task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Red
Red
  Red []   context [ sum-part: function [nums [block!] count [integer!]][ out: 0.0 loop count [ out: out + nums/1 if empty? nums: next nums [break] ] out ] nums: make map! [1 [1] 2 [1 1]] sums: make map! [1 1 2 2] set 'names function [row /show /all][ if row < 1 [cause-error 'user 'message "Argument needs to be >= 1"] if show [ unless nums/:row [names row] repeat i row [either all [probe reduce [i nums/:i sums/:i]][print nums/:i]] ] either sums/:row [sums/:row][ out: clear [] half: to integer! row / 2 if row - 1 > last: length? nums [ repeat i row - last - 1 [names last + i] ] repeat col row - 1 [ either col = (half + 1) [ append out at nums/(row - 1) half break ][ append out sum-part nums/(row - col) col ] ] also sums/:row: sum nums/:row: copy out clear out ] ] ]   print "rows: ^/" names/show 25 print "^/sums: ^/" probe names 23 probe names 123 probe names 1234    
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#BlooP
BlooP
  DEFINE PROCEDURE ''ADD'' [A, B]: BLOCK 0: BEGIN OUTPUT <= A + B; BLOCK 0: END.  
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#SPAD
SPAD
  NNI ==> NonNegativeInteger   A:(NNI,NNI) -> NNI   A(m,n) == m=0 => n+1 m>0 and n=0 => A(m-1,1) m>0 and n>0 => A(m-1,A(m,n-1))   -- Example matrix [[A(i,j) for i in 0..3] for j in 0..3]  
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Dyalect
Dyalect
func blockable(str) { var blocks = [ "BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM" ]   var strUp = str.Upper() var fin = ""   for c in strUp { for j in blocks.Indices() { if blocks[j].StartsWith(c) || blocks[j].EndsWith(c) { fin += c blocks[j] = "" break } } }   return fin == strUp }   func canOrNot(can) => can ? "can" : "cannot"   for str in [ "A", "BARK", "BooK", "TrEaT", "comMON", "sQuAd", "Confuse" ] { print("\"\(str)\" \(canOrNot(blockable(str))) be spelled with blocks.") }
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#BASIC256
BASIC256
  O = 50 N = 2*O iterations = 10000   REM From the numbers 0 to N-1 inclusive, pick O of them. function shuffle(N, O) dim array(N) for i = 0 to N-1 array[i] = i next i for i = 0 to O-1 swapindex = i + rand*(N-i) swapvalue = array[swapindex] array[swapindex] = array[i] array[i] = swapvalue next i return array end function   REM given N drawers with O to open, prisoner P chooses randomly: does he choose well? function chooserandom(drawers, N, O, p) choices = shuffle(N, O) for i = 0 to O-1 if drawers[choices[i]] = p then return true next i return false end function   REM N prisoners randomly choose O drawers to open: do they all choose well? function allchooserandom(N, O) drawers = shuffle(N, N) for p = 0 to N-1 goodchoice = chooserandom(drawers, N, O, p) if not goodchoice then return false next p return true end function   REM given N drawers with O to open, prisoner P chooses smartly: does he choose well? function choosesmart(drawers, N, O, p) numopened = 0 i = p while numopened < O numopened += 1 if drawers[i] = p then return true i = drawers[i] end while return false end function   REM N prisoners smartly choose O drawers to open: do they all choose well? function allchoosesmart(N, O) drawers = shuffle(N, N) for p = 0 to N-1 goodchoice = choosesmart(drawers, N, O, p) if not goodchoice then return false next p return true end function   cls print N; " prisoners choosing ";O;" drawers, ";iterations;" iterations:"   total = 0 for iteration = 1 to iterations if allchooserandom(N, O) then total += 1 next iteration   print "Random choices: "; total;" out of ";iterations print "Observed ratio: "; total/iterations; ", expected ratio: "; (O/N)^N   total = 0 for iteration = 1 to iterations if allchoosesmart(N, O) then total += 1 next iteration   print "Smart choices: "; total;" out of ";iterations print "Observed ratio: "; total/iterations; ", expected ratio with N=2*O: greater than about 0.30685": REM for N=100, O=50 particularly, about 0.3118  
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#R
R
# Abundant Odd Numbers   find_div_sum <- function(x){ # Finds sigma: the sum of the divisors (not including the number itself) of an odd number if (x < 16) return(0) root <- sqrt(x) vec <- as.vector(1) for (i in seq.int(3, root - 1, by = 2)){ if(x %% i == 0){ vec <- c(vec, i, x/i) } } if (root == trunc(root)) vec = c(vec, root) return(sum(vec)) }   get_n_abun <- function(index = 1, total = 25, print_all = TRUE){ # Finds a total of 'total' abundant odds starting with 'index', with print option n <- 1 while(n <= total){ my_sum <- find_div_sum(index) if (my_sum > index){ if(print_all) cat(index, "..... sigma is", my_sum, "\n") n <- n + 1 } index <- index + 2 } if(!print_all) cat(index - 2, "..... sigma is", my_sum, "\n") }   # Get first 25 cat("The first 25 abundants are") get_n_abun()   # Get the 1000th cat("The 1000th odd abundant is") get_n_abun(total = 1000, print_all = F)   # Get the first after 1e9 cat("First odd abundant after 1e9 is") get_n_abun(index = 1e9 + 1, total = 1, print_all = F)
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Julia
Julia
  function trytowin(n) if 21 - n < 4 println("Computer chooses $(21 - n) and wins. GG!") exit(0) end end   function choosewisely(n) trytowin(n) targets = [1, 5, 9, 13, 17, 21] pos = findfirst(x -> x > n, targets) bestmove = targets[pos] - n if bestmove > 3 println("Looks like I could lose. Choosing a 1, total now $(n + 1).") return n + 1 end println("On a roll, choosing a $bestmove, total now $(n + bestmove).") n + bestmove end   function choosefoolishly(n) trytowin(n) move = rand([1, 2, 3]) println("Here goes, choosing $move, total now $(n + move).") n + move end   function choosesemiwisely(n) trytowin(n) if rand() > 0.75 choosefoolishly(n) else choosewisely(n) end end   prompt(s) = (println(s, ": => "); return readline())   function playermove(n) rang = (n > 19) ? "1 is all" : ((n > 18) ? "1 or 2" : "1, 2 or 3") choice = 0 while true nstr = prompt("Your choice ($rang), 0 to exit") if nstr == "0" exit(0) elseif nstr == "1" return n + 1 elseif nstr == "2" && n < 20 return n + 2 elseif nstr == "3" && n < 19 return n + 3 end end end     function play21game() n = 0 level = prompt("Level of play (1=dumb, 3=smart)") algo = choosewisely if level == "1" algo = choosefoolishly elseif level == "2" algo = choosesemiwisely elseif level != "3" println("Bad choice syntax--default to smart choice") end whofirst = prompt("Does computer go first? (y or n)") if whofirst[1] == 'y' || whofirst[1] == 'Y' n = algo(n) end while n < 21 n = playermove(n) if n == 21 println("Player wins! Game over, gg!") break end n = algo(n) end end   play21game()  
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#CoffeeScript
CoffeeScript
  # This program tries to find some way to turn four digits into an arithmetic # expression that adds up to 24. # # Example solution for 5, 7, 8, 8: # (((8 + 7) * 8) / 5)     solve_24_game = (digits...) -> # Create an array of objects for our helper functions arr = for digit in digits { val: digit expr: digit } combo4 arr...   combo4 = (a, b, c, d) -> arr = [a, b, c, d] # Reduce this to a three-node problem by combining two # nodes from the array. permutations = [ [0, 1, 2, 3] [0, 2, 1, 3] [0, 3, 1, 2] [1, 2, 0, 3] [1, 3, 0, 2] [2, 3, 0, 1] ] for permutation in permutations [i, j, k, m] = permutation for combo in combos arr[i], arr[j] answer = combo3 combo, arr[k], arr[m] return answer if answer null   combo3 = (a, b, c) -> arr = [a, b, c] permutations = [ [0, 1, 2] [0, 2, 1] [1, 2, 0] ] for permutation in permutations [i, j, k] = permutation for combo in combos arr[i], arr[j] answer = combo2 combo, arr[k] return answer if answer null   combo2 = (a, b) -> for combo in combos a, b return combo.expr if combo.val == 24 null   combos = (a, b) -> [ val: a.val + b.val expr: "(#{a.expr} + #{b.expr})" , val: a.val * b.val expr: "(#{a.expr} * #{b.expr})" , val: a.val - b.val expr: "(#{a.expr} - #{b.expr})" , val: b.val - a.val expr: "(#{b.expr} - #{a.expr})" , val: a.val / b.val expr: "(#{a.expr} / #{b.expr})" , val: b.val / a.val expr: "(#{b.expr} / #{a.expr})" , ]   # test do -> rand_digit = -> 1 + Math.floor (9 * Math.random())   for i in [1..15] a = rand_digit() b = rand_digit() c = rand_digit() d = rand_digit() solution = solve_24_game a, b, c, d console.log "Solution for #{[a,b,c,d]}: #{solution ? 'no solution'}"  
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
{low, high} = {1, 7}; SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high, low <= b <= high, low <= c <= high, low <= d <= high, low <= e <= high, low <= f <= high, low <= g <= high, a != b != c != d != e != f != g}, {a, b, c, d, e, f, g}, Integers]   {low, high} = {3, 9}; SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high, low <= b <= high, low <= c <= high, low <= d <= high, low <= e <= high, low <= f <= high, low <= g <= high, a != b != c != d != e != f != g}, {a, b, c, d, e, f, g}, Integers]   {low, high} = {0, 9}; SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high, low <= b <= high, low <= c <= high, low <= d <= high, low <= e <= high, low <= f <= high, low <= g <= high}, {a, b, c, d, e, f, g}, Integers] // Length
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#Action.21
Action!
PROC Bottles(BYTE i) IF i=0 THEN Print("No more") ELSE PrintB(i) FI Print(" bottle") IF i#1 THEN Print("s") FI RETURN   PROC Main() BYTE i=[99]   WHILE i>0 DO Bottles(i) PrintE(" of beer on the wall,") Bottles(i) PrintE(" of beer,") Print("Take ") IF i>1 THEN Print("one") ELSE Print("it") FI PrintE(" down and pass it around,") i==-1 Bottles(i) PrintE(" of beer on the wall.") IF i>0 THEN PutE() FI OD RETURN
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#C.23
C#
#include <random> #include <iostream> #include <stack> #include <set> #include <string> #include <functional> using namespace std;   class RPNParse { public: stack<double> stk; multiset<int> digits;   void op(function<double(double,double)> f) { if(stk.size() < 2) throw "Improperly written expression"; int b = stk.top(); stk.pop(); int a = stk.top(); stk.pop(); stk.push(f(a, b)); }   void parse(char c) { if(c >= '0' && c <= '9') { stk.push(c - '0'); digits.insert(c - '0'); } else if(c == '+') op([](double a, double b) {return a+b;}); else if(c == '-') op([](double a, double b) {return a-b;}); else if(c == '*') op([](double a, double b) {return a*b;}); else if(c == '/') op([](double a, double b) {return a/b;}); }   void parse(string s) { for(int i = 0; i < s.size(); ++i) parse(s[i]); }   double getResult() { if(stk.size() != 1) throw "Improperly written expression"; return stk.top(); } };   int main() { random_device seed; mt19937 engine(seed()); uniform_int_distribution<> distribution(1, 9); auto rnd = bind(distribution, engine);   multiset<int> digits; cout << "Make 24 with the digits: "; for(int i = 0; i < 4; ++i) { int n = rnd(); cout << " " << n; digits.insert(n); } cout << endl;   RPNParse parser;   try { string input; getline(cin, input); parser.parse(input);   if(digits != parser.digits) cout << "Error: Not using the given digits" << endl; else { double r = parser.getResult(); cout << "Result: " << r << endl;   if(r > 23.999 && r < 24.001) cout << "Good job!" << endl; else cout << "Try again." << endl; } } catch(char* e) { cout << "Error: " << e << endl; } return 0; }
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#REXX
REXX
/*REXX program generates and displays a number triangle for partitions of a number. */ numeric digits 400 /*be able to handle larger numbers. */ parse arg N . /*obtain optional argument from the CL.*/ if N=='' then N= 25 /*N specified? Then use the default. */ @.= 0; @.0= 1; aN= abs(N) /*initialize a partition number; AN abs*/ if N==N+0 then say ' G('aN"):" G(N) /*just do this for well formed numbers.*/ say 'partitions('aN"):" partitions(aN) /*do it the easy way.*/ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ G: procedure; parse arg nn;  !.= 0;  !.4.2= 2; mx= 1; aN= abs(nn); build= nn>0 do j=1 for aN%2;  !.j.j= 1 /*gen shortcuts for unity elements.*/ end /*j*/   do t=1 for 1+build; #.=1 /*generate triangle once or twice. */ do r=1 for aN; #.2= r % 2 /*#.2 is a shortcut calculation. */ do c=3 to r-2; #.c= gen#(r,c) end /*c*/ L= length(mx); p= 0; __= /*__ will be a row of the triangle*/ do cc=1 for r; p= p + #.cc /*only sum the last row of numbers.*/ if \build then iterate /*should we skip building triangle?*/ mx= max(mx, #.cc) /*used to build the symmetric #s. */ __= __ right(#.cc, L) /*construct a row of the triangle. */ end /*cc*/ if t==1 then iterate /*Is this 1st time through? No show*/ say center( strip(__), 2 + (aN-1) * (length(mx) + 1) ) end /*r*/ /* [↑] center row of the triangle.*/ end /*t*/ return p /*return with the generated number.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ gen#: procedure expose !.; parse arg x,y /*obtain the X and Y arguments.*/ if !.x.y\==0 then return !.x.y /*was number generated before ? */ if y>x%2 then do; nx= x+1-(y-x%2)*2-(x//2==0) ny= nx % 2;  !.x.y= !.nx.ny return !.x.y /*return the calculated number. */ end /* [↑] right half of triangle. */ $= 1 /* [↓] left " " " */ do q=2 for y-1; xy= x-y; if q>xy then iterate if q==2 then $= $ + xy % 2 else if q==xy-1 then $= $ + 1 else $= $ + gen#(xy,q) /*recurse.*/ end /*q*/  !.x.y=$; return $ /*use memoization; return with #.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ partitions: procedure expose @.; parse arg n; if @.n\==0 then return @.n /* ◄─────┐*/ $= 0 /*Already known? Return ►────┘*/ do k=1 for n /*process N partitions. */ #= n - (k*3-1) * k % 2 /*calculate a partition number.*/ if #<0 then leave /*Is it negative? Then leave. */ if @.#==0 then x= partitions(#) /* [◄] this is a recursive call*/ else x= @.# /*the value is already known. */ #= # - k if #<0 then y= 0 /*Is negative? Then use zero.*/ else if @.#==0 then y= partitions(p) /*recursive call.*/ else y= @.# if k//2 then $= $ + x + y /*use this method if K is odd. */ else $= $ - x - y /* " " " " " " even.*/ end /*k*/ /* [↑] Euler's recursive func.*/ @.n= $; return $ /*use memoization; return num.*/
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#bootBASIC
bootBASIC
10 print "Number 1"; 20 input a 30 print "Number 2"; 40 input b 50 print a+b
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#SQL_PL
SQL PL
  --#SET TERMINATOR @   SET SERVEROUTPUT ON@   CREATE OR REPLACE FUNCTION ACKERMANN( IN M SMALLINT, IN N BIGINT ) RETURNS BIGINT BEGIN DECLARE RET BIGINT; DECLARE STMT STATEMENT;   IF (M = 0) THEN SET RET = N + 1; ELSEIF (N = 0) THEN PREPARE STMT FROM 'SET ? = ACKERMANN(? - 1, 1)'; EXECUTE STMT INTO RET USING M; ELSE PREPARE STMT FROM 'SET ? = ACKERMANN(? - 1, ACKERMANN(?, ? - 1))'; EXECUTE STMT INTO RET USING M, M, N; END IF; RETURN RET; END @   BEGIN DECLARE M SMALLINT DEFAULT 0; DECLARE N SMALLINT DEFAULT 0; DECLARE MAX_LEVELS CONDITION FOR SQLSTATE '54038'; DECLARE CONTINUE HANDLER FOR MAX_LEVELS BEGIN END;   WHILE (N <= 6) DO WHILE (M <= 3) DO CALL DBMS_OUTPUT.PUT_LINE('ACKERMANN(' || M || ', ' || N || ') = ' || ACKERMANN(M, N)); SET M = M + 1; END WHILE; SET M = 0; SET N = N + 1; END WHILE; END @  
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#EchoLisp
EchoLisp
  (lib 'list) ;; list-delete   (define BLOCKS '("BO" "XK" "DQ" "CP" "NA" "GT" "RE" "TG" "QD" "FS" "JW" "HU" "VI" "AN" "OB" "ER" "FS" "LY" "PC" "ZM" ))   (define WORDS '("A" "BARK" "BOOK" "TREAT" "COMMON" "SQUAD" "CONFUSE"))   (define (spell word blocks) (cond ((string-empty? word) #t) ((empty? blocks) #f) (else (for/or [(block blocks)] #:continue (not (string-match block (string-first word))) (spell (string-rest word) (list-delete blocks block))))))    
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#BCPL
BCPL
get "libhdr"   manifest $( seed = 12345 // for pseudorandom number generator size = 100 // amount of drawers and prisoners tries = 50 // amount of tries each prisoner may make simul = 2000 // amount of simulations to run $)   let randto(n) = valof $( static $( state = seed $) let mask = 1 mask := (mask<<1)|1 repeatuntil mask > n state := random(state) repeatuntil ((state >> 8) & mask) < n resultis (state >> 8) & mask $)   // initialize drawers let placeCards(d, n) be $( for i=0 to n-1 do d!i := i; for i=0 to n-2 do $( let j = i+randto(n-i) let k = d!i d!i := d!j d!j := k $) $)   // random strategy (prisoner 'p' tries to find his own number) let randoms(d, p, t) = valof $( for n = 1 to t do if d!randto(size) = p then resultis true resultis false $)   // optimal strategy let optimal(d, p, t) = valof $( let last = p for n = 1 to t do test d!last = p then resultis true else last := d!last resultis false $)   // run a simulation given a strategy let simulate(d, strat, n, t) = valof $( placeCards(d, n) for p = 0 to n-1 do if not strat(d, p, t) then resultis false resultis true $)   // run many simulations and count the successes let runSimulations(d, strat, n, amt, t) = valof $( let succ = 0 for i = 1 to amt do if simulate(d, strat, n, t) do succ := succ + 1 resultis succ $)   let run(d, name, strat, n, amt, t) be $( let s = runSimulations(d, strat, n, amt, t); writef("%S: %I5 of %I5, %N percent.*N", name, s, amt, s*10/(amt/10)) $)   let start() be $( let d = vec size-1 run(d, " Random", randoms, size, simul, tries) run(d, "Optimal", optimal, size, simul, tries) $)
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Racket
Racket
#lang racket   (require math/number-theory racket/generator)   (define (make-generator start) (in-generator (for ([n (in-naturals start)] #:when (odd? n)) (define divisor-sum (- (apply + (divisors n)) n)) (when (> divisor-sum n) (yield (list n divisor-sum))))))   (for/list ([i (in-range 25)] [x (make-generator 0)]) x) ; Task 1 (for/last ([i (in-range 1000)] [x (make-generator 0)]) x) ; Task 2 (for/first ([x (make-generator (add1 (inexact->exact 1e9)))]) x) ; Task 3
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Lua
Lua
  gamewon = false running_total = 0 player = 1 opponent = 2   while not gamewon do num = 0   if player == 1 then opponent = 2 repeat print("Enter a number between 1 and 3 (0 to quit):") num = io.read("*n") if num == 0 then os.exit() end until (num > 0) and (num <=3) end   if player == 2 and not (gamewon) then opponent = 1 if (21 - running_total <= 3) then num = 21 - running_total else num = math.random(1,3) end print("Player 2 picks number "..num) end   running_total = running_total + num print("Total: "..running_total)   if running_total == 21 then print("Player "..player.." wins!") gamewon = true end   if running_total > 21 then print("Player "..player.." lost...") print("Player "..opponent.." wins!") gamewon = true end   if player == 1 then player = 2 else player = 1 end   end  
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#Common_Lisp
Common Lisp
(defconstant +ops+ '(* / + -))   (defun digits () (sort (loop repeat 4 collect (1+ (random 9))) #'<))   (defun expr-value (expr) (eval expr))   (defun divides-by-zero-p (expr) (when (consp expr) (destructuring-bind (op &rest args) expr (or (divides-by-zero-p (car args)) (and (eq op '/) (or (and (= 1 (length args)) (zerop (expr-value (car args)))) (some (lambda (arg) (or (divides-by-zero-p arg) (zerop (expr-value arg)))) (cdr args))))))))   (defun solvable-p (digits &optional expr) (unless (divides-by-zero-p expr) (if digits (destructuring-bind (next &rest rest) digits (if expr (some (lambda (op) (solvable-p rest (cons op (list next expr)))) +ops+) (solvable-p rest (list (car +ops+) next)))) (when (and expr (eql 24 (expr-value expr))) (merge-exprs expr)))))   (defun merge-exprs (expr) (if (atom expr) expr (destructuring-bind (op &rest args) expr (if (and (member op '(* +)) (= 1 (length args))) (car args) (cons op (case op ((* +) (loop for arg in args for merged = (merge-exprs arg) when (and (consp merged) (eq op (car merged))) append (cdr merged) else collect merged)) (t (mapcar #'merge-exprs args))))))))   (defun solve-24-game (digits) "Generate a lisp form using the operators in +ops+ and the given digits which evaluates to 24. The first form found is returned, or NIL if there is no solution." (solvable-p digits))
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Modula-2
Modula-2
MODULE FourSquare; FROM Conversions IMPORT IntToStr; FROM Terminal IMPORT *;   PROCEDURE WriteInt(num : INTEGER); VAR str : ARRAY[0..16] OF CHAR; BEGIN IntToStr(num,str); WriteString(str); END WriteInt;   PROCEDURE four_square(low, high : INTEGER; unique, print : BOOLEAN); VAR count : INTEGER; VAR a, b, c, d, e, f, g : INTEGER; VAR fp : INTEGER; BEGIN count:=0;   IF print THEN WriteString('a b c d e f g'); WriteLn; END; FOR a:=low TO high DO FOR b:=low TO high DO IF unique AND (b=a) THEN CONTINUE; END;   fp:=a+b; FOR c:=low TO high DO IF unique AND ((c=a) OR (c=b)) THEN CONTINUE; END; FOR d:=low TO high DO IF unique AND ((d=a) OR (d=b) OR (d=c)) THEN CONTINUE; END; IF fp # b+c+d THEN CONTINUE; END;   FOR e:=low TO high DO IF unique AND ((e=a) OR (e=b) OR (e=c) OR (e=d)) THEN CONTINUE; END; FOR f:=low TO high DO IF unique AND ((f=a) OR (f=b) OR (f=c) OR (f=d) OR (f=e)) THEN CONTINUE; END; IF fp # d+e+f THEN CONTINUE; END;   FOR g:=low TO high DO IF unique AND ((g=a) OR (g=b) OR (g=c) OR (g=d) OR (g=e) OR (g=f)) THEN CONTINUE; END; IF fp # f+g THEN CONTINUE; END;   INC(count); IF print THEN WriteInt(a); WriteString(' '); WriteInt(b); WriteString(' '); WriteInt(c); WriteString(' '); WriteInt(d); WriteString(' '); WriteInt(e); WriteString(' '); WriteInt(f); WriteString(' '); WriteInt(g); WriteLn; END; END; END; END; END; END; END; END; IF unique THEN WriteString('There are '); WriteInt(count); WriteString(' unique solutions in ['); WriteInt(low); WriteString(', '); WriteInt(high); WriteString(']'); WriteLn; ELSE WriteString('There are '); WriteInt(count); WriteString(' non-unique solutions in ['); WriteInt(low); WriteString(', '); WriteInt(high); WriteString(']'); WriteLn; END; END four_square;   BEGIN four_square(1,7,TRUE,TRUE); four_square(3,9,TRUE,TRUE); four_square(0,9,FALSE,FALSE); ReadChar; (* Wait so results can be viewed. *) END FourSquare.
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#ActionScript
ActionScript
for(var numBottles:uint = 99; numBottles > 0; numBottles--) { trace(numBottles, " bottles of beer on the wall"); trace(numBottles, " bottles of beer"); trace("Take one down, pass it around"); trace(numBottles - 1, " bottles of beer on the wall\n"); }
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#C.2B.2B
C++
#include <random> #include <iostream> #include <stack> #include <set> #include <string> #include <functional> using namespace std;   class RPNParse { public: stack<double> stk; multiset<int> digits;   void op(function<double(double,double)> f) { if(stk.size() < 2) throw "Improperly written expression"; int b = stk.top(); stk.pop(); int a = stk.top(); stk.pop(); stk.push(f(a, b)); }   void parse(char c) { if(c >= '0' && c <= '9') { stk.push(c - '0'); digits.insert(c - '0'); } else if(c == '+') op([](double a, double b) {return a+b;}); else if(c == '-') op([](double a, double b) {return a-b;}); else if(c == '*') op([](double a, double b) {return a*b;}); else if(c == '/') op([](double a, double b) {return a/b;}); }   void parse(string s) { for(int i = 0; i < s.size(); ++i) parse(s[i]); }   double getResult() { if(stk.size() != 1) throw "Improperly written expression"; return stk.top(); } };   int main() { random_device seed; mt19937 engine(seed()); uniform_int_distribution<> distribution(1, 9); auto rnd = bind(distribution, engine);   multiset<int> digits; cout << "Make 24 with the digits: "; for(int i = 0; i < 4; ++i) { int n = rnd(); cout << " " << n; digits.insert(n); } cout << endl;   RPNParse parser;   try { string input; getline(cin, input); parser.parse(input);   if(digits != parser.digits) cout << "Error: Not using the given digits" << endl; else { double r = parser.getResult(); cout << "Result: " << r << endl;   if(r > 23.999 && r < 24.001) cout << "Good job!" << endl; else cout << "Try again." << endl; } } catch(char* e) { cout << "Error: " << e << endl; } return 0; }
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Ruby
Ruby
  # Generate IPF triangle # Nigel_Galloway: May 1st., 2013. def g(n,g) return 1 unless 1 < g and g < n-1 (2..g).inject(1){|res,q| res + (q > n-g ? 0 : g(n-g,q))} end   (1..25).each {|n| puts (1..n).map {|g| "%4s" % g(n,g)}.join }  
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#BQN
BQN
#!/usr/bin/env bqn   # Cut 𝕩 at occurrences of 𝕨, removing separators and empty segments # (BQNcrate phrase). Split ← (¬-˜⊢×·+`»⊸>)∘≠⊔⊢   # Natural number from base-10 digits (BQNcrate phrase). Base10 ← 10⊸×⊸+˜´∘⌽   # Parse any number of space-separated numbers from string 𝕩. ParseNums ← {Base10¨ -⟜'0' ' ' Split 𝕩}   # •GetLine and •_while_ are nonstandard CBQN extensions. {•Show +´ ParseNums 𝕩 ⋄ •GetLine@} •_while_ (@⊸≢) •GetLine@
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#Standard_ML
Standard ML
fun a (0, n) = n+1 | a (m, 0) = a (m-1, 1) | a (m, n) = a (m-1, a (m, n-1))
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Ela
Ela
open list monad io char   :::IO   null = foldr (\_ _ -> false) true   mapM_ f = foldr ((>>-) << f) (return ())   abc _ [] = [[]] abc blocks (c::cs) = [b::ans \\ b <- blocks | c `elem` b, ans <- abc (delete b blocks) cs]   blocks = ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"]   mapM_ (\w -> putLn (w, not << null $ abc blocks (map char.upper w))) ["", "A", "BARK", "BoOK", "TrEAT", "COmMoN", "SQUAD", "conFUsE"]
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#C
C
  #include<stdbool.h> #include<stdlib.h> #include<stdio.h> #include<time.h>   #define LIBERTY false #define DEATH true   typedef struct{ int cardNum; bool hasBeenOpened; }drawer;   drawer *drawerSet;   void initialize(int prisoners){ int i,j,card; bool unique;   drawerSet = ((drawer*)malloc(prisoners * sizeof(drawer))) -1;   card = rand()%prisoners + 1; drawerSet[1] = (drawer){.cardNum = card, .hasBeenOpened = false};   for(i=1 + 1;i<prisoners + 1;i++){ unique = false; while(unique==false){ for(j=0;j<i;j++){ if(drawerSet[j].cardNum == card){ card = rand()%prisoners + 1; break; } } if(j==i){ unique = true; } } drawerSet[i] = (drawer){.cardNum = card, .hasBeenOpened = false}; }   }   void closeAllDrawers(int prisoners){ int i; for(i=1;i<prisoners + 1;i++) drawerSet[i].hasBeenOpened = false; }   bool libertyOrDeathAtRandom(int prisoners,int chances){ int i,j,chosenDrawer;   for(i= 1;i<prisoners + 1;i++){ bool foundCard = false; for(j=0;j<chances;j++){ do{ chosenDrawer = rand()%prisoners + 1; }while(drawerSet[chosenDrawer].hasBeenOpened==true); if(drawerSet[chosenDrawer].cardNum == i){ foundCard = true; break; } drawerSet[chosenDrawer].hasBeenOpened = true; } closeAllDrawers(prisoners); if(foundCard == false) return DEATH; }   return LIBERTY; }   bool libertyOrDeathPlanned(int prisoners,int chances){ int i,j,chosenDrawer; for(i=1;i<prisoners + 1;i++){ chosenDrawer = i; bool foundCard = false; for(j=0;j<chances;j++){ drawerSet[chosenDrawer].hasBeenOpened = true;   if(drawerSet[chosenDrawer].cardNum == i){ foundCard = true; break; } if(chosenDrawer == drawerSet[chosenDrawer].cardNum){ do{ chosenDrawer = rand()%prisoners + 1; }while(drawerSet[chosenDrawer].hasBeenOpened==true); } else{ chosenDrawer = drawerSet[chosenDrawer].cardNum; }   }   closeAllDrawers(prisoners); if(foundCard == false) return DEATH; }   return LIBERTY; }   int main(int argc,char** argv) { int prisoners, chances; unsigned long long int trials,i,count = 0; char* end;   if(argc!=4) return printf("Usage : %s <Number of prisoners> <Number of chances> <Number of trials>",argv[0]);   prisoners = atoi(argv[1]); chances = atoi(argv[2]); trials = strtoull(argv[3],&end,10);   srand(time(NULL));   printf("Running random trials..."); for(i=0;i<trials;i+=1L){ initialize(prisoners);   count += libertyOrDeathAtRandom(prisoners,chances)==DEATH?0:1; }   printf("\n\nGames Played : %llu\nGames Won : %llu\nChances : %lf %% \n\n",trials,count,(100.0*count)/trials);   count = 0;   printf("Running strategic trials..."); for(i=0;i<trials;i+=1L){ initialize(prisoners);   count += libertyOrDeathPlanned(prisoners,chances)==DEATH?0:1; }   printf("\n\nGames Played : %llu\nGames Won : %llu\nChances : %lf %% \n\n",trials,count,(100.0*count)/trials); return 0; }    
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Raku
Raku
sub odd-abundant (\x) { my @l = x.is-prime ?? 1 !! flat 1, (3 .. x.sqrt.floor).map: -> \d { next unless d +& 1; my \y = x div d; next if y * d !== x; d !== y ?? (d, y) !! d }; @l.sum > x ?? @l.sort !! Empty; }   sub odd-abundants (Int :$start-at is copy) { $start-at = ( $start-at + 2 ) div 3; $start-at += $start-at %% 2; $start-at *= 3; ($start-at, *+6 ... *).hyper.map: { next unless my $oa = cache .&odd-abundant; sprintf "%6d: divisor sum: {$oa.join: ' + '} = {$oa.sum}", $_ } }   put 'First 25 abundant odd numbers:'; .put for odd-abundants( :start-at(1) )[^25];   put "\nOne thousandth abundant odd number:\n" ~ odd-abundants( :start-at(1) )[999] ~   "\n\nFirst abundant odd number above one billion:\n" ~ odd-abundants( :start-at(1_000_000_000) ).head;
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
SeedRandom[1234]; ClearAll[ComputerChoose, HumanChoose] ComputerChoose[n_] := If[n < 18, RandomChoice[{1, 2, 3}], 21 - n] HumanChoose[] := ChoiceDialog["How many?", {1 -> 1, 2 -> 2, 3 -> 3, "Quit" -> -1}] runningtotal = 0; whofirst = ChoiceDialog["Who goes first?", {"You" -> 1, "Computer" -> 2}]; While[runningtotal < 21, If[whofirst == 1, choice = HumanChoose[]; If[choice == -1, Break[]]; Print["You choose = ", choice]; runningtotal += choice; Print["Running total = ", runningtotal]; If[runningtotal == 21, Print["You won!"]; Break[]]; choice = ComputerChoose[runningtotal]; Print["Computer choose = ", choice]; runningtotal += choice; Print["Running total = ", runningtotal]; If[runningtotal == 21, Print["Computer won!"]; Break[]]; , choice = ComputerChoose[runningtotal]; Print["Computer choose = ", choice]; runningtotal += choice; Print["Running total = ", runningtotal]; If[runningtotal == 21, Print["Computer won!"]; Break[]]; choice = HumanChoose[]; If[choice == -1, Break[]]; Print["You choose = ", choice]; runningtotal += choice; Print["Running total = ", runningtotal]; If[runningtotal == 21, Print["You won!"]; Break[]]; ]; ]
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#D
D
import std.stdio, std.algorithm, std.range, std.conv, std.string, std.concurrency, permutations2, arithmetic_rational;   string solve(in int target, in int[] problem) { static struct T { Rational r; string e; }   Generator!T computeAllOperations(in Rational[] L) { return new typeof(return)({ if (!L.empty) { immutable x = L[0]; if (L.length == 1) { yield(T(x, x.text)); } else { foreach (const o; computeAllOperations(L.dropOne)) { immutable y = o.r; auto sub = [T(x * y, "*"), T(x + y, "+"), T(x - y, "-")]; if (y) sub ~= [T(x / y, "/")]; foreach (const e; sub) yield(T(e.r, format("(%s%s%s)", x, e.e, o.e))); } } } }); }   foreach (const p; problem.map!Rational.array.permutations!false) foreach (const sol; computeAllOperations(p)) if (sol.r == target) return sol.e; return "No solution"; }   void main() { foreach (const prob; [[6, 7, 9, 5], [3, 3, 8, 8], [1, 1, 1, 1]]) writeln(prob, ": ", solve(24, prob)); }
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Nim
Nim
func isUnique(a, b, c, d, e, f, g: uint8): bool = a != b and a != c and a != d and a != e and a != f and a != g and b != c and b != d and b != e and b != f and b != g and c != d and c != e and c != f and c != g and d != e and d != f and d != f and e != f and e != g and f != g   func isSolution(a, b, c, d, e, f, g: uint8): bool = let sum = a + b sum == b + c + d and sum == d + e + f and sum == f + g   func fourSquares(l, h: uint8, unique: bool): seq[array[7, uint8]] = for a in l..h: for b in l..h: for c in l..h: for d in l..h: for e in l..h: for f in l..h: for g in l..h: if (not unique or isUnique(a, b, c, d, e, f, g)) and isSolution(a, b, c, d, e, f, g): result &= [a, b, c, d, e, f, g]   proc printFourSquares(l, h: uint8, unique = true) = let solutions = fourSquares(l, h, unique)   if unique: for s in solutions: echo s   echo solutions.len, (if unique: " " else: " non-"), "unique solutions in ", l, " to ", h, " range\n"   when isMainModule: printFourSquares(1, 7) printFourSquares(3, 9) printFourSquares(0, 9, unique = false)
http://rosettacode.org/wiki/15_puzzle_solver
15 puzzle solver
Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game. For this task you will be using the following puzzle: 15 14 1 6 9 11 4 12 0 10 7 3 13 8 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 The output must show the moves' directions, like so: left, left, left, down, right... and so on. There are two solutions, of fifty-two moves: rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd see: Pretty Print of Optimal Solution Finding either one, or both is an acceptable result. Extra credit. Solve the following problem: 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 Related Task 15 puzzle game A* search algorithm
#11l
11l
-V nr = [3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3] nc = [3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]   T Solver n = 0 np = 0 n0 = [0] * 100 n2 = [UInt64(0)] * 100 n3 = [Char("\0")] * 100 n4 = [0] * 100   F (values) .n0[0] = values.index(0)   UInt64 tmp = 0 L(val) values tmp = (tmp << 4) [|] val .n2[0] = tmp   F fI() V n = .n V g = (11 - .n0[n]) * 4 V a = .n2[n] [&] (UInt64(15) << g) .n0[n + 1] = .n0[n] + 4 .n2[n + 1] = .n2[n] - a + (a << 16) .n3[n + 1] = Char(‘d’) .n4[n + 1] = .n4[n] + Int(:nr[Int(a >> g)] > .n0[n] I/ 4)   F fG() V n = .n V g = (19 - .n0[n]) * 4 V a = .n2[n] [&] (UInt64(15) << g) .n0[n + 1] = .n0[n] - 4 .n2[n + 1] = .n2[n] - a + (a >> 16) .n3[n + 1] = Char(‘u’) .n4[n + 1] = .n4[n] + Int(:nr[Int(a >> g)] < .n0[n] I/ 4)   F fE() V n = .n V g = (14 - .n0[n]) * 4 V a = .n2[n] [&] (UInt64(15) << g) .n0[n + 1] = .n0[n] + 1 .n2[n + 1] = .n2[n] - a + (a << 4) .n3[n + 1] = Char(‘r’) .n4[n + 1] = .n4[n] + Int(:nc[Int(a >> g)] > .n0[n] % 4)   F fL() V n = .n V g = (16 - .n0[n]) * 4 V a = .n2[n] [&] (UInt64(15) << g) .n0[n + 1] = .n0[n] - 1 .n2[n + 1] = .n2[n] - a + (a >> 4) .n3[n + 1] = Char(‘l’) .n4[n + 1] = .n4[n] + Int(:nc[Int(a >> g)] < .n0[n] % 4)   F fY() I .n2[.n] == 1234'5678'9ABC'DEF0 R 1B I .n4[.n] <= .np R .fN() R 0B   F fN() -> Bool V n = .n I .n3[n] != ‘u’ & .n0[n] I/ 4 < 3 {.fI(); .n++; I .fY() {R 1B}; .n--} I .n3[n] != ‘d’ & .n0[n] I/ 4 > 0 {.fG(); .n++; I .fY() {R 1B}; .n--} I .n3[n] != ‘l’ & .n0[n]  % 4 < 3 {.fE(); .n++; I .fY() {R 1B}; .n--} I .n3[n] != ‘r’ & .n0[n]  % 4 > 0 {.fL(); .n++; I .fY() {R 1B}; .n--} R 0B   F run() L !.fY() .np++ print(‘Solution found with ’(.n)‘ moves: ’, end' ‘’) L(g) 1 .. .n print(.n3[g], end' ‘’) print(‘.’)   V solver = Solver([15, 14, 1, 6, 9, 11, 4, 12, 0, 10, 7, 3, 13, 8, 5, 2]) solver.run()
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#Ada
Ada
with Ada.Text_Io; use Ada.Text_Io;   procedure Bottles is begin for X in reverse 1..99 loop Put_Line(Integer'Image(X) & " bottles of beer on the wall"); Put_Line(Integer'Image(X) & " bottles of beer"); Put_Line("Take one down, pass it around"); Put_Line(Integer'Image(X - 1) & " bottles of beer on the wall"); New_Line; end loop; end Bottles;
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#Ceylon
Ceylon
import ceylon.random { DefaultRandom }   class Rational(shared Integer numerator, shared Integer denominator = 1) satisfies Numeric<Rational> {   assert (denominator != 0);   Integer gcd(Integer a, Integer b) => if (b == 0) then a else gcd(b, a % b);   shared Rational inverted => Rational(denominator, numerator);   shared Rational simplified => let (largestFactor = gcd(numerator, denominator)) Rational(numerator / largestFactor, denominator / largestFactor);   divided(Rational other) => (this * other.inverted).simplified;   negated => Rational(-numerator, denominator).simplified;   plus(Rational other) => let (top = numerator*other.denominator + other.numerator*denominator, bottom = denominator * other.denominator) Rational(top, bottom).simplified;   times(Rational other) => Rational(numerator * other.numerator, denominator * other.denominator).simplified;   shared Integer integer => numerator / denominator; shared Float float => numerator.float / denominator.float;   string => denominator == 1 then numerator.string else "``numerator``/``denominator``";   shared actual Boolean equals(Object that) { if (is Rational that) { value simplifiedThis = this.simplified; value simplifiedThat = that.simplified; return simplifiedThis.numerator==simplifiedThat.numerator && simplifiedThis.denominator==simplifiedThat.denominator; } else { return false; } } }   interface Expression { shared formal Rational evaluate(); }   class NumberExpression(Rational number) satisfies Expression { evaluate() => number; string => number.string; }   class OperatorExpression(Expression left, Character operator, Expression right) satisfies Expression { shared actual Rational evaluate() { switch (operator) case ('*') { return left.evaluate() * right.evaluate(); } case ('/') { return left.evaluate() / right.evaluate(); } case ('-') { return left.evaluate() - right.evaluate(); } case ('+') { return left.evaluate() + right.evaluate(); } else { throw Exception("unknown operator ``operator``"); } }   string => "(``left.string`` ``operator.string`` ``right.string``)"; }   "A simplified top down operator precedence parser. There aren't any right binding operators so we don't have to worry about that." class PrattParser(String input) {   value tokens = input.replace(" ", ""); variable value index = -1;   shared Expression expression(Integer precedence = 0) { value token = advance(); variable value left = parseUnary(token); while (precedence < getPrecedence(peek())) { value nextToken = advance(); left = parseBinary(left, nextToken); } return left; }   Integer getPrecedence(Character op) => switch (op) case ('*' | '/') 2 case ('+' | '-') 1 else 0;   Character advance(Character? expected = null) { index++; value token = tokens[index] else ' '; if (exists expected, token != expected) { throw Exception("unknown character ``token``"); } return token; }   Character peek() => tokens[index + 1] else ' ';   Expression parseBinary(Expression left, Character operator) => let (right = expression(getPrecedence(operator))) OperatorExpression(left, operator, right);   Expression parseUnary(Character token) { if (token.digit) { assert (is Integer int = Integer.parse(token.string)); return NumberExpression(Rational(int)); } else if (token == '(') { value exp = expression(); advance(')'); return exp; } else { throw Exception("unknown character ``token``"); } } }   shared void run() {   value random = DefaultRandom();   function random4Numbers() => random.elements(1..9).take(4).sequence();   function isValidGuess(String input, {Integer*} allowedNumbers) { value allowedOperators = set { *"()+-/*" }; value extractedNumbers = input .split((Character ch) => ch in allowedOperators || ch.whitespace) .map((String element) => Integer.parse(element)) .narrow<Integer>(); if (extractedNumbers.any((Integer element) => element > 9)) { print("number too big!"); return false; } if (extractedNumbers.any((Integer element) => element < 1)) { print("number too small!"); return false; } if (extractedNumbers.sort(increasing) != allowedNumbers.sort(increasing)) { print("use all the numbers, please!"); return false; } if (!input.every((Character element) => element in allowedOperators || element.digit || element.whitespace)) { print("only digits and mathematical operators, please"); return false; } variable value leftParens = 0; for (c in input) { if (c == '(') { leftParens++; } else if (c == ')') { leftParens--; if (leftParens < 0) { break; } } } if (leftParens != 0) { print("unbalanced brackets!"); return false; } return true; }   function evaluate(String input) => let (parser = PrattParser(input), exp = parser.expression()) exp.evaluate();   print("Welcome to The 24 Game. Create a mathematical equation with four random numbers that evaluates to 24. You must use all the numbers once and only once, but in any order. Also, only + - / * and parentheses are allowed. For example: (1 + 2 + 3) * 4 Also: enter n for new numbers and q to quit. -----------------------------------------------");   value twentyfour = Rational(24);   while (true) {   value chosenNumbers = random4Numbers(); void pleaseTryAgain() => print("Sorry, please try again. (Your numbers are ``chosenNumbers``)");   print("Your numbers are ``chosenNumbers``. Please turn them into 24.");   while (true) { value line = process.readLine()?.trimmed; if (exists line) { if (line.uppercased == "Q") { // quit print("bye!"); return; } if (line.uppercased == "N") { // new game break; } if (isValidGuess(line, chosenNumbers)) { try { value result = evaluate(line); print("= ``result``"); if (result == twentyfour) { print("You did it!"); break; } else { pleaseTryAgain(); } } catch (Exception e) { print(e.message); pleaseTryAgain(); } } else { pleaseTryAgain(); } } } } }
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Rust
Rust
extern crate num;   use std::cmp; use num::bigint::BigUint;   fn cumu(n: usize, cache: &mut Vec<Vec<BigUint>>) { for l in cache.len()..n+1 { let mut r = vec![BigUint::from(0u32)]; for x in 1..l+1 { let prev = r[r.len() - 1].clone(); r.push(prev + cache[l-x][cmp::min(x, l-x)].clone()); } cache.push(r); } }   fn row(n: usize, cache: &mut Vec<Vec<BigUint>>) -> Vec<BigUint> { cumu(n, cache); let r = &cache[n]; let mut v: Vec<BigUint> = Vec::new();   for i in 0..n { v.push(&r[i+1] - &r[i]); } v }   fn main() { let mut cache = vec![vec![BigUint::from(1u32)]];   println!("rows:"); for x in 1..26 { let v: Vec<String> = row(x, &mut cache).iter().map(|e| e.to_string()).collect(); let s: String = v.join(" "); println!("{}: {}", x, s); }   println!("sums:"); for x in vec![23, 123, 1234, 12345] { cumu(x, &mut cache); let v = &cache[x]; let s = v[v.len() - 1].to_string(); println!("{}: {}", x, s); } }
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Scala
Scala
  object Main {   // This is a special class for memoization case class Memo[A,B](f: A => B) extends (A => B) { private val cache = Map.empty[A, B] def apply(x: A) = cache getOrElseUpdate (x, f(x)) }   // Naive, but memoized solution lazy val namesStartingMemo : Memo[Tuple2[Int, Int], BigInt] = Memo { case (1, 1) => 1 case (a, n) => if (a > n/2) namesStartingMemo(a - 1, n - 1) else if (n < a) 0 else if (n == a) 1 else (1 to a).map(i => namesStartingMemo(i, n - a)).sum   }   def partitions(n: Int) = (1 to n).map(namesStartingMemo(_, n)).sum   // main method def main(args: Array[String]): Unit = { for (i <- 1 to 25) { for (j <- 1 to i) { print(namesStartingMemo(j, i)); print(' '); } println() } println(partitions(23)) println(partitions(123)) println(partitions(1234)) println(partitions(12345)) } }  
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#Bracmat
Bracmat
( out $ ( put$"Enter two integer numbers between -1000 and 1000:" & (filter=~/#%:~<-1000:~>1000) & get':(!filter:?a) (!filter:?b) & !a+!b | "Invalid input. Try again" ) );
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#Stata
Stata
mata function ackermann(m,n) { if (m==0) { return(n+1) } else if (n==0) { return(ackermann(m-1,1)) } else { return(ackermann(m-1,ackermann(m,n-1))) } }   for (i=0; i<=3; i++) printf("%f\n",ackermann(i,4)) 5 6 11 125 end
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Elena
Elena
import system'routines; import system'collections; import extensions; import extensions'routines;   extension op { canMakeWordFrom(blocks) { var list := ArrayList.load(blocks);   ^ nil == (cast string(self)).upperCase().seekEach:(ch) { var index := list.indexOfElement ((word => word.indexOf(0, ch) != -1).asComparator());   if (index>=0) { list.removeAt(index); ^ false } else { ^ true } } } }   public program() { var blocks := new string[]{"BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"};   var words := new string[]{"", "A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse"};   Enumerator e := words.enumerator(); e.next();   words.forEach:(word) { console.printLine("can make '",word,"' : ",word.canMakeWordFrom(blocks)); } }
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#C.23
C#
using System; using System.Linq;   namespace Prisoners { class Program { static bool PlayOptimal() { var secrets = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();   for (int p = 0; p < 100; p++) { bool success = false;   var choice = p; for (int i = 0; i < 50; i++) { if (secrets[choice] == p) { success = true; break; } choice = secrets[choice]; }   if (!success) { return false; } }   return true; }   static bool PlayRandom() { var secrets = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();   for (int p = 0; p < 100; p++) { var choices = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();   bool success = false; for (int i = 0; i < 50; i++) { if (choices[i] == p) { success = true; break; } }   if (!success) { return false; } }   return true; }   static double Exec(uint n, Func<bool> play) { uint success = 0; for (uint i = 0; i < n; i++) { if (play()) { success++; } } return 100.0 * success / n; }   static void Main() { const uint N = 1_000_000; Console.WriteLine("# of executions: {0}", N); Console.WriteLine("Optimal play success rate: {0:0.00000000000}%", Exec(N, PlayOptimal)); Console.WriteLine(" Random play success rate: {0:0.00000000000}%", Exec(N, PlayRandom)); } } }
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#REXX
REXX
/*REXX pgm displays abundant odd numbers: 1st 25, one─thousandth, first > 1 billion. */ parse arg Nlow Nuno Novr . /*obtain optional arguments from the CL*/ if Nlow=='' | Nlow=="," then Nlow= 25 /*Not specified? Then use the default.*/ if Nuno=='' | Nuno=="," then Nuno= 1000 /* " " " " " " */ if Novr=='' | Novr=="," then Novr= 1000000000 /* " " " " " " */ numeric digits max(9, length(Novr) ) /*ensure enough decimal digits for // */ @= 'odd abundant number' /*variable for annotating the output. */ #= 0 /*count of odd abundant numbers so far.*/ do j=3 by 2 until #>=Nlow; $= sigO(j) /*get the sigma for an odd integer. */ if $<=j then iterate /*sigma ≤ J ? Then ignore it. */ #= # + 1 /*bump the counter for abundant odd #'s*/ say rt(th(#)) @ 'is:'rt(commas(j), 8) rt("sigma=") rt(commas($), 9) end /*j*/ say #= 0 /*count of odd abundant numbers so far.*/ do j=3 by 2; $= sigO(j) /*get the sigma for an odd integer. */ if $<=j then iterate /*sigma ≤ J ? Then ignore it. */ #= # + 1 /*bump the counter for abundant odd #'s*/ if #<Nuno then iterate /*Odd abundant# count<Nuno? Then skip.*/ say rt(th(#)) @ 'is:'rt(commas(j), 8) rt("sigma=") rt(commas($), 9) leave /*we're finished displaying NUNOth num.*/ end /*j*/ say do j=1+Novr%2*2 by 2; $= sigO(j) /*get sigma for an odd integer > Novr. */ if $<=j then iterate /*sigma ≤ J ? Then ignore it. */ say rt(th(1)) @ 'over' commas(Novr) "is: " commas(j) rt('sigma=') commas($) leave /*we're finished displaying NOVRth num.*/ end /*j*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas:parse arg _; do c_=length(_)-3 to 1 by -3; _=insert(',', _, c_); end; return _ rt: procedure; parse arg #,len; if len=='' then len= 20; return right(#, len) th: parse arg th; return th||word('th st nd rd',1+(th//10)*(th//100%10\==1)*(th//10<4)) /*──────────────────────────────────────────────────────────────────────────────────────*/ sigO: parse arg x; s= 1 /*sigma for odd integers. ___*/ do k=3 by 2 while k*k<x /*divide by all odd integers up to √ x */ if x//k==0 then s= s + k + x%k /*add the two divisors to (sigma) sum. */ end /*k*/ /* ___*/ if k*k==x then return s + k /*Was X a square? If so, add √ x */ return s /*return (sigma) sum of the divisors. */
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Nim
Nim
  # 21 game.   import random import strformat import strutils   const Target = 21 PossibleChoices: array[18..20, seq[string]] = [@["1", "2", "3"], @["1", "2"], @["1"]] Targets = [1, 5, 9, 13, 17, 21] # Totals that a player must obtain to win.   #---------------------------------------------------------------------------------------------------   proc printTotal(total: int) = ## Print the running total. echo fmt"Running total is now {total}."   #---------------------------------------------------------------------------------------------------   proc computerPlays(total: var int) = ## Make the computer play. var choice: int if total in Targets: # No winning choice. Choose a random value. choice = rand(1..3) else: # Find the running total to get. for val in Targets: if val > total: choice = val - total break inc total, choice echo fmt"I choose {choice}." printTotal(total)   #---------------------------------------------------------------------------------------------------   proc prompt(message: string; answers: openArray[string]): int = ## Prompt a message and get an answer checking its validity against possible answers.   while true: stdout.write(message & ' ') try: result = answers.find(stdin.readLine()) if result >= 0: break echo fmt"Please answer one of: {answers.join("", "")}." except EOFError: echo "" return # Quit.   #---------------------------------------------------------------------------------------------------   randomize()   echo "21 is a two player game. The game is played by choosing a number (1, 2, 3) to\n" & "be added to the running total. The game is won by the player whose chosen number\n" & "causes the running total to reach exactly 21. The running total starts at zero.\n" echo "You can quit the game at any time by typing 'q'."   block mainLoop:   while true: var total = 0   # Choose the player who will play first. var answer = prompt("Who will play first ('you', 'me')?", ["q", "you", "me"]) if answer == 0: echo "Quitting game." break elif answer == 1: computerPlays(total)   # Internal game loop. while true:   # Ask player its choice. let choices = if total > 18: PossibleChoices[total] else: PossibleChoices[18] let choice = prompt(fmt"Your choice ({choices.join("", "")})?", "q" & choices) if choice == 0: echo "Quitting game." break mainLoop   # Update running total and check if player win. inc total, choice printTotal(total) if total == Target: echo "Congratulations, you win." break   # Make computer play. computerPlays(total) if total == Target: echo "Sorry, I win." break   # Ask player for another game. answer = prompt("Do you want to play another game (y, n)", ["q", "y", "n"]) if answer != 1: echo "Quitting game." break  
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#EchoLisp
EchoLisp
  ;; use task [[RPN_to_infix_conversion#EchoLisp]] to print results (define (rpn->string rpn) (if (vector? rpn) (infix->string (rpn->infix rpn)) "😥 Not found"))     (string-delimiter "") (define OPS #(* + - // )) ;; use float division (define-syntax-rule (commutative? op) (or (= op *) (= op +)))   ;; --------------------------------- ;; calc rpn -> num value or #f if bad rpn ;; rpn is a vector of ops or numbers ;; ---------------------------------- (define (calc rpn) (define S (stack 'S)) (for ((token rpn)) (if (procedure? token) (let [(op2 (pop S)) (op1 (pop S))] (if (and op1 op2) (push S (apply token (list op1 op2))) (push S #f))) ;; not-well formed (push S token )) #:break (not (stack-top S))) (if (= 1 (stack-length S)) (pop S) #f))   ;; check for legal rpn -> #f if not legal (define (rpn? rpn) (define S (stack 'S)) (for ((token rpn)) (if (procedure? token) (push S (and (pop S) (pop S))) (push S token )) #:break (not (stack-top S))) (stack-top S))   ;; -------------------------------------- ;; build-rpn : push next rpn op or number ;; dleft is number of not used digits ;; --------------------------------------- (define count 0)   (define (build-rpn into: rpn depth maxdepth digits ops dleft target &hit ) (define cmpop #f) (cond ;; tooo long [(> (++ count) 200_000) (set-box! &hit 'not-found)] ;; stop on first hit [(unbox &hit) &hit] ;; partial rpn must be legal [(not (rpn? rpn)) #f] ;; eval rpn if complete [(> depth maxdepth) (when (= target (calc rpn)) (set-box! &hit rpn))] ;; else, add a digit to rpn [else [when (< depth maxdepth) ;; digits anywhere except last (for [(d digits) (i 10)] #:continue (zero? d) (vector-set! digits i 0) ;; mark used (vector-set! rpn depth d) (build-rpn rpn (1+ depth) maxdepth digits ops (1- dleft) target &hit) (vector-set! digits i d)) ;; mark unused ] ;; add digit ;; or, add an op ;; ops anywhere except positions 0,1 [when (and (> depth 1) (<= (+ depth dleft) maxdepth));; cutter : must use all digits (set! cmpop (and (number? [rpn (1- depth)]) (number? [rpn (- depth 2)]) (> [rpn (1- depth)] [rpn (- depth 2)])))   (for [(op ops)] #:continue (and cmpop (commutative? op)) ;; cutter : 3 4 + === 4 3 + (vector-set! rpn depth op) (build-rpn rpn (1+ depth) maxdepth digits ops dleft target &hit) (vector-set! rpn depth 0))] ;; add op ] ; add something to rpn vector )) ; build-rpn   ;;------------------------ ;;gen24 : num random numbers ;;------------------------ (define (gen24 num maxrange) (->> (append (range 1 maxrange)(range 1 maxrange)) shuffle (take num)))   ;;------------------------------------------- ;; try-rpn : sets starter values for build-rpn ;;------------------------------------------- (define (try-rpn digits target) (set! digits (list-sort > digits)) ;; seems to accelerate things (define rpn (make-vector (1- (* 2 (length digits))))) (define &hit (box #f)) (set! count 0)   (build-rpn rpn starter-depth: 0 max-depth: (1- (vector-length rpn)) (list->vector digits) OPS remaining-digits: (length digits) target &hit ) (writeln target '= (rpn->string (unbox &hit)) 'tries= count))   ;; ------------------------------- ;; (task numdigits target maxrange) ;; -------------------------------- (define (task (numdigits 4) (target 24) (maxrange 10)) (define digits (gen24 numdigits maxrange)) (writeln digits '→ target) (try-rpn digits target))  
http://rosettacode.org/wiki/2048
2048
Task Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values. Rules of the game   The rules are that on each turn the player must choose a direction   (up, down, left or right).   All tiles move as far as possible in that direction, some move more than others.   Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.   A move is valid when at least one tile can be moved,   if only by combination.   A new tile with the value of   2   is spawned at the end of each turn at a randomly chosen empty square   (if there is one).   Adding a new tile on a blank space.   Most of the time,   a new   2   is to be added,   and occasionally   (10% of the time),   a   4.   To win,   the player must create a tile with the number   2048.   The player loses if no valid moves are possible. The name comes from the popular open-source implementation of this game mechanic, 2048. Requirements   "Non-greedy" movement.     The tiles that were created by combining other tiles should not be combined again during the same turn (move).     That is to say,   that moving the tile row of: [2][2][2][2] to the right should result in: ......[4][4] and not: .........[8]   "Move direction priority".     If more than one variant of combining is possible,   move direction shall indicate which combination will take effect.   For example, moving the tile row of: ...[2][2][2] to the right should result in: ......[2][4] and not: ......[4][2]   Check for valid moves.   The player shouldn't be able to skip their turn by trying a move that doesn't change the board.   Check for a  win condition.   Check for a lose condition.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program 2048_64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc" .equ SIZE, 4 .equ TOTAL, 2048 .equ BUFFERSIZE, 80   .equ KEYSIZE, 8 .equ IOCTL, 0x1D // Linux syscall .equ SIGACTION, 0x86 // Linux syscall .equ SYSPOLL, 0x16 // Linux syscall .equ CREATPOLL, 0x14 // Linux syscall .equ CTLPOLL, 0x15 // Linux syscall   .equ TCGETS, 0x5401 .equ TCSETS, 0x5402 .equ ICANON, 2 .equ ECHO, 10 .equ POLLIN, 1 .equ EPOLL_CTL_ADD, 1   .equ SIGINT, 2 // Issued if the user sends an interrupt signal (Ctrl + C) .equ SIGQUIT, 3 // Issued if the user sends a quit signal (Ctrl + D) .equ SIGTERM, 15 // Software termination signal (sent by kill by default) .equ SIGTTOU, 22   /*******************************************/ /* Structures */ /********************************************/ /* structure termios see doc linux*/ .struct 0 term_c_iflag: // input modes .struct term_c_iflag + 4 term_c_oflag: // output modes .struct term_c_oflag + 4 term_c_cflag: // control modes .struct term_c_cflag + 4 term_c_lflag: // local modes .struct term_c_lflag + 4 term_c_cc: // special characters .struct term_c_cc + 40 // see length if necessary term_fin:   /* structure sigaction see doc linux */ .struct 0 sa_handler: .struct sa_handler + 8 sa_mask: .struct sa_mask + 8 sa_flags: .struct sa_flags + 8 sa_sigaction: .struct sa_sigaction + 8 sa_fin:   /* structure poll see doc linux */ .struct 0 poll_event: // events mask .struct poll_event + 8 poll_fd: // events returned .struct poll_fd + 8 poll_fin: /*********************************/ /* Initialized data */ /*********************************/ .data szMessOK: .asciz "Bravo !! You win. \n" szMessNotOK: .asciz "You lost !! \n" szMessNewGame: .asciz "New game (y/n) ? \n" szMessErreur: .asciz "Error detected.\n" szMessErrInitTerm: .asciz "Error terminal init.\n" szMessErrInitPoll: .asciz "Error poll init.\n" szMessErreurKey: .asciz "Error read key.\n" szMessErr: .asciz "Error code hexa : @ décimal : @ \n" szCarriageReturn: .asciz "\n" szMess0: .asciz " " szMess2: .asciz " 2 " szMess4: .asciz " 4 " szMess8: .asciz " 8 " szMess16: .asciz " 16 " szMess32: .asciz " 32 " szMess64: .asciz " 64 " szMess128: .asciz " 128 " szMess256: .asciz " 256 " szMess512: .asciz " 512 " szMess1024: .asciz " 1024 " szMess2048: .asciz " 2048 " szCleax1: .byte 0x1B .byte 'c' // other console clear .byte 0   szLineH: .asciz "-----------------------------\n" szLineV: .asciz "|" szLineVT: .asciz "| | | | |\n" .align 4 qGraine: .quad 123456 /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 sZoneConv: .skip 24 sBuffer: .skip BUFFERSIZE qTbCase: .skip 8 * SIZE * SIZE qEnd: .skip 8 // 0 loop 1 = end loop qTouche: .skip KEYSIZE // value key pressed stOldtio: .skip term_fin // old terminal state stCurtio: .skip term_fin // current terminal state stSigAction: .skip sa_fin // area signal structure stSigAction1: .skip sa_fin stSigAction2: .skip sa_fin stSigAction3: .skip sa_fin stPoll1: .skip poll_fin // area poll structure stPoll2: .skip poll_fin stevents: .skip 16 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program mov x0,#0 bl initTerm // terminal init cmp x0,0 // error ? blt 100f bl initPoll // epoll instance init cmp x0,0 blt 99f mov x22,x0 // save epfd 1: // begin game loop ldr x0,qAdrszCleax1 bl affichageMess bl razTable 2: bl addDigit cmp x0,#-1 beq 5f // end game bl displayGame 3: mov x0,x22 bl waitKey cmp x0,0 beq 3b bl readKey cmp x0,#-1 beq 99f // error bl keyMove cmp x0,#0 beq 3b // no change -> loop cmp x0,#2 // last addition = 2048 ? beq 4f cmp x0,#-1 // quit ? bne 2b // loop   b 10f 4: // last addition = 2048 ldr x0,qAdrszMessOK bl affichageMess b 10f 5: // display message no solution ldr x0,qAdrszMessNotOK bl affichageMess   10: // display new game ? ldr x0,qAdrszCarriageReturn bl affichageMess ldr x0,qAdrszMessNewGame bl affichageMess 11: mov x0,x22 bl waitKey cmp x0,0 beq 11b bl readKey ldr x0,qAdrqTouche ldrb w0,[x0] cmp w0,#'y' beq 1b cmp w0,#'Y' beq 1b 99: bl restauTerm // terminal restaur 100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call   qAdrszCarriageReturn: .quad szCarriageReturn qAdrszMessNotOK: .quad szMessNotOK qAdrszMessOK: .quad szMessOK qAdrszMessNewGame: .quad szMessNewGame qAdrsZoneConv: .quad sZoneConv qAdrszCleax1: .quad szCleax1 qAdrszMessErrInitTerm: .quad szMessErrInitTerm qAdrszMessErrInitPoll: .quad szMessErrInitPoll qAdrszMessErreurKey: .quad szMessErreurKey qAdrstOldtio: .quad stOldtio qAdrstCurtio: .quad stCurtio qAdrstSigAction: .quad stSigAction qAdrstSigAction1: .quad stSigAction1 qAdrSIG_IGN: .quad 1 qAdrqEnd: .quad qEnd qAdrqTouche: .quad qTouche qAdrstevents: .quad stevents /******************************************************************/ /* raz table cases */ /******************************************************************/ razTable: stp x0,lr,[sp,-16]! // save registres stp x1,x2,[sp,-16]! // save registres ldr x1,qAdrqTbCase mov x2,#0 1: str xzr,[x1,x2,lsl #3] add x2,x2,#1 cmp x2,#SIZE * SIZE blt 1b 100: ldp x1,x2,[sp],16 // restaur des 2 registres ldp x0,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* key move */ /******************************************************************/ /* x0 contains key value */ keyMove: stp x1,lr,[sp,-16]! // save registres lsr x0,x0,#16 cmp x0,#0x42 // down arrow bne 1f bl moveDown b 100f 1: cmp x0,#0x41 // high arrow bne 2f bl moveUp b 100f 2: cmp x0,#0x43 // right arrow bne 3f bl moveRight b 100f 3: cmp x0,#0x44 // left arrow bne 4f bl moveLeft b 100f 4: ldr x0,qAdrqTouche ldrb w0,[x0] cmp w0,#'q' // quit game bne 5f mov x0,#-1 b 100f 5: cmp w0,#'Q' // quit game bne 100f mov x0,#-1 b 100f   100: ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* move left */ /******************************************************************/ /* x0 return -1 if ok */ moveLeft: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,x11,[sp,-16]! // save registres ldr x1,qAdrqTbCase mov x0,#0 // top move Ok mov x2,#0 // line indice 1: mov x6,#0 // counter empty case mov x7,#0 // first digit mov x10,#0 // last digit to add mov x3,#0 // column indice 2: lsl x5,x2,#2 // change this if size <> 4 add x5,x5,x3 // compute table indice ldr x4,[x1,x5,lsl #3] cmp x4,#0 cinc x6,x6,eq // positions vides beq 5f cmp x6,#0 beq 3f // no empty left case mov x8,#0 str x8,[x1,x5,lsl #3] // raz digit sub x5,x5,x6 str x4,[x1,x5,lsl #3] // and store to left empty position mov x0,#1 // move Ok 3: cmp x7,#0 // first digit beq 4f cmp x10,x4 // prec digit have to add beq 4f sub x8,x5,#1 // prec digit ldr x9,[x1,x8,lsl #3] cmp x4,x9 // equal ? bne 4f mov x10,x4 // save digit add x4,x4,x9 // yes -> add str x4,[x1,x8,lsl #3] cmp x4,#TOTAL beq 6f mov x4,#0 str x4,[x1,x5,lsl #3] add x6,x6,#1 // empty case + 1 mov x0,#1 // move Ok 4: add x7,x7,#1 // no first digit   5: // and loop add x3,x3,#1 cmp x3,#SIZE blt 2b add x2,x2,#1 cmp x2,#SIZE blt 1b b 100f 6: mov x0,#2 // total = 2048 100: ldp x10,x11,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* move right */ /******************************************************************/ /* x0 return -1 if ok */ moveRight: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,x11,[sp,-16]! // save registres ldr x1,qAdrqTbCase mov x0,#0 mov x2,#0 1: mov x6,#0 mov x7,#0 mov x10,#0 mov x3,#SIZE-1 2: lsl x5,x2,#2 // change this if size <> 4 add x5,x5,x3 ldr x4,[x1,x5,lsl #3] cmp x4,#0 cinc x6,x6,eq // positions vides beq 5f   cmp x6,#0 beq 3f // no empty right case mov x0,#0 str x0,[x1,x5,lsl #3] // raz digit add x5,x5,x6 str x4,[x1,x5,lsl #3] // and store to right empty position mov x0,#1 3: cmp x7,#0 // first digit beq 4f add x8,x5,#1 // next digit ldr x9,[x1,x8,lsl #3] cmp x4,x9 // equal ? bne 4f cmp x10,x4 beq 4f mov x10,x4 add x4,x4,x9 // yes -> add str x4,[x1,x8,lsl #3] cmp x4,#TOTAL beq 6f mov x4,#0 str x4,[x1,x5,lsl #3] add x6,x6,#1 // empty case + 1 mov x0,#1 4: add x7,x7,#1 // no first digit   5: // and loop sub x3,x3,#1 cmp x3,#0 bge 2b add x2,x2,#1 cmp x2,#SIZE blt 1b b 100f 6: mov x0,#2 100: ldp x10,x11,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* move down */ /******************************************************************/ /* x0 return -1 if ok */ moveDown: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,x11,[sp,-16]! // save registres ldr x1,qAdrqTbCase mov x0,#0 mov x3,#0 1: mov x6,#0 mov x7,#0 mov x10,#0 mov x2,#SIZE-1 2: lsl x5,x2,#2 // change this if size <> 4 add x5,x5,x3 ldr x4,[x1,x5,lsl #3] cmp x4,#0 cinc x6,x6,eq // positions vides beq 5f cmp x6,#0 beq 3f // no empty right case mov x0,#0 str x0,[x1,x5,lsl #3] // raz digit lsl x0,x6,#2 add x5,x5,x0 str x4,[x1,x5,lsl #3] // and store to right empty position mov x0,#1 3: cmp x7,#0 // first digit beq 4f add x8,x5,#SIZE // down digit ldr x9,[x1,x8,lsl #3] cmp x4,x9 // equal ? bne 4f cmp x10,x4 beq 4f mov x10,x4 add x4,x4,x9 // yes -> add str x4,[x1,x8,lsl #3] cmp x4,#TOTAL beq 6f mov x4,#0 str x4,[x1,x5,lsl #3] add x6,x6,#1 // empty case + 1 mov x0,#1 4: add x7,x7,#1 // no first digit   5: // and loop sub x2,x2,#1 cmp x2,#0 bge 2b add x3,x3,#1 cmp x3,#SIZE blt 1b b 100f 6: mov x0,#2 100: ldp x10,x11,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* move up */ /******************************************************************/ /* x0 return -1 if ok */ moveUp: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,x11,[sp,-16]! // save registres ldr x1,qAdrqTbCase mov x0,#0 mov x3,#0 1: mov x6,#0 mov x7,#0 mov x10,#0 mov x2,#0 2: lsl x5,x2,#2 // change this if size <> 4 add x5,x5,x3 ldr x4,[x1,x5,lsl #3] cmp x4,#0 cinc x6,x6,eq // positions vides beq 5f cmp x6,#0 beq 3f // no empty right case mov x0,#0 str x0,[x1,x5,lsl #3] // raz digit lsl x0,x6,#2 sub x5,x5,x0 str x4,[x1,x5,lsl #3] // and store to right empty position mov x0,#1 3: cmp x7,#0 // first digit beq 4f sub x8,x5,#SIZE // up digit ldr x9,[x1,x8,lsl #3] cmp x4,x9 // equal ? bne 4f cmp x10,x4 beq 4f mov x10,x4 add x4,x4,x9 // yes -> add str x4,[x1,x8,lsl #3] cmp x4,#TOTAL beq 6f mov x4,#0 str x4,[x1,x5,lsl #3] add x6,x6,#1 // empty case + 1 mov x0,#1 4: add x7,x7,#1 // no first digit   5: // and loop add x2,x2,#1 cmp x2,#SIZE blt 2b add x3,x3,#1 cmp x3,#SIZE blt 1b b 100f 6: mov x0,#2 100: ldp x10,x11,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* add new digit on game */ /******************************************************************/ /* x0 return -1 if ok */ addDigit: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres sub sp,sp,#8 * SIZE*SIZE mov fp,sp   mov x0,#100 bl genereraleas cmp x0,#10 mov x1,#4 mov x5,#2 csel x5,x5,x1,ge // movlt x5,#4 //movge x5,#2 ldr x1,qAdrqTbCase mov x3,#0 mov x4,#0 1: ldr x2,[x1,x3,lsl 3] cmp x2,#0 bne 2f str x3,[fp,x4,lsl 3] add x4,x4,#1 2: add x3,x3,#1 cmp x3,#SIZE*SIZE blt 1b cmp x4,#0 // no empty case beq 4f cmp x4,#1 bne 3f ldr x2,[fp] // one case str x5,[x1,x2,lsl 3] mov x0,#0 b 100f 3: // multiple case sub x0,x4,#1 bl genereraleas ldr x2,[fp,x0,lsl 3] str x5,[x1,x2,lsl 3] mov x0,#0 b 100f 4: mov x0,#-1 100: add sp,sp,#8* (SIZE*SIZE) // stack alignement ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrqTbCase: .quad qTbCase /******************************************************************/ /* display game */ /******************************************************************/ displayGame: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres ldr x0,qAdrszCleax1 bl affichageMess ldr x0,qAdrszLineH bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineV bl affichageMess ldr x1,qAdrqTbCase mov x2,#0 1: ldr x0,[x1,x2,lsl #3] bl digitString bl affichageMess ldr x0,qAdrszLineV bl affichageMess add x2,x2,#1 cmp x2,#SIZE blt 1b ldr x0,qAdrszCarriageReturn bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineH bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineV bl affichageMess 2: ldr x0,[x1,x2,lsl #3] bl digitString bl affichageMess ldr x0,qAdrszLineV bl affichageMess add x2,x2,#1 cmp x2,#SIZE*2 blt 2b ldr x0,qAdrszCarriageReturn bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineH bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineV bl affichageMess 3: ldr x0,[x1,x2,lsl #3] bl digitString bl affichageMess ldr x0,qAdrszLineV bl affichageMess add x2,x2,#1 cmp x2,#SIZE*3 blt 3b ldr x0,qAdrszCarriageReturn bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineH bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineV bl affichageMess 4: ldr x0,[x1,x2,lsl #3] bl digitString bl affichageMess ldr x0,qAdrszLineV bl affichageMess add x2,x2,#1 cmp x2,#SIZE*4 blt 4b ldr x0,qAdrszCarriageReturn bl affichageMess ldr x0,qAdrszLineVT bl affichageMess ldr x0,qAdrszLineH bl affichageMess   100: ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrszLineH: .quad szLineH qAdrszLineV: .quad szLineV qAdrszLineVT: .quad szLineVT /******************************************************************/ /* digits string */ /******************************************************************/ /* x0 contains number */ /* x0 return address string */ digitString: stp x1,lr,[sp,-16]! // save registres cmp x0,#0 bne 1f ldr x0,qAdrszMess0 b 100f 1: cmp x0,#2 bne 2f ldr x0,qAdrszMess2 b 100f 2: cmp x0,#4 bne 3f ldr x0,qAdrszMess4 b 100f 3: cmp x0,#8 bne 4f ldr x0,qAdrszMess8 b 100f 4: cmp x0,#16 bne 5f ldr x0,qAdrszMess16 b 100f 5: cmp x0,#32 bne 6f ldr x0,qAdrszMess32 b 100f 6: cmp x0,#64 bne 7f ldr x0,qAdrszMess64 b 100f 7: cmp x0,#128 bne 8f ldr x0,qAdrszMess128 b 100f 8: cmp x0,#256 bne 9f ldr x0,qAdrszMess256 b 100f 9: cmp x0,#512 bne 10f ldr x0,qAdrszMess512 b 100f 10: cmp x0,#1024 bne 11f ldr x0,qAdrszMess1024 b 100f 11: cmp x0,#2048 bne 12f ldr x0,qAdrszMess2048 b 100f 12: ldr x1,qAdrszMessErreur // error message bl displayError 100: ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrszMess0: .quad szMess0 qAdrszMess2: .quad szMess2 qAdrszMess4: .quad szMess4 qAdrszMess8: .quad szMess8 qAdrszMess16: .quad szMess16 qAdrszMess32: .quad szMess32 qAdrszMess64: .quad szMess64 qAdrszMess128: .quad szMess128 qAdrszMess256: .quad szMess256 qAdrszMess512: .quad szMess512 qAdrszMess1024: .quad szMess1024 qAdrszMess2048: .quad szMess2048   //qAdrsBuffer: .quad sBuffer qAdrszMessErreur : .quad szMessErreur   /***************************************************/ /* Generation random number */ /***************************************************/ /* x0 contains limit */ genereraleas: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers ldr x1,qAdrqGraine ldr x2,[x1] ldr x3,qNbDep1 mul x2,x3,x2 ldr x3,qNbDep2 add x2,x2,x3 str x2,[x1] // maj de la graine pour l appel suivant cmp x0,#0 beq 100f udiv x3,x2,x0 msub x0,x3,x0,x2 // résult = remainder   100: // end function ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /*****************************************************/ qAdrqGraine: .quad qGraine qNbDep1: .quad 0x0019660d qNbDep2: .quad 0x3c6ef35f   /******************************************************************/ /* traitement du signal */ /******************************************************************/ sighandler: stp x0,lr,[sp,-16]! // save registers str x1,[sp,-16]! ldr x0,qAdrqEnd mov x1,#1 // maj zone end str x1,[x0] ldr x1,[sp],16 ldp x0,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /***************************************************/ /* display error message */ /***************************************************/ /* x0 contains error code x1 : message address */ displayError: stp x2,lr,[sp,-16]! // save registers mov x2,x0 // save error code mov x0,x1 bl affichageMess mov x0,x2 // error code ldr x1,qAdrsZoneConv bl conversion16 // conversion hexa ldr x0,qAdrszMessErr // display error message ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character mov x3,x0 mov x0,x2 // error code ldr x1,qAdrsZoneConv // result address bl conversion10S // conversion decimale mov x0,x3 ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess 100: ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrszMessErr: .quad szMessErr /*********************************/ /* init terminal state */ /*********************************/ initTerm: stp x1,lr,[sp,-16]! // save registers /* read terminal state */ mov x0,STDIN // input console mov x1,TCGETS ldr x2,qAdrstOldtio mov x8,IOCTL // call system Linux svc 0 cbnz x0,98f // error ?   adr x0,sighandler // adresse routine traitement signal ldr x1,qAdrstSigAction // adresse structure sigaction str x0,[x1,sa_handler] // maj handler mov x0,SIGINT // signal type ldr x1,qAdrstSigAction mov x2,0 mov x3,8 mov x8,SIGACTION // call system svc 0   cmp x0,0 // error ? bne 98f mov x0,SIGQUIT ldr x1,qAdrstSigAction mov x2,0 // NULL mov x8,SIGACTION // call system svc 0 cmp x0,0 // error ? bne 98f mov x0,SIGTERM ldr x1,qAdrstSigAction mov x2,0 // NULL mov x8,SIGACTION // appel systeme svc 0 cmp x0,0 bne 98f // adr x0,qAdrSIG_IGN // address signal igonre function ldr x1,qAdrstSigAction1 str x0,[x1,sa_handler] mov x0,SIGTTOU //invalidate other process signal ldr x1,qAdrstSigAction1 mov x2,0 // NULL mov x8,SIGACTION // call system svc 0 cmp x0,0 bne 98f // /* read terminal current state */ mov x0,STDIN mov x1,TCGETS ldr x2,qAdrstCurtio // address current termio mov x8,IOCTL // call systeme svc 0 cmp x0,0 // error ? bne 98f mov x2,ICANON | ECHO // no key pressed echo on display mvn x2,x2 // and one key ldr x1,qAdrstCurtio ldr x3,[x1,#term_c_lflag] and x3,x2,x2 // add flags str x3,[x1,#term_c_lflag] // and store mov x0,STDIN // maj terminal current state mov x1,TCSETS ldr x2,qAdrstCurtio mov x8,IOCTL // call system svc 0 cbz x0,100f 98: // error display ldr x1,qAdrszMessErrInitTerm bl displayError mov x0,-1 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrstSigAction2: .quad stSigAction2 qAdrstSigAction3: .quad stSigAction3 /*********************************/ /* init instance epool */ /*********************************/ initPoll: stp x1,lr,[sp,-16]! // save registers ldr x0,qAdrstevents mov x1,STDIN // maj structure events str x1,[x0,#poll_fd] // maj FD mov x1,POLLIN // action code str x1,[x0,#poll_event] mov x0,0 mov x8,CREATPOLL // create epoll instance svc 0 cmp x0,0 // error ? ble 98f mov x10,x0 // return FD epoll instance mov x1,EPOLL_CTL_ADD mov x2,STDIN // Fd to we want add ldr x3,qAdrstevents // structure events address mov x8,CTLPOLL // call system control epoll svc 0 cmp x0,0 // error ? blt 98f // no mov x0,x10 // return FD epoll instance b 100f 98: // error display ldr x1,qAdrszMessErrInitPoll // error message bl displayError mov x0,-1 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /*********************************/ /* wait key */ /*********************************/ /* x0 contains FD poll */ waitKey: stp x1,lr,[sp,-16]! // save registers ldr x11,qAdrqTouche // key address str xzr,[x11] // raz key 1: ldr x1,qAdrqEnd // if signal ctrl-c -> end ldr x1,[x1] cbnz x1,100f   ldr x1,qAdrstevents mov x2,12 // size events mov x3,1 // timeout = 1 TODO: ?? mov x4,0 mov x8,SYSPOLL // call system wait POLL svc 0 cmp x0,0 // key pressed ? bge 100f 98: // error display ldr x1,qAdrszMessErreurKey // error message bl displayError mov x0,-1 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /*********************************/ /* read key */ /*********************************/ /* x0 returns key value */ readKey: stp x1,lr,[sp,-16]! // save registers mov x0,STDIN // File Descriptor ldr x1,qAdrqTouche // buffer address mov x2,KEYSIZE // key size mov x8,READ // read key svc #0 cmp x0,0 // error ? ble 98f ldr x2,qAdrqTouche // key address ldr x0,[x2] b 100f 98: // error display ldr x1,qAdrszMessErreur // error message bl displayError mov x0,-1 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /*********************************/ /* restaur terminal state */ /*********************************/ restauTerm: stp x1,lr,[sp,-16]! // save registers mov x0,STDIN // end then restaur begin state terminal mov x1,TCSETS ldr x2,qAdrstOldtio mov x8,IOCTL // call system svc 0 cbz x0,100f ldr x1,qAdrszMessErreur // error message bl displayError 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Pascal
Pascal
program square4; {$MODE DELPHI} {$R+,O+} const LoDgt = 0; HiDgt = 9; type tchkset = set of LoDgt..HiDgt; tSol = record solMin : integer; solDat : array[1..7] of integer; end;   var sum,a,b,c,d,e,f,g,cnt,uniqueCount : NativeInt; sol : array of tSol;   procedure SolOut; var i,j,mn: NativeInt; Begin mn := 0; repeat writeln(mn:3,' ...',mn+6:3); For i := Low(sol) to High(sol) do with sol[i] do IF solMin = mn then Begin For j := 1 to 7 do write(solDat[j]:3); writeln; end; writeln; inc(mn); until mn > HiDgt-6; end;   function CheckUnique:Boolean; var i,sum,mn: NativeInt; chkset : tchkset;   Begin chkset:= []; include(chkset,a);include(chkset,b);include(chkset,c); include(chkset,d);include(chkset,e);include(chkset,f); include(chkset,g); sum := 0; For i := LoDgt to HiDgt do IF i in chkset then inc(sum);   result := sum = 7; IF result then begin inc(uniqueCount); //find the lowest entry mn:= LoDgt; For i := LoDgt to HiDgt do IF i in chkset then Begin mn := i; BREAK; end; // are they consecutive For i := mn+1 to mn+6 do IF NOT(i in chkset) then EXIT;   setlength(sol,Length(sol)+1); with sol[high(sol)] do Begin solMin:= mn; solDat[1]:= a;solDat[2]:= b;solDat[3]:= c; solDat[4]:= d;solDat[5]:= e;solDat[6]:= f; solDat[7]:= g; end; end; end;   Begin cnt := 0; uniqueCount := 0; For a:= LoDgt to HiDgt do Begin For b := LoDgt to HiDgt do Begin sum := a+b; //a+b = b+c+d => a = c+d => d := a-c For c := a-LoDgt downto LoDgt do begin d := a-c; e := sum-d; IF e>HiDgt then e:= HiDgt; For e := e downto LoDgt do begin f := sum-e-d; IF f in [loDGt..Hidgt]then Begin g := sum-f; IF g in [loDGt..Hidgt]then Begin inc(cnt); CheckUnique; end; end; end; end; end; end; SolOut; writeln(' solution count for ',loDgt,' to ',HiDgt,' = ',cnt); writeln('unique solution count for ',loDgt,' to ',HiDgt,' = ',uniqueCount); end.
http://rosettacode.org/wiki/15_puzzle_solver
15 puzzle solver
Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game. For this task you will be using the following puzzle: 15 14 1 6 9 11 4 12 0 10 7 3 13 8 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 The output must show the moves' directions, like so: left, left, left, down, right... and so on. There are two solutions, of fifty-two moves: rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd see: Pretty Print of Optimal Solution Finding either one, or both is an acceptable result. Extra credit. Solve the following problem: 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 Related Task 15 puzzle game A* search algorithm
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program puzzle15solvex64.s */ /* this program is a adaptation algorithme C++ and go rosetta code */ /* thanck for the creators */ /* 1 byte by box on game board */   /* create a file with nano */ /* 15, 2, 3, 4 5, 6, 7, 1 9, 10, 8, 11 13, 14, 12, 0 */   /* Run this programm : puzzle15solver64 <file name> */ /* wait several minutes for résult */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   .equ TRUE, 1 .equ FALSE, 0   .equ SIZE, 4 .equ NBBOX, SIZE * SIZE .equ TAILLEBUFFER, 100 .equ NBMAXIELEMENTS, 100   .equ CONST_I, 1 .equ CONST_G, 8 .equ CONST_E, 2 .equ CONST_L, 4   /*********************************/ /* Initialized data */ /*********************************/ .data szMessTitre: .asciz "File name : " sMessResult: .ascii " " sMessValeur: .fill 22, 1, ' ' // size => 21 szCarriageReturn: .asciz "\n" szMessCounterSolution: .asciz "Solution in @ moves : \n"   szMessErreur: .asciz "Error detected.\n" szMessImpossible: .asciz "!!! Impossible solution !!!\n" szMessErrBuffer: .asciz "buffer size too less !!" szMessSpaces: .asciz " "   qTabNr: .quad 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3 qTabNc: .quad 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2 /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 8 sZoneConv: .skip 24 qAdrHeap: .skip 8 tbBox: .skip SIZE * SIZE // game boxes qAdrFicName: .skip 8 qTabN0: .skip 8 * NBMAXIELEMENTS // empty box qTabN3: .skip 8 * NBMAXIELEMENTS // moves qTabN4: .skip 8 * NBMAXIELEMENTS // ???? qTabN2: .skip 8 * NBMAXIELEMENTS // table game address sBuffer: .skip TAILLEBUFFER /*********************************/ /* code section */ /*********************************/ .text .global main main: // INFO: main mov x0,sp // stack address for load parameter bl traitFic // read file and store value in array cmp x0,#-1 beq 100f // error ?   ldr x0,qAdrtbBox bl displayGame // display array game   ldr x0,qAdrtbBox // control if solution exists bl controlSolution cmp x0,#TRUE beq 1f ldr x0,qAdrszMessImpossible // no solution !!! bl affichageMess b 100f   1:   ldr x0,qAdrtbBox ldr x9,qAdrqTabN2 str x0,[x9] // N2 address global mov x10,#0 // variable _n global mov x12,#0 // variable n global bl searchSolution cmp x0,#TRUE bne 100f // no solution ? ldr x3,qAdrqTabN2 ldr x0,[x3,x12,lsl #3] // visual solution control bl displayGame mov x0,x12 // move counter ldr x1,qAdrsZoneConv bl conversion10 // conversion counter ldr x0,qAdrszMessCounterSolution bl strInsertAtCharInc ldr x1,qAdrsZoneConv bl affichageMess ldr x5,qAdrqTabN3 ldr x3,qAdrsBuffer mov x2,#1 mov x4,#0 2: // loop solution display ldr x1,[x5,x2,lsl 3] cmp x2,#TAILLEBUFFER bge 99f strb w1,[x3,x4] add x4,x4,#1 add x2,x2,#1 cmp x2,x12 ble 2b mov x1,#0 strb w1,[x3,x4] // zéro final mov x0,x3 bl affichageMess ldr x0,qAdrszCarriageReturn bl affichageMess   b 100f   99: ldr x0,qAdrszMessErrBuffer bl affichageMess 100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call   qAdrtbBox: .quad tbBox qAdrqTabN0: .quad qTabN0 qAdrqTabN2: .quad qTabN2 qAdrqTabN3: .quad qTabN3 qAdrqTabN4: .quad qTabN4 qAdrszMessCounterSolution: .quad szMessCounterSolution qAdrszMessImpossible: .quad szMessImpossible qAdrszMessErrBuffer: .quad szMessErrBuffer qAdrsZoneConv: .quad sZoneConv /******************************************************************/ /* search Solution */ /******************************************************************/ searchSolution: // INFO: searchSolution stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres // address allocation place on the heap mov x0,#0 // allocation place heap mov x8,BRK // call system 'brk' svc #0 cmp x0,#-1 // allocation error beq 99f ldr x1,qAdrqAdrHeap str x0,[x1] // store heap address bl functionFN ldr x3,qAdrqTabN2 ldr x0,[x3,x12,lsl #3] // last current game bl gameOK // it is Ok ? cmp x0,#TRUE beq 100f // yes --> end   ldr x1,qAdrqAdrHeap // free up resources ldr x0,[x1] // restaur start address heap mov x8,BRK // call system 'brk' svc #0 cmp x0,#-1 // allocation error beq 99f add x10,x10,#1 // _n mov x12,#0 // n bl searchSolution // next recursif call b 100f 99: ldr x0,qAdrszMessErreur bl affichageMess 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrszMessErreur: .quad szMessErreur qAdrqAdrHeap: .quad qAdrHeap /******************************************************************/ /* Fonction FN */ /******************************************************************/ functionFN: // INFO: functionFN stp x1,lr,[sp,-16]! // save registres ldr x4,qAdrqTabN3 ldr x3,[x4,x12,lsl #3] ldr x5,qAdrqTabN0 // load position empty box ldr x6,[x5,x12,lsl #3] cmp x6,#15 // last box bne 2f cmp x3,#'R' bne 11f mov x0,#CONST_G bl functionFZ b 100f 11: cmp x3,#'D' bne 12f mov x0,#CONST_L bl functionFZ b 100f 12: mov x0,#CONST_G + CONST_L bl functionFZ b 100f   2: cmp x6,#12 bne 3f cmp x3,#'L' bne 21f mov x0,#CONST_G bl functionFZ b 100f 21: cmp x3,#'D' bne 22f mov x0,#CONST_E bl functionFZ b 100f 22: mov x0,#CONST_E + CONST_G bl functionFZ b 100f 3: cmp x6,#13 beq 30f cmp x6,#14 bne 4f 30: cmp x3,#'L' bne 31f mov x0,#CONST_G + CONST_L bl functionFZ b 100f 31: cmp x3,#'R' bne 32f mov x0,#CONST_G + CONST_E bl functionFZ b 100f 32: cmp x3,#'D' bne 33f mov x0,#CONST_E + CONST_L bl functionFZ b 100f 33: mov x0,#CONST_L + CONST_E + CONST_G bl functionFZ b 100f 4: cmp x6,#3 bne 5f cmp x3,#'R' bne 41f mov x0,#CONST_I bl functionFZ b 100f 41: cmp x3,#'U' bne 42f mov x0,#CONST_L bl functionFZ b 100f 42: mov x0,#CONST_I + CONST_L bl functionFZ b 100f 5: cmp x6,#0 bne 6f cmp x3,#'L' bne 51f mov x0,#CONST_I bl functionFZ b 100f 51: cmp x3,#'U' bne 52f mov x0,#CONST_E bl functionFZ b 100f 52: mov x0,#CONST_I + CONST_E bl functionFZ b 100f 6: cmp x6,#1 beq 60f cmp x6,#2 bne 7f 60: cmp x3,#'L' bne 61f mov x0,#CONST_I + CONST_L bl functionFZ b 100f 61: cmp x3,#'R' bne 62f mov x0,#CONST_E + CONST_I bl functionFZ b 100f 62: cmp x3,#'U' bne 63f mov x0,#CONST_E + CONST_L bl functionFZ b 100f 63: mov x0,#CONST_I + CONST_E + CONST_L bl functionFZ b 100f 7: cmp x6,#7 beq 70f cmp x6,#11 bne 8f 70: cmp x3,#'R' bne 71f mov x0,#CONST_I + CONST_G bl functionFZ b 100f 71: cmp x3,#'U' bne 72f mov x0,#CONST_G + CONST_L bl functionFZ b 100f 72: cmp x3,#'D' bne 73f mov x0,#CONST_I + CONST_L bl functionFZ b 100f 73: mov x0,#CONST_I + CONST_G + CONST_L bl functionFZ b 100f 8: cmp x6,#4 beq 80f cmp x6,#8 bne 9f 80: cmp x3,#'D' bne 81f mov x0,#CONST_I + CONST_E bl functionFZ b 100f 81: cmp x3,#'U' bne 82f mov x0,#CONST_G + CONST_E bl functionFZ b 100f 82: cmp x3,#'L' bne 83f mov x0,#CONST_I + CONST_G bl functionFZ b 100f 83: mov x0,#CONST_G + CONST_E + CONST_I bl functionFZ b 100f 9: cmp x3,#'D' bne 91f mov x0,#CONST_I + CONST_E + CONST_L bl functionFZ b 100f 91: cmp x3,#'L' bne 92f mov x0,#CONST_I + CONST_G + CONST_L bl functionFZ b 100f 92: cmp x3,#'R' bne 93f mov x0,#CONST_I + CONST_G + CONST_E bl functionFZ b 100f 93: cmp x3,#'U' bne 94f mov x0,#CONST_G + CONST_E + CONST_L bl functionFZ b 100f 94: mov x0,#CONST_G + CONST_L + CONST_I + CONST_E bl functionFZ b 100f   99: // error ldr x0,qAdrszMessErreur bl affichageMess 100: ldp x1,lr,[sp],16 // restaur des 2 registres ret   /******************************************************************/ /* function FZ */ /* */ /***************************************************************/ /* x0 contains variable w */ functionFZ: // INFO: functionFZ stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres mov x2,x0 and x1,x2,#CONST_I cmp x1,#0 ble 1f bl functionFI bl functionFY cmp x0,#TRUE beq 100f sub x12,x12,#1 // variable n 1: ands x1,x2,#CONST_G ble 2f bl functionFG bl functionFY cmp x0,#TRUE beq 100f sub x12,x12,#1 // variable n 2: ands x1,x2,#CONST_E ble 3f bl functionFE bl functionFY cmp x0,#TRUE beq 100f sub x12,x12,#1 // variable n 3: ands x1,x2,#CONST_L ble 4f bl functionFL bl functionFY cmp x0,#TRUE beq 100f sub x12,x12,#1 // variable n 4: mov x0,#FALSE 100: ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* function FY */ /******************************************************************/ functionFY: // INFO: functionFY stp x1,lr,[sp,-16]! // save registres ldr x1,qAdrqTabN2 ldr x0,[x1,x12,lsl #3] bl gameOK // game OK ? cmp x0,#TRUE beq 100f ldr x1,qAdrqTabN4 ldr x0,[x1,x12,lsl #3] cmp x0,x10 bgt 1f bl functionFN b 100f 1: mov x0,#FALSE 100: ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* the empty box is down */ /******************************************************************/ functionFI: // INFO: functionFI stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres ldr x0,qAdrqTabN0 ldr x1,[x0,x12,lsl #3] // empty box add x2,x1,#4 ldr x3,[x9,x12,lsl #3] // load game current ldrb w4,[x3,x2] // load box down empty box add x5,x12,#1 // n+1 add x8,x1,#4 // new position empty case str x8,[x0,x5,lsl #3] // store new position empty case ldr x6,qAdrqTabN3   mov x7,#'D' // down str x7,[x6,x5,lsl #3] // store move ldr x6,qAdrqTabN4 ldr x7,[x6,x12,lsl #3] str x7,[x6,x5,lsl #3] // N4 (n+1) = n4(n) mov x0,x3 bl createGame // create copy game ldrb w3,[x0,x1] // and inversion box ldrb w8,[x0,x2] strb w8,[x0,x1] strb w3,[x0,x2] str x0,[x9,x5,lsl #3] // store new game in table lsr x1,x1,#2 // line position empty case = N°/ 4 ldr x0,qAdrqTabNr ldr x2,[x0,x4,lsl #3] // load N° line box moved cmp x2,x1 // compare ???? ble 1f add x7,x7,#1 // and increment ???? str x7,[x6,x5,lsl #3] 1: add x12,x12,#1 // increment N ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrqTabNr: .quad qTabNr qAdrqTabNc: .quad qTabNc /******************************************************************/ /* empty case UP see explain in english in function FI */ /******************************************************************/ functionFG: // INFO: functionFG stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres ldr x0,qAdrqTabN0 ldr x1,[x0,x12,lsl #3] // case vide sub x2,x1,#4 // position case au dessus ldr x3,[x9,x12,lsl #3] // extrait jeu courant ldrb w4,[x3,x2] // extrait le contenu case au dessus add x5,x12,#1 // N+1 = N sub x8,x1,#4 // nouvelle position case vide str x8,[x0,x5,lsl #3] // et on la stocke ldr x6,qAdrqTabN3 mov x7,#'U' // puis on stocke le code mouvement str x7,[x6,x5,lsl #3] ldr x6,qAdrqTabN4 ldr x7,[x6,x12,lsl #3] str x7,[x6,x5,lsl #3] // N4 (N+1) = N4 (N) mov x0,x3 // jeu courant bl createGame // création nouveau jeu ldrb w3,[x0,x1] // et echange les 2 cases ldrb w8,[x0,x2] strb w8,[x0,x1] strb w3,[x0,x2] str x0,[x9,x5,lsl #3] // stocke la nouvelle situation lsr x1,x1,#2 // ligne case vide = position /4 ldr x0,qAdrqTabNr ldr x2,[x0,x4,lsl #3] // extrait table à la position case cmp x2,x1 // et comparaison ??? bge 1f add x7,x7,#1 // puis increment N4 de 1  ??? str x7,[x6,x5,lsl #3] 1: add x12,x12,#1 // increment de N ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* empty case go right see explain finction FI ou FG en français */ /******************************************************************/ functionFE: // INFO: functionFE stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres ldr x0,qAdrqTabN0 ldr x1,[x0,x12,lsl #3] add x2,x1,#1 ldr x3,[x9,x12,lsl #3] ldrb w4,[x3,x2] // extrait le contenu case add x5,x12,#1 add x8,x1,#1 str x8,[x0,x5,lsl #3] // nouvelle case vide ldr x6,qAdrqTabN3 mov x7,#'R' str x7,[x6,x5,lsl #3] // mouvement ldr x6,qAdrqTabN4 ldr x7,[x6,x12,lsl #3] str x7,[x6,x5,lsl #3] // N4 ?? mov x0,x3 bl createGame ldrb w3,[x0,x1] // exchange two boxes ldrb w8,[x0,x2] strb w8,[x0,x1] strb w3,[x0,x2] str x0,[x9,x5,lsl #3] // stocke la nouvelle situation lsr x3,x1,#2 sub x1,x1,x3,lsl #2 ldr x0,qAdrqTabNc ldr x2,[x0,x4,lsl #3] // extrait table à la position case cmp x2,x1 ble 1f add x7,x7,#1 str x7,[x6,x5,lsl #3] 1: add x12,x12,#1 ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* empty box go left see explain function FI ou FG en français */ /******************************************************************/ functionFL: // INFO: functionFL stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres ldr x0,qAdrqTabN0 ldr x1,[x0,x12,lsl #3] // case vide sub x2,x1,#1 ldr x3,[x9,x12,lsl #3] // extrait jeu courant ldrb w4,[x3,x2] // extrait le contenu case add x5,x12,#1 sub x8,x1,#1 str x8,[x0,x5,lsl #3] // nouvelle case vide ldr x6,qAdrqTabN3 mov x7,#'L' str x7,[x6,x5,lsl #3] // mouvement ldr x6,qAdrqTabN4 ldr x7,[x6,x12,lsl #3] str x7,[x6,x5,lsl #3] // N4 ?? mov x0,x3 bl createGame ldrb w3,[x0,x1] // exchange two boxes ldrb w8,[x0,x2] strb w8,[x0,x1] strb w3,[x0,x2] str x0,[x9,x5,lsl #3] // stocke la nouvelle situation lsr x3,x1,#2 sub x1,x1,x3,lsl #2 // compute remainder ldr x0,qAdrqTabNc ldr x2,[x0,x4,lsl #3] // extrait table colonne à la position case cmp x2,x1 bge 1f add x7,x7,#1 str x7,[x6,x5,lsl #3] 1: add x12,x12,#1 ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* create new Game */ /******************************************************************/ /* x0 contains box address */ /* x0 return address new game */ createGame: // INFO: createGame stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres mov x4,x0 // save value mov x0,#0 // allocation place heap mov x8,BRK // call system 'brk' svc #0 cmp x0,#-1 // allocation error beq 99f mov x5,x0 // save address heap for output string add x0,x0,#SIZE * SIZE // reservation place one element mov x8,BRK // call system 'brk' svc #0 cmp x0,#-1 // allocation error beq 99f mov x2,#0 1: // loop copy boxes ldrb w3,[x4,x2] strb w3,[x5,x2] add x2,x2,#1 cmp x2,#NBBOX blt 1b add x11,x11,#1 mov x0,x5 b 100f 99: // error ldr x0,qAdrszMessErreur bl affichageMess 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* read file */ /******************************************************************/ /* x0 contains address stack begin */ traitFic: // INFO: traitFic stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,fp,[sp,-16]! // save registres mov fp,x0 // fp <- start address ldr x4,[fp] // number of Command line arguments cmp x4,#1 ble 99f add x5,fp,#16 // second parameter address ldr x5,[x5] ldr x0,qAdrqAdrFicName str x5,[x0] ldr x0,qAdrszMessTitre bl affichageMess // display string mov x0,x5 bl affichageMess ldr x0,qAdrszCarriageReturn bl affichageMess // display carriage return   mov x0,AT_FDCWD mov x1,x5 // file name mov x2,#O_RDWR // flags mov x3,#0 // mode mov x8, #OPEN // call system OPEN svc 0 cmp x0,#0 // error ? ble 99f mov x7,x0 // File Descriptor ldr x1,qAdrsBuffer // buffer address mov x2,#TAILLEBUFFER // buffer size mov x8,#READ // read file svc #0 cmp x0,#0 // error ? blt 99f // extraction datas ldr x1,qAdrsBuffer // buffer address add x1,x1,x0 mov x0,#0 // store zéro final strb w0,[x1] ldr x0,qAdrtbBox // game box address ldr x1,qAdrsBuffer // buffer address bl extracDatas // close file mov x0,x7 mov x8, #CLOSE svc 0 mov x0,#0 b 100f 99: // error ldr x0,qAdrszMessErreur // error message bl affichageMess mov x0,#-1 100: ldp x8,fp,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret qAdrqAdrFicName: .quad qAdrFicName qAdrszMessTitre: .quad szMessTitre qAdrsBuffer: .quad sBuffer /******************************************************************/ /* extrac digit file buffer */ /******************************************************************/ /* x0 contains boxs address */ /* x1 contains buffer address */ extracDatas: // INFO: extracDatas stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres mov x7,x0 mov x6,x1 mov x2,#0 // string buffer indice mov x4,x1 // start digit ascii mov x5,#0 // box index 1: ldrb w3,[x6,x2] cmp x3,#0 // datas end ? beq 4f cmp x3,#0xA // line end ? beq 2f cmp x3,#',' // box end ? beq 3f add x2,x2,#1 b 1b 2: mov x3,#0 strb w3,[x6,x2] // zero final add x3,x2,#1 // next character ldrb w3,[x6,x3] cmp x3,#0xD // line return bne 21f add x2,x2,#2 // yes b 4f 21: add x2,x2,#1 b 4f 3: mov x3,#0 // zero final strb w3,[x6,x2] add x2,x2,#1 4: mov x0,x4 // conversion character ascii in integer bl conversionAtoD strb w0,[x7,x5] // and store value on 1 byte box cmp x0,#0 // empty box ? bne 5f ldr x0,qAdrqTabN0 str x5,[x0] // empty box in item zéro 5: add x5,x5,#1 // increment counter boxes cmp x5,#NBBOX // number box = maxi ? bge 100f add x4,x6,x2 // new start address digit ascii b 1b 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* control of the game solution */ /******************************************************************/ /* x0 contains boxs address */ /* x0 returns 0 if not possible */ /* x0 returns 1 if possible */ controlSolution: // INFO: controlSolution stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres mov x5,x0 ldr x8,qAdrqTabN0 ldr x8,[x8] // empty box //mov x7,#0 cmp x8,#1 cset x7,eq beq 1f cmp x8,#3 cset x7,eq beq 1f cmp x8,#4 cset x7,eq beq 1f cmp x8,#6 cset x7,eq beq 1f cmp x8,#9 cset x7,eq beq 1f cmp x8,#11 cset x7,eq beq 1f cmp x8,#12 cset x7,eq beq 1f cmp x8,#14 cset x7,eq 1: mov x9,NBBOX - 1 sub x6,x9,x8 add x7,x7,x6 // count permutations mov x1,#-1 mov x6,#0 2: add x1,x1,#1 cmp x1,#NBBOX bge 80f cmp x1,x8 beq 2b ldrb w3,[x5,x1] mov x2,x1 3: add x2,x2,#1 cmp x2,#NBBOX bge 2b cmp x2,x8 beq 3b ldrb w4,[x5,x2] cmp x4,x3 cinc x6,x6,lt b 3b 80: add x6,x6,x7 tst x6,#1 cset x0,eq 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* game Ok ? */ /******************************************************************/ /* x0 contains boxs address */ gameOK: // INFO: gameOK stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres mov x2,#0 ldrb w3,[x0,x2] cmp x3,#0 bne 0f mov x3,#0xF 0: add x2,x2,#1 1: ldrb w4,[x0,x2] cmp x4,#0 bne 11f mov x3,#0xF 11: cmp x4,x3 ble 99f mov x3,x4 add x2,x2,#1 cmp x2,#NBBOX -2 ble 1b mov x0,#TRUE // game Ok b 100f 99: mov x0,#FALSE // game not Ok 100: ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* display game */ /******************************************************************/ /* x0 contains boxs address */ displayGame: // INFO: displayGame stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres mov x4,x0 ldr x0,qAdrszMessTitre bl affichageMess // display titre ldr x0,qAdrqAdrFicName ldr x0,[x0] bl affichageMess // display string ldr x0,qAdrszCarriageReturn bl affichageMess // display line return mov x2,#0 ldr x1,qAdrsMessValeur 1: ldrb w0,[x4,x2] cmp x0,#0 beq 3f bl conversion10 // call conversion decimal cmp x0,1 bne 2f mov x0,#0x002020 str w0,[x1,#1] // zéro final b 4f 2: mov x0,#0x20 str w0,[x1,#2] // zéro final b 4f 3: ldr x0,iSpaces // store spaces to empty case str w0,[x1] 4: ldr x0,qAdrsMessResult bl affichageMess // display message add x0,x2,#1 tst x0,#0b11 bne 5f ldr x0,qAdrszCarriageReturn bl affichageMess // display message 5: add x2,x2,#1 cmp x2,#NBBOX - 1 ble 1b ldr x0,qAdrszCarriageReturn bl affichageMess // display line return   100: ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret iSpaces: .quad 0x00202020 // spaces qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessValeur: .quad sMessValeur qAdrsMessResult: .quad sMessResult /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#Aime
Aime
integer bottles;   bottles = 99;   do { o_(bottles, " bottles of beer on the wall\n"); o_(bottles, " bottles of beer\n"); o_("Take one down, pass it around\n"); o_(bottles -= 1, " bottles of beer on the wall\n\n"); } while (bottles);
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#Clojure
Clojure
  (ns rosettacode.24game)   (def ^:dynamic *luser* "You guessed wrong, or your input was not in prefix notation.")   (def ^:private start #(println "Your numbers are: " %1 ". Your goal is " %2 ".\n" "Use the ops [+ - * /] in prefix notation to reach" %2 ".\n" "q[enter] to quit."))   (defn play ([] (play 24)) ([goal] (play goal (repeatedly 4 #(inc (rand-int 9))))) ([goal gns] (start gns goal) (let [input (read-string (read-line)) flat (flatten input)] (println (if (and (re-find #"^\([\d\s+*/-]+\d?\)$" (pr-str flat)) (= (set gns) (set (filter integer? flat))) (= goal (eval input))) "You won the game!" *luser*)) (when (not= input 'q) (recur goal gns)))))   ; * checks prefix form, then checks to see that the numbers used ; and the numbers generated by the game are the same.  
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#scheme
scheme
(define (f m n) (define (sigma g x y) (define (sum i) (if (< i 0) 0 (+ (f x (- y i) ) (sum (- i 1))))) (sum y)) (cond ((eq? m n) 1) ((eq? n 1) 1) ((eq? n 0) 0) ((< m n) (f m m)) ((< (/ m 2) n) (sigma f (- m n) (- m n))) (else (sigma f (- m n) n)))) (define (line m) (define (connect i) (if (> i m) '() (cons (f m i) (connect (+ i 1))))) (connect 1)) (define (print x) (define (print-loop i) (cond ((< i x) (begin (display (line i)) (display "\n") (print-loop (+ i 1)) )))) (print-loop 1)) (print 25)
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#Brainf.2A.2A.2A
Brainf***
INPUT AND SUMMATION TODO if first symbol is a minus sign print Qgo awayQ +> initialize sum to one ++[ loop for each input ie twice [>>,----------[----------------------[-<+>]]<] eat digits until space or newline <[<]>>> >[< until no next digit ---------------- subtract ascii zero minus what we subtracted above [->++++++++++<] add ten timess that to the next digit <[->+<]<[->+<]>> shift sum and loop counter >> ] <---------------- subtract as above from last digit as well [-<<+>>] add to sum <- ] <- subtract original one from sum   OUTPUT [ while a number divided by ten is bigger than zero [->+<[->+<[->+<[->+<[->+<[->+<[->+<[->+<[->+<[->--------->+<<[->>>+<<<]]]]]]]]]]>>>[-<<<+>>>]<<<] divide by ten >++++++++++++++++++++++++++++++++++++++++++++++++> convert remainder to ascii digit ] <[.<<] print ascii digits
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#Swift
Swift
func ackerman(m:Int, n:Int) -> Int { if m == 0 { return n+1 } else if n == 0 { return ackerman(m-1, 1) } else { return ackerman(m-1, ackerman(m, n-1)) } }
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Elixir
Elixir
defmodule ABC do def can_make_word(word, avail) do can_make_word(String.upcase(word) |> to_charlist, avail, []) end   defp can_make_word([], _, _), do: true defp can_make_word(_, [], _), do: false defp can_make_word([l|tail], [b|rest], tried) do (l in b and can_make_word(tail, rest++tried, [])) or can_make_word([l|tail], rest, [b|tried]) end end   blocks = ~w(BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM)c ~w(A Bark Book Treat Common Squad Confuse) |> Enum.map(fn(w) -> IO.puts "#{w}: #{ABC.can_make_word(w, blocks)}" end)
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#C.2B.2B
C++
#include <cstdlib> // for rand #include <algorithm> // for random_shuffle #include <iostream> // for output   using namespace std;   class cupboard { public: cupboard() { for (int i = 0; i < 100; i++) drawers[i] = i; random_shuffle(drawers, drawers + 100); }   bool playRandom(); bool playOptimal();   private: int drawers[100]; };   bool cupboard::playRandom() { bool openedDrawers[100] = { 0 }; for (int prisonerNum = 0; prisonerNum < 100; prisonerNum++) { // loops through prisoners numbered 0 through 99 bool prisonerSuccess = false; for (int i = 0; i < 100 / 2; i++) { // loops through 50 draws for each prisoner int drawerNum = rand() % 100; if (!openedDrawers[drawerNum]) { openedDrawers[drawerNum] = true; break; } if (drawers[drawerNum] == prisonerNum) { prisonerSuccess = true; break; } } if (!prisonerSuccess) return false; } return true; }   bool cupboard::playOptimal() { for (int prisonerNum = 0; prisonerNum < 100; prisonerNum++) { bool prisonerSuccess = false; int checkDrawerNum = prisonerNum; for (int i = 0; i < 100 / 2; i++) { if (drawers[checkDrawerNum] == prisonerNum) { prisonerSuccess = true; break; } else checkDrawerNum = drawers[checkDrawerNum]; } if (!prisonerSuccess) return false; } return true; }   double simulate(char strategy) { int numberOfSuccesses = 0; for (int i = 0; i < 10000; i++) { cupboard d; if ((strategy == 'R' && d.playRandom()) || (strategy == 'O' && d.playOptimal())) // will run playRandom or playOptimal but not both because of short-circuit evaluation numberOfSuccesses++; }   return numberOfSuccesses * 100.0 / 10000; }   int main() { cout << "Random strategy: " << simulate('R') << " %" << endl; cout << "Optimal strategy: " << simulate('O') << " %" << endl; system("PAUSE"); // for Windows return 0; }
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Ring
Ring
  #Project: Anbundant odd numbers   max = 100000000 limit = 25 nr = 0 m = 1 check = 0 index = 0 see "working..." + nl see "wait for done..." + nl while true check = 0 if m%2 = 1 nice(m) ok if check = 1 nr = nr + 1 ok if nr = max exit ok m = m + 1 end see "done..." + nl   func nice(n) check = 0 nArray = [] for i = 1 to n - 1 if n % i = 0 add(nArray,i) ok next sum = 0 for p = 1 to len(nArray) sum = sum + nArray[p] next if sum > n check = 1 index = index + 1 if index < limit + 1 showArray(n,nArray,sum,index) ok if index = 100 see "One thousandth abundant odd number:" + nl showArray2(n,nArray,sum,index) ok if index = 100000000 see "First abundant odd number above one billion:" + nl showArray2(n,nArray,sum,index) ok ok   func showArray(n,nArray,sum,index) see "" + index + ". " + string(n) + ": divisor sum: " for m = 1 to len(nArray) if m < len(nArray) see string(nArray[m]) + " + " else see string(nArray[m]) + " = " + string(sum) + nl + nl ok next   func showArray2(n,nArray,sum,index) see "" + index + ". " + string(n) + ": divisor sum: " + see string(nArray[m]) + " = " + string(sum) + nl + nl  
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Objeck
Objeck
class TwentyOne { @quit : Bool; @player_total : Int; @computer_total : Int;   function : Main(args : String[]) ~ Nil { TwentyOne->New()->Play(); }   New() { }   method : Play() ~ Nil { player_first := Int->Random(1) = 1;   "Enter 'q' to quit\n==="->PrintLine(); do { if(player_first) { PlayerTurn(); if(<>@quit) { "---"->PrintLine(); ComputerTurn(); }; } else { ComputerTurn(); "---"->PrintLine(); PlayerTurn(); }; "==="->PrintLine(); } while(<>@quit); }   method : ComputerTurn() ~ Nil { input := Int->Random(1, 3);   "Computer choose: {$input}"->PrintLine(); @computer_total += input;   if(@computer_total = 21) { "Computer Wins!"->PrintLine(); @quit := true; } else if(@computer_total > 21) { "Computer Loses."->PrintLine(); @quit := true; } else { "Computer total is {$@computer_total}."->PrintLine(); }; }   method : PlayerTurn() ~ Nil { input := GetInput();   if(input = -1) { "Quit"->PrintLine(); @quit := true; } else if(input = 0) { "Invalid Input!"->PrintLine(); } else { @player_total += input; };   if(@player_total = 21) { "Player Wins!"->PrintLine(); @quit := true; } else if(@player_total > 21) { "Player Loses."->PrintLine(); @quit := true; } else { "Player total is {$@player_total}."->PrintLine(); }; }   function : GetInput() ~ Int { "Choosing a number beween 1-3: "->Print();   input := System.IO.Console->ReadString(); if(input->Size() = 1) { if(input->Get(0) = 'q') { return -1; };   return input->ToInt(); };   return 0; } }
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#Elixir
Elixir
defmodule Game24 do @expressions [ ["((", "", ")", "", ")", ""], ["(", "(", "", "", "))", ""], ["(", "", ")", "(", "", ")"], ["", "((", "", "", ")", ")"], ["", "(", "", "(", "", "))"] ]   def solve(digits) do dig_perm = permute(digits) |> Enum.uniq operators = perm_rep(~w[+ - * /], 3) for dig <- dig_perm, ope <- operators, expr <- @expressions, check?(str = make_expr(dig, ope, expr)), do: str end   defp check?(str) do try do {val, _} = Code.eval_string(str) val == 24 rescue ArithmeticError -> false # division by zero end end   defp permute([]), do: [[]] defp permute(list) do for x <- list, y <- permute(list -- [x]), do: [x|y] end   defp perm_rep([], _), do: [[]] defp perm_rep(_, 0), do: [[]] defp perm_rep(list, i) do for x <- list, y <- perm_rep(list, i-1), do: [x|y] end   defp make_expr([a,b,c,d], [x,y,z], [e0,e1,e2,e3,e4,e5]) do e0 <> a <> x <> e1 <> b <> e2 <> y <> e3 <> c <> e4 <> z <> d <> e5 end end   case Game24.solve(System.argv) do [] -> IO.puts "no solutions" solutions -> IO.puts "found #{length(solutions)} solutions, including #{hd(solutions)}" IO.inspect Enum.sort(solutions) end
http://rosettacode.org/wiki/2048
2048
Task Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values. Rules of the game   The rules are that on each turn the player must choose a direction   (up, down, left or right).   All tiles move as far as possible in that direction, some move more than others.   Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.   A move is valid when at least one tile can be moved,   if only by combination.   A new tile with the value of   2   is spawned at the end of each turn at a randomly chosen empty square   (if there is one).   Adding a new tile on a blank space.   Most of the time,   a new   2   is to be added,   and occasionally   (10% of the time),   a   4.   To win,   the player must create a tile with the number   2048.   The player loses if no valid moves are possible. The name comes from the popular open-source implementation of this game mechanic, 2048. Requirements   "Non-greedy" movement.     The tiles that were created by combining other tiles should not be combined again during the same turn (move).     That is to say,   that moving the tile row of: [2][2][2][2] to the right should result in: ......[4][4] and not: .........[8]   "Move direction priority".     If more than one variant of combining is possible,   move direction shall indicate which combination will take effect.   For example, moving the tile row of: ...[2][2][2] to the right should result in: ......[2][4] and not: ......[4][2]   Check for valid moves.   The player shouldn't be able to skip their turn by trying a move that doesn't change the board.   Check for a  win condition.   Check for a lose condition.
#Ada
Ada
with Ada.Text_IO; use Ada.Text_IO; with System.Random_Numbers; procedure Play_2048 is -- ----- Keyboard management type t_Keystroke is (Up, Down, Right, Left, Quit, Restart, Invalid); -- Redefining this standard procedure as function to allow Get_Keystroke as an expression function function Get_Immediate return Character is begin return Answer : Character do Ada.Text_IO.Get_Immediate(Answer); end return; end Get_Immediate; Arrow_Prefix : constant Character := Character'Val(224); -- works for windows function Get_Keystroke return t_Keystroke is (case Get_Immediate is when 'Q' | 'q' => Quit, when 'R' | 'r' => Restart, when 'W' | 'w' => Left, when 'A' | 'a' => Up, when 'S' | 's' => Down, when 'D' | 'd' => Right, -- Windows terminal when Arrow_Prefix => (case Character'Pos(Get_Immediate) is when 72 => Up, when 75 => Left, when 77 => Right, when 80 => Down, when others => Invalid), -- Unix escape sequences when ASCII.ESC => (case Get_Immediate is when '[' => (case Get_Immediate is when 'A' => Up, when 'B' => Down, when 'C' => Right, when 'D' => Left, when others => Invalid), when others => Invalid), when others => Invalid);   -- ----- Game data function Random_Int is new System.Random_Numbers.Random_Discrete(Integer); type t_List is array (Positive range <>) of Natural; subtype t_Row is t_List (1..4); type t_Board is array (1..4) of t_Row; Board  : t_Board; New_Board : t_Board; Blanks  : Natural; Score  : Natural; Generator : System.Random_Numbers.Generator;   -- ----- Displaying the board procedure Display_Board is Horizontal_Rule : constant String := "+----+----+----+----+"; function Center (Value : in String) return String is ((1..(2-(Value'Length-1)/2) => ' ') & -- Add leading spaces Value(Value'First+1..Value'Last) & -- Trim the leading space of the raw number image (1..(2-Value'Length/2) => ' ')); -- Add trailing spaces begin Put_Line (Horizontal_Rule); for Row of Board loop for Cell of Row loop Put('|' & (if Cell = 0 then " " else Center(Cell'Img))); end loop; Put_Line("|"); Put_Line (Horizontal_Rule); end loop; Put_Line("Score =" & Score'Img); end Display_Board;   -- ----- Game mechanics procedure Add_Block is Block_Offset : Positive := Random_Int(Generator, 1, Blanks); begin Blanks := Blanks-1; for Row of Board loop for Cell of Row loop if Cell = 0 then if Block_Offset = 1 then Cell := (if Random_Int(Generator,1,10) = 1 then 4 else 2); return; else Block_Offset := Block_Offset-1; end if; end if; end loop; end loop; end Add_Block;   procedure Reset_Game is begin Board  := (others => (others => 0)); Blanks := 16; Score  := 0; Add_Block; Add_Block; end Reset_Game;   -- Moving and merging will always be performed leftward, hence the following transforms function HFlip (What : in t_Row) return t_Row is (What(4),What(3),What(2),What(1)); function VFlip (What : in t_Board) return t_Board is (HFlip(What(1)),HFlip(What(2)),HFlip(What(3)),HFlip(What(4))); function Transpose (What : in t_Board) return t_Board is begin return Answer : t_Board do for Row in t_Board'Range loop for Column in t_Row'Range loop Answer(Column)(Row) := What(Row)(Column); end loop; end loop; end return; end Transpose;   -- For moving/merging, recursive expression functions will be used, but they -- can't contain statements, hence the following sub-function used by Merge function Add_Blank (Delta_Score : in Natural) return t_List is begin Blanks := Blanks+1; Score  := Score+Delta_Score; return (1 => 0); end Add_Blank;   function Move_Row (What : in t_List) return t_List is (if What'Length = 1 then What elsif What(What'First) = 0 then Move_Row(What(What'First+1..What'Last)) & (1 => 0) else (1 => What(What'First)) & Move_Row(What(What'First+1..What'Last)));   function Merge (What : in t_List) return t_List is (if What'Length <= 1 or else What(What'First) = 0 then What elsif What(What'First) = What(What'First+1) then (1 => 2*What(What'First)) & Merge(What(What'First+2..What'Last)) & Add_Blank(What(What'First)) else (1 => What(What'First)) & Merge(What(What'First+1..What'Last)));   function Move (What : in t_Board) return t_Board is (Merge(Move_Row(What(1))),Merge(Move_Row(What(2))),Merge(Move_Row(What(3))),Merge(Move_Row(What(4))));   begin System.Random_Numbers.Reset(Generator);   Main_Loop: loop Reset_Game; Game_Loop: loop Display_Board; case Get_Keystroke is when Restart => exit Game_Loop; when Quit => exit Main_Loop; when Left => New_Board := Move(Board); when Right => New_Board := VFlip(Move(VFlip(Board))); when Up => New_Board := Transpose(Move(Transpose(Board))); when Down => New_Board := Transpose(VFlip(Move(VFlip(Transpose(Board))))); when others => null; end case;   if New_Board = Board then Put_Line ("Invalid move..."); elsif (for some Row of New_Board => (for some Cell of Row => Cell = 2048)) then Display_Board; Put_Line ("Win !"); exit Main_Loop; else Board := New_Board; Add_Block; -- OK since the board has changed if Blanks = 0 and then (for all Row in 1..4 => (for all Column in 1..3 => (Board(Row)(Column) /= Board(Row)(Column+1)))) and then (for all Row in 1..3 => (for all Column in 1..4 => (Board(Row)(Column) /= Board(Row+1)(Column)))) then Display_Board; Put_Line ("Lost !"); exit Main_Loop; end if; end if; end loop Game_Loop; end loop Main_Loop; end Play_2048;  
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Perl
Perl
use ntheory qw/forperm/; use Set::CrossProduct;   sub four_sq_permute { my($list) = @_; my @solutions; forperm { @c = @$list[@_]; push @solutions, [@c] if check(@c); } @$list; print +@solutions . " unique solutions found using: " . join(', ', @$list) . "\n"; return @solutions; }   sub four_sq_cartesian { my(@list) = @_; my @solutions; my $iterator = Set::CrossProduct->new( [(@list) x 7] ); while( my $c = $iterator->get ) { push @solutions, [@$c] if check(@$c); } print +@solutions . " non-unique solutions found using: " . join(', ', @{@list[0]}) . "\n"; return @solutions; }   sub check { my(@c) = @_; $a = $c[0] + $c[1]; $b = $c[1] + $c[2] + $c[3]; $c = $c[3] + $c[4] + $c[5]; $d = $c[5] + $c[6]; $a == $b and $a == $c and $a == $d; }   sub display { my(@solutions) = @_; my $fmt = "%2s " x 7 . "\n"; printf $fmt, ('a'..'g'); printf $fmt, @$_ for @solutions; print "\n"; }   display four_sq_permute( [1..7] ); display four_sq_permute( [3..9] ); display four_sq_permute( [8, 9, 11, 12, 17, 18, 20, 21] ); four_sq_cartesian( [0..9] );
http://rosettacode.org/wiki/15_puzzle_solver
15 puzzle solver
Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game. For this task you will be using the following puzzle: 15 14 1 6 9 11 4 12 0 10 7 3 13 8 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 The output must show the moves' directions, like so: left, left, left, down, right... and so on. There are two solutions, of fifty-two moves: rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd see: Pretty Print of Optimal Solution Finding either one, or both is an acceptable result. Extra credit. Solve the following problem: 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 Related Task 15 puzzle game A* search algorithm
#Ada
Ada
with Ada.Text_IO;   procedure Puzzle_15 is   type Direction is (Up, Down, Left, Right); type Row_Type is range 0 .. 3; type Col_Type is range 0 .. 3; type Tile_Type is range 0 .. 15;   To_Col : constant array (Tile_Type) of Col_Type := (3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2); To_Row : constant array (Tile_Type) of Row_Type := (3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3);   type Board_Type is array (Row_Type, Col_Type) of Tile_Type;   Solved_Board : constant Board_Type := ((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 0));   type Try_Type is record Board : Board_Type; Move  : Direction; Cost  : Integer; Row  : Row_Type; Col  : Col_Type; end record;   Stack : array (0 .. 100) of Try_Type; Top  : Natural := 0; Iteration_Count : Natural := 0;   procedure Move_Down is Board  : Board_Type  := Stack (Top).Board; Row  : constant Row_Type  := Stack (Top).Row; Col  : constant Col_Type  := Stack (Top).Col; Tile  : constant Tile_Type := Board (Row + 1, Col); Penalty : constant Integer  := (if To_Row (Tile) <= Row then 0 else 1); begin Board (Row, Col) := Tile; Board (Row + 1, Col) := 0; Stack (Top + 1) := (Board => Board, Move => Down, Row => Row + 1, Col => Col, Cost => Stack (Top).Cost + Penalty); end Move_Down;   procedure Move_Up is Board  : Board_Type  := Stack (Top).Board; Row  : constant Row_Type  := Stack (Top).Row; Col  : constant Col_Type  := Stack (Top).Col; Tile  : constant Tile_Type := Board (Row - 1, Col); Penalty : constant Integer  := (if To_Row (Tile) >= Row then 0 else 1); begin Board (Row, Col) := Tile; Board (Row - 1, Col) := 0; Stack (Top + 1) := (Board => Board, Move => Up, Row => Row - 1, Col => Col, Cost => Stack (Top).Cost + Penalty); end Move_Up;   procedure Move_Left is Board  : Board_Type  := Stack (Top).Board; Row  : constant Row_Type  := Stack (Top).Row; Col  : constant Col_Type  := Stack (Top).Col; Tile  : constant Tile_Type := Board (Row, Col - 1); Penalty : constant Integer := (if To_Col (Tile) >= Col then 0 else 1); begin Board (Row, Col)  := Tile; Board (Row, Col - 1) := 0; Stack (Top + 1) := (Board => Board, Move => Left, Row => Row, Col => Col - 1, Cost => Stack (Top).Cost + Penalty); end Move_Left;   procedure Move_Right is Board  : Board_Type  := Stack (Top).Board; Row  : constant Row_Type  := Stack (Top).Row; Col  : constant Col_Type  := Stack (Top).Col; Tile  : constant Tile_Type := Board (Row, Col + 1); Penalty : constant Integer := (if To_Col (Tile) <= Col then 0 else 1); begin Board (Row, Col)  := Tile; Board (Row, Col + 1) := 0; Stack (Top + 1) := (Board => Board, Move => Right, Row => Row, Col => Col + 1, Cost => Stack (Top).Cost + Penalty); end Move_Right;   function Is_Solution return Boolean;   function Test_Moves return Boolean is begin if Stack (Top).Move /= Down and then Stack (Top).Row /= Row_Type'First then Move_Up; Top := Top + 1; if Is_Solution then return True; end if; Top := Top - 1; end if;   if Stack (Top).Move /= Up and then Stack (Top).Row /= Row_Type'Last then Move_Down; Top := Top + 1; if Is_Solution then return True; end if; Top := Top - 1; end if;   if Stack (Top).Move /= Right and then Stack (Top).Col /= Col_Type'First then Move_Left; Top := Top + 1; if Is_Solution then return True; end if; Top := Top - 1; end if;   if Stack (Top).Move /= Left and then Stack (Top).Col /= Col_Type'Last then Move_Right; Top := Top + 1; if Is_Solution then return True; end if; Top := Top - 1; end if;   return False; end Test_Moves;   function Is_Solution return Boolean is use Ada.Text_IO; begin if Stack (Top).Board = Solved_Board then Put ("Solved in " & Top'Image & " moves: "); for R in 1 .. Top loop Put (String'(Stack (R).Move'Image) (1)); end loop; New_Line; return True; end if; if Stack (Top).Cost <= Iteration_Count then return Test_Moves; end if; return False; end Is_Solution;   procedure Solve (Row  : in Row_Type; Col  : in Col_Type; Board : in Board_Type) is begin pragma Assert (Board (Row, Col) = 0); Top := 0; Iteration_Count := 0; Stack (Top) := (Board => Board, Row => Row, Col => Col, Move => Down, Cost => 0); while not Is_Solution loop Iteration_Count := Iteration_Count + 1; end loop; end Solve;   begin Solve (Row => 2, Col => 0, Board => ((15, 14, 1, 6), (9, 11, 4, 12), (0, 10, 7, 3), (13, 8, 5, 2))); end Puzzle_15;
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#Algae
Algae
  # 99 Bottles of Beer on the Wall # in Algae # bottles.A for (i in 99:1:1) { if (i != 1) { printf("%d bottles of beer on the wall\n";i); printf("%d bottles of beer...\n";i); printf("you take on down and pass it around...\n"); if ( i == 2) { printf("%d bottles of beer on the wall\n\n";i-1); else printf("%d bottles of beer on the wall\n\n";i-1); } else printf("1 bottle of beer on the wall\n"); printf("1 bottle of beer...\n"); printf("you take on down and pass it around..\n"); printf("no more bottles of beer on the wall!\n\n"); } }  
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#COBOL
COBOL
>>SOURCE FORMAT FREE *> This code is dedicated to the public domain *> This is GNUCobol 2.0 identification division. program-id. twentyfour. environment division. configuration section. repository. function all intrinsic. data division. working-storage section. 01 p pic 999. 01 p1 pic 999. 01 p-max pic 999 value 38. 01 program-syntax pic x(494) value *>statement = expression; '001 001 000 n' & '002 000 004 =' & '003 005 000 n' & '004 000 002 ;' *>expression = term, {('+'|'-') term,}; & '005 005 000 n' & '006 000 016 =' & '007 017 000 n' & '008 000 015 {' & '009 011 013 (' & '010 001 000 t' & '011 013 000 |' & '012 002 000 t' & '013 000 009 )' & '014 017 000 n' & '015 000 008 }' & '016 000 006 ;' *>term = factor, {('*'|'/') factor,}; & '017 017 000 n' & '018 000 028 =' & '019 029 000 n' & '020 000 027 {' & '021 023 025 (' & '022 003 000 t' & '023 025 000 |' & '024 004 000 t' & '025 000 021 )' & '026 029 000 n' & '027 000 020 }' & '028 000 018 ;' *>factor = ('(' expression, ')' | digit,); & '029 029 000 n' & '030 000 038 =' & '031 035 037 (' & '032 005 000 t' & '033 005 000 n' & '034 006 000 t' & '035 037 000 |' & '036 000 000 n' & '037 000 031 )' & '038 000 030 ;'. 01 filler redefines program-syntax. 03 p-entry occurs 038. 05 p-address pic 999. 05 filler pic x. 05 p-definition pic 999. 05 p-alternate redefines p-definition pic 999. 05 filler pic x. 05 p-matching pic 999. 05 filler pic x. 05 p-symbol pic x.   01 t pic 999. 01 t-len pic 99 value 6. 01 terminal-symbols pic x(210) value '01 + ' & '01 - ' & '01 * ' & '01 / ' & '01 ( ' & '01 ) '. 01 filler redefines terminal-symbols. 03 terminal-symbol-entry occurs 6. 05 terminal-symbol-len pic 99. 05 filler pic x. 05 terminal-symbol pic x(32).   01 nt pic 999. 01 nt-lim pic 99 value 5. 01 nonterminal-statements pic x(294) value "000 ....,....,....,....,....,....,....,....,....," & "001 statement = expression; " & "005 expression = term, {('+'|'-') term,}; " & "017 term = factor, {('*'|'/') factor,}; " & "029 factor = ('(' expression, ')' | digit,); " & "036 digit; ". 01 filler redefines nonterminal-statements. 03 nonterminal-statement-entry occurs 5. 05 nonterminal-statement-number pic 999. 05 filler pic x. 05 nonterminal-statement pic x(45).   01 indent pic x(64) value all '| '. 01 interpreter-stack. 03 r pic 99. *> previous top of stack 03 s pic 99. *> current top of stack 03 s-max pic 99 value 32. 03 s-entry occurs 32. 05 filler pic x(2) value 'p='. 05 s-p pic 999. *> callers return address 05 filler pic x(4) value ' sc='. 05 s-start-control pic 999. *> sequence start address 05 filler pic x(4) value ' ec='. 05 s-end-control pic 999. *> sequence end address 05 filler pic x(4) value ' al='. 05 s-alternate pic 999. *> the next alternate 05 filler pic x(3) value ' r='. 05 s-result pic x. *> S success, F failure, N no result 05 filler pic x(3) value ' c='. 05 s-count pic 99. *> successes in a sequence 05 filler pic x(3) value ' x='. 05 s-repeat pic 99. *> repeats in a {} sequence 05 filler pic x(4) value ' nt='. 05 s-nt pic 99. *> current nonterminal   01 language-area. 03 l pic 99. 03 l-lim pic 99. 03 l-len pic 99 value 1. 03 nd pic 9. 03 number-definitions. 05 n occurs 4 pic 9. 03 nu pic 9. 03 number-use. 05 u occurs 4 pic x. 03 statement. 05 c occurs 32. 07 c9 pic 9.   01 number-validation. 03 p4 pic 99. 03 p4-lim pic 99 value 24. 03 permutations-4 pic x(96) value '1234' & '1243' & '1324' & '1342' & '1423' & '1432' & '2134' & '2143' & '2314' & '2341' & '2413' & '2431' & '3124' & '3142' & '3214' & '3241' & '3423' & '3432' & '4123' & '4132' & '4213' & '4231' & '4312' & '4321'. 03 filler redefines permutations-4. 05 permutation-4 occurs 24 pic x(4). 03 current-permutation-4 pic x(4). 03 cpx pic 9. 03 od1 pic 9. 03 od2 pic 9. 03 odx pic 9. 03 od-lim pic 9 value 4. 03 operator-definitions pic x(4) value '+-*/'. 03 current-operators pic x(3). 03 co3 pic 9. 03 rpx pic 9. 03 rpx-lim pic 9 value 4. 03 valid-rpn-forms pic x(28) value 'nnonono' & 'nnnonoo' & 'nnnoono' & 'nnnnooo'. 03 filler redefines valid-rpn-forms. 05 rpn-form occurs 4 pic x(7). 03 current-rpn-form pic x(7).   01 calculation-area. 03 osx pic 99. 03 operator-stack pic x(32). 03 oqx pic 99. 03 oqx1 pic 99. 03 output-queue pic x(32). 03 work-number pic s9999. 03 top-numerator pic s9999 sign leading separate. 03 top-denominator pic s9999 sign leading separate. 03 rsx pic 9. 03 result-stack occurs 8. 05 numerator pic s9999. 05 denominator pic s9999.   01 error-found pic x. 01 divide-by-zero-error pic x.   *> diagnostics 01 NL pic x value x'0A'. 01 NL-flag pic x value space. 01 display-level pic x value '0'. 01 loop-lim pic 9999 value 1500. 01 loop-count pic 9999 value 0. 01 message-area value spaces. 03 message-level pic x. 03 message-value pic x(128).   *> input and examples 01 instruction pic x(32) value spaces. 01 tsx pic 99. 01 tsx-lim pic 99 value 14. 01 test-statements. 03 filler pic x(32) value '1234;1 + 2 + 3 + 4'. 03 filler pic x(32) value '1234;1 * 2 * 3 * 4'. 03 filler pic x(32) value '1234;((1)) * (((2 * 3))) * 4'. 03 filler pic x(32) value '1234;((1)) * ((2 * 3))) * 4'. 03 filler pic x(32) value '1234;(1 + 2 + 3 + 4'. 03 filler pic x(32) value '1234;)1 + 2 + 3 + 4'. 03 filler pic x(32) value '1234;1 * * 2 * 3 * 4'. 03 filler pic x(32) value '5679;6 - (5 - 7) * 9'. 03 filler pic x(32) value '1268;((1 * (8 * 6) / 2))'. 03 filler pic x(32) value '4583;-5-3+(8*4)'. 03 filler pic x(32) value '4583;8 * 4 - 5 - 3'. 03 filler pic x(32) value '4583;8 * 4 - (5 + 3)'. 03 filler pic x(32) value '1223;1 * 3 / (2 - 2)'. 03 filler pic x(32) value '2468;(6 * 8) / 4 / 2'. 01 filler redefines test-statements. 03 filler occurs 14. 05 test-numbers pic x(4). 05 filler pic x. 05 test-statement pic x(27).   procedure division. start-twentyfour. display 'start twentyfour' perform generate-numbers display 'type h <enter> to see instructions' accept instruction perform until instruction = spaces or 'q' evaluate true when instruction = 'h' perform display-instructions when instruction = 'n' perform generate-numbers when instruction(1:1) = 'm' move instruction(2:4) to number-definitions perform validate-number if divide-by-zero-error = space and 24 * top-denominator = top-numerator display number-definitions ' is solved by ' output-queue(1:oqx) else display number-definitions ' is not solvable' end-if when instruction = 'd0' or 'd1' or 'd2' or 'd3' move instruction(2:1) to display-level when instruction = 'e' display 'examples:' perform varying tsx from 1 by 1 until tsx > tsx-lim move spaces to statement move test-numbers(tsx) to number-definitions move test-statement(tsx) to statement perform evaluate-statement perform show-result end-perform when other move instruction to statement perform evaluate-statement perform show-result end-evaluate move spaces to instruction display 'instruction? ' with no advancing accept instruction end-perform   display 'exit twentyfour' stop run . generate-numbers. perform with test after until divide-by-zero-error = space and 24 * top-denominator = top-numerator compute n(1) = random(seconds-past-midnight) * 10 *> seed perform varying nd from 1 by 1 until nd > 4 compute n(nd) = random() * 10 perform until n(nd) <> 0 compute n(nd) = random() * 10 end-perform end-perform perform validate-number end-perform display NL 'numbers:' with no advancing perform varying nd from 1 by 1 until nd > 4 display space n(nd) with no advancing end-perform display space . validate-number. perform varying p4 from 1 by 1 until p4 > p4-lim move permutation-4(p4) to current-permutation-4 perform varying od1 from 1 by 1 until od1 > od-lim move operator-definitions(od1:1) to current-operators(1:1) perform varying od2 from 1 by 1 until od2 > od-lim move operator-definitions(od2:1) to current-operators(2:1) perform varying odx from 1 by 1 until odx > od-lim move operator-definitions(odx:1) to current-operators(3:1) perform varying rpx from 1 by 1 until rpx > rpx-lim move rpn-form(rpx) to current-rpn-form move 0 to cpx co3 move spaces to output-queue move 7 to oqx perform varying oqx1 from 1 by 1 until oqx1 > oqx if current-rpn-form(oqx1:1) = 'n' add 1 to cpx move current-permutation-4(cpx:1) to nd move n(nd) to output-queue(oqx1:1) else add 1 to co3 move current-operators(co3:1) to output-queue(oqx1:1) end-if end-perform end-perform perform evaluate-rpn if divide-by-zero-error = space and 24 * top-denominator = top-numerator exit paragraph end-if end-perform end-perform end-perform end-perform . display-instructions. display '1) Type h <enter> to repeat these instructions.' display '2) The program will display four randomly-generated' display ' single-digit numbers and will then prompt you to enter' display ' an arithmetic expression followed by <enter> to sum' display ' the given numbers to 24.' display ' The four numbers may contain duplicates and the entered' display ' expression must reference all the generated numbers and duplicates.' display ' Warning: the program converts the entered infix expression' display ' to a reverse polish notation (rpn) expression' display ' which is then interpreted from RIGHT to LEFT.' display ' So, for instance, 8*4 - 5 - 3 will not sum to 24.' display '3) Type n <enter> to generate a new set of four numbers.' display ' The program will ensure the generated numbers are solvable.' display '4) Type m#### <enter> (e.g. m1234) to create a fixed set of numbers' display ' for testing purposes.' display ' The program will test the solvability of the entered numbers.' display ' For example, m1234 is solvable and m9999 is not solvable.' display '5) Type d0, d1, d2 or d3 followed by <enter> to display none or' display ' increasingly detailed diagnostic information as the program evaluates' display ' the entered expression.' display '6) Type e <enter> to see a list of example expressions and results' display '7) Type <enter> or q <enter> to exit the program' . show-result. if error-found = 'y' or divide-by-zero-error = 'y' exit paragraph end-if display 'statement in RPN is' space output-queue evaluate true when top-numerator = 0 when top-denominator = 0 when 24 * top-denominator <> top-numerator display 'result (' top-numerator '/' top-denominator ') is not 24' when other display 'result is 24' end-evaluate . evaluate-statement. compute l-lim = length(trim(statement))   display NL 'numbers:' space n(1) space n(2) space n(3) space n(4) move number-definitions to number-use display 'statement is' space statement   move 1 to l move 0 to loop-count move space to error-found   move 0 to osx oqx move spaces to output-queue   move 1 to p move 1 to nt move 0 to s perform increment-s perform display-start-nonterminal perform increment-p   *>=================================== *> interpret ebnf *>=================================== perform until s = 0 or error-found = 'y'   evaluate true   when p-symbol(p) = 'n' and p-definition(p) = 000 *> a variable perform test-variable if s-result(s) = 'S' perform increment-l end-if perform increment-p   when p-symbol(p) = 'n' and p-address(p) <> p-definition(p) *> nonterminal reference move p to s-p(s) move p-definition(p) to p   when p-symbol(p) = 'n' and p-address(p) = p-definition(p) *> nonterminal definition perform increment-s perform display-start-nonterminal perform increment-p   when p-symbol(p) = '=' *> nonterminal control move p to s-start-control(s) move p-matching(p) to s-end-control(s) perform increment-p   when p-symbol(p) = ';' *> end nonterminal perform display-end-control perform display-end-nonterminal perform decrement-s if s > 0 evaluate true when s-result(r) = 'S' perform set-success when s-result(r) = 'F' perform set-failure end-evaluate move s-p(s) to p perform increment-p perform display-continue-nonterminal end-if   when p-symbol(p) = '{' *> start repeat sequence perform increment-s perform display-start-control move p to s-start-control(s) move p-alternate(p) to s-alternate(s) move p-matching(p) to s-end-control(s) move 0 to s-count(s) perform increment-p   when p-symbol(p) = '}' *> end repeat sequence perform display-end-control evaluate true when s-result(s) = 'S' *> repeat the sequence perform display-repeat-control perform set-nothing add 1 to s-repeat(s) move s-start-control(s) to p perform increment-p when other perform decrement-s evaluate true when s-result(r) = 'N' and s-repeat(r) = 0 *> no result perform increment-p when s-result(r) = 'N' and s-repeat(r) > 0 *> no result after success perform set-success perform increment-p when other *> fail the sequence perform increment-p end-evaluate end-evaluate   when p-symbol(p) = '(' *> start sequence perform increment-s perform display-start-control move p to s-start-control(s) move p-alternate(p) to s-alternate(s) move p-matching(p) to s-end-control(s) move 0 to s-count(s) perform increment-p   when p-symbol(p) = ')' *> end sequence perform display-end-control perform decrement-s evaluate true when s-result(r) = 'S' *> success perform set-success perform increment-p when s-result(r) = 'N' *> no result perform set-failure perform increment-p when other *> fail the sequence perform set-failure perform increment-p end-evaluate   when p-symbol(p) = '|' *> alternate evaluate true when s-result(s) = 'S' *> exit the sequence perform display-skip-alternate move s-end-control(s) to p when other perform display-take-alternate move p-alternate(p) to s-alternate(s) *> the next alternate perform increment-p perform set-nothing end-evaluate   when p-symbol(p) = 't' *> terminal move p-definition(p) to t move terminal-symbol-len(t) to t-len perform display-terminal evaluate true when statement(l:t-len) = terminal-symbol(t)(1:t-len) *> successful match perform set-success perform display-recognize-terminal perform process-token move t-len to l-len perform increment-l perform increment-p when s-alternate(s) <> 000 *> we are in an alternate sequence move s-alternate(s) to p when other *> fail the sequence perform set-failure move s-end-control(s) to p end-evaluate   when other *> end control perform display-control-failure *> shouldnt happen   end-evaluate   end-perform   evaluate true *> at end of evaluation when error-found = 'y' continue when l <= l-lim *> not all tokens parsed display 'error: invalid statement' perform statement-error when number-use <> spaces display 'error: not all numbers were used: ' number-use move 'y' to error-found end-evaluate . increment-l. evaluate true when l > l-lim *> end of statement continue when other add l-len to l perform varying l from l by 1 until c(l) <> space or l > l-lim continue end-perform move 1 to l-len if l > l-lim perform end-tokens end-if end-evaluate . increment-p. evaluate true when p >= p-max display 'at' space p ' parse overflow' space 's=<' s space s-entry(s) '>' move 'y' to error-found when other add 1 to p perform display-statement end-evaluate . increment-s. evaluate true when s >= s-max display 'at' space p ' stack overflow ' space 's=<' s space s-entry(s) '>' move 'y' to error-found when other move s to r add 1 to s initialize s-entry(s) move 'N' to s-result(s) move p to s-p(s) move nt to s-nt(s) end-evaluate . decrement-s. if s > 0 move s to r subtract 1 from s if s > 0 move s-nt(s) to nt end-if end-if . set-failure. move 'F' to s-result(s) if s-count(s) > 0 display 'sequential parse failure' perform statement-error end-if . set-success. move 'S' to s-result(s) add 1 to s-count(s) . set-nothing. move 'N' to s-result(s) move 0 to s-count(s) . statement-error. display statement move spaces to statement move '^ syntax error' to statement(l:) display statement move 'y' to error-found . *>===================== *> twentyfour semantics *>===================== test-variable. *> check validity perform varying nd from 1 by 1 until nd > 4 or c(l) = n(nd) continue end-perform *> check usage perform varying nu from 1 by 1 until nu > 4 or c(l) = u(nu) continue end-perform evaluate true when l > l-lim perform set-failure when c9(l) not numeric perform set-failure when nd > 4 display 'invalid number' perform statement-error when nu > 4 display 'number already used' perform statement-error when other move space to u(nu) perform set-success add 1 to oqx move c(l) to output-queue(oqx:1) end-evaluate . *> ================================== *> Dijkstra Shunting-Yard Algorithm *> to convert infix to rpn *> ================================== process-token. evaluate true when c(l) = '(' add 1 to osx move c(l) to operator-stack(osx:1) when c(l) = ')' perform varying osx from osx by -1 until osx < 1 or operator-stack(osx:1) = '(' add 1 to oqx move operator-stack(osx:1) to output-queue(oqx:1) end-perform if osx < 1 display 'parenthesis error' perform statement-error exit paragraph end-if subtract 1 from osx when (c(l) = '+' or '-') and (operator-stack(osx:1) = '*' or '/') *> lesser operator precedence add 1 to oqx move operator-stack(osx:1) to output-queue(oqx:1) move c(l) to operator-stack(osx:1) when other *> greater operator precedence add 1 to osx move c(l) to operator-stack(osx:1) end-evaluate . end-tokens. *> 1) copy stacked operators to the output-queue perform varying osx from osx by -1 until osx < 1 or operator-stack(osx:1) = '(' add 1 to oqx move operator-stack(osx:1) to output-queue(oqx:1) end-perform if osx > 0 display 'parenthesis error' perform statement-error exit paragraph end-if *> 2) evaluate the rpn statement perform evaluate-rpn if divide-by-zero-error = 'y' display 'divide by zero error' end-if . evaluate-rpn. move space to divide-by-zero-error move 0 to rsx *> stack depth perform varying oqx1 from 1 by 1 until oqx1 > oqx if output-queue(oqx1:1) >= '1' and <= '9' *> push current data onto the stack add 1 to rsx move top-numerator to numerator(rsx) move top-denominator to denominator(rsx) move output-queue(oqx1:1) to top-numerator move 1 to top-denominator else *> apply the operation evaluate true when output-queue(oqx1:1) = '+' compute top-numerator = top-numerator * denominator(rsx) + top-denominator * numerator(rsx) compute top-denominator = top-denominator * denominator(rsx) when output-queue(oqx1:1) = '-' compute top-numerator = top-denominator * numerator(rsx) - top-numerator * denominator(rsx) compute top-denominator = top-denominator * denominator(rsx) when output-queue(oqx1:1) = '*' compute top-numerator = top-numerator * numerator(rsx) compute top-denominator = top-denominator * denominator(rsx) when output-queue(oqx1:1) = '/' compute work-number = numerator(rsx) * top-denominator compute top-denominator = denominator(rsx) * top-numerator if top-denominator = 0 move 'y' to divide-by-zero-error exit paragraph end-if move work-number to top-numerator end-evaluate *> pop the stack subtract 1 from rsx end-if end-perform . *>==================== *> diagnostic displays *>==================== display-start-nonterminal. perform varying nt from nt-lim by -1 until nt < 1 or p-definition(p) = nonterminal-statement-number(nt) continue end-perform if nt > 0 move '1' to NL-flag string '1' indent(1:s + s) 'at ' s space p ' start ' trim(nonterminal-statement(nt)) into message-area perform display-message move nt to s-nt(s) end-if . display-continue-nonterminal. move s-nt(s) to nt string '1' indent(1:s + s) 'at ' s space p space p-symbol(p) ' continue ' trim(nonterminal-statement(nt)) ' with result ' s-result(s) into message-area perform display-message . display-end-nonterminal. move s-nt(s) to nt move '2' to NL-flag string '1' indent(1:s + s) 'at ' s space p ' end ' trim(nonterminal-statement(nt)) ' with result ' s-result(s) into message-area perform display-message . display-start-control. string '2' indent(1:s + s) 'at ' s space p ' start ' p-symbol(p) ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-repeat-control. string '2' indent(1:s + s) 'at ' s space p ' repeat ' p-symbol(p) ' in ' trim(nonterminal-statement(nt)) ' with result ' s-result(s) into message-area perform display-message . display-end-control. string '2' indent(1:s + s) 'at ' s space p ' end ' p-symbol(p) ' in ' trim(nonterminal-statement(nt)) ' with result ' s-result(s) into message-area perform display-message . display-take-alternate. string '2' indent(1:s + s) 'at ' s space p ' take alternate' ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-skip-alternate. string '2' indent(1:s + s) 'at ' s space p ' skip alternate' ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-terminal. string '1' indent(1:s + s) 'at ' s space p ' compare ' statement(l:t-len) ' to ' terminal-symbol(t)(1:t-len) ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-recognize-terminal. string '1' indent(1:s + s) 'at ' s space p ' recognize terminal: ' c(l) ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-recognize-variable. string '1' indent(1:s + s) 'at ' s space p ' recognize digit: ' c(l) ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-statement. compute p1 = p - s-start-control(s) string '3' indent(1:s + s) 'at ' s space p ' statement: ' s-start-control(s) '/' p1 space p-symbol(p) space s-result(s) ' in ' trim(nonterminal-statement(nt)) into message-area perform display-message . display-control-failure. display loop-count space indent(1:s + s) 'at' space p ' control failure' ' in ' trim(nonterminal-statement(nt)) display loop-count space indent(1:s + s) ' ' 'p=<' p p-entry(p) '>' display loop-count space indent(1:s + s) ' ' 's=<' s space s-entry(s) '>' display loop-count space indent(1:s + s) ' ' 'l=<' l space c(l)'>' perform statement-error . display-message. if display-level = 1 move space to NL-flag end-if evaluate true when loop-count > loop-lim *> loop control display 'display count exceeds ' loop-lim stop run when message-level <= display-level evaluate true when NL-flag = '1' display NL loop-count space trim(message-value) when NL-flag = '2' display loop-count space trim(message-value) NL when other display loop-count space trim(message-value) end-evaluate end-evaluate add 1 to loop-count move spaces to message-area move space to NL-flag . end program twentyfour.  
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Sidef
Sidef
var cache = [[1]]   func cumu (n) { for l (cache.len .. n) { var r = [0] for i (1..l) { r << (r[-1] + cache[l-i][min(i, l-i)]) } cache << r } cache[n] }   func row (n) { var r = cumu(n) n.of {|i| r[i+1] - r[i] } }   say "rows:" for i (1..15) { "%2s: %s\n".printf(i, row(i)) }   say "\nsums:"   for i in [23, 123, 1234, 12345] { "%2s : %4s\n".printf(i, cumu(i)[-1]) }
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#Brat
Brat
numbers = g.split[0,1].map(:to_i) p numbers[0] + numbers[1] #Prints the sum of the input
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#Tcl
Tcl
proc ack {m n} { if {$m == 0} { expr {$n + 1} } elseif {$n == 0} { ack [expr {$m - 1}] 1 } else { ack [expr {$m - 1}] [ack $m [expr {$n - 1}]] } }
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Erlang
Erlang
-module(abc). -export([can_make_word/1, can_make_word/2, blocks/0]).   blocks() -> ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"].   can_make_word(Word) -> can_make_word(Word, blocks()). can_make_word(Word, Avail) -> can_make_word(string:to_upper(Word), Avail, []). can_make_word([], _, _) -> true; can_make_word(_, [], _) -> false; can_make_word([L|Tail], [B|Rest], Tried) -> (lists:member(L,B) andalso can_make_word(Tail, lists:append(Rest, Tried),[])) orelse can_make_word([L|Tail], Rest, [B|Tried]).   main(_) -> lists:map(fun(W) -> io:fwrite("~s: ~s~n", [W, can_make_word(W)]) end, ["A","Bark","Book","Treat","Common","Squad","Confuse"]).  
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#Clojure
Clojure
(ns clojure-sandbox.prisoners)   (defn random-drawers [] "Returns a list of shuffled numbers" (-> 100 range shuffle))   (defn search-50-random-drawers [prisoner-number drawers] "Select 50 random drawers and return true if the prisoner's number was found" (->> drawers shuffle ;; Put drawer contents in random order (take 50) ;; Select first 50, equivalent to selecting 50 random drawers (filter (fn [x] (= x prisoner-number))) ;; Filter to include only those that match prisoner number count (= 1))) ;; Returns true if the number of matching numbers is 1   (defn search-50-optimal-drawers [prisoner-number drawers] "Open 50 drawers according to the agreed strategy, returning true if prisoner's number was found" (loop [next-drawer prisoner-number ;; The drawer index to start on is the prisoner's number drawers-opened 0] ;; To keep track of how many have been opened as 50 is the maximum (if (= drawers-opened 50) false ;; If 50 drawers have been opened, the prisoner's number has not been found (let [result (nth drawers next-drawer)] ;; Open the drawer given by next number (if (= result prisoner-number) ;; If prisoner number has been found true ;; No need to keep opening drawers - return true (recur result (inc drawers-opened))))))) ;; Restart the loop using the resulting number as the drawer number   (defn try-luck [drawers drawer-searching-function] "Returns 1 if all prisoners find their number otherwise 0" (loop [prisoners (range 100)] ;; Start with 100 prisoners (if (empty? prisoners) ;; If they've all gone and found their number 1 ;; Return true- they'll all live (let [res (-> prisoners first (drawer-searching-function drawers))] ;; Otherwise, have the first prisoner open drawers according to the specified method (if (false? res) ;; If this prisoner didn't find their number 0 ;; no prisoners will be freed so we can return false and stop (recur (rest prisoners))))))) ;; Otherwise they've found the number, so we remove them from the queue and repeat with the others   (defn simulate-100-prisoners [] "Simulates all prisoners searching the same drawers by both strategies, returns map showing whether each was successful" (let [drawers (random-drawers)] ;; Create 100 drawers with randomly ordered prisoner numbers {:random (try-luck drawers search-50-random-drawers) ;; True if all prisoners found their number using random strategy  :optimal (try-luck drawers search-50-optimal-drawers)})) ;; True if all prisoners found their number using optimal strategy   (defn simulate-n-runs [n] "Simulate n runs of the 100 prisoner problem and returns a success count for each search method" (loop [random-successes 0 optimal-successes 0 run-count 0] (if (= n run-count) ;; If we've done the loop n times {:random-successes random-successes ;; return results  :optimal-successes optimal-successes  :run-count run-count} (let [next-result (simulate-100-prisoners)] ;; Otherwise, run for another batch of prisoners (recur (+ random-successes (:random next-result)) ;; Add result of run to the total successs count (+ optimal-successes (:optimal next-result)) (inc run-count)))))) ;; increment run count and run again   (defn -main [& args] "For 5000 runs, print out the success frequency for both search methods" (let [{:keys [random-successes optimal-successes run-count]} (simulate-n-runs 5000)] (println (str "Probability of survival with random search: " (float (/ random-successes run-count)))) (println (str "Probability of survival with ordered search: " (float (/ optimal-successes run-count))))))
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Ruby
Ruby
require "prime"   class Integer def proper_divisors return [] if self == 1 primes = prime_division.flat_map{|prime, freq| [prime] * freq} (1...primes.size).each_with_object([1]) do |n, res| primes.combination(n).map{|combi| res << combi.inject(:*)} end.flatten.uniq end end   def generator_odd_abundants(from=1) from += 1 if from.even? Enumerator.new do |y| from.step(nil, 2) do |n| sum = n.proper_divisors.sum y << [n, sum] if sum > n end end end   generator_odd_abundants.take(25).each{|n, sum| puts "#{n} with sum #{sum}" } puts "\n%d with sum %#d" % generator_odd_abundants.take(1000).last puts "\n%d with sum %#d" % generator_odd_abundants(1_000_000_000).next  
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Pascal
Pascal
  program Game21;   {$APPTYPE CONSOLE}   {$R *.res}   uses System.SysUtils, System.StrUtils, // for IfThen Winapi.Windows; // for ClearScreen   const HARD_MODE = True;   var computerPlayer: string = 'Computer'; humanPlayer: string = 'Player 1';   // for change color ConOut: THandle; BufInfo: TConsoleScreenBufferInfo;   procedure ClearScreen; var stdout: THandle; csbi: TConsoleScreenBufferInfo; ConsoleSize: DWORD; NumWritten: DWORD; Origin: TCoord; begin stdout := GetStdHandle(STD_OUTPUT_HANDLE); Win32Check(stdout <> INVALID_HANDLE_VALUE); Win32Check(GetConsoleScreenBufferInfo(stdout, csbi)); ConsoleSize := csbi.dwSize.X * csbi.dwSize.Y; Origin.X := 0; Origin.Y := 0; Win32Check(FillConsoleOutputCharacter(stdout, ' ', ConsoleSize, Origin, NumWritten)); Win32Check(FillConsoleOutputAttribute(stdout, csbi.wAttributes, ConsoleSize, Origin, NumWritten)); Win32Check(SetConsoleCursorPosition(stdout, Origin)); end;   procedure ResetColor; begin SetConsoleTextAttribute(ConOut, BufInfo.wAttributes); end;   procedure ChangeColor(color: Word); begin ConOut := TTextRec(Output).Handle; GetConsoleScreenBufferInfo(ConOut, BufInfo); SetConsoleTextAttribute(TTextRec(Output).Handle, color); end;   function SwapPlayer(currentPlayer: string): string; begin Result := IfThen(currentPlayer = humanPlayer, computerPlayer, humanPlayer); end;   function RandomPlayerSelect(): string; begin Result := IfThen(Random() < 0.5, computerPlayer, humanPlayer); end;   function CheckIfCanWin(total: Integer): Boolean; begin result := (total >= 18); end;   function CheckIfCanLose(total: Integer; var choose: Integer; hardMode: Boolean = False): Boolean; var range: Integer; begin range := 17 - total; Result := false; if (range > 0) and (range < 4) then begin Result := true; if hardMode then choose := range else choose := Random(range - 1) + 1; end; end;   function CompMove(total: Integer): Integer; begin if (CheckIfCanWin(total)) then begin exit(21 - total); end;   if CheckIfCanLose(total, Result, HARD_MODE) then exit;   Result := Random(3) + 1; end;   function HumanMove: Integer; var choice: string; begin repeat Writeln('Choose from numbers: 1, 2, 3'); Readln(choice); until TryStrToInt(choice, Result) and (Result in [1..3]); end;   procedure PlayGame(); var playAnother: Boolean; total, final_, roundChoice, compWins, humanWins: Integer; choice, currentPlayer: string; begin playAnother := True; total := 0; final_ := 21; roundChoice := 0; Randomize; currentPlayer := RandomPLayerSelect(); compWins := 0; humanWins := 0;   while (playAnother) do begin ClearScreen; ChangeColor(FOREGROUND_INTENSITY or FOREGROUND_GREEN); Writeln(total); ResetColor; Writeln('');   Writeln('Now playing: ' + currentPlayer); if currentPlayer = computerPlayer then roundChoice := CompMove(total) else roundChoice := HumanMove; inc(total, roundChoice);   if (total = final_) then begin if (currentPlayer = computerPlayer) then begin inc(compWins); end else begin inc(humanWins); end;   ClearScreen; Writeln('Winner: ' + currentPlayer); Writeln('Comp wins: ', compWins, '. Human wins: ', humanWins, #10); Writeln('Do you wan to play another round? y/n');   readln(choice);   if choice = 'y' then begin total := 0; ClearScreen; end else if choice = 'n' then playAnother := false else begin Writeln('Invalid choice! Choose from y or n'); Continue; end; end else if total > 21 then begin Writeln('Not the right time to play this game :)'); break; end;   currentPlayer := SwapPlayer(currentPlayer); end;   end;   const WELLCOME_MSG: array[0..5] of string = ('Welcome to 21 game'#10, '21 is a two player game.', 'The game is played by choosing a number.', '1, 2, or 3 to be added a total sum.'#10, 'The game is won by the player reaches exactly 21.'#10, 'Press ENTER to start!'#10);   var i: Integer;   begin try for i := 0 to High(WELLCOME_MSG) do Writeln(WELLCOME_MSG[i]); ResetColor; Readln; // Wait press enter   PlayGame(); except on E: Exception do Writeln(E.ClassName, ': ', E.Message); end; end.  
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#ERRE
ERRE
  PROGRAM 24SOLVE   LABEL 98,99,2540,2550,2560   ! possible brackets CONST NBRACKETS=11,ST_CONST$="+-*/^("   DIM D[4],PERM[24,4] DIM BRAKETS$[NBRACKETS] DIM OP$[3] DIM STACK$[50]   PROCEDURE COMPATTA_STACK IF NS>1 THEN R=1 WHILE R<NS DO IF INSTR(ST_CONST$,STACK$[R])=0 AND INSTR(ST_CONST$,STACK$[R+1])=0 THEN FOR R1=R TO NS-1 DO STACK$[R1]=STACK$[R1+1] END FOR NS=NS-1 END IF R=R+1 END WHILE END IF END PROCEDURE   PROCEDURE CALC_ARITM L=NS1 WHILE L<=NS2 DO IF STACK$[L]="^" THEN IF L>=NS2 THEN GOTO 99 END IF N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="^" THEN RI#=N1#^N2# END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE   L=NS1 WHILE L<=NS2 DO IF STACK$[L]="*" OR STACK$[L]="/" THEN IF L>=NS2 THEN GOTO 99 END IF N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="*" THEN RI#=N1#*N2# ELSE IF N2#<>0 THEN RI#=N1#/N2# ELSE NERR=6 RI#=0 END IF END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE   L=NS1 WHILE L<=NS2 DO IF STACK$[L]="+" OR STACK$[L]="-" THEN EXIT IF L>=NS2 N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1 IF STACK$[L]="+" THEN RI#=N1#+N2# ELSE RI#=N1#-N2# END IF STACK$[L-1]=STR$(RI#) N=L WHILE N<=NS2-2 DO STACK$[N]=STACK$[N+2] N=N+1 END WHILE NS2=NS2-2 L=NS1-1 END IF L=L+1 END WHILE 99: IF NOP<2 THEN  ! precedenza tra gli operatori DB#=VAL(STACK$[NS1]) ELSE IF NOP<3 THEN DB#=VAL(STACK$[NS1+2]) ELSE DB#=VAL(STACK$[NS1+4]) END IF END IF END PROCEDURE   PROCEDURE SVOLGI_PAR NPA=NPA-1 FOR J=NS TO 1 STEP -1 DO EXIT IF STACK$[J]="(" END FOR IF J=0 THEN NS1=1 NS2=NS CALC_ARITM NERR=7 ELSE FOR R=J TO NS-1 DO STACK$[R]=STACK$[R+1] END FOR NS1=J NS2=NS-1 CALC_ARITM IF NS1=2 THEN NS1=1 STACK$[1]=STACK$[2] END IF NS=NS1 COMPATTA_STACK END IF END PROCEDURE   PROCEDURE MYEVAL(EXPRESSION$,DB#,NERR->DB#,NERR)   NOP=0 NPA=0 NS=1 K$="" NERR=0 STACK$[1]="@"  ! init stack   FOR W=1 TO LEN(EXPRESSION$) DO LOOP CODE=ASC(MID$(EXPRESSION$,W,1)) IF (CODE>=48 AND CODE<=57) OR CODE=46 THEN K$=K$+CHR$(CODE) W=W+1 IF W>LEN(EXPRESSION$) THEN GOTO 98 END IF ELSE EXIT IF K$="" IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF IF FLAG=0 THEN STACK$[NS]=K$ ELSE STACK$[NS]=STR$(VAL(K$)*FLAG) END IF K$="" FLAG=0 EXIT END IF END LOOP IF CODE=43 THEN K$="+" END IF IF CODE=45 THEN K$="-" END IF IF CODE=42 THEN K$="*" END IF IF CODE=47 THEN K$="/" END IF IF CODE=94 THEN K$="^" END IF   CASE CODE OF 43,45,42,47,94->  ! +-*/^ IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN NERR=5 ELSE NS=NS+1 STACK$[NS]=K$ NOP=NOP+1 IF NOP>=2 THEN FOR J=NS TO 1 STEP -1 DO IF STACK$[J]<>"(" THEN GOTO 2540 END IF IF J<NS-2 THEN GOTO 2550 ELSE GOTO 2560 END IF 2540: END FOR 2550: NS1=J+1 NS2=NS CALC_ARITM NS=NS2 STACK$[NS]=K$ REGISTRO_X#=VAL(STACK$[NS-1]) END IF END IF 2560: END ->   40->  ! ( IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF STACK$[NS]="(" NPA=NPA+1 IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF END ->   41-> ! ) SVOLGI_PAR IF NERR=7 THEN NERR=0 NOP=0 NPA=0 NS=1 ELSE IF NERR=0 OR NERR=1 THEN DB#=VAL(STACK$[NS]) REGISTRO_X#=DB# ELSE NOP=0 NPA=0 NS=1 END IF END IF END ->   OTHERWISE NERR=8 END CASE K$="" END FOR 98: IF K$<>"" THEN IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF IF FLAG=0 THEN STACK$[NS]=K$ ELSE STACK$[NS]=STR$(VAL(K$)*FLAG) END IF END IF   IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN NERR=6 ELSE WHILE NPA<>0 DO SVOLGI_PAR END WHILE IF NERR<>7 THEN NS1=1 NS2=NS CALCARITM END IF END IF   NS=1 NOP=0 NPA=0   END PROCEDURE   BEGIN PRINT(CHR$(12);) ! CLS    ! possible brackets DATA("4#4#4#4") DATA("(4#4)#4#4") DATA("4#(4#4)#4") DATA("4#4#(4#4)") DATA("(4#4)#(4#4)") DATA("(4#4#4)#4") DATA("4#(4#4#4)") DATA("((4#4)#4)#4") DATA("(4#(4#4))#4") DATA("4#((4#4)#4)") DATA("4#(4#(4#4))") FOR I=1 TO NBRACKETS DO READ(BRAKETS$[I]) END FOR   INPUT("ENTER 4 DIGITS: ",A$) ND=0 FOR I=1 TO LEN(A$) DO C$=MID$(A$,I,1) IF INSTR("123456789",C$)>0 THEN ND=ND+1 D[ND]=VAL(C$) END IF END FOR  ! precompute permutations. dumb way. NPERM=1*2*3*4 N=0 FOR I=1 TO 4 DO FOR J=1 TO 4 DO FOR K=1 TO 4 DO FOR L=1 TO 4 DO  ! valid permutation (no dupes) IF I<>J AND I<>K AND I<>L AND J<>K AND J<>L AND K<>L THEN N=N+1 ! actually,we can as well permute given digits PERM[N,1]=D[I] PERM[N,2]=D[J] PERM[N,3]=D[K] PERM[N,4]=D[L] END IF END FOR END FOR END FOR END FOR    ! operations: full search COUNT=0 OPS$="+-*/" FOR OP1=1 TO 4 DO OP$[1]=MID$(OPS$,OP1,1) FOR OP2=1 TO 4 DO OP$[2]=MID$(OPS$,OP2,1) FOR OP3=1 TO 4 DO OP$[3]=MID$(OPS$,OP3,1)  ! substitute all brackets FOR T=1 TO NBRACKETS DO TMPL$=BRAKETS$[T]  ! now,substitute all digits: permutations. FOR P=1 TO NPERM DO RES$="" NOP=0 ND=0 FOR I=1 TO LEN(TMPL$) DO C$=MID$(TMPL$,I,1) CASE C$ OF "#"->  ! operations NOP=NOP+1 RES$=RES$+OP$[NOP] END -> "4"->  ! digits ND=NOP+1 RES$=RES$+MID$(STR$(PERM[P,ND]),2) END -> OTHERWISE  ! brackets goes here RES$=RES$+C$ END CASE END FOR  ! eval here MY_EVAL(RES$,DB#,NERR->DB#,NERR) IF DB#=24 AND NERR=0 THEN PRINT("24=";RES$) COUNT=COUNT+1 END IF END FOR END FOR END FOR END FOR END FOR   IF COUNT=0 THEN PRINT("If you see this, probably task cannot be solved with these digits") ELSE PRINT("Total=";COUNT) END IF   END PROGRAM  
http://rosettacode.org/wiki/2048
2048
Task Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values. Rules of the game   The rules are that on each turn the player must choose a direction   (up, down, left or right).   All tiles move as far as possible in that direction, some move more than others.   Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.   A move is valid when at least one tile can be moved,   if only by combination.   A new tile with the value of   2   is spawned at the end of each turn at a randomly chosen empty square   (if there is one).   Adding a new tile on a blank space.   Most of the time,   a new   2   is to be added,   and occasionally   (10% of the time),   a   4.   To win,   the player must create a tile with the number   2048.   The player loses if no valid moves are possible. The name comes from the popular open-source implementation of this game mechanic, 2048. Requirements   "Non-greedy" movement.     The tiles that were created by combining other tiles should not be combined again during the same turn (move).     That is to say,   that moving the tile row of: [2][2][2][2] to the right should result in: ......[4][4] and not: .........[8]   "Move direction priority".     If more than one variant of combining is possible,   move direction shall indicate which combination will take effect.   For example, moving the tile row of: ...[2][2][2] to the right should result in: ......[2][4] and not: ......[4][2]   Check for valid moves.   The player shouldn't be able to skip their turn by trying a move that doesn't change the board.   Check for a  win condition.   Check for a lose condition.
#ALGOL_68
ALGOL 68
  main:( INT side = 4; INT right = 1, up = 2, left = 3, down = 4; []CHAR direction letters = "ruld"; []STRING direction descriptions = ("right", "up", "left", "down");   MODE BOARD = REF[,]INT; MODE CELL = REF INT;   OP = = (BOARD a, BOARD b) BOOL: (FOR i TO side DO FOR j TO side DO IF a[i,j] /= b[i,j] THEN mismatch FI OD OD; TRUE EXIT mismatch: FALSE);   PROC traverse board = (BOARD board, PROC(CELL)VOID callback) VOID: FOR i FROM 1 LWB board TO 1 UPB board DO FOR j FROM 2 LWB board TO 2 UPB board DO callback(board[i,j]) OD OD;   PROC count blanks = (BOARD board) INT: (INT count := 0; traverse board(board, (CELL c)VOID: IF c = 0 THEN count +:= 1 FI); count);   PROC nth blank = (BOARD board, INT nth) CELL: (CELL result; INT count := 0; traverse board(board, (CELL c)VOID: (IF c = 0 THEN count +:= 1 FI; IF count = nth THEN result := c; return FI)); return: result);   PROC add new number = (BOARD board) VOID: (INT nblanks = count blanks(board); INT number := (random >= .9 | 4 | 2); INT position := ENTIER (random * nblanks) + 1;   nth blank(board, position) := number);   PROC shift = (REF[]INT row, BOOL to the end) VOID: (INT from = (to the end | UPB row | LWB row), to = (to the end | LWB row | UPB row), dir = (to the end | -1 | 1); FOR i FROM from + dir BY dir TO to DO IF row[i] /= 0 THEN INT blank := 0; FOR j FROM i - dir BY -dir TO from WHILE row[j] = 0 DO blank := j OD; IF blank /= 0 THEN row[blank] := row[i]; row[i] := 0 FI FI OD);   PROC combine = (REF[]INT row, BOOL to the end) VOID: (INT from = (to the end | UPB row | LWB row), to = (to the end | LWB row | UPB row), dir = (to the end | -1 | 1); FOR i FROM from BY dir TO to - dir DO IF row[i] /= 0 AND row[i] = row[i+dir] THEN row[i] *:= 2; row[i+dir] := 0 FI OD);   PROC move = (BOARD board, INT direction) VOID: FOR i TO side DO CASE direction IN # right # (shift(board[i,], TRUE); combine(board[i,], TRUE); shift(board[i,], TRUE)), # up # (shift(board[,i], FALSE); combine(board[,i], FALSE); shift(board[,i], FALSE)), # left # (shift(board[i,], FALSE); combine(board[i,], FALSE); shift(board[i,], FALSE)), # down # (shift(board[,i], TRUE); combine(board[,i], TRUE); shift(board[,i], TRUE)) ESAC OD;   PROC print board = (BOARD board)VOID: (FOR i FROM 1 LWB board TO 1 UPB board DO print("+"); FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD; print((new line, "|")); FOR j FROM 2 LWB board TO 2 UPB board DO print(((board[i,j] = 0 | " " | whole(board[i,j],-5)), " |")) OD; print(new line) OD; print("+"); FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD; print(new line) );   PROC score = (BOARD board) INT: (INT result := 0; traverse board(board, (CELL c)VOID: result +:= c); result);   PROC join = ([]STRING strings, STRING joiner) STRING: IF UPB strings > 0 THEN STRING result := strings[1]; FOR i FROM 2 TO UPB strings DO result +:= joiner +:= strings[i] OD; result ELSE "" FI;   BOARD board = LOC [side,side]INT; BOARD previous = LOC [side,side]INT;   traverse board(board, (CELL c)VOID: c := 0);   # start with two numbers # TO 2 DO add new number(board) OD;   # play! # STRING prompt := "enter one of [" + direction letters + "] (for " + join(direction descriptions, "/") + "): "; DO CHAR key; INT dir; print board(board); print(("score: ", whole(score(board),0), new line)); WHILE print(prompt); read((key, new line)); NOT char in string(key, dir, direction letters) DO SKIP OD; previous := board; move(board, dir); IF count blanks(board) = 0 THEN lose FI; traverse board(board, (CELL c)VOID: IF c = 2048 THEN win FI); IF previous = board THEN print(("try again!", new line)) ELSE add new number(board) FI OD;   win: print board(board); print(("you win!", new line)) EXIT lose: print(("you lose!", new line)) )  
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Phix
Phix
-- demo/rosetta/4_rings_or_4_squares_puzzle.exw with javascript_semantics integer solutions procedure check(sequence set, bool show) integer {a,b,c,d,e,f,g} = set, ab = a+b if ab=b+d+c and ab=d+e+f and ab=f+g then solutions += 1 if show then ?set end if end if end procedure procedure foursquares(integer lo, hi, bool uniq, show) sequence set = repeat(lo,7) solutions = 0 if uniq then for i=1 to 7 do set[i] = lo+i-1 end for for i=1 to factorial(7) do check(permute(i,set),show) end for else integer done = 0 while not done do check(set,show) for i=1 to 7 do set[i] += 1 if set[i]<=hi then exit end if if i=7 then done = 1 exit end if set[i] = lo end for end while end if printf(1,"%d solutions\n",solutions) end procedure foursquares(1,7,uniq:=true,show:=true) foursquares(3,9,true,true) foursquares(0,9,false,false)
http://rosettacode.org/wiki/15_puzzle_solver
15 puzzle solver
Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game. For this task you will be using the following puzzle: 15 14 1 6 9 11 4 12 0 10 7 3 13 8 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 The output must show the moves' directions, like so: left, left, left, down, right... and so on. There are two solutions, of fifty-two moves: rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd see: Pretty Print of Optimal Solution Finding either one, or both is an acceptable result. Extra credit. Solve the following problem: 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 Related Task 15 puzzle game A* search algorithm
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program puzzle15solver.s */ /* my first other program find à solution in 134 moves !!! */ /* this second program is a adaptation algorithme C++ and go rosetta code */ /* thanck for the creators */ /* 1 byte by box on game board */   /* create a file with nano */ /* 15, 2, 3, 4 5, 6, 7, 1 9, 10, 8, 11 13, 14, 12, 0 */   /* Run this programm : puzzle15solver <file name> */ /* wait several minutes for résult */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */ /* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"   .equ STDIN, 0 @ Linux input console .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ READ, 3 @ Linux syscall .equ WRITE, 4 @ Linux syscall .equ OPEN, 5 @ Linux syscall .equ CLOSE, 6 @ Linux syscall   .equ TRUE, 1 .equ FALSE, 0   .equ O_RDWR, 0x0002 @ open for reading and writing   .equ SIZE, 4 .equ NBBOX, SIZE * SIZE .equ TAILLEBUFFER, 100 .equ NBMAXIELEMENTS, 100   .equ CONST_I, 1 .equ CONST_G, 8 .equ CONST_E, 2 .equ CONST_L, 4   /*********************************/ /* Initialized data */ /*********************************/ .data szMessTitre: .asciz "Nom du fichier : " sMessResult: .ascii " " sMessValeur: .fill 11, 1, ' ' @ size => 11 szCarriageReturn: .asciz "\n" szMessCounterSolution: .asciz "Solution in @ moves : \n"   //szMessMoveError: .asciz "Huh... Impossible move !!!!\n" szMessErreur: .asciz "Error detected.\n" szMessImpossible: .asciz "!!! Impossible solution !!!\n" szMessErrBuffer: .asciz "buffer size too less !!" szMessSpaces: .asciz " "   iTabNr: .int 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3 iTabNc: .int 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2 /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 sZoneConv: .skip 24 iAdrHeap: .skip 4 ibox: .skip SIZE * SIZE @ game boxes iAdrFicName: .skip 4 iTabN0: .skip 4 * NBMAXIELEMENTS @ empty box iTabN3: .skip 4 * NBMAXIELEMENTS @ moves iTabN4: .skip 4 * NBMAXIELEMENTS @ ???? iTabN2: .skip 4 * NBMAXIELEMENTS @ table game address sBuffer: .skip TAILLEBUFFER /*********************************/ /* code section */ /*********************************/ .text .global main main: @ INFO: main mov r0,sp @ stack address for load parameter bl traitFic @ read file and store value in array cmp r0,#-1 beq 100f @ error ?   ldr r0,iAdribox bl displayGame @ display array game   ldr r0,iAdribox @ control if solution exists bl controlSolution cmp r0,#TRUE beq 1f ldr r0,iAdrszMessImpossible @ no solution !!! bl affichageMess b 100f   1: ldr r0,iAdribox ldr r9,iAdriTabN2 str r0,[r9] @ N2 address global   mov r10,#0 @ variable _n global mov r12,#0 @ variable n global bl searchSolution cmp r0,#TRUE bne 100f @ no solution ? ldr r3,iAdriTabN2 ldr r0,[r3,r12,lsl #2] @ visual solution control bl displayGame mov r0,r12 @ move counter ldr r1,iAdrsZoneConv bl conversion10 @ conversion counter mov r2,#0 strb r2,[r1,r0] @ and display ldr r0,iAdrszMessCounterSolution bl strInsertAtCharInc ldr r1,iAdrsZoneConv bl affichageMess ldr r5,iAdriTabN3 ldr r3,iAdrsBuffer mov r2,#1 mov r4,#0 2: @ loop solution display ldrb r1,[r5,r2,lsl #2] cmp r2,#TAILLEBUFFER bge 99f strb r1,[r3,r4] add r4,r4,#1 add r2,r2,#1 cmp r2,r12 ble 2b mov r1,#0 str r1,[r3,r4] @ zéro final mov r0,r3 bl affichageMess ldr r0,iAdrszCarriageReturn bl affichageMess   b 100f   99: ldr r0,iAdrszMessErrBuffer bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call   iAdribox: .int ibox iAdriTabN0: .int iTabN0 iAdriTabN2: .int iTabN2 iAdriTabN3: .int iTabN3 iAdriTabN4: .int iTabN4 iAdrszMessCounterSolution: .int szMessCounterSolution iAdrszMessImpossible: .int szMessImpossible iAdrszMessErrBuffer: .int szMessErrBuffer iAdrsZoneConv: .int sZoneConv /******************************************************************/ /* search Solution */ /******************************************************************/ searchSolution: @ INFO: searchSolution push {r1-r8,lr} @ save registers @ address allocation place on the heap mov r0,#0 @ allocation place heap mov r7,#0x2D @ call system 'brk' svc #0 cmp r0,#-1 @ allocation error beq 99f ldr r1,iAdriAdrHeap str r0,[r1] @ store heap address bl functionFN ldr r3,iAdriTabN2 ldr r0,[r3,r12,lsl #2] @ last current game bl gameOK @ it is Ok ? cmp r0,#TRUE beq 100f @ yes --> end   ldr r1,iAdriAdrHeap @ free up resources ldr r0,[r1] @ restaur start address heap mov r7,#0x2D @ call system 'brk' svc #0 cmp r0,#-1 @ allocation error beq 99f add r10,r10,#1 @ _n mov r12,#0 @ n bl searchSolution @ next recursif call b 100f 99: ldr r0,iAdrszMessErreur bl affichageMess 100: pop {r1-r8,lr} @ restaur registers bx lr @return iAdrszMessErreur: .int szMessErreur iAdriAdrHeap: .int iAdrHeap /******************************************************************/ /* Fonction FN */ /******************************************************************/ functionFN: @ INFO: functionFN push {lr} @ save register ldr r4,iAdriTabN3 ldr r3,[r4,r12,lsl #2] ldr r5,iAdriTabN0 @ load position empty box ldr r6,[r5,r12,lsl #2] cmp r6,#15 @ last box bne 2f cmp r3,#'R' bne 11f mov r0,#CONST_G bl functionFZ b 100f 11: cmp r3,#'D' bne 12f mov r0,#CONST_L bl functionFZ b 100f 12: mov r0,#CONST_G + CONST_L bl functionFZ b 100f   2: cmp r6,#12 bne 3f cmp r3,#'L' bne 21f mov r0,#CONST_G bl functionFZ b 100f 21: cmp r3,#'D' bne 22f mov r0,#CONST_E bl functionFZ b 100f 22: mov r0,#CONST_E + CONST_G bl functionFZ b 100f 3: cmp r6,#13 beq 30f cmp r6,#14 bne 4f 30: cmp r3,#'L' bne 31f mov r0,#CONST_G + CONST_L bl functionFZ b 100f 31: cmp r3,#'R' bne 32f mov r0,#CONST_G + CONST_E bl functionFZ b 100f 32: cmp r3,#'D' bne 33f mov r0,#CONST_E + CONST_L bl functionFZ b 100f 33: mov r0,#CONST_L + CONST_E + CONST_G bl functionFZ b 100f 4: cmp r6,#3 bne 5f cmp r3,#'R' bne 41f mov r0,#CONST_I bl functionFZ b 100f 41: cmp r3,#'U' bne 42f mov r0,#CONST_L bl functionFZ b 100f 42: mov r0,#CONST_I + CONST_L bl functionFZ b 100f 5: cmp r6,#0 bne 6f cmp r3,#'L' bne 51f mov r0,#CONST_I bl functionFZ b 100f 51: cmp r3,#'U' bne 52f mov r0,#CONST_E bl functionFZ b 100f 52: mov r0,#CONST_I + CONST_E bl functionFZ b 100f 6: cmp r6,#1 beq 60f cmp r6,#2 bne 7f 60: cmp r3,#'L' bne 61f mov r0,#CONST_I + CONST_L bl functionFZ b 100f 61: cmp r3,#'R' bne 62f mov r0,#CONST_E + CONST_I bl functionFZ b 100f 62: cmp r3,#'U' bne 63f mov r0,#CONST_E + CONST_L bl functionFZ b 100f 63: mov r0,#CONST_I + CONST_E + CONST_L bl functionFZ b 100f 7: cmp r6,#7 beq 70f cmp r6,#11 bne 8f 70: cmp r3,#'R' bne 71f mov r0,#CONST_I + CONST_G bl functionFZ b 100f 71: cmp r3,#'U' bne 72f mov r0,#CONST_G + CONST_L bl functionFZ b 100f 72: cmp r3,#'D' bne 73f mov r0,#CONST_I + CONST_L bl functionFZ b 100f 73: mov r0,#CONST_I + CONST_G + CONST_L bl functionFZ b 100f 8: cmp r6,#4 beq 80f cmp r6,#8 bne 9f 80: cmp r3,#'D' bne 81f mov r0,#CONST_I + CONST_E bl functionFZ b 100f 81: cmp r3,#'U' bne 82f mov r0,#CONST_G + CONST_E bl functionFZ b 100f 82: cmp r3,#'L' bne 83f mov r0,#CONST_I + CONST_G bl functionFZ b 100f 83: mov r0,#CONST_G + CONST_E + CONST_I bl functionFZ b 100f 9: cmp r3,#'D' bne 91f mov r0,#CONST_I + CONST_E + CONST_L bl functionFZ b 100f 91: cmp r3,#'L' bne 92f mov r0,#CONST_I + CONST_G + CONST_L bl functionFZ b 100f 92: cmp r3,#'R' bne 93f mov r0,#CONST_I + CONST_G + CONST_E bl functionFZ b 100f 93: cmp r3,#'U' bne 94f mov r0,#CONST_G + CONST_E + CONST_L bl functionFZ b 100f 94: mov r0,#CONST_G + CONST_L + CONST_I + CONST_E bl functionFZ b 100f   99: @ error ldr r0,iAdrszMessErreur bl affichageMess 100: pop {lr} @ restaur registers bx lr @return   /******************************************************************/ /* function FZ */ /* */ /***************************************************************/ /* r0 contains variable w */ functionFZ: @ INFO: functionFZ push {r1,r2,lr} @ save registers mov r2,r0 and r1,r2,#CONST_I cmp r1,#0 ble 1f bl functionFI bl functionFY cmp r0,#TRUE beq 100f sub r12,r12,#1 @ variable n 1: ands r1,r2,#CONST_G ble 2f bl functionFG bl functionFY cmp r0,#TRUE beq 100f sub r12,r12,#1 @ variable n 2: ands r1,r2,#CONST_E ble 3f bl functionFE bl functionFY cmp r0,#TRUE beq 100f sub r12,r12,#1 @ variable n 3: ands r1,r2,#CONST_L ble 4f bl functionFL bl functionFY cmp r0,#TRUE beq 100f sub r12,r12,#1 @ variable n 4: mov r0,#FALSE 100: pop {r1,r2,lr} @ restaur registers bx lr @return /******************************************************************/ /* function FY */ /******************************************************************/ functionFY: @ INFO: functionFY push {lr} @ save registers ldr r1,iAdriTabN2 ldr r0,[r1,r12,lsl #2] bl gameOK @ game OK ? cmp r0,#TRUE beq 100f ldr r1,iAdriTabN4 ldr r0,[r1,r12,lsl #2] cmp r0,r10 bgt 1f bl functionFN b 100f 1: mov r0,#FALSE 100: pop {lr} @ restaur registers bx lr @return   /******************************************************************/ /* the empty box is down */ /******************************************************************/ functionFI: @ INFO: functionFI push {r0-r8,lr} @ save registers ldr r0,iAdriTabN0 ldr r1,[r0,r12,lsl #2] @ empty box add r2,r1,#4 ldr r3,[r9,r12,lsl #2] @ load game current ldrb r4,[r3,r2] @ load box down empty box add r5,r12,#1 @ n+1 add r8,r1,#4 @ new position empty case str r8,[r0,r5,lsl #2] @ store new position empty case ldr r6,iAdriTabN3   mov r7,#'D' @ down str r7,[r6,r5,lsl #2] @ store move ldr r6,iAdriTabN4 ldr r7,[r6,r12,lsl #2] str r7,[r6,r5,lsl #2] @ N4 (n+1) = n4(n) mov r0,r3 bl createGame @ create copy game ldrb r3,[r0,r1] @ and inversion box ldrb r8,[r0,r2] strb r8,[r0,r1] strb r3,[r0,r2] str r0,[r9,r5,lsl #2] @ store new game in table lsr r1,r1,#2 @ line position empty case = N°/ 4 ldr r0,iAdriTabNr ldr r2,[r0,r4,lsl #2] @ load N° line box moved cmp r2,r1 @ compare ???? ble 1f add r7,r7,#1 @ and increment ???? str r7,[r6,r5,lsl #2] 1: add r12,r12,#1 @ increment N pop {r0-r8,lr} bx lr @return iAdriTabNr: .int iTabNr iAdriTabNc: .int iTabNc /******************************************************************/ /* empty case UP see explain in english in function FI */ /******************************************************************/ functionFG: @ INFO: functionFG push {r0-r8,lr} @ save registers ldr r0,iAdriTabN0 ldr r1,[r0,r12,lsl #2] @ case vide sub r2,r1,#4 @ position case au dessus ldr r3,[r9,r12,lsl #2] @ extrait jeu courant ldrb r4,[r3,r2] @ extrait le contenu case au dessus add r5,r12,#1 @ N+1 = N sub r8,r1,#4 @ nouvelle position case vide str r8,[r0,r5,lsl #2] @ et on la stocke ldr r6,iAdriTabN3 mov r7,#'U' @ puis on stocke le code mouvement str r7,[r6,r5,lsl #2] ldr r6,iAdriTabN4 ldr r7,[r6,r12,lsl #2] str r7,[r6,r5,lsl #2] @ N4 (N+1) = N4 (N) mov r0,r3 @ jeu courant bl createGame @ création nouveau jeu ldrb r3,[r0,r1] @ et echange les 2 cases ldrb r8,[r0,r2] strb r8,[r0,r1] strb r3,[r0,r2] str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation lsr r1,r1,#2 @ ligne case vide = position /4 ldr r0,iAdriTabNr ldr r2,[r0,r4,lsl #2] @ extrait table à la position case cmp r2,r1 @ et comparaison ??? bge 1f add r7,r7,#1 @ puis increment N4 de 1  ??? str r7,[r6,r5,lsl #2] 1: add r12,r12,#1 @ increment de N pop {r0-r8,lr} bx lr @return /******************************************************************/ /* empty case go right see explain finction FI ou FG en français */ /******************************************************************/ functionFE: @ INFO: functionFE push {r0-r8,lr} @ save registers ldr r0,iAdriTabN0 ldr r1,[r0,r12,lsl #2] add r2,r1,#1 ldr r3,[r9,r12,lsl #2] ldrb r4,[r3,r2] @ extrait le contenu case add r5,r12,#1 add r8,r1,#1 str r8,[r0,r5,lsl #2] @ nouvelle case vide ldr r6,iAdriTabN3 mov r7,#'R' str r7,[r6,r5,lsl #2] @ mouvement ldr r6,iAdriTabN4 ldr r7,[r6,r12,lsl #2] str r7,[r6,r5,lsl #2] @ N4 ?? mov r0,r3 bl createGame ldrb r3,[r0,r1] @ exchange two boxes ldrb r8,[r0,r2] strb r8,[r0,r1] strb r3,[r0,r2] str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation lsr r3,r1,#2 sub r1,r1,r3,lsl #2 ldr r0,iAdriTabNc ldr r2,[r0,r4,lsl #2] @ extrait table à la position case cmp r2,r1 ble 1f add r7,r7,#1 str r7,[r6,r5,lsl #2] 1: add r12,r12,#1 pop {r0-r8,lr} bx lr @return /******************************************************************/ /* empty box go left see explain function FI ou FG en français */ /******************************************************************/ functionFL: @ INFO: functionFL push {r0-r8,lr} @ save registers ldr r0,iAdriTabN0 ldr r1,[r0,r12,lsl #2] @ case vide sub r2,r1,#1 ldr r3,[r9,r12,lsl #2] @ extrait jeu courant ldrb r4,[r3,r2] @ extrait le contenu case add r5,r12,#1 sub r8,r1,#1 str r8,[r0,r5,lsl #2] @ nouvelle case vide ldr r6,iAdriTabN3 mov r7,#'L' str r7,[r6,r5,lsl #2] @ mouvement ldr r6,iAdriTabN4 ldr r7,[r6,r12,lsl #2] str r7,[r6,r5,lsl #2] @ N4 ?? mov r0,r3 bl createGame ldrb r3,[r0,r1] @ exchange two boxes ldrb r8,[r0,r2] strb r8,[r0,r1] strb r3,[r0,r2] str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation lsr r3,r1,#2 sub r1,r1,r3,lsl #2 @ compute remainder ldr r0,iAdriTabNc ldr r2,[r0,r4,lsl #2] @ extrait table colonne à la position case cmp r2,r1 bge 1f add r7,r7,#1 str r7,[r6,r5,lsl #2] 1: add r12,r12,#1 pop {r0-r8,lr} bx lr @return /******************************************************************/ /* create new Game */ /******************************************************************/ /* r0 contains box address */ /* r0 return address new game */ createGame: @ INFO: createGame push {r1-r8,lr} @ save registers mov r4,r0 @ save value mov r0,#0 @ allocation place heap mov r7,#0x2D @ call system 'brk' svc #0 cmp r0,#-1 @ allocation error beq 99f mov r5,r0 @ save address heap for output string add r0,#SIZE * SIZE @ reservation place one element mov r7,#0x2D @ call system 'brk' svc #0 cmp r0,#-1 @ allocation error beq 99f mov r2,#0 1: @ loop copy boxes ldrb r3,[r4,r2] strb r3,[r5,r2] add r2,r2,#1 cmp r2,#NBBOX blt 1b add r11,r11,#1 mov r0,r5 b 100f 99: @ error ldr r0,iAdrszMessErreur bl affichageMess 100: pop {r1-r8,lr} @ restaur registers bx lr @return /******************************************************************/ /* read file */ /******************************************************************/ /* r0 contains address stack begin */ traitFic: @ INFO: traitFic push {r1-r8,fp,lr} @ save registers mov fp,r0 @ fp <- start address ldr r4,[fp] @ number of Command line arguments cmp r4,#1 movle r0,#-1 ble 99f add r5,fp,#8 @ second parameter address ldr r5,[r5] ldr r0,iAdriAdrFicName str r5,[r0] ldr r0,iAdrszMessTitre bl affichageMess @ display string mov r0,r5 bl affichageMess ldr r0,iAdrszCarriageReturn bl affichageMess @ display carriage return   mov r0,r5 @ file name mov r1,#O_RDWR @ flags mov r2,#0 @ mode mov r7, #OPEN @ call system OPEN svc 0 cmp r0,#0 @ error ? ble 99f mov r8,r0 @ File Descriptor ldr r1,iAdrsBuffer @ buffer address mov r2,#TAILLEBUFFER @ buffer size mov r7,#READ @ read file svc #0 cmp r0,#0 @ error ? blt 99f @ extraction datas ldr r1,iAdrsBuffer @ buffer address add r1,r0 mov r0,#0 @ store zéro final strb r0,[r1] ldr r0,iAdribox @ game box address ldr r1,iAdrsBuffer @ buffer address bl extracDatas @ close file mov r0,r8 mov r7, #CLOSE svc 0 mov r0,#0 b 100f 99: @ error ldr r1,iAdrszMessErreur @ error message bl displayError mov r0,#-1 100: pop {r1-r8,fp,lr} @ restaur registers bx lr @return iAdriAdrFicName: .int iAdrFicName iAdrszMessTitre: .int szMessTitre iAdrsBuffer: .int sBuffer /******************************************************************/ /* extrac digit file buffer */ /******************************************************************/ /* r0 contains boxs address */ /* r1 contains buffer address */ extracDatas: @ INFO: extracDatas push {r1-r8,lr} @ save registers mov r7,r0 mov r6,r1 mov r2,#0 @ string buffer indice mov r4,r1 @ start digit ascii mov r5,#0 @ box index 1: ldrb r3,[r6,r2] cmp r3,#0 beq 4f @ end cmp r3,#0xA beq 2f cmp r3,#',' beq 3f add r2,#1 b 1b 2: mov r3,#0 strb r3,[r6,r2] ldrb r3,[r6,r2] cmp r3,#0xD addeq r2,#2 addne r2,#1 b 4f   3: mov r3,#0 strb r3,[r6,r2] add r2,#1 4: mov r0,r4 bl conversionAtoD strb r0,[r7,r5] cmp r0,#0 ldreq r0,iAdriTabN0 streq r5,[r0] @ empty box in item zéro add r5,#1 cmp r5,#NBBOX @ number box = maxi ? bge 100f add r4,r6,r2 @ new start address digit ascii b 1b 100: pop {r1-r8,lr} @ restaur registers bx lr @return /******************************************************************/ /* control of the game solution */ /******************************************************************/ /* r0 contains boxs address */ /* r0 returns 0 if not possible */ /* r0 returns 1 if possible */ controlSolution: @ INFO: controlSolution push {r1-r8,lr} @ save registers mov r5,r0 ldr r8,iAdriTabN0 ldr r8,[r8] @ empty box @ empty box mov r7,#0 cmp r8,#1 moveq r7,#1 beq 1f cmp r8,#3 moveq r7,#1 beq 1f cmp r8,#4 moveq r7,#1 beq 1f cmp r8,#6 moveq r7,#1 beq 1f cmp r8,#9 moveq r7,#1 beq 1f cmp r8,#11 moveq r7,#1 beq 1f cmp r8,#12 moveq r7,#1 beq 1f cmp r8,#14 moveq r7,#1 1: rsb r6,r8,#NBBOX - 1 add r7,r6 @ count permutations mov r1,#-1 mov r6,#0 2: add r1,#1 cmp r1,#NBBOX bge 80f cmp r1,r8 beq 2b ldrb r3,[r5,r1] mov r2,r1 3: add r2,#1 cmp r2,#NBBOX bge 2b cmp r2,r8 beq 3b ldrb r4,[r5,r2] cmp r4,r3 addlt r6,#1 b 3b 80: add r6,r7 tst r6,#1 movne r0,#0 @ impossible moveq r0,#1 @ OK   100: pop {r1-r8,lr} @ restaur registers bx lr @return /******************************************************************/ /* game Ok ? */ /******************************************************************/ /* r0 contains boxs address */ gameOK: @ INFO: gameOK push {r1-r4,lr} @ save registers mov r2,#0 ldrb r3,[r0,r2] cmp r3,#0 moveq r3,#0xF add r2,#1 1: ldrb r4,[r0,r2] cmp r4,#0 moveq r3,#0xF cmp r4,r3 movle r0,#FALSE @ game not Ok ble 100f mov r3,r4 add r2,#1 cmp r2,#NBBOX -2 ble 1b mov r0,#TRUE @ game Ok   100: pop {r1-r4,lr} @ restaur registers bx lr @return /******************************************************************/ /* display game */ /******************************************************************/ /* r0 contains boxs address */ displayGame: @ INFO: displayGame push {r0-r5,lr} @ save registers mov r4,r0 ldr r0,iAdrszMessTitre bl affichageMess @ display string ldr r0,iAdriAdrFicName ldr r0,[r0] bl affichageMess @ display string ldr r0,iAdrszCarriageReturn bl affichageMess @ display line return mov r2,#0 ldr r1,iAdrsMessValeur 1: ldrb r0,[r4,r2] cmp r0,#0 ldreq r0,iSpaces @ store spaces streq r0,[r1] beq 2f bl conversion10 @ call conversion decimal mov r0,#0 strb r0,[r1,#3] @ zéro final 2:   ldr r0,iAdrsMessResult bl affichageMess @ display message add r0,r2,#1 tst r0,#0b11 bne 3f ldr r0,iAdrszCarriageReturn bl affichageMess @ display message 3: add r2,#1 cmp r2,#NBBOX - 1 ble 1b ldr r0,iAdrszCarriageReturn bl affichageMess @ display line return   100: pop {r0-r5,lr} @ restaur registers bx lr @return iSpaces: .int 0x00202020 @ spaces //iAdrszMessMoveError: .int szMessMoveError iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessValeur: .int sMessValeur iAdrsMessResult: .int sMessResult /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"  
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#ALGOL_60
ALGOL 60
begin integer n;   for n:= 99 step -1 until 2 do begin outinteger(1,n); outstring(1,"bottles of beer on the wall,"); outinteger(1,n); outstring(1,"bottles of beer.\nTake one down and pass it around,"); outstring(1,"of beer on the wall...\n\n") end;   outstring(1," 1 bottle of beer on the wall, 1 bottle of beer.\n"); outstring(1,"Take one down and pass it around, no more bottles of beer on the wall...\n\n");   outstring(1,"No more bottles of beer on the wall, no more bottles of beer.\n"); outstring(1,"Go to the store and buy some more, 99 bottles of beer on the wall.") end
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#CoffeeScript
CoffeeScript
tty = require 'tty' tty.setRawMode true   buffer = "" numbers = []   for n in [0...4] numbers.push Math.max 1, Math.floor(Math.random() * 9)   console.log "You can use the numbers: #{numbers.join ' '}"   process.stdin.on 'keypress', (char, key) ->   # accept operator if char and isNaN(char) and /[()*\/+-]/.test(char) and buffer.substr(-1) isnt char buffer += char process.stdout.write char # accept number else if !isNaN(+char) and (buffer == '' or isNaN(buffer.substr -1)) buffer += char process.stdout.write char   # check then evaluate expression if key?.name is 'enter' result = calculate() process.stdout.write '\n' if result and result is 24 console.log " = 24! congratulations." else console.log "#{result}. nope." process.exit 0   # quit if key?.name is 'escape' or (key?.name == 'c' and key.ctrl) process.exit 0   calculate = () ->   if /[^\d\s()+*\/-]/.test buffer console.log "invalid characters" process.exit 1   used = buffer.match(/\d/g) if used?.length != 4 or used.sort().join() != numbers.sort().join() console.log "you must use the 4 numbers provided" process.exit 1   res = try eval buffer catch e return res or 'invalid expression'     # begin taking input process.stdin.resume()  
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#SPL
SPL
'print triangle > n, 1..25 k = 50-n*2 #.output(#.str("","<"+k+"<"),#.rs) > k, 1..n i = p(n,k) s = #.str(i,">3<")  ? k<n, s += " "+#.rs #.output(s) < < p(n,k)=  ? k=0 | k>n, <= 0  ? k=n, <= 1 <= p(n-1,k-1)+p(n-k,k) .   'calculate partition function #.output() #.output("G(23) = ",g(23)) #.output("G(123) = ",g(123)) #.output("G(1234) = ",g(1234)) #.output("G(12345) = ",g(12345)) g(n)= p[1] = 1 > i, 2..n+1 j = 2 k,p[i] = 0 > j>1 k += 1 j = i-#.lower((3*k*k+k)/2)  ? j!<1, p[i] -= (-1)^k*p[j] j = i-#.lower((3*k*k-k)/2)  ? j!<1, p[i] -= (-1)^k*p[j] < < <= p[n+1] .
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Stata
Stata
mata function part(n) { a = J(n,n,.) for (i=1;i<=n;i++) a[i,1] = a[i,i] = 1 for (i=3;i<=n;i++) { for (j=2;j<i;j++) a[i,j] = sum(a[i-j,1..min((j,i-j))]) } return(a) } end
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#Burlesque
Burlesque
ps++
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#TI-83_BASIC
TI-83 BASIC
PROGRAM:ACKERMAN :If not(M :Then :N+1→N :Return :Else :If not(N :Then :1→N :M-1→M :prgmACKERMAN :Else :N-1→N :M→L1(1+dim(L1 :prgmACKERMAN :Ans→N :L1(dim(L1))-1→M :dim(L1)-1→dim(L1 :prgmACKERMAN :End :End
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#ERRE
ERRE
  PROGRAM BLOCKS   !$INCLUDE="PC.LIB"   PROCEDURE CANMAKEWORD(WORD$) LOCAL B$,P% B$=BLOCKS$ PRINT(WORD$;" -> ";) P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF)) WHILE P%>0 AND WORD$>"" DO CHANGE(B$,P%-1+(P% MOD 2),".."->B$) WORD$=MID$(WORD$,2) EXIT IF WORD$="" P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF)) END WHILE IF WORD$>"" THEN PRINT("False") ELSE PRINT("True") END IF END PROCEDURE   BEGIN BLOCKS$="BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM" CANMAKEWORD("A") CANMAKEWORD("BARK") CANMAKEWORD("BOOK") CANMAKEWORD("TREAT") CANMAKEWORD("COMMON") CANMAKEWORD("SQUAD") CANMAKEWORD("Confuse") END PROGRAM  
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#CLU
CLU
% This program needs to be merged with PCLU's "misc" library % to use the random number generator. % % pclu -merge $CLUHOME/lib/misc.lib -compile prisoners.clu   % Seed the random number generator with the current time init_rng = proc () d: date := now() seed: int := ((d.hour*60) + d.minute)*60 + d.second random$seed(seed) end init_rng   % Place cards in drawers randomly make_drawers = proc (n: int) returns (sequence[int]) d: array[int] := array[int]$predict(1,n)    % place each card in its own drawer for i: int in int$from_to(1,n) do array[int]$addh(d,i) end    % shuffle the cards for i: int in int$from_to_by(n,2,-1) do j: int := random$next(i)+1 t: int := d[i] d[i] := d[j] d[j] := t end return(sequence[int]$a2s(d)) end make_drawers   % Random strategy rand_strat = proc (p, tries: int, d: sequence[int]) returns (bool) n: int := sequence[int]$size(d) for i: int in int$from_to(1,tries) do if p = d[random$next(n)+1] then return(true) end end return(false) end rand_strat   % Optimal strategy opt_strat = proc (p, tries: int, d: sequence[int]) returns (bool) last: int := p for i: int in int$from_to(1,tries) do if d[last]=p then return(true) end last := d[last] end return(false) end opt_strat   % Run one simulation given a strategy simulate = proc (n, tries: int, strat: proctype (int,int,sequence[int]) returns (bool)) returns (bool) d: sequence[int] := make_drawers(n) for p: int in int$from_to(1,n) do  % If one prisoner fails, they all hang if ~strat(p,tries,d) then return(false) end end return(true) end simulate   % Run many simulations and count the successes run_simulations = proc (amount, n, tries: int, strat: proctype (int,int,sequence[int]) returns (bool)) returns (int) ok: int := 0 for i: int in int$from_to(1,amount) do if simulate(n,tries,strat) then ok := ok + 1 end end return(ok) end run_simulations   % Run simulations and show the results show = proc (title: string, amount, n, tries: int, strat: proctype (int,int,sequence[int]) returns (bool)) po: stream := stream$primary_output() stream$puts(po, title || ": ")   ok: int := run_simulations(amount, n, tries, strat) perc: real := real$i2r(ok)*100.0/real$i2r(amount)   stream$putright(po, int$unparse(ok), 7) stream$puts(po, " out of ") stream$putright(po, int$unparse(amount), 7) stream$putl(po, ", " || f_form(perc, 3, 2) || "%") end show   start_up = proc () prisoners = 100 tries = 50 simulations = 50000   init_rng()   show(" Random", simulations, prisoners, tries, rand_strat) show("Optimal", simulations, prisoners, tries, opt_strat) end start_up
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Rust
Rust
fn divisors(n: u64) -> Vec<u64> { let mut divs = vec![1]; let mut divs2 = Vec::new();   for i in (2..).take_while(|x| x * x <= n).filter(|x| n % x == 0) { divs.push(i); let j = n / i; if i != j { divs2.push(j); } } divs.extend(divs2.iter().rev());   divs }   fn sum_string(v: Vec<u64>) -> String { v[1..] .iter() .fold(format!("{}", v[0]), |s, i| format!("{} + {}", s, i)) }   fn abundant_odd(search_from: u64, count_from: u64, count_to: u64, print_one: bool) -> u64 { let mut count = count_from; for n in (search_from..).step_by(2) { let divs = divisors(n); let total: u64 = divs.iter().sum(); if total > n { count += 1; let s = sum_string(divs); if !print_one { println!("{}. {} < {} = {}", count, n, s, total); } else if count == count_to { println!("{} < {} = {}", n, s, total); } } if count == count_to { break; } } count_to }   fn main() { let max = 25; println!("The first {} abundant odd numbers are:", max); let n = abundant_odd(1, 0, max, false);   println!("The one thousandth abundant odd number is:"); abundant_odd(n, 25, 1000, true);   println!("The first abundant odd number above one billion is:"); abundant_odd(1e9 as u64 + 1, 0, 1, true); }
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Scala
Scala
import scala.collection.mutable.ListBuffer   object Abundant { def divisors(n: Int): ListBuffer[Int] = { val divs = new ListBuffer[Int] divs.append(1)   val divs2 = new ListBuffer[Int] var i = 2   while (i * i <= n) { if (n % i == 0) { val j = n / i divs.append(i) if (i != j) { divs2.append(j) } } i += 1 }   divs.appendAll(divs2.reverse) divs }   def abundantOdd(searchFrom: Int, countFrom: Int, countTo: Int, printOne: Boolean): Int = { var count = countFrom var n = searchFrom while (count < countTo) { val divs = divisors(n) val tot = divs.sum if (tot > n) { count += 1 if (!printOne || !(count < countTo)) { val s = divs.map(a => a.toString).mkString(" + ") if (printOne) { printf("%d < %s = %d\n", n, s, tot) } else { printf("%2d. %5d < %s = %d\n", count, n, s, tot) } } } n += 2 }   n }   def main(args: Array[String]): Unit = { val max = 25 printf("The first %d abundant odd numbers are:\n", max) val n = abundantOdd(1, 0, max, printOne = false)   printf("\nThe one thousandth abundant odd number is:\n") abundantOdd(n, 25, 1000, printOne = true)   printf("\nThe first abundant odd number above one billion is:\n") abundantOdd((1e9 + 1).intValue(), 0, 1, printOne = true) } }
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Perl
Perl
print <<'HERE'; The 21 game. Each player chooses to add 1, 2, or 3 to a running total. The player whose turn it is when the total reaches 21 wins. Enter q to quit. HERE   my $total = 0;   while () { print "Running total is: $total\n"; my ($me,$comp); while () { print 'What number do you play> '; $me = <>; chomp $me; last if $me =~ /^[123]$/; insult($me); } $total += $me; win('Human') if $total >= 21; print "Computer plays: " . ($comp = 1+int(rand(3))) . "\n"; $total += $comp; win('Computer') if $total >= 21; }   sub win { my($player) = @_; print "$player wins.\n"; exit; }   sub insult { my($g) = @_; exit if $g =~ /q/i; my @insults = ('Yo mama', 'Jeez', 'Ummmm', 'Grow up'); my $i = $insults[1+int rand($#insults)]; print "$i, $g is not an integer between 1 and 3...\n" }
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#Euler_Math_Toolbox
Euler Math Toolbox
  >function try24 (v) ... $n=cols(v); $if n==1 and v[1]~=24 then $ "Solved the problem", $ return 1; $endif $loop 1 to n $ w=tail(v,2); $ loop 1 to n-1 $ h=w; a=v[1]; b=w[1]; $ w[1]=a+b; if try24(w); ""+a+"+"+b+"="+(a+b), return 1; endif; $ w[1]=a-b; if try24(w); ""+a+"-"+b+"="+(a-b), return 1; endif; $ w[1]=a*b; if try24(w); ""+a+"*"+b+"="+(a*b), return 1; endif; $ if not b~=0 then $ w[1]=a/b; if try24(w); ""+a+"/"+b+"="+(a/b), return 1; endif; $ endif; $ w=rotright(w); $ end; $ v=rotright(v); $end; $return 0; $endfunction  
http://rosettacode.org/wiki/2048
2048
Task Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values. Rules of the game   The rules are that on each turn the player must choose a direction   (up, down, left or right).   All tiles move as far as possible in that direction, some move more than others.   Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.   A move is valid when at least one tile can be moved,   if only by combination.   A new tile with the value of   2   is spawned at the end of each turn at a randomly chosen empty square   (if there is one).   Adding a new tile on a blank space.   Most of the time,   a new   2   is to be added,   and occasionally   (10% of the time),   a   4.   To win,   the player must create a tile with the number   2048.   The player loses if no valid moves are possible. The name comes from the popular open-source implementation of this game mechanic, 2048. Requirements   "Non-greedy" movement.     The tiles that were created by combining other tiles should not be combined again during the same turn (move).     That is to say,   that moving the tile row of: [2][2][2][2] to the right should result in: ......[4][4] and not: .........[8]   "Move direction priority".     If more than one variant of combining is possible,   move direction shall indicate which combination will take effect.   For example, moving the tile row of: ...[2][2][2] to the right should result in: ......[2][4] and not: ......[4][2]   Check for valid moves.   The player shouldn't be able to skip their turn by trying a move that doesn't change the board.   Check for a  win condition.   Check for a lose condition.
#Amazing_Hopper
Amazing Hopper
VERSION 1: "Hopper" flavour.
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#Picat
Picat
import cp.   main => puzzle_all(1, 7, true, Sol1), foreach(Sol in Sol1) println(Sol) end, nl,   puzzle_all(3, 9, true, Sol2), foreach(Sol in Sol2) println(Sol) end, nl,   puzzle_all(0, 9, false, Sol3), println(len=Sol3.len), nl.   puzzle_all(Min, Max, Distinct, LL) => L = [A,B,C,D,E,F,G], L :: Min..Max, if Distinct then all_different(L) else true end, T #= A+B, T #= B+C+D, T #= D+E+F, T #= F+G,  % Another approach:  % Sums = $[A+B,B+C+D,D+E+F,F+G],  % foreach(I in 2..Sums.len) Sums[I] #= Sums[I-1] end, LL = solve_all(L).
http://rosettacode.org/wiki/15_puzzle_solver
15 puzzle solver
Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game. For this task you will be using the following puzzle: 15 14 1 6 9 11 4 12 0 10 7 3 13 8 5 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 The output must show the moves' directions, like so: left, left, left, down, right... and so on. There are two solutions, of fifty-two moves: rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd see: Pretty Print of Optimal Solution Finding either one, or both is an acceptable result. Extra credit. Solve the following problem: 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 Related Task 15 puzzle game A* search algorithm
#C
C
  /**@file HybridIDA.c * @brief solve 4x4 sliding puzzle with IDA* algorithm * by RMM 2021-feb-22   * The Interative Deepening A* is relatively easy to code in 'C' since * it does not need Queues and Lists to manage memory. Instead the * search space state is held on the LIFO stack frame of recursive * search function calls. Millions of nodes may be created but they * are automatically deleted during backtracking.   * Run-time is a disadvantage with complex puzzles. Also it struggles * to solve puzzles with depth g>50. I provided a test puzzle of g=52 * that works with ordinary search but the Rosetta challenge puzzle * cycles forever. The HybridIDA solves it in 18 seconds.   * The HybridIDA solution has two phases. * 1. It stops searching when a permutation begins with 1234. * 2. Phase2 begins a regular search with the output of phase 1.   * (But an regular one time search can be done with phase 2 * only). Phase 1 is optional.)   * Pros: Hybrid IDA* is faster and solves more puzzles. * Cons: May not find shortest path. */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h>   typedef unsigned char u8t; typedef unsigned short u16t; enum { NR=4, NC=4, NCELLS = NR*NC }; enum { UP, DOWN, LEFT, RIGHT, NDIRS }; enum { OK = 1<<8, XX = 1<<9, FOUND = 1<<10, zz=0x80 }; enum { MAX_INT=0x7E, MAX_NODES=(16*65536)*90}; enum { BIT_HDR=1<<0, BIT_GRID=1<<1, BIT_OTHER=1<<2 }; enum { PHASE1,PHASE2 }; // solution phase   typedef struct { u16t dn; u16t hn; }HSORT_T;   typedef struct { u8t data[NCELLS]; unsigned id; unsigned src; u8t h; u8t g; u8t udlr; }NODE_T; // contains puzzle data and metadata   NODE_T goal44={ {1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,0},0,0,0,0,0}; NODE_T work; // copy of puzzle with run-time changes   NODE_T G34={ //g=34; n=248,055; (1phase) {13,9,5,4, 15,6,1,8, 0,10,2,11, 14,3,7,12},0,0,0,0,0};   NODE_T G52={ // g=52; n=34,296,567; (1phase) {15,13,9,5, 14,6,1,4, 10,12,0,8, 3,7,11,2},0,0,0,0,0};   NODE_T G99={ // formidable Rosetta challenge (2phases) {15,14,1,6, 9,11,4,12, 0,10,7,3, 13,8,5,2},0,0,0,0,0};   struct { unsigned nodes; unsigned gfound; unsigned root_visits; unsigned verbose; unsigned locks; unsigned phase; }my;   u16t HybridIDA_star(NODE_T *pNode); u16t make_node(NODE_T *pNode, NODE_T *pNew, u8t udlr ); u16t search(NODE_T *pNode, u16t bound); u16t taxi_dist( NODE_T *pNode); u16t tile_home( NODE_T *p44); void print_node( NODE_T *pN, const char *pMsg, short force ); u16t goal_found(NODE_T *pNode); char udlr_to_char( char udlr ); void idx_to_rc( u16t idx, u16t *row, u16t *col ); void sort_nodes(HSORT_T *p);   int main( ) { my.verbose = 0; // minimal print node // my.verbose |= BIT_HDR; // node header // my.verbose |= BIT_GRID; // node 4x4 data   memcpy(&work, &G99, sizeof(NODE_T)); // select puzzle here if(1){ // phase1 can skipped for easy puzzles printf("Phase1: IDA* search for 1234 permutation..\n"); my.phase = PHASE1; (void) HybridIDA_star(&work); } printf("Phase2: IDA* search phase1 seed..\n"); my.phase = PHASE2; (void)HybridIDA_star(&work); return 0; }   /// \brief driver for Iterative Deepining A* u16t HybridIDA_star(NODE_T *pN){ my.nodes = 1; my.gfound = 0; my.root_visits = 0; pN->udlr = NDIRS; pN->g = 0; pN->h = taxi_dist(pN); pN->id = my.nodes; pN->src = 0; const char *pr = {"Start"}; // for g++ print_node( pN,pr,1 ); u16t depth = pN->h; while(1){ depth = search(pN,depth); if( depth & FOUND){ return FOUND; // goodbye } if( depth & 0xFF00 ){ printf("..error %x\n",depth); return XX; } my.root_visits++; printf("[root visits: %u, depth %u]\n",my.root_visits,depth); } return 0; }   /// \brief search is recursive. nodes are instance variables u16t search(NODE_T *pN, u16t bound){ if(bound & 0xff00){ return bound; } u16t f = pN->g + pN->h; if( f > bound){ return f; } if(goal_found(pN)){ my.gfound = pN->g; memcpy(&work,pN,sizeof(NODE_T)); printf("total nodes=%d, g=%u \n", my.nodes, my.gfound); const char *pr = {"Found.."}; // for g++ print_node( &work,pr,1 ); return FOUND; } NODE_T news; // Sort successor nodes so that the lowest heuristic is visited // before the less promising at the same level. This reduces the // number of searches and finds more solutions HSORT_T hlist[NDIRS]; for( short i=0; i<NDIRS; i++ ){ u16t rv = make_node(pN,&news, i ); hlist[i].dn = i; if( rv & OK ){ hlist[i].hn = news.h; continue; } hlist[i].hn = XX; } sort_nodes(&hlist[0]);   u16t temp, min = MAX_INT; for( short i=0; i<NDIRS; i++ ){ if( hlist[i].hn > 0xff ) continue; temp = make_node(pN,&news, hlist[i].dn ); if( temp & XX ) return XX; if( temp & OK ){ news.id = my.nodes++; print_node(&news," succ",0 ); temp = search(&news, bound); if(temp & 0xff00){ return temp;} if(temp < min){ min = temp; } } } return min; }   /// \brief sort nodes to prioitize heuristic low void sort_nodes(HSORT_T *p){ for( short s=0; s<NDIRS-1; s++ ){ HSORT_T tmp = p[0]; if( p[1].hn < p[0].hn ){tmp=p[0]; p[0]=p[1]; p[1]=tmp; } if( p[2].hn < p[1].hn ){tmp=p[1]; p[1]=p[2]; p[2]=tmp; } if( p[3].hn < p[2].hn ){tmp=p[2]; p[2]=p[3]; p[3]=tmp; } } }   /// \brief return index of blank tile u16t tile_home(NODE_T *pN ){ for( short i=0; i<NCELLS; i++ ){ if( pN->data[i] == 0 ) return i; } return XX; }   /// \brief print node (or not) depending upon flags void print_node( NODE_T *pN, const char *pMsg, short force ){ const int tp1 = 0; if( my.verbose & BIT_HDR || force || tp1){ char ch = udlr_to_char(pN->udlr); printf("id:%u src:%u; h=%d, g=%u, udlr=%c, %s\n", pN->id, pN->src, pN->h, pN->g, ch, pMsg); } if(my.verbose & BIT_GRID || force || tp1){ for(u16t i=0; i<NR; i++ ){ for( u16t j=0; j<NC; j++ ){ printf("%3d",pN->data[i*NR+j]); } printf("\n"); } printf("\n"); } //putchar('>'); getchar(); }   /// \brief return true if selected tiles are settled u16t goal_found(NODE_T *pN) { if(my.phase==PHASE1){ short tags = 0; for( short i=0; i<(NC); i++ ){ if( pN->data[i] == i+1 ) tags++; } if( tags==4 ) return 1; // Permutation starts with 1234 }   for( short i=0; i<(NR*NC); i++ ){ if( pN->data[i] != goal44.data[i] ) return 0; } return 1; }   /// \brief convert UDLR index to printable char char udlr_to_char( char udlr ){ char ch = '?'; switch(udlr){ case UP: ch = 'U'; break; case DOWN: ch = 'D'; break; case LEFT: ch = 'L'; break; case RIGHT: ch = 'R'; break; default: break; } return ch; }   /// \brief convert 1-D array index to 2-D row-column void idx_to_rc( u16t idx, u16t *row, u16t *col ){ *row = idx/NR; *col = abs( idx - (*row * NR)); }   /// \brief make successor node with blank tile moved UDRL /// \return success or error u16t make_node(NODE_T *pSrc, NODE_T *pNew, u8t udlr ){ u16t row,col,home_idx,idx2; if(udlr>=NDIRS||udlr<0 ){ printf("invalid udlr %u\n",udlr); return XX; } if(my.nodes > MAX_NODES ){ printf("excessive nodes %u\n",my.nodes); return XX; } memcpy(pNew,pSrc,sizeof(NODE_T)); home_idx = tile_home(pNew); idx_to_rc(home_idx, &row, &col );   if( udlr == LEFT) { if( col < 1 ) return 0; col--; } if( udlr == RIGHT ){ if( col >= (NC-1) ) return 0; col++; } if( udlr == DOWN ) { if(row >= (NR-1)) return 0; row++; } if( udlr == UP ){ if(row < 1) return 0; row--; } idx2 = row * NR + col; if( idx2 < NCELLS ){ u8t *p = &pNew->data[0]; p[home_idx] = p[idx2]; p[idx2] = 0; // swap pNew->src = pSrc->id; pNew->g = pSrc->g + 1; pNew->h = taxi_dist(pNew); pNew->udlr = udlr; // latest move; return OK; } return 0; }   /// \brief sum of 'manhattan taxi' distance between tile locations u16t taxi_dist( NODE_T *pN){ u16t tile,sum = 0, r1,c1,r2,c2; u8t *p44 = &pN->data[0]; for( short i=0; i<(NR*NC); i++ ){ tile = p44[i]; if( tile==0 ) continue; idx_to_rc(i, &r2, &c2 ); idx_to_rc(tile-1, &r1, &c1 ); sum += abs(r1-r2) + abs(c1-c2); } } return sum; }    
http://rosettacode.org/wiki/99_bottles_of_beer
99 bottles of beer
Task Display the complete lyrics for the song:     99 Bottles of Beer on the Wall. The beer song The lyrics follow this form: 99 bottles of beer on the wall 99 bottles of beer Take one down, pass it around 98 bottles of beer on the wall 98 bottles of beer on the wall 98 bottles of beer Take one down, pass it around 97 bottles of beer on the wall ... and so on, until reaching   0     (zero). Grammatical support for   1 bottle of beer   is optional. As with any puzzle, try to do it in as creative/concise/comical a way as possible (simple, obvious solutions allowed, too). Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet See also   http://99-bottles-of-beer.net/   Category:99_Bottles_of_Beer   Category:Programming language families   Wikipedia 99 bottles of beer
#ALGOL_68
ALGOL 68
main:( FOR bottles FROM 99 TO 1 BY -1 DO printf(($z-d" bottles of beer on the wall"l$, bottles)); printf(($z-d" bottles of beer"l$, bottles)); printf(($"Take one down, pass it around"l$)); printf(($z-d" bottles of beer on the wall"ll$, bottles-1)) OD )
http://rosettacode.org/wiki/24_game
24 game
The 24 Game tests one's mental arithmetic. Task Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed. The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression. The goal is for the player to enter an expression that (numerically) evaluates to 24. Only the following operators/functions are allowed: multiplication, division, addition, subtraction Division should use floating point or rational arithmetic, etc, to preserve remainders. Brackets are allowed, if using an infix expression evaluator. Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong). The order of the digits when given does not have to be preserved. Notes The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example. The task is not for the program to generate the expression, or test whether an expression is even possible. Related tasks 24 game/Solve Reference The 24 Game on h2g2.
#Commodore_BASIC
Commodore BASIC
1 rem 24 game 2 rem for rosetta code 10 rem use appropriate basic base address 11 bh=08:bl=01: rem $0801 commodore 64 12 rem bh=16:bl=01: rem $1001 commodore +4 13 rem bh=18:bl=01: rem $1201 commodore vic-20 (35k ram) 14 rem bh=04:bl=01: rem $0401 commodore pet 15 rem bh=28:bl=01: rem $1c01 commodore 128 (bank 0)   35 print chr$(147);chr$(14);"Initializing...":gosub 1400 40 n$="":x=rnd(-ti):rem similar to 'randomize' 45 for i=1 to 4 50 t$=str$(int(rnd(1)*9)+1) 55 n$=n$+mid$(t$,2,1) 60 next i   65 print chr$(147) 70 print spc(16);"24 Game" 71 print:print " The goal of this game is to formulate" 72 print:print " an arithmetic expression that" 73 print:print " evaluates to a value of 24, however" 74 print:print " you may use only the four numbers" 75 print:print " given at random by the computer and" 76 print:print " the standard arithmetic operations of" 77 print:print " add, subtract, multiply, and divide." 78 print:print " Each digit must be used by itself. " 79 print:print " (e.g. if given 1, 2, 3, 4, you cannot" 80 print:print " combine 1 and 2 to make 12.)" 89 gosub 1000   90 i$="":f$="":p$="" 95 print chr$(147);"Allowed characters:" 100 i$=n$+"+-*/()" 110 print 120 for i=1 to len(i$) 130 print mid$(i$,i,1);" "; 140 next i:print 150 print:print "Spaces are ignored." 155 print "Enter 'end' to end.":print 160 input "Enter the formula";f$ 170 if f$="end" then print "Program terminated.":end   180 print:print "Checking syntax... ";tab(34); 190 for i=1 to len(f$) 200 if mid$(f$,i,1)=" " then next i 210 c$=mid$(f$,i,1) 220 if c$="+" or c$="-" or c$="*" or c$="/" then p$=p$+"o":goto 250 230 if c$="(" or c$=")" then p$=p$+c$:goto 250 240 p$=p$+"n" 250 next i 260 restore 270 for i=1 to 11 280 read t$ 290 if t$=p$ then i=11 300 next i 310 if t$<>p$ then gosub 1100:gosub 1000:goto 90   315 print "OK":print "Checking for illegal numbers... ";tab(34); 320 for i=1 to len(f$) 330 for j=1 to 10 335 ft$=mid$(f$,i,1) 336 il$=left$(i$,j-1):it$=mid$(i$,j,1):ir$=mid$(i$,j+1,len(i$)) 340 if ft$=it$ and ft$>"0" and ft$<="9" then i$=il$+" "+ir$ 350 next j 360 next i 370 if mid$(i$,1,4)<>" " then gosub 1200:gosub 1000:goto 90   375 print "OK":print "Evaluating expression...":print:print tab(10);f$;" ="; 380 gosub 600:rem r=val(f$) 390 print r;" " 400 if r<>24 then gosub 1300:gosub 1000:goto 90 410 print "Correct!"   420 print:print "Would you like to go again (y/n)? "; 425 get k$:if k$<>"y" and k$<>"n" then 425 430 print k$ 435 if k$="y" then goto 40 440 print:print "Very well. Have a nice day!" 450 end   500 rem pattern matching 501 data "nononon","(non)onon","nono(non)" 504 data "no(no(non))","((non)on)on","no(non)on" 507 data "(non)o(non)","no((non)on)","(nonon)on" 510 data "(no(non))on","no(nonon)"   600 rem get basic to evaluate our expression 605 a$="r="+f$:gosub 1440 610 for i=1 to len(a$) 615 rem simple token translation 620 b=asc(mid$(a$,i,1)) 625 if (b>41 and b<48) or b=61 or b=94 then b=t(b) 630 poke (ad+i-1),b 635 next 640 gosub 2000 645 rem gosub 1440:rem uncomment to clear evaluation line after use 650 return   1000 rem screen pause 1005 pt$=" Press a key to continue. " 1010 print:print spc(20-int(len(pt$)/2)); 1015 print chr$(18);pt$;chr$(146); 1020 get k$:if k$=""then 1020 1030 return   1100 rem syntax error 1105 print "ERROR":print 1110 print "Maybe something is out of place..." 1120 return   1200 rem invalid arguments 1205 print "ERROR":print 1210 print "?Invalid Arguments - " 1215 print "You used a number that is not allowed." 1220 return   1300 rem wrong formula 1305 print:print "Wrong answer. Try again." 1310 return   1400 dim t(94):t(43)=170:t(45)=171:t(42)=172:t(47)=173:t(61)=178:t(94)=174 1405 rem locate line 2005 in ram 1410 lh=bh:ll=bl:nh=0:nl=0 1415 ad=lh*256+ll 1420 lh=peek(ad+1):ll=peek(ad) 1425 nl=peek(ad+2):nh=peek(ad+3):n=nh*256+nl 1430 if n<>2005 then goto 1415 1435 ad=ad+4:return   1440 for j=ad to ad+73:poke j,asc(":"):next 1445 return   2000 rem put 74 colons on the next line 2005 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2010 return  
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Swift
Swift
var cache = [[1]] func namesOfGod(n:Int) -> [Int] { for l in cache.count...n { var r = [0] for x in 1...l { r.append(r[r.count - 1] + cache[l - x][min(x, l-x)]) } cache.append(r) } return cache[n] }   func row(n:Int) -> [Int] { let r = namesOfGod(n) var returnArray = [Int]() for i in 0...n - 1 { returnArray.append(r[i + 1] - r[i]) } return returnArray }   println("rows:") for x in 1...25 { println("\(x): \(row(x))") }   println("\nsums: ")   for x in [23, 123, 1234, 12345] { cache = [[1]] var array = namesOfGod(x) var numInt = array[array.count - 1] println("\(x): \(numInt)") }
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer
9 billion names of God the integer
This task is a variation of the short story by Arthur C. Clarke. (Solvers should be aware of the consequences of completing this task.) In detail, to specify what is meant by a   “name”: The integer 1 has 1 name     “1”. The integer 2 has 2 names   “1+1”,   and   “2”. The integer 3 has 3 names   “1+1+1”,   “2+1”,   and   “3”. The integer 4 has 5 names   “1+1+1+1”,   “2+1+1”,   “2+2”,   “3+1”,   “4”. The integer 5 has 7 names   “1+1+1+1+1”,   “2+1+1+1”,   “2+2+1”,   “3+1+1”,   “3+2”,   “4+1”,   “5”. Task Display the first 25 rows of a number triangle which begins: 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 Where row   n {\displaystyle n}   corresponds to integer   n {\displaystyle n} ,   and each column   C {\displaystyle C}   in row   m {\displaystyle m}   from left to right corresponds to the number of names beginning with   C {\displaystyle C} . A function   G ( n ) {\displaystyle G(n)}   should return the sum of the   n {\displaystyle n} -th   row. Demonstrate this function by displaying:   G ( 23 ) {\displaystyle G(23)} ,   G ( 123 ) {\displaystyle G(123)} ,   G ( 1234 ) {\displaystyle G(1234)} ,   and   G ( 12345 ) {\displaystyle G(12345)} . Optionally note that the sum of the   n {\displaystyle n} -th   row   P ( n ) {\displaystyle P(n)}   is the     integer partition function. Demonstrate this is equivalent to   G ( n ) {\displaystyle G(n)}   by displaying:   P ( 23 ) {\displaystyle P(23)} ,   P ( 123 ) {\displaystyle P(123)} ,   P ( 1234 ) {\displaystyle P(1234)} ,   and   P ( 12345 ) {\displaystyle P(12345)} . Extra credit If your environment is able, plot   P ( n ) {\displaystyle P(n)}   against   n {\displaystyle n}   for   n = 1 … 999 {\displaystyle n=1\ldots 999} . Related tasks Partition function P
#Tcl
Tcl
set cache 1 proc cumu {n} { global cache for {set l [llength $cache]} {$l <= $n} {incr l} { set r 0 for {set x 1; set y [expr {$l-1}]} {$y >= 0} {incr x; incr y -1} { lappend r [expr { [lindex $r end] + [lindex $cache $y [expr {min($x, $y)}]] }] } lappend cache $r } return [lindex $cache $n] } proc row {n} { set r [cumu $n] for {set i 0; set j 1} {$j < [llength $r]} {incr i; incr j} { lappend result [expr {[lindex $r $j] - [lindex $r $i]}] } return $result }   puts "rows:" foreach x {1 2 3 4 5 6 7 8 9 10} { puts "${x}: \[[join [row $x] {, }]\]" } puts "\nsums:" foreach x {23 123 1234 12345} { puts "${x}: [lindex [cumu $x] end]" }
http://rosettacode.org/wiki/A%2BB
A+B
A+B   ─── a classic problem in programming contests,   it's given so contestants can gain familiarity with the online judging system being used. Task Given two integers,   A and B. Their sum needs to be calculated. Input data Two integers are written in the input stream, separated by space(s): ( − 1000 ≤ A , B ≤ + 1000 ) {\displaystyle (-1000\leq A,B\leq +1000)} Output data The required output is one integer:   the sum of A and B. Example input   output   2 2 4 3 2 5
#C
C
// Standard input-output streams #include <stdio.h> int main() { int a, b; scanf("%d%d", &a, &b); printf("%d\n", a + b); return 0; }
http://rosettacode.org/wiki/Ackermann_function
Ackermann function
The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree. The Ackermann function is usually defined as follows: A ( m , n ) = { n + 1 if  m = 0 A ( m − 1 , 1 ) if  m > 0  and  n = 0 A ( m − 1 , A ( m , n − 1 ) ) if  m > 0  and  n > 0. {\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}} Its arguments are never negative and it always terminates. Task Write a function which returns the value of A ( m , n ) {\displaystyle A(m,n)} . Arbitrary precision is preferred (since the function grows so quickly), but not required. See also Conway chained arrow notation for the Ackermann function.
#TI-89_BASIC
TI-89 BASIC
Define A(m,n) = when(m=0, n+1, when(n=0, A(m-1,1), A(m-1, A(m, n-1))))
http://rosettacode.org/wiki/ABC_problem
ABC problem
ABC problem You are encouraged to solve this task according to the task description, using any language you may know. You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid). There are twenty blocks with two letters on each block. A complete alphabet is guaranteed amongst all sides of the blocks. The sample collection of blocks: (B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M) Task Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks. The rules are simple:   Once a letter on a block is used that block cannot be used again   The function should be case-insensitive   Show the output on this page for the following 7 words in the following example Example >>> can_make_word("A") True >>> can_make_word("BARK") True >>> can_make_word("BOOK") False >>> can_make_word("TREAT") True >>> can_make_word("COMMON") False >>> can_make_word("SQUAD") True >>> can_make_word("CONFUSE") True Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Euphoria
Euphoria
  include std/text.e   sequence blocks = {{'B','O'},{'X','K'},{'D','Q'},{'C','P'},{'N','A'}, {'G','T'},{'R','E'},{'T','G'},{'Q','D'},{'F','S'}, {'J','W'},{'H','U'},{'V','I'},{'A','N'},{'O','B'}, {'E','R'},{'F','S'},{'L','Y'},{'P','C'},{'Z','M'}} sequence words = {"A","BarK","BOOK","TrEaT","COMMON","SQUAD","CONFUSE"}   sequence current_word sequence temp integer matches   for i = 1 to length(words) do current_word = upper(words[i]) temp = blocks matches = 0 for j = 1 to length(current_word) do for k = 1 to length(temp) do if find(current_word[j],temp[k]) then temp = remove(temp,k) matches += 1 exit end if end for if length(current_word) = matches then printf(1,"%s: TRUE\n",{words[i]}) exit end if end for if length(current_word) != matches then printf(1,"%s: FALSE\n",{words[i]}) end if end for   if getc(0) then end if  
http://rosettacode.org/wiki/100_prisoners
100 prisoners
The Problem 100 prisoners are individually numbered 1 to 100 A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside. Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start. Prisoners start outside the room They can decide some strategy before any enter the room. Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer. A prisoner can open no more than 50 drawers. A prisoner tries to find his own number. A prisoner finding his own number is then held apart from the others. If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand. The task Simulate several thousand instances of the game where the prisoners randomly open drawers Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of: First opening the drawer whose outside number is his prisoner number. If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum). Show and compare the computed probabilities of success for the two strategies, here, on this page. References The unbelievable solution to the 100 prisoner puzzle standupmaths (Video). wp:100 prisoners problem 100 Prisoners Escape Puzzle DataGenetics. Random permutation statistics#One hundred prisoners on Wikipedia.
#Commodore_BASIC
Commodore BASIC
  10 rem 100 prisoners 20 rem set arrays 30 rem dr = drawers containing card values 40 rem ig = a list of numbers 1 through 100, shuffled to become the 41 rem guess sequence for each inmate - method 1 50 dim dr(100),ig(100) 55 rem initialize drawers with own card in each drawer 60 for i=1 to 100:dr(i)=i:next   1000 print chr$(147);"how many trials for each method";:input tt 1010 for m=1 to 2:su(m)=0:fa(m)=0 1015 for tn=1 to tt 1020 on m gosub 2000,3000 1025 rem ip = number of inmates who passed 1030 if ip=100 then su(m)=su(m)+1 1040 if ip<100 then fa(m)=fa(m)+1 1045 next tn 1055 next m   1060 print chr$(147);"Results:":print 1070 print "Out of";tt;"trials, the results are" 1071 print "as follows...":print 1072 print "1. Random Guessing:" 1073 print " ";su(1);"successes" 1074 print " ";fa(1);"failures" 1075 print " ";su(1)/tn;"{left-crsr}% success rate.":print 1077 print "2. Chained Number Picking:" 1078 print " ";su(2);"successes" 1079 print " ";fa(2);"failures" 1080 print " ";(su(2)/tn)*100;"{left-crsr}% success rate.":print 1100 print:print "Again?" 1110 get k$:if k$="" then 1110 1120 if k$="y" then 1000 1500 end   2000 rem random guessing method 2005 for x=1 to 100:ig(x)=x:next:ip=0:gosub 4000 2007 for i=1 to 100 2010 for x=1 to 100:t=ig(x):np=int(rnd(1)*100)+1:ig(x)=ig(np):ig(np)=t:next 2015 for g=1 to 50 2020 if dr(ig(g))=i then ip=ip+1:next i:return 2025 next g 2030 return   3000 rem chained method 3005 ip=0:gosub 4000 3007 rem iterate through each inmate 3010 fori=1to100 3015 ng=i:forg=1to50 3020 cd=dr(ng) 3025 ifcd=ithenip=ip+1:nexti:return 3030 ifcd<>ithenng=cd 3035 nextg:return   4000 rem shuffle the drawer cards randomly 4010 x=rnd(-ti) 4020 for i=1 to 100 4030 r=int(rnd(1)*100)+1:t=dr(i):dr(i)=dr(r):dr(r)=t:next 4040 return  
http://rosettacode.org/wiki/Abundant_odd_numbers
Abundant odd numbers
An Abundant number is a number n for which the   sum of divisors   σ(n) > 2n, or,   equivalently,   the   sum of proper divisors   (or aliquot sum)       s(n) > n. E.G. 12   is abundant, it has the proper divisors     1,2,3,4 & 6     which sum to   16   ( > 12 or n);        or alternately,   has the sigma sum of   1,2,3,4,6 & 12   which sum to   28   ( > 24 or 2n). Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers. To make things more interesting, this task is specifically about finding   odd abundant numbers. Task Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum. Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum. Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum. References   OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)   American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
#Sidef
Sidef
func is_abundant(n) { n.sigma > 2*n }   func odd_abundants (from = 1) { from = (from + 2)//3 from += (from%2 - 1) 3*from .. Inf `by` 6 -> lazy.grep(is_abundant) }   say " Index | Number | proper divisor sum" const sep = "-------+-------------+-------------------\n" const fstr = "%6s | %11s | %11s\n"   print sep   odd_abundants().first(25).each_kv {|k,n| printf(fstr, k+1, n, n.sigma-n) }   with (odd_abundants().nth(1000)) {|n| printf(sep + fstr, 1000, n, n.sigma-n) }   with(odd_abundants(1e9).first) {|n| printf(sep + fstr, '***', n, n.sigma-n) }
http://rosettacode.org/wiki/21_game
21 game
21 game You are encouraged to solve this task according to the task description, using any language you may know. 21 is a two player game, the game is played by choosing a number (1, 2, or 3) to be added to the running total. The game is won by the player whose chosen number causes the running total to reach exactly 21. The running total starts at zero. One player will be the computer. Players alternate supplying a number to be added to the running total. Task Write a computer program that will: do the prompting (or provide a button menu), check for errors and display appropriate error messages, do the additions (add a chosen number to the running total), display the running total, provide a mechanism for the player to quit/exit/halt/stop/close the program, issue a notification when there is a winner, and determine who goes first (maybe a random or user choice, or can be specified when the game begins).
#Phix
Phix
-- -- demo\rosetta\21_Game.exw -- ======================== -- with javascript_semantics -- DEV NORMALIZESIZE, CANFOCUS, "You" not checked, VALUE_HANDLE. -- The radio_texts simply don't do anything at all in p2js. constant title = "21 Game", help_text = """ Play by choosing 1, 2, or 3 to add to the running total (initially 0). The first player to reach 21 wins. If the computer goes first you cannot win. If you leave your opponent on 18, 19, or 20, they will play {3,2,1} and win. If you leave your opponent on 17, simply match their play {1,2,3} with {3,2,1} and win. If you leave your opponent on 14, 15, or 16, they'll leave you on 17 and win. So the aim is 21 (doh), and before that 17, 13, 9, 5, and 1. Anything else loses. """, radio_texts = {"You","Computer","Random"}, button_text = {"one","two","three","concede","new game","quit"} integer total = 0 include pGUI.e Ihandle dlg, vbox, frame, radios, playstate sequence radioset, buttons function show_help() IupMessage(title,help_text) return IUP_IGNORE -- (don't open browser help!) end function function play(integer n) if n!=0 then if n=6 then return IUP_CLOSE end if string title if n>3 then -- concede or new_game total = 0 title = iff(n=4?"(conceded) ":"") title &= "Total is 0" Ihandle r = IupGetAttributePtr(radios,"VALUE_HANDLE") n = find(r,radioset) if n=2 or (n=3 and rand(2)=1) then title &= "," -- trigger a computer move end if IupSetInt(buttons[1..3],"ACTIVE",true) else -- n = 1..3 title = sprintf("Total is %d",total) if total=21 -- (from key_cb) or total+n>21 then -- (invalid) return IUP_IGNORE end if total += n title &= sprintf(", you play %d (-> %d),",{n,total}) if total=21 then title &= " you win" end if end if if find(',',title) and total!=21 then -- computer move sequence moves = {1,rand(3),3,2} n = moves[mod(total,4)+1] total += n title &= sprintf(" computer plays %d (-> %d)",{n,total}) if total=21 then title &= ", computer wins" elsif mod(total,4)=1 then title &= ", (you've already lost)" end if end if if total=21 then title &= " GAME OVER" IupSetInt(buttons[1..4],"ACTIVE",false) else if total>18 then IupSetInt(buttons[22-total..3],"ACTIVE",false) end if IupSetInt(buttons[4],"ACTIVE",total!=0) end if IupSetFocus(dlg) -- (stops inactive button beeping) IupSetStrAttribute(playstate,"TITLE",title) end if return IUP_IGNORE end function function button_cb(Ihandle ih) string title = IupGetAttribute(ih,"TITLE") return play(find(title,button_text)) end function constant cb_button = Icallback("button_cb") function key_cb(Ihandle /*dlg*/, atom c) if c=K_ESC then return IUP_CLOSE end if -- (standard practice for me) if c=K_F5 then return IUP_DEFAULT end if -- (let browser reload work) if c=K_F1 then return show_help() end if return play(find(upper(c),"123CNQ")) end function IupOpen() playstate = IupLabel("","EXPAND=HORIZONTAL, PADDING=10x10") radioset = apply(true,IupToggle,{radio_texts,{"RIGHTBUTTON=YES, CANFOCUS=NO"}}) buttons = apply(true,IupButton,{button_text,cb_button,{"PADDING=5x5"}}) radios = IupRadio(IupHbox(radioset,"GAP=45")) frame = IupHbox({IupLabel(`First Player:`),radios},"NORMALIZESIZE=VERTICAL") vbox = IupVbox({frame,playstate,IupHbox(buttons,"GAP=10")},"MARGIN=20x10") dlg = IupDialog(vbox,`TITLE="%s", MINSIZE=540x200`,{title}) IupShow(dlg) IupSetCallback({dlg,buttons},"KEY_CB",Icallback("key_cb")) IupSetAttributeHandle(NULL,"PARENTDIALOG",dlg) {} = play(find("new game",button_text)) if platform()!=JS then IupMainLoop() IupClose() end if
http://rosettacode.org/wiki/24_game/Solve
24 game/Solve
task Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game. Show examples of solutions generated by the program. Related task   Arithmetic Evaluator
#F.23
F#
open System   let rec gcd x y = if x = y || x = 0 then y else if x < y then gcd y x else gcd y (x-y) let abs (x : int) = Math.Abs x let sign (x: int) = Math.Sign x let cint s = Int32.Parse(s)   type Rat(x : int, y : int) = let g = if y = 0 then 0 else gcd (abs x) (abs y) member this.n = if g = 0 then sign y * sign x else sign y * x / g // store a minus sign in the numerator member this.d = if y = 0 then 0 else sign y * y / g static member (~-) (x : Rat) = Rat(-x.n, x.d) static member (+) (x : Rat, y : Rat) = Rat(x.n * y.d + y.n * x.d, x.d * y.d) static member (-) (x : Rat, y : Rat) = x + Rat(-y.n, y.d) static member (*) (x : Rat, y : Rat) = Rat(x.n * y.n, x.d * y.d) static member (/) (x : Rat, y : Rat) = x * Rat(y.d, y.n) interface System.IComparable with member this.CompareTo o = match o with | :? Rat as that -> compare (this.n * that.d) (that.n * this.d) | _ -> invalidArg "o" "cannot compare values of differnet types." override this.Equals(o) = match o with | :? Rat as that -> this.n = that.n && this.d = that.d | _ -> false override this.ToString() = if this.d = 1 then this.n.ToString() else sprintf @"<%d,%d>" this.n this.d new(x : string, y : string) = if y = "" then Rat(cint x, 1) else Rat(cint x, cint y)   type expression = | Const of Rat | Sum of expression * expression | Diff of expression * expression | Prod of expression * expression | Quot of expression * expression   let rec eval = function | Const c -> c | Sum (f, g) -> eval f + eval g | Diff(f, g) -> eval f - eval g | Prod(f, g) -> eval f * eval g | Quot(f, g) -> eval f / eval g   let print_expr expr = let concat (s : seq<string>) = System.String.Concat s let paren p prec op_prec = if prec > op_prec then p else "" let rec print prec = function | Const c -> c.ToString() | Sum(f, g) -> concat [ (paren "(" prec 0); (print 0 f); " + "; (print 0 g); (paren ")" prec 0) ] | Diff(f, g) -> concat [ (paren "(" prec 0); (print 0 f); " - "; (print 1 g); (paren ")" prec 0) ] | Prod(f, g) -> concat [ (paren "(" prec 2); (print 2 f); " * "; (print 2 g); (paren ")" prec 2) ] | Quot(f, g) -> concat [ (paren "(" prec 2); (print 2 f); " / "; (print 3 g); (paren ")" prec 2) ] print 0 expr   let rec normal expr = let norm epxr = match expr with | Sum(x, y) -> if eval x <= eval y then expr else Sum(normal y, normal x) | Prod(x, y) -> if eval x <= eval y then expr else Prod(normal y, normal x) | _ -> expr match expr with | Const c -> expr | Sum(x, y) -> norm (Sum(normal x, normal y)) | Prod(x, y) -> norm (Prod(normal x, normal y)) | Diff(x, y) -> Diff(normal x, normal y) | Quot(x, y) -> Quot(normal x, normal y)   let rec insert v = function | [] -> [[v]] | x::xs as li -> (v::li) :: (List.map (fun y -> x::y) (insert v xs))   let permutations li = List.foldBack (fun x z -> List.concat (List.map (insert x) z)) li [[]]   let rec comp expr rest = seq { match rest with | x::xs -> yield! comp (Sum (expr, x)) xs; yield! comp (Diff(x, expr)) xs; yield! comp (Diff(expr, x)) xs; yield! comp (Prod(expr, x)) xs; yield! comp (Quot(x, expr)) xs; yield! comp (Quot(expr, x)) xs; | [] -> if eval expr = Rat(24,1) then yield print_expr (normal expr) }   [<EntryPoint>] let main argv = let digits = List.init 4 (fun i -> Const (Rat(argv.[i],""))) let solutions = permutations digits |> Seq.groupBy (sprintf "%A") |> Seq.map snd |> Seq.map Seq.head |> Seq.map (fun x -> comp (List.head x) (List.tail x)) |> Seq.choose (fun x -> if Seq.isEmpty x then None else Some x) |> Seq.concat if Seq.isEmpty solutions then printfn "No solutions." else solutions |> Seq.groupBy id |> Seq.iter (fun x -> printfn "%s" (fst x)) 0
http://rosettacode.org/wiki/2048
2048
Task Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values. Rules of the game   The rules are that on each turn the player must choose a direction   (up, down, left or right).   All tiles move as far as possible in that direction, some move more than others.   Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.   A move is valid when at least one tile can be moved,   if only by combination.   A new tile with the value of   2   is spawned at the end of each turn at a randomly chosen empty square   (if there is one).   Adding a new tile on a blank space.   Most of the time,   a new   2   is to be added,   and occasionally   (10% of the time),   a   4.   To win,   the player must create a tile with the number   2048.   The player loses if no valid moves are possible. The name comes from the popular open-source implementation of this game mechanic, 2048. Requirements   "Non-greedy" movement.     The tiles that were created by combining other tiles should not be combined again during the same turn (move).     That is to say,   that moving the tile row of: [2][2][2][2] to the right should result in: ......[4][4] and not: .........[8]   "Move direction priority".     If more than one variant of combining is possible,   move direction shall indicate which combination will take effect.   For example, moving the tile row of: ...[2][2][2] to the right should result in: ......[2][4] and not: ......[4][2]   Check for valid moves.   The player shouldn't be able to skip their turn by trying a move that doesn't change the board.   Check for a  win condition.   Check for a lose condition.
#Applesoft_BASIC
Applesoft BASIC
PRINT "Game 2048"   10 REM ************ 20 REM * 2024 * 30 REM ************ 40 HOME 100 W = 2: REM **** W=0 FOR LOOSE W=1 FOR WIN W=2 FOR PLAYING **** 110 DIM MA(4,4) 120 FC = 16: REM FREECELLS 130 A$ = "":SC = 0:MT = 2 140 GOSUB 1000: DRAW THESCREEN 150 GOSUB 1500: REM PRINT SCORE AND MAXTILE 160 GOSUB 1700: REM BREED 170 GOSUB 2000: REM PRINT SCORES IN THE MATRIX AND CALC FC AND MT 200 REM ****************** 210 REM MAIN PROGRAM 220 REM ****************** 230 HTAB 38: VTAB 22 235 IF W < 2 THEN GOTO 950: REM ******* END GAME ******** 240 WAIT - 16384,128:A = PEEK ( - 16384) - 128 - 68: POKE - 16368,0 250 ON A GOTO 999,900,900,900,300,350,400,900,450 280 REM ************************ 285 REM FOLLOWING LINES HANDLE THE UP, LEFT, RIGHT, DOWN, NOP, EXIT 290 REM ************************ 300 GOSUB 2500: GOSUB 3500: GOSUB 2500: GOSUB 1700: GOSUB 2000: GOSUB 1 500 310 GOTO 200 350 GOSUB 2600: GOSUB 3600: GOSUB 2600: GOSUB 1700: GOSUB 2000: GOSUB 1 500 360 GOTO 200 400 GOSUB 2700: GOSUB 3700: GOSUB 2700: GOSUB 1700: GOSUB 2000: GOSUB 1 500 410 GOTO 200 450 GOSUB 2800: GOSUB 3800: GOSUB 2800: GOSUB 1700: GOSUB 2000: GOSUB 1 500 460 GOTO 200 900 GOTO 200 950 HOME : VTAB 10 960 PRINT " ********************" 970 IF W = 1 THEN PRINT " * YOU WIN *" 980 IF W = 0 THEN PRINT " * YOU LOOSE *" 990 PRINT " ********************" 995 PRINT " SCORE =";SC 996 PRINT " MAXTILE=";MT 999 END 1000 REM DRAW FRAME + SCORE 1010 FOR I = 1 TO 5 1020 VTAB 1 + (I - 1) * 4: PRINT "---------------------" 1030 NEXT I 1040 FOR I = 1 TO 4 1050 FOR J = 1 TO 3 1060 VTAB 1 + (I - 1) * 4 + J: PRINT "| | | | |" 1070 NEXT J 1080 NEXT I 1090 HTAB 30: VTAB 3: PRINT "I"; 1100 HTAB 30: VTAB 9: PRINT "M"; 1110 HTAB 25: VTAB 6: PRINT "J"; 1120 HTAB 35: VTAB 6: PRINT "K"; 1130 HTAB 25: VTAB 12: PRINT "E = END" 1140 HTAB 25: VTAB 14: PRINT "SCORE:" 1150 HTAB 25: VTAB 16: PRINT "MAXTILE:" 1160 HTAB 1: VTAB 19: PRINT "YOU CAN SLIDE THE NUMBERS IN THE MATRIX" 1170 HTAB 1: VTAB 20: PRINT "BY PRESSING IJKM. WHEN MATCHING NUMBERS" 1180 HTAB 1: VTAB 21: PRINT "MEET THEY COMBINE IN THE SUM" 1190 HTAB 1: VTAB 22: PRINT "TO WIN YOU HAVE TO REACH THE SUM 2048" 1200 RETURN 1500 REM *************** 1501 REM PRINT SCORE + MAXTILE 1502 REM *************** 1510 VTAB 14: HTAB 32: 1520 SC$ = STR$ (SC):LS = LEN (SC$) 1530 FOR I = 1 TO 7 - LS: PRINT " ";: NEXT I 1540 PRINT SC$ 1550 VTAB 16: HTAB 34: 1560 MT$ = STR$ (MT):LS = LEN (MT$) 1570 FOR I = 1 TO 5 - LS: PRINT " ";: NEXT I 1580 PRINT MT$ 1590 IF SC = 2048 THEN W = 1: REM ******** YOU WIN ******** 1690 RETURN 1700 REM **************** 1701 REM PUT A "2" IN A RANDOM EMPTY CELL 1702 REM **************** 1708 IF FC = 0 THEN W = 0: GOTO 1800: REM ***** YOU LOOSE ***** 1710 K = INT ( RND (1) * FC + 1) 1720 N = 0 1730 FOR I = 1 TO 4 1740 FOR J = 1 TO 4 1750 IF MA(I,J) = 0 THEN N = N + 1 1760 IF N = K THEN MA(I,J) = 2:FC = FC - 1:I = 4:J = 4 1780 NEXT J 1790 NEXT I 1800 RETURN 2000 REM ************* 2001 REM WRITE THE CELL CONTENT AND CALC. FREECELLS AND MAXTILE 2002 REM ************* 2005 FC = 0:MT = 0: REM INITIALIZE FREECELLS AND MAXTILES 2010 FOR I = 1 TO 4 2020 FOR J = 1 TO 4 2030 HTAB 2 + (J - 1) * 5: VTAB 3 + (I - 1) * 4 2040 PRINT " ";: HTAB 2 + (J - 1) * 5 2050 IF MA(I,J) = 0 THEN FC = FC + 1: GOTO 2060 2055 PRINT MA(I,J); 2060 IF MA(I,J) > MT THEN MT = MA(I,J) 2090 NEXT J 2100 NEXT I 2190 RETURN 2500 REM ***************** 2510 REM COMPACT UP - KIND OF BUBBLE SORT 2520 REM ***************** 2530 FOR J = 1 TO 4 2540 FOR K = 3 TO 1 STEP - 1 2550 FOR I = 1 TO K 2560 IF MA(I,J) = 0 THEN MA(I,J) = MA(I + 1,J):MA(I + 1,J) = 0 2570 NEXT : NEXT : NEXT 2590 RETURN 2600 REM ************ 2610 REM COMPACT LEFT 2620 REM ************ 2630 FOR I = 1 TO 4 2640 FOR K = 3 TO 1 STEP - 1 2650 FOR J = 1 TO K 2660 IF MA(I,J) = 0 THEN MA(I,J) = MA(I,J + 1):MA(I,J + 1) = 0 2670 NEXT : NEXT : NEXT 2690 RETURN 2700 REM ************ 2710 REM COMPACT RIGHT 2720 REM ************ 2730 FOR I = 1 TO 4 2740 FOR K = 2 TO 4 2750 FOR J = 4 TO K STEP - 1 2760 IF MA(I,J) = 0 THEN MA(I,J) = MA(I,J - 1):MA(I,J - 1) = 0 2770 NEXT : NEXT : NEXT 2790 RETURN 2800 REM ***************** 2810 REM COMPACT DOWN 2820 REM ***************** 2830 FOR J = 1 TO 4 2840 FOR K = 2 TO 4 2850 FOR I = 4 TO K STEP - 1 2860 IF MA(I,J) = 0 THEN MA(I,J) = MA(I - 1,J):MA(I - 1,J) = 0 2870 NEXT : NEXT : NEXT 2890 RETURN 3500 REM *************** 3510 REM ADD UP 3520 REM *************** 3530 FOR J = 1 TO 4 3540 FOR I = 1 TO 3 3550 IF MA(I,J) = MA(I + 1,J) THEN MA(I,J) = MA(I,J) * 2:MA(I + 1,J) = 0:SC = SC + MA(I,J) 3560 NEXT : NEXT 3590 RETURN 3600 REM ************** 3610 REM SUM LEFT 3620 REM ************** 3630 FOR I = 1 TO 4 3640 FOR J = 1 TO 3 3650 IF MA(I,J) = MA(I,J + 1) THEN MA(I,J) = MA(I,J) * 2:MA(I,J + 1) = 0:SC = SC + MA(I,J) 3660 NEXT : NEXT 3690 RETURN 3700 REM ************** 3710 REM SUM RIGHT 3720 REM ************** 3730 FOR I = 1 TO 4 3740 FOR J = 4 TO 2 STEP - 1 3750 IF MA(I,J) = MA(I,J - 1) THEN MA(I,J) = MA(I,J) * 2:MA(I,J - 1) = 0:SC = SC + MA(I,J) 3760 NEXT : NEXT 3790 RETURN 3800 REM *************** 3810 REM ADD DOWN 3820 REM *************** 3830 FOR J = 1 TO 4 3840 FOR I = 4 TO 2 STEP - 1 3850 IF MA(I,J) = MA(I - 1,J) THEN MA(I,J) = MA(I,J) * 2:MA(I - 1,J) = 0:SC = SC + MA(I,J) 3860 NEXT : NEXT 3890 RETURN   ----- it runs somehow slowly but still fun to play. The only non standard basic is the input routine which reads directly the memory location (line 240) instead of using "input" od "get"   --------------------- | | | | | |4 | | |2 | I | | | | | --------------------- | | | | | J K |4 |2 | | | | | | | | --------------------- M | | | | | |2 |16 |4 | | | | | | | E = END --------------------- | | | | | SCORE: 4924 |128 |512 | | | | | | | | MAXTILE: 512 ---------------------   YOU CAN SLIDE THE NUMBERS IN THE MATRIX BY PRESSING IJKM. WHEN MATCHING NUMBERS MEET THEY COMBINE IN THE SUM TO WIN YOU HAVE TO REACH THE SUM 2048      
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle
4-rings or 4-squares puzzle
4-rings or 4-squares puzzle You are encouraged to solve this task according to the task description, using any language you may know. Task Replace       a, b, c, d, e, f,   and   g       with the decimal digits   LOW   ───►   HIGH such that the sum of the letters inside of each of the four large squares add up to the same sum. ╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘ Show all output here.   Show all solutions for each letter being unique with LOW=1 HIGH=7   Show all solutions for each letter being unique with LOW=3 HIGH=9   Show only the   number   of solutions when each letter can be non-unique LOW=0 HIGH=9 Related task Solve the no connection puzzle
#PL.2FSQL
PL/SQL
  CREATE TABLE allints (v NUMBER); CREATE TABLE results ( a NUMBER, b NUMBER, c NUMBER, d NUMBER, e NUMBER, f NUMBER, g NUMBER );   CREATE OR REPLACE PROCEDURE foursquares(lo NUMBER,hi NUMBER,uniq BOOLEAN,show BOOLEAN) AS a NUMBER; b NUMBER; c NUMBER; d NUMBER; e NUMBER; f NUMBER; g NUMBER; out_line VARCHAR2(2000);   CURSOR results_cur IS SELECT a, b, c, d, e, f, g FROM results ORDER BY a,b,c,d,e,f,g;   results_rec results_cur%ROWTYPE;   solutions NUMBER; uorn VARCHAR2(2000); BEGIN solutions := 0; DELETE FROM allints; DELETE FROM results; FOR i IN lo..hi LOOP INSERT INTO allints VALUES (i); END LOOP; COMMIT;   IF uniq = TRUE THEN INSERT INTO results SELECT a.v a, b.v b, c.v c, d.v d, e.v e, f.v f, g.v g FROM allints a, allints b, allints c,allints d, allints e, allints f, allints g WHERE a.v NOT IN (b.v,c.v,d.v,e.v,f.v,g.v) AND b.v NOT IN (c.v,d.v,e.v,f.v,g.v) AND c.v NOT IN (d.v,e.v,f.v,g.v) AND d.v NOT IN (e.v,f.v,g.v) AND e.v NOT IN (f.v,g.v) AND f.v NOT IN (g.v) AND a.v = c.v + d.v AND g.v = d.v + e.v AND b.v = e.v + f.v - c.v ORDER BY a,b,c,d,e,f,g; uorn := ' unique solutions in '; ELSE INSERT INTO results SELECT a.v a, b.v b, c.v c, d.v d, e.v e, f.v f, g.v g FROM allints a, allints b, allints c,allints d, allints e, allints f, allints g WHERE a.v = c.v + d.v AND g.v = d.v + e.v AND b.v = e.v + f.v - c.v ORDER BY a,b,c,d,e,f,g; uorn := ' non-unique solutions in '; END IF; COMMIT;   OPEN results_cur; LOOP FETCH results_cur INTO results_rec; EXIT WHEN results_cur%notfound; a := results_rec.a; b := results_rec.b; c := results_rec.c; d := results_rec.d; e := results_rec.e; f := results_rec.f; g := results_rec.g;   solutions := solutions + 1; IF show = TRUE THEN out_line := TO_CHAR(a) || ' '; out_line := out_line || ' ' || TO_CHAR(b) || ' '; out_line := out_line || ' ' || TO_CHAR(c) || ' '; out_line := out_line || ' ' || TO_CHAR(d) || ' '; out_line := out_line || ' ' || TO_CHAR(e) || ' '; out_line := out_line || ' ' || TO_CHAR(f) ||' '; out_line := out_line || ' ' || TO_CHAR(g); END IF;   DBMS_OUTPUT.put_line(out_line); END LOOP; CLOSE results_cur; out_line := TO_CHAR(solutions) || uorn; out_line := out_line || TO_CHAR(lo) || ' to ' || TO_CHAR(hi); DBMS_OUTPUT.put_line(out_line);   END; /