
try:
data_er_locations = self.read_magic_file(os.path.join(
self.WD, "er_locations.txt"), 'er_location_name')
except:
print("-W- Can't find er_locations.txt in project directory")
try:
data_er_ages = self.read_magic_file(
os.path.join(self.WD, "er_ages.txt"), 'er_sample_name')
except:
try:
data_er_ages = self.read_magic_file(
os.path.join(self.WD, "er_ages.txt"), 'er_site_name')
except:
print("-W- Can't find er_ages in project directory")
Data_info["er_samples"] = data_er_samples
Data_info["er_sites"] = data_er_sites
Data_info["er_locations"] = data_er_locations
Data_info["er_ages"] = data_er_ages
return(Data_info) | python | def get_data_info(self):
"""
imports er tables and places data into Data_info data structure
outlined bellow:
Data_info - {er_samples: {er_samples.txt info}
er_sites: {er_sites.txt info}
er_locations: {er_locations.txt info}
er_ages: {er_ages.txt info}}
"""
Data_info = {}
data_er_samples = {}
data_er_sites = {}
data_er_locations = {}
data_er_ages = {}
if self.data_model == 3.0:
print(("data model: %1.1f" % (self.data_model)))
Data_info["er_samples"] = []
Data_info["er_sites"] = []
Data_info["er_locations"] = []
Data_info["er_ages"] = []
# self.magic_file may have a full path, but this breaks cb.Contribution
# determine if magic_file exists in WD, and if it doesn't, copy it in
magic_file_real = os.path.realpath(self.magic_file)
magic_file_short = os.path.split(self.magic_file)[1]
WD_file_real = os.path.realpath(
os.path.join(self.WD, magic_file_short))
if magic_file_real == WD_file_real:
fnames = {'measurements': magic_file_short}
else:
# copy measurements file to WD, keeping original name
shutil.copy(magic_file_real, WD_file_real)
fnames = {'measurements': magic_file_short}
self.con = cb.Contribution(self.WD, custom_filenames=fnames, read_tables=[
'measurements', 'specimens', 'samples', 'sites', 'locations', 'criteria', 'ages'])
if 'specimens' in self.con.tables:
spec_container = self.con.tables['specimens']
self.spec_data = spec_container.df
else:
self.con.add_empty_magic_table('specimens')
self.spec_data = self.con.tables['specimens'].df
if 'samples' in self.con.tables:
samp_container = self.con.tables['samples']
samp_container.front_and_backfill(['azimuth', 'dip'])
self.samp_data = samp_container.df
samp_data2 = self.samp_data.rename(
columns=map_magic.samp_magic3_2_magic2_map)
data_er_samples = samp_data2.T.to_dict()
else:
self.con.add_empty_magic_table('samples')
self.samp_data = self.con.tables['samples'].df
if 'sites' in self.con.tables:
site_container = self.con.tables['sites']
self.site_data = site_container.df
if 'age' in self.site_data.columns:
self.site_data = self.site_data[self.site_data['age'].notnull(
)]
age_ids = [col for col in self.site_data.columns if col.startswith(
"age") or col == "site"]
age_data = self.site_data[age_ids].rename(
columns=map_magic.site_magic3_2_magic2_map)
# save this in 2.5 format
er_ages = age_data.to_dict('records')
data_er_ages = {}
for s in er_ages:
s = self.convert_ages_to_calendar_year(s)
data_er_ages[s['er_site_name']] = s
sites = self.site_data.rename(
columns=map_magic.site_magic3_2_magic2_map)
# pick out what is needed by thellier_gui and put in 2.5 format
er_sites = sites.to_dict('records')
data_er_sites = {}
for s in er_sites:
data_er_sites[s['er_site_name']] = s
else:
self.con.add_empty_magic_table('sites')
self.site_data = self.con.tables['sites'].df
if 'locations' in self.con.tables:
location_container = self.con.tables["locations"]
self.loc_data = location_container.df # only need this for saving tables
if self.loc_data['location'].isnull().any():
self.loc_data.replace(
{'location': {None: 'unknown'}}, inplace=True)
self.loc_data.set_index('location', inplace=True)
self.loc_data['location'] = self.loc_data.index
loc2_data = self.loc_data.rename(
columns=map_magic.loc_magic3_2_magic2_map)
data_er_locations = loc2_data.to_dict('index')
else:
self.con.add_empty_magic_table('locations')
self.loc_data = self.con.tables['locations'].df
else: # try 2.5 data model
print(("data model: %1.1f" % (self.data_model)))
self.read_magic_file(os.path.join(
self.WD, "er_samples.txt"), 'er_sample_name')
try:
data_er_samples = self.read_magic_file(
os.path.join(self.WD, "er_samples.txt"), 'er_sample_name')
except:
print("-W- Can't find er_sample.txt in project directory")
try:
data_er_sites = self.read_magic_file(
os.path.join(self.WD, "er_sites.txt"), 'er_site_name')
except:
print("-W- Can't find er_sites.txt in project directory")
try:
data_er_locations = self.read_magic_file(os.path.join(
self.WD, "er_locations.txt"), 'er_location_name')
except:
print("-W- Can't find er_locations.txt in project directory")
try:
data_er_ages = self.read_magic_file(
os.path.join(self.WD, "er_ages.txt"), 'er_sample_name')
except:
try:
data_er_ages = self.read_magic_file(
os.path.join(self.WD, "er_ages.txt"), 'er_site_name')
except:
print("-W- Can't find er_ages in project directory")
Data_info["er_samples"] = data_er_samples
Data_info["er_sites"] = data_er_sites
Data_info["er_locations"] = data_er_locations
Data_info["er_ages"] = data_er_ages
return(Data_info) | imports er tables and places data into Data_info data structure
outlined bellow:
Data_info - {er_samples: {er_samples.txt info}
er_sites: {er_sites.txt info}
er_locations: {er_locations.txt info}
er_ages: {er_ages.txt info}} | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4497-L4630 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_preferences | def get_preferences(self):
"""
Gets preferences for certain display variables from
zeq_gui_preferences.
"""
# default
preferences = {}
preferences['gui_resolution'] = 100.
preferences['show_Zij_treatments'] = True
preferences['show_Zij_treatments_steps'] = 2.
preferences['show_eqarea_treatments'] = False
preferences['auto_save'] = True
# preferences['show_statistics_on_gui']=["int_n","int_ptrm_n","frac","scat","gmax","b_beta","int_mad","dang","f","fvds","g","q","drats"]#,'ptrms_dec','ptrms_inc','ptrms_mad','ptrms_angle']
#
# try to read preferences file:
#user_data_dir = find_pmag_dir.find_user_data_dir("demag_gui")
# if not user_data_dir:
# return preferences
# if os.path.exists(user_data_dir):
# pref_file = os.path.join(user_data_dir, "demag_gui_preferences.json")
# if os.path.exists(pref_file):
# with open(pref_file, "r") as pfile:
# return json.load(pfile)
return preferences | python | def get_preferences(self):
"""
Gets preferences for certain display variables from
zeq_gui_preferences.
"""
# default
preferences = {}
preferences['gui_resolution'] = 100.
preferences['show_Zij_treatments'] = True
preferences['show_Zij_treatments_steps'] = 2.
preferences['show_eqarea_treatments'] = False
preferences['auto_save'] = True
# preferences['show_statistics_on_gui']=["int_n","int_ptrm_n","frac","scat","gmax","b_beta","int_mad","dang","f","fvds","g","q","drats"]#,'ptrms_dec','ptrms_inc','ptrms_mad','ptrms_angle']
#
# try to read preferences file:
#user_data_dir = find_pmag_dir.find_user_data_dir("demag_gui")
# if not user_data_dir:
# return preferences
# if os.path.exists(user_data_dir):
# pref_file = os.path.join(user_data_dir, "demag_gui_preferences.json")
# if os.path.exists(pref_file):
# with open(pref_file, "r") as pfile:
# return json.load(pfile)
return preferences | Gets preferences for certain display variables from
zeq_gui_preferences. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4632-L4655 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.read_magic_file | def read_magic_file(self, path, sort_by_this_name):
"""
reads a magic formated data file from path and sorts the keys
according to sort_by_this_name
Parameters
----------
path : path to file to read
sort_by_this_name : variable to sort data by
"""
DATA = {}
try:
with open(path, 'r') as finput:
lines = list(finput.readlines()[1:])
except FileNotFoundError:
return []
# fin=open(path,'r')
# fin.readline()
line = lines[0]
header = line.strip('\n').split('\t')
error_strings = []
for line in lines[1:]:
tmp_data = {}
tmp_line = line.strip('\n').split('\t')
for i in range(len(tmp_line)):
tmp_data[header[i]] = tmp_line[i]
if tmp_data[sort_by_this_name] in list(DATA.keys()):
error_string = "-E- ERROR: magic file %s has more than one line for %s %s" % (
path, sort_by_this_name, tmp_data[sort_by_this_name])
# only print each error message once
if error_string not in error_strings:
print(error_string)
error_strings.append(error_string)
DATA[tmp_data[sort_by_this_name]] = tmp_data
# fin.close()
finput.close()
return(DATA) | python | def read_magic_file(self, path, sort_by_this_name):
"""
reads a magic formated data file from path and sorts the keys
according to sort_by_this_name
Parameters
----------
path : path to file to read
sort_by_this_name : variable to sort data by
"""
DATA = {}
try:
with open(path, 'r') as finput:
lines = list(finput.readlines()[1:])
except FileNotFoundError:
return []
# fin=open(path,'r')
# fin.readline()
line = lines[0]
header = line.strip('\n').split('\t')
error_strings = []
for line in lines[1:]:
tmp_data = {}
tmp_line = line.strip('\n').split('\t')
for i in range(len(tmp_line)):
tmp_data[header[i]] = tmp_line[i]
if tmp_data[sort_by_this_name] in list(DATA.keys()):
error_string = "-E- ERROR: magic file %s has more than one line for %s %s" % (
path, sort_by_this_name, tmp_data[sort_by_this_name])
# only print each error message once
if error_string not in error_strings:
print(error_string)
error_strings.append(error_string)
DATA[tmp_data[sort_by_this_name]] = tmp_data
# fin.close()
finput.close()
return(DATA) | reads a magic formated data file from path and sorts the keys
according to sort_by_this_name
Parameters
----------
path : path to file to read
sort_by_this_name : variable to sort data by | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4657-L4693 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.read_from_LSQ | def read_from_LSQ(self, LSQ_file):
"""
Clears all current interpretations and replaces them with
interpretations read from LSQ file.
Parameters
----------
LSQ_file : path to LSQ file to read in
"""
cont = self.user_warning(
"LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?")
if not cont:
return
self.clear_interpretations(
message="""Do you wish to clear all previous interpretations on import?""")
old_s = self.s
for specimen in self.specimens:
self.select_specimen(specimen)
for i in range(len(self.Data[specimen]['zijdblock'])):
self.mark_meas_good(i)
self.select_specimen(old_s)
print("Reading LSQ file")
interps = read_LSQ(LSQ_file)
for interp in interps:
specimen = interp['er_specimen_name']
if specimen not in self.specimens:
print(
("specimen %s has no registered measurement data, skipping interpretation import" % specimen))
continue
PCA_type = interp['magic_method_codes'].split(':')[0]
tmin = self.Data[specimen]['zijdblock_steps'][interp['measurement_min_index']]
tmax = self.Data[specimen]['zijdblock_steps'][interp['measurement_max_index']]
if 'specimen_comp_name' in list(interp.keys()):
name = interp['specimen_comp_name']
else:
name = None
new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type)
if 'bad_measurement_index' in list(interp.keys()):
old_s = self.s
self.select_specimen(specimen)
for bmi in interp["bad_measurement_index"]:
try:
self.mark_meas_bad(bmi)
except IndexError:
print(
"Magic Measurments length does not match that recorded in LSQ file")
self.select_specimen(old_s)
if self.ie_open:
self.ie.update_editor()
self.update_selection() | python | def read_from_LSQ(self, LSQ_file):
"""
Clears all current interpretations and replaces them with
interpretations read from LSQ file.
Parameters
----------
LSQ_file : path to LSQ file to read in
"""
cont = self.user_warning(
"LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?")
if not cont:
return
self.clear_interpretations(
message="""Do you wish to clear all previous interpretations on import?""")
old_s = self.s
for specimen in self.specimens:
self.select_specimen(specimen)
for i in range(len(self.Data[specimen]['zijdblock'])):
self.mark_meas_good(i)
self.select_specimen(old_s)
print("Reading LSQ file")
interps = read_LSQ(LSQ_file)
for interp in interps:
specimen = interp['er_specimen_name']
if specimen not in self.specimens:
print(
("specimen %s has no registered measurement data, skipping interpretation import" % specimen))
continue
PCA_type = interp['magic_method_codes'].split(':')[0]
tmin = self.Data[specimen]['zijdblock_steps'][interp['measurement_min_index']]
tmax = self.Data[specimen]['zijdblock_steps'][interp['measurement_max_index']]
if 'specimen_comp_name' in list(interp.keys()):
name = interp['specimen_comp_name']
else:
name = None
new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type)
if 'bad_measurement_index' in list(interp.keys()):
old_s = self.s
self.select_specimen(specimen)
for bmi in interp["bad_measurement_index"]:
try:
self.mark_meas_bad(bmi)
except IndexError:
print(
"Magic Measurments length does not match that recorded in LSQ file")
self.select_specimen(old_s)
if self.ie_open:
self.ie.update_editor()
self.update_selection() | Clears all current interpretations and replaces them with
interpretations read from LSQ file.
Parameters
----------
LSQ_file : path to LSQ file to read in | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4695-L4744 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.read_redo_file | def read_redo_file(self, redo_file):
"""
Reads a .redo formated file and replaces all current interpretations
with interpretations taken from the .redo file
Parameters
----------
redo_file : path to .redo file to read
"""
if not self.clear_interpretations():
return
print("-I- read redo file and processing new bounds")
fin = open(redo_file, 'r')
new_s = ""
for Line in fin.read().splitlines():
line = Line.split('\t')
specimen = line[0]
if specimen.startswith("current_"):
specimen = specimen.lstrip("current_")
new_s = specimen
if len(line) < 6:
continue
if len(line) < 6:
print(("insuffecent data for specimen %s and fit %s" %
(line[0], line[4])))
continue
if len(line) == 6:
line.append('g')
if specimen not in self.specimens:
print(
("specimen %s not found in this data set and will be ignored" % (specimen)))
continue
tmin, tmax = self.parse_bound_data(line[2], line[3], specimen)
new_fit = self.add_fit(
specimen, line[4], tmin, tmax, line[1], line[5])
if line[6] == 'b' and new_fit != None:
self.bad_fits.append(new_fit)
fin.close()
if new_s != "":
self.select_specimen(new_s)
if (self.s not in self.pmag_results_data['specimens']) or (not self.pmag_results_data['specimens'][self.s]):
self.current_fit = None
else:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection() | python | def read_redo_file(self, redo_file):
"""
Reads a .redo formated file and replaces all current interpretations
with interpretations taken from the .redo file
Parameters
----------
redo_file : path to .redo file to read
"""
if not self.clear_interpretations():
return
print("-I- read redo file and processing new bounds")
fin = open(redo_file, 'r')
new_s = ""
for Line in fin.read().splitlines():
line = Line.split('\t')
specimen = line[0]
if specimen.startswith("current_"):
specimen = specimen.lstrip("current_")
new_s = specimen
if len(line) < 6:
continue
if len(line) < 6:
print(("insuffecent data for specimen %s and fit %s" %
(line[0], line[4])))
continue
if len(line) == 6:
line.append('g')
if specimen not in self.specimens:
print(
("specimen %s not found in this data set and will be ignored" % (specimen)))
continue
tmin, tmax = self.parse_bound_data(line[2], line[3], specimen)
new_fit = self.add_fit(
specimen, line[4], tmin, tmax, line[1], line[5])
if line[6] == 'b' and new_fit != None:
self.bad_fits.append(new_fit)
fin.close()
if new_s != "":
self.select_specimen(new_s)
if (self.s not in self.pmag_results_data['specimens']) or (not self.pmag_results_data['specimens'][self.s]):
self.current_fit = None
else:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection() | Reads a .redo formated file and replaces all current interpretations
with interpretations taken from the .redo file
Parameters
----------
redo_file : path to .redo file to read | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4746-L4799 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.change_WD | def change_WD(self, new_WD, meas_file=""):
"""
Changes Demag GUI's current WD to new_WD if possible
Parameters
----------
new_WD : WD to change to current GUI's WD
"""
new_WD = os.path.abspath(new_WD)
if not os.path.isdir(new_WD):
return
self.WD = new_WD
if not meas_file:
if self.data_model == None:
if os.path.isfile(os.path.join(self.WD, "measurements.txt")) and os.path.isfile(os.path.join(self.WD, "magic_measurements.txt")):
ui_dialog = demag_dialogs.user_input(self, ['data_model'], parse_funcs=[
float], heading="More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)", values=[3])
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
self.data_model = ui_data[1]['data_model']
elif os.path.isfile(os.path.join(self.WD, "measurements.txt")):
self.data_model = 3.0
elif os.path.isfile(os.path.join(self.WD, "magic_measurements.txt")):
self.data_model = 2.5
else:
self.user_warning(
"No measurement file found in chosen directory")
self.data_model = 3
try:
self.data_model = float(self.data_model)
if int(self.data_model) == 3:
meas_file = os.path.join(self.WD, "measurements.txt")
elif int(self.data_model) == 2:
meas_file = os.path.join(self.WD, "magic_measurements.txt")
else:
meas_file = ''
self.data_model = 3
except (ValueError, TypeError) as e:
self.user_warning(
"Provided data model is unrecognized or invalid, assuming you want data model 3")
self.data_model = 3
if os.path.isfile(meas_file):
self.magic_file = meas_file
else:
self.magic_file = self.choose_meas_file()
if not self.data_model:
self.data_model = 3 | python | def change_WD(self, new_WD, meas_file=""):
"""
Changes Demag GUI's current WD to new_WD if possible
Parameters
----------
new_WD : WD to change to current GUI's WD
"""
new_WD = os.path.abspath(new_WD)
if not os.path.isdir(new_WD):
return
self.WD = new_WD
if not meas_file:
if self.data_model == None:
if os.path.isfile(os.path.join(self.WD, "measurements.txt")) and os.path.isfile(os.path.join(self.WD, "magic_measurements.txt")):
ui_dialog = demag_dialogs.user_input(self, ['data_model'], parse_funcs=[
float], heading="More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)", values=[3])
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
self.data_model = ui_data[1]['data_model']
elif os.path.isfile(os.path.join(self.WD, "measurements.txt")):
self.data_model = 3.0
elif os.path.isfile(os.path.join(self.WD, "magic_measurements.txt")):
self.data_model = 2.5
else:
self.user_warning(
"No measurement file found in chosen directory")
self.data_model = 3
try:
self.data_model = float(self.data_model)
if int(self.data_model) == 3:
meas_file = os.path.join(self.WD, "measurements.txt")
elif int(self.data_model) == 2:
meas_file = os.path.join(self.WD, "magic_measurements.txt")
else:
meas_file = ''
self.data_model = 3
except (ValueError, TypeError) as e:
self.user_warning(
"Provided data model is unrecognized or invalid, assuming you want data model 3")
self.data_model = 3
if os.path.isfile(meas_file):
self.magic_file = meas_file
else:
self.magic_file = self.choose_meas_file()
if not self.data_model:
self.data_model = 3 | Changes Demag GUI's current WD to new_WD if possible
Parameters
----------
new_WD : WD to change to current GUI's WD | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4801-L4849 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.init_log_file | def init_log_file(self):
"""
redirects stdout to a log file to prevent printing to a hanging
terminal when dealing with the compiled binary.
"""
# redirect terminal output
self.old_stdout = sys.stdout
sys.stdout = open(os.path.join(self.WD, "demag_gui.log"), 'w+') | python | def init_log_file(self):
"""
redirects stdout to a log file to prevent printing to a hanging
terminal when dealing with the compiled binary.
"""
# redirect terminal output
self.old_stdout = sys.stdout
sys.stdout = open(os.path.join(self.WD, "demag_gui.log"), 'w+') | redirects stdout to a log file to prevent printing to a hanging
terminal when dealing with the compiled binary. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4855-L4862 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_pmag_tables | def update_pmag_tables(self):
"""
Reads pmag tables from data model 2.5 and updates them with updates
their data
"""
pmag_specimens, pmag_samples, pmag_sites = [], [], []
print("-I- Reading previous interpretations from specimen/sample/site tables")
try:
pmag_specimens, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_specimens.txt"))
except:
print("-I- Can't read pmag_specimens.txt")
try:
pmag_samples, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_samples.txt"))
except:
print("-I- Can't read pmag_samples.txt")
try:
pmag_sites, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_sites.txt"))
except:
print("-I- Can't read pmag_sites.txt")
# --------------------------
# reads pmag_specimens.txt and
# update pmag_results_data['specimens'][specimen]
# with the new interpretation
# --------------------------
if self.COORDINATE_SYSTEM == 'geographic':
current_tilt_correction = 0
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
current_tilt_correction = 100
else:
current_tilt_correction = -1
if 'specimens' not in list(self.pmag_results_data.keys()):
self.pmag_results_data['specimens'] = {}
for rec in pmag_specimens:
if 'er_specimen_name' in rec:
specimen = rec['er_specimen_name']
else:
continue
# initialize list of interpretations
if specimen not in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
if any(k not in list(rec.keys()) for k in ['measurement_step_min', 'measurement_step_max']):
continue
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
LPDIR = False
calculation_type = ""
for method in methods:
if "LP-DIR" in method:
LPDIR = True
if "DE-" in method:
calculation_type = method
msu = ''
if 'measurement_step_unit' in list(rec.keys()):
msu = rec['measurement_step_unit']
# if interpretation doesn't exsist create it.
if float(rec['measurement_step_min']) == 0. or float(rec['measurement_step_min']) == 273.:
tmin = "0"
elif msu == 'K' or float(rec['measurement_step_min']) > 3.: # thermal
tmin = "%.0fC" % (float(rec['measurement_step_min'])-273.)
else: # AF
tmin = "%.1fmT" % (float(rec['measurement_step_min'])*1000.)
if float(rec['measurement_step_max']) == 0. or float(rec['measurement_step_max']) == 273.:
tmax = "0"
elif msu == 'K' or float(rec['measurement_step_max']) > 3.: # thermal
tmax = "%.0fC" % (float(rec['measurement_step_max'])-273.)
else: # AF
tmax = "%.1fmT" % (float(rec['measurement_step_max'])*1000.)
if 'specimen_comp_name' in list(rec.keys()):
fname = rec['specimen_comp_name']
else:
fname = None
if calculation_type == "":
calculation_type = "DE-BFL"
if (tmin, tmax) in [(f.tmin, f.tmax) for f in self.pmag_results_data['specimens'][specimen]] and calculation_type in [f.PCA_type for f in self.pmag_results_data['specimens'][specimen]]:
fit = None
else:
fit = self.add_fit(specimen, fname, tmin,
tmax, calculation_type)
if 'specimen_flag' in list(rec.keys()) and rec['specimen_flag'] == 'b':
self.bad_fits.append(fit)
# BUG FIX-almost replaced first sample with last due to above assignment to self.s
if self.specimens:
self.select_specimen(self.specimens[0])
self.specimens_box.SetSelection(0)
if self.s in self.pmag_results_data['specimens'] and self.pmag_results_data['specimens'][self.s]:
self.initialize_CART_rot(self.specimens[0])
self.pmag_results_data['specimens'][self.s][-1].select()
# --------------------------
# reads pmag_sample.txt and
# if finds a mean in pmag_samples.txt
# calculate the mean for self.high_level_means['samples'][samples]
# If the program finds a codes "DE-FM","DE-FM-LP","DE-FM-UV"in magic_method_codes
# then the program repeat teh fisher mean
# --------------------------
for rec in pmag_samples:
if "magic_method_codes" in list(rec.keys()):
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
else:
methods = ""
sample = rec['er_sample_name'].strip("\n")
LPDIR = False
calculation_method = ""
for method in methods:
if "LP-DIR" in method:
LPDIR = True
if "DE-" in method:
calculation_method = method
if LPDIR: # this a mean of directions
calculation_type = "Fisher"
for dirtype in self.dirtypes:
self.calculate_high_level_mean(
'samples', sample, calculation_type, 'specimens', self.mean_fit)
# --------------------------
# reads pmag_sites.txt and
# if finds a mean in pmag_sites.txt
# calculate the mean for self.high_level_means['sites'][site]
# using specimens or samples, depends on the er_specimen_names or er_samples_names
# The program repeat the fisher calculation and oevrwrites it
# --------------------------
for rec in pmag_sites:
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
site = rec['er_site_name'].strip("\n")
LPDIR = False
calculation_method = ""
elements_type = "specimens"
for method in methods:
if "LP-DIR" in method or "DA-DIR" in method or "DE-FM" in method:
LPDIR = True
if "DE-" in method:
calculation_method = method
if LPDIR: # this a mean of directions
if calculation_method in ["DE-BS"]:
calculation_type = "Bingham"
else:
calculation_type = "Fisher"
if 'er_sample_names' in list(rec.keys()) and len(rec['er_sample_names'].strip('\n').replace(" ", "").split(":")) > 0:
elements_type = 'samples'
if 'er_specimen_names' in list(rec.keys()) and len(rec['er_specimen_names'].strip('\n').replace(" ", "").split(":")) > 0:
elements_type = 'specimens'
self.calculate_high_level_mean(
'sites', site, calculation_type, elements_type, self.mean_fit) | python | def update_pmag_tables(self):
"""
Reads pmag tables from data model 2.5 and updates them with updates
their data
"""
pmag_specimens, pmag_samples, pmag_sites = [], [], []
print("-I- Reading previous interpretations from specimen/sample/site tables")
try:
pmag_specimens, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_specimens.txt"))
except:
print("-I- Can't read pmag_specimens.txt")
try:
pmag_samples, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_samples.txt"))
except:
print("-I- Can't read pmag_samples.txt")
try:
pmag_sites, file_type = pmag.magic_read(
os.path.join(self.WD, "pmag_sites.txt"))
except:
print("-I- Can't read pmag_sites.txt")
# --------------------------
# reads pmag_specimens.txt and
# update pmag_results_data['specimens'][specimen]
# with the new interpretation
# --------------------------
if self.COORDINATE_SYSTEM == 'geographic':
current_tilt_correction = 0
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
current_tilt_correction = 100
else:
current_tilt_correction = -1
if 'specimens' not in list(self.pmag_results_data.keys()):
self.pmag_results_data['specimens'] = {}
for rec in pmag_specimens:
if 'er_specimen_name' in rec:
specimen = rec['er_specimen_name']
else:
continue
# initialize list of interpretations
if specimen not in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
if any(k not in list(rec.keys()) for k in ['measurement_step_min', 'measurement_step_max']):
continue
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
LPDIR = False
calculation_type = ""
for method in methods:
if "LP-DIR" in method:
LPDIR = True
if "DE-" in method:
calculation_type = method
msu = ''
if 'measurement_step_unit' in list(rec.keys()):
msu = rec['measurement_step_unit']
# if interpretation doesn't exsist create it.
if float(rec['measurement_step_min']) == 0. or float(rec['measurement_step_min']) == 273.:
tmin = "0"
elif msu == 'K' or float(rec['measurement_step_min']) > 3.: # thermal
tmin = "%.0fC" % (float(rec['measurement_step_min'])-273.)
else: # AF
tmin = "%.1fmT" % (float(rec['measurement_step_min'])*1000.)
if float(rec['measurement_step_max']) == 0. or float(rec['measurement_step_max']) == 273.:
tmax = "0"
elif msu == 'K' or float(rec['measurement_step_max']) > 3.: # thermal
tmax = "%.0fC" % (float(rec['measurement_step_max'])-273.)
else: # AF
tmax = "%.1fmT" % (float(rec['measurement_step_max'])*1000.)
if 'specimen_comp_name' in list(rec.keys()):
fname = rec['specimen_comp_name']
else:
fname = None
if calculation_type == "":
calculation_type = "DE-BFL"
if (tmin, tmax) in [(f.tmin, f.tmax) for f in self.pmag_results_data['specimens'][specimen]] and calculation_type in [f.PCA_type for f in self.pmag_results_data['specimens'][specimen]]:
fit = None
else:
fit = self.add_fit(specimen, fname, tmin,
tmax, calculation_type)
if 'specimen_flag' in list(rec.keys()) and rec['specimen_flag'] == 'b':
self.bad_fits.append(fit)
# BUG FIX-almost replaced first sample with last due to above assignment to self.s
if self.specimens:
self.select_specimen(self.specimens[0])
self.specimens_box.SetSelection(0)
if self.s in self.pmag_results_data['specimens'] and self.pmag_results_data['specimens'][self.s]:
self.initialize_CART_rot(self.specimens[0])
self.pmag_results_data['specimens'][self.s][-1].select()
# --------------------------
# reads pmag_sample.txt and
# if finds a mean in pmag_samples.txt
# calculate the mean for self.high_level_means['samples'][samples]
# If the program finds a codes "DE-FM","DE-FM-LP","DE-FM-UV"in magic_method_codes
# then the program repeat teh fisher mean
# --------------------------
for rec in pmag_samples:
if "magic_method_codes" in list(rec.keys()):
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
else:
methods = ""
sample = rec['er_sample_name'].strip("\n")
LPDIR = False
calculation_method = ""
for method in methods:
if "LP-DIR" in method:
LPDIR = True
if "DE-" in method:
calculation_method = method
if LPDIR: # this a mean of directions
calculation_type = "Fisher"
for dirtype in self.dirtypes:
self.calculate_high_level_mean(
'samples', sample, calculation_type, 'specimens', self.mean_fit)
# --------------------------
# reads pmag_sites.txt and
# if finds a mean in pmag_sites.txt
# calculate the mean for self.high_level_means['sites'][site]
# using specimens or samples, depends on the er_specimen_names or er_samples_names
# The program repeat the fisher calculation and oevrwrites it
# --------------------------
for rec in pmag_sites:
methods = rec['magic_method_codes'].strip(
"\n").replace(" ", "").split(":")
site = rec['er_site_name'].strip("\n")
LPDIR = False
calculation_method = ""
elements_type = "specimens"
for method in methods:
if "LP-DIR" in method or "DA-DIR" in method or "DE-FM" in method:
LPDIR = True
if "DE-" in method:
calculation_method = method
if LPDIR: # this a mean of directions
if calculation_method in ["DE-BS"]:
calculation_type = "Bingham"
else:
calculation_type = "Fisher"
if 'er_sample_names' in list(rec.keys()) and len(rec['er_sample_names'].strip('\n').replace(" ", "").split(":")) > 0:
elements_type = 'samples'
if 'er_specimen_names' in list(rec.keys()) and len(rec['er_specimen_names'].strip('\n').replace(" ", "").split(":")) > 0:
elements_type = 'specimens'
self.calculate_high_level_mean(
'sites', site, calculation_type, elements_type, self.mean_fit) | Reads pmag tables from data model 2.5 and updates them with updates
their data | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L4875-L5038 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.write_acceptance_criteria_to_file | def write_acceptance_criteria_to_file(self):
"""
Writes current GUI acceptance criteria to criteria.txt or
pmag_criteria.txt depending on data model
"""
crit_list = list(self.acceptance_criteria.keys())
crit_list.sort()
rec = {}
rec['pmag_criteria_code'] = "ACCEPT"
# rec['criteria_definition']=""
rec['criteria_definition'] = "acceptance criteria for study"
rec['er_citation_names'] = "This study"
for crit in crit_list:
if type(self.acceptance_criteria[crit]['value']) == str:
if self.acceptance_criteria[crit]['value'] != "-999" and self.acceptance_criteria[crit]['value'] != "":
rec[crit] = self.acceptance_criteria[crit]['value']
elif type(self.acceptance_criteria[crit]['value']) == int:
if self.acceptance_criteria[crit]['value'] != -999:
rec[crit] = "%.i" % (
self.acceptance_criteria[crit]['value'])
elif type(self.acceptance_criteria[crit]['value']) == float:
if float(self.acceptance_criteria[crit]['value']) == -999:
continue
decimal_points = self.acceptance_criteria[crit]['decimal_points']
if decimal_points != -999:
command = "rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])" % (
decimal_points)
exec(command)
else:
rec[crit] = "%e" % (
self.acceptance_criteria[crit]['value'])
pmag.magic_write(os.path.join(self.WD, "pmag_criteria.txt"), [
rec], "pmag_criteria") | python | def write_acceptance_criteria_to_file(self):
"""
Writes current GUI acceptance criteria to criteria.txt or
pmag_criteria.txt depending on data model
"""
crit_list = list(self.acceptance_criteria.keys())
crit_list.sort()
rec = {}
rec['pmag_criteria_code'] = "ACCEPT"
# rec['criteria_definition']=""
rec['criteria_definition'] = "acceptance criteria for study"
rec['er_citation_names'] = "This study"
for crit in crit_list:
if type(self.acceptance_criteria[crit]['value']) == str:
if self.acceptance_criteria[crit]['value'] != "-999" and self.acceptance_criteria[crit]['value'] != "":
rec[crit] = self.acceptance_criteria[crit]['value']
elif type(self.acceptance_criteria[crit]['value']) == int:
if self.acceptance_criteria[crit]['value'] != -999:
rec[crit] = "%.i" % (
self.acceptance_criteria[crit]['value'])
elif type(self.acceptance_criteria[crit]['value']) == float:
if float(self.acceptance_criteria[crit]['value']) == -999:
continue
decimal_points = self.acceptance_criteria[crit]['decimal_points']
if decimal_points != -999:
command = "rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])" % (
decimal_points)
exec(command)
else:
rec[crit] = "%e" % (
self.acceptance_criteria[crit]['value'])
pmag.magic_write(os.path.join(self.WD, "pmag_criteria.txt"), [
rec], "pmag_criteria") | Writes current GUI acceptance criteria to criteria.txt or
pmag_criteria.txt depending on data model | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5040-L5073 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.show_dlg | def show_dlg(self, dlg):
"""
Abstraction function that is to be used instead of dlg.ShowModal
Parameters
----------
dlg : dialog to ShowModal if possible
"""
if not self.test_mode:
dlg.Center()
return dlg.ShowModal()
else:
return dlg.GetAffirmativeId() | python | def show_dlg(self, dlg):
"""
Abstraction function that is to be used instead of dlg.ShowModal
Parameters
----------
dlg : dialog to ShowModal if possible
"""
if not self.test_mode:
dlg.Center()
return dlg.ShowModal()
else:
return dlg.GetAffirmativeId() | Abstraction function that is to be used instead of dlg.ShowModal
Parameters
----------
dlg : dialog to ShowModal if possible | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5079-L5091 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.get_DIR | def get_DIR(self):
"""
Dialog that allows user to choose a working directory
"""
dlg = wx.DirDialog(self, "Choose a directory:", defaultPath=self.currentDirectory,
style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR)
ok = self.show_dlg(dlg)
if ok == wx.ID_OK:
new_WD = dlg.GetPath()
dlg.Destroy()
else:
new_WD = os.getcwd()
dlg.Destroy()
return new_WD | python | def get_DIR(self):
"""
Dialog that allows user to choose a working directory
"""
dlg = wx.DirDialog(self, "Choose a directory:", defaultPath=self.currentDirectory,
style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR)
ok = self.show_dlg(dlg)
if ok == wx.ID_OK:
new_WD = dlg.GetPath()
dlg.Destroy()
else:
new_WD = os.getcwd()
dlg.Destroy()
return new_WD | Dialog that allows user to choose a working directory | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5093-L5106 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.choose_meas_file | def choose_meas_file(self, event=None):
"""
Opens a dialog allowing the user to pick a measurement file
"""
dlg = wx.FileDialog(
self, message="Please choose a measurement file",
defaultDir=self.WD,
defaultFile="measurements.txt",
wildcard="measurement files (*.magic,*.txt)|*.magic;*.txt",
style=wx.FD_OPEN | wx.FD_CHANGE_DIR
)
if self.show_dlg(dlg) == wx.ID_OK:
meas_file = dlg.GetPath()
dlg.Destroy()
else:
meas_file = ''
self.data_model = 2.5
dlg.Destroy()
return meas_file | python | def choose_meas_file(self, event=None):
"""
Opens a dialog allowing the user to pick a measurement file
"""
dlg = wx.FileDialog(
self, message="Please choose a measurement file",
defaultDir=self.WD,
defaultFile="measurements.txt",
wildcard="measurement files (*.magic,*.txt)|*.magic;*.txt",
style=wx.FD_OPEN | wx.FD_CHANGE_DIR
)
if self.show_dlg(dlg) == wx.ID_OK:
meas_file = dlg.GetPath()
dlg.Destroy()
else:
meas_file = ''
self.data_model = 2.5
dlg.Destroy()
return meas_file | Opens a dialog allowing the user to pick a measurement file | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5108-L5126 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.saved_dlg | def saved_dlg(self, message, caption='Saved:'):
"""
Shows a dialog that tells the user that a file has been saved
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Saved:")
"""
dlg = wx.MessageDialog(self, caption=caption,
message=message, style=wx.OK)
result = self.show_dlg(dlg)
dlg.Destroy() | python | def saved_dlg(self, message, caption='Saved:'):
"""
Shows a dialog that tells the user that a file has been saved
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Saved:")
"""
dlg = wx.MessageDialog(self, caption=caption,
message=message, style=wx.OK)
result = self.show_dlg(dlg)
dlg.Destroy() | Shows a dialog that tells the user that a file has been saved
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Saved:") | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5128-L5140 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.user_warning | def user_warning(self, message, caption='Warning!'):
"""
Shows a dialog that warns the user about some action
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Warning!")
Returns
-------
continue_bool : True or False
"""
dlg = wx.MessageDialog(self, message, caption,
wx.OK | wx.CANCEL | wx.ICON_WARNING)
if self.show_dlg(dlg) == wx.ID_OK:
continue_bool = True
else:
continue_bool = False
dlg.Destroy()
return continue_bool | python | def user_warning(self, message, caption='Warning!'):
"""
Shows a dialog that warns the user about some action
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Warning!")
Returns
-------
continue_bool : True or False
"""
dlg = wx.MessageDialog(self, message, caption,
wx.OK | wx.CANCEL | wx.ICON_WARNING)
if self.show_dlg(dlg) == wx.ID_OK:
continue_bool = True
else:
continue_bool = False
dlg.Destroy()
return continue_bool | Shows a dialog that warns the user about some action
Parameters
----------
message : message to display to user
caption : title for dialog (default: "Warning!")
Returns
-------
continue_bool : True or False | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5142-L5162 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_close_criteria_box | def on_close_criteria_box(self, dia):
"""
Function called on close of change acceptance criteria dialog that
writes new criteria to the hardrive and sets new criteria as GUI's
current criteria.
Parameters
----------
dia : closed change criteria dialog
"""
window_list_specimens = [
'specimen_n', 'specimen_mad', 'specimen_dang', 'specimen_alpha95']
window_list_samples = ['sample_n', 'sample_n_lines',
'sample_n_planes', 'sample_k', 'sample_r', 'sample_alpha95']
window_list_sites = ['site_n', 'site_n_lines',
'site_n_planes', 'site_k', 'site_r', 'site_alpha95']
demag_gui_supported_criteria = window_list_specimens + \
window_list_samples+window_list_sites
if self.data_model == 3:
new_crits = []
for crit in demag_gui_supported_criteria:
new_crit = {}
command = "dia.set_%s.GetValue()" % (crit)
new_value = pmag.execute(command, dia=dia)
if new_value == None or new_value == '':
continue
d = findall(r"[-+]?\d*\.\d+|\d+", new_value)
if len(d) > 0:
d = d[0]
comp = new_value.strip(str(d))
if comp == '':
comp = '>='
if 'specimen' in crit:
col = "specimens."+map_magic.spec_magic2_2_magic3_map[crit]
elif 'sample' in crit:
col = "samples."+map_magic.samp_magic2_2_magic3_map[crit]
elif 'site' in crit:
col = "sites."+map_magic.site_magic2_2_magic3_map[crit]
else:
print("no way this like is impossible")
continue
new_crit['criterion'] = "ACCEPT"
new_crit['criterion_value'] = d
new_crit['criterion_operation'] = comp
new_crit['table_column'] = col
new_crit['citations'] = "This study"
new_crit['description'] = ''
new_crits.append(new_crit)
cdf = DataFrame(new_crits)
cdf = cdf.set_index("table_column")
cdf["table_column"] = cdf.index
cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1)
if 'criteria' not in self.con.tables:
cols = ['criterion', 'criterion_value', 'criterion_operation',
'table_column', 'citations', 'description']
self.con.add_empty_magic_table('criteria', col_names=cols)
self.con.tables['criteria'].df = cdf
self.con.tables['criteria'].write_magic_file(dir_path=self.WD)
else:
for crit in demag_gui_supported_criteria:
command = "new_value=dia.set_%s.GetValue()" % (crit)
exec(command)
# empty box
if new_value == "":
self.acceptance_criteria[crit]['value'] = -999
continue
# box with no valid number
try:
float(new_value)
except:
self.show_crit_window_err_messege(crit)
continue
self.acceptance_criteria[crit]['value'] = float(new_value)
# message dialog
self.saved_dlg(message="changes saved to criteria")
self.write_acceptance_criteria_to_file()
dia.Destroy() | python | def on_close_criteria_box(self, dia):
"""
Function called on close of change acceptance criteria dialog that
writes new criteria to the hardrive and sets new criteria as GUI's
current criteria.
Parameters
----------
dia : closed change criteria dialog
"""
window_list_specimens = [
'specimen_n', 'specimen_mad', 'specimen_dang', 'specimen_alpha95']
window_list_samples = ['sample_n', 'sample_n_lines',
'sample_n_planes', 'sample_k', 'sample_r', 'sample_alpha95']
window_list_sites = ['site_n', 'site_n_lines',
'site_n_planes', 'site_k', 'site_r', 'site_alpha95']
demag_gui_supported_criteria = window_list_specimens + \
window_list_samples+window_list_sites
if self.data_model == 3:
new_crits = []
for crit in demag_gui_supported_criteria:
new_crit = {}
command = "dia.set_%s.GetValue()" % (crit)
new_value = pmag.execute(command, dia=dia)
if new_value == None or new_value == '':
continue
d = findall(r"[-+]?\d*\.\d+|\d+", new_value)
if len(d) > 0:
d = d[0]
comp = new_value.strip(str(d))
if comp == '':
comp = '>='
if 'specimen' in crit:
col = "specimens."+map_magic.spec_magic2_2_magic3_map[crit]
elif 'sample' in crit:
col = "samples."+map_magic.samp_magic2_2_magic3_map[crit]
elif 'site' in crit:
col = "sites."+map_magic.site_magic2_2_magic3_map[crit]
else:
print("no way this like is impossible")
continue
new_crit['criterion'] = "ACCEPT"
new_crit['criterion_value'] = d
new_crit['criterion_operation'] = comp
new_crit['table_column'] = col
new_crit['citations'] = "This study"
new_crit['description'] = ''
new_crits.append(new_crit)
cdf = DataFrame(new_crits)
cdf = cdf.set_index("table_column")
cdf["table_column"] = cdf.index
cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1)
if 'criteria' not in self.con.tables:
cols = ['criterion', 'criterion_value', 'criterion_operation',
'table_column', 'citations', 'description']
self.con.add_empty_magic_table('criteria', col_names=cols)
self.con.tables['criteria'].df = cdf
self.con.tables['criteria'].write_magic_file(dir_path=self.WD)
else:
for crit in demag_gui_supported_criteria:
command = "new_value=dia.set_%s.GetValue()" % (crit)
exec(command)
# empty box
if new_value == "":
self.acceptance_criteria[crit]['value'] = -999
continue
# box with no valid number
try:
float(new_value)
except:
self.show_crit_window_err_messege(crit)
continue
self.acceptance_criteria[crit]['value'] = float(new_value)
# message dialog
self.saved_dlg(message="changes saved to criteria")
self.write_acceptance_criteria_to_file()
dia.Destroy() | Function called on close of change acceptance criteria dialog that
writes new criteria to the hardrive and sets new criteria as GUI's
current criteria.
Parameters
----------
dia : closed change criteria dialog | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5171-L5249 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.show_crit_window_err_messege | def show_crit_window_err_messege(self, crit):
"""
error message if a valid naumber is not entered to criteria dialog
boxes
"""
dlg = wx.MessageDialog(
self, caption="Error:", message="not a vaild value for statistic %s\n ignoring value" % crit, style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy() | python | def show_crit_window_err_messege(self, crit):
"""
error message if a valid naumber is not entered to criteria dialog
boxes
"""
dlg = wx.MessageDialog(
self, caption="Error:", message="not a vaild value for statistic %s\n ignoring value" % crit, style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy() | error message if a valid naumber is not entered to criteria dialog
boxes | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5251-L5260 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.On_close_MagIC_dialog | def On_close_MagIC_dialog(self, dia):
"""
Function called after save high level pmag table dialog. It
calculates VGPs, high level means, and saves them the hard drive.
Parameters
----------
dia : save higher level pmag tables
"""
def add_missing_ages(df):
"""
Take a dataframe and add min/max age, age, age_sigma, age_units.
Use values gained from dialog, but don't overwrite values already
in the dataframe.
"""
age_columns = df.columns[df.columns.str.startswith('age')]
for col, value in {'age_high': max_age, 'age_low': min_age,
'age': age, 'age_sigma': age_sigma, 'age_unit': age_units}.items():
if cb.not_null(value):
if col in age_columns:
df[col] = np.where(df[col].apply(cb.not_null), df[col], value)
else:
df[col] = value
return df
if dia.cb_acceptance_criteria.GetValue():
use_criteria = 'existing'
else:
use_criteria = 'none'
# -- coordinate system
if dia.rb_spec_coor.GetValue():
coord = "s"
elif dia.rb_geo_coor.GetValue():
coord = "g"
elif dia.rb_tilt_coor.GetValue():
coord = "t"
elif dia.rb_geo_tilt_coor.GetValue():
coord = "b"
else:
coord = "s"
# -- default age options
DefaultAge = ["none"]
add_ages = dia.add_ages.GetValue()
if add_ages:
age_units = dia.default_age_unit.GetValue()
min_age = dia.default_age_min.GetValue()
max_age = dia.default_age_max.GetValue()
age = dia.default_age.GetValue()
age_sigma = dia.default_age_sigma.GetValue()
if (min_age and max_age) or age:
# enough age data provided
pass
else:
go_on = self.user_warning("Not enough age data provided (you must provide lower and upper bound, or age).\nPress OK to skip ages for now, or cancel to end this process.")
if not go_on:
self.user_warning("Aborting, please try again.", caption="Message")
return
add_ages = False
if min_age and max_age:
DefaultAge = [min_age, max_age, age_units]
# -- sample mean
avg_directions_by_sample = False
if dia.cb_sample_mean.GetValue():
avg_directions_by_sample = True
vgps_level = 'site'
if dia.cb_sample_mean_VGP.GetValue():
vgps_level = 'sample'
# -- site mean
if dia.cb_site_mean.GetValue():
pass
# -- location mean
avg_by_polarity = False
if dia.cb_location_mean.GetValue():
avg_by_polarity = True
if self.data_model == 3.0:
# update or add age data to the sites table, but don't overwrite existing data
if add_ages:
site_df = self.con.tables['sites'].df
self.con.tables['sites'].df = add_missing_ages(site_df)
self.con.write_table_to_file("sites")
# set some variables
priorities = ['DA-AC-ARM', 'DA-AC-TRM']
for p in priorities:
if not p.startswith('DA-AC-'):
p = 'DA-AC-'+p
# translate coord into coords
if coord == 's':
coords = ['-1']
elif coord == 'g':
coords = ['0']
elif coord == 't':
coords = ['100']
elif coord == 'b':
coords = ['0', '100']
else:
coords = ['-1']
if vgps_level == 'sample':
vgps = 1 # save sample level VGPS/VADMs
else:
vgps = 0 # site level
nositeints = 0
version_num = pmag.get_version()
get_model_lat = 0 # skips VADM calculation entirely
Dcrit, Icrit, nocrit = 0, 0, 0 # default criteria input
# still broken (needs translation or determination of translation necessity)
if use_criteria == 'none':
Dcrit, Icrit, nocrit = 1, 1, 1 # no selection criteria
crit_data = pmag.default_criteria(nocrit)
elif use_criteria == 'existing':
crit_data = self.read_criteria_file()
if crit_data == None:
crit_data = pmag.default_criteria(nocrit)
print(
"No acceptance criteria found in criteria.txt defualt PmagPy criteria used instead")
else:
print("Acceptance criteria from criteria.txt used")
else:
# use default criteria
crit_data = pmag.default_criteria(nocrit)
print("PmagPy default criteria used")
accept = {}
for critrec in crit_data:
if type(critrec) != dict:
continue
for key in list(critrec.keys()):
# need to migrate specimen_dang to specimen_int_dang for intensity data using old format
if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()):
critrec['specimen_int_dang'] = critrec['specimen_dang']
del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
if 'sample_int_sigma_uT' in list(critrec.keys()):
critrec['sample_int_sigma'] = '%10.3e' % (
eval(critrec['sample_int_sigma_uT'])*1e-6)
if key not in list(accept.keys()) and critrec[key] != '':
accept[key] = critrec[key]
if use_criteria == 'default':
pmag.magic_write(critout, [accept], 'pmag_criteria')
print("\n Pmag Criteria stored in ", critout, '\n')
if 'specimens' not in self.con.tables:
self.user_warning(
"No specimen interpretations found in the current contribution samples, sites, and locations cannot be exported, aborting")
return
spec_df = self.con.tables['specimens'].df
if 'sites' not in self.con.tables:
self.con.add_empty_magic_table('sites')
site_df = self.con.tables['sites'].df
SiteNFO = site_df.to_dict("records")
Data = spec_df.to_dict("records")
comment = ""
orient = list(spec_df[spec_df['dir_tilt_correction'].notnull(
)]['dir_tilt_correction'].drop_duplicates())
samples = sorted(list(spec_df['sample'].dropna().drop_duplicates()))
sites = sorted(list(spec_df['site'].dropna().drop_duplicates()))
locations = sorted(list(spec_df['location'].dropna().drop_duplicates()))
Comps = sorted(
list(spec_df[spec_df['dir_comp'].notnull()]['dir_comp'].drop_duplicates()))
Comps = [c for c in Comps if type(c) == str]
# find all the sites with height info.
height_info = pmag.get_dictitem(SiteNFO, 'height', '', 'F')
nocorrection = ['DA-NL', 'DA-AC', 'DA-CR']
SpecInts = []
# retrieve specimens with intensity data
IntData = pmag.get_dictitem(Data, 'int_abs', '', 'F')
if nocrit == 0: # use selection criteria
for rec in IntData: # do selection criteria
kill = pmag.grade(
rec, accept, 'specimen_int', data_model=3.0)
if len(kill) == 0:
# intensity record to be included in sample, site calculations
SpecInts.append(rec)
else:
# take everything - no selection criteria
SpecInts = IntData[:]
# check for required data adjustments
if len(nocorrection) > 0 and len(SpecInts) > 0:
for cor in nocorrection:
# exclude the corrections not specified for inclusion
SpecInts = pmag.get_dictitem(
SpecInts, 'method_codes', cor, 'not')
# take top priority specimen of its name in remaining specimens (only one per customer)
PrioritySpecInts = []
# get list of uniq specimen names
specimens = pmag.get_specs(SpecInts)
for spec in specimens:
# all the records for this specimen
ThisSpecRecs = pmag.get_dictitem(
SpecInts, 'specimen', spec, 'T')
if len(ThisSpecRecs) == 1:
PrioritySpecInts.append(ThisSpecRecs[0])
elif len(ThisSpecRecs) > 1: # more than one
prec = []
for p in priorities:
# all the records for this specimen
ThisSpecRecs = pmag.get_dictitem(
SpecInts, 'method_codes', p, 'has')
if len(ThisSpecRecs) > 0:
prec.append(ThisSpecRecs[0])
PrioritySpecInts.append(
prec[0]) # take the best one
SpecInts = PrioritySpecInts # this has the first specimen record
# apply criteria to directional data
# retrieve specimens with directed lines and planes and some measuremnt data
Ns = spec_df[spec_df['dir_n_measurements']
!= ''].to_dict("records")
SpecDirs = []
if nocrit != 1: # use selection criteria
for rec in Ns: # look through everything with specimen_n for "good" data
kill = pmag.grade(
rec, accept, 'specimen_dir', data_model=3.0)
if len(kill) == 0: # nothing killed it
SpecDirs.append(rec)
else: # no criteria
SpecDirs = Ns[:] # take them all
# list of all sample data and list of those that pass the DE-SAMP criteria
PmagSamps, SampDirs = [], []
PmagSites = [] # list of all site data
SampInts = []
renamelnp = {'R': 'dir_r', 'n': 'dir_n_samples', 'n_total': 'dir_n_specimens', 'alpha95': 'dir_alpha95',
'n_lines': 'dir_n_specimens_lines', 'K': 'dir_k', 'dec': 'dir_dec', 'n_planes': 'dir_n_specimens_planes', 'inc': 'dir_inc'}
for samp in samples: # run through the sample names
if not avg_directions_by_sample:
break
# get all the directional data for this sample
SampDir = pmag.get_dictitem(SpecDirs, 'sample', samp, 'T')
if len(SampDir) <= 0:
continue # if no directions
for coord in coords: # step through desired coordinate systems
# get all the directions for this sample
CoordDir = pmag.get_dictitem(
SampDir, 'dir_tilt_correction', coord, 'T')
if len(CoordDir) <= 0:
continue # no data for this coordinate system
for comp in Comps:
# get all directions from this component
CompDir = pmag.get_dictitem(
CoordDir, 'dir_comp', comp, 'T')
CompDir = [
x for x in CompDir if 'result_quality' in x and x['result_quality'] == 'g']
if len(CompDir) <= 0:
continue # no data for comp
PmagSampRec = pmag.dolnp3_0(CompDir)
for k, v in list(renamelnp.items()):
if k in PmagSampRec:
PmagSampRec[v] = PmagSampRec[k]
del PmagSampRec[k]
# decorate the sample record
PmagSampRec["location"] = CompDir[0]['location']
PmagSampRec["site"] = CompDir[0]['site']
PmagSampRec["sample"] = samp
PmagSampRec["citations"] = "This study"
PmagSampRec['software_packages'] = version_num + \
': demag_gui.v.3.0'
if CompDir[0]['result_quality'] == 'g':
PmagSampRec['result_quality'] = 'g'
else:
PmagSampRec['result_quality'] = 'b'
if nocrit != 1:
PmagSampRec['criteria'] = "ACCEPT"
site_height = pmag.get_dictitem(
height_info, 'site', PmagSampRec['site'], 'T')
if len(site_height) > 0:
# add in height if available
PmagSampRec["height"] = site_height[0]['height']
PmagSampRec['dir_comp_name'] = comp
PmagSampRec['dir_tilt_correction'] = coord
specs = [d['specimen'] for d in CompDir]
if 'dir_n_specimens' not in PmagSampRec:
PmagSampRec['dir_n_specimens'] = len(specs)
# get a list of the specimen names used
PmagSampRec['specimens'] = reduce(
lambda x, y: str(x)+':'+str(y), specs)
# get old method codes
prev_meth_codes = self.con.tables['samples'].df.loc[samp]['method_codes']
# get a list of the methods used
new_meth_codes = pmag.get_list(CompDir, 'method_codes')
if isinstance(prev_meth_codes, Series):
merged_meths = self.merge_meth_codes(
prev_meth_codes.iloc[0], new_meth_codes)
else:
merged_meths = self.merge_meth_codes(
prev_meth_codes, new_meth_codes)
PmagSampRec['method_codes'] = merged_meths
if nocrit != 1: # apply selection criteria
kill = pmag.grade(
PmagSampRec, accept, 'sample_dir', data_model=3.0)
else:
kill = []
if len(kill) > 0:
PmagSampRec['result_quality'] = 'b'
else:
SampDirs.append(PmagSampRec)
if vgps == 1: # if sample level VGP info desired, do that now
try:
PmagResRec = pmag.getsampVGP(
PmagSampRec, SiteNFO, data_model=self.data_model)
except KeyError:
print(
("no lat lon data for sample %s skipping VGP calculation" % samp))
PmagResRec = ""
if PmagResRec != "":
for k in ['vgp_dp', 'vgp_dm', 'vgp_lat', 'vgp_lon']:
PmagSampRec[k] = PmagResRec[k]
PmagSamps.append(PmagSampRec)
# removed average_all_components check because demag GUI never averages directional components
# removed intensity average portion as demag GUI has no need of this also cause translating this is a bitch
if len(PmagSamps) > 0:
if 'samples' not in self.con.tables:
self.con.add_empty_magic_table('samples')
for dc in ['magic_method_codes']:
if dc in self.con.tables['samples'].df:
del self.con.tables['samples'].df[dc]
samps_df = DataFrame(PmagSamps)
samps_df = samps_df.set_index('sample')
samps_df['sample'] = samps_df.index
nsdf = self.con.tables['samples'].merge_dfs(samps_df)
if not vgps == 1:
nsdf.drop([col for col in nsdf.columns if type(
col) == str and col.startswith('vgp')], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['samples'].df = nsdf
self.con.tables['samples'].write_magic_file(dir_path=self.WD)
# create site averages from specimens or samples as specified
for site in sites:
for coord in coords:
if dia.combo_site_mean.GetValue() == 'samples' and avg_directions_by_sample:
# if sample averages at site level desired
key, comp_key, dirlist = 'sample', 'dir_comp_name', SampDirs
else:
# if specimen averages at site level desired
key, comp_key, dirlist = 'specimen', 'dir_comp', SpecDirs
# get all the sites with directions
tmp = pmag.get_dictitem(dirlist, 'site', site, 'T')
tmp1 = pmag.get_dictitem(
tmp, 'dir_tilt_correction', coord, 'T', float_to_int=True)
# fish out site information (lat/lon, etc.)
sd = pmag.get_dictitem(SiteNFO, 'site', site, 'T')
if len(sd) <= 0: # no data for this site
print(
('site information not found in sites.txt for site, %s. skipping.' % site))
continue
for comp in Comps:
# get all components comp
siteD = pmag.get_dictitem(tmp1, comp_key, comp, 'T')
# remove bad data from means
siteD = [
x for x in siteD if 'result_quality' in x and x['result_quality'] == 'g']
if len(siteD) <= 0:
# print("no data for comp %s in site %s. skipping"%(comp,site))
continue
PmagSiteRec = PmagSampRec = pmag.dolnp3_0(
siteD) # get an average for this site
for k, v in list(renamelnp.items()):
if k in PmagSiteRec:
PmagSiteRec[v] = PmagSiteRec[k]
del PmagSiteRec[k]
# decorate the site record
PmagSiteRec['dir_comp_name'] = comp
PmagSiteRec["location"] = siteD[0]['location']
PmagSiteRec["site"] = siteD[0]['site']
PmagSiteRec['dir_tilt_correction'] = coord
PmagSiteRec['samples'] = pmag.get_list(siteD, 'sample')
if dia.combo_site_mean.GetValue() == 'samples' and avg_directions_by_sample:
PmagSiteRec['specimens'] = pmag.get_list(
siteD, 'specimens')
else:
PmagSiteRec['specimens'] = pmag.get_list(
siteD, 'specimen')
if 'dir_n_samples' not in list(PmagSiteRec.keys()):
PmagSiteRec['dir_n_samples'] = len(
PmagSiteRec['samples'].split(':'))
if 'dir_n_specimens' not in list(PmagSiteRec.keys()):
PmagSiteRec['dir_n_specimens'] = len(
PmagSiteRec['specimens'].split(':'))
# determine the demagnetization code (DC3,4 or 5) for this site
AFnum = len(pmag.get_dictitem(
siteD, 'method_codes', 'LP-DIR-AF', 'has'))
Tnum = len(pmag.get_dictitem(
siteD, 'method_codes', 'LP-DIR-T', 'has'))
DC = 3
if AFnum > 0:
DC += 1
if Tnum > 0:
DC += 1
PmagSiteRec['method_codes'] = pmag.get_list(
siteD, 'method_codes')+':' + 'LP-DC'+str(DC)
PmagSiteRec['method_codes'].strip(":")
PmagSiteRec["citations"] = "This study"
PmagSiteRec['software_packages'] = version_num + \
': demag_gui.v.3.0'
# here we need to grab ages from sites or ages
site_age_rec = Series()
if 'ages' in self.con.tables:
ages_df = self.con.tables['ages'].df
if 'site' in ages_df.columns:
site_age_records = ages_df[ages_df['site'] == site]
if len(site_age_records):
if isinstance(site_age_records, Series):
site_age_rec = site_age_records
else:
site_age_rec = site_age_records.iloc[0]
if not len(site_age_rec):
sites_df = self.con.tables['sites'].df
site_age_records = sites_df.loc[site]
if len(site_age_records):
if isinstance(site_age_records, Series):
site_age_rec = site_age_records
else:
site_age_rec = site_age_records.iloc[0]
PmagSiteRec['criteria'] = 'ACCEPT'
if 'dir_n_specimens_lines' in list(PmagSiteRec.keys()) and 'dir_n_specimens_planes' in list(PmagSiteRec.keys()) and PmagSiteRec['dir_n_specimens_lines'] != "" and PmagSiteRec['dir_n_specimens_planes'] != "":
if int(PmagSiteRec["dir_n_specimens_planes"]) > 0:
PmagSiteRec["method_codes"] = PmagSiteRec['method_codes']+":DE-FM-LP"
elif int(PmagSiteRec["dir_n_specimens_lines"]) > 2:
PmagSiteRec["method_codes"] = PmagSiteRec['method_codes']+":DE-FM"
site_height = pmag.get_dictitem(
height_info, 'site', site, 'T')
if len(site_height) > 0:
PmagSiteRec["height"] = site_height[0]['height']
if '0' in PmagSiteRec['dir_tilt_correction'] and "DA-DIR-GEO" not in PmagSiteRec['method_codes']:
PmagSiteRec['method_codes'] = PmagSiteRec['method_codes']+":DA-DIR-GEO"
if '100' in PmagSiteRec['dir_tilt_correction'] and "DA-DIR-TILT" not in PmagSiteRec['method_codes']:
PmagSiteRec['method_codes'] = PmagSiteRec['method_codes'] + \
":DA-DIR-TILT"
PmagSiteRec['dir_polarity'] = ""
# assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime
if dia.cb_site_mean_VGP.GetValue():
dec = float(PmagSiteRec["dir_dec"])
inc = float(PmagSiteRec["dir_inc"])
if 'dir_alpha95' in list(PmagSiteRec.keys()) and PmagSiteRec['dir_alpha95'] != "":
a95 = float(PmagSiteRec["dir_alpha95"])
else:
a95 = 180.
# fish out site information (lat/lon, etc.)
sitedat = [x for x in pmag.get_dictitem(
SiteNFO, 'site', PmagSiteRec['site'], 'T') if x['lat'] != None and x['lon'] != None]
if len(sitedat) != 0:
sitedat = sitedat[0]
else:
sitedat = {}
try:
PmagSiteRec['lat'] = float(sitedat['lat'])
PmagSiteRec['lon'] = float(sitedat['lon'])
lat, lon = PmagSiteRec['lat'], PmagSiteRec['lon']
calculate = True
except (KeyError, ValueError, TypeError) as e:
calculate = False
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for site: %s" % site)
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
PmagSiteRec['lat'] = ui_data[1]['Latitude']
PmagSiteRec['lon'] = ui_data[1]['Longitude']
lat, lon = PmagSiteRec['lat'], PmagSiteRec['lon']
calculate = True
else:
self.user_warning(
"insuffecent data provided skipping VGP calculation for site %s and comp %s" % (site, comp))
if calculate:
plong, plat, dp, dm = pmag.dia_vgp(
dec, inc, a95, lat, lon) # get the VGP for this site
PmagSiteRec["vgp_lat"] = '%7.1f ' % (plat)
PmagSiteRec["vgp_lon"] = '%7.1f ' % (plong)
PmagSiteRec["vgp_dp"] = '%7.1f ' % (dp)
PmagSiteRec["vgp_dm"] = '%7.1f ' % (dm)
angle = pmag.angle([0, 0], [0, (90-plat)])
if angle <= 55.:
PmagSiteRec["dir_polarity"] = 'n'
if angle > 55. and angle < 125.:
PmagSiteRec["dir_polarity"] = 't'
if angle >= 125.:
PmagSiteRec["dir_polarity"] = 'r'
kill = pmag.grade(PmagSiteRec, accept, 'site_dir')
if len(kill) > 0:
PmagSiteRec['result_quality'] = 'b'
else:
PmagSiteRec['result_quality'] = 'g'
# Carry over data from previous sites
prev_dat = pmag.get_dictitem(
SiteNFO, 'site', PmagSiteRec['site'], 'T')
if len(prev_dat) != 0:
for ndd in set(PmagSiteRec.keys()).symmetric_difference(set(prev_dat[0].keys())):
sitedat = [
x for x in prev_dat if ndd in x and x[ndd] != None]
if len(sitedat) != 0:
sitedat = sitedat[0]
else:
continue
PmagSiteRec[ndd] = sitedat[ndd]
PmagSites.append(PmagSiteRec)
if len(PmagSites) > 0:
if 'sites' not in self.con.tables:
self.con.tables.add_empty_magic_table('sites')
sites_df = DataFrame(PmagSites)
if 'tilt_correction' in sites_df.columns:
sites_df.drop('tilt_correction', axis=1, inplace=True)
sites_df = sites_df.set_index('site')
sites_df['site'] = sites_df.index
nsdf = self.con.tables['sites'].merge_dfs(sites_df)
if not dia.cb_site_mean_VGP.GetValue():
nsdf.drop([col for col in nsdf.columns if type(
col) == str and col.startswith('vgp')], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['sites'].df = nsdf
self.con.tables['sites'].write_magic_file(dir_path=self.WD)
# location mean section
PmagLocs = []
for location in locations:
if not avg_by_polarity:
break
locrecs = pmag.get_dictitem(
PmagSites, 'location', location, 'T')
if len(locrecs) < 2:
print(("no data for location %s" % location))
continue
for coord in coords:
# find the tilt corrected data
coordrecs = pmag.get_dictitem(
locrecs, 'dir_tilt_correction', coord, 'T')
if len(coordrecs) < 2:
print(
("not enough data of %s percent tilt corrected data in sites to calculate locations mean or vgp" % coord))
continue
for comp in Comps:
# fish out all of the component
crecs = pmag.get_dictitem(
coordrecs, 'dir_comp_name', comp, 'T')
if len(crecs) < 2:
print(
("insuffecent data for comp %s when calculating location" % comp))
continue
precs = []
for rec in crecs:
prec = {'dec': rec['dir_dec'], 'inc': rec['dir_inc'],
'name': rec['site'], 'loc': rec['location']}
prec = {k: v if v != None else 'None' for k,
v in list(prec.items())}
precs.append(prec)
# calculate average by polarity
polpars = pmag.fisher_by_pol(precs)
# hunt through all the modes (normal=A, reverse=B, all=ALL)
for mode in list(polpars.keys()):
PolRes = {}
PolRes['citations'] = 'This study'
PolRes["result_name"] = "Polarity Average: Polarity "+mode
PolRes["pole_comp_name"] = comp+':'+mode
PolRes["dir_dec"] = '%7.1f' % (
polpars[mode]['dec'])
PolRes["dir_inc"] = '%7.1f' % (
polpars[mode]['inc'])
PolRes["dir_n_sites"] = '%i' % (polpars[mode]['n'])
PolRes["dir_r"] = '%5.4f' % (polpars[mode]['r'])
PolRes["dir_k"] = '%6.0f' % (polpars[mode]['k'])
PolRes["dir_alpha95"] = '%7.1f' % (
polpars[mode]['alpha95'])
PolRes['sites'] = polpars[mode]['sites']
sites_dat = self.con.tables['sites'].df
for e in ['samples', 'specimens']:
PolRes[e] = reduce(lambda x, y: x+':'+y, [sites_dat.loc[site][e].iloc[0] if isinstance(
sites_dat.loc[site][e], Series) else sites_dat.loc[site][e] for site in PolRes['sites'].split(':')])
PolRes['dir_n_samples'] = len(
PolRes['samples'].split(':'))
PolRes['dir_n_specimens'] = len(
PolRes['specimens'].split(':'))
PolRes['location'] = polpars[mode]['locs']
PolRes['software_packages'] = version_num + \
': demag_gui.v.3.0'
PolRes['dir_tilt_correction'] = coord
if add_ages:
loc_rec = {}
if 'locations' in self.con.tables:
locs_df = self.con.tables['locations'].df
self.con.tables['locations'].df = add_missing_ages(locs_df)
loc_recs = locs_df.loc[location]
if len(loc_recs):
if isinstance(loc_recs, Series):
loc_rec = loc_recs
else:
loc_rec = loc_recs.iloc[0]
PolRes['age_high'] = loc_rec.get('age_high', max_age)
PolRes['age_low'] = loc_rec.get('age_low', min_age)
PolRes['age'] = loc_rec.get('age', age)
PolRes['age_sigma'] = loc_rec.get('age_sigma', age_sigma)
PolRes['age_unit'] = loc_rec.get('age_unit', age_units)
if dia.cb_location_mean_VGP.GetValue():
sucess_lat_lon_info = True
if 'locations' in self.con.tables:
locs_dat = self.con.tables['locations'].df
if 'lat_n' in locs_dat.columns:
lat = locs_dat['lat_n'][location].iloc[0] if isinstance(
locs_dat['lat_n'][location], Series) else locs_dat['lat_n'][location]
elif 'lat_s' in locs_dat.columns:
lat = locs_dat['lat_s'][location].iloc[0] if isinstance(
locs_dat['lat_s'][location], Series) else locs_dat['lat_s'][location]
else:
sucess_lat_lon_info = False
if 'lon_e' in locs_dat.columns:
lon = locs_dat['lon_e'][location].iloc[0] if isinstance(
locs_dat['lon_e'][location], Series) else locs_dat['lon_e'][location]
elif 'lon_w' in locs_dat.columns:
lon = locs_dat['lon_w'][location].iloc[0] if isinstance(
locs_dat['lon_w'][location], Series) else locs_dat['lon_w'][location]
else:
sucess_lat_lon_info = False
if not sucess_lat_lon_info:
ui_dialog = demag_dialogs.user_input(self, ['North Boundary Latitude', 'South Boundary Latitude', 'East Boundary Longitude', 'West Boundary Longitude'], parse_funcs=[
float, float, float, float], heading="Missing Latitude or Longitude data for location %s please define the boundary of this region so VGP calculations can be preformed" % location)
ui_data = ui_dialog.get_values()
if ui_data[0]:
PolRes['lat_n'] = ui_data[1]['North Boundary Latitude']
PolRes['lat_s'] = ui_data[1]['South Boundary Latitude']
PolRes['lon_e'] = ui_data[1]['East Boundary Longitude']
PolRes['lon_w'] = ui_data[1]['West Boundary Longitude']
lat, lon = PolRes['lat_n'], PolRes['lon_e']
sucess_lat_lon_info = True
else:
self.user_warning(
"insuffecent data provided skipping VGP calculation for location %s" % location)
try:
dec, inc, a95, lat, lon = float(polpars[mode]['dec']), float(
polpars[mode]['inc']), float(polpars[mode]['alpha95']), float(lat), float(lon)
except (UnboundLocalError, TypeError):
print(
"unable to obtain all data needed for VGP calculation, skipping")
sucess_lat_lon_info = False
if sucess_lat_lon_info:
# get the VGP for this pole component
plong, plat, dp, dm = pmag.dia_vgp(
dec, inc, a95, lat, lon)
PolRes["pole_lat"] = '%7.1f ' % (plat)
PolRes["pole_lon"] = '%7.1f ' % (plong)
PolRes["pole_dp"] = '%7.1f ' % (dp)
PolRes["pole_dm"] = '%7.1f ' % (dm)
PolRes["pole_alpha95"] = PolRes['dir_alpha95']
PolRes["pole_r"] = PolRes['dir_r']
PolRes["pole_k"] = PolRes['dir_k']
angle = pmag.angle([0, 0], [0, (90-plat)])
if angle <= 55.:
PolRes["dir_polarity"] = 'n'
if angle > 55. and angle < 125.:
PolRes["dir_polarity"] = 't'
if angle >= 125.:
PolRes["dir_polarity"] = 'r'
# fix not duplicating data
prev_dat = pmag.get_dictitem(locs_dat.to_dict(
'records'), 'location', location, 'T')
# merge method codes
methods = []
for prd in prev_dat:
if 'method_codes' not in list(prd.keys()) or prd['method_codes'] == None:
continue
for mc in prd['method_codes'].split(':'):
if mc not in methods:
methods.append(mc)
if len(methods) > 1:
PolRes['method_codes'] = reduce(
lambda x, y: x+':'+y, methods)
elif len(methods) > 0:
PolRes['method_codes'] = methods[0]
else:
PolRes['method_codes'] = ''
if len(prev_dat) != 0:
for ndd in set(PolRes.keys()).symmetric_difference(set(prev_dat[0].keys())):
dat = [
x for x in prev_dat if ndd in x and x[ndd] != None]
if len(dat) != 0:
dat = dat[0]
else:
continue
PolRes[ndd] = dat[ndd]
PmagLocs.append(PolRes)
if len(PmagLocs) > 0:
locs_df = DataFrame(PmagLocs)
locs_df = locs_df.set_index('location')
locs_df['location'] = locs_df.index
nsdf = self.con.tables['locations'].merge_dfs(locs_df)
if not dia.cb_location_mean_VGP.GetValue():
nsdf.drop([col for col in nsdf.columns if type(col) == str and col.startswith(
'pole') and col != 'pol_comp_name'], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['locations'].df = nsdf
self.con.tables['locations'].write_magic_file(dir_path=self.WD)
else:
for FILE in ['pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']:
self.PmagRecsOld[FILE] = []
try:
meas_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
print(("-I- Read old magic file %s" %
os.path.join(self.WD, FILE)))
if FILE != 'pmag_specimens.txt':
os.remove(os.path.join(self.WD, FILE))
print(("-I- Delete old magic file %s" %
os.path.join(self.WD, FILE)))
except:
continue
for rec in meas_data:
if "magic_method_codes" in list(rec.keys()):
if "LP-DIR" not in rec['magic_method_codes'] and "DE-" not in rec['magic_method_codes']:
self.PmagRecsOld[FILE].append(rec)
print(('coord', coord, 'vgps_level', vgps_level, 'DefaultAge', DefaultAge, 'avg_directions_by_sample',
avg_directions_by_sample, 'avg_by_polarity', avg_by_polarity, 'use_criteria', use_criteria))
prev_cwd = os.getcwd()
os.chdir(self.WD)
ipmag.specimens_results_magic(coord=coord, vgps_level=vgps_level, DefaultAge=DefaultAge,
avg_directions_by_sample=avg_directions_by_sample, avg_by_polarity=avg_by_polarity, use_criteria=use_criteria)
os.chdir(prev_cwd)
# reads new pmag tables, and merge the old lines:
for FILE in ['pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']:
pmag_data = []
try:
pmag_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
except:
pass
if FILE in list(self.PmagRecsOld.keys()):
for rec in self.PmagRecsOld[FILE]:
pmag_data.append(rec)
if len(pmag_data) > 0:
pmag_data_fixed = self.merge_pmag_recs(pmag_data)
pmag.magic_write(os.path.join(self.WD, FILE),
pmag_data_fixed, FILE.split(".")[0])
print(("write new interpretations in %s\n" %
(os.path.join(self.WD, FILE))))
# make pmag_criteria.txt if it does not exist
if not os.path.isfile(os.path.join(self.WD, "pmag_criteria.txt")):
Fout = open(os.path.join(self.WD, "pmag_criteria.txt"), 'w')
Fout.write("tab\tpmag_criteria\n")
Fout.write("er_citation_names\tpmag_criteria_code\n")
Fout.write("This study\tACCEPT\n")
self.update_pmag_tables()
self.update_selection()
TEXT = "interpretations saved"
self.saved_dlg(TEXT)
self.close_warning = False | python | def On_close_MagIC_dialog(self, dia):
"""
Function called after save high level pmag table dialog. It
calculates VGPs, high level means, and saves them the hard drive.
Parameters
----------
dia : save higher level pmag tables
"""
def add_missing_ages(df):
"""
Take a dataframe and add min/max age, age, age_sigma, age_units.
Use values gained from dialog, but don't overwrite values already
in the dataframe.
"""
age_columns = df.columns[df.columns.str.startswith('age')]
for col, value in {'age_high': max_age, 'age_low': min_age,
'age': age, 'age_sigma': age_sigma, 'age_unit': age_units}.items():
if cb.not_null(value):
if col in age_columns:
df[col] = np.where(df[col].apply(cb.not_null), df[col], value)
else:
df[col] = value
return df
if dia.cb_acceptance_criteria.GetValue():
use_criteria = 'existing'
else:
use_criteria = 'none'
# -- coordinate system
if dia.rb_spec_coor.GetValue():
coord = "s"
elif dia.rb_geo_coor.GetValue():
coord = "g"
elif dia.rb_tilt_coor.GetValue():
coord = "t"
elif dia.rb_geo_tilt_coor.GetValue():
coord = "b"
else:
coord = "s"
# -- default age options
DefaultAge = ["none"]
add_ages = dia.add_ages.GetValue()
if add_ages:
age_units = dia.default_age_unit.GetValue()
min_age = dia.default_age_min.GetValue()
max_age = dia.default_age_max.GetValue()
age = dia.default_age.GetValue()
age_sigma = dia.default_age_sigma.GetValue()
if (min_age and max_age) or age:
# enough age data provided
pass
else:
go_on = self.user_warning("Not enough age data provided (you must provide lower and upper bound, or age).\nPress OK to skip ages for now, or cancel to end this process.")
if not go_on:
self.user_warning("Aborting, please try again.", caption="Message")
return
add_ages = False
if min_age and max_age:
DefaultAge = [min_age, max_age, age_units]
# -- sample mean
avg_directions_by_sample = False
if dia.cb_sample_mean.GetValue():
avg_directions_by_sample = True
vgps_level = 'site'
if dia.cb_sample_mean_VGP.GetValue():
vgps_level = 'sample'
# -- site mean
if dia.cb_site_mean.GetValue():
pass
# -- location mean
avg_by_polarity = False
if dia.cb_location_mean.GetValue():
avg_by_polarity = True
if self.data_model == 3.0:
# update or add age data to the sites table, but don't overwrite existing data
if add_ages:
site_df = self.con.tables['sites'].df
self.con.tables['sites'].df = add_missing_ages(site_df)
self.con.write_table_to_file("sites")
# set some variables
priorities = ['DA-AC-ARM', 'DA-AC-TRM']
for p in priorities:
if not p.startswith('DA-AC-'):
p = 'DA-AC-'+p
# translate coord into coords
if coord == 's':
coords = ['-1']
elif coord == 'g':
coords = ['0']
elif coord == 't':
coords = ['100']
elif coord == 'b':
coords = ['0', '100']
else:
coords = ['-1']
if vgps_level == 'sample':
vgps = 1 # save sample level VGPS/VADMs
else:
vgps = 0 # site level
nositeints = 0
version_num = pmag.get_version()
get_model_lat = 0 # skips VADM calculation entirely
Dcrit, Icrit, nocrit = 0, 0, 0 # default criteria input
# still broken (needs translation or determination of translation necessity)
if use_criteria == 'none':
Dcrit, Icrit, nocrit = 1, 1, 1 # no selection criteria
crit_data = pmag.default_criteria(nocrit)
elif use_criteria == 'existing':
crit_data = self.read_criteria_file()
if crit_data == None:
crit_data = pmag.default_criteria(nocrit)
print(
"No acceptance criteria found in criteria.txt defualt PmagPy criteria used instead")
else:
print("Acceptance criteria from criteria.txt used")
else:
# use default criteria
crit_data = pmag.default_criteria(nocrit)
print("PmagPy default criteria used")
accept = {}
for critrec in crit_data:
if type(critrec) != dict:
continue
for key in list(critrec.keys()):
# need to migrate specimen_dang to specimen_int_dang for intensity data using old format
if 'IE-SPEC' in list(critrec.keys()) and 'specimen_dang' in list(critrec.keys()) and 'specimen_int_dang' not in list(critrec.keys()):
critrec['specimen_int_dang'] = critrec['specimen_dang']
del critrec['specimen_dang']
# need to get rid of ron shaars sample_int_sigma_uT
if 'sample_int_sigma_uT' in list(critrec.keys()):
critrec['sample_int_sigma'] = '%10.3e' % (
eval(critrec['sample_int_sigma_uT'])*1e-6)
if key not in list(accept.keys()) and critrec[key] != '':
accept[key] = critrec[key]
if use_criteria == 'default':
pmag.magic_write(critout, [accept], 'pmag_criteria')
print("\n Pmag Criteria stored in ", critout, '\n')
if 'specimens' not in self.con.tables:
self.user_warning(
"No specimen interpretations found in the current contribution samples, sites, and locations cannot be exported, aborting")
return
spec_df = self.con.tables['specimens'].df
if 'sites' not in self.con.tables:
self.con.add_empty_magic_table('sites')
site_df = self.con.tables['sites'].df
SiteNFO = site_df.to_dict("records")
Data = spec_df.to_dict("records")
comment = ""
orient = list(spec_df[spec_df['dir_tilt_correction'].notnull(
)]['dir_tilt_correction'].drop_duplicates())
samples = sorted(list(spec_df['sample'].dropna().drop_duplicates()))
sites = sorted(list(spec_df['site'].dropna().drop_duplicates()))
locations = sorted(list(spec_df['location'].dropna().drop_duplicates()))
Comps = sorted(
list(spec_df[spec_df['dir_comp'].notnull()]['dir_comp'].drop_duplicates()))
Comps = [c for c in Comps if type(c) == str]
# find all the sites with height info.
height_info = pmag.get_dictitem(SiteNFO, 'height', '', 'F')
nocorrection = ['DA-NL', 'DA-AC', 'DA-CR']
SpecInts = []
# retrieve specimens with intensity data
IntData = pmag.get_dictitem(Data, 'int_abs', '', 'F')
if nocrit == 0: # use selection criteria
for rec in IntData: # do selection criteria
kill = pmag.grade(
rec, accept, 'specimen_int', data_model=3.0)
if len(kill) == 0:
# intensity record to be included in sample, site calculations
SpecInts.append(rec)
else:
# take everything - no selection criteria
SpecInts = IntData[:]
# check for required data adjustments
if len(nocorrection) > 0 and len(SpecInts) > 0:
for cor in nocorrection:
# exclude the corrections not specified for inclusion
SpecInts = pmag.get_dictitem(
SpecInts, 'method_codes', cor, 'not')
# take top priority specimen of its name in remaining specimens (only one per customer)
PrioritySpecInts = []
# get list of uniq specimen names
specimens = pmag.get_specs(SpecInts)
for spec in specimens:
# all the records for this specimen
ThisSpecRecs = pmag.get_dictitem(
SpecInts, 'specimen', spec, 'T')
if len(ThisSpecRecs) == 1:
PrioritySpecInts.append(ThisSpecRecs[0])
elif len(ThisSpecRecs) > 1: # more than one
prec = []
for p in priorities:
# all the records for this specimen
ThisSpecRecs = pmag.get_dictitem(
SpecInts, 'method_codes', p, 'has')
if len(ThisSpecRecs) > 0:
prec.append(ThisSpecRecs[0])
PrioritySpecInts.append(
prec[0]) # take the best one
SpecInts = PrioritySpecInts # this has the first specimen record
# apply criteria to directional data
# retrieve specimens with directed lines and planes and some measuremnt data
Ns = spec_df[spec_df['dir_n_measurements']
!= ''].to_dict("records")
SpecDirs = []
if nocrit != 1: # use selection criteria
for rec in Ns: # look through everything with specimen_n for "good" data
kill = pmag.grade(
rec, accept, 'specimen_dir', data_model=3.0)
if len(kill) == 0: # nothing killed it
SpecDirs.append(rec)
else: # no criteria
SpecDirs = Ns[:] # take them all
# list of all sample data and list of those that pass the DE-SAMP criteria
PmagSamps, SampDirs = [], []
PmagSites = [] # list of all site data
SampInts = []
renamelnp = {'R': 'dir_r', 'n': 'dir_n_samples', 'n_total': 'dir_n_specimens', 'alpha95': 'dir_alpha95',
'n_lines': 'dir_n_specimens_lines', 'K': 'dir_k', 'dec': 'dir_dec', 'n_planes': 'dir_n_specimens_planes', 'inc': 'dir_inc'}
for samp in samples: # run through the sample names
if not avg_directions_by_sample:
break
# get all the directional data for this sample
SampDir = pmag.get_dictitem(SpecDirs, 'sample', samp, 'T')
if len(SampDir) <= 0:
continue # if no directions
for coord in coords: # step through desired coordinate systems
# get all the directions for this sample
CoordDir = pmag.get_dictitem(
SampDir, 'dir_tilt_correction', coord, 'T')
if len(CoordDir) <= 0:
continue # no data for this coordinate system
for comp in Comps:
# get all directions from this component
CompDir = pmag.get_dictitem(
CoordDir, 'dir_comp', comp, 'T')
CompDir = [
x for x in CompDir if 'result_quality' in x and x['result_quality'] == 'g']
if len(CompDir) <= 0:
continue # no data for comp
PmagSampRec = pmag.dolnp3_0(CompDir)
for k, v in list(renamelnp.items()):
if k in PmagSampRec:
PmagSampRec[v] = PmagSampRec[k]
del PmagSampRec[k]
# decorate the sample record
PmagSampRec["location"] = CompDir[0]['location']
PmagSampRec["site"] = CompDir[0]['site']
PmagSampRec["sample"] = samp
PmagSampRec["citations"] = "This study"
PmagSampRec['software_packages'] = version_num + \
': demag_gui.v.3.0'
if CompDir[0]['result_quality'] == 'g':
PmagSampRec['result_quality'] = 'g'
else:
PmagSampRec['result_quality'] = 'b'
if nocrit != 1:
PmagSampRec['criteria'] = "ACCEPT"
site_height = pmag.get_dictitem(
height_info, 'site', PmagSampRec['site'], 'T')
if len(site_height) > 0:
# add in height if available
PmagSampRec["height"] = site_height[0]['height']
PmagSampRec['dir_comp_name'] = comp
PmagSampRec['dir_tilt_correction'] = coord
specs = [d['specimen'] for d in CompDir]
if 'dir_n_specimens' not in PmagSampRec:
PmagSampRec['dir_n_specimens'] = len(specs)
# get a list of the specimen names used
PmagSampRec['specimens'] = reduce(
lambda x, y: str(x)+':'+str(y), specs)
# get old method codes
prev_meth_codes = self.con.tables['samples'].df.loc[samp]['method_codes']
# get a list of the methods used
new_meth_codes = pmag.get_list(CompDir, 'method_codes')
if isinstance(prev_meth_codes, Series):
merged_meths = self.merge_meth_codes(
prev_meth_codes.iloc[0], new_meth_codes)
else:
merged_meths = self.merge_meth_codes(
prev_meth_codes, new_meth_codes)
PmagSampRec['method_codes'] = merged_meths
if nocrit != 1: # apply selection criteria
kill = pmag.grade(
PmagSampRec, accept, 'sample_dir', data_model=3.0)
else:
kill = []
if len(kill) > 0:
PmagSampRec['result_quality'] = 'b'
else:
SampDirs.append(PmagSampRec)
if vgps == 1: # if sample level VGP info desired, do that now
try:
PmagResRec = pmag.getsampVGP(
PmagSampRec, SiteNFO, data_model=self.data_model)
except KeyError:
print(
("no lat lon data for sample %s skipping VGP calculation" % samp))
PmagResRec = ""
if PmagResRec != "":
for k in ['vgp_dp', 'vgp_dm', 'vgp_lat', 'vgp_lon']:
PmagSampRec[k] = PmagResRec[k]
PmagSamps.append(PmagSampRec)
# removed average_all_components check because demag GUI never averages directional components
# removed intensity average portion as demag GUI has no need of this also cause translating this is a bitch
if len(PmagSamps) > 0:
if 'samples' not in self.con.tables:
self.con.add_empty_magic_table('samples')
for dc in ['magic_method_codes']:
if dc in self.con.tables['samples'].df:
del self.con.tables['samples'].df[dc]
samps_df = DataFrame(PmagSamps)
samps_df = samps_df.set_index('sample')
samps_df['sample'] = samps_df.index
nsdf = self.con.tables['samples'].merge_dfs(samps_df)
if not vgps == 1:
nsdf.drop([col for col in nsdf.columns if type(
col) == str and col.startswith('vgp')], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['samples'].df = nsdf
self.con.tables['samples'].write_magic_file(dir_path=self.WD)
# create site averages from specimens or samples as specified
for site in sites:
for coord in coords:
if dia.combo_site_mean.GetValue() == 'samples' and avg_directions_by_sample:
# if sample averages at site level desired
key, comp_key, dirlist = 'sample', 'dir_comp_name', SampDirs
else:
# if specimen averages at site level desired
key, comp_key, dirlist = 'specimen', 'dir_comp', SpecDirs
# get all the sites with directions
tmp = pmag.get_dictitem(dirlist, 'site', site, 'T')
tmp1 = pmag.get_dictitem(
tmp, 'dir_tilt_correction', coord, 'T', float_to_int=True)
# fish out site information (lat/lon, etc.)
sd = pmag.get_dictitem(SiteNFO, 'site', site, 'T')
if len(sd) <= 0: # no data for this site
print(
('site information not found in sites.txt for site, %s. skipping.' % site))
continue
for comp in Comps:
# get all components comp
siteD = pmag.get_dictitem(tmp1, comp_key, comp, 'T')
# remove bad data from means
siteD = [
x for x in siteD if 'result_quality' in x and x['result_quality'] == 'g']
if len(siteD) <= 0:
# print("no data for comp %s in site %s. skipping"%(comp,site))
continue
PmagSiteRec = PmagSampRec = pmag.dolnp3_0(
siteD) # get an average for this site
for k, v in list(renamelnp.items()):
if k in PmagSiteRec:
PmagSiteRec[v] = PmagSiteRec[k]
del PmagSiteRec[k]
# decorate the site record
PmagSiteRec['dir_comp_name'] = comp
PmagSiteRec["location"] = siteD[0]['location']
PmagSiteRec["site"] = siteD[0]['site']
PmagSiteRec['dir_tilt_correction'] = coord
PmagSiteRec['samples'] = pmag.get_list(siteD, 'sample')
if dia.combo_site_mean.GetValue() == 'samples' and avg_directions_by_sample:
PmagSiteRec['specimens'] = pmag.get_list(
siteD, 'specimens')
else:
PmagSiteRec['specimens'] = pmag.get_list(
siteD, 'specimen')
if 'dir_n_samples' not in list(PmagSiteRec.keys()):
PmagSiteRec['dir_n_samples'] = len(
PmagSiteRec['samples'].split(':'))
if 'dir_n_specimens' not in list(PmagSiteRec.keys()):
PmagSiteRec['dir_n_specimens'] = len(
PmagSiteRec['specimens'].split(':'))
# determine the demagnetization code (DC3,4 or 5) for this site
AFnum = len(pmag.get_dictitem(
siteD, 'method_codes', 'LP-DIR-AF', 'has'))
Tnum = len(pmag.get_dictitem(
siteD, 'method_codes', 'LP-DIR-T', 'has'))
DC = 3
if AFnum > 0:
DC += 1
if Tnum > 0:
DC += 1
PmagSiteRec['method_codes'] = pmag.get_list(
siteD, 'method_codes')+':' + 'LP-DC'+str(DC)
PmagSiteRec['method_codes'].strip(":")
PmagSiteRec["citations"] = "This study"
PmagSiteRec['software_packages'] = version_num + \
': demag_gui.v.3.0'
# here we need to grab ages from sites or ages
site_age_rec = Series()
if 'ages' in self.con.tables:
ages_df = self.con.tables['ages'].df
if 'site' in ages_df.columns:
site_age_records = ages_df[ages_df['site'] == site]
if len(site_age_records):
if isinstance(site_age_records, Series):
site_age_rec = site_age_records
else:
site_age_rec = site_age_records.iloc[0]
if not len(site_age_rec):
sites_df = self.con.tables['sites'].df
site_age_records = sites_df.loc[site]
if len(site_age_records):
if isinstance(site_age_records, Series):
site_age_rec = site_age_records
else:
site_age_rec = site_age_records.iloc[0]
PmagSiteRec['criteria'] = 'ACCEPT'
if 'dir_n_specimens_lines' in list(PmagSiteRec.keys()) and 'dir_n_specimens_planes' in list(PmagSiteRec.keys()) and PmagSiteRec['dir_n_specimens_lines'] != "" and PmagSiteRec['dir_n_specimens_planes'] != "":
if int(PmagSiteRec["dir_n_specimens_planes"]) > 0:
PmagSiteRec["method_codes"] = PmagSiteRec['method_codes']+":DE-FM-LP"
elif int(PmagSiteRec["dir_n_specimens_lines"]) > 2:
PmagSiteRec["method_codes"] = PmagSiteRec['method_codes']+":DE-FM"
site_height = pmag.get_dictitem(
height_info, 'site', site, 'T')
if len(site_height) > 0:
PmagSiteRec["height"] = site_height[0]['height']
if '0' in PmagSiteRec['dir_tilt_correction'] and "DA-DIR-GEO" not in PmagSiteRec['method_codes']:
PmagSiteRec['method_codes'] = PmagSiteRec['method_codes']+":DA-DIR-GEO"
if '100' in PmagSiteRec['dir_tilt_correction'] and "DA-DIR-TILT" not in PmagSiteRec['method_codes']:
PmagSiteRec['method_codes'] = PmagSiteRec['method_codes'] + \
":DA-DIR-TILT"
PmagSiteRec['dir_polarity'] = ""
# assign polarity based on angle of pole lat to spin axis - may want to re-think this sometime
if dia.cb_site_mean_VGP.GetValue():
dec = float(PmagSiteRec["dir_dec"])
inc = float(PmagSiteRec["dir_inc"])
if 'dir_alpha95' in list(PmagSiteRec.keys()) and PmagSiteRec['dir_alpha95'] != "":
a95 = float(PmagSiteRec["dir_alpha95"])
else:
a95 = 180.
# fish out site information (lat/lon, etc.)
sitedat = [x for x in pmag.get_dictitem(
SiteNFO, 'site', PmagSiteRec['site'], 'T') if x['lat'] != None and x['lon'] != None]
if len(sitedat) != 0:
sitedat = sitedat[0]
else:
sitedat = {}
try:
PmagSiteRec['lat'] = float(sitedat['lat'])
PmagSiteRec['lon'] = float(sitedat['lon'])
lat, lon = PmagSiteRec['lat'], PmagSiteRec['lon']
calculate = True
except (KeyError, ValueError, TypeError) as e:
calculate = False
ui_dialog = demag_dialogs.user_input(self, ['Latitude', 'Longitude'], parse_funcs=[
float, float], heading="Missing Latitude or Longitude data for site: %s" % site)
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
if ui_data[0]:
PmagSiteRec['lat'] = ui_data[1]['Latitude']
PmagSiteRec['lon'] = ui_data[1]['Longitude']
lat, lon = PmagSiteRec['lat'], PmagSiteRec['lon']
calculate = True
else:
self.user_warning(
"insuffecent data provided skipping VGP calculation for site %s and comp %s" % (site, comp))
if calculate:
plong, plat, dp, dm = pmag.dia_vgp(
dec, inc, a95, lat, lon) # get the VGP for this site
PmagSiteRec["vgp_lat"] = '%7.1f ' % (plat)
PmagSiteRec["vgp_lon"] = '%7.1f ' % (plong)
PmagSiteRec["vgp_dp"] = '%7.1f ' % (dp)
PmagSiteRec["vgp_dm"] = '%7.1f ' % (dm)
angle = pmag.angle([0, 0], [0, (90-plat)])
if angle <= 55.:
PmagSiteRec["dir_polarity"] = 'n'
if angle > 55. and angle < 125.:
PmagSiteRec["dir_polarity"] = 't'
if angle >= 125.:
PmagSiteRec["dir_polarity"] = 'r'
kill = pmag.grade(PmagSiteRec, accept, 'site_dir')
if len(kill) > 0:
PmagSiteRec['result_quality'] = 'b'
else:
PmagSiteRec['result_quality'] = 'g'
# Carry over data from previous sites
prev_dat = pmag.get_dictitem(
SiteNFO, 'site', PmagSiteRec['site'], 'T')
if len(prev_dat) != 0:
for ndd in set(PmagSiteRec.keys()).symmetric_difference(set(prev_dat[0].keys())):
sitedat = [
x for x in prev_dat if ndd in x and x[ndd] != None]
if len(sitedat) != 0:
sitedat = sitedat[0]
else:
continue
PmagSiteRec[ndd] = sitedat[ndd]
PmagSites.append(PmagSiteRec)
if len(PmagSites) > 0:
if 'sites' not in self.con.tables:
self.con.tables.add_empty_magic_table('sites')
sites_df = DataFrame(PmagSites)
if 'tilt_correction' in sites_df.columns:
sites_df.drop('tilt_correction', axis=1, inplace=True)
sites_df = sites_df.set_index('site')
sites_df['site'] = sites_df.index
nsdf = self.con.tables['sites'].merge_dfs(sites_df)
if not dia.cb_site_mean_VGP.GetValue():
nsdf.drop([col for col in nsdf.columns if type(
col) == str and col.startswith('vgp')], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['sites'].df = nsdf
self.con.tables['sites'].write_magic_file(dir_path=self.WD)
# location mean section
PmagLocs = []
for location in locations:
if not avg_by_polarity:
break
locrecs = pmag.get_dictitem(
PmagSites, 'location', location, 'T')
if len(locrecs) < 2:
print(("no data for location %s" % location))
continue
for coord in coords:
# find the tilt corrected data
coordrecs = pmag.get_dictitem(
locrecs, 'dir_tilt_correction', coord, 'T')
if len(coordrecs) < 2:
print(
("not enough data of %s percent tilt corrected data in sites to calculate locations mean or vgp" % coord))
continue
for comp in Comps:
# fish out all of the component
crecs = pmag.get_dictitem(
coordrecs, 'dir_comp_name', comp, 'T')
if len(crecs) < 2:
print(
("insuffecent data for comp %s when calculating location" % comp))
continue
precs = []
for rec in crecs:
prec = {'dec': rec['dir_dec'], 'inc': rec['dir_inc'],
'name': rec['site'], 'loc': rec['location']}
prec = {k: v if v != None else 'None' for k,
v in list(prec.items())}
precs.append(prec)
# calculate average by polarity
polpars = pmag.fisher_by_pol(precs)
# hunt through all the modes (normal=A, reverse=B, all=ALL)
for mode in list(polpars.keys()):
PolRes = {}
PolRes['citations'] = 'This study'
PolRes["result_name"] = "Polarity Average: Polarity "+mode
PolRes["pole_comp_name"] = comp+':'+mode
PolRes["dir_dec"] = '%7.1f' % (
polpars[mode]['dec'])
PolRes["dir_inc"] = '%7.1f' % (
polpars[mode]['inc'])
PolRes["dir_n_sites"] = '%i' % (polpars[mode]['n'])
PolRes["dir_r"] = '%5.4f' % (polpars[mode]['r'])
PolRes["dir_k"] = '%6.0f' % (polpars[mode]['k'])
PolRes["dir_alpha95"] = '%7.1f' % (
polpars[mode]['alpha95'])
PolRes['sites'] = polpars[mode]['sites']
sites_dat = self.con.tables['sites'].df
for e in ['samples', 'specimens']:
PolRes[e] = reduce(lambda x, y: x+':'+y, [sites_dat.loc[site][e].iloc[0] if isinstance(
sites_dat.loc[site][e], Series) else sites_dat.loc[site][e] for site in PolRes['sites'].split(':')])
PolRes['dir_n_samples'] = len(
PolRes['samples'].split(':'))
PolRes['dir_n_specimens'] = len(
PolRes['specimens'].split(':'))
PolRes['location'] = polpars[mode]['locs']
PolRes['software_packages'] = version_num + \
': demag_gui.v.3.0'
PolRes['dir_tilt_correction'] = coord
if add_ages:
loc_rec = {}
if 'locations' in self.con.tables:
locs_df = self.con.tables['locations'].df
self.con.tables['locations'].df = add_missing_ages(locs_df)
loc_recs = locs_df.loc[location]
if len(loc_recs):
if isinstance(loc_recs, Series):
loc_rec = loc_recs
else:
loc_rec = loc_recs.iloc[0]
PolRes['age_high'] = loc_rec.get('age_high', max_age)
PolRes['age_low'] = loc_rec.get('age_low', min_age)
PolRes['age'] = loc_rec.get('age', age)
PolRes['age_sigma'] = loc_rec.get('age_sigma', age_sigma)
PolRes['age_unit'] = loc_rec.get('age_unit', age_units)
if dia.cb_location_mean_VGP.GetValue():
sucess_lat_lon_info = True
if 'locations' in self.con.tables:
locs_dat = self.con.tables['locations'].df
if 'lat_n' in locs_dat.columns:
lat = locs_dat['lat_n'][location].iloc[0] if isinstance(
locs_dat['lat_n'][location], Series) else locs_dat['lat_n'][location]
elif 'lat_s' in locs_dat.columns:
lat = locs_dat['lat_s'][location].iloc[0] if isinstance(
locs_dat['lat_s'][location], Series) else locs_dat['lat_s'][location]
else:
sucess_lat_lon_info = False
if 'lon_e' in locs_dat.columns:
lon = locs_dat['lon_e'][location].iloc[0] if isinstance(
locs_dat['lon_e'][location], Series) else locs_dat['lon_e'][location]
elif 'lon_w' in locs_dat.columns:
lon = locs_dat['lon_w'][location].iloc[0] if isinstance(
locs_dat['lon_w'][location], Series) else locs_dat['lon_w'][location]
else:
sucess_lat_lon_info = False
if not sucess_lat_lon_info:
ui_dialog = demag_dialogs.user_input(self, ['North Boundary Latitude', 'South Boundary Latitude', 'East Boundary Longitude', 'West Boundary Longitude'], parse_funcs=[
float, float, float, float], heading="Missing Latitude or Longitude data for location %s please define the boundary of this region so VGP calculations can be preformed" % location)
ui_data = ui_dialog.get_values()
if ui_data[0]:
PolRes['lat_n'] = ui_data[1]['North Boundary Latitude']
PolRes['lat_s'] = ui_data[1]['South Boundary Latitude']
PolRes['lon_e'] = ui_data[1]['East Boundary Longitude']
PolRes['lon_w'] = ui_data[1]['West Boundary Longitude']
lat, lon = PolRes['lat_n'], PolRes['lon_e']
sucess_lat_lon_info = True
else:
self.user_warning(
"insuffecent data provided skipping VGP calculation for location %s" % location)
try:
dec, inc, a95, lat, lon = float(polpars[mode]['dec']), float(
polpars[mode]['inc']), float(polpars[mode]['alpha95']), float(lat), float(lon)
except (UnboundLocalError, TypeError):
print(
"unable to obtain all data needed for VGP calculation, skipping")
sucess_lat_lon_info = False
if sucess_lat_lon_info:
# get the VGP for this pole component
plong, plat, dp, dm = pmag.dia_vgp(
dec, inc, a95, lat, lon)
PolRes["pole_lat"] = '%7.1f ' % (plat)
PolRes["pole_lon"] = '%7.1f ' % (plong)
PolRes["pole_dp"] = '%7.1f ' % (dp)
PolRes["pole_dm"] = '%7.1f ' % (dm)
PolRes["pole_alpha95"] = PolRes['dir_alpha95']
PolRes["pole_r"] = PolRes['dir_r']
PolRes["pole_k"] = PolRes['dir_k']
angle = pmag.angle([0, 0], [0, (90-plat)])
if angle <= 55.:
PolRes["dir_polarity"] = 'n'
if angle > 55. and angle < 125.:
PolRes["dir_polarity"] = 't'
if angle >= 125.:
PolRes["dir_polarity"] = 'r'
# fix not duplicating data
prev_dat = pmag.get_dictitem(locs_dat.to_dict(
'records'), 'location', location, 'T')
# merge method codes
methods = []
for prd in prev_dat:
if 'method_codes' not in list(prd.keys()) or prd['method_codes'] == None:
continue
for mc in prd['method_codes'].split(':'):
if mc not in methods:
methods.append(mc)
if len(methods) > 1:
PolRes['method_codes'] = reduce(
lambda x, y: x+':'+y, methods)
elif len(methods) > 0:
PolRes['method_codes'] = methods[0]
else:
PolRes['method_codes'] = ''
if len(prev_dat) != 0:
for ndd in set(PolRes.keys()).symmetric_difference(set(prev_dat[0].keys())):
dat = [
x for x in prev_dat if ndd in x and x[ndd] != None]
if len(dat) != 0:
dat = dat[0]
else:
continue
PolRes[ndd] = dat[ndd]
PmagLocs.append(PolRes)
if len(PmagLocs) > 0:
locs_df = DataFrame(PmagLocs)
locs_df = locs_df.set_index('location')
locs_df['location'] = locs_df.index
nsdf = self.con.tables['locations'].merge_dfs(locs_df)
if not dia.cb_location_mean_VGP.GetValue():
nsdf.drop([col for col in nsdf.columns if type(col) == str and col.startswith(
'pole') and col != 'pol_comp_name'], axis=1, inplace=True)
nsdf = nsdf.reindex_axis(sorted(nsdf.columns), axis=1)
self.con.tables['locations'].df = nsdf
self.con.tables['locations'].write_magic_file(dir_path=self.WD)
else:
for FILE in ['pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']:
self.PmagRecsOld[FILE] = []
try:
meas_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
print(("-I- Read old magic file %s" %
os.path.join(self.WD, FILE)))
if FILE != 'pmag_specimens.txt':
os.remove(os.path.join(self.WD, FILE))
print(("-I- Delete old magic file %s" %
os.path.join(self.WD, FILE)))
except:
continue
for rec in meas_data:
if "magic_method_codes" in list(rec.keys()):
if "LP-DIR" not in rec['magic_method_codes'] and "DE-" not in rec['magic_method_codes']:
self.PmagRecsOld[FILE].append(rec)
print(('coord', coord, 'vgps_level', vgps_level, 'DefaultAge', DefaultAge, 'avg_directions_by_sample',
avg_directions_by_sample, 'avg_by_polarity', avg_by_polarity, 'use_criteria', use_criteria))
prev_cwd = os.getcwd()
os.chdir(self.WD)
ipmag.specimens_results_magic(coord=coord, vgps_level=vgps_level, DefaultAge=DefaultAge,
avg_directions_by_sample=avg_directions_by_sample, avg_by_polarity=avg_by_polarity, use_criteria=use_criteria)
os.chdir(prev_cwd)
# reads new pmag tables, and merge the old lines:
for FILE in ['pmag_samples.txt', 'pmag_sites.txt', 'pmag_results.txt']:
pmag_data = []
try:
pmag_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
except:
pass
if FILE in list(self.PmagRecsOld.keys()):
for rec in self.PmagRecsOld[FILE]:
pmag_data.append(rec)
if len(pmag_data) > 0:
pmag_data_fixed = self.merge_pmag_recs(pmag_data)
pmag.magic_write(os.path.join(self.WD, FILE),
pmag_data_fixed, FILE.split(".")[0])
print(("write new interpretations in %s\n" %
(os.path.join(self.WD, FILE))))
# make pmag_criteria.txt if it does not exist
if not os.path.isfile(os.path.join(self.WD, "pmag_criteria.txt")):
Fout = open(os.path.join(self.WD, "pmag_criteria.txt"), 'w')
Fout.write("tab\tpmag_criteria\n")
Fout.write("er_citation_names\tpmag_criteria_code\n")
Fout.write("This study\tACCEPT\n")
self.update_pmag_tables()
self.update_selection()
TEXT = "interpretations saved"
self.saved_dlg(TEXT)
self.close_warning = False | Function called after save high level pmag table dialog. It
calculates VGPs, high level means, and saves them the hard drive.
Parameters
----------
dia : save higher level pmag tables | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L5262-L6042 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_selection | def update_selection(self):
"""
Convenience function update display (figures, text boxes and
statistics windows) with a new selection of specimen
"""
self.clear_boxes()
# commented out to allow propogation of higher level viewing state
self.clear_high_level_pars()
if self.UPPER_LEVEL_SHOW != "specimens":
self.mean_type_box.SetValue("None")
# --------------------------
# check if the coordinate system in the window exists (if not change to "specimen" coordinate system)
# --------------------------
coordinate_system = self.coordinates_box.GetValue()
if coordinate_system == 'tilt-corrected' and \
len(self.Data[self.s]['zijdblock_tilt']) == 0:
self.coordinates_box.SetStringSelection('specimen')
elif coordinate_system == 'geographic' and \
len(self.Data[self.s]['zijdblock_geo']) == 0:
self.coordinates_box.SetStringSelection("specimen")
if coordinate_system != self.coordinates_box.GetValue() and self.ie_open:
self.ie.coordinates_box.SetStringSelection(
self.coordinates_box.GetValue())
self.ie.update_editor()
coordinate_system = self.coordinates_box.GetValue()
self.COORDINATE_SYSTEM = coordinate_system
# --------------------------
# update treatment list
# --------------------------
self.update_bounds_boxes()
# --------------------------
# update high level boxes
# --------------------------
high_level = self.level_box.GetValue()
old_string = self.level_names.GetValue()
new_string = old_string
if high_level == 'sample':
if self.s in self.Data_hierarchy['sample_of_specimen']:
new_string = self.Data_hierarchy['sample_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'site':
if self.s in self.Data_hierarchy['site_of_specimen']:
new_string = self.Data_hierarchy['site_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'location':
if self.s in self.Data_hierarchy['location_of_specimen']:
new_string = self.Data_hierarchy['location_of_specimen'][self.s]
else:
new_string = ''
self.level_names.SetValue(new_string)
if self.ie_open and new_string != old_string:
self.ie.level_names.SetValue(new_string)
self.ie.on_select_level_name(-1, True)
# --------------------------
# update PCA box
# --------------------------
self.update_PCA_box()
# update warning
self.generate_warning_text()
self.update_warning_box()
# update choices in the fit box
self.update_fit_boxes()
self.update_mean_fit_box()
# measurements text box
self.Add_text()
# draw figures
if self.current_fit:
self.draw_figure(self.s, False)
else:
self.draw_figure(self.s, True)
# update high level stats
self.update_high_level_stats()
# redraw interpretations
self.update_GUI_with_new_interpretation() | python | def update_selection(self):
"""
Convenience function update display (figures, text boxes and
statistics windows) with a new selection of specimen
"""
self.clear_boxes()
# commented out to allow propogation of higher level viewing state
self.clear_high_level_pars()
if self.UPPER_LEVEL_SHOW != "specimens":
self.mean_type_box.SetValue("None")
# --------------------------
# check if the coordinate system in the window exists (if not change to "specimen" coordinate system)
# --------------------------
coordinate_system = self.coordinates_box.GetValue()
if coordinate_system == 'tilt-corrected' and \
len(self.Data[self.s]['zijdblock_tilt']) == 0:
self.coordinates_box.SetStringSelection('specimen')
elif coordinate_system == 'geographic' and \
len(self.Data[self.s]['zijdblock_geo']) == 0:
self.coordinates_box.SetStringSelection("specimen")
if coordinate_system != self.coordinates_box.GetValue() and self.ie_open:
self.ie.coordinates_box.SetStringSelection(
self.coordinates_box.GetValue())
self.ie.update_editor()
coordinate_system = self.coordinates_box.GetValue()
self.COORDINATE_SYSTEM = coordinate_system
# --------------------------
# update treatment list
# --------------------------
self.update_bounds_boxes()
# --------------------------
# update high level boxes
# --------------------------
high_level = self.level_box.GetValue()
old_string = self.level_names.GetValue()
new_string = old_string
if high_level == 'sample':
if self.s in self.Data_hierarchy['sample_of_specimen']:
new_string = self.Data_hierarchy['sample_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'site':
if self.s in self.Data_hierarchy['site_of_specimen']:
new_string = self.Data_hierarchy['site_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'location':
if self.s in self.Data_hierarchy['location_of_specimen']:
new_string = self.Data_hierarchy['location_of_specimen'][self.s]
else:
new_string = ''
self.level_names.SetValue(new_string)
if self.ie_open and new_string != old_string:
self.ie.level_names.SetValue(new_string)
self.ie.on_select_level_name(-1, True)
# --------------------------
# update PCA box
# --------------------------
self.update_PCA_box()
# update warning
self.generate_warning_text()
self.update_warning_box()
# update choices in the fit box
self.update_fit_boxes()
self.update_mean_fit_box()
# measurements text box
self.Add_text()
# draw figures
if self.current_fit:
self.draw_figure(self.s, False)
else:
self.draw_figure(self.s, True)
# update high level stats
self.update_high_level_stats()
# redraw interpretations
self.update_GUI_with_new_interpretation() | Convenience function update display (figures, text boxes and
statistics windows) with a new selection of specimen | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6067-L6153 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_warning_box | def update_warning_box(self):
"""
updates the warning box with whatever the warning_text variable
contains for this specimen
"""
self.warning_box.Clear()
if self.warning_text == "":
self.warning_box.AppendText("No Problems")
else:
self.warning_box.AppendText(self.warning_text) | python | def update_warning_box(self):
"""
updates the warning box with whatever the warning_text variable
contains for this specimen
"""
self.warning_box.Clear()
if self.warning_text == "":
self.warning_box.AppendText("No Problems")
else:
self.warning_box.AppendText(self.warning_text) | updates the warning box with whatever the warning_text variable
contains for this specimen | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6155-L6164 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_GUI_with_new_interpretation | def update_GUI_with_new_interpretation(self):
"""
update statistics boxes and figures with a new interpretatiom when
selecting new temperature bound
"""
self.update_fit_bounds_and_statistics()
self.draw_interpretations()
self.calculate_high_levels_data()
self.plot_high_levels_data() | python | def update_GUI_with_new_interpretation(self):
"""
update statistics boxes and figures with a new interpretatiom when
selecting new temperature bound
"""
self.update_fit_bounds_and_statistics()
self.draw_interpretations()
self.calculate_high_levels_data()
self.plot_high_levels_data() | update statistics boxes and figures with a new interpretatiom when
selecting new temperature bound | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6166-L6175 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_high_level_stats | def update_high_level_stats(self):
"""
updates high level statistics in bottom left of GUI.
"""
self.clear_high_level_pars()
dirtype = str(self.coordinates_box.GetValue())
if dirtype == 'specimen':
dirtype = 'DA-DIR'
elif dirtype == 'geographic':
dirtype = 'DA-DIR-GEO'
elif dirtype == 'tilt-corrected':
dirtype = 'DA-DIR-TILT'
if str(self.level_box.GetValue()) == 'sample':
high_level_type = 'samples'
elif str(self.level_box.GetValue()) == 'site':
high_level_type = 'sites'
elif str(self.level_box.GetValue()) == 'location':
high_level_type = 'locations'
elif str(self.level_box.GetValue()) == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if high_level_name in list(self.high_level_means[high_level_type].keys()):
mpars = []
for mf in list(self.high_level_means[high_level_type][high_level_name].keys()):
if mf in list(self.high_level_means[high_level_type][high_level_name].keys()) and self.mean_fit == 'All' or mf == self.mean_fit:
if dirtype in list(self.high_level_means[high_level_type][high_level_name][mf].keys()):
mpar = deepcopy(
self.high_level_means[high_level_type][high_level_name][mf][dirtype])
if 'n' in mpar and mpar['n'] == 1:
mpar['calculation_type'] = "Fisher:"+mf
mpars.append(mpar)
elif mpar['calculation_type'] == 'Fisher by polarity':
for k in list(mpar.keys()):
if k == 'color' or k == 'calculation_type':
continue
mpar[k]['calculation_type'] += ':'+k+':'+mf
mpar[k]['color'] = mpar['color']
if 'K' not in mpar[k] and 'k' in mpar[k]:
mpar[k]['K'] = mpar[k]['k']
if 'R' not in mpar[k] and 'r' in mpar[k]:
mpar[k]['R'] = mpar[k]['r']
if 'n_lines' not in mpar[k] and 'n' in mpar[k]:
mpar[k]['n_lines'] = mpar[k]['n']
mpars.append(mpar[k])
else:
mpar['calculation_type'] += ":"+mf
mpars.append(mpar)
self.switch_stats_button.SetRange(0, len(mpars)-1)
self.show_high_levels_pars(mpars)
if self.ie_open:
self.ie.switch_stats_button.SetRange(0, len(mpars)-1) | python | def update_high_level_stats(self):
"""
updates high level statistics in bottom left of GUI.
"""
self.clear_high_level_pars()
dirtype = str(self.coordinates_box.GetValue())
if dirtype == 'specimen':
dirtype = 'DA-DIR'
elif dirtype == 'geographic':
dirtype = 'DA-DIR-GEO'
elif dirtype == 'tilt-corrected':
dirtype = 'DA-DIR-TILT'
if str(self.level_box.GetValue()) == 'sample':
high_level_type = 'samples'
elif str(self.level_box.GetValue()) == 'site':
high_level_type = 'sites'
elif str(self.level_box.GetValue()) == 'location':
high_level_type = 'locations'
elif str(self.level_box.GetValue()) == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if high_level_name in list(self.high_level_means[high_level_type].keys()):
mpars = []
for mf in list(self.high_level_means[high_level_type][high_level_name].keys()):
if mf in list(self.high_level_means[high_level_type][high_level_name].keys()) and self.mean_fit == 'All' or mf == self.mean_fit:
if dirtype in list(self.high_level_means[high_level_type][high_level_name][mf].keys()):
mpar = deepcopy(
self.high_level_means[high_level_type][high_level_name][mf][dirtype])
if 'n' in mpar and mpar['n'] == 1:
mpar['calculation_type'] = "Fisher:"+mf
mpars.append(mpar)
elif mpar['calculation_type'] == 'Fisher by polarity':
for k in list(mpar.keys()):
if k == 'color' or k == 'calculation_type':
continue
mpar[k]['calculation_type'] += ':'+k+':'+mf
mpar[k]['color'] = mpar['color']
if 'K' not in mpar[k] and 'k' in mpar[k]:
mpar[k]['K'] = mpar[k]['k']
if 'R' not in mpar[k] and 'r' in mpar[k]:
mpar[k]['R'] = mpar[k]['r']
if 'n_lines' not in mpar[k] and 'n' in mpar[k]:
mpar[k]['n_lines'] = mpar[k]['n']
mpars.append(mpar[k])
else:
mpar['calculation_type'] += ":"+mf
mpars.append(mpar)
self.switch_stats_button.SetRange(0, len(mpars)-1)
self.show_high_levels_pars(mpars)
if self.ie_open:
self.ie.switch_stats_button.SetRange(0, len(mpars)-1) | updates high level statistics in bottom left of GUI. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6251-L6302 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_bounds_boxes | def update_bounds_boxes(self):
"""
updates bounds boxes with bounds of current specimen and fit
"""
if self.s not in list(self.Data.keys()):
self.select_specimen(list(self.Data.keys())[0])
self.T_list = self.Data[self.s]['zijdblock_steps']
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmax_box.SetItems(self.T_list)
if type(self.current_fit.tmin) == str and type(self.current_fit.tmax) == str:
self.tmin_box.SetStringSelection(self.current_fit.tmin)
self.tmax_box.SetStringSelection(self.current_fit.tmax)
if self.ie_open:
self.ie.update_bounds_boxes(self.T_list) | python | def update_bounds_boxes(self):
"""
updates bounds boxes with bounds of current specimen and fit
"""
if self.s not in list(self.Data.keys()):
self.select_specimen(list(self.Data.keys())[0])
self.T_list = self.Data[self.s]['zijdblock_steps']
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmax_box.SetItems(self.T_list)
if type(self.current_fit.tmin) == str and type(self.current_fit.tmax) == str:
self.tmin_box.SetStringSelection(self.current_fit.tmin)
self.tmax_box.SetStringSelection(self.current_fit.tmax)
if self.ie_open:
self.ie.update_bounds_boxes(self.T_list) | updates bounds boxes with bounds of current specimen and fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6304-L6318 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_PCA_box | def update_PCA_box(self):
"""
updates PCA box with current fit's PCA type
"""
if self.s in list(self.pmag_results_data['specimens'].keys()):
if self.current_fit:
tmin = self.current_fit.tmin
tmax = self.current_fit.tmax
calculation_type = self.current_fit.PCA_type
else:
calculation_type = self.PCA_type_box.GetValue()
PCA_type = "None"
# update calculation type windows
if calculation_type == "DE-BFL":
PCA_type = "line"
elif calculation_type == "DE-BFL-A":
PCA_type = "line-anchored"
elif calculation_type == "DE-BFL-O":
PCA_type = "line-with-origin"
elif calculation_type == "DE-FM":
PCA_type = "Fisher"
elif calculation_type == "DE-BFP":
PCA_type = "plane"
else:
print("no PCA type found setting to line")
PCA_type = "line"
self.PCA_type_box.SetStringSelection(PCA_type) | python | def update_PCA_box(self):
"""
updates PCA box with current fit's PCA type
"""
if self.s in list(self.pmag_results_data['specimens'].keys()):
if self.current_fit:
tmin = self.current_fit.tmin
tmax = self.current_fit.tmax
calculation_type = self.current_fit.PCA_type
else:
calculation_type = self.PCA_type_box.GetValue()
PCA_type = "None"
# update calculation type windows
if calculation_type == "DE-BFL":
PCA_type = "line"
elif calculation_type == "DE-BFL-A":
PCA_type = "line-anchored"
elif calculation_type == "DE-BFL-O":
PCA_type = "line-with-origin"
elif calculation_type == "DE-FM":
PCA_type = "Fisher"
elif calculation_type == "DE-BFP":
PCA_type = "plane"
else:
print("no PCA type found setting to line")
PCA_type = "line"
self.PCA_type_box.SetStringSelection(PCA_type) | updates PCA box with current fit's PCA type | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6320-L6348 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_fit_boxes | def update_fit_boxes(self, new_fit=False):
"""
alters fit_box and mean_fit_box lists to match with changes in
specimen or new/removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection, tmin_box selection, tmax_box selection,
mean_fit_box selection, current_fit
"""
# update the fit box
self.update_fit_box(new_fit)
# select new fit
self.on_select_fit(None)
# update the high level fits box
self.update_mean_fit_box() | python | def update_fit_boxes(self, new_fit=False):
"""
alters fit_box and mean_fit_box lists to match with changes in
specimen or new/removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection, tmin_box selection, tmax_box selection,
mean_fit_box selection, current_fit
"""
# update the fit box
self.update_fit_box(new_fit)
# select new fit
self.on_select_fit(None)
# update the high level fits box
self.update_mean_fit_box() | alters fit_box and mean_fit_box lists to match with changes in
specimen or new/removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection, tmin_box selection, tmax_box selection,
mean_fit_box selection, current_fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6350-L6369 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_fit_box | def update_fit_box(self, new_fit=False):
"""
alters fit_box lists to match with changes in specimen or new/
removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection and choices, current_fit
"""
# get new fit data
if self.s in list(self.pmag_results_data['specimens'].keys()):
self.fit_list = list(
[x.name for x in self.pmag_results_data['specimens'][self.s]])
else:
self.fit_list = []
# find new index to set fit_box to
if not self.fit_list:
new_index = 'None'
elif new_fit:
new_index = len(self.fit_list) - 1
else:
if self.fit_box.GetValue() in self.fit_list:
new_index = self.fit_list.index(self.fit_box.GetValue())
else:
new_index = 'None'
# clear old box
self.fit_box.Clear()
# update fit box
self.fit_box.SetItems(self.fit_list)
fit_index = None
# select defaults
if new_index == 'None':
self.fit_box.SetStringSelection('None')
else:
self.fit_box.SetSelection(new_index) | python | def update_fit_box(self, new_fit=False):
"""
alters fit_box lists to match with changes in specimen or new/
removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection and choices, current_fit
"""
# get new fit data
if self.s in list(self.pmag_results_data['specimens'].keys()):
self.fit_list = list(
[x.name for x in self.pmag_results_data['specimens'][self.s]])
else:
self.fit_list = []
# find new index to set fit_box to
if not self.fit_list:
new_index = 'None'
elif new_fit:
new_index = len(self.fit_list) - 1
else:
if self.fit_box.GetValue() in self.fit_list:
new_index = self.fit_list.index(self.fit_box.GetValue())
else:
new_index = 'None'
# clear old box
self.fit_box.Clear()
# update fit box
self.fit_box.SetItems(self.fit_list)
fit_index = None
# select defaults
if new_index == 'None':
self.fit_box.SetStringSelection('None')
else:
self.fit_box.SetSelection(new_index) | alters fit_box lists to match with changes in specimen or new/
removed interpretations
Parameters
----------
new_fit : boolean representing if there is a new fit
Alters
------
fit_box selection and choices, current_fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6371-L6409 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.update_mean_fit_box | def update_mean_fit_box(self):
"""
alters mean_fit_box list to match with changes in specimen or new/
removed interpretations
Alters
------
mean_fit_box selection and choices, mean_types_box string selection
"""
self.mean_fit_box.Clear()
# update high level mean fit box
fit_index = None
if self.mean_fit in self.all_fits_list:
fit_index = self.all_fits_list.index(self.mean_fit)
self.all_fits_list = []
for specimen in self.specimens:
if specimen in self.pmag_results_data['specimens']:
for name in [x.name for x in self.pmag_results_data['specimens'][specimen]]:
if name not in self.all_fits_list:
self.all_fits_list.append(name)
self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
# select defaults
if not isinstance(fit_index, type(None)):
self.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.mean_fit_box.SetValue('All')
else:
self.mean_fit_box.SetValue('None')
self.mean_type_box.SetValue('None')
self.clear_high_level_pars()
self.update_toggleable_means_menu()
if self.ie_open:
self.ie.mean_fit_box.Clear()
self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
if fit_index:
self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.ie.mean_fit_box.SetValue('All')
else:
self.ie.mean_fit_box.SetValue('None')
self.ie.mean_type_box.SetValue('None') | python | def update_mean_fit_box(self):
"""
alters mean_fit_box list to match with changes in specimen or new/
removed interpretations
Alters
------
mean_fit_box selection and choices, mean_types_box string selection
"""
self.mean_fit_box.Clear()
# update high level mean fit box
fit_index = None
if self.mean_fit in self.all_fits_list:
fit_index = self.all_fits_list.index(self.mean_fit)
self.all_fits_list = []
for specimen in self.specimens:
if specimen in self.pmag_results_data['specimens']:
for name in [x.name for x in self.pmag_results_data['specimens'][specimen]]:
if name not in self.all_fits_list:
self.all_fits_list.append(name)
self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
# select defaults
if not isinstance(fit_index, type(None)):
self.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.mean_fit_box.SetValue('All')
else:
self.mean_fit_box.SetValue('None')
self.mean_type_box.SetValue('None')
self.clear_high_level_pars()
self.update_toggleable_means_menu()
if self.ie_open:
self.ie.mean_fit_box.Clear()
self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
if fit_index:
self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.ie.mean_fit_box.SetValue('All')
else:
self.ie.mean_fit_box.SetValue('None')
self.ie.mean_type_box.SetValue('None') | alters mean_fit_box list to match with changes in specimen or new/
removed interpretations
Alters
------
mean_fit_box selection and choices, mean_types_box string selection | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6411-L6451 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.show_high_levels_pars | def show_high_levels_pars(self, mpars):
"""
shows in the high level mean display area in the bottom left of the
GUI the data in mpars.
"""
FONT_WEIGHT = self.GUI_RESOLUTION+(self.GUI_RESOLUTION-1)*5
font2 = wx.Font(12+min(1, FONT_WEIGHT), wx.SWISS,
wx.NORMAL, wx.NORMAL, False, self.font_type)
if self.mean_type_box.GetValue() != "None" and self.mean_fit_box.GetValue() != "None" and mpars:
if isinstance(mpars, list):
i = self.switch_stats_button.GetValue()
if i >= len(mpars):
print(("Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting." % (
i, str(mpars))))
return
self.show_high_levels_pars(mpars[i])
elif mpars["calculation_type"].startswith('Fisher'):
if "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(":")
COMMAND = """self.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
if self.ie_open:
ie = self.ie
if "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(":")
COMMAND = """ie.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
elif mpars["calculation_type"].startswith('Fisher by polarity'):
i = self.switch_stats_button.GetValue()
keys = list(mpars.keys())
keys.remove('calculation_type')
if 'color' in keys:
keys.remove('color')
keys.sort()
name = keys[i % len(keys)]
mpars = mpars[name]
if type(mpars) != dict:
print(
("error in showing high level mean, reseaved %s" % str(mpars)))
return
if mpars["calculation_type"] == 'Fisher' and "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']:
val, ind = val.split(":")
if val == 'mean_type':
COMMAND = """self.%s_window.SetValue('%s')""" % (
val, mpars[ind] + ":" + name)
else:
COMMAND = """self.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
if self.ie_open:
ie = self.ie
if mpars["calculation_type"] == 'Fisher' and "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']:
val, ind = val.split(":")
if val == 'mean_type':
COMMAND = """ie.%s_window.SetValue('%s')""" % (
val, mpars[ind] + ":" + name)
else:
COMMAND = """ie.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
self.set_mean_stats_color() | python | def show_high_levels_pars(self, mpars):
"""
shows in the high level mean display area in the bottom left of the
GUI the data in mpars.
"""
FONT_WEIGHT = self.GUI_RESOLUTION+(self.GUI_RESOLUTION-1)*5
font2 = wx.Font(12+min(1, FONT_WEIGHT), wx.SWISS,
wx.NORMAL, wx.NORMAL, False, self.font_type)
if self.mean_type_box.GetValue() != "None" and self.mean_fit_box.GetValue() != "None" and mpars:
if isinstance(mpars, list):
i = self.switch_stats_button.GetValue()
if i >= len(mpars):
print(("Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting." % (
i, str(mpars))))
return
self.show_high_levels_pars(mpars[i])
elif mpars["calculation_type"].startswith('Fisher'):
if "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(":")
COMMAND = """self.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
if self.ie_open:
ie = self.ie
if "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(":")
COMMAND = """ie.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
elif mpars["calculation_type"].startswith('Fisher by polarity'):
i = self.switch_stats_button.GetValue()
keys = list(mpars.keys())
keys.remove('calculation_type')
if 'color' in keys:
keys.remove('color')
keys.sort()
name = keys[i % len(keys)]
mpars = mpars[name]
if type(mpars) != dict:
print(
("error in showing high level mean, reseaved %s" % str(mpars)))
return
if mpars["calculation_type"] == 'Fisher' and "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']:
val, ind = val.split(":")
if val == 'mean_type':
COMMAND = """self.%s_window.SetValue('%s')""" % (
val, mpars[ind] + ":" + name)
else:
COMMAND = """self.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
if self.ie_open:
ie = self.ie
if mpars["calculation_type"] == 'Fisher' and "alpha95" in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']:
val, ind = val.split(":")
if val == 'mean_type':
COMMAND = """ie.%s_window.SetValue('%s')""" % (
val, mpars[ind] + ":" + name)
else:
COMMAND = """ie.%s_window.SetValue(str(mpars['%s']))""" % (
val, ind)
exec(COMMAND)
self.set_mean_stats_color() | shows in the high level mean display area in the bottom left of the
GUI the data in mpars. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6466-L6538 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.clear_boxes | def clear_boxes(self):
"""
Clear all boxes
"""
self.tmin_box.Clear()
self.tmin_box.SetStringSelection("")
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmin_box.SetSelection(-1)
self.tmax_box.Clear()
self.tmax_box.SetStringSelection("")
if self.current_fit:
self.tmax_box.SetItems(self.T_list)
self.tmax_box.SetSelection(-1)
self.fit_box.Clear()
self.fit_box.SetStringSelection("")
if self.s in self.pmag_results_data['specimens'] and self.pmag_results_data['specimens'][self.s]:
self.fit_box.SetItems(
list([x.name for x in self.pmag_results_data['specimens'][self.s]]))
for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:
COMMAND = "self.s%s_window.SetValue('')" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetBackgroundColour(wx.Colour('grey'))" % parameter
exec(COMMAND) | python | def clear_boxes(self):
"""
Clear all boxes
"""
self.tmin_box.Clear()
self.tmin_box.SetStringSelection("")
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmin_box.SetSelection(-1)
self.tmax_box.Clear()
self.tmax_box.SetStringSelection("")
if self.current_fit:
self.tmax_box.SetItems(self.T_list)
self.tmax_box.SetSelection(-1)
self.fit_box.Clear()
self.fit_box.SetStringSelection("")
if self.s in self.pmag_results_data['specimens'] and self.pmag_results_data['specimens'][self.s]:
self.fit_box.SetItems(
list([x.name for x in self.pmag_results_data['specimens'][self.s]]))
for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:
COMMAND = "self.s%s_window.SetValue('')" % parameter
exec(COMMAND)
COMMAND = "self.s%s_window.SetBackgroundColour(wx.Colour('grey'))" % parameter
exec(COMMAND) | Clear all boxes | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6555-L6581 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.clear_high_level_pars | def clear_high_level_pars(self):
"""
clears all high level pars display boxes
"""
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = """self.%s_window.SetValue("")""" % (val)
exec(COMMAND)
if self.ie_open:
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = """self.ie.%s_window.SetValue("")""" % (val)
exec(COMMAND)
self.set_mean_stats_color() | python | def clear_high_level_pars(self):
"""
clears all high level pars display boxes
"""
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = """self.%s_window.SetValue("")""" % (val)
exec(COMMAND)
if self.ie_open:
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']:
COMMAND = """self.ie.%s_window.SetValue("")""" % (val)
exec(COMMAND)
self.set_mean_stats_color() | clears all high level pars display boxes | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6583-L6594 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_menu_make_MagIC_results_tables | def on_menu_make_MagIC_results_tables(self, event):
"""
Creates or Updates Specimens or Pmag Specimens MagIC table,
overwrites .redo file for safety, and starts User dialog to
generate other MagIC tables for later contribution to the MagIC
database. The following describes the steps used in the 2.5 data
format to do this:
1. read pmag_specimens.txt, pmag_samples.txt, pmag_sites.txt, and
sort out lines with LP-DIR in magic_codes
2. saves a clean pmag_*.txt files without LP-DIR stuff as
pmag_*.txt.tmp
3. write a new file pmag_specimens.txt
4. merge pmag_specimens.txt and pmag_specimens.txt.tmp using
combine_magic.py
5. delete pmag_specimens.txt.tmp
6 (optional) extracting new pag_*.txt files (except
pmag_specimens.txt) using specimens_results_magic.py
7: if #6: merge pmag_*.txt and pmag_*.txt.tmp using combine_magic.py
if not #6: save pmag_*.txt.tmp as pmag_*.txt
"""
# ---------------------------------------
# save pmag_*.txt.tmp without directional data
# ---------------------------------------
self.on_menu_save_interpretation(None)
# ---------------------------------------
# dialog box to choose coordinate systems for pmag_specimens.txt
# ---------------------------------------
dia = demag_dialogs.magic_pmag_specimens_table_dialog(None)
CoorTypes = []
if self.test_mode:
CoorTypes = ['DA-DIR']
elif dia.ShowModal() == wx.ID_OK: # Until the user clicks OK, show the message
if dia.cb_spec_coor.GetValue() == True:
CoorTypes.append('DA-DIR')
if dia.cb_geo_coor.GetValue() == True:
CoorTypes.append('DA-DIR-GEO')
if dia.cb_tilt_coor.GetValue() == True:
CoorTypes.append('DA-DIR-TILT')
else:
self.user_warning("MagIC tables not saved")
print("MagIC tables not saved")
return
# ------------------------------
self.PmagRecsOld = {}
if self.data_model == 3.0:
FILES = []
else:
FILES = ['pmag_specimens.txt']
for FILE in FILES:
self.PmagRecsOld[FILE] = []
meas_data = []
try:
meas_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
print(("-I- Read old magic file %s\n" %
os.path.join(self.WD, FILE)))
# if FILE !='pmag_specimens.txt':
os.remove(os.path.join(self.WD, FILE))
print(("-I- Delete old magic file %s\n" %
os.path.join(self.WD, FILE)))
except (OSError, IOError) as e:
continue
for rec in meas_data:
if "magic_method_codes" in list(rec.keys()):
if "LP-DIR" not in rec['magic_method_codes'] and "DE-" not in rec['magic_method_codes']:
self.PmagRecsOld[FILE].append(rec)
# ---------------------------------------
# write a new pmag_specimens.txt
# ---------------------------------------
specimens_list = list(self.pmag_results_data['specimens'].keys())
specimens_list.sort()
PmagSpecs = []
for specimen in specimens_list:
for dirtype in CoorTypes:
i = 0
for fit in self.pmag_results_data['specimens'][specimen]:
mpars = fit.get(dirtype)
if not mpars:
mpars = self.get_PCA_parameters(
specimen, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type)
if not mpars or 'specimen_dec' not in list(mpars.keys()):
self.user_warning("Could not calculate interpretation for specimen %s and fit %s in coordinate system %s while exporting pmag tables, skipping" % (
specimen, fit.name, dirtype))
continue
PmagSpecRec = {}
PmagSpecRec["magic_software_packages"] = pmag.get_version(
) + ': demag_gui'
PmagSpecRec["er_specimen_name"] = specimen
PmagSpecRec["er_sample_name"] = self.Data_hierarchy['sample_of_specimen'][specimen]
PmagSpecRec["er_site_name"] = self.Data_hierarchy['site_of_specimen'][specimen]
PmagSpecRec["er_location_name"] = self.Data_hierarchy['location_of_specimen'][specimen]
if specimen in list(self.Data_hierarchy['expedition_name_of_specimen'].keys()):
PmagSpecRec["er_expedition_name"] = self.Data_hierarchy['expedition_name_of_specimen'][specimen]
PmagSpecRec["er_citation_names"] = "This study"
if "magic_experiment_name" in self.Data[specimen]:
PmagSpecRec["magic_experiment_names"] = self.Data[specimen]["magic_experiment_name"]
if 'magic_instrument_codes' in list(self.Data[specimen].keys()):
PmagSpecRec["magic_instrument_codes"] = self.Data[specimen]['magic_instrument_codes']
PmagSpecRec['specimen_correction'] = 'u'
PmagSpecRec['specimen_direction_type'] = mpars["specimen_direction_type"]
PmagSpecRec['specimen_dec'] = "%.1f" % mpars["specimen_dec"]
PmagSpecRec['specimen_inc'] = "%.1f" % mpars["specimen_inc"]
PmagSpecRec['specimen_flag'] = "g"
if fit in self.bad_fits:
PmagSpecRec['specimen_flag'] = "b"
if "C" in fit.tmin or "C" in fit.tmax:
PmagSpecRec['measurement_step_unit'] = "K"
else:
PmagSpecRec['measurement_step_unit'] = "T"
if "C" in fit.tmin:
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
elif "mT" in fit.tmin:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
else:
if PmagSpecRec['measurement_step_unit'] == "K":
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
else:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
if "C" in fit.tmax:
PmagSpecRec['measurement_step_max'] = "%.0f" % (
mpars["measurement_step_max"]+273.)
elif "mT" in fit.tmax:
PmagSpecRec['measurement_step_max'] = "%8.3e" % (
mpars["measurement_step_max"]*1e-3)
else:
if PmagSpecRec['measurement_step_unit'] == "K":
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
else:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
PmagSpecRec['specimen_n'] = "%.0f" % mpars["specimen_n"]
calculation_type = mpars['calculation_type']
PmagSpecRec["magic_method_codes"] = self.Data[specimen]['magic_method_codes'] + \
":"+calculation_type+":"+dirtype
PmagSpecRec["specimen_comp_n"] = str(
len(self.pmag_results_data["specimens"][specimen]))
PmagSpecRec["specimen_comp_name"] = fit.name
if fit in self.bad_fits:
PmagSpecRec["specimen_flag"] = "b"
else:
PmagSpecRec["specimen_flag"] = "g"
if calculation_type in ["DE-BFL", "DE-BFL-A", "DE-BFL-O"]:
PmagSpecRec['specimen_direction_type'] = 'l'
PmagSpecRec['specimen_mad'] = "%.1f" % float(
mpars["specimen_mad"])
PmagSpecRec['specimen_dang'] = "%.1f" % float(
mpars['specimen_dang'])
PmagSpecRec['specimen_alpha95'] = ""
elif calculation_type in ["DE-BFP"]:
PmagSpecRec['specimen_direction_type'] = 'p'
PmagSpecRec['specimen_mad'] = "%.1f" % float(
mpars['specimen_mad'])
PmagSpecRec['specimen_dang'] = ""
PmagSpecRec['specimen_alpha95'] = ""
if self.data_model == 3.0:
if 'bfv_dec' not in list(mpars.keys()) or \
'bfv_inc' not in list(mpars.keys()):
self.calculate_best_fit_vectors(
high_level_type="sites", high_level_name=PmagSpecRec["er_site_name"], dirtype=dirtype)
mpars = fit.get(dirtype)
try:
PmagSpecRec['dir_bfv_dec'] = "%.1f" % mpars['bfv_dec']
PmagSpecRec['dir_bfv_inc'] = "%.1f" % mpars['bfv_inc']
except KeyError:
print("Error calculating BFV during export of interpretations for %s, %s, %s" % (
fit.name, specimen, dirtype))
elif calculation_type in ["DE-FM"]:
PmagSpecRec['specimen_direction_type'] = 'l'
PmagSpecRec['specimen_mad'] = ""
PmagSpecRec['specimen_dang'] = ""
PmagSpecRec['specimen_alpha95'] = "%.1f" % float(
mpars['specimen_alpha95'])
if dirtype == 'DA-DIR-TILT':
PmagSpecRec['specimen_tilt_correction'] = "100"
elif dirtype == 'DA-DIR-GEO':
PmagSpecRec['specimen_tilt_correction'] = "0"
else:
PmagSpecRec['specimen_tilt_correction'] = "-1"
PmagSpecs.append(PmagSpecRec)
i += 1
# add the 'old' lines with no "LP-DIR" in
if 'pmag_specimens.txt' in list(self.PmagRecsOld.keys()):
for rec in self.PmagRecsOld['pmag_specimens.txt']:
PmagSpecs.append(rec)
PmagSpecs_fixed = self.merge_pmag_recs(PmagSpecs)
if len(PmagSpecs_fixed) == 0:
self.user_warning(
"No data to save to MagIC tables please create some interpretations before saving")
print("No data to save, MagIC tables not written")
return
if self.data_model == 3.0:
# translate demag_gui output to 3.0 DataFrame
ndf2_5 = DataFrame(PmagSpecs_fixed)
if 'specimen_direction_type' in ndf2_5.columns:
# doesn't exist in new model
del ndf2_5['specimen_direction_type']
ndf3_0 = ndf2_5.rename(columns=map_magic.spec_magic2_2_magic3_map)
if 'specimen' in ndf3_0.columns:
ndf3_0 = ndf3_0.set_index("specimen")
# replace the removed specimen column
ndf3_0['specimen'] = ndf3_0.index
# prefer keeping analyst_names in txt
if 'analyst_names' in ndf3_0:
del ndf3_0['analyst_names']
# get current 3.0 DataFrame from contribution object
if 'specimens' not in self.con.tables:
cols = ndf3_0.columns
self.con.add_empty_magic_table('specimens', col_names=cols)
spmdf = self.con.tables['specimens']
# remove translation collisions or deprecated terms
for dc in ["dir_comp_name", "magic_method_codes"]:
if dc in spmdf.df.columns:
del spmdf.df[dc]
# merge previous df with new interpretations DataFrame
# (do not include non-directional data in the merge or else it
# will be overwritten)
# fix index names
spmdf.df.index.name = "specimen_name"
ndf3_0.index.name = "specimen_name"
# pull out directional/non-directional data
if 'method_codes' not in spmdf.df:
spmdf.df['method_codes'] = ''
directional = spmdf.df['method_codes'].str.contains('LP-DIR').astype(bool)
non_directional_df = spmdf.df[~directional]
spmdf.df = spmdf.df[directional]
# merge new interpretations with old specimen information
directional_df = spmdf.merge_dfs(ndf3_0)
# add any missing columns to non_directional_df
for col in directional_df.columns:
if col not in non_directional_df.columns:
non_directional_df[col] = ""
# make sure columns are ordered the same so that we can concatenate
non_directional_df.sort_index(axis='columns', inplace=True)
directional_df.sort_index(axis='columns', inplace=True)
# put directional/non-directional data back together
merged = pd.concat([non_directional_df, directional_df])
merged.sort_index(inplace=True)
spmdf.df = merged
# write to disk
spmdf.write_magic_file(dir_path=self.WD)
TEXT = "specimens interpretations are saved in specimens.txt.\nPress OK to save to samples/sites/locations/ages tables."
self.dlg = wx.MessageDialog(
self, caption="Other Tables", message=TEXT, style=wx.OK | wx.CANCEL)
result = self.show_dlg(self.dlg)
if result == wx.ID_OK:
self.dlg.Destroy()
else:
self.dlg.Destroy()
return
else:
pmag.magic_write(os.path.join(
self.WD, "pmag_specimens.txt"), PmagSpecs_fixed, 'pmag_specimens')
print(("specimen data stored in %s\n" %
os.path.join(self.WD, "pmag_specimens.txt")))
TEXT = "specimens interpretations are saved in pmag_specimens.txt.\nPress OK for pmag_samples/pmag_sites/pmag_results tables."
dlg = wx.MessageDialog(
self, caption="Other Pmag Tables", message=TEXT, style=wx.OK | wx.CANCEL)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
else:
dlg.Destroy()
return
# --------------------------------
dia = demag_dialogs.magic_pmag_tables_dialog(
None, self.WD, self.Data, self.Data_info)
if self.show_dlg(dia) == wx.ID_OK: # Until the user clicks OK, show the message
self.On_close_MagIC_dialog(dia) | python | def on_menu_make_MagIC_results_tables(self, event):
"""
Creates or Updates Specimens or Pmag Specimens MagIC table,
overwrites .redo file for safety, and starts User dialog to
generate other MagIC tables for later contribution to the MagIC
database. The following describes the steps used in the 2.5 data
format to do this:
1. read pmag_specimens.txt, pmag_samples.txt, pmag_sites.txt, and
sort out lines with LP-DIR in magic_codes
2. saves a clean pmag_*.txt files without LP-DIR stuff as
pmag_*.txt.tmp
3. write a new file pmag_specimens.txt
4. merge pmag_specimens.txt and pmag_specimens.txt.tmp using
combine_magic.py
5. delete pmag_specimens.txt.tmp
6 (optional) extracting new pag_*.txt files (except
pmag_specimens.txt) using specimens_results_magic.py
7: if #6: merge pmag_*.txt and pmag_*.txt.tmp using combine_magic.py
if not #6: save pmag_*.txt.tmp as pmag_*.txt
"""
# ---------------------------------------
# save pmag_*.txt.tmp without directional data
# ---------------------------------------
self.on_menu_save_interpretation(None)
# ---------------------------------------
# dialog box to choose coordinate systems for pmag_specimens.txt
# ---------------------------------------
dia = demag_dialogs.magic_pmag_specimens_table_dialog(None)
CoorTypes = []
if self.test_mode:
CoorTypes = ['DA-DIR']
elif dia.ShowModal() == wx.ID_OK: # Until the user clicks OK, show the message
if dia.cb_spec_coor.GetValue() == True:
CoorTypes.append('DA-DIR')
if dia.cb_geo_coor.GetValue() == True:
CoorTypes.append('DA-DIR-GEO')
if dia.cb_tilt_coor.GetValue() == True:
CoorTypes.append('DA-DIR-TILT')
else:
self.user_warning("MagIC tables not saved")
print("MagIC tables not saved")
return
# ------------------------------
self.PmagRecsOld = {}
if self.data_model == 3.0:
FILES = []
else:
FILES = ['pmag_specimens.txt']
for FILE in FILES:
self.PmagRecsOld[FILE] = []
meas_data = []
try:
meas_data, file_type = pmag.magic_read(
os.path.join(self.WD, FILE))
print(("-I- Read old magic file %s\n" %
os.path.join(self.WD, FILE)))
# if FILE !='pmag_specimens.txt':
os.remove(os.path.join(self.WD, FILE))
print(("-I- Delete old magic file %s\n" %
os.path.join(self.WD, FILE)))
except (OSError, IOError) as e:
continue
for rec in meas_data:
if "magic_method_codes" in list(rec.keys()):
if "LP-DIR" not in rec['magic_method_codes'] and "DE-" not in rec['magic_method_codes']:
self.PmagRecsOld[FILE].append(rec)
# ---------------------------------------
# write a new pmag_specimens.txt
# ---------------------------------------
specimens_list = list(self.pmag_results_data['specimens'].keys())
specimens_list.sort()
PmagSpecs = []
for specimen in specimens_list:
for dirtype in CoorTypes:
i = 0
for fit in self.pmag_results_data['specimens'][specimen]:
mpars = fit.get(dirtype)
if not mpars:
mpars = self.get_PCA_parameters(
specimen, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type)
if not mpars or 'specimen_dec' not in list(mpars.keys()):
self.user_warning("Could not calculate interpretation for specimen %s and fit %s in coordinate system %s while exporting pmag tables, skipping" % (
specimen, fit.name, dirtype))
continue
PmagSpecRec = {}
PmagSpecRec["magic_software_packages"] = pmag.get_version(
) + ': demag_gui'
PmagSpecRec["er_specimen_name"] = specimen
PmagSpecRec["er_sample_name"] = self.Data_hierarchy['sample_of_specimen'][specimen]
PmagSpecRec["er_site_name"] = self.Data_hierarchy['site_of_specimen'][specimen]
PmagSpecRec["er_location_name"] = self.Data_hierarchy['location_of_specimen'][specimen]
if specimen in list(self.Data_hierarchy['expedition_name_of_specimen'].keys()):
PmagSpecRec["er_expedition_name"] = self.Data_hierarchy['expedition_name_of_specimen'][specimen]
PmagSpecRec["er_citation_names"] = "This study"
if "magic_experiment_name" in self.Data[specimen]:
PmagSpecRec["magic_experiment_names"] = self.Data[specimen]["magic_experiment_name"]
if 'magic_instrument_codes' in list(self.Data[specimen].keys()):
PmagSpecRec["magic_instrument_codes"] = self.Data[specimen]['magic_instrument_codes']
PmagSpecRec['specimen_correction'] = 'u'
PmagSpecRec['specimen_direction_type'] = mpars["specimen_direction_type"]
PmagSpecRec['specimen_dec'] = "%.1f" % mpars["specimen_dec"]
PmagSpecRec['specimen_inc'] = "%.1f" % mpars["specimen_inc"]
PmagSpecRec['specimen_flag'] = "g"
if fit in self.bad_fits:
PmagSpecRec['specimen_flag'] = "b"
if "C" in fit.tmin or "C" in fit.tmax:
PmagSpecRec['measurement_step_unit'] = "K"
else:
PmagSpecRec['measurement_step_unit'] = "T"
if "C" in fit.tmin:
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
elif "mT" in fit.tmin:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
else:
if PmagSpecRec['measurement_step_unit'] == "K":
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
else:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
if "C" in fit.tmax:
PmagSpecRec['measurement_step_max'] = "%.0f" % (
mpars["measurement_step_max"]+273.)
elif "mT" in fit.tmax:
PmagSpecRec['measurement_step_max'] = "%8.3e" % (
mpars["measurement_step_max"]*1e-3)
else:
if PmagSpecRec['measurement_step_unit'] == "K":
PmagSpecRec['measurement_step_min'] = "%.0f" % (
mpars["measurement_step_min"]+273.)
else:
PmagSpecRec['measurement_step_min'] = "%8.3e" % (
mpars["measurement_step_min"]*1e-3)
PmagSpecRec['specimen_n'] = "%.0f" % mpars["specimen_n"]
calculation_type = mpars['calculation_type']
PmagSpecRec["magic_method_codes"] = self.Data[specimen]['magic_method_codes'] + \
":"+calculation_type+":"+dirtype
PmagSpecRec["specimen_comp_n"] = str(
len(self.pmag_results_data["specimens"][specimen]))
PmagSpecRec["specimen_comp_name"] = fit.name
if fit in self.bad_fits:
PmagSpecRec["specimen_flag"] = "b"
else:
PmagSpecRec["specimen_flag"] = "g"
if calculation_type in ["DE-BFL", "DE-BFL-A", "DE-BFL-O"]:
PmagSpecRec['specimen_direction_type'] = 'l'
PmagSpecRec['specimen_mad'] = "%.1f" % float(
mpars["specimen_mad"])
PmagSpecRec['specimen_dang'] = "%.1f" % float(
mpars['specimen_dang'])
PmagSpecRec['specimen_alpha95'] = ""
elif calculation_type in ["DE-BFP"]:
PmagSpecRec['specimen_direction_type'] = 'p'
PmagSpecRec['specimen_mad'] = "%.1f" % float(
mpars['specimen_mad'])
PmagSpecRec['specimen_dang'] = ""
PmagSpecRec['specimen_alpha95'] = ""
if self.data_model == 3.0:
if 'bfv_dec' not in list(mpars.keys()) or \
'bfv_inc' not in list(mpars.keys()):
self.calculate_best_fit_vectors(
high_level_type="sites", high_level_name=PmagSpecRec["er_site_name"], dirtype=dirtype)
mpars = fit.get(dirtype)
try:
PmagSpecRec['dir_bfv_dec'] = "%.1f" % mpars['bfv_dec']
PmagSpecRec['dir_bfv_inc'] = "%.1f" % mpars['bfv_inc']
except KeyError:
print("Error calculating BFV during export of interpretations for %s, %s, %s" % (
fit.name, specimen, dirtype))
elif calculation_type in ["DE-FM"]:
PmagSpecRec['specimen_direction_type'] = 'l'
PmagSpecRec['specimen_mad'] = ""
PmagSpecRec['specimen_dang'] = ""
PmagSpecRec['specimen_alpha95'] = "%.1f" % float(
mpars['specimen_alpha95'])
if dirtype == 'DA-DIR-TILT':
PmagSpecRec['specimen_tilt_correction'] = "100"
elif dirtype == 'DA-DIR-GEO':
PmagSpecRec['specimen_tilt_correction'] = "0"
else:
PmagSpecRec['specimen_tilt_correction'] = "-1"
PmagSpecs.append(PmagSpecRec)
i += 1
# add the 'old' lines with no "LP-DIR" in
if 'pmag_specimens.txt' in list(self.PmagRecsOld.keys()):
for rec in self.PmagRecsOld['pmag_specimens.txt']:
PmagSpecs.append(rec)
PmagSpecs_fixed = self.merge_pmag_recs(PmagSpecs)
if len(PmagSpecs_fixed) == 0:
self.user_warning(
"No data to save to MagIC tables please create some interpretations before saving")
print("No data to save, MagIC tables not written")
return
if self.data_model == 3.0:
# translate demag_gui output to 3.0 DataFrame
ndf2_5 = DataFrame(PmagSpecs_fixed)
if 'specimen_direction_type' in ndf2_5.columns:
# doesn't exist in new model
del ndf2_5['specimen_direction_type']
ndf3_0 = ndf2_5.rename(columns=map_magic.spec_magic2_2_magic3_map)
if 'specimen' in ndf3_0.columns:
ndf3_0 = ndf3_0.set_index("specimen")
# replace the removed specimen column
ndf3_0['specimen'] = ndf3_0.index
# prefer keeping analyst_names in txt
if 'analyst_names' in ndf3_0:
del ndf3_0['analyst_names']
# get current 3.0 DataFrame from contribution object
if 'specimens' not in self.con.tables:
cols = ndf3_0.columns
self.con.add_empty_magic_table('specimens', col_names=cols)
spmdf = self.con.tables['specimens']
# remove translation collisions or deprecated terms
for dc in ["dir_comp_name", "magic_method_codes"]:
if dc in spmdf.df.columns:
del spmdf.df[dc]
# merge previous df with new interpretations DataFrame
# (do not include non-directional data in the merge or else it
# will be overwritten)
# fix index names
spmdf.df.index.name = "specimen_name"
ndf3_0.index.name = "specimen_name"
# pull out directional/non-directional data
if 'method_codes' not in spmdf.df:
spmdf.df['method_codes'] = ''
directional = spmdf.df['method_codes'].str.contains('LP-DIR').astype(bool)
non_directional_df = spmdf.df[~directional]
spmdf.df = spmdf.df[directional]
# merge new interpretations with old specimen information
directional_df = spmdf.merge_dfs(ndf3_0)
# add any missing columns to non_directional_df
for col in directional_df.columns:
if col not in non_directional_df.columns:
non_directional_df[col] = ""
# make sure columns are ordered the same so that we can concatenate
non_directional_df.sort_index(axis='columns', inplace=True)
directional_df.sort_index(axis='columns', inplace=True)
# put directional/non-directional data back together
merged = pd.concat([non_directional_df, directional_df])
merged.sort_index(inplace=True)
spmdf.df = merged
# write to disk
spmdf.write_magic_file(dir_path=self.WD)
TEXT = "specimens interpretations are saved in specimens.txt.\nPress OK to save to samples/sites/locations/ages tables."
self.dlg = wx.MessageDialog(
self, caption="Other Tables", message=TEXT, style=wx.OK | wx.CANCEL)
result = self.show_dlg(self.dlg)
if result == wx.ID_OK:
self.dlg.Destroy()
else:
self.dlg.Destroy()
return
else:
pmag.magic_write(os.path.join(
self.WD, "pmag_specimens.txt"), PmagSpecs_fixed, 'pmag_specimens')
print(("specimen data stored in %s\n" %
os.path.join(self.WD, "pmag_specimens.txt")))
TEXT = "specimens interpretations are saved in pmag_specimens.txt.\nPress OK for pmag_samples/pmag_sites/pmag_results tables."
dlg = wx.MessageDialog(
self, caption="Other Pmag Tables", message=TEXT, style=wx.OK | wx.CANCEL)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
else:
dlg.Destroy()
return
# --------------------------------
dia = demag_dialogs.magic_pmag_tables_dialog(
None, self.WD, self.Data, self.Data_info)
if self.show_dlg(dia) == wx.ID_OK: # Until the user clicks OK, show the message
self.On_close_MagIC_dialog(dia) | Creates or Updates Specimens or Pmag Specimens MagIC table,
overwrites .redo file for safety, and starts User dialog to
generate other MagIC tables for later contribution to the MagIC
database. The following describes the steps used in the 2.5 data
format to do this:
1. read pmag_specimens.txt, pmag_samples.txt, pmag_sites.txt, and
sort out lines with LP-DIR in magic_codes
2. saves a clean pmag_*.txt files without LP-DIR stuff as
pmag_*.txt.tmp
3. write a new file pmag_specimens.txt
4. merge pmag_specimens.txt and pmag_specimens.txt.tmp using
combine_magic.py
5. delete pmag_specimens.txt.tmp
6 (optional) extracting new pag_*.txt files (except
pmag_specimens.txt) using specimens_results_magic.py
7: if #6: merge pmag_*.txt and pmag_*.txt.tmp using combine_magic.py
if not #6: save pmag_*.txt.tmp as pmag_*.txt | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L6630-L6929 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_menu_import_meas_file | def on_menu_import_meas_file(self, event):
"""
Open measurement file, reset self.magic_file
and self.WD, and reset everything.
"""
# use new measurement file and corresponding WD
meas_file = self.choose_meas_file()
WD = os.path.split(meas_file)[0]
self.WD = WD
self.magic_file = meas_file
# reset backend with new files
self.reset_backend() | python | def on_menu_import_meas_file(self, event):
"""
Open measurement file, reset self.magic_file
and self.WD, and reset everything.
"""
# use new measurement file and corresponding WD
meas_file = self.choose_meas_file()
WD = os.path.split(meas_file)[0]
self.WD = WD
self.magic_file = meas_file
# reset backend with new files
self.reset_backend() | Open measurement file, reset self.magic_file
and self.WD, and reset everything. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7018-L7029 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_menu_criteria_file | def on_menu_criteria_file(self, event):
"""
read pmag_criteria.txt file
and open changecriteria dialog
"""
if self.data_model == 3:
default_file = "criteria.txt"
else:
default_file = "pmag_criteria.txt"
read_sucsess = False
dlg = wx.FileDialog(
self, message="choose pmag criteria file",
defaultDir=self.WD,
defaultFile=default_file,
style=wx.FD_OPEN | wx.FD_CHANGE_DIR
)
if self.show_dlg(dlg) == wx.ID_OK:
criteria_file = dlg.GetPath()
print(("-I- Read new criteria file: %s" % criteria_file))
# check if this is a valid pmag_criteria file
try:
mag_meas_data, file_type = pmag.magic_read(criteria_file)
except:
dlg = wx.MessageDialog(
self, caption="Error", message="not a valid pmag_criteria file", style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
dlg.Destroy()
return
# initialize criteria
self.acceptance_criteria = self.read_criteria_file(criteria_file)
read_sucsess = True
dlg.Destroy()
if read_sucsess:
self.on_menu_change_criteria(None) | python | def on_menu_criteria_file(self, event):
"""
read pmag_criteria.txt file
and open changecriteria dialog
"""
if self.data_model == 3:
default_file = "criteria.txt"
else:
default_file = "pmag_criteria.txt"
read_sucsess = False
dlg = wx.FileDialog(
self, message="choose pmag criteria file",
defaultDir=self.WD,
defaultFile=default_file,
style=wx.FD_OPEN | wx.FD_CHANGE_DIR
)
if self.show_dlg(dlg) == wx.ID_OK:
criteria_file = dlg.GetPath()
print(("-I- Read new criteria file: %s" % criteria_file))
# check if this is a valid pmag_criteria file
try:
mag_meas_data, file_type = pmag.magic_read(criteria_file)
except:
dlg = wx.MessageDialog(
self, caption="Error", message="not a valid pmag_criteria file", style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
dlg.Destroy()
return
# initialize criteria
self.acceptance_criteria = self.read_criteria_file(criteria_file)
read_sucsess = True
dlg.Destroy()
if read_sucsess:
self.on_menu_change_criteria(None) | read pmag_criteria.txt file
and open changecriteria dialog | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7281-L7319 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.right_click_zijderveld | def right_click_zijderveld(self, event):
"""
toggles between zoom and pan effects for the zijderveld on right
click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
zijderveld_setting, toolbar1 setting
"""
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.zijderveld_setting == "Zoom":
self.zijderveld_setting = "Pan"
try:
self.toolbar1.pan('off')
except TypeError:
pass
elif self.zijderveld_setting == "Pan":
self.zijderveld_setting = "Zoom"
try:
self.toolbar1.zoom()
except TypeError:
pass | python | def right_click_zijderveld(self, event):
"""
toggles between zoom and pan effects for the zijderveld on right
click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
zijderveld_setting, toolbar1 setting
"""
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.zijderveld_setting == "Zoom":
self.zijderveld_setting = "Pan"
try:
self.toolbar1.pan('off')
except TypeError:
pass
elif self.zijderveld_setting == "Pan":
self.zijderveld_setting = "Zoom"
try:
self.toolbar1.zoom()
except TypeError:
pass | toggles between zoom and pan effects for the zijderveld on right
click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
zijderveld_setting, toolbar1 setting | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7511-L7537 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_change_zijd_mouse_cursor | def on_change_zijd_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1*self.CART_rot[:, 1]) + list(-1*self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.zijderveld_setting == "Zoom":
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | python | def on_change_zijd_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1*self.CART_rot[:, 1]) + list(-1*self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.zijderveld_setting == "Zoom":
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7557-L7589 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_zijd_select | def on_zijd_select(self, event):
"""
Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not array(self.CART_rot_good).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(
self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0])
ydata_org = list(-1*self.CART_rot_good[:, 1]) + \
list(-1*self.CART_rot_good[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock_steps']
bad_count = self.Data[self.s]['measurement_flag'][:index].count(
'b')
if index > len(steps):
bad_count *= 2
if not self.current_fit:
self.on_btn_add_fit(event)
self.select_bounds_in_logger((index+bad_count) % len(steps)) | python | def on_zijd_select(self, event):
"""
Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not array(self.CART_rot_good).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(
self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0])
ydata_org = list(-1*self.CART_rot_good[:, 1]) + \
list(-1*self.CART_rot_good[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock_steps']
bad_count = self.Data[self.s]['measurement_flag'][:index].count(
'b')
if index > len(steps):
bad_count *= 2
if not self.current_fit:
self.on_btn_add_fit(event)
self.select_bounds_in_logger((index+bad_count) % len(steps)) | Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7591-L7635 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_zijd_mark | def on_zijd_mark(self, event):
"""
Get mouse position on double right click find the interpretation in
range of mouse
position then mark that interpretation bad or good
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1*self.CART_rot[:, 1]) + list(-1*self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock']
if self.Data[self.s]['measurement_flag'][index % len(steps)] == "g":
self.mark_meas_bad(index % len(steps))
else:
self.mark_meas_good(index % len(steps))
pmag.magic_write(os.path.join(
self.WD, "magic_measurements.txt"), self.mag_meas_data, "magic_measurements")
self.recalculate_current_specimen_interpreatations()
if self.ie_open:
self.ie.update_current_fit_data()
self.calculate_high_levels_data()
self.update_selection() | python | def on_zijd_mark(self, event):
"""
Get mouse position on double right click find the interpretation in
range of mouse
position then mark that interpretation bad or good
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1*self.CART_rot[:, 1]) + list(-1*self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock']
if self.Data[self.s]['measurement_flag'][index % len(steps)] == "g":
self.mark_meas_bad(index % len(steps))
else:
self.mark_meas_good(index % len(steps))
pmag.magic_write(os.path.join(
self.WD, "magic_measurements.txt"), self.mag_meas_data, "magic_measurements")
self.recalculate_current_specimen_interpreatations()
if self.ie_open:
self.ie.update_current_fit_data()
self.calculate_high_levels_data()
self.update_selection() | Get mouse position on double right click find the interpretation in
range of mouse
position then mark that interpretation bad or good
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7637-L7685 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.right_click_specimen_equalarea | def right_click_specimen_equalarea(self, event):
"""
toggles between zoom and pan effects for the specimen equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
specimen_EA_setting, toolbar2 setting
"""
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.specimen_EA_setting == "Zoom":
self.specimen_EA_setting = "Pan"
try:
self.toolbar2.pan('off')
except TypeError:
pass
elif self.specimen_EA_setting == "Pan":
self.specimen_EA_setting = "Zoom"
try:
self.toolbar2.zoom()
except TypeError:
pass | python | def right_click_specimen_equalarea(self, event):
"""
toggles between zoom and pan effects for the specimen equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
specimen_EA_setting, toolbar2 setting
"""
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.specimen_EA_setting == "Zoom":
self.specimen_EA_setting = "Pan"
try:
self.toolbar2.pan('off')
except TypeError:
pass
elif self.specimen_EA_setting == "Pan":
self.specimen_EA_setting = "Zoom"
try:
self.toolbar2.zoom()
except TypeError:
pass | toggles between zoom and pan effects for the specimen equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
specimen_EA_setting, toolbar2 setting | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7687-L7713 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_change_specimen_mouse_cursor | def on_change_specimen_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.specimen_EA_setting == "Zoom":
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | python | def on_change_specimen_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.specimen_EA_setting == "Zoom":
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7729-L7761 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_equalarea_specimen_select | def on_equalarea_specimen_select(self, event):
"""
Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
self.fit_box.SetSelection(index)
self.draw_figure(self.s, True)
self.on_select_fit(event) | python | def on_equalarea_specimen_select(self, event):
"""
Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit
"""
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
self.fit_box.SetSelection(index)
self.draw_figure(self.s, True)
self.on_select_fit(event) | Get mouse position on double click find the nearest interpretation
to the mouse
position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7763-L7800 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.right_click_high_equalarea | def right_click_high_equalarea(self, event):
"""
toggles between zoom and pan effects for the high equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
high_EA_setting, toolbar4 setting
"""
if event.LeftIsDown():
return
elif self.high_EA_setting == "Zoom":
self.high_EA_setting = "Pan"
try:
self.toolbar4.pan('off')
except TypeError:
pass
elif self.high_EA_setting == "Pan":
self.high_EA_setting = "Zoom"
try:
self.toolbar4.zoom()
except TypeError:
pass | python | def right_click_high_equalarea(self, event):
"""
toggles between zoom and pan effects for the high equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
high_EA_setting, toolbar4 setting
"""
if event.LeftIsDown():
return
elif self.high_EA_setting == "Zoom":
self.high_EA_setting = "Pan"
try:
self.toolbar4.pan('off')
except TypeError:
pass
elif self.high_EA_setting == "Pan":
self.high_EA_setting = "Zoom"
try:
self.toolbar4.zoom()
except TypeError:
pass | toggles between zoom and pan effects for the high equal area on
right click
Parameters
----------
event : the wx.MouseEvent that triggered the call of this function
Alters
------
high_EA_setting, toolbar4 setting | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7802-L7828 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_change_high_mouse_cursor | def on_change_high_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if self.ie_open and self.ie.show_box.GetValue() != "specimens":
return
pos = event.GetPosition()
width, height = self.canvas4.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = self.high_level_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.high_EA_setting == "Zoom":
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
if not self.high_EA_xdata or not self.high_EA_ydata:
return
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | python | def on_change_high_mouse_cursor(self, event):
"""
If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click
"""
if self.ie_open and self.ie.show_box.GetValue() != "specimens":
return
pos = event.GetPosition()
width, height = self.canvas4.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = self.high_level_eqarea.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
if self.high_EA_setting == "Zoom":
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
if not self.high_EA_xdata or not self.high_EA_ydata:
return
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip() | If mouse is over data point making it selectable change the shape of
the cursor
Parameters
----------
event : the wx Mouseevent for that click | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7844-L7878 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.on_equalarea_high_select | def on_equalarea_high_select(self, event, fig=None, canvas=None):
"""
Get mouse position on double click find the nearest interpretation
to the mouse position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit, s, mean_fit, fit_box selection, mean_fit_box selection,
specimens_box selection, tmin_box selection, tmax_box selection
"""
if self.ie_open and self.ie.show_box.GetValue() != "specimens":
return
if not self.high_EA_xdata or not self.high_EA_ydata:
return
if fig == None:
fig = self.high_level_eqarea
if canvas == None:
canvas = self.canvas4
pos = event.GetPosition()
width, height = canvas.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = fig.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
disp_fit_name = self.mean_fit_box.GetValue()
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type]
new_fit_index = 0
for i, specimen in enumerate(elements_list):
if disp_fit_name == "All" and \
specimen in self.pmag_results_data[elements_type]:
l = 0
for fit in self.pmag_results_data[elements_type][specimen]:
l += 1
else:
try:
disp_fit_index = map(
lambda x: x.name, self.pmag_results_data[elements_type][specimen]).index(disp_fit_name)
if self.pmag_results_data[elements_type][specimen][disp_fit_index] in self.bad_fits:
l = 0
else:
l = 1
except IndexError:
l = 0
except KeyError:
l = 0
except ValueError:
l = 0
if index < l:
self.specimens_box.SetStringSelection(specimen)
self.select_specimen(specimen)
self.draw_figure(specimen, False)
if disp_fit_name == "All":
new_fit_index = index
else:
new_fit_index = disp_fit_index
break
index -= l
self.update_fit_box()
self.fit_box.SetSelection(new_fit_index)
self.on_select_fit(event)
if disp_fit_name != "All":
self.mean_fit = self.current_fit.name
self.mean_fit_box.SetSelection(2+new_fit_index)
self.update_selection()
else:
self.Add_text()
if self.ie_open:
self.ie.change_selected(self.current_fit) | python | def on_equalarea_high_select(self, event, fig=None, canvas=None):
"""
Get mouse position on double click find the nearest interpretation
to the mouse position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit, s, mean_fit, fit_box selection, mean_fit_box selection,
specimens_box selection, tmin_box selection, tmax_box selection
"""
if self.ie_open and self.ie.show_box.GetValue() != "specimens":
return
if not self.high_EA_xdata or not self.high_EA_ydata:
return
if fig == None:
fig = self.high_level_eqarea
if canvas == None:
canvas = self.canvas4
pos = event.GetPosition()
width, height = canvas.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = fig.transData.transform(
vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4e0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x-xpick_data)**2. + (y-ypick_data)**2.) < e:
index = i
break
if index != None:
disp_fit_name = self.mean_fit_box.GetValue()
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
elements_list = self.Data_hierarchy[high_level_type][high_level_name][elements_type]
new_fit_index = 0
for i, specimen in enumerate(elements_list):
if disp_fit_name == "All" and \
specimen in self.pmag_results_data[elements_type]:
l = 0
for fit in self.pmag_results_data[elements_type][specimen]:
l += 1
else:
try:
disp_fit_index = map(
lambda x: x.name, self.pmag_results_data[elements_type][specimen]).index(disp_fit_name)
if self.pmag_results_data[elements_type][specimen][disp_fit_index] in self.bad_fits:
l = 0
else:
l = 1
except IndexError:
l = 0
except KeyError:
l = 0
except ValueError:
l = 0
if index < l:
self.specimens_box.SetStringSelection(specimen)
self.select_specimen(specimen)
self.draw_figure(specimen, False)
if disp_fit_name == "All":
new_fit_index = index
else:
new_fit_index = disp_fit_index
break
index -= l
self.update_fit_box()
self.fit_box.SetSelection(new_fit_index)
self.on_select_fit(event)
if disp_fit_name != "All":
self.mean_fit = self.current_fit.name
self.mean_fit_box.SetSelection(2+new_fit_index)
self.update_selection()
else:
self.Add_text()
if self.ie_open:
self.ie.change_selected(self.current_fit) | Get mouse position on double click find the nearest interpretation
to the mouse position then select that interpretation
Parameters
----------
event : the wx Mouseevent for that click
Alters
------
current_fit, s, mean_fit, fit_box selection, mean_fit_box selection,
specimens_box selection, tmin_box selection, tmax_box selection | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7880-L7981 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.Add_text | def Add_text(self):
"""
Add measurement data lines to the text window.
"""
self.selected_meas = []
if self.COORDINATE_SYSTEM == 'geographic':
zijdblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
zijdblock = self.Data[self.s]['zijdblock_tilt']
else:
zijdblock = self.Data[self.s]['zijdblock']
tmin_index, tmax_index = -1, -1
if self.current_fit and self.current_fit.tmin and self.current_fit.tmax:
tmin_index, tmax_index = self.get_indices(self.current_fit)
TEXT = ""
self.logger.DeleteAllItems()
for i in range(len(zijdblock)):
lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i]
Step = ""
methods = lab_treatment.split('-')
if "NO" in methods:
Step = "N"
elif "AF" in methods:
Step = "AF"
elif "ARM" in methods:
Step = "ARM"
elif "IRM" in methods:
Step = "IRM"
elif "T" in methods:
Step = "T"
elif "LT" in methods:
Step = "LT"
Tr = zijdblock[i][0]
Dec = zijdblock[i][1]
Inc = zijdblock[i][2]
Int = zijdblock[i][3]
csd = self.Data[self.s]['csds'][i]
self.logger.InsertItem(i, "%i" % i)
self.logger.SetItem(i, 1, Step)
self.logger.SetItem(i, 2, "%.1f" % Tr)
self.logger.SetItem(i, 3, "%.1f" % Dec)
self.logger.SetItem(i, 4, "%.1f" % Inc)
self.logger.SetItem(i, 5, "%.2e" % Int)
self.logger.SetItem(i, 6, csd)
self.logger.SetItemBackgroundColour(i, "WHITE")
if i >= tmin_index and i <= tmax_index:
self.logger.SetItemBackgroundColour(i, "LIGHT BLUE")
if self.Data[self.s]['measurement_flag'][i] == 'b':
self.logger.SetItemBackgroundColour(i, "red") | python | def Add_text(self):
"""
Add measurement data lines to the text window.
"""
self.selected_meas = []
if self.COORDINATE_SYSTEM == 'geographic':
zijdblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
zijdblock = self.Data[self.s]['zijdblock_tilt']
else:
zijdblock = self.Data[self.s]['zijdblock']
tmin_index, tmax_index = -1, -1
if self.current_fit and self.current_fit.tmin and self.current_fit.tmax:
tmin_index, tmax_index = self.get_indices(self.current_fit)
TEXT = ""
self.logger.DeleteAllItems()
for i in range(len(zijdblock)):
lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i]
Step = ""
methods = lab_treatment.split('-')
if "NO" in methods:
Step = "N"
elif "AF" in methods:
Step = "AF"
elif "ARM" in methods:
Step = "ARM"
elif "IRM" in methods:
Step = "IRM"
elif "T" in methods:
Step = "T"
elif "LT" in methods:
Step = "LT"
Tr = zijdblock[i][0]
Dec = zijdblock[i][1]
Inc = zijdblock[i][2]
Int = zijdblock[i][3]
csd = self.Data[self.s]['csds'][i]
self.logger.InsertItem(i, "%i" % i)
self.logger.SetItem(i, 1, Step)
self.logger.SetItem(i, 2, "%.1f" % Tr)
self.logger.SetItem(i, 3, "%.1f" % Dec)
self.logger.SetItem(i, 4, "%.1f" % Inc)
self.logger.SetItem(i, 5, "%.2e" % Int)
self.logger.SetItem(i, 6, csd)
self.logger.SetItemBackgroundColour(i, "WHITE")
if i >= tmin_index and i <= tmax_index:
self.logger.SetItemBackgroundColour(i, "LIGHT BLUE")
if self.Data[self.s]['measurement_flag'][i] == 'b':
self.logger.SetItemBackgroundColour(i, "red") | Add measurement data lines to the text window. | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L7998-L8048 |
PmagPy/PmagPy | programs/demag_gui.py | Demag_GUI.select_bounds_in_logger | def select_bounds_in_logger(self, index):
"""
sets index as the upper or lower bound of a fit based on what the
other bound is and selects it in the logger. Requires 2 calls to
completely update a interpretation. NOTE: Requires an interpretation
to exist before it is called.
Parameters
----------
index : index of the step to select in the logger
"""
tmin_index, tmax_index = "", ""
if str(self.tmin_box.GetValue()) != "":
tmin_index = self.tmin_box.GetSelection()
if str(self.tmax_box.GetValue()) != "":
tmax_index = self.tmax_box.GetSelection()
if self.list_bound_loc != 0:
if self.list_bound_loc == 1:
if index < tmin_index:
self.tmin_box.SetSelection(index)
self.tmax_box.SetSelection(tmin_index)
elif index == tmin_index:
pass
else:
self.tmax_box.SetSelection(index)
else:
if index > tmax_index:
self.tmin_box.SetSelection(tmax_index)
self.tmax_box.SetSelection(index)
elif index == tmax_index:
pass
else:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 0
else:
if index < tmax_index:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 1
else:
self.tmax_box.SetSelection(index)
self.list_bound_loc = 2
# if tmin_index=="" or index<tmin_index:
# if tmax_index=="" and tmin_index!="":
# self.tmax_box.SetSelection(tmin_index)
# self.tmin_box.SetSelection(index)
# elif tmax_index=="" or index>tmax_index:
# self.tmax_box.SetSelection(index)
# else:
# self.tmin_box.SetSelection(index)
# self.tmax_box.SetValue("")
self.logger.Select(index, on=0)
self.get_new_PCA_parameters(-1) | python | def select_bounds_in_logger(self, index):
"""
sets index as the upper or lower bound of a fit based on what the
other bound is and selects it in the logger. Requires 2 calls to
completely update a interpretation. NOTE: Requires an interpretation
to exist before it is called.
Parameters
----------
index : index of the step to select in the logger
"""
tmin_index, tmax_index = "", ""
if str(self.tmin_box.GetValue()) != "":
tmin_index = self.tmin_box.GetSelection()
if str(self.tmax_box.GetValue()) != "":
tmax_index = self.tmax_box.GetSelection()
if self.list_bound_loc != 0:
if self.list_bound_loc == 1:
if index < tmin_index:
self.tmin_box.SetSelection(index)
self.tmax_box.SetSelection(tmin_index)
elif index == tmin_index:
pass
else:
self.tmax_box.SetSelection(index)
else:
if index > tmax_index:
self.tmin_box.SetSelection(tmax_index)
self.tmax_box.SetSelection(index)
elif index == tmax_index:
pass
else:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 0
else:
if index < tmax_index:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 1
else:
self.tmax_box.SetSelection(index)
self.list_bound_loc = 2
# if tmin_index=="" or index<tmin_index:
# if tmax_index=="" and tmin_index!="":
# self.tmax_box.SetSelection(tmin_index)
# self.tmin_box.SetSelection(index)
# elif tmax_index=="" or index>tmax_index:
# self.tmax_box.SetSelection(index)
# else:
# self.tmin_box.SetSelection(index)
# self.tmax_box.SetValue("")
self.logger.Select(index, on=0)
self.get_new_PCA_parameters(-1) | sets index as the upper or lower bound of a fit based on what the
other bound is and selects it in the logger. Requires 2 calls to
completely update a interpretation. NOTE: Requires an interpretation
to exist before it is called.
Parameters
----------
index : index of the step to select in the logger | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/demag_gui.py#L8059-L8113 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.