task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Red | Red |
Red []
context [
sum-part: function [nums [block!] count [integer!]][
out: 0.0
loop count [
out: out + nums/1
if empty? nums: next nums [break]
]
out
]
nums: make map! [1 [1] 2 [1 1]]
sums: make map! [1 1 2 2]
set 'names function [row /show /all][
if row < 1 [cause-error 'user 'message "Argument needs to be >= 1"]
if show [
unless nums/:row [names row]
repeat i row [either all [probe reduce [i nums/:i sums/:i]][print nums/:i]]
]
either sums/:row [sums/:row][
out: clear []
half: to integer! row / 2
if row - 1 > last: length? nums [
repeat i row - last - 1 [names last + i]
]
repeat col row - 1 [
either col = (half + 1) [
append out at nums/(row - 1) half
break
][
append out sum-part nums/(row - col) col
]
]
also sums/:row: sum nums/:row: copy out clear out
]
]
]
print "rows: ^/"
names/show 25
print "^/sums: ^/"
probe names 23
probe names 123
probe names 1234
|
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #BlooP | BlooP |
DEFINE PROCEDURE ''ADD'' [A, B]:
BLOCK 0: BEGIN
OUTPUT <= A + B;
BLOCK 0: END.
|
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #SPAD | SPAD |
NNI ==> NonNegativeInteger
A:(NNI,NNI) -> NNI
A(m,n) ==
m=0 => n+1
m>0 and n=0 => A(m-1,1)
m>0 and n>0 => A(m-1,A(m,n-1))
-- Example
matrix [[A(i,j) for i in 0..3] for j in 0..3]
|
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Dyalect | Dyalect | func blockable(str) {
var blocks = [
"BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM" ]
var strUp = str.Upper()
var fin = ""
for c in strUp {
for j in blocks.Indices() {
if blocks[j].StartsWith(c) || blocks[j].EndsWith(c) {
fin += c
blocks[j] = ""
break
}
}
}
return fin == strUp
}
func canOrNot(can) => can ? "can" : "cannot"
for str in [ "A", "BARK", "BooK", "TrEaT", "comMON", "sQuAd", "Confuse" ] {
print("\"\(str)\" \(canOrNot(blockable(str))) be spelled with blocks.")
} |
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #BASIC256 | BASIC256 |
O = 50
N = 2*O
iterations = 10000
REM From the numbers 0 to N-1 inclusive, pick O of them.
function shuffle(N, O)
dim array(N)
for i = 0 to N-1
array[i] = i
next i
for i = 0 to O-1
swapindex = i + rand*(N-i)
swapvalue = array[swapindex]
array[swapindex] = array[i]
array[i] = swapvalue
next i
return array
end function
REM given N drawers with O to open, prisoner P chooses randomly: does he choose well?
function chooserandom(drawers, N, O, p)
choices = shuffle(N, O)
for i = 0 to O-1
if drawers[choices[i]] = p then return true
next i
return false
end function
REM N prisoners randomly choose O drawers to open: do they all choose well?
function allchooserandom(N, O)
drawers = shuffle(N, N)
for p = 0 to N-1
goodchoice = chooserandom(drawers, N, O, p)
if not goodchoice then return false
next p
return true
end function
REM given N drawers with O to open, prisoner P chooses smartly: does he choose well?
function choosesmart(drawers, N, O, p)
numopened = 0
i = p
while numopened < O
numopened += 1
if drawers[i] = p then return true
i = drawers[i]
end while
return false
end function
REM N prisoners smartly choose O drawers to open: do they all choose well?
function allchoosesmart(N, O)
drawers = shuffle(N, N)
for p = 0 to N-1
goodchoice = choosesmart(drawers, N, O, p)
if not goodchoice then return false
next p
return true
end function
cls
print N; " prisoners choosing ";O;" drawers, ";iterations;" iterations:"
total = 0
for iteration = 1 to iterations
if allchooserandom(N, O) then total += 1
next iteration
print "Random choices: "; total;" out of ";iterations
print "Observed ratio: "; total/iterations; ", expected ratio: "; (O/N)^N
total = 0
for iteration = 1 to iterations
if allchoosesmart(N, O) then total += 1
next iteration
print "Smart choices: "; total;" out of ";iterations
print "Observed ratio: "; total/iterations; ", expected ratio with N=2*O: greater than about 0.30685": REM for N=100, O=50 particularly, about 0.3118
|
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #R | R | # Abundant Odd Numbers
find_div_sum <- function(x){
# Finds sigma: the sum of the divisors (not including the number itself) of an odd number
if (x < 16) return(0)
root <- sqrt(x)
vec <- as.vector(1)
for (i in seq.int(3, root - 1, by = 2)){
if(x %% i == 0){
vec <- c(vec, i, x/i)
}
}
if (root == trunc(root)) vec = c(vec, root)
return(sum(vec))
}
get_n_abun <- function(index = 1, total = 25, print_all = TRUE){
# Finds a total of 'total' abundant odds starting with 'index', with print option
n <- 1
while(n <= total){
my_sum <- find_div_sum(index)
if (my_sum > index){
if(print_all) cat(index, "..... sigma is", my_sum, "\n")
n <- n + 1
}
index <- index + 2
}
if(!print_all) cat(index - 2, "..... sigma is", my_sum, "\n")
}
# Get first 25
cat("The first 25 abundants are")
get_n_abun()
# Get the 1000th
cat("The 1000th odd abundant is")
get_n_abun(total = 1000, print_all = F)
# Get the first after 1e9
cat("First odd abundant after 1e9 is")
get_n_abun(index = 1e9 + 1, total = 1, print_all = F) |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Julia | Julia |
function trytowin(n)
if 21 - n < 4
println("Computer chooses $(21 - n) and wins. GG!")
exit(0)
end
end
function choosewisely(n)
trytowin(n)
targets = [1, 5, 9, 13, 17, 21]
pos = findfirst(x -> x > n, targets)
bestmove = targets[pos] - n
if bestmove > 3
println("Looks like I could lose. Choosing a 1, total now $(n + 1).")
return n + 1
end
println("On a roll, choosing a $bestmove, total now $(n + bestmove).")
n + bestmove
end
function choosefoolishly(n)
trytowin(n)
move = rand([1, 2, 3])
println("Here goes, choosing $move, total now $(n + move).")
n + move
end
function choosesemiwisely(n)
trytowin(n)
if rand() > 0.75
choosefoolishly(n)
else
choosewisely(n)
end
end
prompt(s) = (println(s, ": => "); return readline())
function playermove(n)
rang = (n > 19) ? "1 is all" : ((n > 18) ? "1 or 2" : "1, 2 or 3")
choice = 0
while true
nstr = prompt("Your choice ($rang), 0 to exit")
if nstr == "0"
exit(0)
elseif nstr == "1"
return n + 1
elseif nstr == "2" && n < 20
return n + 2
elseif nstr == "3" && n < 19
return n + 3
end
end
end
function play21game()
n = 0
level = prompt("Level of play (1=dumb, 3=smart)")
algo = choosewisely
if level == "1"
algo = choosefoolishly
elseif level == "2"
algo = choosesemiwisely
elseif level != "3"
println("Bad choice syntax--default to smart choice")
end
whofirst = prompt("Does computer go first? (y or n)")
if whofirst[1] == 'y' || whofirst[1] == 'Y'
n = algo(n)
end
while n < 21
n = playermove(n)
if n == 21
println("Player wins! Game over, gg!")
break
end
n = algo(n)
end
end
play21game()
|
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #CoffeeScript | CoffeeScript |
# This program tries to find some way to turn four digits into an arithmetic
# expression that adds up to 24.
#
# Example solution for 5, 7, 8, 8:
# (((8 + 7) * 8) / 5)
solve_24_game = (digits...) ->
# Create an array of objects for our helper functions
arr = for digit in digits
{
val: digit
expr: digit
}
combo4 arr...
combo4 = (a, b, c, d) ->
arr = [a, b, c, d]
# Reduce this to a three-node problem by combining two
# nodes from the array.
permutations = [
[0, 1, 2, 3]
[0, 2, 1, 3]
[0, 3, 1, 2]
[1, 2, 0, 3]
[1, 3, 0, 2]
[2, 3, 0, 1]
]
for permutation in permutations
[i, j, k, m] = permutation
for combo in combos arr[i], arr[j]
answer = combo3 combo, arr[k], arr[m]
return answer if answer
null
combo3 = (a, b, c) ->
arr = [a, b, c]
permutations = [
[0, 1, 2]
[0, 2, 1]
[1, 2, 0]
]
for permutation in permutations
[i, j, k] = permutation
for combo in combos arr[i], arr[j]
answer = combo2 combo, arr[k]
return answer if answer
null
combo2 = (a, b) ->
for combo in combos a, b
return combo.expr if combo.val == 24
null
combos = (a, b) ->
[
val: a.val + b.val
expr: "(#{a.expr} + #{b.expr})"
,
val: a.val * b.val
expr: "(#{a.expr} * #{b.expr})"
,
val: a.val - b.val
expr: "(#{a.expr} - #{b.expr})"
,
val: b.val - a.val
expr: "(#{b.expr} - #{a.expr})"
,
val: a.val / b.val
expr: "(#{a.expr} / #{b.expr})"
,
val: b.val / a.val
expr: "(#{b.expr} / #{a.expr})"
,
]
# test
do ->
rand_digit = -> 1 + Math.floor (9 * Math.random())
for i in [1..15]
a = rand_digit()
b = rand_digit()
c = rand_digit()
d = rand_digit()
solution = solve_24_game a, b, c, d
console.log "Solution for #{[a,b,c,d]}: #{solution ? 'no solution'}"
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | {low, high} = {1, 7};
SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high,
low <= b <= high, low <= c <= high, low <= d <= high,
low <= e <= high, low <= f <= high, low <= g <= high,
a != b != c != d != e != f != g}, {a, b, c, d, e, f, g}, Integers]
{low, high} = {3, 9};
SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high,
low <= b <= high, low <= c <= high, low <= d <= high,
low <= e <= high, low <= f <= high, low <= g <= high,
a != b != c != d != e != f != g}, {a, b, c, d, e, f, g}, Integers]
{low, high} = {0, 9};
SolveValues[{a + b == b + c + d == d + e + f == f + g, low <= a <= high,
low <= b <= high, low <= c <= high, low <= d <= high,
low <= e <= high, low <= f <= high, low <= g <= high}, {a, b, c, d,
e, f, g}, Integers] // Length |
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #Action.21 | Action! | PROC Bottles(BYTE i)
IF i=0 THEN
Print("No more")
ELSE
PrintB(i)
FI
Print(" bottle")
IF i#1 THEN
Print("s")
FI
RETURN
PROC Main()
BYTE i=[99]
WHILE i>0
DO
Bottles(i) PrintE(" of beer on the wall,")
Bottles(i) PrintE(" of beer,")
Print("Take ")
IF i>1 THEN
Print("one")
ELSE
Print("it")
FI
PrintE(" down and pass it around,")
i==-1
Bottles(i) PrintE(" of beer on the wall.")
IF i>0 THEN
PutE()
FI
OD
RETURN |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #C.23 | C# | #include <random>
#include <iostream>
#include <stack>
#include <set>
#include <string>
#include <functional>
using namespace std;
class RPNParse
{
public:
stack<double> stk;
multiset<int> digits;
void op(function<double(double,double)> f)
{
if(stk.size() < 2)
throw "Improperly written expression";
int b = stk.top(); stk.pop();
int a = stk.top(); stk.pop();
stk.push(f(a, b));
}
void parse(char c)
{
if(c >= '0' && c <= '9')
{
stk.push(c - '0');
digits.insert(c - '0');
}
else if(c == '+')
op([](double a, double b) {return a+b;});
else if(c == '-')
op([](double a, double b) {return a-b;});
else if(c == '*')
op([](double a, double b) {return a*b;});
else if(c == '/')
op([](double a, double b) {return a/b;});
}
void parse(string s)
{
for(int i = 0; i < s.size(); ++i)
parse(s[i]);
}
double getResult()
{
if(stk.size() != 1)
throw "Improperly written expression";
return stk.top();
}
};
int main()
{
random_device seed;
mt19937 engine(seed());
uniform_int_distribution<> distribution(1, 9);
auto rnd = bind(distribution, engine);
multiset<int> digits;
cout << "Make 24 with the digits: ";
for(int i = 0; i < 4; ++i)
{
int n = rnd();
cout << " " << n;
digits.insert(n);
}
cout << endl;
RPNParse parser;
try
{
string input;
getline(cin, input);
parser.parse(input);
if(digits != parser.digits)
cout << "Error: Not using the given digits" << endl;
else
{
double r = parser.getResult();
cout << "Result: " << r << endl;
if(r > 23.999 && r < 24.001)
cout << "Good job!" << endl;
else
cout << "Try again." << endl;
}
}
catch(char* e)
{
cout << "Error: " << e << endl;
}
return 0;
} |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #REXX | REXX | /*REXX program generates and displays a number triangle for partitions of a number. */
numeric digits 400 /*be able to handle larger numbers. */
parse arg N . /*obtain optional argument from the CL.*/
if N=='' then N= 25 /*N specified? Then use the default. */
@.= 0; @.0= 1; aN= abs(N) /*initialize a partition number; AN abs*/
if N==N+0 then say ' G('aN"):" G(N) /*just do this for well formed numbers.*/
say 'partitions('aN"):" partitions(aN) /*do it the easy way.*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
G: procedure; parse arg nn; !.= 0; !.4.2= 2; mx= 1; aN= abs(nn); build= nn>0
do j=1 for aN%2; !.j.j= 1 /*gen shortcuts for unity elements.*/
end /*j*/
do t=1 for 1+build; #.=1 /*generate triangle once or twice. */
do r=1 for aN; #.2= r % 2 /*#.2 is a shortcut calculation. */
do c=3 to r-2; #.c= gen#(r,c)
end /*c*/
L= length(mx); p= 0; __= /*__ will be a row of the triangle*/
do cc=1 for r; p= p + #.cc /*only sum the last row of numbers.*/
if \build then iterate /*should we skip building triangle?*/
mx= max(mx, #.cc) /*used to build the symmetric #s. */
__= __ right(#.cc, L) /*construct a row of the triangle. */
end /*cc*/
if t==1 then iterate /*Is this 1st time through? No show*/
say center( strip(__), 2 + (aN-1) * (length(mx) + 1) )
end /*r*/ /* [↑] center row of the triangle.*/
end /*t*/
return p /*return with the generated number.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
gen#: procedure expose !.; parse arg x,y /*obtain the X and Y arguments.*/
if !.x.y\==0 then return !.x.y /*was number generated before ? */
if y>x%2 then do; nx= x+1-(y-x%2)*2-(x//2==0)
ny= nx % 2; !.x.y= !.nx.ny
return !.x.y /*return the calculated number. */
end /* [↑] right half of triangle. */
$= 1 /* [↓] left " " " */
do q=2 for y-1; xy= x-y; if q>xy then iterate
if q==2 then $= $ + xy % 2
else if q==xy-1 then $= $ + 1
else $= $ + gen#(xy,q) /*recurse.*/
end /*q*/
!.x.y=$; return $ /*use memoization; return with #.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
partitions: procedure expose @.; parse arg n; if @.n\==0 then return @.n /* ◄─────┐*/
$= 0 /*Already known? Return ►────┘*/
do k=1 for n /*process N partitions. */
#= n - (k*3-1) * k % 2 /*calculate a partition number.*/
if #<0 then leave /*Is it negative? Then leave. */
if @.#==0 then x= partitions(#) /* [◄] this is a recursive call*/
else x= @.# /*the value is already known. */
#= # - k
if #<0 then y= 0 /*Is negative? Then use zero.*/
else if @.#==0 then y= partitions(p) /*recursive call.*/
else y= @.#
if k//2 then $= $ + x + y /*use this method if K is odd. */
else $= $ - x - y /* " " " " " " even.*/
end /*k*/ /* [↑] Euler's recursive func.*/
@.n= $; return $ /*use memoization; return num.*/ |
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #bootBASIC | bootBASIC | 10 print "Number 1";
20 input a
30 print "Number 2";
40 input b
50 print a+b |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #SQL_PL | SQL PL |
--#SET TERMINATOR @
SET SERVEROUTPUT ON@
CREATE OR REPLACE FUNCTION ACKERMANN(
IN M SMALLINT,
IN N BIGINT
) RETURNS BIGINT
BEGIN
DECLARE RET BIGINT;
DECLARE STMT STATEMENT;
IF (M = 0) THEN
SET RET = N + 1;
ELSEIF (N = 0) THEN
PREPARE STMT FROM 'SET ? = ACKERMANN(? - 1, 1)';
EXECUTE STMT INTO RET USING M;
ELSE
PREPARE STMT FROM 'SET ? = ACKERMANN(? - 1, ACKERMANN(?, ? - 1))';
EXECUTE STMT INTO RET USING M, M, N;
END IF;
RETURN RET;
END @
BEGIN
DECLARE M SMALLINT DEFAULT 0;
DECLARE N SMALLINT DEFAULT 0;
DECLARE MAX_LEVELS CONDITION FOR SQLSTATE '54038';
DECLARE CONTINUE HANDLER FOR MAX_LEVELS BEGIN END;
WHILE (N <= 6) DO
WHILE (M <= 3) DO
CALL DBMS_OUTPUT.PUT_LINE('ACKERMANN(' || M || ', ' || N || ') = ' || ACKERMANN(M, N));
SET M = M + 1;
END WHILE;
SET M = 0;
SET N = N + 1;
END WHILE;
END @
|
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #EchoLisp | EchoLisp |
(lib 'list) ;; list-delete
(define BLOCKS '("BO" "XK" "DQ" "CP" "NA" "GT" "RE" "TG" "QD" "FS"
"JW" "HU" "VI" "AN" "OB" "ER" "FS" "LY" "PC" "ZM" ))
(define WORDS '("A" "BARK" "BOOK" "TREAT" "COMMON" "SQUAD" "CONFUSE"))
(define (spell word blocks)
(cond
((string-empty? word) #t)
((empty? blocks) #f)
(else
(for/or [(block blocks)]
#:continue (not (string-match block (string-first word)))
(spell (string-rest word) (list-delete blocks block))))))
|
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #BCPL | BCPL | get "libhdr"
manifest $(
seed = 12345 // for pseudorandom number generator
size = 100 // amount of drawers and prisoners
tries = 50 // amount of tries each prisoner may make
simul = 2000 // amount of simulations to run
$)
let randto(n) = valof
$( static $( state = seed $)
let mask = 1
mask := (mask<<1)|1 repeatuntil mask > n
state := random(state) repeatuntil ((state >> 8) & mask) < n
resultis (state >> 8) & mask
$)
// initialize drawers
let placeCards(d, n) be
$( for i=0 to n-1 do d!i := i;
for i=0 to n-2 do
$( let j = i+randto(n-i)
let k = d!i
d!i := d!j
d!j := k
$)
$)
// random strategy (prisoner 'p' tries to find his own number)
let randoms(d, p, t) = valof
$( for n = 1 to t do
if d!randto(size) = p then resultis true
resultis false
$)
// optimal strategy
let optimal(d, p, t) = valof
$( let last = p
for n = 1 to t do
test d!last = p
then resultis true
else last := d!last
resultis false
$)
// run a simulation given a strategy
let simulate(d, strat, n, t) = valof
$( placeCards(d, n)
for p = 0 to n-1 do
if not strat(d, p, t) then resultis false
resultis true
$)
// run many simulations and count the successes
let runSimulations(d, strat, n, amt, t) = valof
$( let succ = 0
for i = 1 to amt do
if simulate(d, strat, n, t) do
succ := succ + 1
resultis succ
$)
let run(d, name, strat, n, amt, t) be
$( let s = runSimulations(d, strat, n, amt, t);
writef("%S: %I5 of %I5, %N percent.*N", name, s, amt, s*10/(amt/10))
$)
let start() be
$( let d = vec size-1
run(d, " Random", randoms, size, simul, tries)
run(d, "Optimal", optimal, size, simul, tries)
$) |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Racket | Racket | #lang racket
(require math/number-theory
racket/generator)
(define (make-generator start)
(in-generator
(for ([n (in-naturals start)] #:when (odd? n))
(define divisor-sum (- (apply + (divisors n)) n))
(when (> divisor-sum n) (yield (list n divisor-sum))))))
(for/list ([i (in-range 25)] [x (make-generator 0)]) x) ; Task 1
(for/last ([i (in-range 1000)] [x (make-generator 0)]) x) ; Task 2
(for/first ([x (make-generator (add1 (inexact->exact 1e9)))]) x) ; Task 3 |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Lua | Lua |
gamewon = false
running_total = 0
player = 1
opponent = 2
while not gamewon do
num = 0
if player == 1 then
opponent = 2
repeat
print("Enter a number between 1 and 3 (0 to quit):")
num = io.read("*n")
if num == 0 then
os.exit()
end
until (num > 0) and (num <=3)
end
if player == 2 and not (gamewon) then
opponent = 1
if (21 - running_total <= 3) then
num = 21 - running_total
else
num = math.random(1,3)
end
print("Player 2 picks number "..num)
end
running_total = running_total + num
print("Total: "..running_total)
if running_total == 21 then
print("Player "..player.." wins!")
gamewon = true
end
if running_total > 21 then
print("Player "..player.." lost...")
print("Player "..opponent.." wins!")
gamewon = true
end
if player == 1 then
player = 2
else player = 1
end
end
|
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #Common_Lisp | Common Lisp | (defconstant +ops+ '(* / + -))
(defun digits ()
(sort (loop repeat 4 collect (1+ (random 9))) #'<))
(defun expr-value (expr)
(eval expr))
(defun divides-by-zero-p (expr)
(when (consp expr)
(destructuring-bind (op &rest args) expr
(or (divides-by-zero-p (car args))
(and (eq op '/)
(or (and (= 1 (length args))
(zerop (expr-value (car args))))
(some (lambda (arg)
(or (divides-by-zero-p arg)
(zerop (expr-value arg))))
(cdr args))))))))
(defun solvable-p (digits &optional expr)
(unless (divides-by-zero-p expr)
(if digits
(destructuring-bind (next &rest rest) digits
(if expr
(some (lambda (op)
(solvable-p rest (cons op (list next expr))))
+ops+)
(solvable-p rest (list (car +ops+) next))))
(when (and expr
(eql 24 (expr-value expr)))
(merge-exprs expr)))))
(defun merge-exprs (expr)
(if (atom expr)
expr
(destructuring-bind (op &rest args) expr
(if (and (member op '(* +))
(= 1 (length args)))
(car args)
(cons op
(case op
((* +)
(loop for arg in args
for merged = (merge-exprs arg)
when (and (consp merged)
(eq op (car merged)))
append (cdr merged)
else collect merged))
(t (mapcar #'merge-exprs args))))))))
(defun solve-24-game (digits)
"Generate a lisp form using the operators in +ops+ and the given
digits which evaluates to 24. The first form found is returned, or
NIL if there is no solution."
(solvable-p digits)) |
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Modula-2 | Modula-2 | MODULE FourSquare;
FROM Conversions IMPORT IntToStr;
FROM Terminal IMPORT *;
PROCEDURE WriteInt(num : INTEGER);
VAR str : ARRAY[0..16] OF CHAR;
BEGIN
IntToStr(num,str);
WriteString(str);
END WriteInt;
PROCEDURE four_square(low, high : INTEGER; unique, print : BOOLEAN);
VAR count : INTEGER;
VAR a, b, c, d, e, f, g : INTEGER;
VAR fp : INTEGER;
BEGIN
count:=0;
IF print THEN
WriteString('a b c d e f g');
WriteLn;
END;
FOR a:=low TO high DO
FOR b:=low TO high DO
IF unique AND (b=a) THEN CONTINUE; END;
fp:=a+b;
FOR c:=low TO high DO
IF unique AND ((c=a) OR (c=b)) THEN CONTINUE; END;
FOR d:=low TO high DO
IF unique AND ((d=a) OR (d=b) OR (d=c)) THEN CONTINUE; END;
IF fp # b+c+d THEN CONTINUE; END;
FOR e:=low TO high DO
IF unique AND ((e=a) OR (e=b) OR (e=c) OR (e=d)) THEN CONTINUE; END;
FOR f:=low TO high DO
IF unique AND ((f=a) OR (f=b) OR (f=c) OR (f=d) OR (f=e)) THEN CONTINUE; END;
IF fp # d+e+f THEN CONTINUE; END;
FOR g:=low TO high DO
IF unique AND ((g=a) OR (g=b) OR (g=c) OR (g=d) OR (g=e) OR (g=f)) THEN CONTINUE; END;
IF fp # f+g THEN CONTINUE; END;
INC(count);
IF print THEN
WriteInt(a);
WriteString(' ');
WriteInt(b);
WriteString(' ');
WriteInt(c);
WriteString(' ');
WriteInt(d);
WriteString(' ');
WriteInt(e);
WriteString(' ');
WriteInt(f);
WriteString(' ');
WriteInt(g);
WriteLn;
END;
END;
END;
END;
END;
END;
END;
END;
IF unique THEN
WriteString('There are ');
WriteInt(count);
WriteString(' unique solutions in [');
WriteInt(low);
WriteString(', ');
WriteInt(high);
WriteString(']');
WriteLn;
ELSE
WriteString('There are ');
WriteInt(count);
WriteString(' non-unique solutions in [');
WriteInt(low);
WriteString(', ');
WriteInt(high);
WriteString(']');
WriteLn;
END;
END four_square;
BEGIN
four_square(1,7,TRUE,TRUE);
four_square(3,9,TRUE,TRUE);
four_square(0,9,FALSE,FALSE);
ReadChar; (* Wait so results can be viewed. *)
END FourSquare. |
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #ActionScript | ActionScript | for(var numBottles:uint = 99; numBottles > 0; numBottles--)
{
trace(numBottles, " bottles of beer on the wall");
trace(numBottles, " bottles of beer");
trace("Take one down, pass it around");
trace(numBottles - 1, " bottles of beer on the wall\n");
} |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #C.2B.2B | C++ | #include <random>
#include <iostream>
#include <stack>
#include <set>
#include <string>
#include <functional>
using namespace std;
class RPNParse
{
public:
stack<double> stk;
multiset<int> digits;
void op(function<double(double,double)> f)
{
if(stk.size() < 2)
throw "Improperly written expression";
int b = stk.top(); stk.pop();
int a = stk.top(); stk.pop();
stk.push(f(a, b));
}
void parse(char c)
{
if(c >= '0' && c <= '9')
{
stk.push(c - '0');
digits.insert(c - '0');
}
else if(c == '+')
op([](double a, double b) {return a+b;});
else if(c == '-')
op([](double a, double b) {return a-b;});
else if(c == '*')
op([](double a, double b) {return a*b;});
else if(c == '/')
op([](double a, double b) {return a/b;});
}
void parse(string s)
{
for(int i = 0; i < s.size(); ++i)
parse(s[i]);
}
double getResult()
{
if(stk.size() != 1)
throw "Improperly written expression";
return stk.top();
}
};
int main()
{
random_device seed;
mt19937 engine(seed());
uniform_int_distribution<> distribution(1, 9);
auto rnd = bind(distribution, engine);
multiset<int> digits;
cout << "Make 24 with the digits: ";
for(int i = 0; i < 4; ++i)
{
int n = rnd();
cout << " " << n;
digits.insert(n);
}
cout << endl;
RPNParse parser;
try
{
string input;
getline(cin, input);
parser.parse(input);
if(digits != parser.digits)
cout << "Error: Not using the given digits" << endl;
else
{
double r = parser.getResult();
cout << "Result: " << r << endl;
if(r > 23.999 && r < 24.001)
cout << "Good job!" << endl;
else
cout << "Try again." << endl;
}
}
catch(char* e)
{
cout << "Error: " << e << endl;
}
return 0;
} |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Ruby | Ruby |
# Generate IPF triangle
# Nigel_Galloway: May 1st., 2013.
def g(n,g)
return 1 unless 1 < g and g < n-1
(2..g).inject(1){|res,q| res + (q > n-g ? 0 : g(n-g,q))}
end
(1..25).each {|n|
puts (1..n).map {|g| "%4s" % g(n,g)}.join
}
|
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #BQN | BQN | #!/usr/bin/env bqn
# Cut 𝕩 at occurrences of 𝕨, removing separators and empty segments
# (BQNcrate phrase).
Split ← (¬-˜⊢×·+`»⊸>)∘≠⊔⊢
# Natural number from base-10 digits (BQNcrate phrase).
Base10 ← 10⊸×⊸+˜´∘⌽
# Parse any number of space-separated numbers from string 𝕩.
ParseNums ← {Base10¨ -⟜'0' ' ' Split 𝕩}
# •GetLine and •_while_ are nonstandard CBQN extensions.
{•Show +´ ParseNums 𝕩 ⋄ •GetLine@} •_while_ (@⊸≢) •GetLine@ |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #Standard_ML | Standard ML | fun a (0, n) = n+1
| a (m, 0) = a (m-1, 1)
| a (m, n) = a (m-1, a (m, n-1)) |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ela | Ela | open list monad io char
:::IO
null = foldr (\_ _ -> false) true
mapM_ f = foldr ((>>-) << f) (return ())
abc _ [] = [[]]
abc blocks (c::cs) =
[b::ans \\ b <- blocks | c `elem` b, ans <- abc (delete b blocks) cs]
blocks = ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"]
mapM_ (\w -> putLn (w, not << null $ abc blocks (map char.upper w)))
["", "A", "BARK", "BoOK", "TrEAT", "COmMoN", "SQUAD", "conFUsE"] |
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #C | C |
#include<stdbool.h>
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#define LIBERTY false
#define DEATH true
typedef struct{
int cardNum;
bool hasBeenOpened;
}drawer;
drawer *drawerSet;
void initialize(int prisoners){
int i,j,card;
bool unique;
drawerSet = ((drawer*)malloc(prisoners * sizeof(drawer))) -1;
card = rand()%prisoners + 1;
drawerSet[1] = (drawer){.cardNum = card, .hasBeenOpened = false};
for(i=1 + 1;i<prisoners + 1;i++){
unique = false;
while(unique==false){
for(j=0;j<i;j++){
if(drawerSet[j].cardNum == card){
card = rand()%prisoners + 1;
break;
}
}
if(j==i){
unique = true;
}
}
drawerSet[i] = (drawer){.cardNum = card, .hasBeenOpened = false};
}
}
void closeAllDrawers(int prisoners){
int i;
for(i=1;i<prisoners + 1;i++)
drawerSet[i].hasBeenOpened = false;
}
bool libertyOrDeathAtRandom(int prisoners,int chances){
int i,j,chosenDrawer;
for(i= 1;i<prisoners + 1;i++){
bool foundCard = false;
for(j=0;j<chances;j++){
do{
chosenDrawer = rand()%prisoners + 1;
}while(drawerSet[chosenDrawer].hasBeenOpened==true);
if(drawerSet[chosenDrawer].cardNum == i){
foundCard = true;
break;
}
drawerSet[chosenDrawer].hasBeenOpened = true;
}
closeAllDrawers(prisoners);
if(foundCard == false)
return DEATH;
}
return LIBERTY;
}
bool libertyOrDeathPlanned(int prisoners,int chances){
int i,j,chosenDrawer;
for(i=1;i<prisoners + 1;i++){
chosenDrawer = i;
bool foundCard = false;
for(j=0;j<chances;j++){
drawerSet[chosenDrawer].hasBeenOpened = true;
if(drawerSet[chosenDrawer].cardNum == i){
foundCard = true;
break;
}
if(chosenDrawer == drawerSet[chosenDrawer].cardNum){
do{
chosenDrawer = rand()%prisoners + 1;
}while(drawerSet[chosenDrawer].hasBeenOpened==true);
}
else{
chosenDrawer = drawerSet[chosenDrawer].cardNum;
}
}
closeAllDrawers(prisoners);
if(foundCard == false)
return DEATH;
}
return LIBERTY;
}
int main(int argc,char** argv)
{
int prisoners, chances;
unsigned long long int trials,i,count = 0;
char* end;
if(argc!=4)
return printf("Usage : %s <Number of prisoners> <Number of chances> <Number of trials>",argv[0]);
prisoners = atoi(argv[1]);
chances = atoi(argv[2]);
trials = strtoull(argv[3],&end,10);
srand(time(NULL));
printf("Running random trials...");
for(i=0;i<trials;i+=1L){
initialize(prisoners);
count += libertyOrDeathAtRandom(prisoners,chances)==DEATH?0:1;
}
printf("\n\nGames Played : %llu\nGames Won : %llu\nChances : %lf %% \n\n",trials,count,(100.0*count)/trials);
count = 0;
printf("Running strategic trials...");
for(i=0;i<trials;i+=1L){
initialize(prisoners);
count += libertyOrDeathPlanned(prisoners,chances)==DEATH?0:1;
}
printf("\n\nGames Played : %llu\nGames Won : %llu\nChances : %lf %% \n\n",trials,count,(100.0*count)/trials);
return 0;
}
|
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Raku | Raku | sub odd-abundant (\x) {
my @l = x.is-prime ?? 1 !! flat
1, (3 .. x.sqrt.floor).map: -> \d {
next unless d +& 1;
my \y = x div d;
next if y * d !== x;
d !== y ?? (d, y) !! d
};
@l.sum > x ?? @l.sort !! Empty;
}
sub odd-abundants (Int :$start-at is copy) {
$start-at = ( $start-at + 2 ) div 3;
$start-at += $start-at %% 2;
$start-at *= 3;
($start-at, *+6 ... *).hyper.map: {
next unless my $oa = cache .&odd-abundant;
sprintf "%6d: divisor sum: {$oa.join: ' + '} = {$oa.sum}", $_
}
}
put 'First 25 abundant odd numbers:';
.put for odd-abundants( :start-at(1) )[^25];
put "\nOne thousandth abundant odd number:\n" ~ odd-abundants( :start-at(1) )[999] ~
"\n\nFirst abundant odd number above one billion:\n" ~ odd-abundants( :start-at(1_000_000_000) ).head; |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | SeedRandom[1234];
ClearAll[ComputerChoose, HumanChoose]
ComputerChoose[n_] := If[n < 18, RandomChoice[{1, 2, 3}], 21 - n]
HumanChoose[] := ChoiceDialog["How many?", {1 -> 1, 2 -> 2, 3 -> 3, "Quit" -> -1}]
runningtotal = 0;
whofirst = ChoiceDialog["Who goes first?", {"You" -> 1, "Computer" -> 2}];
While[runningtotal < 21,
If[whofirst == 1,
choice = HumanChoose[];
If[choice == -1, Break[]];
Print["You choose = ", choice];
runningtotal += choice;
Print["Running total = ", runningtotal];
If[runningtotal == 21, Print["You won!"]; Break[]];
choice = ComputerChoose[runningtotal];
Print["Computer choose = ", choice];
runningtotal += choice;
Print["Running total = ", runningtotal];
If[runningtotal == 21, Print["Computer won!"]; Break[]];
,
choice = ComputerChoose[runningtotal];
Print["Computer choose = ", choice];
runningtotal += choice;
Print["Running total = ", runningtotal];
If[runningtotal == 21, Print["Computer won!"]; Break[]];
choice = HumanChoose[];
If[choice == -1, Break[]];
Print["You choose = ", choice];
runningtotal += choice;
Print["Running total = ", runningtotal];
If[runningtotal == 21, Print["You won!"]; Break[]];
];
] |
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #D | D | import std.stdio, std.algorithm, std.range, std.conv, std.string,
std.concurrency, permutations2, arithmetic_rational;
string solve(in int target, in int[] problem) {
static struct T { Rational r; string e; }
Generator!T computeAllOperations(in Rational[] L) {
return new typeof(return)({
if (!L.empty) {
immutable x = L[0];
if (L.length == 1) {
yield(T(x, x.text));
} else {
foreach (const o; computeAllOperations(L.dropOne)) {
immutable y = o.r;
auto sub = [T(x * y, "*"), T(x + y, "+"), T(x - y, "-")];
if (y) sub ~= [T(x / y, "/")];
foreach (const e; sub)
yield(T(e.r, format("(%s%s%s)", x, e.e, o.e)));
}
}
}
});
}
foreach (const p; problem.map!Rational.array.permutations!false)
foreach (const sol; computeAllOperations(p))
if (sol.r == target)
return sol.e;
return "No solution";
}
void main() {
foreach (const prob; [[6, 7, 9, 5], [3, 3, 8, 8], [1, 1, 1, 1]])
writeln(prob, ": ", solve(24, prob));
} |
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Nim | Nim | func isUnique(a, b, c, d, e, f, g: uint8): bool =
a != b and a != c and a != d and a != e and a != f and a != g and
b != c and b != d and b != e and b != f and b != g and
c != d and c != e and c != f and c != g and
d != e and d != f and d != f and
e != f and e != g and
f != g
func isSolution(a, b, c, d, e, f, g: uint8): bool =
let sum = a + b
sum == b + c + d and sum == d + e + f and sum == f + g
func fourSquares(l, h: uint8, unique: bool): seq[array[7, uint8]] =
for a in l..h:
for b in l..h:
for c in l..h:
for d in l..h:
for e in l..h:
for f in l..h:
for g in l..h:
if (not unique or isUnique(a, b, c, d, e, f, g)) and
isSolution(a, b, c, d, e, f, g):
result &= [a, b, c, d, e, f, g]
proc printFourSquares(l, h: uint8, unique = true) =
let solutions = fourSquares(l, h, unique)
if unique:
for s in solutions:
echo s
echo solutions.len, (if unique: " " else: " non-"), "unique solutions in ",
l, " to ", h, " range\n"
when isMainModule:
printFourSquares(1, 7)
printFourSquares(3, 9)
printFourSquares(0, 9, unique = false) |
http://rosettacode.org/wiki/15_puzzle_solver | 15 puzzle solver | Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game.
For this task you will be using the following puzzle:
15 14 1 6
9 11 4 12
0 10 7 3
13 8 5 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0
The output must show the moves' directions, like so: left, left, left, down, right... and so on.
There are two solutions, of fifty-two moves:
rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd
rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd
see: Pretty Print of Optimal Solution
Finding either one, or both is an acceptable result.
Extra credit.
Solve the following problem:
0 12 9 13
15 11 10 14
3 7 2 5
4 8 6 1
Related Task
15 puzzle game
A* search algorithm
| #11l | 11l | -V
nr = [3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3]
nc = [3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]
T Solver
n = 0
np = 0
n0 = [0] * 100
n2 = [UInt64(0)] * 100
n3 = [Char("\0")] * 100
n4 = [0] * 100
F (values)
.n0[0] = values.index(0)
UInt64 tmp = 0
L(val) values
tmp = (tmp << 4) [|] val
.n2[0] = tmp
F fI()
V n = .n
V g = (11 - .n0[n]) * 4
V a = .n2[n] [&] (UInt64(15) << g)
.n0[n + 1] = .n0[n] + 4
.n2[n + 1] = .n2[n] - a + (a << 16)
.n3[n + 1] = Char(‘d’)
.n4[n + 1] = .n4[n] + Int(:nr[Int(a >> g)] > .n0[n] I/ 4)
F fG()
V n = .n
V g = (19 - .n0[n]) * 4
V a = .n2[n] [&] (UInt64(15) << g)
.n0[n + 1] = .n0[n] - 4
.n2[n + 1] = .n2[n] - a + (a >> 16)
.n3[n + 1] = Char(‘u’)
.n4[n + 1] = .n4[n] + Int(:nr[Int(a >> g)] < .n0[n] I/ 4)
F fE()
V n = .n
V g = (14 - .n0[n]) * 4
V a = .n2[n] [&] (UInt64(15) << g)
.n0[n + 1] = .n0[n] + 1
.n2[n + 1] = .n2[n] - a + (a << 4)
.n3[n + 1] = Char(‘r’)
.n4[n + 1] = .n4[n] + Int(:nc[Int(a >> g)] > .n0[n] % 4)
F fL()
V n = .n
V g = (16 - .n0[n]) * 4
V a = .n2[n] [&] (UInt64(15) << g)
.n0[n + 1] = .n0[n] - 1
.n2[n + 1] = .n2[n] - a + (a >> 4)
.n3[n + 1] = Char(‘l’)
.n4[n + 1] = .n4[n] + Int(:nc[Int(a >> g)] < .n0[n] % 4)
F fY()
I .n2[.n] == 1234'5678'9ABC'DEF0
R 1B
I .n4[.n] <= .np
R .fN()
R 0B
F fN() -> Bool
V n = .n
I .n3[n] != ‘u’ & .n0[n] I/ 4 < 3 {.fI(); .n++; I .fY() {R 1B}; .n--}
I .n3[n] != ‘d’ & .n0[n] I/ 4 > 0 {.fG(); .n++; I .fY() {R 1B}; .n--}
I .n3[n] != ‘l’ & .n0[n] % 4 < 3 {.fE(); .n++; I .fY() {R 1B}; .n--}
I .n3[n] != ‘r’ & .n0[n] % 4 > 0 {.fL(); .n++; I .fY() {R 1B}; .n--}
R 0B
F run()
L !.fY()
.np++
print(‘Solution found with ’(.n)‘ moves: ’, end' ‘’)
L(g) 1 .. .n
print(.n3[g], end' ‘’)
print(‘.’)
V solver = Solver([15, 14, 1, 6,
9, 11, 4, 12,
0, 10, 7, 3,
13, 8, 5, 2])
solver.run() |
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #Ada | Ada | with Ada.Text_Io; use Ada.Text_Io;
procedure Bottles is
begin
for X in reverse 1..99 loop
Put_Line(Integer'Image(X) & " bottles of beer on the wall");
Put_Line(Integer'Image(X) & " bottles of beer");
Put_Line("Take one down, pass it around");
Put_Line(Integer'Image(X - 1) & " bottles of beer on the wall");
New_Line;
end loop;
end Bottles; |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #Ceylon | Ceylon | import ceylon.random {
DefaultRandom
}
class Rational(shared Integer numerator, shared Integer denominator = 1) satisfies Numeric<Rational> {
assert (denominator != 0);
Integer gcd(Integer a, Integer b) => if (b == 0) then a else gcd(b, a % b);
shared Rational inverted => Rational(denominator, numerator);
shared Rational simplified =>
let (largestFactor = gcd(numerator, denominator))
Rational(numerator / largestFactor, denominator / largestFactor);
divided(Rational other) => (this * other.inverted).simplified;
negated => Rational(-numerator, denominator).simplified;
plus(Rational other) =>
let (top = numerator*other.denominator + other.numerator*denominator,
bottom = denominator * other.denominator)
Rational(top, bottom).simplified;
times(Rational other) =>
Rational(numerator * other.numerator, denominator * other.denominator).simplified;
shared Integer integer => numerator / denominator;
shared Float float => numerator.float / denominator.float;
string => denominator == 1 then numerator.string else "``numerator``/``denominator``";
shared actual Boolean equals(Object that) {
if (is Rational that) {
value simplifiedThis = this.simplified;
value simplifiedThat = that.simplified;
return simplifiedThis.numerator==simplifiedThat.numerator &&
simplifiedThis.denominator==simplifiedThat.denominator;
}
else {
return false;
}
}
}
interface Expression {
shared formal Rational evaluate();
}
class NumberExpression(Rational number) satisfies Expression {
evaluate() => number;
string => number.string;
}
class OperatorExpression(Expression left, Character operator, Expression right) satisfies Expression {
shared actual Rational evaluate() {
switch (operator)
case ('*') {
return left.evaluate() * right.evaluate();
}
case ('/') {
return left.evaluate() / right.evaluate();
}
case ('-') {
return left.evaluate() - right.evaluate();
}
case ('+') {
return left.evaluate() + right.evaluate();
}
else {
throw Exception("unknown operator ``operator``");
}
}
string => "(``left.string`` ``operator.string`` ``right.string``)";
}
"A simplified top down operator precedence parser. There aren't any right
binding operators so we don't have to worry about that."
class PrattParser(String input) {
value tokens = input.replace(" ", "");
variable value index = -1;
shared Expression expression(Integer precedence = 0) {
value token = advance();
variable value left = parseUnary(token);
while (precedence < getPrecedence(peek())) {
value nextToken = advance();
left = parseBinary(left, nextToken);
}
return left;
}
Integer getPrecedence(Character op) =>
switch (op)
case ('*' | '/') 2
case ('+' | '-') 1
else 0;
Character advance(Character? expected = null) {
index++;
value token = tokens[index] else ' ';
if (exists expected, token != expected) {
throw Exception("unknown character ``token``");
}
return token;
}
Character peek() => tokens[index + 1] else ' ';
Expression parseBinary(Expression left, Character operator) =>
let (right = expression(getPrecedence(operator)))
OperatorExpression(left, operator, right);
Expression parseUnary(Character token) {
if (token.digit) {
assert (is Integer int = Integer.parse(token.string));
return NumberExpression(Rational(int));
}
else if (token == '(') {
value exp = expression();
advance(')');
return exp;
}
else {
throw Exception("unknown character ``token``");
}
}
}
shared void run() {
value random = DefaultRandom();
function random4Numbers() =>
random.elements(1..9).take(4).sequence();
function isValidGuess(String input, {Integer*} allowedNumbers) {
value allowedOperators = set { *"()+-/*" };
value extractedNumbers = input
.split((Character ch) => ch in allowedOperators || ch.whitespace)
.map((String element) => Integer.parse(element))
.narrow<Integer>();
if (extractedNumbers.any((Integer element) => element > 9)) {
print("number too big!");
return false;
}
if (extractedNumbers.any((Integer element) => element < 1)) {
print("number too small!");
return false;
}
if (extractedNumbers.sort(increasing) != allowedNumbers.sort(increasing)) {
print("use all the numbers, please!");
return false;
}
if (!input.every((Character element) => element in allowedOperators || element.digit || element.whitespace)) {
print("only digits and mathematical operators, please");
return false;
}
variable value leftParens = 0;
for (c in input) {
if (c == '(') {
leftParens++;
} else if (c == ')') {
leftParens--;
if (leftParens < 0) {
break;
}
}
}
if (leftParens != 0) {
print("unbalanced brackets!");
return false;
}
return true;
}
function evaluate(String input) =>
let (parser = PrattParser(input),
exp = parser.expression())
exp.evaluate();
print("Welcome to The 24 Game.
Create a mathematical equation with four random
numbers that evaluates to 24.
You must use all the numbers once and only once,
but in any order.
Also, only + - / * and parentheses are allowed.
For example: (1 + 2 + 3) * 4
Also: enter n for new numbers and q to quit.
-----------------------------------------------");
value twentyfour = Rational(24);
while (true) {
value chosenNumbers = random4Numbers();
void pleaseTryAgain() => print("Sorry, please try again. (Your numbers are ``chosenNumbers``)");
print("Your numbers are ``chosenNumbers``. Please turn them into 24.");
while (true) {
value line = process.readLine()?.trimmed;
if (exists line) {
if (line.uppercased == "Q") { // quit
print("bye!");
return;
}
if (line.uppercased == "N") { // new game
break;
}
if (isValidGuess(line, chosenNumbers)) {
try {
value result = evaluate(line);
print("= ``result``");
if (result == twentyfour) {
print("You did it!");
break;
}
else {
pleaseTryAgain();
}
}
catch (Exception e) {
print(e.message);
pleaseTryAgain();
}
}
else {
pleaseTryAgain();
}
}
}
}
} |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Rust | Rust | extern crate num;
use std::cmp;
use num::bigint::BigUint;
fn cumu(n: usize, cache: &mut Vec<Vec<BigUint>>) {
for l in cache.len()..n+1 {
let mut r = vec![BigUint::from(0u32)];
for x in 1..l+1 {
let prev = r[r.len() - 1].clone();
r.push(prev + cache[l-x][cmp::min(x, l-x)].clone());
}
cache.push(r);
}
}
fn row(n: usize, cache: &mut Vec<Vec<BigUint>>) -> Vec<BigUint> {
cumu(n, cache);
let r = &cache[n];
let mut v: Vec<BigUint> = Vec::new();
for i in 0..n {
v.push(&r[i+1] - &r[i]);
}
v
}
fn main() {
let mut cache = vec![vec![BigUint::from(1u32)]];
println!("rows:");
for x in 1..26 {
let v: Vec<String> = row(x, &mut cache).iter().map(|e| e.to_string()).collect();
let s: String = v.join(" ");
println!("{}: {}", x, s);
}
println!("sums:");
for x in vec![23, 123, 1234, 12345] {
cumu(x, &mut cache);
let v = &cache[x];
let s = v[v.len() - 1].to_string();
println!("{}: {}", x, s);
}
} |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Scala | Scala |
object Main {
// This is a special class for memoization
case class Memo[A,B](f: A => B) extends (A => B) {
private val cache = Map.empty[A, B]
def apply(x: A) = cache getOrElseUpdate (x, f(x))
}
// Naive, but memoized solution
lazy val namesStartingMemo : Memo[Tuple2[Int, Int], BigInt] = Memo {
case (1, 1) => 1
case (a, n) =>
if (a > n/2) namesStartingMemo(a - 1, n - 1)
else if (n < a) 0
else if (n == a) 1
else (1 to a).map(i => namesStartingMemo(i, n - a)).sum
}
def partitions(n: Int) = (1 to n).map(namesStartingMemo(_, n)).sum
// main method
def main(args: Array[String]): Unit = {
for (i <- 1 to 25) {
for (j <- 1 to i) {
print(namesStartingMemo(j, i));
print(' ');
}
println()
}
println(partitions(23))
println(partitions(123))
println(partitions(1234))
println(partitions(12345))
}
}
|
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #Bracmat | Bracmat | ( out
$ ( put$"Enter two integer numbers between -1000 and 1000:"
& (filter=~/#%:~<-1000:~>1000)
& get':(!filter:?a) (!filter:?b)
& !a+!b
| "Invalid input. Try again"
)
); |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #Stata | Stata | mata
function ackermann(m,n) {
if (m==0) {
return(n+1)
} else if (n==0) {
return(ackermann(m-1,1))
} else {
return(ackermann(m-1,ackermann(m,n-1)))
}
}
for (i=0; i<=3; i++) printf("%f\n",ackermann(i,4))
5
6
11
125
end |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Elena | Elena | import system'routines;
import system'collections;
import extensions;
import extensions'routines;
extension op
{
canMakeWordFrom(blocks)
{
var list := ArrayList.load(blocks);
^ nil == (cast string(self)).upperCase().seekEach:(ch)
{
var index := list.indexOfElement
((word => word.indexOf(0, ch) != -1).asComparator());
if (index>=0)
{
list.removeAt(index); ^ false
}
else
{
^ true
}
}
}
}
public program()
{
var blocks := new string[]{"BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM"};
var words := new string[]{"", "A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse"};
Enumerator e := words.enumerator();
e.next();
words.forEach:(word)
{
console.printLine("can make '",word,"' : ",word.canMakeWordFrom(blocks));
}
} |
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #C.23 | C# | using System;
using System.Linq;
namespace Prisoners {
class Program {
static bool PlayOptimal() {
var secrets = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();
for (int p = 0; p < 100; p++) {
bool success = false;
var choice = p;
for (int i = 0; i < 50; i++) {
if (secrets[choice] == p) {
success = true;
break;
}
choice = secrets[choice];
}
if (!success) {
return false;
}
}
return true;
}
static bool PlayRandom() {
var secrets = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();
for (int p = 0; p < 100; p++) {
var choices = Enumerable.Range(0, 100).OrderBy(a => Guid.NewGuid()).ToList();
bool success = false;
for (int i = 0; i < 50; i++) {
if (choices[i] == p) {
success = true;
break;
}
}
if (!success) {
return false;
}
}
return true;
}
static double Exec(uint n, Func<bool> play) {
uint success = 0;
for (uint i = 0; i < n; i++) {
if (play()) {
success++;
}
}
return 100.0 * success / n;
}
static void Main() {
const uint N = 1_000_000;
Console.WriteLine("# of executions: {0}", N);
Console.WriteLine("Optimal play success rate: {0:0.00000000000}%", Exec(N, PlayOptimal));
Console.WriteLine(" Random play success rate: {0:0.00000000000}%", Exec(N, PlayRandom));
}
}
} |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #REXX | REXX | /*REXX pgm displays abundant odd numbers: 1st 25, one─thousandth, first > 1 billion. */
parse arg Nlow Nuno Novr . /*obtain optional arguments from the CL*/
if Nlow=='' | Nlow=="," then Nlow= 25 /*Not specified? Then use the default.*/
if Nuno=='' | Nuno=="," then Nuno= 1000 /* " " " " " " */
if Novr=='' | Novr=="," then Novr= 1000000000 /* " " " " " " */
numeric digits max(9, length(Novr) ) /*ensure enough decimal digits for // */
@= 'odd abundant number' /*variable for annotating the output. */
#= 0 /*count of odd abundant numbers so far.*/
do j=3 by 2 until #>=Nlow; $= sigO(j) /*get the sigma for an odd integer. */
if $<=j then iterate /*sigma ≤ J ? Then ignore it. */
#= # + 1 /*bump the counter for abundant odd #'s*/
say rt(th(#)) @ 'is:'rt(commas(j), 8) rt("sigma=") rt(commas($), 9)
end /*j*/
say
#= 0 /*count of odd abundant numbers so far.*/
do j=3 by 2; $= sigO(j) /*get the sigma for an odd integer. */
if $<=j then iterate /*sigma ≤ J ? Then ignore it. */
#= # + 1 /*bump the counter for abundant odd #'s*/
if #<Nuno then iterate /*Odd abundant# count<Nuno? Then skip.*/
say rt(th(#)) @ 'is:'rt(commas(j), 8) rt("sigma=") rt(commas($), 9)
leave /*we're finished displaying NUNOth num.*/
end /*j*/
say
do j=1+Novr%2*2 by 2; $= sigO(j) /*get sigma for an odd integer > Novr. */
if $<=j then iterate /*sigma ≤ J ? Then ignore it. */
say rt(th(1)) @ 'over' commas(Novr) "is: " commas(j) rt('sigma=') commas($)
leave /*we're finished displaying NOVRth num.*/
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas:parse arg _; do c_=length(_)-3 to 1 by -3; _=insert(',', _, c_); end; return _
rt: procedure; parse arg #,len; if len=='' then len= 20; return right(#, len)
th: parse arg th; return th||word('th st nd rd',1+(th//10)*(th//100%10\==1)*(th//10<4))
/*──────────────────────────────────────────────────────────────────────────────────────*/
sigO: parse arg x; s= 1 /*sigma for odd integers. ___*/
do k=3 by 2 while k*k<x /*divide by all odd integers up to √ x */
if x//k==0 then s= s + k + x%k /*add the two divisors to (sigma) sum. */
end /*k*/ /* ___*/
if k*k==x then return s + k /*Was X a square? If so, add √ x */
return s /*return (sigma) sum of the divisors. */ |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Nim | Nim |
# 21 game.
import random
import strformat
import strutils
const
Target = 21
PossibleChoices: array[18..20, seq[string]] = [@["1", "2", "3"], @["1", "2"], @["1"]]
Targets = [1, 5, 9, 13, 17, 21] # Totals that a player must obtain to win.
#---------------------------------------------------------------------------------------------------
proc printTotal(total: int) =
## Print the running total.
echo fmt"Running total is now {total}."
#---------------------------------------------------------------------------------------------------
proc computerPlays(total: var int) =
## Make the computer play.
var choice: int
if total in Targets:
# No winning choice. Choose a random value.
choice = rand(1..3)
else:
# Find the running total to get.
for val in Targets:
if val > total:
choice = val - total
break
inc total, choice
echo fmt"I choose {choice}."
printTotal(total)
#---------------------------------------------------------------------------------------------------
proc prompt(message: string; answers: openArray[string]): int =
## Prompt a message and get an answer checking its validity against possible answers.
while true:
stdout.write(message & ' ')
try:
result = answers.find(stdin.readLine())
if result >= 0:
break
echo fmt"Please answer one of: {answers.join("", "")}."
except EOFError:
echo ""
return # Quit.
#---------------------------------------------------------------------------------------------------
randomize()
echo "21 is a two player game. The game is played by choosing a number (1, 2, 3) to\n" &
"be added to the running total. The game is won by the player whose chosen number\n" &
"causes the running total to reach exactly 21. The running total starts at zero.\n"
echo "You can quit the game at any time by typing 'q'."
block mainLoop:
while true:
var total = 0
# Choose the player who will play first.
var answer = prompt("Who will play first ('you', 'me')?", ["q", "you", "me"])
if answer == 0:
echo "Quitting game."
break
elif answer == 1:
computerPlays(total)
# Internal game loop.
while true:
# Ask player its choice.
let choices = if total > 18: PossibleChoices[total] else: PossibleChoices[18]
let choice = prompt(fmt"Your choice ({choices.join("", "")})?", "q" & choices)
if choice == 0:
echo "Quitting game."
break mainLoop
# Update running total and check if player win.
inc total, choice
printTotal(total)
if total == Target:
echo "Congratulations, you win."
break
# Make computer play.
computerPlays(total)
if total == Target:
echo "Sorry, I win."
break
# Ask player for another game.
answer = prompt("Do you want to play another game (y, n)", ["q", "y", "n"])
if answer != 1:
echo "Quitting game."
break
|
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #EchoLisp | EchoLisp |
;; use task [[RPN_to_infix_conversion#EchoLisp]] to print results
(define (rpn->string rpn)
(if (vector? rpn)
(infix->string (rpn->infix rpn))
"😥 Not found"))
(string-delimiter "")
(define OPS #(* + - // )) ;; use float division
(define-syntax-rule (commutative? op) (or (= op *) (= op +)))
;; ---------------------------------
;; calc rpn -> num value or #f if bad rpn
;; rpn is a vector of ops or numbers
;; ----------------------------------
(define (calc rpn)
(define S (stack 'S))
(for ((token rpn))
(if (procedure? token)
(let [(op2 (pop S)) (op1 (pop S))]
(if (and op1 op2)
(push S (apply token (list op1 op2)))
(push S #f))) ;; not-well formed
(push S token ))
#:break (not (stack-top S)))
(if (= 1 (stack-length S)) (pop S) #f))
;; check for legal rpn -> #f if not legal
(define (rpn? rpn)
(define S (stack 'S))
(for ((token rpn))
(if (procedure? token)
(push S (and (pop S) (pop S)))
(push S token ))
#:break (not (stack-top S)))
(stack-top S))
;; --------------------------------------
;; build-rpn : push next rpn op or number
;; dleft is number of not used digits
;; ---------------------------------------
(define count 0)
(define (build-rpn into: rpn depth maxdepth digits ops dleft target &hit )
(define cmpop #f)
(cond
;; tooo long
[(> (++ count) 200_000) (set-box! &hit 'not-found)]
;; stop on first hit
[(unbox &hit) &hit]
;; partial rpn must be legal
[(not (rpn? rpn)) #f]
;; eval rpn if complete
[(> depth maxdepth)
(when (= target (calc rpn)) (set-box! &hit rpn))]
;; else, add a digit to rpn
[else
[when (< depth maxdepth) ;; digits anywhere except last
(for [(d digits) (i 10)]
#:continue (zero? d)
(vector-set! digits i 0) ;; mark used
(vector-set! rpn depth d)
(build-rpn rpn (1+ depth) maxdepth digits ops (1- dleft) target &hit)
(vector-set! digits i d)) ;; mark unused
] ;; add digit
;; or, add an op
;; ops anywhere except positions 0,1
[when (and (> depth 1) (<= (+ depth dleft) maxdepth));; cutter : must use all digits
(set! cmpop
(and (number? [rpn (1- depth)])
(number? [rpn (- depth 2)])
(> [rpn (1- depth)] [rpn (- depth 2)])))
(for [(op ops)]
#:continue (and cmpop (commutative? op)) ;; cutter : 3 4 + === 4 3 +
(vector-set! rpn depth op)
(build-rpn rpn (1+ depth) maxdepth digits ops dleft target &hit)
(vector-set! rpn depth 0))] ;; add op
] ; add something to rpn vector
)) ; build-rpn
;;------------------------
;;gen24 : num random numbers
;;------------------------
(define (gen24 num maxrange)
(->> (append (range 1 maxrange)(range 1 maxrange)) shuffle (take num)))
;;-------------------------------------------
;; try-rpn : sets starter values for build-rpn
;;-------------------------------------------
(define (try-rpn digits target)
(set! digits (list-sort > digits)) ;; seems to accelerate things
(define rpn (make-vector (1- (* 2 (length digits)))))
(define &hit (box #f))
(set! count 0)
(build-rpn rpn starter-depth: 0
max-depth: (1- (vector-length rpn))
(list->vector digits)
OPS
remaining-digits: (length digits)
target &hit )
(writeln target '= (rpn->string (unbox &hit)) 'tries= count))
;; -------------------------------
;; (task numdigits target maxrange)
;; --------------------------------
(define (task (numdigits 4) (target 24) (maxrange 10))
(define digits (gen24 numdigits maxrange))
(writeln digits '→ target)
(try-rpn digits target))
|
http://rosettacode.org/wiki/2048 | 2048 | Task
Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Rules of the game
The rules are that on each turn the player must choose a direction (up, down, left or right).
All tiles move as far as possible in that direction, some move more than others.
Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.
A move is valid when at least one tile can be moved, if only by combination.
A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square (if there is one).
Adding a new tile on a blank space. Most of the time, a new 2 is to be added, and occasionally (10% of the time), a 4.
To win, the player must create a tile with the number 2048.
The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic, 2048.
Requirements
"Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say, that moving the tile row of:
[2][2][2][2]
to the right should result in:
......[4][4]
and not:
.........[8]
"Move direction priority".
If more than one variant of combining is possible, move direction shall indicate which combination will take effect.
For example, moving the tile row of:
...[2][2][2]
to the right should result in:
......[2][4]
and not:
......[4][2]
Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
Check for a win condition.
Check for a lose condition.
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program 2048_64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ SIZE, 4
.equ TOTAL, 2048
.equ BUFFERSIZE, 80
.equ KEYSIZE, 8
.equ IOCTL, 0x1D // Linux syscall
.equ SIGACTION, 0x86 // Linux syscall
.equ SYSPOLL, 0x16 // Linux syscall
.equ CREATPOLL, 0x14 // Linux syscall
.equ CTLPOLL, 0x15 // Linux syscall
.equ TCGETS, 0x5401
.equ TCSETS, 0x5402
.equ ICANON, 2
.equ ECHO, 10
.equ POLLIN, 1
.equ EPOLL_CTL_ADD, 1
.equ SIGINT, 2 // Issued if the user sends an interrupt signal (Ctrl + C)
.equ SIGQUIT, 3 // Issued if the user sends a quit signal (Ctrl + D)
.equ SIGTERM, 15 // Software termination signal (sent by kill by default)
.equ SIGTTOU, 22
/*******************************************/
/* Structures */
/********************************************/
/* structure termios see doc linux*/
.struct 0
term_c_iflag: // input modes
.struct term_c_iflag + 4
term_c_oflag: // output modes
.struct term_c_oflag + 4
term_c_cflag: // control modes
.struct term_c_cflag + 4
term_c_lflag: // local modes
.struct term_c_lflag + 4
term_c_cc: // special characters
.struct term_c_cc + 40 // see length if necessary
term_fin:
/* structure sigaction see doc linux */
.struct 0
sa_handler:
.struct sa_handler + 8
sa_mask:
.struct sa_mask + 8
sa_flags:
.struct sa_flags + 8
sa_sigaction:
.struct sa_sigaction + 8
sa_fin:
/* structure poll see doc linux */
.struct 0
poll_event: // events mask
.struct poll_event + 8
poll_fd: // events returned
.struct poll_fd + 8
poll_fin:
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessOK: .asciz "Bravo !! You win. \n"
szMessNotOK: .asciz "You lost !! \n"
szMessNewGame: .asciz "New game (y/n) ? \n"
szMessErreur: .asciz "Error detected.\n"
szMessErrInitTerm: .asciz "Error terminal init.\n"
szMessErrInitPoll: .asciz "Error poll init.\n"
szMessErreurKey: .asciz "Error read key.\n"
szMessErr: .asciz "Error code hexa : @ décimal : @ \n"
szCarriageReturn: .asciz "\n"
szMess0: .asciz " "
szMess2: .asciz " 2 "
szMess4: .asciz " 4 "
szMess8: .asciz " 8 "
szMess16: .asciz " 16 "
szMess32: .asciz " 32 "
szMess64: .asciz " 64 "
szMess128: .asciz " 128 "
szMess256: .asciz " 256 "
szMess512: .asciz " 512 "
szMess1024: .asciz " 1024 "
szMess2048: .asciz " 2048 "
szCleax1: .byte 0x1B
.byte 'c' // other console clear
.byte 0
szLineH: .asciz "-----------------------------\n"
szLineV: .asciz "|"
szLineVT: .asciz "| | | | |\n"
.align 4
qGraine: .quad 123456
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 4
sZoneConv: .skip 24
sBuffer: .skip BUFFERSIZE
qTbCase: .skip 8 * SIZE * SIZE
qEnd: .skip 8 // 0 loop 1 = end loop
qTouche: .skip KEYSIZE // value key pressed
stOldtio: .skip term_fin // old terminal state
stCurtio: .skip term_fin // current terminal state
stSigAction: .skip sa_fin // area signal structure
stSigAction1: .skip sa_fin
stSigAction2: .skip sa_fin
stSigAction3: .skip sa_fin
stPoll1: .skip poll_fin // area poll structure
stPoll2: .skip poll_fin
stevents: .skip 16
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
mov x0,#0
bl initTerm // terminal init
cmp x0,0 // error ?
blt 100f
bl initPoll // epoll instance init
cmp x0,0
blt 99f
mov x22,x0 // save epfd
1: // begin game loop
ldr x0,qAdrszCleax1
bl affichageMess
bl razTable
2:
bl addDigit
cmp x0,#-1
beq 5f // end game
bl displayGame
3:
mov x0,x22
bl waitKey
cmp x0,0
beq 3b
bl readKey
cmp x0,#-1
beq 99f // error
bl keyMove
cmp x0,#0
beq 3b // no change -> loop
cmp x0,#2 // last addition = 2048 ?
beq 4f
cmp x0,#-1 // quit ?
bne 2b // loop
b 10f
4: // last addition = 2048
ldr x0,qAdrszMessOK
bl affichageMess
b 10f
5: // display message no solution
ldr x0,qAdrszMessNotOK
bl affichageMess
10: // display new game ?
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszMessNewGame
bl affichageMess
11:
mov x0,x22
bl waitKey
cmp x0,0
beq 11b
bl readKey
ldr x0,qAdrqTouche
ldrb w0,[x0]
cmp w0,#'y'
beq 1b
cmp w0,#'Y'
beq 1b
99:
bl restauTerm // terminal restaur
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc #0 // perform the system call
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrszMessNotOK: .quad szMessNotOK
qAdrszMessOK: .quad szMessOK
qAdrszMessNewGame: .quad szMessNewGame
qAdrsZoneConv: .quad sZoneConv
qAdrszCleax1: .quad szCleax1
qAdrszMessErrInitTerm: .quad szMessErrInitTerm
qAdrszMessErrInitPoll: .quad szMessErrInitPoll
qAdrszMessErreurKey: .quad szMessErreurKey
qAdrstOldtio: .quad stOldtio
qAdrstCurtio: .quad stCurtio
qAdrstSigAction: .quad stSigAction
qAdrstSigAction1: .quad stSigAction1
qAdrSIG_IGN: .quad 1
qAdrqEnd: .quad qEnd
qAdrqTouche: .quad qTouche
qAdrstevents: .quad stevents
/******************************************************************/
/* raz table cases */
/******************************************************************/
razTable:
stp x0,lr,[sp,-16]! // save registres
stp x1,x2,[sp,-16]! // save registres
ldr x1,qAdrqTbCase
mov x2,#0
1:
str xzr,[x1,x2,lsl #3]
add x2,x2,#1
cmp x2,#SIZE * SIZE
blt 1b
100:
ldp x1,x2,[sp],16 // restaur des 2 registres
ldp x0,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* key move */
/******************************************************************/
/* x0 contains key value */
keyMove:
stp x1,lr,[sp,-16]! // save registres
lsr x0,x0,#16
cmp x0,#0x42 // down arrow
bne 1f
bl moveDown
b 100f
1:
cmp x0,#0x41 // high arrow
bne 2f
bl moveUp
b 100f
2:
cmp x0,#0x43 // right arrow
bne 3f
bl moveRight
b 100f
3:
cmp x0,#0x44 // left arrow
bne 4f
bl moveLeft
b 100f
4:
ldr x0,qAdrqTouche
ldrb w0,[x0]
cmp w0,#'q' // quit game
bne 5f
mov x0,#-1
b 100f
5:
cmp w0,#'Q' // quit game
bne 100f
mov x0,#-1
b 100f
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* move left */
/******************************************************************/
/* x0 return -1 if ok */
moveLeft:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x10,x11,[sp,-16]! // save registres
ldr x1,qAdrqTbCase
mov x0,#0 // top move Ok
mov x2,#0 // line indice
1:
mov x6,#0 // counter empty case
mov x7,#0 // first digit
mov x10,#0 // last digit to add
mov x3,#0 // column indice
2:
lsl x5,x2,#2 // change this if size <> 4
add x5,x5,x3 // compute table indice
ldr x4,[x1,x5,lsl #3]
cmp x4,#0
cinc x6,x6,eq // positions vides
beq 5f
cmp x6,#0
beq 3f // no empty left case
mov x8,#0
str x8,[x1,x5,lsl #3] // raz digit
sub x5,x5,x6
str x4,[x1,x5,lsl #3] // and store to left empty position
mov x0,#1 // move Ok
3:
cmp x7,#0 // first digit
beq 4f
cmp x10,x4 // prec digit have to add
beq 4f
sub x8,x5,#1 // prec digit
ldr x9,[x1,x8,lsl #3]
cmp x4,x9 // equal ?
bne 4f
mov x10,x4 // save digit
add x4,x4,x9 // yes -> add
str x4,[x1,x8,lsl #3]
cmp x4,#TOTAL
beq 6f
mov x4,#0
str x4,[x1,x5,lsl #3]
add x6,x6,#1 // empty case + 1
mov x0,#1 // move Ok
4:
add x7,x7,#1 // no first digit
5: // and loop
add x3,x3,#1
cmp x3,#SIZE
blt 2b
add x2,x2,#1
cmp x2,#SIZE
blt 1b
b 100f
6:
mov x0,#2 // total = 2048
100:
ldp x10,x11,[sp],16 // restaur des 2 registres
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* move right */
/******************************************************************/
/* x0 return -1 if ok */
moveRight:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x10,x11,[sp,-16]! // save registres
ldr x1,qAdrqTbCase
mov x0,#0
mov x2,#0
1:
mov x6,#0
mov x7,#0
mov x10,#0
mov x3,#SIZE-1
2:
lsl x5,x2,#2 // change this if size <> 4
add x5,x5,x3
ldr x4,[x1,x5,lsl #3]
cmp x4,#0
cinc x6,x6,eq // positions vides
beq 5f
cmp x6,#0
beq 3f // no empty right case
mov x0,#0
str x0,[x1,x5,lsl #3] // raz digit
add x5,x5,x6
str x4,[x1,x5,lsl #3] // and store to right empty position
mov x0,#1
3:
cmp x7,#0 // first digit
beq 4f
add x8,x5,#1 // next digit
ldr x9,[x1,x8,lsl #3]
cmp x4,x9 // equal ?
bne 4f
cmp x10,x4
beq 4f
mov x10,x4
add x4,x4,x9 // yes -> add
str x4,[x1,x8,lsl #3]
cmp x4,#TOTAL
beq 6f
mov x4,#0
str x4,[x1,x5,lsl #3]
add x6,x6,#1 // empty case + 1
mov x0,#1
4:
add x7,x7,#1 // no first digit
5: // and loop
sub x3,x3,#1
cmp x3,#0
bge 2b
add x2,x2,#1
cmp x2,#SIZE
blt 1b
b 100f
6:
mov x0,#2
100:
ldp x10,x11,[sp],16 // restaur des 2 registres
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* move down */
/******************************************************************/
/* x0 return -1 if ok */
moveDown:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x10,x11,[sp,-16]! // save registres
ldr x1,qAdrqTbCase
mov x0,#0
mov x3,#0
1:
mov x6,#0
mov x7,#0
mov x10,#0
mov x2,#SIZE-1
2:
lsl x5,x2,#2 // change this if size <> 4
add x5,x5,x3
ldr x4,[x1,x5,lsl #3]
cmp x4,#0
cinc x6,x6,eq // positions vides
beq 5f
cmp x6,#0
beq 3f // no empty right case
mov x0,#0
str x0,[x1,x5,lsl #3] // raz digit
lsl x0,x6,#2
add x5,x5,x0
str x4,[x1,x5,lsl #3] // and store to right empty position
mov x0,#1
3:
cmp x7,#0 // first digit
beq 4f
add x8,x5,#SIZE // down digit
ldr x9,[x1,x8,lsl #3]
cmp x4,x9 // equal ?
bne 4f
cmp x10,x4
beq 4f
mov x10,x4
add x4,x4,x9 // yes -> add
str x4,[x1,x8,lsl #3]
cmp x4,#TOTAL
beq 6f
mov x4,#0
str x4,[x1,x5,lsl #3]
add x6,x6,#1 // empty case + 1
mov x0,#1
4:
add x7,x7,#1 // no first digit
5: // and loop
sub x2,x2,#1
cmp x2,#0
bge 2b
add x3,x3,#1
cmp x3,#SIZE
blt 1b
b 100f
6:
mov x0,#2
100:
ldp x10,x11,[sp],16 // restaur des 2 registres
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* move up */
/******************************************************************/
/* x0 return -1 if ok */
moveUp:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x10,x11,[sp,-16]! // save registres
ldr x1,qAdrqTbCase
mov x0,#0
mov x3,#0
1:
mov x6,#0
mov x7,#0
mov x10,#0
mov x2,#0
2:
lsl x5,x2,#2 // change this if size <> 4
add x5,x5,x3
ldr x4,[x1,x5,lsl #3]
cmp x4,#0
cinc x6,x6,eq // positions vides
beq 5f
cmp x6,#0
beq 3f // no empty right case
mov x0,#0
str x0,[x1,x5,lsl #3] // raz digit
lsl x0,x6,#2
sub x5,x5,x0
str x4,[x1,x5,lsl #3] // and store to right empty position
mov x0,#1
3:
cmp x7,#0 // first digit
beq 4f
sub x8,x5,#SIZE // up digit
ldr x9,[x1,x8,lsl #3]
cmp x4,x9 // equal ?
bne 4f
cmp x10,x4
beq 4f
mov x10,x4
add x4,x4,x9 // yes -> add
str x4,[x1,x8,lsl #3]
cmp x4,#TOTAL
beq 6f
mov x4,#0
str x4,[x1,x5,lsl #3]
add x6,x6,#1 // empty case + 1
mov x0,#1
4:
add x7,x7,#1 // no first digit
5: // and loop
add x2,x2,#1
cmp x2,#SIZE
blt 2b
add x3,x3,#1
cmp x3,#SIZE
blt 1b
b 100f
6:
mov x0,#2
100:
ldp x10,x11,[sp],16 // restaur des 2 registres
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* add new digit on game */
/******************************************************************/
/* x0 return -1 if ok */
addDigit:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
sub sp,sp,#8 * SIZE*SIZE
mov fp,sp
mov x0,#100
bl genereraleas
cmp x0,#10
mov x1,#4
mov x5,#2
csel x5,x5,x1,ge
// movlt x5,#4
//movge x5,#2
ldr x1,qAdrqTbCase
mov x3,#0
mov x4,#0
1:
ldr x2,[x1,x3,lsl 3]
cmp x2,#0
bne 2f
str x3,[fp,x4,lsl 3]
add x4,x4,#1
2:
add x3,x3,#1
cmp x3,#SIZE*SIZE
blt 1b
cmp x4,#0 // no empty case
beq 4f
cmp x4,#1
bne 3f
ldr x2,[fp] // one case
str x5,[x1,x2,lsl 3]
mov x0,#0
b 100f
3: // multiple case
sub x0,x4,#1
bl genereraleas
ldr x2,[fp,x0,lsl 3]
str x5,[x1,x2,lsl 3]
mov x0,#0
b 100f
4:
mov x0,#-1
100:
add sp,sp,#8* (SIZE*SIZE) // stack alignement
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrqTbCase: .quad qTbCase
/******************************************************************/
/* display game */
/******************************************************************/
displayGame:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
ldr x0,qAdrszCleax1
bl affichageMess
ldr x0,qAdrszLineH
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
ldr x1,qAdrqTbCase
mov x2,#0
1:
ldr x0,[x1,x2,lsl #3]
bl digitString
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
add x2,x2,#1
cmp x2,#SIZE
blt 1b
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineH
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
2:
ldr x0,[x1,x2,lsl #3]
bl digitString
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
add x2,x2,#1
cmp x2,#SIZE*2
blt 2b
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineH
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
3:
ldr x0,[x1,x2,lsl #3]
bl digitString
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
add x2,x2,#1
cmp x2,#SIZE*3
blt 3b
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineH
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
4:
ldr x0,[x1,x2,lsl #3]
bl digitString
bl affichageMess
ldr x0,qAdrszLineV
bl affichageMess
add x2,x2,#1
cmp x2,#SIZE*4
blt 4b
ldr x0,qAdrszCarriageReturn
bl affichageMess
ldr x0,qAdrszLineVT
bl affichageMess
ldr x0,qAdrszLineH
bl affichageMess
100:
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrszLineH: .quad szLineH
qAdrszLineV: .quad szLineV
qAdrszLineVT: .quad szLineVT
/******************************************************************/
/* digits string */
/******************************************************************/
/* x0 contains number */
/* x0 return address string */
digitString:
stp x1,lr,[sp,-16]! // save registres
cmp x0,#0
bne 1f
ldr x0,qAdrszMess0
b 100f
1:
cmp x0,#2
bne 2f
ldr x0,qAdrszMess2
b 100f
2:
cmp x0,#4
bne 3f
ldr x0,qAdrszMess4
b 100f
3:
cmp x0,#8
bne 4f
ldr x0,qAdrszMess8
b 100f
4:
cmp x0,#16
bne 5f
ldr x0,qAdrszMess16
b 100f
5:
cmp x0,#32
bne 6f
ldr x0,qAdrszMess32
b 100f
6:
cmp x0,#64
bne 7f
ldr x0,qAdrszMess64
b 100f
7:
cmp x0,#128
bne 8f
ldr x0,qAdrszMess128
b 100f
8:
cmp x0,#256
bne 9f
ldr x0,qAdrszMess256
b 100f
9:
cmp x0,#512
bne 10f
ldr x0,qAdrszMess512
b 100f
10:
cmp x0,#1024
bne 11f
ldr x0,qAdrszMess1024
b 100f
11:
cmp x0,#2048
bne 12f
ldr x0,qAdrszMess2048
b 100f
12:
ldr x1,qAdrszMessErreur // error message
bl displayError
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrszMess0: .quad szMess0
qAdrszMess2: .quad szMess2
qAdrszMess4: .quad szMess4
qAdrszMess8: .quad szMess8
qAdrszMess16: .quad szMess16
qAdrszMess32: .quad szMess32
qAdrszMess64: .quad szMess64
qAdrszMess128: .quad szMess128
qAdrszMess256: .quad szMess256
qAdrszMess512: .quad szMess512
qAdrszMess1024: .quad szMess1024
qAdrszMess2048: .quad szMess2048
//qAdrsBuffer: .quad sBuffer
qAdrszMessErreur : .quad szMessErreur
/***************************************************/
/* Generation random number */
/***************************************************/
/* x0 contains limit */
genereraleas:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
ldr x1,qAdrqGraine
ldr x2,[x1]
ldr x3,qNbDep1
mul x2,x3,x2
ldr x3,qNbDep2
add x2,x2,x3
str x2,[x1] // maj de la graine pour l appel suivant
cmp x0,#0
beq 100f
udiv x3,x2,x0
msub x0,x3,x0,x2 // résult = remainder
100: // end function
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/*****************************************************/
qAdrqGraine: .quad qGraine
qNbDep1: .quad 0x0019660d
qNbDep2: .quad 0x3c6ef35f
/******************************************************************/
/* traitement du signal */
/******************************************************************/
sighandler:
stp x0,lr,[sp,-16]! // save registers
str x1,[sp,-16]!
ldr x0,qAdrqEnd
mov x1,#1 // maj zone end
str x1,[x0]
ldr x1,[sp],16
ldp x0,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/***************************************************/
/* display error message */
/***************************************************/
/* x0 contains error code x1 : message address */
displayError:
stp x2,lr,[sp,-16]! // save registers
mov x2,x0 // save error code
mov x0,x1
bl affichageMess
mov x0,x2 // error code
ldr x1,qAdrsZoneConv
bl conversion16 // conversion hexa
ldr x0,qAdrszMessErr // display error message
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
mov x3,x0
mov x0,x2 // error code
ldr x1,qAdrsZoneConv // result address
bl conversion10S // conversion decimale
mov x0,x3
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
100:
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrszMessErr: .quad szMessErr
/*********************************/
/* init terminal state */
/*********************************/
initTerm:
stp x1,lr,[sp,-16]! // save registers
/* read terminal state */
mov x0,STDIN // input console
mov x1,TCGETS
ldr x2,qAdrstOldtio
mov x8,IOCTL // call system Linux
svc 0
cbnz x0,98f // error ?
adr x0,sighandler // adresse routine traitement signal
ldr x1,qAdrstSigAction // adresse structure sigaction
str x0,[x1,sa_handler] // maj handler
mov x0,SIGINT // signal type
ldr x1,qAdrstSigAction
mov x2,0
mov x3,8
mov x8,SIGACTION // call system
svc 0
cmp x0,0 // error ?
bne 98f
mov x0,SIGQUIT
ldr x1,qAdrstSigAction
mov x2,0 // NULL
mov x8,SIGACTION // call system
svc 0
cmp x0,0 // error ?
bne 98f
mov x0,SIGTERM
ldr x1,qAdrstSigAction
mov x2,0 // NULL
mov x8,SIGACTION // appel systeme
svc 0
cmp x0,0
bne 98f
//
adr x0,qAdrSIG_IGN // address signal igonre function
ldr x1,qAdrstSigAction1
str x0,[x1,sa_handler]
mov x0,SIGTTOU //invalidate other process signal
ldr x1,qAdrstSigAction1
mov x2,0 // NULL
mov x8,SIGACTION // call system
svc 0
cmp x0,0
bne 98f
//
/* read terminal current state */
mov x0,STDIN
mov x1,TCGETS
ldr x2,qAdrstCurtio // address current termio
mov x8,IOCTL // call systeme
svc 0
cmp x0,0 // error ?
bne 98f
mov x2,ICANON | ECHO // no key pressed echo on display
mvn x2,x2 // and one key
ldr x1,qAdrstCurtio
ldr x3,[x1,#term_c_lflag]
and x3,x2,x2 // add flags
str x3,[x1,#term_c_lflag] // and store
mov x0,STDIN // maj terminal current state
mov x1,TCSETS
ldr x2,qAdrstCurtio
mov x8,IOCTL // call system
svc 0
cbz x0,100f
98: // error display
ldr x1,qAdrszMessErrInitTerm
bl displayError
mov x0,-1
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrstSigAction2: .quad stSigAction2
qAdrstSigAction3: .quad stSigAction3
/*********************************/
/* init instance epool */
/*********************************/
initPoll:
stp x1,lr,[sp,-16]! // save registers
ldr x0,qAdrstevents
mov x1,STDIN // maj structure events
str x1,[x0,#poll_fd] // maj FD
mov x1,POLLIN // action code
str x1,[x0,#poll_event]
mov x0,0
mov x8,CREATPOLL // create epoll instance
svc 0
cmp x0,0 // error ?
ble 98f
mov x10,x0 // return FD epoll instance
mov x1,EPOLL_CTL_ADD
mov x2,STDIN // Fd to we want add
ldr x3,qAdrstevents // structure events address
mov x8,CTLPOLL // call system control epoll
svc 0
cmp x0,0 // error ?
blt 98f // no
mov x0,x10 // return FD epoll instance
b 100f
98: // error display
ldr x1,qAdrszMessErrInitPoll // error message
bl displayError
mov x0,-1
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/*********************************/
/* wait key */
/*********************************/
/* x0 contains FD poll */
waitKey:
stp x1,lr,[sp,-16]! // save registers
ldr x11,qAdrqTouche // key address
str xzr,[x11] // raz key
1:
ldr x1,qAdrqEnd // if signal ctrl-c -> end
ldr x1,[x1]
cbnz x1,100f
ldr x1,qAdrstevents
mov x2,12 // size events
mov x3,1 // timeout = 1 TODO: ??
mov x4,0
mov x8,SYSPOLL // call system wait POLL
svc 0
cmp x0,0 // key pressed ?
bge 100f
98: // error display
ldr x1,qAdrszMessErreurKey // error message
bl displayError
mov x0,-1
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/*********************************/
/* read key */
/*********************************/
/* x0 returns key value */
readKey:
stp x1,lr,[sp,-16]! // save registers
mov x0,STDIN // File Descriptor
ldr x1,qAdrqTouche // buffer address
mov x2,KEYSIZE // key size
mov x8,READ // read key
svc #0
cmp x0,0 // error ?
ble 98f
ldr x2,qAdrqTouche // key address
ldr x0,[x2]
b 100f
98: // error display
ldr x1,qAdrszMessErreur // error message
bl displayError
mov x0,-1
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/*********************************/
/* restaur terminal state */
/*********************************/
restauTerm:
stp x1,lr,[sp,-16]! // save registers
mov x0,STDIN // end then restaur begin state terminal
mov x1,TCSETS
ldr x2,qAdrstOldtio
mov x8,IOCTL // call system
svc 0
cbz x0,100f
ldr x1,qAdrszMessErreur // error message
bl displayError
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Pascal | Pascal | program square4;
{$MODE DELPHI}
{$R+,O+}
const
LoDgt = 0;
HiDgt = 9;
type
tchkset = set of LoDgt..HiDgt;
tSol = record
solMin : integer;
solDat : array[1..7] of integer;
end;
var
sum,a,b,c,d,e,f,g,cnt,uniqueCount : NativeInt;
sol : array of tSol;
procedure SolOut;
var
i,j,mn: NativeInt;
Begin
mn := 0;
repeat
writeln(mn:3,' ...',mn+6:3);
For i := Low(sol) to High(sol) do
with sol[i] do
IF solMin = mn then
Begin
For j := 1 to 7 do
write(solDat[j]:3);
writeln;
end;
writeln;
inc(mn);
until mn > HiDgt-6;
end;
function CheckUnique:Boolean;
var
i,sum,mn: NativeInt;
chkset : tchkset;
Begin
chkset:= [];
include(chkset,a);include(chkset,b);include(chkset,c);
include(chkset,d);include(chkset,e);include(chkset,f);
include(chkset,g);
sum := 0;
For i := LoDgt to HiDgt do
IF i in chkset then
inc(sum);
result := sum = 7;
IF result then
begin
inc(uniqueCount);
//find the lowest entry
mn:= LoDgt;
For i := LoDgt to HiDgt do
IF i in chkset then
Begin
mn := i;
BREAK;
end;
// are they consecutive
For i := mn+1 to mn+6 do
IF NOT(i in chkset) then
EXIT;
setlength(sol,Length(sol)+1);
with sol[high(sol)] do
Begin
solMin:= mn;
solDat[1]:= a;solDat[2]:= b;solDat[3]:= c;
solDat[4]:= d;solDat[5]:= e;solDat[6]:= f;
solDat[7]:= g;
end;
end;
end;
Begin
cnt := 0;
uniqueCount := 0;
For a:= LoDgt to HiDgt do
Begin
For b := LoDgt to HiDgt do
Begin
sum := a+b;
//a+b = b+c+d => a = c+d => d := a-c
For c := a-LoDgt downto LoDgt do
begin
d := a-c;
e := sum-d;
IF e>HiDgt then
e:= HiDgt;
For e := e downto LoDgt do
begin
f := sum-e-d;
IF f in [loDGt..Hidgt]then
Begin
g := sum-f;
IF g in [loDGt..Hidgt]then
Begin
inc(cnt);
CheckUnique;
end;
end;
end;
end;
end;
end;
SolOut;
writeln(' solution count for ',loDgt,' to ',HiDgt,' = ',cnt);
writeln('unique solution count for ',loDgt,' to ',HiDgt,' = ',uniqueCount);
end. |
http://rosettacode.org/wiki/15_puzzle_solver | 15 puzzle solver | Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game.
For this task you will be using the following puzzle:
15 14 1 6
9 11 4 12
0 10 7 3
13 8 5 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0
The output must show the moves' directions, like so: left, left, left, down, right... and so on.
There are two solutions, of fifty-two moves:
rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd
rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd
see: Pretty Print of Optimal Solution
Finding either one, or both is an acceptable result.
Extra credit.
Solve the following problem:
0 12 9 13
15 11 10 14
3 7 2 5
4 8 6 1
Related Task
15 puzzle game
A* search algorithm
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program puzzle15solvex64.s */
/* this program is a adaptation algorithme C++ and go rosetta code */
/* thanck for the creators */
/* 1 byte by box on game board */
/* create a file with nano */
/* 15, 2, 3, 4
5, 6, 7, 1
9, 10, 8, 11
13, 14, 12, 0 */
/* Run this programm : puzzle15solver64 <file name> */
/* wait several minutes for résult */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ TRUE, 1
.equ FALSE, 0
.equ SIZE, 4
.equ NBBOX, SIZE * SIZE
.equ TAILLEBUFFER, 100
.equ NBMAXIELEMENTS, 100
.equ CONST_I, 1
.equ CONST_G, 8
.equ CONST_E, 2
.equ CONST_L, 4
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessTitre: .asciz "File name : "
sMessResult: .ascii " "
sMessValeur: .fill 22, 1, ' ' // size => 21
szCarriageReturn: .asciz "\n"
szMessCounterSolution: .asciz "Solution in @ moves : \n"
szMessErreur: .asciz "Error detected.\n"
szMessImpossible: .asciz "!!! Impossible solution !!!\n"
szMessErrBuffer: .asciz "buffer size too less !!"
szMessSpaces: .asciz " "
qTabNr: .quad 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3
qTabNc: .quad 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 8
sZoneConv: .skip 24
qAdrHeap: .skip 8
tbBox: .skip SIZE * SIZE // game boxes
qAdrFicName: .skip 8
qTabN0: .skip 8 * NBMAXIELEMENTS // empty box
qTabN3: .skip 8 * NBMAXIELEMENTS // moves
qTabN4: .skip 8 * NBMAXIELEMENTS // ????
qTabN2: .skip 8 * NBMAXIELEMENTS // table game address
sBuffer: .skip TAILLEBUFFER
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // INFO: main
mov x0,sp // stack address for load parameter
bl traitFic // read file and store value in array
cmp x0,#-1
beq 100f // error ?
ldr x0,qAdrtbBox
bl displayGame // display array game
ldr x0,qAdrtbBox // control if solution exists
bl controlSolution
cmp x0,#TRUE
beq 1f
ldr x0,qAdrszMessImpossible // no solution !!!
bl affichageMess
b 100f
1:
ldr x0,qAdrtbBox
ldr x9,qAdrqTabN2
str x0,[x9] // N2 address global
mov x10,#0 // variable _n global
mov x12,#0 // variable n global
bl searchSolution
cmp x0,#TRUE
bne 100f // no solution ?
ldr x3,qAdrqTabN2
ldr x0,[x3,x12,lsl #3] // visual solution control
bl displayGame
mov x0,x12 // move counter
ldr x1,qAdrsZoneConv
bl conversion10 // conversion counter
ldr x0,qAdrszMessCounterSolution
bl strInsertAtCharInc
ldr x1,qAdrsZoneConv
bl affichageMess
ldr x5,qAdrqTabN3
ldr x3,qAdrsBuffer
mov x2,#1
mov x4,#0
2: // loop solution display
ldr x1,[x5,x2,lsl 3]
cmp x2,#TAILLEBUFFER
bge 99f
strb w1,[x3,x4]
add x4,x4,#1
add x2,x2,#1
cmp x2,x12
ble 2b
mov x1,#0
strb w1,[x3,x4] // zéro final
mov x0,x3
bl affichageMess
ldr x0,qAdrszCarriageReturn
bl affichageMess
b 100f
99:
ldr x0,qAdrszMessErrBuffer
bl affichageMess
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc #0 // perform the system call
qAdrtbBox: .quad tbBox
qAdrqTabN0: .quad qTabN0
qAdrqTabN2: .quad qTabN2
qAdrqTabN3: .quad qTabN3
qAdrqTabN4: .quad qTabN4
qAdrszMessCounterSolution: .quad szMessCounterSolution
qAdrszMessImpossible: .quad szMessImpossible
qAdrszMessErrBuffer: .quad szMessErrBuffer
qAdrsZoneConv: .quad sZoneConv
/******************************************************************/
/* search Solution */
/******************************************************************/
searchSolution: // INFO: searchSolution
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
// address allocation place on the heap
mov x0,#0 // allocation place heap
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
ldr x1,qAdrqAdrHeap
str x0,[x1] // store heap address
bl functionFN
ldr x3,qAdrqTabN2
ldr x0,[x3,x12,lsl #3] // last current game
bl gameOK // it is Ok ?
cmp x0,#TRUE
beq 100f // yes --> end
ldr x1,qAdrqAdrHeap // free up resources
ldr x0,[x1] // restaur start address heap
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
add x10,x10,#1 // _n
mov x12,#0 // n
bl searchSolution // next recursif call
b 100f
99:
ldr x0,qAdrszMessErreur
bl affichageMess
100:
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrszMessErreur: .quad szMessErreur
qAdrqAdrHeap: .quad qAdrHeap
/******************************************************************/
/* Fonction FN */
/******************************************************************/
functionFN: // INFO: functionFN
stp x1,lr,[sp,-16]! // save registres
ldr x4,qAdrqTabN3
ldr x3,[x4,x12,lsl #3]
ldr x5,qAdrqTabN0 // load position empty box
ldr x6,[x5,x12,lsl #3]
cmp x6,#15 // last box
bne 2f
cmp x3,#'R'
bne 11f
mov x0,#CONST_G
bl functionFZ
b 100f
11:
cmp x3,#'D'
bne 12f
mov x0,#CONST_L
bl functionFZ
b 100f
12:
mov x0,#CONST_G + CONST_L
bl functionFZ
b 100f
2:
cmp x6,#12
bne 3f
cmp x3,#'L'
bne 21f
mov x0,#CONST_G
bl functionFZ
b 100f
21:
cmp x3,#'D'
bne 22f
mov x0,#CONST_E
bl functionFZ
b 100f
22:
mov x0,#CONST_E + CONST_G
bl functionFZ
b 100f
3:
cmp x6,#13
beq 30f
cmp x6,#14
bne 4f
30:
cmp x3,#'L'
bne 31f
mov x0,#CONST_G + CONST_L
bl functionFZ
b 100f
31:
cmp x3,#'R'
bne 32f
mov x0,#CONST_G + CONST_E
bl functionFZ
b 100f
32:
cmp x3,#'D'
bne 33f
mov x0,#CONST_E + CONST_L
bl functionFZ
b 100f
33:
mov x0,#CONST_L + CONST_E + CONST_G
bl functionFZ
b 100f
4:
cmp x6,#3
bne 5f
cmp x3,#'R'
bne 41f
mov x0,#CONST_I
bl functionFZ
b 100f
41:
cmp x3,#'U'
bne 42f
mov x0,#CONST_L
bl functionFZ
b 100f
42:
mov x0,#CONST_I + CONST_L
bl functionFZ
b 100f
5:
cmp x6,#0
bne 6f
cmp x3,#'L'
bne 51f
mov x0,#CONST_I
bl functionFZ
b 100f
51:
cmp x3,#'U'
bne 52f
mov x0,#CONST_E
bl functionFZ
b 100f
52:
mov x0,#CONST_I + CONST_E
bl functionFZ
b 100f
6:
cmp x6,#1
beq 60f
cmp x6,#2
bne 7f
60:
cmp x3,#'L'
bne 61f
mov x0,#CONST_I + CONST_L
bl functionFZ
b 100f
61:
cmp x3,#'R'
bne 62f
mov x0,#CONST_E + CONST_I
bl functionFZ
b 100f
62:
cmp x3,#'U'
bne 63f
mov x0,#CONST_E + CONST_L
bl functionFZ
b 100f
63:
mov x0,#CONST_I + CONST_E + CONST_L
bl functionFZ
b 100f
7:
cmp x6,#7
beq 70f
cmp x6,#11
bne 8f
70:
cmp x3,#'R'
bne 71f
mov x0,#CONST_I + CONST_G
bl functionFZ
b 100f
71:
cmp x3,#'U'
bne 72f
mov x0,#CONST_G + CONST_L
bl functionFZ
b 100f
72:
cmp x3,#'D'
bne 73f
mov x0,#CONST_I + CONST_L
bl functionFZ
b 100f
73:
mov x0,#CONST_I + CONST_G + CONST_L
bl functionFZ
b 100f
8:
cmp x6,#4
beq 80f
cmp x6,#8
bne 9f
80:
cmp x3,#'D'
bne 81f
mov x0,#CONST_I + CONST_E
bl functionFZ
b 100f
81:
cmp x3,#'U'
bne 82f
mov x0,#CONST_G + CONST_E
bl functionFZ
b 100f
82:
cmp x3,#'L'
bne 83f
mov x0,#CONST_I + CONST_G
bl functionFZ
b 100f
83:
mov x0,#CONST_G + CONST_E + CONST_I
bl functionFZ
b 100f
9:
cmp x3,#'D'
bne 91f
mov x0,#CONST_I + CONST_E + CONST_L
bl functionFZ
b 100f
91:
cmp x3,#'L'
bne 92f
mov x0,#CONST_I + CONST_G + CONST_L
bl functionFZ
b 100f
92:
cmp x3,#'R'
bne 93f
mov x0,#CONST_I + CONST_G + CONST_E
bl functionFZ
b 100f
93:
cmp x3,#'U'
bne 94f
mov x0,#CONST_G + CONST_E + CONST_L
bl functionFZ
b 100f
94:
mov x0,#CONST_G + CONST_L + CONST_I + CONST_E
bl functionFZ
b 100f
99: // error
ldr x0,qAdrszMessErreur
bl affichageMess
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* function FZ */
/* */
/***************************************************************/
/* x0 contains variable w */
functionFZ: // INFO: functionFZ
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
mov x2,x0
and x1,x2,#CONST_I
cmp x1,#0
ble 1f
bl functionFI
bl functionFY
cmp x0,#TRUE
beq 100f
sub x12,x12,#1 // variable n
1:
ands x1,x2,#CONST_G
ble 2f
bl functionFG
bl functionFY
cmp x0,#TRUE
beq 100f
sub x12,x12,#1 // variable n
2:
ands x1,x2,#CONST_E
ble 3f
bl functionFE
bl functionFY
cmp x0,#TRUE
beq 100f
sub x12,x12,#1 // variable n
3:
ands x1,x2,#CONST_L
ble 4f
bl functionFL
bl functionFY
cmp x0,#TRUE
beq 100f
sub x12,x12,#1 // variable n
4:
mov x0,#FALSE
100:
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* function FY */
/******************************************************************/
functionFY: // INFO: functionFY
stp x1,lr,[sp,-16]! // save registres
ldr x1,qAdrqTabN2
ldr x0,[x1,x12,lsl #3]
bl gameOK // game OK ?
cmp x0,#TRUE
beq 100f
ldr x1,qAdrqTabN4
ldr x0,[x1,x12,lsl #3]
cmp x0,x10
bgt 1f
bl functionFN
b 100f
1:
mov x0,#FALSE
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* the empty box is down */
/******************************************************************/
functionFI: // INFO: functionFI
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
ldr x0,qAdrqTabN0
ldr x1,[x0,x12,lsl #3] // empty box
add x2,x1,#4
ldr x3,[x9,x12,lsl #3] // load game current
ldrb w4,[x3,x2] // load box down empty box
add x5,x12,#1 // n+1
add x8,x1,#4 // new position empty case
str x8,[x0,x5,lsl #3] // store new position empty case
ldr x6,qAdrqTabN3
mov x7,#'D' // down
str x7,[x6,x5,lsl #3] // store move
ldr x6,qAdrqTabN4
ldr x7,[x6,x12,lsl #3]
str x7,[x6,x5,lsl #3] // N4 (n+1) = n4(n)
mov x0,x3
bl createGame // create copy game
ldrb w3,[x0,x1] // and inversion box
ldrb w8,[x0,x2]
strb w8,[x0,x1]
strb w3,[x0,x2]
str x0,[x9,x5,lsl #3] // store new game in table
lsr x1,x1,#2 // line position empty case = N°/ 4
ldr x0,qAdrqTabNr
ldr x2,[x0,x4,lsl #3] // load N° line box moved
cmp x2,x1 // compare ????
ble 1f
add x7,x7,#1 // and increment ????
str x7,[x6,x5,lsl #3]
1:
add x12,x12,#1 // increment N
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrqTabNr: .quad qTabNr
qAdrqTabNc: .quad qTabNc
/******************************************************************/
/* empty case UP see explain in english in function FI */
/******************************************************************/
functionFG: // INFO: functionFG
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
ldr x0,qAdrqTabN0
ldr x1,[x0,x12,lsl #3] // case vide
sub x2,x1,#4 // position case au dessus
ldr x3,[x9,x12,lsl #3] // extrait jeu courant
ldrb w4,[x3,x2] // extrait le contenu case au dessus
add x5,x12,#1 // N+1 = N
sub x8,x1,#4 // nouvelle position case vide
str x8,[x0,x5,lsl #3] // et on la stocke
ldr x6,qAdrqTabN3
mov x7,#'U' // puis on stocke le code mouvement
str x7,[x6,x5,lsl #3]
ldr x6,qAdrqTabN4
ldr x7,[x6,x12,lsl #3]
str x7,[x6,x5,lsl #3] // N4 (N+1) = N4 (N)
mov x0,x3 // jeu courant
bl createGame // création nouveau jeu
ldrb w3,[x0,x1] // et echange les 2 cases
ldrb w8,[x0,x2]
strb w8,[x0,x1]
strb w3,[x0,x2]
str x0,[x9,x5,lsl #3] // stocke la nouvelle situation
lsr x1,x1,#2 // ligne case vide = position /4
ldr x0,qAdrqTabNr
ldr x2,[x0,x4,lsl #3] // extrait table à la position case
cmp x2,x1 // et comparaison ???
bge 1f
add x7,x7,#1 // puis increment N4 de 1 ???
str x7,[x6,x5,lsl #3]
1:
add x12,x12,#1 // increment de N
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* empty case go right see explain finction FI ou FG en français */
/******************************************************************/
functionFE: // INFO: functionFE
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
ldr x0,qAdrqTabN0
ldr x1,[x0,x12,lsl #3]
add x2,x1,#1
ldr x3,[x9,x12,lsl #3]
ldrb w4,[x3,x2] // extrait le contenu case
add x5,x12,#1
add x8,x1,#1
str x8,[x0,x5,lsl #3] // nouvelle case vide
ldr x6,qAdrqTabN3
mov x7,#'R'
str x7,[x6,x5,lsl #3] // mouvement
ldr x6,qAdrqTabN4
ldr x7,[x6,x12,lsl #3]
str x7,[x6,x5,lsl #3] // N4 ??
mov x0,x3
bl createGame
ldrb w3,[x0,x1] // exchange two boxes
ldrb w8,[x0,x2]
strb w8,[x0,x1]
strb w3,[x0,x2]
str x0,[x9,x5,lsl #3] // stocke la nouvelle situation
lsr x3,x1,#2
sub x1,x1,x3,lsl #2
ldr x0,qAdrqTabNc
ldr x2,[x0,x4,lsl #3] // extrait table à la position case
cmp x2,x1
ble 1f
add x7,x7,#1
str x7,[x6,x5,lsl #3]
1:
add x12,x12,#1
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* empty box go left see explain function FI ou FG en français */
/******************************************************************/
functionFL: // INFO: functionFL
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
ldr x0,qAdrqTabN0
ldr x1,[x0,x12,lsl #3] // case vide
sub x2,x1,#1
ldr x3,[x9,x12,lsl #3] // extrait jeu courant
ldrb w4,[x3,x2] // extrait le contenu case
add x5,x12,#1
sub x8,x1,#1
str x8,[x0,x5,lsl #3] // nouvelle case vide
ldr x6,qAdrqTabN3
mov x7,#'L'
str x7,[x6,x5,lsl #3] // mouvement
ldr x6,qAdrqTabN4
ldr x7,[x6,x12,lsl #3]
str x7,[x6,x5,lsl #3] // N4 ??
mov x0,x3
bl createGame
ldrb w3,[x0,x1] // exchange two boxes
ldrb w8,[x0,x2]
strb w8,[x0,x1]
strb w3,[x0,x2]
str x0,[x9,x5,lsl #3] // stocke la nouvelle situation
lsr x3,x1,#2
sub x1,x1,x3,lsl #2 // compute remainder
ldr x0,qAdrqTabNc
ldr x2,[x0,x4,lsl #3] // extrait table colonne à la position case
cmp x2,x1
bge 1f
add x7,x7,#1
str x7,[x6,x5,lsl #3]
1:
add x12,x12,#1
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* create new Game */
/******************************************************************/
/* x0 contains box address */
/* x0 return address new game */
createGame: // INFO: createGame
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
mov x4,x0 // save value
mov x0,#0 // allocation place heap
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
mov x5,x0 // save address heap for output string
add x0,x0,#SIZE * SIZE // reservation place one element
mov x8,BRK // call system 'brk'
svc #0
cmp x0,#-1 // allocation error
beq 99f
mov x2,#0
1: // loop copy boxes
ldrb w3,[x4,x2]
strb w3,[x5,x2]
add x2,x2,#1
cmp x2,#NBBOX
blt 1b
add x11,x11,#1
mov x0,x5
b 100f
99: // error
ldr x0,qAdrszMessErreur
bl affichageMess
100:
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* read file */
/******************************************************************/
/* x0 contains address stack begin */
traitFic: // INFO: traitFic
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,fp,[sp,-16]! // save registres
mov fp,x0 // fp <- start address
ldr x4,[fp] // number of Command line arguments
cmp x4,#1
ble 99f
add x5,fp,#16 // second parameter address
ldr x5,[x5]
ldr x0,qAdrqAdrFicName
str x5,[x0]
ldr x0,qAdrszMessTitre
bl affichageMess // display string
mov x0,x5
bl affichageMess
ldr x0,qAdrszCarriageReturn
bl affichageMess // display carriage return
mov x0,AT_FDCWD
mov x1,x5 // file name
mov x2,#O_RDWR // flags
mov x3,#0 // mode
mov x8, #OPEN // call system OPEN
svc 0
cmp x0,#0 // error ?
ble 99f
mov x7,x0 // File Descriptor
ldr x1,qAdrsBuffer // buffer address
mov x2,#TAILLEBUFFER // buffer size
mov x8,#READ // read file
svc #0
cmp x0,#0 // error ?
blt 99f
// extraction datas
ldr x1,qAdrsBuffer // buffer address
add x1,x1,x0
mov x0,#0 // store zéro final
strb w0,[x1]
ldr x0,qAdrtbBox // game box address
ldr x1,qAdrsBuffer // buffer address
bl extracDatas
// close file
mov x0,x7
mov x8, #CLOSE
svc 0
mov x0,#0
b 100f
99: // error
ldr x0,qAdrszMessErreur // error message
bl affichageMess
mov x0,#-1
100:
ldp x8,fp,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrqAdrFicName: .quad qAdrFicName
qAdrszMessTitre: .quad szMessTitre
qAdrsBuffer: .quad sBuffer
/******************************************************************/
/* extrac digit file buffer */
/******************************************************************/
/* x0 contains boxs address */
/* x1 contains buffer address */
extracDatas: // INFO: extracDatas
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
mov x7,x0
mov x6,x1
mov x2,#0 // string buffer indice
mov x4,x1 // start digit ascii
mov x5,#0 // box index
1:
ldrb w3,[x6,x2]
cmp x3,#0 // datas end ?
beq 4f
cmp x3,#0xA // line end ?
beq 2f
cmp x3,#',' // box end ?
beq 3f
add x2,x2,#1
b 1b
2:
mov x3,#0
strb w3,[x6,x2] // zero final
add x3,x2,#1 // next character
ldrb w3,[x6,x3]
cmp x3,#0xD // line return
bne 21f
add x2,x2,#2 // yes
b 4f
21:
add x2,x2,#1
b 4f
3:
mov x3,#0 // zero final
strb w3,[x6,x2]
add x2,x2,#1
4:
mov x0,x4 // conversion character ascii in integer
bl conversionAtoD
strb w0,[x7,x5] // and store value on 1 byte box
cmp x0,#0 // empty box ?
bne 5f
ldr x0,qAdrqTabN0
str x5,[x0] // empty box in item zéro
5:
add x5,x5,#1 // increment counter boxes
cmp x5,#NBBOX // number box = maxi ?
bge 100f
add x4,x6,x2 // new start address digit ascii
b 1b
100:
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* control of the game solution */
/******************************************************************/
/* x0 contains boxs address */
/* x0 returns 0 if not possible */
/* x0 returns 1 if possible */
controlSolution: // INFO: controlSolution
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
mov x5,x0
ldr x8,qAdrqTabN0
ldr x8,[x8] // empty box
//mov x7,#0
cmp x8,#1
cset x7,eq
beq 1f
cmp x8,#3
cset x7,eq
beq 1f
cmp x8,#4
cset x7,eq
beq 1f
cmp x8,#6
cset x7,eq
beq 1f
cmp x8,#9
cset x7,eq
beq 1f
cmp x8,#11
cset x7,eq
beq 1f
cmp x8,#12
cset x7,eq
beq 1f
cmp x8,#14
cset x7,eq
1:
mov x9,NBBOX - 1
sub x6,x9,x8
add x7,x7,x6
// count permutations
mov x1,#-1
mov x6,#0
2:
add x1,x1,#1
cmp x1,#NBBOX
bge 80f
cmp x1,x8
beq 2b
ldrb w3,[x5,x1]
mov x2,x1
3:
add x2,x2,#1
cmp x2,#NBBOX
bge 2b
cmp x2,x8
beq 3b
ldrb w4,[x5,x2]
cmp x4,x3
cinc x6,x6,lt
b 3b
80:
add x6,x6,x7
tst x6,#1
cset x0,eq
100:
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* game Ok ? */
/******************************************************************/
/* x0 contains boxs address */
gameOK: // INFO: gameOK
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
mov x2,#0
ldrb w3,[x0,x2]
cmp x3,#0
bne 0f
mov x3,#0xF
0:
add x2,x2,#1
1:
ldrb w4,[x0,x2]
cmp x4,#0
bne 11f
mov x3,#0xF
11:
cmp x4,x3
ble 99f
mov x3,x4
add x2,x2,#1
cmp x2,#NBBOX -2
ble 1b
mov x0,#TRUE // game Ok
b 100f
99:
mov x0,#FALSE // game not Ok
100:
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* display game */
/******************************************************************/
/* x0 contains boxs address */
displayGame: // INFO: displayGame
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
mov x4,x0
ldr x0,qAdrszMessTitre
bl affichageMess // display titre
ldr x0,qAdrqAdrFicName
ldr x0,[x0]
bl affichageMess // display string
ldr x0,qAdrszCarriageReturn
bl affichageMess // display line return
mov x2,#0
ldr x1,qAdrsMessValeur
1:
ldrb w0,[x4,x2]
cmp x0,#0
beq 3f
bl conversion10 // call conversion decimal
cmp x0,1
bne 2f
mov x0,#0x002020
str w0,[x1,#1] // zéro final
b 4f
2:
mov x0,#0x20
str w0,[x1,#2] // zéro final
b 4f
3:
ldr x0,iSpaces // store spaces to empty case
str w0,[x1]
4:
ldr x0,qAdrsMessResult
bl affichageMess // display message
add x0,x2,#1
tst x0,#0b11
bne 5f
ldr x0,qAdrszCarriageReturn
bl affichageMess // display message
5:
add x2,x2,#1
cmp x2,#NBBOX - 1
ble 1b
ldr x0,qAdrszCarriageReturn
bl affichageMess // display line return
100:
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
iSpaces: .quad 0x00202020 // spaces
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsMessValeur: .quad sMessValeur
qAdrsMessResult: .quad sMessResult
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #Aime | Aime | integer bottles;
bottles = 99;
do {
o_(bottles, " bottles of beer on the wall\n");
o_(bottles, " bottles of beer\n");
o_("Take one down, pass it around\n");
o_(bottles -= 1, " bottles of beer on the wall\n\n");
} while (bottles); |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #Clojure | Clojure |
(ns rosettacode.24game)
(def ^:dynamic *luser*
"You guessed wrong, or your input was not in prefix notation.")
(def ^:private start #(println
"Your numbers are: " %1 ". Your goal is " %2 ".\n"
"Use the ops [+ - * /] in prefix notation to reach" %2 ".\n"
"q[enter] to quit."))
(defn play
([] (play 24))
([goal] (play goal (repeatedly 4 #(inc (rand-int 9)))))
([goal gns]
(start gns goal)
(let [input (read-string (read-line))
flat (flatten input)]
(println
(if (and (re-find #"^\([\d\s+*/-]+\d?\)$" (pr-str flat))
(= (set gns) (set (filter integer? flat)))
(= goal (eval input)))
"You won the game!"
*luser*))
(when (not= input 'q) (recur goal gns)))))
; * checks prefix form, then checks to see that the numbers used
; and the numbers generated by the game are the same.
|
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #scheme | scheme | (define (f m n)
(define (sigma g x y)
(define (sum i)
(if (< i 0) 0 (+ (f x (- y i) ) (sum (- i 1)))))
(sum y))
(cond ((eq? m n) 1)
((eq? n 1) 1)
((eq? n 0) 0)
((< m n) (f m m))
((< (/ m 2) n) (sigma f (- m n) (- m n)))
(else (sigma f (- m n) n))))
(define (line m)
(define (connect i)
(if (> i m) '() (cons (f m i) (connect (+ i 1)))))
(connect 1))
(define (print x)
(define (print-loop i)
(cond ((< i x) (begin (display (line i)) (display "\n") (print-loop (+ i 1)) ))))
(print-loop 1))
(print 25) |
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #Brainf.2A.2A.2A | Brainf*** | INPUT AND SUMMATION
TODO if first symbol is a minus sign print Qgo awayQ
+> initialize sum to one
++[ loop for each input ie twice
[>>,----------[----------------------[-<+>]]<] eat digits until space or newline
<[<]>>>
>[< until no next digit
---------------- subtract ascii zero minus what we subtracted above
[->++++++++++<] add ten timess that to the next digit
<[->+<]<[->+<]>> shift sum and loop counter
>>
]
<---------------- subtract as above from last digit as well
[-<<+>>] add to sum
<-
]
<- subtract original one from sum
OUTPUT
[ while a number divided by ten is bigger than zero
[->+<[->+<[->+<[->+<[->+<[->+<[->+<[->+<[->+<[->--------->+<<[->>>+<<<]]]]]]]]]]>>>[-<<<+>>>]<<<] divide by ten
>++++++++++++++++++++++++++++++++++++++++++++++++> convert remainder to ascii digit
]
<[.<<] print ascii digits |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #Swift | Swift | func ackerman(m:Int, n:Int) -> Int {
if m == 0 {
return n+1
} else if n == 0 {
return ackerman(m-1, 1)
} else {
return ackerman(m-1, ackerman(m, n-1))
}
} |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Elixir | Elixir | defmodule ABC do
def can_make_word(word, avail) do
can_make_word(String.upcase(word) |> to_charlist, avail, [])
end
defp can_make_word([], _, _), do: true
defp can_make_word(_, [], _), do: false
defp can_make_word([l|tail], [b|rest], tried) do
(l in b and can_make_word(tail, rest++tried, []))
or can_make_word([l|tail], rest, [b|tried])
end
end
blocks = ~w(BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM)c
~w(A Bark Book Treat Common Squad Confuse) |>
Enum.map(fn(w) -> IO.puts "#{w}: #{ABC.can_make_word(w, blocks)}" end) |
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #C.2B.2B | C++ | #include <cstdlib> // for rand
#include <algorithm> // for random_shuffle
#include <iostream> // for output
using namespace std;
class cupboard {
public:
cupboard() {
for (int i = 0; i < 100; i++)
drawers[i] = i;
random_shuffle(drawers, drawers + 100);
}
bool playRandom();
bool playOptimal();
private:
int drawers[100];
};
bool cupboard::playRandom() {
bool openedDrawers[100] = { 0 };
for (int prisonerNum = 0; prisonerNum < 100; prisonerNum++) { // loops through prisoners numbered 0 through 99
bool prisonerSuccess = false;
for (int i = 0; i < 100 / 2; i++) { // loops through 50 draws for each prisoner
int drawerNum = rand() % 100;
if (!openedDrawers[drawerNum]) {
openedDrawers[drawerNum] = true;
break;
}
if (drawers[drawerNum] == prisonerNum) {
prisonerSuccess = true;
break;
}
}
if (!prisonerSuccess)
return false;
}
return true;
}
bool cupboard::playOptimal() {
for (int prisonerNum = 0; prisonerNum < 100; prisonerNum++) {
bool prisonerSuccess = false;
int checkDrawerNum = prisonerNum;
for (int i = 0; i < 100 / 2; i++) {
if (drawers[checkDrawerNum] == prisonerNum) {
prisonerSuccess = true;
break;
} else
checkDrawerNum = drawers[checkDrawerNum];
}
if (!prisonerSuccess)
return false;
}
return true;
}
double simulate(char strategy) {
int numberOfSuccesses = 0;
for (int i = 0; i < 10000; i++) {
cupboard d;
if ((strategy == 'R' && d.playRandom()) || (strategy == 'O' && d.playOptimal())) // will run playRandom or playOptimal but not both because of short-circuit evaluation
numberOfSuccesses++;
}
return numberOfSuccesses * 100.0 / 10000;
}
int main() {
cout << "Random strategy: " << simulate('R') << " %" << endl;
cout << "Optimal strategy: " << simulate('O') << " %" << endl;
system("PAUSE"); // for Windows
return 0;
} |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Ring | Ring |
#Project: Anbundant odd numbers
max = 100000000
limit = 25
nr = 0
m = 1
check = 0
index = 0
see "working..." + nl
see "wait for done..." + nl
while true
check = 0
if m%2 = 1
nice(m)
ok
if check = 1
nr = nr + 1
ok
if nr = max
exit
ok
m = m + 1
end
see "done..." + nl
func nice(n)
check = 0
nArray = []
for i = 1 to n - 1
if n % i = 0
add(nArray,i)
ok
next
sum = 0
for p = 1 to len(nArray)
sum = sum + nArray[p]
next
if sum > n
check = 1
index = index + 1
if index < limit + 1
showArray(n,nArray,sum,index)
ok
if index = 100
see "One thousandth abundant odd number:" + nl
showArray2(n,nArray,sum,index)
ok
if index = 100000000
see "First abundant odd number above one billion:" + nl
showArray2(n,nArray,sum,index)
ok
ok
func showArray(n,nArray,sum,index)
see "" + index + ". " + string(n) + ": divisor sum: "
for m = 1 to len(nArray)
if m < len(nArray)
see string(nArray[m]) + " + "
else
see string(nArray[m]) + " = " + string(sum) + nl + nl
ok
next
func showArray2(n,nArray,sum,index)
see "" + index + ". " + string(n) + ": divisor sum: " +
see string(nArray[m]) + " = " + string(sum) + nl + nl
|
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Objeck | Objeck | class TwentyOne {
@quit : Bool;
@player_total : Int;
@computer_total : Int;
function : Main(args : String[]) ~ Nil {
TwentyOne->New()->Play();
}
New() {
}
method : Play() ~ Nil {
player_first := Int->Random(1) = 1;
"Enter 'q' to quit\n==="->PrintLine();
do {
if(player_first) {
PlayerTurn();
if(<>@quit) {
"---"->PrintLine();
ComputerTurn();
};
}
else {
ComputerTurn();
"---"->PrintLine();
PlayerTurn();
};
"==="->PrintLine();
}
while(<>@quit);
}
method : ComputerTurn() ~ Nil {
input := Int->Random(1, 3);
"Computer choose: {$input}"->PrintLine();
@computer_total += input;
if(@computer_total = 21) {
"Computer Wins!"->PrintLine();
@quit := true;
}
else if(@computer_total > 21) {
"Computer Loses."->PrintLine();
@quit := true;
}
else {
"Computer total is {$@computer_total}."->PrintLine();
};
}
method : PlayerTurn() ~ Nil {
input := GetInput();
if(input = -1) {
"Quit"->PrintLine();
@quit := true;
}
else if(input = 0) {
"Invalid Input!"->PrintLine();
}
else {
@player_total += input;
};
if(@player_total = 21) {
"Player Wins!"->PrintLine();
@quit := true;
}
else if(@player_total > 21) {
"Player Loses."->PrintLine();
@quit := true;
}
else {
"Player total is {$@player_total}."->PrintLine();
};
}
function : GetInput() ~ Int {
"Choosing a number beween 1-3: "->Print();
input := System.IO.Console->ReadString();
if(input->Size() = 1) {
if(input->Get(0) = 'q') {
return -1;
};
return input->ToInt();
};
return 0;
}
} |
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #Elixir | Elixir | defmodule Game24 do
@expressions [ ["((", "", ")", "", ")", ""],
["(", "(", "", "", "))", ""],
["(", "", ")", "(", "", ")"],
["", "((", "", "", ")", ")"],
["", "(", "", "(", "", "))"] ]
def solve(digits) do
dig_perm = permute(digits) |> Enum.uniq
operators = perm_rep(~w[+ - * /], 3)
for dig <- dig_perm, ope <- operators, expr <- @expressions,
check?(str = make_expr(dig, ope, expr)),
do: str
end
defp check?(str) do
try do
{val, _} = Code.eval_string(str)
val == 24
rescue
ArithmeticError -> false # division by zero
end
end
defp permute([]), do: [[]]
defp permute(list) do
for x <- list, y <- permute(list -- [x]), do: [x|y]
end
defp perm_rep([], _), do: [[]]
defp perm_rep(_, 0), do: [[]]
defp perm_rep(list, i) do
for x <- list, y <- perm_rep(list, i-1), do: [x|y]
end
defp make_expr([a,b,c,d], [x,y,z], [e0,e1,e2,e3,e4,e5]) do
e0 <> a <> x <> e1 <> b <> e2 <> y <> e3 <> c <> e4 <> z <> d <> e5
end
end
case Game24.solve(System.argv) do
[] -> IO.puts "no solutions"
solutions ->
IO.puts "found #{length(solutions)} solutions, including #{hd(solutions)}"
IO.inspect Enum.sort(solutions)
end |
http://rosettacode.org/wiki/2048 | 2048 | Task
Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Rules of the game
The rules are that on each turn the player must choose a direction (up, down, left or right).
All tiles move as far as possible in that direction, some move more than others.
Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.
A move is valid when at least one tile can be moved, if only by combination.
A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square (if there is one).
Adding a new tile on a blank space. Most of the time, a new 2 is to be added, and occasionally (10% of the time), a 4.
To win, the player must create a tile with the number 2048.
The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic, 2048.
Requirements
"Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say, that moving the tile row of:
[2][2][2][2]
to the right should result in:
......[4][4]
and not:
.........[8]
"Move direction priority".
If more than one variant of combining is possible, move direction shall indicate which combination will take effect.
For example, moving the tile row of:
...[2][2][2]
to the right should result in:
......[2][4]
and not:
......[4][2]
Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
Check for a win condition.
Check for a lose condition.
| #Ada | Ada | with Ada.Text_IO; use Ada.Text_IO;
with System.Random_Numbers;
procedure Play_2048 is
-- ----- Keyboard management
type t_Keystroke is (Up, Down, Right, Left, Quit, Restart, Invalid);
-- Redefining this standard procedure as function to allow Get_Keystroke as an expression function
function Get_Immediate return Character is
begin
return Answer : Character do Ada.Text_IO.Get_Immediate(Answer);
end return;
end Get_Immediate;
Arrow_Prefix : constant Character := Character'Val(224); -- works for windows
function Get_Keystroke return t_Keystroke is
(case Get_Immediate is
when 'Q' | 'q' => Quit,
when 'R' | 'r' => Restart,
when 'W' | 'w' => Left,
when 'A' | 'a' => Up,
when 'S' | 's' => Down,
when 'D' | 'd' => Right,
-- Windows terminal
when Arrow_Prefix => (case Character'Pos(Get_Immediate) is
when 72 => Up,
when 75 => Left,
when 77 => Right,
when 80 => Down,
when others => Invalid),
-- Unix escape sequences
when ASCII.ESC => (case Get_Immediate is
when '[' => (case Get_Immediate is
when 'A' => Up,
when 'B' => Down,
when 'C' => Right,
when 'D' => Left,
when others => Invalid),
when others => Invalid),
when others => Invalid);
-- ----- Game data
function Random_Int is new System.Random_Numbers.Random_Discrete(Integer);
type t_List is array (Positive range <>) of Natural;
subtype t_Row is t_List (1..4);
type t_Board is array (1..4) of t_Row;
Board : t_Board;
New_Board : t_Board;
Blanks : Natural;
Score : Natural;
Generator : System.Random_Numbers.Generator;
-- ----- Displaying the board
procedure Display_Board is
Horizontal_Rule : constant String := "+----+----+----+----+";
function Center (Value : in String) return String is
((1..(2-(Value'Length-1)/2) => ' ') & -- Add leading spaces
Value(Value'First+1..Value'Last) & -- Trim the leading space of the raw number image
(1..(2-Value'Length/2) => ' ')); -- Add trailing spaces
begin
Put_Line (Horizontal_Rule);
for Row of Board loop
for Cell of Row loop
Put('|' & (if Cell = 0 then " " else Center(Cell'Img)));
end loop;
Put_Line("|");
Put_Line (Horizontal_Rule);
end loop;
Put_Line("Score =" & Score'Img);
end Display_Board;
-- ----- Game mechanics
procedure Add_Block is
Block_Offset : Positive := Random_Int(Generator, 1, Blanks);
begin
Blanks := Blanks-1;
for Row of Board loop
for Cell of Row loop
if Cell = 0 then
if Block_Offset = 1 then
Cell := (if Random_Int(Generator,1,10) = 1 then 4 else 2);
return;
else
Block_Offset := Block_Offset-1;
end if;
end if;
end loop;
end loop;
end Add_Block;
procedure Reset_Game is
begin
Board := (others => (others => 0));
Blanks := 16;
Score := 0;
Add_Block;
Add_Block;
end Reset_Game;
-- Moving and merging will always be performed leftward, hence the following transforms
function HFlip (What : in t_Row) return t_Row is
(What(4),What(3),What(2),What(1));
function VFlip (What : in t_Board) return t_Board is
(HFlip(What(1)),HFlip(What(2)),HFlip(What(3)),HFlip(What(4)));
function Transpose (What : in t_Board) return t_Board is
begin
return Answer : t_Board do
for Row in t_Board'Range loop
for Column in t_Row'Range loop
Answer(Column)(Row) := What(Row)(Column);
end loop;
end loop;
end return;
end Transpose;
-- For moving/merging, recursive expression functions will be used, but they
-- can't contain statements, hence the following sub-function used by Merge
function Add_Blank (Delta_Score : in Natural) return t_List is
begin
Blanks := Blanks+1;
Score := Score+Delta_Score;
return (1 => 0);
end Add_Blank;
function Move_Row (What : in t_List) return t_List is
(if What'Length = 1 then What
elsif What(What'First) = 0
then Move_Row(What(What'First+1..What'Last)) & (1 => 0)
else (1 => What(What'First)) & Move_Row(What(What'First+1..What'Last)));
function Merge (What : in t_List) return t_List is
(if What'Length <= 1 or else What(What'First) = 0 then What
elsif What(What'First) = What(What'First+1)
then (1 => 2*What(What'First)) & Merge(What(What'First+2..What'Last)) & Add_Blank(What(What'First))
else (1 => What(What'First)) & Merge(What(What'First+1..What'Last)));
function Move (What : in t_Board) return t_Board is
(Merge(Move_Row(What(1))),Merge(Move_Row(What(2))),Merge(Move_Row(What(3))),Merge(Move_Row(What(4))));
begin
System.Random_Numbers.Reset(Generator);
Main_Loop: loop
Reset_Game;
Game_Loop: loop
Display_Board;
case Get_Keystroke is
when Restart => exit Game_Loop;
when Quit => exit Main_Loop;
when Left => New_Board := Move(Board);
when Right => New_Board := VFlip(Move(VFlip(Board)));
when Up => New_Board := Transpose(Move(Transpose(Board)));
when Down => New_Board := Transpose(VFlip(Move(VFlip(Transpose(Board)))));
when others => null;
end case;
if New_Board = Board then
Put_Line ("Invalid move...");
elsif (for some Row of New_Board => (for some Cell of Row => Cell = 2048)) then
Display_Board;
Put_Line ("Win !");
exit Main_Loop;
else
Board := New_Board;
Add_Block; -- OK since the board has changed
if Blanks = 0
and then (for all Row in 1..4 =>
(for all Column in 1..3 =>
(Board(Row)(Column) /= Board(Row)(Column+1))))
and then (for all Row in 1..3 =>
(for all Column in 1..4 =>
(Board(Row)(Column) /= Board(Row+1)(Column)))) then
Display_Board;
Put_Line ("Lost !");
exit Main_Loop;
end if;
end if;
end loop Game_Loop;
end loop Main_Loop;
end Play_2048;
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Perl | Perl | use ntheory qw/forperm/;
use Set::CrossProduct;
sub four_sq_permute {
my($list) = @_;
my @solutions;
forperm {
@c = @$list[@_];
push @solutions, [@c] if check(@c);
} @$list;
print +@solutions . " unique solutions found using: " . join(', ', @$list) . "\n";
return @solutions;
}
sub four_sq_cartesian {
my(@list) = @_;
my @solutions;
my $iterator = Set::CrossProduct->new( [(@list) x 7] );
while( my $c = $iterator->get ) {
push @solutions, [@$c] if check(@$c);
}
print +@solutions . " non-unique solutions found using: " . join(', ', @{@list[0]}) . "\n";
return @solutions;
}
sub check {
my(@c) = @_;
$a = $c[0] + $c[1];
$b = $c[1] + $c[2] + $c[3];
$c = $c[3] + $c[4] + $c[5];
$d = $c[5] + $c[6];
$a == $b and $a == $c and $a == $d;
}
sub display {
my(@solutions) = @_;
my $fmt = "%2s " x 7 . "\n";
printf $fmt, ('a'..'g');
printf $fmt, @$_ for @solutions;
print "\n";
}
display four_sq_permute( [1..7] );
display four_sq_permute( [3..9] );
display four_sq_permute( [8, 9, 11, 12, 17, 18, 20, 21] );
four_sq_cartesian( [0..9] ); |
http://rosettacode.org/wiki/15_puzzle_solver | 15 puzzle solver | Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game.
For this task you will be using the following puzzle:
15 14 1 6
9 11 4 12
0 10 7 3
13 8 5 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0
The output must show the moves' directions, like so: left, left, left, down, right... and so on.
There are two solutions, of fifty-two moves:
rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd
rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd
see: Pretty Print of Optimal Solution
Finding either one, or both is an acceptable result.
Extra credit.
Solve the following problem:
0 12 9 13
15 11 10 14
3 7 2 5
4 8 6 1
Related Task
15 puzzle game
A* search algorithm
| #Ada | Ada | with Ada.Text_IO;
procedure Puzzle_15 is
type Direction is (Up, Down, Left, Right);
type Row_Type is range 0 .. 3;
type Col_Type is range 0 .. 3;
type Tile_Type is range 0 .. 15;
To_Col : constant array (Tile_Type) of Col_Type :=
(3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2);
To_Row : constant array (Tile_Type) of Row_Type :=
(3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3);
type Board_Type is array (Row_Type, Col_Type) of Tile_Type;
Solved_Board : constant Board_Type :=
((1, 2, 3, 4),
(5, 6, 7, 8),
(9, 10, 11, 12),
(13, 14, 15, 0));
type Try_Type is
record
Board : Board_Type;
Move : Direction;
Cost : Integer;
Row : Row_Type;
Col : Col_Type;
end record;
Stack : array (0 .. 100) of Try_Type;
Top : Natural := 0;
Iteration_Count : Natural := 0;
procedure Move_Down is
Board : Board_Type := Stack (Top).Board;
Row : constant Row_Type := Stack (Top).Row;
Col : constant Col_Type := Stack (Top).Col;
Tile : constant Tile_Type := Board (Row + 1, Col);
Penalty : constant Integer :=
(if To_Row (Tile) <= Row then 0 else 1);
begin
Board (Row, Col) := Tile;
Board (Row + 1, Col) := 0;
Stack (Top + 1) := (Board => Board,
Move => Down,
Row => Row + 1,
Col => Col,
Cost => Stack (Top).Cost + Penalty);
end Move_Down;
procedure Move_Up is
Board : Board_Type := Stack (Top).Board;
Row : constant Row_Type := Stack (Top).Row;
Col : constant Col_Type := Stack (Top).Col;
Tile : constant Tile_Type := Board (Row - 1, Col);
Penalty : constant Integer :=
(if To_Row (Tile) >= Row then 0 else 1);
begin
Board (Row, Col) := Tile;
Board (Row - 1, Col) := 0;
Stack (Top + 1) := (Board => Board,
Move => Up,
Row => Row - 1,
Col => Col,
Cost => Stack (Top).Cost + Penalty);
end Move_Up;
procedure Move_Left is
Board : Board_Type := Stack (Top).Board;
Row : constant Row_Type := Stack (Top).Row;
Col : constant Col_Type := Stack (Top).Col;
Tile : constant Tile_Type := Board (Row, Col - 1);
Penalty : constant Integer :=
(if To_Col (Tile) >= Col then 0 else 1);
begin
Board (Row, Col) := Tile;
Board (Row, Col - 1) := 0;
Stack (Top + 1) := (Board => Board,
Move => Left,
Row => Row,
Col => Col - 1,
Cost => Stack (Top).Cost + Penalty);
end Move_Left;
procedure Move_Right is
Board : Board_Type := Stack (Top).Board;
Row : constant Row_Type := Stack (Top).Row;
Col : constant Col_Type := Stack (Top).Col;
Tile : constant Tile_Type := Board (Row, Col + 1);
Penalty : constant Integer :=
(if To_Col (Tile) <= Col then 0 else 1);
begin
Board (Row, Col) := Tile;
Board (Row, Col + 1) := 0;
Stack (Top + 1) := (Board => Board,
Move => Right,
Row => Row,
Col => Col + 1,
Cost => Stack (Top).Cost + Penalty);
end Move_Right;
function Is_Solution return Boolean;
function Test_Moves return Boolean is
begin
if
Stack (Top).Move /= Down and then
Stack (Top).Row /= Row_Type'First
then
Move_Up;
Top := Top + 1;
if Is_Solution then return True; end if;
Top := Top - 1;
end if;
if
Stack (Top).Move /= Up and then
Stack (Top).Row /= Row_Type'Last
then
Move_Down;
Top := Top + 1;
if Is_Solution then return True; end if;
Top := Top - 1;
end if;
if
Stack (Top).Move /= Right and then
Stack (Top).Col /= Col_Type'First
then
Move_Left;
Top := Top + 1;
if Is_Solution then return True; end if;
Top := Top - 1;
end if;
if
Stack (Top).Move /= Left and then
Stack (Top).Col /= Col_Type'Last
then
Move_Right;
Top := Top + 1;
if Is_Solution then return True; end if;
Top := Top - 1;
end if;
return False;
end Test_Moves;
function Is_Solution return Boolean is
use Ada.Text_IO;
begin
if Stack (Top).Board = Solved_Board then
Put ("Solved in " & Top'Image & " moves: ");
for R in 1 .. Top loop
Put (String'(Stack (R).Move'Image) (1));
end loop;
New_Line;
return True;
end if;
if Stack (Top).Cost <= Iteration_Count then
return Test_Moves;
end if;
return False;
end Is_Solution;
procedure Solve (Row : in Row_Type;
Col : in Col_Type;
Board : in Board_Type) is
begin
pragma Assert (Board (Row, Col) = 0);
Top := 0;
Iteration_Count := 0;
Stack (Top) := (Board => Board,
Row => Row,
Col => Col,
Move => Down,
Cost => 0);
while not Is_Solution loop
Iteration_Count := Iteration_Count + 1;
end loop;
end Solve;
begin
Solve (Row => 2,
Col => 0,
Board => ((15, 14, 1, 6),
(9, 11, 4, 12),
(0, 10, 7, 3),
(13, 8, 5, 2)));
end Puzzle_15; |
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #Algae | Algae |
# 99 Bottles of Beer on the Wall
# in Algae
# bottles.A
for (i in 99:1:1) {
if (i != 1) {
printf("%d bottles of beer on the wall\n";i);
printf("%d bottles of beer...\n";i);
printf("you take on down and pass it around...\n");
if ( i == 2) {
printf("%d bottles of beer on the wall\n\n";i-1);
else
printf("%d bottles of beer on the wall\n\n";i-1);
}
else
printf("1 bottle of beer on the wall\n");
printf("1 bottle of beer...\n");
printf("you take on down and pass it around..\n");
printf("no more bottles of beer on the wall!\n\n");
}
}
|
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #COBOL | COBOL | >>SOURCE FORMAT FREE
*> This code is dedicated to the public domain
*> This is GNUCobol 2.0
identification division.
program-id. twentyfour.
environment division.
configuration section.
repository. function all intrinsic.
data division.
working-storage section.
01 p pic 999.
01 p1 pic 999.
01 p-max pic 999 value 38.
01 program-syntax pic x(494) value
*>statement = expression;
'001 001 000 n'
& '002 000 004 ='
& '003 005 000 n'
& '004 000 002 ;'
*>expression = term, {('+'|'-') term,};
& '005 005 000 n'
& '006 000 016 ='
& '007 017 000 n'
& '008 000 015 {'
& '009 011 013 ('
& '010 001 000 t'
& '011 013 000 |'
& '012 002 000 t'
& '013 000 009 )'
& '014 017 000 n'
& '015 000 008 }'
& '016 000 006 ;'
*>term = factor, {('*'|'/') factor,};
& '017 017 000 n'
& '018 000 028 ='
& '019 029 000 n'
& '020 000 027 {'
& '021 023 025 ('
& '022 003 000 t'
& '023 025 000 |'
& '024 004 000 t'
& '025 000 021 )'
& '026 029 000 n'
& '027 000 020 }'
& '028 000 018 ;'
*>factor = ('(' expression, ')' | digit,);
& '029 029 000 n'
& '030 000 038 ='
& '031 035 037 ('
& '032 005 000 t'
& '033 005 000 n'
& '034 006 000 t'
& '035 037 000 |'
& '036 000 000 n'
& '037 000 031 )'
& '038 000 030 ;'.
01 filler redefines program-syntax.
03 p-entry occurs 038.
05 p-address pic 999.
05 filler pic x.
05 p-definition pic 999.
05 p-alternate redefines p-definition pic 999.
05 filler pic x.
05 p-matching pic 999.
05 filler pic x.
05 p-symbol pic x.
01 t pic 999.
01 t-len pic 99 value 6.
01 terminal-symbols
pic x(210) value
'01 + '
& '01 - '
& '01 * '
& '01 / '
& '01 ( '
& '01 ) '.
01 filler redefines terminal-symbols.
03 terminal-symbol-entry occurs 6.
05 terminal-symbol-len pic 99.
05 filler pic x.
05 terminal-symbol pic x(32).
01 nt pic 999.
01 nt-lim pic 99 value 5.
01 nonterminal-statements pic x(294) value
"000 ....,....,....,....,....,....,....,....,....,"
& "001 statement = expression; "
& "005 expression = term, {('+'|'-') term,}; "
& "017 term = factor, {('*'|'/') factor,}; "
& "029 factor = ('(' expression, ')' | digit,); "
& "036 digit; ".
01 filler redefines nonterminal-statements.
03 nonterminal-statement-entry occurs 5.
05 nonterminal-statement-number pic 999.
05 filler pic x.
05 nonterminal-statement pic x(45).
01 indent pic x(64) value all '| '.
01 interpreter-stack.
03 r pic 99. *> previous top of stack
03 s pic 99. *> current top of stack
03 s-max pic 99 value 32.
03 s-entry occurs 32.
05 filler pic x(2) value 'p='.
05 s-p pic 999. *> callers return address
05 filler pic x(4) value ' sc='.
05 s-start-control pic 999. *> sequence start address
05 filler pic x(4) value ' ec='.
05 s-end-control pic 999. *> sequence end address
05 filler pic x(4) value ' al='.
05 s-alternate pic 999. *> the next alternate
05 filler pic x(3) value ' r='.
05 s-result pic x. *> S success, F failure, N no result
05 filler pic x(3) value ' c='.
05 s-count pic 99. *> successes in a sequence
05 filler pic x(3) value ' x='.
05 s-repeat pic 99. *> repeats in a {} sequence
05 filler pic x(4) value ' nt='.
05 s-nt pic 99. *> current nonterminal
01 language-area.
03 l pic 99.
03 l-lim pic 99.
03 l-len pic 99 value 1.
03 nd pic 9.
03 number-definitions.
05 n occurs 4 pic 9.
03 nu pic 9.
03 number-use.
05 u occurs 4 pic x.
03 statement.
05 c occurs 32.
07 c9 pic 9.
01 number-validation.
03 p4 pic 99.
03 p4-lim pic 99 value 24.
03 permutations-4 pic x(96) value
'1234'
& '1243'
& '1324'
& '1342'
& '1423'
& '1432'
& '2134'
& '2143'
& '2314'
& '2341'
& '2413'
& '2431'
& '3124'
& '3142'
& '3214'
& '3241'
& '3423'
& '3432'
& '4123'
& '4132'
& '4213'
& '4231'
& '4312'
& '4321'.
03 filler redefines permutations-4.
05 permutation-4 occurs 24 pic x(4).
03 current-permutation-4 pic x(4).
03 cpx pic 9.
03 od1 pic 9.
03 od2 pic 9.
03 odx pic 9.
03 od-lim pic 9 value 4.
03 operator-definitions pic x(4) value '+-*/'.
03 current-operators pic x(3).
03 co3 pic 9.
03 rpx pic 9.
03 rpx-lim pic 9 value 4.
03 valid-rpn-forms pic x(28) value
'nnonono'
& 'nnnonoo'
& 'nnnoono'
& 'nnnnooo'.
03 filler redefines valid-rpn-forms.
05 rpn-form occurs 4 pic x(7).
03 current-rpn-form pic x(7).
01 calculation-area.
03 osx pic 99.
03 operator-stack pic x(32).
03 oqx pic 99.
03 oqx1 pic 99.
03 output-queue pic x(32).
03 work-number pic s9999.
03 top-numerator pic s9999 sign leading separate.
03 top-denominator pic s9999 sign leading separate.
03 rsx pic 9.
03 result-stack occurs 8.
05 numerator pic s9999.
05 denominator pic s9999.
01 error-found pic x.
01 divide-by-zero-error pic x.
*> diagnostics
01 NL pic x value x'0A'.
01 NL-flag pic x value space.
01 display-level pic x value '0'.
01 loop-lim pic 9999 value 1500.
01 loop-count pic 9999 value 0.
01 message-area value spaces.
03 message-level pic x.
03 message-value pic x(128).
*> input and examples
01 instruction pic x(32) value spaces.
01 tsx pic 99.
01 tsx-lim pic 99 value 14.
01 test-statements.
03 filler pic x(32) value '1234;1 + 2 + 3 + 4'.
03 filler pic x(32) value '1234;1 * 2 * 3 * 4'.
03 filler pic x(32) value '1234;((1)) * (((2 * 3))) * 4'.
03 filler pic x(32) value '1234;((1)) * ((2 * 3))) * 4'.
03 filler pic x(32) value '1234;(1 + 2 + 3 + 4'.
03 filler pic x(32) value '1234;)1 + 2 + 3 + 4'.
03 filler pic x(32) value '1234;1 * * 2 * 3 * 4'.
03 filler pic x(32) value '5679;6 - (5 - 7) * 9'.
03 filler pic x(32) value '1268;((1 * (8 * 6) / 2))'.
03 filler pic x(32) value '4583;-5-3+(8*4)'.
03 filler pic x(32) value '4583;8 * 4 - 5 - 3'.
03 filler pic x(32) value '4583;8 * 4 - (5 + 3)'.
03 filler pic x(32) value '1223;1 * 3 / (2 - 2)'.
03 filler pic x(32) value '2468;(6 * 8) / 4 / 2'.
01 filler redefines test-statements.
03 filler occurs 14.
05 test-numbers pic x(4).
05 filler pic x.
05 test-statement pic x(27).
procedure division.
start-twentyfour.
display 'start twentyfour'
perform generate-numbers
display 'type h <enter> to see instructions'
accept instruction
perform until instruction = spaces or 'q'
evaluate true
when instruction = 'h'
perform display-instructions
when instruction = 'n'
perform generate-numbers
when instruction(1:1) = 'm'
move instruction(2:4) to number-definitions
perform validate-number
if divide-by-zero-error = space
and 24 * top-denominator = top-numerator
display number-definitions ' is solved by ' output-queue(1:oqx)
else
display number-definitions ' is not solvable'
end-if
when instruction = 'd0' or 'd1' or 'd2' or 'd3'
move instruction(2:1) to display-level
when instruction = 'e'
display 'examples:'
perform varying tsx from 1 by 1
until tsx > tsx-lim
move spaces to statement
move test-numbers(tsx) to number-definitions
move test-statement(tsx) to statement
perform evaluate-statement
perform show-result
end-perform
when other
move instruction to statement
perform evaluate-statement
perform show-result
end-evaluate
move spaces to instruction
display 'instruction? ' with no advancing
accept instruction
end-perform
display 'exit twentyfour'
stop run
.
generate-numbers.
perform with test after until divide-by-zero-error = space
and 24 * top-denominator = top-numerator
compute n(1) = random(seconds-past-midnight) * 10 *> seed
perform varying nd from 1 by 1 until nd > 4
compute n(nd) = random() * 10
perform until n(nd) <> 0
compute n(nd) = random() * 10
end-perform
end-perform
perform validate-number
end-perform
display NL 'numbers:' with no advancing
perform varying nd from 1 by 1 until nd > 4
display space n(nd) with no advancing
end-perform
display space
.
validate-number.
perform varying p4 from 1 by 1 until p4 > p4-lim
move permutation-4(p4) to current-permutation-4
perform varying od1 from 1 by 1 until od1 > od-lim
move operator-definitions(od1:1) to current-operators(1:1)
perform varying od2 from 1 by 1 until od2 > od-lim
move operator-definitions(od2:1) to current-operators(2:1)
perform varying odx from 1 by 1 until odx > od-lim
move operator-definitions(odx:1) to current-operators(3:1)
perform varying rpx from 1 by 1 until rpx > rpx-lim
move rpn-form(rpx) to current-rpn-form
move 0 to cpx co3
move spaces to output-queue
move 7 to oqx
perform varying oqx1 from 1 by 1 until oqx1 > oqx
if current-rpn-form(oqx1:1) = 'n'
add 1 to cpx
move current-permutation-4(cpx:1) to nd
move n(nd) to output-queue(oqx1:1)
else
add 1 to co3
move current-operators(co3:1) to output-queue(oqx1:1)
end-if
end-perform
end-perform
perform evaluate-rpn
if divide-by-zero-error = space
and 24 * top-denominator = top-numerator
exit paragraph
end-if
end-perform
end-perform
end-perform
end-perform
.
display-instructions.
display '1) Type h <enter> to repeat these instructions.'
display '2) The program will display four randomly-generated'
display ' single-digit numbers and will then prompt you to enter'
display ' an arithmetic expression followed by <enter> to sum'
display ' the given numbers to 24.'
display ' The four numbers may contain duplicates and the entered'
display ' expression must reference all the generated numbers and duplicates.'
display ' Warning: the program converts the entered infix expression'
display ' to a reverse polish notation (rpn) expression'
display ' which is then interpreted from RIGHT to LEFT.'
display ' So, for instance, 8*4 - 5 - 3 will not sum to 24.'
display '3) Type n <enter> to generate a new set of four numbers.'
display ' The program will ensure the generated numbers are solvable.'
display '4) Type m#### <enter> (e.g. m1234) to create a fixed set of numbers'
display ' for testing purposes.'
display ' The program will test the solvability of the entered numbers.'
display ' For example, m1234 is solvable and m9999 is not solvable.'
display '5) Type d0, d1, d2 or d3 followed by <enter> to display none or'
display ' increasingly detailed diagnostic information as the program evaluates'
display ' the entered expression.'
display '6) Type e <enter> to see a list of example expressions and results'
display '7) Type <enter> or q <enter> to exit the program'
.
show-result.
if error-found = 'y'
or divide-by-zero-error = 'y'
exit paragraph
end-if
display 'statement in RPN is' space output-queue
evaluate true
when top-numerator = 0
when top-denominator = 0
when 24 * top-denominator <> top-numerator
display 'result (' top-numerator '/' top-denominator ') is not 24'
when other
display 'result is 24'
end-evaluate
.
evaluate-statement.
compute l-lim = length(trim(statement))
display NL 'numbers:' space n(1) space n(2) space n(3) space n(4)
move number-definitions to number-use
display 'statement is' space statement
move 1 to l
move 0 to loop-count
move space to error-found
move 0 to osx oqx
move spaces to output-queue
move 1 to p
move 1 to nt
move 0 to s
perform increment-s
perform display-start-nonterminal
perform increment-p
*>===================================
*> interpret ebnf
*>===================================
perform until s = 0
or error-found = 'y'
evaluate true
when p-symbol(p) = 'n'
and p-definition(p) = 000 *> a variable
perform test-variable
if s-result(s) = 'S'
perform increment-l
end-if
perform increment-p
when p-symbol(p) = 'n'
and p-address(p) <> p-definition(p) *> nonterminal reference
move p to s-p(s)
move p-definition(p) to p
when p-symbol(p) = 'n'
and p-address(p) = p-definition(p) *> nonterminal definition
perform increment-s
perform display-start-nonterminal
perform increment-p
when p-symbol(p) = '=' *> nonterminal control
move p to s-start-control(s)
move p-matching(p) to s-end-control(s)
perform increment-p
when p-symbol(p) = ';' *> end nonterminal
perform display-end-control
perform display-end-nonterminal
perform decrement-s
if s > 0
evaluate true
when s-result(r) = 'S'
perform set-success
when s-result(r) = 'F'
perform set-failure
end-evaluate
move s-p(s) to p
perform increment-p
perform display-continue-nonterminal
end-if
when p-symbol(p) = '{' *> start repeat sequence
perform increment-s
perform display-start-control
move p to s-start-control(s)
move p-alternate(p) to s-alternate(s)
move p-matching(p) to s-end-control(s)
move 0 to s-count(s)
perform increment-p
when p-symbol(p) = '}' *> end repeat sequence
perform display-end-control
evaluate true
when s-result(s) = 'S' *> repeat the sequence
perform display-repeat-control
perform set-nothing
add 1 to s-repeat(s)
move s-start-control(s) to p
perform increment-p
when other
perform decrement-s
evaluate true
when s-result(r) = 'N'
and s-repeat(r) = 0 *> no result
perform increment-p
when s-result(r) = 'N'
and s-repeat(r) > 0 *> no result after success
perform set-success
perform increment-p
when other *> fail the sequence
perform increment-p
end-evaluate
end-evaluate
when p-symbol(p) = '(' *> start sequence
perform increment-s
perform display-start-control
move p to s-start-control(s)
move p-alternate(p) to s-alternate(s)
move p-matching(p) to s-end-control(s)
move 0 to s-count(s)
perform increment-p
when p-symbol(p) = ')' *> end sequence
perform display-end-control
perform decrement-s
evaluate true
when s-result(r) = 'S' *> success
perform set-success
perform increment-p
when s-result(r) = 'N' *> no result
perform set-failure
perform increment-p
when other *> fail the sequence
perform set-failure
perform increment-p
end-evaluate
when p-symbol(p) = '|' *> alternate
evaluate true
when s-result(s) = 'S' *> exit the sequence
perform display-skip-alternate
move s-end-control(s) to p
when other
perform display-take-alternate
move p-alternate(p) to s-alternate(s) *> the next alternate
perform increment-p
perform set-nothing
end-evaluate
when p-symbol(p) = 't' *> terminal
move p-definition(p) to t
move terminal-symbol-len(t) to t-len
perform display-terminal
evaluate true
when statement(l:t-len) = terminal-symbol(t)(1:t-len) *> successful match
perform set-success
perform display-recognize-terminal
perform process-token
move t-len to l-len
perform increment-l
perform increment-p
when s-alternate(s) <> 000 *> we are in an alternate sequence
move s-alternate(s) to p
when other *> fail the sequence
perform set-failure
move s-end-control(s) to p
end-evaluate
when other *> end control
perform display-control-failure *> shouldnt happen
end-evaluate
end-perform
evaluate true *> at end of evaluation
when error-found = 'y'
continue
when l <= l-lim *> not all tokens parsed
display 'error: invalid statement'
perform statement-error
when number-use <> spaces
display 'error: not all numbers were used: ' number-use
move 'y' to error-found
end-evaluate
.
increment-l.
evaluate true
when l > l-lim *> end of statement
continue
when other
add l-len to l
perform varying l from l by 1
until c(l) <> space
or l > l-lim
continue
end-perform
move 1 to l-len
if l > l-lim
perform end-tokens
end-if
end-evaluate
.
increment-p.
evaluate true
when p >= p-max
display 'at' space p ' parse overflow'
space 's=<' s space s-entry(s) '>'
move 'y' to error-found
when other
add 1 to p
perform display-statement
end-evaluate
.
increment-s.
evaluate true
when s >= s-max
display 'at' space p ' stack overflow '
space 's=<' s space s-entry(s) '>'
move 'y' to error-found
when other
move s to r
add 1 to s
initialize s-entry(s)
move 'N' to s-result(s)
move p to s-p(s)
move nt to s-nt(s)
end-evaluate
.
decrement-s.
if s > 0
move s to r
subtract 1 from s
if s > 0
move s-nt(s) to nt
end-if
end-if
.
set-failure.
move 'F' to s-result(s)
if s-count(s) > 0
display 'sequential parse failure'
perform statement-error
end-if
.
set-success.
move 'S' to s-result(s)
add 1 to s-count(s)
.
set-nothing.
move 'N' to s-result(s)
move 0 to s-count(s)
.
statement-error.
display statement
move spaces to statement
move '^ syntax error' to statement(l:)
display statement
move 'y' to error-found
.
*>=====================
*> twentyfour semantics
*>=====================
test-variable.
*> check validity
perform varying nd from 1 by 1 until nd > 4
or c(l) = n(nd)
continue
end-perform
*> check usage
perform varying nu from 1 by 1 until nu > 4
or c(l) = u(nu)
continue
end-perform
evaluate true
when l > l-lim
perform set-failure
when c9(l) not numeric
perform set-failure
when nd > 4
display 'invalid number'
perform statement-error
when nu > 4
display 'number already used'
perform statement-error
when other
move space to u(nu)
perform set-success
add 1 to oqx
move c(l) to output-queue(oqx:1)
end-evaluate
.
*> ==================================
*> Dijkstra Shunting-Yard Algorithm
*> to convert infix to rpn
*> ==================================
process-token.
evaluate true
when c(l) = '('
add 1 to osx
move c(l) to operator-stack(osx:1)
when c(l) = ')'
perform varying osx from osx by -1 until osx < 1
or operator-stack(osx:1) = '('
add 1 to oqx
move operator-stack(osx:1) to output-queue(oqx:1)
end-perform
if osx < 1
display 'parenthesis error'
perform statement-error
exit paragraph
end-if
subtract 1 from osx
when (c(l) = '+' or '-') and (operator-stack(osx:1) = '*' or '/')
*> lesser operator precedence
add 1 to oqx
move operator-stack(osx:1) to output-queue(oqx:1)
move c(l) to operator-stack(osx:1)
when other
*> greater operator precedence
add 1 to osx
move c(l) to operator-stack(osx:1)
end-evaluate
.
end-tokens.
*> 1) copy stacked operators to the output-queue
perform varying osx from osx by -1 until osx < 1
or operator-stack(osx:1) = '('
add 1 to oqx
move operator-stack(osx:1) to output-queue(oqx:1)
end-perform
if osx > 0
display 'parenthesis error'
perform statement-error
exit paragraph
end-if
*> 2) evaluate the rpn statement
perform evaluate-rpn
if divide-by-zero-error = 'y'
display 'divide by zero error'
end-if
.
evaluate-rpn.
move space to divide-by-zero-error
move 0 to rsx *> stack depth
perform varying oqx1 from 1 by 1 until oqx1 > oqx
if output-queue(oqx1:1) >= '1' and <= '9'
*> push current data onto the stack
add 1 to rsx
move top-numerator to numerator(rsx)
move top-denominator to denominator(rsx)
move output-queue(oqx1:1) to top-numerator
move 1 to top-denominator
else
*> apply the operation
evaluate true
when output-queue(oqx1:1) = '+'
compute top-numerator = top-numerator * denominator(rsx)
+ top-denominator * numerator(rsx)
compute top-denominator = top-denominator * denominator(rsx)
when output-queue(oqx1:1) = '-'
compute top-numerator = top-denominator * numerator(rsx)
- top-numerator * denominator(rsx)
compute top-denominator = top-denominator * denominator(rsx)
when output-queue(oqx1:1) = '*'
compute top-numerator = top-numerator * numerator(rsx)
compute top-denominator = top-denominator * denominator(rsx)
when output-queue(oqx1:1) = '/'
compute work-number = numerator(rsx) * top-denominator
compute top-denominator = denominator(rsx) * top-numerator
if top-denominator = 0
move 'y' to divide-by-zero-error
exit paragraph
end-if
move work-number to top-numerator
end-evaluate
*> pop the stack
subtract 1 from rsx
end-if
end-perform
.
*>====================
*> diagnostic displays
*>====================
display-start-nonterminal.
perform varying nt from nt-lim by -1 until nt < 1
or p-definition(p) = nonterminal-statement-number(nt)
continue
end-perform
if nt > 0
move '1' to NL-flag
string '1' indent(1:s + s) 'at ' s space p ' start ' trim(nonterminal-statement(nt))
into message-area perform display-message
move nt to s-nt(s)
end-if
.
display-continue-nonterminal.
move s-nt(s) to nt
string '1' indent(1:s + s) 'at ' s space p space p-symbol(p) ' continue ' trim(nonterminal-statement(nt)) ' with result ' s-result(s)
into message-area perform display-message
.
display-end-nonterminal.
move s-nt(s) to nt
move '2' to NL-flag
string '1' indent(1:s + s) 'at ' s space p ' end ' trim(nonterminal-statement(nt)) ' with result ' s-result(s)
into message-area perform display-message
.
display-start-control.
string '2' indent(1:s + s) 'at ' s space p ' start ' p-symbol(p) ' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-repeat-control.
string '2' indent(1:s + s) 'at ' s space p ' repeat ' p-symbol(p) ' in ' trim(nonterminal-statement(nt)) ' with result ' s-result(s)
into message-area perform display-message
.
display-end-control.
string '2' indent(1:s + s) 'at ' s space p ' end ' p-symbol(p) ' in ' trim(nonterminal-statement(nt)) ' with result ' s-result(s)
into message-area perform display-message
.
display-take-alternate.
string '2' indent(1:s + s) 'at ' s space p ' take alternate' ' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-skip-alternate.
string '2' indent(1:s + s) 'at ' s space p ' skip alternate' ' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-terminal.
string '1' indent(1:s + s) 'at ' s space p
' compare ' statement(l:t-len) ' to ' terminal-symbol(t)(1:t-len)
' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-recognize-terminal.
string '1' indent(1:s + s) 'at ' s space p ' recognize terminal: ' c(l) ' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-recognize-variable.
string '1' indent(1:s + s) 'at ' s space p ' recognize digit: ' c(l) ' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-statement.
compute p1 = p - s-start-control(s)
string '3' indent(1:s + s) 'at ' s space p
' statement: ' s-start-control(s) '/' p1
space p-symbol(p) space s-result(s)
' in ' trim(nonterminal-statement(nt))
into message-area perform display-message
.
display-control-failure.
display loop-count space indent(1:s + s) 'at' space p ' control failure' ' in ' trim(nonterminal-statement(nt))
display loop-count space indent(1:s + s) ' ' 'p=<' p p-entry(p) '>'
display loop-count space indent(1:s + s) ' ' 's=<' s space s-entry(s) '>'
display loop-count space indent(1:s + s) ' ' 'l=<' l space c(l)'>'
perform statement-error
.
display-message.
if display-level = 1
move space to NL-flag
end-if
evaluate true
when loop-count > loop-lim *> loop control
display 'display count exceeds ' loop-lim
stop run
when message-level <= display-level
evaluate true
when NL-flag = '1'
display NL loop-count space trim(message-value)
when NL-flag = '2'
display loop-count space trim(message-value) NL
when other
display loop-count space trim(message-value)
end-evaluate
end-evaluate
add 1 to loop-count
move spaces to message-area
move space to NL-flag
.
end program twentyfour.
|
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Sidef | Sidef | var cache = [[1]]
func cumu (n) {
for l (cache.len .. n) {
var r = [0]
for i (1..l) {
r << (r[-1] + cache[l-i][min(i, l-i)])
}
cache << r
}
cache[n]
}
func row (n) {
var r = cumu(n)
n.of {|i| r[i+1] - r[i] }
}
say "rows:"
for i (1..15) {
"%2s: %s\n".printf(i, row(i))
}
say "\nsums:"
for i in [23, 123, 1234, 12345] {
"%2s : %4s\n".printf(i, cumu(i)[-1])
} |
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #Brat | Brat | numbers = g.split[0,1].map(:to_i)
p numbers[0] + numbers[1] #Prints the sum of the input |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #Tcl | Tcl | proc ack {m n} {
if {$m == 0} {
expr {$n + 1}
} elseif {$n == 0} {
ack [expr {$m - 1}] 1
} else {
ack [expr {$m - 1}] [ack $m [expr {$n - 1}]]
}
} |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Erlang | Erlang | -module(abc).
-export([can_make_word/1, can_make_word/2, blocks/0]).
blocks() -> ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"].
can_make_word(Word) -> can_make_word(Word, blocks()).
can_make_word(Word, Avail) -> can_make_word(string:to_upper(Word), Avail, []).
can_make_word([], _, _) -> true;
can_make_word(_, [], _) -> false;
can_make_word([L|Tail], [B|Rest], Tried) ->
(lists:member(L,B) andalso can_make_word(Tail, lists:append(Rest, Tried),[]))
orelse can_make_word([L|Tail], Rest, [B|Tried]).
main(_) -> lists:map(fun(W) -> io:fwrite("~s: ~s~n", [W, can_make_word(W)]) end,
["A","Bark","Book","Treat","Common","Squad","Confuse"]).
|
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #Clojure | Clojure | (ns clojure-sandbox.prisoners)
(defn random-drawers []
"Returns a list of shuffled numbers"
(-> 100
range
shuffle))
(defn search-50-random-drawers [prisoner-number drawers]
"Select 50 random drawers and return true if the prisoner's number was found"
(->> drawers
shuffle ;; Put drawer contents in random order
(take 50) ;; Select first 50, equivalent to selecting 50 random drawers
(filter (fn [x] (= x prisoner-number))) ;; Filter to include only those that match prisoner number
count
(= 1))) ;; Returns true if the number of matching numbers is 1
(defn search-50-optimal-drawers [prisoner-number drawers]
"Open 50 drawers according to the agreed strategy, returning true if prisoner's number was found"
(loop [next-drawer prisoner-number ;; The drawer index to start on is the prisoner's number
drawers-opened 0] ;; To keep track of how many have been opened as 50 is the maximum
(if (= drawers-opened 50)
false ;; If 50 drawers have been opened, the prisoner's number has not been found
(let [result (nth drawers next-drawer)] ;; Open the drawer given by next number
(if (= result prisoner-number) ;; If prisoner number has been found
true ;; No need to keep opening drawers - return true
(recur result (inc drawers-opened))))))) ;; Restart the loop using the resulting number as the drawer number
(defn try-luck [drawers drawer-searching-function]
"Returns 1 if all prisoners find their number otherwise 0"
(loop [prisoners (range 100)] ;; Start with 100 prisoners
(if (empty? prisoners) ;; If they've all gone and found their number
1 ;; Return true- they'll all live
(let [res (-> prisoners
first
(drawer-searching-function drawers))] ;; Otherwise, have the first prisoner open drawers according to the specified method
(if (false? res) ;; If this prisoner didn't find their number
0 ;; no prisoners will be freed so we can return false and stop
(recur (rest prisoners))))))) ;; Otherwise they've found the number, so we remove them from the queue and repeat with the others
(defn simulate-100-prisoners []
"Simulates all prisoners searching the same drawers by both strategies, returns map showing whether each was successful"
(let [drawers (random-drawers)] ;; Create 100 drawers with randomly ordered prisoner numbers
{:random (try-luck drawers search-50-random-drawers) ;; True if all prisoners found their number using random strategy
:optimal (try-luck drawers search-50-optimal-drawers)})) ;; True if all prisoners found their number using optimal strategy
(defn simulate-n-runs [n]
"Simulate n runs of the 100 prisoner problem and returns a success count for each search method"
(loop [random-successes 0
optimal-successes 0
run-count 0]
(if (= n run-count) ;; If we've done the loop n times
{:random-successes random-successes ;; return results
:optimal-successes optimal-successes
:run-count run-count}
(let [next-result (simulate-100-prisoners)] ;; Otherwise, run for another batch of prisoners
(recur (+ random-successes (:random next-result)) ;; Add result of run to the total successs count
(+ optimal-successes (:optimal next-result))
(inc run-count)))))) ;; increment run count and run again
(defn -main [& args]
"For 5000 runs, print out the success frequency for both search methods"
(let [{:keys [random-successes optimal-successes run-count]} (simulate-n-runs 5000)]
(println (str "Probability of survival with random search: " (float (/ random-successes run-count))))
(println (str "Probability of survival with ordered search: " (float (/ optimal-successes run-count)))))) |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Ruby | Ruby | require "prime"
class Integer
def proper_divisors
return [] if self == 1
primes = prime_division.flat_map{|prime, freq| [prime] * freq}
(1...primes.size).each_with_object([1]) do |n, res|
primes.combination(n).map{|combi| res << combi.inject(:*)}
end.flatten.uniq
end
end
def generator_odd_abundants(from=1)
from += 1 if from.even?
Enumerator.new do |y|
from.step(nil, 2) do |n|
sum = n.proper_divisors.sum
y << [n, sum] if sum > n
end
end
end
generator_odd_abundants.take(25).each{|n, sum| puts "#{n} with sum #{sum}" }
puts "\n%d with sum %#d" % generator_odd_abundants.take(1000).last
puts "\n%d with sum %#d" % generator_odd_abundants(1_000_000_000).next
|
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Pascal | Pascal |
program Game21;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils,
System.StrUtils, // for IfThen
Winapi.Windows; // for ClearScreen
const
HARD_MODE = True;
var
computerPlayer: string = 'Computer';
humanPlayer: string = 'Player 1';
// for change color
ConOut: THandle;
BufInfo: TConsoleScreenBufferInfo;
procedure ClearScreen;
var
stdout: THandle;
csbi: TConsoleScreenBufferInfo;
ConsoleSize: DWORD;
NumWritten: DWORD;
Origin: TCoord;
begin
stdout := GetStdHandle(STD_OUTPUT_HANDLE);
Win32Check(stdout <> INVALID_HANDLE_VALUE);
Win32Check(GetConsoleScreenBufferInfo(stdout, csbi));
ConsoleSize := csbi.dwSize.X * csbi.dwSize.Y;
Origin.X := 0;
Origin.Y := 0;
Win32Check(FillConsoleOutputCharacter(stdout, ' ', ConsoleSize, Origin, NumWritten));
Win32Check(FillConsoleOutputAttribute(stdout, csbi.wAttributes, ConsoleSize,
Origin, NumWritten));
Win32Check(SetConsoleCursorPosition(stdout, Origin));
end;
procedure ResetColor;
begin
SetConsoleTextAttribute(ConOut, BufInfo.wAttributes);
end;
procedure ChangeColor(color: Word);
begin
ConOut := TTextRec(Output).Handle;
GetConsoleScreenBufferInfo(ConOut, BufInfo);
SetConsoleTextAttribute(TTextRec(Output).Handle, color);
end;
function SwapPlayer(currentPlayer: string): string;
begin
Result := IfThen(currentPlayer = humanPlayer, computerPlayer, humanPlayer);
end;
function RandomPlayerSelect(): string;
begin
Result := IfThen(Random() < 0.5, computerPlayer, humanPlayer);
end;
function CheckIfCanWin(total: Integer): Boolean;
begin
result := (total >= 18);
end;
function CheckIfCanLose(total: Integer; var choose: Integer; hardMode: Boolean =
False): Boolean;
var
range: Integer;
begin
range := 17 - total;
Result := false;
if (range > 0) and (range < 4) then
begin
Result := true;
if hardMode then
choose := range
else
choose := Random(range - 1) + 1;
end;
end;
function CompMove(total: Integer): Integer;
begin
if (CheckIfCanWin(total)) then
begin
exit(21 - total);
end;
if CheckIfCanLose(total, Result, HARD_MODE) then
exit;
Result := Random(3) + 1;
end;
function HumanMove: Integer;
var
choice: string;
begin
repeat
Writeln('Choose from numbers: 1, 2, 3');
Readln(choice);
until TryStrToInt(choice, Result) and (Result in [1..3]);
end;
procedure PlayGame();
var
playAnother: Boolean;
total, final_, roundChoice, compWins, humanWins: Integer;
choice, currentPlayer: string;
begin
playAnother := True;
total := 0;
final_ := 21;
roundChoice := 0;
Randomize;
currentPlayer := RandomPLayerSelect();
compWins := 0;
humanWins := 0;
while (playAnother) do
begin
ClearScreen;
ChangeColor(FOREGROUND_INTENSITY or FOREGROUND_GREEN);
Writeln(total);
ResetColor;
Writeln('');
Writeln('Now playing: ' + currentPlayer);
if currentPlayer = computerPlayer then
roundChoice := CompMove(total)
else
roundChoice := HumanMove;
inc(total, roundChoice);
if (total = final_) then
begin
if (currentPlayer = computerPlayer) then
begin
inc(compWins);
end
else
begin
inc(humanWins);
end;
ClearScreen;
Writeln('Winner: ' + currentPlayer);
Writeln('Comp wins: ', compWins, '. Human wins: ', humanWins, #10);
Writeln('Do you wan to play another round? y/n');
readln(choice);
if choice = 'y' then
begin
total := 0;
ClearScreen;
end
else if choice = 'n' then
playAnother := false
else
begin
Writeln('Invalid choice! Choose from y or n');
Continue;
end;
end
else if total > 21 then
begin
Writeln('Not the right time to play this game :)');
break;
end;
currentPlayer := SwapPlayer(currentPlayer);
end;
end;
const
WELLCOME_MSG: array[0..5] of string = ('Welcome to 21 game'#10,
'21 is a two player game.', 'The game is played by choosing a number.',
'1, 2, or 3 to be added a total sum.'#10,
'The game is won by the player reaches exactly 21.'#10, 'Press ENTER to start!'#10);
var
i: Integer;
begin
try
for i := 0 to High(WELLCOME_MSG) do
Writeln(WELLCOME_MSG[i]);
ResetColor;
Readln; // Wait press enter
PlayGame();
except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end;
end.
|
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #ERRE | ERRE |
PROGRAM 24SOLVE
LABEL 98,99,2540,2550,2560
! possible brackets
CONST NBRACKETS=11,ST_CONST$="+-*/^("
DIM D[4],PERM[24,4]
DIM BRAKETS$[NBRACKETS]
DIM OP$[3]
DIM STACK$[50]
PROCEDURE COMPATTA_STACK
IF NS>1 THEN
R=1
WHILE R<NS DO
IF INSTR(ST_CONST$,STACK$[R])=0 AND INSTR(ST_CONST$,STACK$[R+1])=0 THEN
FOR R1=R TO NS-1 DO
STACK$[R1]=STACK$[R1+1]
END FOR
NS=NS-1
END IF
R=R+1
END WHILE
END IF
END PROCEDURE
PROCEDURE CALC_ARITM
L=NS1
WHILE L<=NS2 DO
IF STACK$[L]="^" THEN
IF L>=NS2 THEN GOTO 99 END IF
N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1
IF STACK$[L]="^" THEN
RI#=N1#^N2#
END IF
STACK$[L-1]=STR$(RI#)
N=L
WHILE N<=NS2-2 DO
STACK$[N]=STACK$[N+2]
N=N+1
END WHILE
NS2=NS2-2
L=NS1-1
END IF
L=L+1
END WHILE
L=NS1
WHILE L<=NS2 DO
IF STACK$[L]="*" OR STACK$[L]="/" THEN
IF L>=NS2 THEN GOTO 99 END IF
N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1
IF STACK$[L]="*" THEN
RI#=N1#*N2#
ELSE
IF N2#<>0 THEN RI#=N1#/N2# ELSE NERR=6 RI#=0 END IF
END IF
STACK$[L-1]=STR$(RI#)
N=L
WHILE N<=NS2-2 DO
STACK$[N]=STACK$[N+2]
N=N+1
END WHILE
NS2=NS2-2
L=NS1-1
END IF
L=L+1
END WHILE
L=NS1
WHILE L<=NS2 DO
IF STACK$[L]="+" OR STACK$[L]="-" THEN
EXIT IF L>=NS2
N1#=VAL(STACK$[L-1]) N2#=VAL(STACK$[L+1]) NOP=NOP-1
IF STACK$[L]="+" THEN RI#=N1#+N2# ELSE RI#=N1#-N2# END IF
STACK$[L-1]=STR$(RI#)
N=L
WHILE N<=NS2-2 DO
STACK$[N]=STACK$[N+2]
N=N+1
END WHILE
NS2=NS2-2
L=NS1-1
END IF
L=L+1
END WHILE
99:
IF NOP<2 THEN ! precedenza tra gli operatori
DB#=VAL(STACK$[NS1])
ELSE
IF NOP<3 THEN
DB#=VAL(STACK$[NS1+2])
ELSE
DB#=VAL(STACK$[NS1+4])
END IF
END IF
END PROCEDURE
PROCEDURE SVOLGI_PAR
NPA=NPA-1
FOR J=NS TO 1 STEP -1 DO
EXIT IF STACK$[J]="("
END FOR
IF J=0 THEN
NS1=1 NS2=NS CALC_ARITM NERR=7
ELSE
FOR R=J TO NS-1 DO
STACK$[R]=STACK$[R+1]
END FOR
NS1=J NS2=NS-1 CALC_ARITM
IF NS1=2 THEN
NS1=1 STACK$[1]=STACK$[2]
END IF
NS=NS1
COMPATTA_STACK
END IF
END PROCEDURE
PROCEDURE MYEVAL(EXPRESSION$,DB#,NERR->DB#,NERR)
NOP=0 NPA=0 NS=1 K$="" NERR=0
STACK$[1]="@" ! init stack
FOR W=1 TO LEN(EXPRESSION$) DO
LOOP
CODE=ASC(MID$(EXPRESSION$,W,1))
IF (CODE>=48 AND CODE<=57) OR CODE=46 THEN
K$=K$+CHR$(CODE)
W=W+1 IF W>LEN(EXPRESSION$) THEN GOTO 98 END IF
ELSE
EXIT IF K$=""
IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF
IF FLAG=0 THEN
STACK$[NS]=K$
ELSE
STACK$[NS]=STR$(VAL(K$)*FLAG)
END IF
K$="" FLAG=0
EXIT
END IF
END LOOP
IF CODE=43 THEN K$="+" END IF
IF CODE=45 THEN K$="-" END IF
IF CODE=42 THEN K$="*" END IF
IF CODE=47 THEN K$="/" END IF
IF CODE=94 THEN K$="^" END IF
CASE CODE OF
43,45,42,47,94-> ! +-*/^
IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF
IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN
NERR=5
ELSE
NS=NS+1 STACK$[NS]=K$ NOP=NOP+1
IF NOP>=2 THEN
FOR J=NS TO 1 STEP -1 DO
IF STACK$[J]<>"(" THEN GOTO 2540 END IF
IF J<NS-2 THEN GOTO 2550 ELSE GOTO 2560 END IF
2540: END FOR
2550: NS1=J+1 NS2=NS CALC_ARITM
NS=NS2 STACK$[NS]=K$
REGISTRO_X#=VAL(STACK$[NS-1])
END IF
END IF
2560: END ->
40-> ! (
IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF
STACK$[NS]="(" NPA=NPA+1
IF MID$(EXPRESSION$,W+1,1)="-" THEN FLAG=-1 W=W+1 END IF
END ->
41-> ! )
SVOLGI_PAR
IF NERR=7 THEN
NERR=0 NOP=0 NPA=0 NS=1
ELSE
IF NERR=0 OR NERR=1 THEN
DB#=VAL(STACK$[NS])
REGISTRO_X#=DB#
ELSE
NOP=0 NPA=0 NS=1
END IF
END IF
END ->
OTHERWISE
NERR=8
END CASE
K$=""
END FOR
98:
IF K$<>"" THEN
IF NS>1 OR (NS=1 AND STACK$[1]<>"@") THEN NS=NS+1 END IF
IF FLAG=0 THEN STACK$[NS]=K$ ELSE STACK$[NS]=STR$(VAL(K$)*FLAG) END IF
END IF
IF INSTR(ST_CONST$,STACK$[NS])<>0 THEN
NERR=6
ELSE
WHILE NPA<>0 DO
SVOLGI_PAR
END WHILE
IF NERR<>7 THEN NS1=1 NS2=NS CALCARITM END IF
END IF
NS=1 NOP=0 NPA=0
END PROCEDURE
BEGIN
PRINT(CHR$(12);) ! CLS
! possible brackets
DATA("4#4#4#4")
DATA("(4#4)#4#4")
DATA("4#(4#4)#4")
DATA("4#4#(4#4)")
DATA("(4#4)#(4#4)")
DATA("(4#4#4)#4")
DATA("4#(4#4#4)")
DATA("((4#4)#4)#4")
DATA("(4#(4#4))#4")
DATA("4#((4#4)#4)")
DATA("4#(4#(4#4))")
FOR I=1 TO NBRACKETS DO
READ(BRAKETS$[I])
END FOR
INPUT("ENTER 4 DIGITS: ",A$)
ND=0
FOR I=1 TO LEN(A$) DO
C$=MID$(A$,I,1)
IF INSTR("123456789",C$)>0 THEN
ND=ND+1
D[ND]=VAL(C$)
END IF
END FOR
! precompute permutations. dumb way.
NPERM=1*2*3*4
N=0
FOR I=1 TO 4 DO
FOR J=1 TO 4 DO
FOR K=1 TO 4 DO
FOR L=1 TO 4 DO
! valid permutation (no dupes)
IF I<>J AND I<>K AND I<>L AND J<>K AND J<>L AND K<>L THEN
N=N+1
! actually,we can as well permute given digits
PERM[N,1]=D[I]
PERM[N,2]=D[J]
PERM[N,3]=D[K]
PERM[N,4]=D[L]
END IF
END FOR
END FOR
END FOR
END FOR
! operations: full search
COUNT=0
OPS$="+-*/"
FOR OP1=1 TO 4 DO
OP$[1]=MID$(OPS$,OP1,1)
FOR OP2=1 TO 4 DO
OP$[2]=MID$(OPS$,OP2,1)
FOR OP3=1 TO 4 DO
OP$[3]=MID$(OPS$,OP3,1)
! substitute all brackets
FOR T=1 TO NBRACKETS DO
TMPL$=BRAKETS$[T]
! now,substitute all digits: permutations.
FOR P=1 TO NPERM DO
RES$=""
NOP=0
ND=0
FOR I=1 TO LEN(TMPL$) DO
C$=MID$(TMPL$,I,1)
CASE C$ OF
"#"-> ! operations
NOP=NOP+1
RES$=RES$+OP$[NOP]
END ->
"4"-> ! digits
ND=NOP+1
RES$=RES$+MID$(STR$(PERM[P,ND]),2)
END ->
OTHERWISE ! brackets goes here
RES$=RES$+C$
END CASE
END FOR
! eval here
MY_EVAL(RES$,DB#,NERR->DB#,NERR)
IF DB#=24 AND NERR=0 THEN
PRINT("24=";RES$)
COUNT=COUNT+1
END IF
END FOR
END FOR
END FOR
END FOR
END FOR
IF COUNT=0 THEN
PRINT("If you see this, probably task cannot be solved with these digits")
ELSE
PRINT("Total=";COUNT)
END IF
END PROGRAM
|
http://rosettacode.org/wiki/2048 | 2048 | Task
Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Rules of the game
The rules are that on each turn the player must choose a direction (up, down, left or right).
All tiles move as far as possible in that direction, some move more than others.
Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.
A move is valid when at least one tile can be moved, if only by combination.
A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square (if there is one).
Adding a new tile on a blank space. Most of the time, a new 2 is to be added, and occasionally (10% of the time), a 4.
To win, the player must create a tile with the number 2048.
The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic, 2048.
Requirements
"Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say, that moving the tile row of:
[2][2][2][2]
to the right should result in:
......[4][4]
and not:
.........[8]
"Move direction priority".
If more than one variant of combining is possible, move direction shall indicate which combination will take effect.
For example, moving the tile row of:
...[2][2][2]
to the right should result in:
......[2][4]
and not:
......[4][2]
Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
Check for a win condition.
Check for a lose condition.
| #ALGOL_68 | ALGOL 68 |
main:(
INT side = 4;
INT right = 1, up = 2, left = 3, down = 4;
[]CHAR direction letters = "ruld";
[]STRING direction descriptions = ("right", "up", "left", "down");
MODE BOARD = REF[,]INT;
MODE CELL = REF INT;
OP = = (BOARD a, BOARD b) BOOL:
(FOR i TO side DO FOR j TO side DO IF a[i,j] /= b[i,j] THEN mismatch FI OD OD;
TRUE EXIT
mismatch: FALSE);
PROC traverse board = (BOARD board, PROC(CELL)VOID callback) VOID:
FOR i FROM 1 LWB board TO 1 UPB board DO
FOR j FROM 2 LWB board TO 2 UPB board DO
callback(board[i,j])
OD OD;
PROC count blanks = (BOARD board) INT:
(INT count := 0;
traverse board(board, (CELL c)VOID: IF c = 0 THEN count +:= 1 FI);
count);
PROC nth blank = (BOARD board, INT nth) CELL:
(CELL result;
INT count := 0;
traverse board(board, (CELL c)VOID:
(IF c = 0 THEN count +:= 1 FI;
IF count = nth THEN
result := c; return
FI));
return: result);
PROC add new number = (BOARD board) VOID:
(INT nblanks = count blanks(board);
INT number := (random >= .9 | 4 | 2);
INT position := ENTIER (random * nblanks) + 1;
nth blank(board, position) := number);
PROC shift = (REF[]INT row, BOOL to the end) VOID:
(INT from = (to the end | UPB row | LWB row),
to = (to the end | LWB row | UPB row),
dir = (to the end | -1 | 1);
FOR i FROM from + dir BY dir TO to DO
IF row[i] /= 0 THEN
INT blank := 0;
FOR j FROM i - dir BY -dir TO from WHILE row[j] = 0 DO
blank := j
OD;
IF blank /= 0 THEN
row[blank] := row[i];
row[i] := 0
FI
FI
OD);
PROC combine = (REF[]INT row, BOOL to the end) VOID:
(INT from = (to the end | UPB row | LWB row),
to = (to the end | LWB row | UPB row),
dir = (to the end | -1 | 1);
FOR i FROM from BY dir TO to - dir DO
IF row[i] /= 0 AND row[i] = row[i+dir] THEN
row[i] *:= 2;
row[i+dir] := 0
FI
OD);
PROC move = (BOARD board, INT direction) VOID:
FOR i TO side DO
CASE direction IN
# right # (shift(board[i,], TRUE); combine(board[i,], TRUE); shift(board[i,], TRUE)),
# up # (shift(board[,i], FALSE); combine(board[,i], FALSE); shift(board[,i], FALSE)),
# left # (shift(board[i,], FALSE); combine(board[i,], FALSE); shift(board[i,], FALSE)),
# down # (shift(board[,i], TRUE); combine(board[,i], TRUE); shift(board[,i], TRUE))
ESAC
OD;
PROC print board = (BOARD board)VOID:
(FOR i FROM 1 LWB board TO 1 UPB board DO
print("+");
FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD;
print((new line, "|"));
FOR j FROM 2 LWB board TO 2 UPB board DO
print(((board[i,j] = 0 | " " | whole(board[i,j],-5)), " |"))
OD;
print(new line)
OD;
print("+"); FOR j FROM 2 LWB board TO 2 UPB board DO print("------+") OD;
print(new line)
);
PROC score = (BOARD board) INT:
(INT result := 0;
traverse board(board, (CELL c)VOID: result +:= c);
result);
PROC join = ([]STRING strings, STRING joiner) STRING:
IF UPB strings > 0 THEN
STRING result := strings[1];
FOR i FROM 2 TO UPB strings DO result +:= joiner +:= strings[i] OD;
result
ELSE
""
FI;
BOARD board = LOC [side,side]INT;
BOARD previous = LOC [side,side]INT;
traverse board(board, (CELL c)VOID: c := 0);
# start with two numbers #
TO 2 DO add new number(board) OD;
# play! #
STRING prompt := "enter one of [" + direction letters + "] (for " + join(direction descriptions, "/") + "): ";
DO
CHAR key;
INT dir;
print board(board);
print(("score: ", whole(score(board),0), new line));
WHILE
print(prompt);
read((key, new line));
NOT char in string(key, dir, direction letters)
DO SKIP OD;
previous := board;
move(board, dir);
IF count blanks(board) = 0 THEN lose FI;
traverse board(board, (CELL c)VOID: IF c = 2048 THEN win FI);
IF previous = board THEN
print(("try again!", new line))
ELSE
add new number(board)
FI
OD;
win: print board(board); print(("you win!", new line)) EXIT
lose: print(("you lose!", new line))
)
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Phix | Phix | -- demo/rosetta/4_rings_or_4_squares_puzzle.exw
with javascript_semantics
integer solutions
procedure check(sequence set, bool show)
integer {a,b,c,d,e,f,g} = set, ab = a+b
if ab=b+d+c and ab=d+e+f and ab=f+g then
solutions += 1
if show then
?set
end if
end if
end procedure
procedure foursquares(integer lo, hi, bool uniq, show)
sequence set = repeat(lo,7)
solutions = 0
if uniq then
for i=1 to 7 do
set[i] = lo+i-1
end for
for i=1 to factorial(7) do
check(permute(i,set),show)
end for
else
integer done = 0
while not done do
check(set,show)
for i=1 to 7 do
set[i] += 1
if set[i]<=hi then exit end if
if i=7 then
done = 1
exit
end if
set[i] = lo
end for
end while
end if
printf(1,"%d solutions\n",solutions)
end procedure
foursquares(1,7,uniq:=true,show:=true)
foursquares(3,9,true,true)
foursquares(0,9,false,false)
|
http://rosettacode.org/wiki/15_puzzle_solver | 15 puzzle solver | Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game.
For this task you will be using the following puzzle:
15 14 1 6
9 11 4 12
0 10 7 3
13 8 5 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0
The output must show the moves' directions, like so: left, left, left, down, right... and so on.
There are two solutions, of fifty-two moves:
rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd
rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd
see: Pretty Print of Optimal Solution
Finding either one, or both is an acceptable result.
Extra credit.
Solve the following problem:
0 12 9 13
15 11 10 14
3 7 2 5
4 8 6 1
Related Task
15 puzzle game
A* search algorithm
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program puzzle15solver.s */
/* my first other program find à solution in 134 moves !!! */
/* this second program is a adaptation algorithme C++ and go rosetta code */
/* thanck for the creators */
/* 1 byte by box on game board */
/* create a file with nano */
/* 15, 2, 3, 4
5, 6, 7, 1
9, 10, 8, 11
13, 14, 12, 0 */
/* Run this programm : puzzle15solver <file name> */
/* wait several minutes for résult */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ STDIN, 0 @ Linux input console
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ READ, 3 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ OPEN, 5 @ Linux syscall
.equ CLOSE, 6 @ Linux syscall
.equ TRUE, 1
.equ FALSE, 0
.equ O_RDWR, 0x0002 @ open for reading and writing
.equ SIZE, 4
.equ NBBOX, SIZE * SIZE
.equ TAILLEBUFFER, 100
.equ NBMAXIELEMENTS, 100
.equ CONST_I, 1
.equ CONST_G, 8
.equ CONST_E, 2
.equ CONST_L, 4
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessTitre: .asciz "Nom du fichier : "
sMessResult: .ascii " "
sMessValeur: .fill 11, 1, ' ' @ size => 11
szCarriageReturn: .asciz "\n"
szMessCounterSolution: .asciz "Solution in @ moves : \n"
//szMessMoveError: .asciz "Huh... Impossible move !!!!\n"
szMessErreur: .asciz "Error detected.\n"
szMessImpossible: .asciz "!!! Impossible solution !!!\n"
szMessErrBuffer: .asciz "buffer size too less !!"
szMessSpaces: .asciz " "
iTabNr: .int 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3
iTabNc: .int 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
.align 4
sZoneConv: .skip 24
iAdrHeap: .skip 4
ibox: .skip SIZE * SIZE @ game boxes
iAdrFicName: .skip 4
iTabN0: .skip 4 * NBMAXIELEMENTS @ empty box
iTabN3: .skip 4 * NBMAXIELEMENTS @ moves
iTabN4: .skip 4 * NBMAXIELEMENTS @ ????
iTabN2: .skip 4 * NBMAXIELEMENTS @ table game address
sBuffer: .skip TAILLEBUFFER
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ INFO: main
mov r0,sp @ stack address for load parameter
bl traitFic @ read file and store value in array
cmp r0,#-1
beq 100f @ error ?
ldr r0,iAdribox
bl displayGame @ display array game
ldr r0,iAdribox @ control if solution exists
bl controlSolution
cmp r0,#TRUE
beq 1f
ldr r0,iAdrszMessImpossible @ no solution !!!
bl affichageMess
b 100f
1:
ldr r0,iAdribox
ldr r9,iAdriTabN2
str r0,[r9] @ N2 address global
mov r10,#0 @ variable _n global
mov r12,#0 @ variable n global
bl searchSolution
cmp r0,#TRUE
bne 100f @ no solution ?
ldr r3,iAdriTabN2
ldr r0,[r3,r12,lsl #2] @ visual solution control
bl displayGame
mov r0,r12 @ move counter
ldr r1,iAdrsZoneConv
bl conversion10 @ conversion counter
mov r2,#0
strb r2,[r1,r0] @ and display
ldr r0,iAdrszMessCounterSolution
bl strInsertAtCharInc
ldr r1,iAdrsZoneConv
bl affichageMess
ldr r5,iAdriTabN3
ldr r3,iAdrsBuffer
mov r2,#1
mov r4,#0
2: @ loop solution display
ldrb r1,[r5,r2,lsl #2]
cmp r2,#TAILLEBUFFER
bge 99f
strb r1,[r3,r4]
add r4,r4,#1
add r2,r2,#1
cmp r2,r12
ble 2b
mov r1,#0
str r1,[r3,r4] @ zéro final
mov r0,r3
bl affichageMess
ldr r0,iAdrszCarriageReturn
bl affichageMess
b 100f
99:
ldr r0,iAdrszMessErrBuffer
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdribox: .int ibox
iAdriTabN0: .int iTabN0
iAdriTabN2: .int iTabN2
iAdriTabN3: .int iTabN3
iAdriTabN4: .int iTabN4
iAdrszMessCounterSolution: .int szMessCounterSolution
iAdrszMessImpossible: .int szMessImpossible
iAdrszMessErrBuffer: .int szMessErrBuffer
iAdrsZoneConv: .int sZoneConv
/******************************************************************/
/* search Solution */
/******************************************************************/
searchSolution: @ INFO: searchSolution
push {r1-r8,lr} @ save registers
@ address allocation place on the heap
mov r0,#0 @ allocation place heap
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
beq 99f
ldr r1,iAdriAdrHeap
str r0,[r1] @ store heap address
bl functionFN
ldr r3,iAdriTabN2
ldr r0,[r3,r12,lsl #2] @ last current game
bl gameOK @ it is Ok ?
cmp r0,#TRUE
beq 100f @ yes --> end
ldr r1,iAdriAdrHeap @ free up resources
ldr r0,[r1] @ restaur start address heap
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
beq 99f
add r10,r10,#1 @ _n
mov r12,#0 @ n
bl searchSolution @ next recursif call
b 100f
99:
ldr r0,iAdrszMessErreur
bl affichageMess
100:
pop {r1-r8,lr} @ restaur registers
bx lr @return
iAdrszMessErreur: .int szMessErreur
iAdriAdrHeap: .int iAdrHeap
/******************************************************************/
/* Fonction FN */
/******************************************************************/
functionFN: @ INFO: functionFN
push {lr} @ save register
ldr r4,iAdriTabN3
ldr r3,[r4,r12,lsl #2]
ldr r5,iAdriTabN0 @ load position empty box
ldr r6,[r5,r12,lsl #2]
cmp r6,#15 @ last box
bne 2f
cmp r3,#'R'
bne 11f
mov r0,#CONST_G
bl functionFZ
b 100f
11:
cmp r3,#'D'
bne 12f
mov r0,#CONST_L
bl functionFZ
b 100f
12:
mov r0,#CONST_G + CONST_L
bl functionFZ
b 100f
2:
cmp r6,#12
bne 3f
cmp r3,#'L'
bne 21f
mov r0,#CONST_G
bl functionFZ
b 100f
21:
cmp r3,#'D'
bne 22f
mov r0,#CONST_E
bl functionFZ
b 100f
22:
mov r0,#CONST_E + CONST_G
bl functionFZ
b 100f
3:
cmp r6,#13
beq 30f
cmp r6,#14
bne 4f
30:
cmp r3,#'L'
bne 31f
mov r0,#CONST_G + CONST_L
bl functionFZ
b 100f
31:
cmp r3,#'R'
bne 32f
mov r0,#CONST_G + CONST_E
bl functionFZ
b 100f
32:
cmp r3,#'D'
bne 33f
mov r0,#CONST_E + CONST_L
bl functionFZ
b 100f
33:
mov r0,#CONST_L + CONST_E + CONST_G
bl functionFZ
b 100f
4:
cmp r6,#3
bne 5f
cmp r3,#'R'
bne 41f
mov r0,#CONST_I
bl functionFZ
b 100f
41:
cmp r3,#'U'
bne 42f
mov r0,#CONST_L
bl functionFZ
b 100f
42:
mov r0,#CONST_I + CONST_L
bl functionFZ
b 100f
5:
cmp r6,#0
bne 6f
cmp r3,#'L'
bne 51f
mov r0,#CONST_I
bl functionFZ
b 100f
51:
cmp r3,#'U'
bne 52f
mov r0,#CONST_E
bl functionFZ
b 100f
52:
mov r0,#CONST_I + CONST_E
bl functionFZ
b 100f
6:
cmp r6,#1
beq 60f
cmp r6,#2
bne 7f
60:
cmp r3,#'L'
bne 61f
mov r0,#CONST_I + CONST_L
bl functionFZ
b 100f
61:
cmp r3,#'R'
bne 62f
mov r0,#CONST_E + CONST_I
bl functionFZ
b 100f
62:
cmp r3,#'U'
bne 63f
mov r0,#CONST_E + CONST_L
bl functionFZ
b 100f
63:
mov r0,#CONST_I + CONST_E + CONST_L
bl functionFZ
b 100f
7:
cmp r6,#7
beq 70f
cmp r6,#11
bne 8f
70:
cmp r3,#'R'
bne 71f
mov r0,#CONST_I + CONST_G
bl functionFZ
b 100f
71:
cmp r3,#'U'
bne 72f
mov r0,#CONST_G + CONST_L
bl functionFZ
b 100f
72:
cmp r3,#'D'
bne 73f
mov r0,#CONST_I + CONST_L
bl functionFZ
b 100f
73:
mov r0,#CONST_I + CONST_G + CONST_L
bl functionFZ
b 100f
8:
cmp r6,#4
beq 80f
cmp r6,#8
bne 9f
80:
cmp r3,#'D'
bne 81f
mov r0,#CONST_I + CONST_E
bl functionFZ
b 100f
81:
cmp r3,#'U'
bne 82f
mov r0,#CONST_G + CONST_E
bl functionFZ
b 100f
82:
cmp r3,#'L'
bne 83f
mov r0,#CONST_I + CONST_G
bl functionFZ
b 100f
83:
mov r0,#CONST_G + CONST_E + CONST_I
bl functionFZ
b 100f
9:
cmp r3,#'D'
bne 91f
mov r0,#CONST_I + CONST_E + CONST_L
bl functionFZ
b 100f
91:
cmp r3,#'L'
bne 92f
mov r0,#CONST_I + CONST_G + CONST_L
bl functionFZ
b 100f
92:
cmp r3,#'R'
bne 93f
mov r0,#CONST_I + CONST_G + CONST_E
bl functionFZ
b 100f
93:
cmp r3,#'U'
bne 94f
mov r0,#CONST_G + CONST_E + CONST_L
bl functionFZ
b 100f
94:
mov r0,#CONST_G + CONST_L + CONST_I + CONST_E
bl functionFZ
b 100f
99: @ error
ldr r0,iAdrszMessErreur
bl affichageMess
100:
pop {lr} @ restaur registers
bx lr @return
/******************************************************************/
/* function FZ */
/* */
/***************************************************************/
/* r0 contains variable w */
functionFZ: @ INFO: functionFZ
push {r1,r2,lr} @ save registers
mov r2,r0
and r1,r2,#CONST_I
cmp r1,#0
ble 1f
bl functionFI
bl functionFY
cmp r0,#TRUE
beq 100f
sub r12,r12,#1 @ variable n
1:
ands r1,r2,#CONST_G
ble 2f
bl functionFG
bl functionFY
cmp r0,#TRUE
beq 100f
sub r12,r12,#1 @ variable n
2:
ands r1,r2,#CONST_E
ble 3f
bl functionFE
bl functionFY
cmp r0,#TRUE
beq 100f
sub r12,r12,#1 @ variable n
3:
ands r1,r2,#CONST_L
ble 4f
bl functionFL
bl functionFY
cmp r0,#TRUE
beq 100f
sub r12,r12,#1 @ variable n
4:
mov r0,#FALSE
100:
pop {r1,r2,lr} @ restaur registers
bx lr @return
/******************************************************************/
/* function FY */
/******************************************************************/
functionFY: @ INFO: functionFY
push {lr} @ save registers
ldr r1,iAdriTabN2
ldr r0,[r1,r12,lsl #2]
bl gameOK @ game OK ?
cmp r0,#TRUE
beq 100f
ldr r1,iAdriTabN4
ldr r0,[r1,r12,lsl #2]
cmp r0,r10
bgt 1f
bl functionFN
b 100f
1:
mov r0,#FALSE
100:
pop {lr} @ restaur registers
bx lr @return
/******************************************************************/
/* the empty box is down */
/******************************************************************/
functionFI: @ INFO: functionFI
push {r0-r8,lr} @ save registers
ldr r0,iAdriTabN0
ldr r1,[r0,r12,lsl #2] @ empty box
add r2,r1,#4
ldr r3,[r9,r12,lsl #2] @ load game current
ldrb r4,[r3,r2] @ load box down empty box
add r5,r12,#1 @ n+1
add r8,r1,#4 @ new position empty case
str r8,[r0,r5,lsl #2] @ store new position empty case
ldr r6,iAdriTabN3
mov r7,#'D' @ down
str r7,[r6,r5,lsl #2] @ store move
ldr r6,iAdriTabN4
ldr r7,[r6,r12,lsl #2]
str r7,[r6,r5,lsl #2] @ N4 (n+1) = n4(n)
mov r0,r3
bl createGame @ create copy game
ldrb r3,[r0,r1] @ and inversion box
ldrb r8,[r0,r2]
strb r8,[r0,r1]
strb r3,[r0,r2]
str r0,[r9,r5,lsl #2] @ store new game in table
lsr r1,r1,#2 @ line position empty case = N°/ 4
ldr r0,iAdriTabNr
ldr r2,[r0,r4,lsl #2] @ load N° line box moved
cmp r2,r1 @ compare ????
ble 1f
add r7,r7,#1 @ and increment ????
str r7,[r6,r5,lsl #2]
1:
add r12,r12,#1 @ increment N
pop {r0-r8,lr}
bx lr @return
iAdriTabNr: .int iTabNr
iAdriTabNc: .int iTabNc
/******************************************************************/
/* empty case UP see explain in english in function FI */
/******************************************************************/
functionFG: @ INFO: functionFG
push {r0-r8,lr} @ save registers
ldr r0,iAdriTabN0
ldr r1,[r0,r12,lsl #2] @ case vide
sub r2,r1,#4 @ position case au dessus
ldr r3,[r9,r12,lsl #2] @ extrait jeu courant
ldrb r4,[r3,r2] @ extrait le contenu case au dessus
add r5,r12,#1 @ N+1 = N
sub r8,r1,#4 @ nouvelle position case vide
str r8,[r0,r5,lsl #2] @ et on la stocke
ldr r6,iAdriTabN3
mov r7,#'U' @ puis on stocke le code mouvement
str r7,[r6,r5,lsl #2]
ldr r6,iAdriTabN4
ldr r7,[r6,r12,lsl #2]
str r7,[r6,r5,lsl #2] @ N4 (N+1) = N4 (N)
mov r0,r3 @ jeu courant
bl createGame @ création nouveau jeu
ldrb r3,[r0,r1] @ et echange les 2 cases
ldrb r8,[r0,r2]
strb r8,[r0,r1]
strb r3,[r0,r2]
str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation
lsr r1,r1,#2 @ ligne case vide = position /4
ldr r0,iAdriTabNr
ldr r2,[r0,r4,lsl #2] @ extrait table à la position case
cmp r2,r1 @ et comparaison ???
bge 1f
add r7,r7,#1 @ puis increment N4 de 1 ???
str r7,[r6,r5,lsl #2]
1:
add r12,r12,#1 @ increment de N
pop {r0-r8,lr}
bx lr @return
/******************************************************************/
/* empty case go right see explain finction FI ou FG en français */
/******************************************************************/
functionFE: @ INFO: functionFE
push {r0-r8,lr} @ save registers
ldr r0,iAdriTabN0
ldr r1,[r0,r12,lsl #2]
add r2,r1,#1
ldr r3,[r9,r12,lsl #2]
ldrb r4,[r3,r2] @ extrait le contenu case
add r5,r12,#1
add r8,r1,#1
str r8,[r0,r5,lsl #2] @ nouvelle case vide
ldr r6,iAdriTabN3
mov r7,#'R'
str r7,[r6,r5,lsl #2] @ mouvement
ldr r6,iAdriTabN4
ldr r7,[r6,r12,lsl #2]
str r7,[r6,r5,lsl #2] @ N4 ??
mov r0,r3
bl createGame
ldrb r3,[r0,r1] @ exchange two boxes
ldrb r8,[r0,r2]
strb r8,[r0,r1]
strb r3,[r0,r2]
str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation
lsr r3,r1,#2
sub r1,r1,r3,lsl #2
ldr r0,iAdriTabNc
ldr r2,[r0,r4,lsl #2] @ extrait table à la position case
cmp r2,r1
ble 1f
add r7,r7,#1
str r7,[r6,r5,lsl #2]
1:
add r12,r12,#1
pop {r0-r8,lr}
bx lr @return
/******************************************************************/
/* empty box go left see explain function FI ou FG en français */
/******************************************************************/
functionFL: @ INFO: functionFL
push {r0-r8,lr} @ save registers
ldr r0,iAdriTabN0
ldr r1,[r0,r12,lsl #2] @ case vide
sub r2,r1,#1
ldr r3,[r9,r12,lsl #2] @ extrait jeu courant
ldrb r4,[r3,r2] @ extrait le contenu case
add r5,r12,#1
sub r8,r1,#1
str r8,[r0,r5,lsl #2] @ nouvelle case vide
ldr r6,iAdriTabN3
mov r7,#'L'
str r7,[r6,r5,lsl #2] @ mouvement
ldr r6,iAdriTabN4
ldr r7,[r6,r12,lsl #2]
str r7,[r6,r5,lsl #2] @ N4 ??
mov r0,r3
bl createGame
ldrb r3,[r0,r1] @ exchange two boxes
ldrb r8,[r0,r2]
strb r8,[r0,r1]
strb r3,[r0,r2]
str r0,[r9,r5,lsl #2] @ stocke la nouvelle situation
lsr r3,r1,#2
sub r1,r1,r3,lsl #2 @ compute remainder
ldr r0,iAdriTabNc
ldr r2,[r0,r4,lsl #2] @ extrait table colonne à la position case
cmp r2,r1
bge 1f
add r7,r7,#1
str r7,[r6,r5,lsl #2]
1:
add r12,r12,#1
pop {r0-r8,lr}
bx lr @return
/******************************************************************/
/* create new Game */
/******************************************************************/
/* r0 contains box address */
/* r0 return address new game */
createGame: @ INFO: createGame
push {r1-r8,lr} @ save registers
mov r4,r0 @ save value
mov r0,#0 @ allocation place heap
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
beq 99f
mov r5,r0 @ save address heap for output string
add r0,#SIZE * SIZE @ reservation place one element
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
beq 99f
mov r2,#0
1: @ loop copy boxes
ldrb r3,[r4,r2]
strb r3,[r5,r2]
add r2,r2,#1
cmp r2,#NBBOX
blt 1b
add r11,r11,#1
mov r0,r5
b 100f
99: @ error
ldr r0,iAdrszMessErreur
bl affichageMess
100:
pop {r1-r8,lr} @ restaur registers
bx lr @return
/******************************************************************/
/* read file */
/******************************************************************/
/* r0 contains address stack begin */
traitFic: @ INFO: traitFic
push {r1-r8,fp,lr} @ save registers
mov fp,r0 @ fp <- start address
ldr r4,[fp] @ number of Command line arguments
cmp r4,#1
movle r0,#-1
ble 99f
add r5,fp,#8 @ second parameter address
ldr r5,[r5]
ldr r0,iAdriAdrFicName
str r5,[r0]
ldr r0,iAdrszMessTitre
bl affichageMess @ display string
mov r0,r5
bl affichageMess
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display carriage return
mov r0,r5 @ file name
mov r1,#O_RDWR @ flags
mov r2,#0 @ mode
mov r7, #OPEN @ call system OPEN
svc 0
cmp r0,#0 @ error ?
ble 99f
mov r8,r0 @ File Descriptor
ldr r1,iAdrsBuffer @ buffer address
mov r2,#TAILLEBUFFER @ buffer size
mov r7,#READ @ read file
svc #0
cmp r0,#0 @ error ?
blt 99f
@ extraction datas
ldr r1,iAdrsBuffer @ buffer address
add r1,r0
mov r0,#0 @ store zéro final
strb r0,[r1]
ldr r0,iAdribox @ game box address
ldr r1,iAdrsBuffer @ buffer address
bl extracDatas
@ close file
mov r0,r8
mov r7, #CLOSE
svc 0
mov r0,#0
b 100f
99: @ error
ldr r1,iAdrszMessErreur @ error message
bl displayError
mov r0,#-1
100:
pop {r1-r8,fp,lr} @ restaur registers
bx lr @return
iAdriAdrFicName: .int iAdrFicName
iAdrszMessTitre: .int szMessTitre
iAdrsBuffer: .int sBuffer
/******************************************************************/
/* extrac digit file buffer */
/******************************************************************/
/* r0 contains boxs address */
/* r1 contains buffer address */
extracDatas: @ INFO: extracDatas
push {r1-r8,lr} @ save registers
mov r7,r0
mov r6,r1
mov r2,#0 @ string buffer indice
mov r4,r1 @ start digit ascii
mov r5,#0 @ box index
1:
ldrb r3,[r6,r2]
cmp r3,#0
beq 4f @ end
cmp r3,#0xA
beq 2f
cmp r3,#','
beq 3f
add r2,#1
b 1b
2:
mov r3,#0
strb r3,[r6,r2]
ldrb r3,[r6,r2]
cmp r3,#0xD
addeq r2,#2
addne r2,#1
b 4f
3:
mov r3,#0
strb r3,[r6,r2]
add r2,#1
4:
mov r0,r4
bl conversionAtoD
strb r0,[r7,r5]
cmp r0,#0
ldreq r0,iAdriTabN0
streq r5,[r0] @ empty box in item zéro
add r5,#1
cmp r5,#NBBOX @ number box = maxi ?
bge 100f
add r4,r6,r2 @ new start address digit ascii
b 1b
100:
pop {r1-r8,lr} @ restaur registers
bx lr @return
/******************************************************************/
/* control of the game solution */
/******************************************************************/
/* r0 contains boxs address */
/* r0 returns 0 if not possible */
/* r0 returns 1 if possible */
controlSolution: @ INFO: controlSolution
push {r1-r8,lr} @ save registers
mov r5,r0
ldr r8,iAdriTabN0
ldr r8,[r8] @ empty box
@ empty box
mov r7,#0
cmp r8,#1
moveq r7,#1
beq 1f
cmp r8,#3
moveq r7,#1
beq 1f
cmp r8,#4
moveq r7,#1
beq 1f
cmp r8,#6
moveq r7,#1
beq 1f
cmp r8,#9
moveq r7,#1
beq 1f
cmp r8,#11
moveq r7,#1
beq 1f
cmp r8,#12
moveq r7,#1
beq 1f
cmp r8,#14
moveq r7,#1
1:
rsb r6,r8,#NBBOX - 1
add r7,r6
@ count permutations
mov r1,#-1
mov r6,#0
2:
add r1,#1
cmp r1,#NBBOX
bge 80f
cmp r1,r8
beq 2b
ldrb r3,[r5,r1]
mov r2,r1
3:
add r2,#1
cmp r2,#NBBOX
bge 2b
cmp r2,r8
beq 3b
ldrb r4,[r5,r2]
cmp r4,r3
addlt r6,#1
b 3b
80:
add r6,r7
tst r6,#1
movne r0,#0 @ impossible
moveq r0,#1 @ OK
100:
pop {r1-r8,lr} @ restaur registers
bx lr @return
/******************************************************************/
/* game Ok ? */
/******************************************************************/
/* r0 contains boxs address */
gameOK: @ INFO: gameOK
push {r1-r4,lr} @ save registers
mov r2,#0
ldrb r3,[r0,r2]
cmp r3,#0
moveq r3,#0xF
add r2,#1
1:
ldrb r4,[r0,r2]
cmp r4,#0
moveq r3,#0xF
cmp r4,r3
movle r0,#FALSE @ game not Ok
ble 100f
mov r3,r4
add r2,#1
cmp r2,#NBBOX -2
ble 1b
mov r0,#TRUE @ game Ok
100:
pop {r1-r4,lr} @ restaur registers
bx lr @return
/******************************************************************/
/* display game */
/******************************************************************/
/* r0 contains boxs address */
displayGame: @ INFO: displayGame
push {r0-r5,lr} @ save registers
mov r4,r0
ldr r0,iAdrszMessTitre
bl affichageMess @ display string
ldr r0,iAdriAdrFicName
ldr r0,[r0]
bl affichageMess @ display string
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display line return
mov r2,#0
ldr r1,iAdrsMessValeur
1:
ldrb r0,[r4,r2]
cmp r0,#0
ldreq r0,iSpaces @ store spaces
streq r0,[r1]
beq 2f
bl conversion10 @ call conversion decimal
mov r0,#0
strb r0,[r1,#3] @ zéro final
2:
ldr r0,iAdrsMessResult
bl affichageMess @ display message
add r0,r2,#1
tst r0,#0b11
bne 3f
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display message
3:
add r2,#1
cmp r2,#NBBOX - 1
ble 1b
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display line return
100:
pop {r0-r5,lr} @ restaur registers
bx lr @return
iSpaces: .int 0x00202020 @ spaces
//iAdrszMessMoveError: .int szMessMoveError
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsMessValeur: .int sMessValeur
iAdrsMessResult: .int sMessResult
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
|
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #ALGOL_60 | ALGOL 60 | begin
integer n;
for n:= 99 step -1 until 2 do
begin
outinteger(1,n);
outstring(1,"bottles of beer on the wall,");
outinteger(1,n);
outstring(1,"bottles of beer.\nTake one down and pass it around,");
outstring(1,"of beer on the wall...\n\n")
end;
outstring(1," 1 bottle of beer on the wall, 1 bottle of beer.\n");
outstring(1,"Take one down and pass it around, no more bottles of beer on the wall...\n\n");
outstring(1,"No more bottles of beer on the wall, no more bottles of beer.\n");
outstring(1,"Go to the store and buy some more, 99 bottles of beer on the wall.")
end |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #CoffeeScript | CoffeeScript | tty = require 'tty'
tty.setRawMode true
buffer = ""
numbers = []
for n in [0...4]
numbers.push Math.max 1, Math.floor(Math.random() * 9)
console.log "You can use the numbers: #{numbers.join ' '}"
process.stdin.on 'keypress', (char, key) ->
# accept operator
if char and isNaN(char) and /[()*\/+-]/.test(char) and buffer.substr(-1) isnt char
buffer += char
process.stdout.write char
# accept number
else if !isNaN(+char) and (buffer == '' or isNaN(buffer.substr -1))
buffer += char
process.stdout.write char
# check then evaluate expression
if key?.name is 'enter'
result = calculate()
process.stdout.write '\n'
if result and result is 24
console.log " = 24! congratulations."
else
console.log "#{result}. nope."
process.exit 0
# quit
if key?.name is 'escape' or (key?.name == 'c' and key.ctrl)
process.exit 0
calculate = () ->
if /[^\d\s()+*\/-]/.test buffer
console.log "invalid characters"
process.exit 1
used = buffer.match(/\d/g)
if used?.length != 4 or used.sort().join() != numbers.sort().join()
console.log "you must use the 4 numbers provided"
process.exit 1
res = try eval buffer catch e
return res or 'invalid expression'
# begin taking input
process.stdin.resume()
|
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #SPL | SPL | 'print triangle
> n, 1..25
k = 50-n*2
#.output(#.str("","<"+k+"<"),#.rs)
> k, 1..n
i = p(n,k)
s = #.str(i,">3<")
? k<n, s += " "+#.rs
#.output(s)
<
<
p(n,k)=
? k=0 | k>n, <= 0
? k=n, <= 1
<= p(n-1,k-1)+p(n-k,k)
.
'calculate partition function
#.output()
#.output("G(23) = ",g(23))
#.output("G(123) = ",g(123))
#.output("G(1234) = ",g(1234))
#.output("G(12345) = ",g(12345))
g(n)=
p[1] = 1
> i, 2..n+1
j = 2
k,p[i] = 0
> j>1
k += 1
j = i-#.lower((3*k*k+k)/2)
? j!<1, p[i] -= (-1)^k*p[j]
j = i-#.lower((3*k*k-k)/2)
? j!<1, p[i] -= (-1)^k*p[j]
<
<
<= p[n+1]
. |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Stata | Stata | mata
function part(n) {
a = J(n,n,.)
for (i=1;i<=n;i++) a[i,1] = a[i,i] = 1
for (i=3;i<=n;i++) {
for (j=2;j<i;j++) a[i,j] = sum(a[i-j,1..min((j,i-j))])
}
return(a)
}
end |
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #Burlesque | Burlesque | ps++ |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #TI-83_BASIC | TI-83 BASIC | PROGRAM:ACKERMAN
:If not(M
:Then
:N+1→N
:Return
:Else
:If not(N
:Then
:1→N
:M-1→M
:prgmACKERMAN
:Else
:N-1→N
:M→L1(1+dim(L1
:prgmACKERMAN
:Ans→N
:L1(dim(L1))-1→M
:dim(L1)-1→dim(L1
:prgmACKERMAN
:End
:End |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ERRE | ERRE |
PROGRAM BLOCKS
!$INCLUDE="PC.LIB"
PROCEDURE CANMAKEWORD(WORD$)
LOCAL B$,P%
B$=BLOCKS$
PRINT(WORD$;" -> ";)
P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF))
WHILE P%>0 AND WORD$>"" DO
CHANGE(B$,P%-1+(P% MOD 2),".."->B$)
WORD$=MID$(WORD$,2)
EXIT IF WORD$=""
P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF))
END WHILE
IF WORD$>"" THEN PRINT("False") ELSE PRINT("True") END IF
END PROCEDURE
BEGIN
BLOCKS$="BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"
CANMAKEWORD("A")
CANMAKEWORD("BARK")
CANMAKEWORD("BOOK")
CANMAKEWORD("TREAT")
CANMAKEWORD("COMMON")
CANMAKEWORD("SQUAD")
CANMAKEWORD("Confuse")
END PROGRAM
|
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #CLU | CLU | % This program needs to be merged with PCLU's "misc" library
% to use the random number generator.
%
% pclu -merge $CLUHOME/lib/misc.lib -compile prisoners.clu
% Seed the random number generator with the current time
init_rng = proc ()
d: date := now()
seed: int := ((d.hour*60) + d.minute)*60 + d.second
random$seed(seed)
end init_rng
% Place cards in drawers randomly
make_drawers = proc (n: int) returns (sequence[int])
d: array[int] := array[int]$predict(1,n)
% place each card in its own drawer
for i: int in int$from_to(1,n) do
array[int]$addh(d,i)
end
% shuffle the cards
for i: int in int$from_to_by(n,2,-1) do
j: int := random$next(i)+1
t: int := d[i]
d[i] := d[j]
d[j] := t
end
return(sequence[int]$a2s(d))
end make_drawers
% Random strategy
rand_strat = proc (p, tries: int, d: sequence[int]) returns (bool)
n: int := sequence[int]$size(d)
for i: int in int$from_to(1,tries) do
if p = d[random$next(n)+1] then return(true) end
end
return(false)
end rand_strat
% Optimal strategy
opt_strat = proc (p, tries: int, d: sequence[int]) returns (bool)
last: int := p
for i: int in int$from_to(1,tries) do
if d[last]=p then return(true) end
last := d[last]
end
return(false)
end opt_strat
% Run one simulation given a strategy
simulate = proc (n, tries: int,
strat: proctype (int,int,sequence[int]) returns (bool))
returns (bool)
d: sequence[int] := make_drawers(n)
for p: int in int$from_to(1,n) do
% If one prisoner fails, they all hang
if ~strat(p,tries,d) then return(false) end
end
return(true)
end simulate
% Run many simulations and count the successes
run_simulations = proc (amount, n, tries: int,
strat: proctype (int,int,sequence[int]) returns (bool))
returns (int)
ok: int := 0
for i: int in int$from_to(1,amount) do
if simulate(n,tries,strat) then
ok := ok + 1
end
end
return(ok)
end run_simulations
% Run simulations and show the results
show = proc (title: string,
amount, n, tries: int,
strat: proctype (int,int,sequence[int]) returns (bool))
po: stream := stream$primary_output()
stream$puts(po, title || ": ")
ok: int := run_simulations(amount, n, tries, strat)
perc: real := real$i2r(ok)*100.0/real$i2r(amount)
stream$putright(po, int$unparse(ok), 7)
stream$puts(po, " out of ")
stream$putright(po, int$unparse(amount), 7)
stream$putl(po, ", " || f_form(perc, 3, 2) || "%")
end show
start_up = proc ()
prisoners = 100
tries = 50
simulations = 50000
init_rng()
show(" Random", simulations, prisoners, tries, rand_strat)
show("Optimal", simulations, prisoners, tries, opt_strat)
end start_up |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Rust | Rust | fn divisors(n: u64) -> Vec<u64> {
let mut divs = vec![1];
let mut divs2 = Vec::new();
for i in (2..).take_while(|x| x * x <= n).filter(|x| n % x == 0) {
divs.push(i);
let j = n / i;
if i != j {
divs2.push(j);
}
}
divs.extend(divs2.iter().rev());
divs
}
fn sum_string(v: Vec<u64>) -> String {
v[1..]
.iter()
.fold(format!("{}", v[0]), |s, i| format!("{} + {}", s, i))
}
fn abundant_odd(search_from: u64, count_from: u64, count_to: u64, print_one: bool) -> u64 {
let mut count = count_from;
for n in (search_from..).step_by(2) {
let divs = divisors(n);
let total: u64 = divs.iter().sum();
if total > n {
count += 1;
let s = sum_string(divs);
if !print_one {
println!("{}. {} < {} = {}", count, n, s, total);
} else if count == count_to {
println!("{} < {} = {}", n, s, total);
}
}
if count == count_to {
break;
}
}
count_to
}
fn main() {
let max = 25;
println!("The first {} abundant odd numbers are:", max);
let n = abundant_odd(1, 0, max, false);
println!("The one thousandth abundant odd number is:");
abundant_odd(n, 25, 1000, true);
println!("The first abundant odd number above one billion is:");
abundant_odd(1e9 as u64 + 1, 0, 1, true);
} |
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Scala | Scala | import scala.collection.mutable.ListBuffer
object Abundant {
def divisors(n: Int): ListBuffer[Int] = {
val divs = new ListBuffer[Int]
divs.append(1)
val divs2 = new ListBuffer[Int]
var i = 2
while (i * i <= n) {
if (n % i == 0) {
val j = n / i
divs.append(i)
if (i != j) {
divs2.append(j)
}
}
i += 1
}
divs.appendAll(divs2.reverse)
divs
}
def abundantOdd(searchFrom: Int, countFrom: Int, countTo: Int, printOne: Boolean): Int = {
var count = countFrom
var n = searchFrom
while (count < countTo) {
val divs = divisors(n)
val tot = divs.sum
if (tot > n) {
count += 1
if (!printOne || !(count < countTo)) {
val s = divs.map(a => a.toString).mkString(" + ")
if (printOne) {
printf("%d < %s = %d\n", n, s, tot)
} else {
printf("%2d. %5d < %s = %d\n", count, n, s, tot)
}
}
}
n += 2
}
n
}
def main(args: Array[String]): Unit = {
val max = 25
printf("The first %d abundant odd numbers are:\n", max)
val n = abundantOdd(1, 0, max, printOne = false)
printf("\nThe one thousandth abundant odd number is:\n")
abundantOdd(n, 25, 1000, printOne = true)
printf("\nThe first abundant odd number above one billion is:\n")
abundantOdd((1e9 + 1).intValue(), 0, 1, printOne = true)
}
} |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Perl | Perl | print <<'HERE';
The 21 game. Each player chooses to add 1, 2, or 3 to a running total.
The player whose turn it is when the total reaches 21 wins. Enter q to quit.
HERE
my $total = 0;
while () {
print "Running total is: $total\n";
my ($me,$comp);
while () {
print 'What number do you play> ';
$me = <>; chomp $me;
last if $me =~ /^[123]$/;
insult($me);
}
$total += $me;
win('Human') if $total >= 21;
print "Computer plays: " . ($comp = 1+int(rand(3))) . "\n";
$total += $comp;
win('Computer') if $total >= 21;
}
sub win {
my($player) = @_;
print "$player wins.\n";
exit;
}
sub insult {
my($g) = @_;
exit if $g =~ /q/i;
my @insults = ('Yo mama', 'Jeez', 'Ummmm', 'Grow up');
my $i = $insults[1+int rand($#insults)];
print "$i, $g is not an integer between 1 and 3...\n"
} |
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #Euler_Math_Toolbox | Euler Math Toolbox |
>function try24 (v) ...
$n=cols(v);
$if n==1 and v[1]~=24 then
$ "Solved the problem",
$ return 1;
$endif
$loop 1 to n
$ w=tail(v,2);
$ loop 1 to n-1
$ h=w; a=v[1]; b=w[1];
$ w[1]=a+b; if try24(w); ""+a+"+"+b+"="+(a+b), return 1; endif;
$ w[1]=a-b; if try24(w); ""+a+"-"+b+"="+(a-b), return 1; endif;
$ w[1]=a*b; if try24(w); ""+a+"*"+b+"="+(a*b), return 1; endif;
$ if not b~=0 then
$ w[1]=a/b; if try24(w); ""+a+"/"+b+"="+(a/b), return 1; endif;
$ endif;
$ w=rotright(w);
$ end;
$ v=rotright(v);
$end;
$return 0;
$endfunction
|
http://rosettacode.org/wiki/2048 | 2048 | Task
Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Rules of the game
The rules are that on each turn the player must choose a direction (up, down, left or right).
All tiles move as far as possible in that direction, some move more than others.
Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.
A move is valid when at least one tile can be moved, if only by combination.
A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square (if there is one).
Adding a new tile on a blank space. Most of the time, a new 2 is to be added, and occasionally (10% of the time), a 4.
To win, the player must create a tile with the number 2048.
The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic, 2048.
Requirements
"Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say, that moving the tile row of:
[2][2][2][2]
to the right should result in:
......[4][4]
and not:
.........[8]
"Move direction priority".
If more than one variant of combining is possible, move direction shall indicate which combination will take effect.
For example, moving the tile row of:
...[2][2][2]
to the right should result in:
......[2][4]
and not:
......[4][2]
Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
Check for a win condition.
Check for a lose condition.
| #Amazing_Hopper | Amazing Hopper | VERSION 1: "Hopper" flavour.
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #Picat | Picat | import cp.
main =>
puzzle_all(1, 7, true, Sol1),
foreach(Sol in Sol1) println(Sol) end,
nl,
puzzle_all(3, 9, true, Sol2),
foreach(Sol in Sol2) println(Sol) end,
nl,
puzzle_all(0, 9, false, Sol3),
println(len=Sol3.len),
nl.
puzzle_all(Min, Max, Distinct, LL) =>
L = [A,B,C,D,E,F,G],
L :: Min..Max,
if Distinct then
all_different(L)
else
true
end,
T #= A+B,
T #= B+C+D,
T #= D+E+F,
T #= F+G,
% Another approach:
% Sums = $[A+B,B+C+D,D+E+F,F+G],
% foreach(I in 2..Sums.len) Sums[I] #= Sums[I-1] end,
LL = solve_all(L). |
http://rosettacode.org/wiki/15_puzzle_solver | 15 puzzle solver | Your task is to write a program that finds a solution in the fewest moves possible single moves to a random Fifteen Puzzle Game.
For this task you will be using the following puzzle:
15 14 1 6
9 11 4 12
0 10 7 3
13 8 5 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0
The output must show the moves' directions, like so: left, left, left, down, right... and so on.
There are two solutions, of fifty-two moves:
rrrulddluuuldrurdddrullulurrrddldluurddlulurruldrdrd
rrruldluuldrurdddluulurrrdlddruldluurddlulurruldrrdd
see: Pretty Print of Optimal Solution
Finding either one, or both is an acceptable result.
Extra credit.
Solve the following problem:
0 12 9 13
15 11 10 14
3 7 2 5
4 8 6 1
Related Task
15 puzzle game
A* search algorithm
| #C | C |
/**@file HybridIDA.c
* @brief solve 4x4 sliding puzzle with IDA* algorithm
* by RMM 2021-feb-22
* The Interative Deepening A* is relatively easy to code in 'C' since
* it does not need Queues and Lists to manage memory. Instead the
* search space state is held on the LIFO stack frame of recursive
* search function calls. Millions of nodes may be created but they
* are automatically deleted during backtracking.
* Run-time is a disadvantage with complex puzzles. Also it struggles
* to solve puzzles with depth g>50. I provided a test puzzle of g=52
* that works with ordinary search but the Rosetta challenge puzzle
* cycles forever. The HybridIDA solves it in 18 seconds.
* The HybridIDA solution has two phases.
* 1. It stops searching when a permutation begins with 1234.
* 2. Phase2 begins a regular search with the output of phase 1.
* (But an regular one time search can be done with phase 2
* only). Phase 1 is optional.)
* Pros: Hybrid IDA* is faster and solves more puzzles.
* Cons: May not find shortest path.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
typedef unsigned char u8t;
typedef unsigned short u16t;
enum { NR=4, NC=4, NCELLS = NR*NC };
enum { UP, DOWN, LEFT, RIGHT, NDIRS };
enum { OK = 1<<8, XX = 1<<9, FOUND = 1<<10, zz=0x80 };
enum { MAX_INT=0x7E, MAX_NODES=(16*65536)*90};
enum { BIT_HDR=1<<0, BIT_GRID=1<<1, BIT_OTHER=1<<2 };
enum { PHASE1,PHASE2 }; // solution phase
typedef struct { u16t dn; u16t hn; }HSORT_T;
typedef struct {
u8t data[NCELLS]; unsigned id; unsigned src;
u8t h; u8t g; u8t udlr;
}NODE_T; // contains puzzle data and metadata
NODE_T goal44={
{1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,0},0,0,0,0,0};
NODE_T work; // copy of puzzle with run-time changes
NODE_T G34={ //g=34; n=248,055; (1phase)
{13,9,5,4, 15,6,1,8, 0,10,2,11, 14,3,7,12},0,0,0,0,0};
NODE_T G52={ // g=52; n=34,296,567; (1phase)
{15,13,9,5, 14,6,1,4, 10,12,0,8, 3,7,11,2},0,0,0,0,0};
NODE_T G99={ // formidable Rosetta challenge (2phases)
{15,14,1,6, 9,11,4,12, 0,10,7,3, 13,8,5,2},0,0,0,0,0};
struct {
unsigned nodes;
unsigned gfound;
unsigned root_visits;
unsigned verbose;
unsigned locks;
unsigned phase;
}my;
u16t HybridIDA_star(NODE_T *pNode);
u16t make_node(NODE_T *pNode, NODE_T *pNew, u8t udlr );
u16t search(NODE_T *pNode, u16t bound);
u16t taxi_dist( NODE_T *pNode);
u16t tile_home( NODE_T *p44);
void print_node( NODE_T *pN, const char *pMsg, short force );
u16t goal_found(NODE_T *pNode);
char udlr_to_char( char udlr );
void idx_to_rc( u16t idx, u16t *row, u16t *col );
void sort_nodes(HSORT_T *p);
int main( )
{
my.verbose = 0; // minimal print node
// my.verbose |= BIT_HDR; // node header
// my.verbose |= BIT_GRID; // node 4x4 data
memcpy(&work, &G99, sizeof(NODE_T)); // select puzzle here
if(1){ // phase1 can skipped for easy puzzles
printf("Phase1: IDA* search for 1234 permutation..\n");
my.phase = PHASE1;
(void) HybridIDA_star(&work);
}
printf("Phase2: IDA* search phase1 seed..\n");
my.phase = PHASE2;
(void)HybridIDA_star(&work);
return 0;
}
/// \brief driver for Iterative Deepining A*
u16t HybridIDA_star(NODE_T *pN){
my.nodes = 1;
my.gfound = 0;
my.root_visits = 0;
pN->udlr = NDIRS;
pN->g = 0;
pN->h = taxi_dist(pN);
pN->id = my.nodes;
pN->src = 0;
const char *pr = {"Start"}; // for g++
print_node( pN,pr,1 );
u16t depth = pN->h;
while(1){
depth = search(pN,depth);
if( depth & FOUND){
return FOUND; // goodbye
}
if( depth & 0xFF00 ){
printf("..error %x\n",depth);
return XX;
}
my.root_visits++;
printf("[root visits: %u, depth %u]\n",my.root_visits,depth);
}
return 0;
}
/// \brief search is recursive. nodes are instance variables
u16t search(NODE_T *pN, u16t bound){
if(bound & 0xff00){ return bound; }
u16t f = pN->g + pN->h;
if( f > bound){ return f; }
if(goal_found(pN)){
my.gfound = pN->g;
memcpy(&work,pN,sizeof(NODE_T));
printf("total nodes=%d, g=%u \n", my.nodes, my.gfound);
const char *pr = {"Found.."}; // for g++
print_node( &work,pr,1 );
return FOUND;
}
NODE_T news;
// Sort successor nodes so that the lowest heuristic is visited
// before the less promising at the same level. This reduces the
// number of searches and finds more solutions
HSORT_T hlist[NDIRS];
for( short i=0; i<NDIRS; i++ ){
u16t rv = make_node(pN,&news, i );
hlist[i].dn = i;
if( rv & OK ){
hlist[i].hn = news.h;
continue;
}
hlist[i].hn = XX;
}
sort_nodes(&hlist[0]);
u16t temp, min = MAX_INT;
for( short i=0; i<NDIRS; i++ ){
if( hlist[i].hn > 0xff ) continue;
temp = make_node(pN,&news, hlist[i].dn );
if( temp & XX ) return XX;
if( temp & OK ){
news.id = my.nodes++;
print_node(&news," succ",0 );
temp = search(&news, bound);
if(temp & 0xff00){ return temp;}
if(temp < min){ min = temp; }
}
}
return min;
}
/// \brief sort nodes to prioitize heuristic low
void sort_nodes(HSORT_T *p){
for( short s=0; s<NDIRS-1; s++ ){
HSORT_T tmp = p[0];
if( p[1].hn < p[0].hn ){tmp=p[0]; p[0]=p[1]; p[1]=tmp; }
if( p[2].hn < p[1].hn ){tmp=p[1]; p[1]=p[2]; p[2]=tmp; }
if( p[3].hn < p[2].hn ){tmp=p[2]; p[2]=p[3]; p[3]=tmp; }
}
}
/// \brief return index of blank tile
u16t tile_home(NODE_T *pN ){
for( short i=0; i<NCELLS; i++ ){
if( pN->data[i] == 0 ) return i;
}
return XX;
}
/// \brief print node (or not) depending upon flags
void print_node( NODE_T *pN, const char *pMsg, short force ){
const int tp1 = 0;
if( my.verbose & BIT_HDR || force || tp1){
char ch = udlr_to_char(pN->udlr);
printf("id:%u src:%u; h=%d, g=%u, udlr=%c, %s\n",
pN->id, pN->src, pN->h, pN->g, ch, pMsg);
}
if(my.verbose & BIT_GRID || force || tp1){
for(u16t i=0; i<NR; i++ ){
for( u16t j=0; j<NC; j++ ){
printf("%3d",pN->data[i*NR+j]);
}
printf("\n");
}
printf("\n");
}
//putchar('>'); getchar();
}
/// \brief return true if selected tiles are settled
u16t goal_found(NODE_T *pN) {
if(my.phase==PHASE1){
short tags = 0;
for( short i=0; i<(NC); i++ ){
if( pN->data[i] == i+1 ) tags++;
}
if( tags==4 ) return 1; // Permutation starts with 1234
}
for( short i=0; i<(NR*NC); i++ ){
if( pN->data[i] != goal44.data[i] ) return 0;
}
return 1;
}
/// \brief convert UDLR index to printable char
char udlr_to_char( char udlr ){
char ch = '?';
switch(udlr){
case UP: ch = 'U'; break;
case DOWN: ch = 'D'; break;
case LEFT: ch = 'L'; break;
case RIGHT: ch = 'R'; break;
default: break;
}
return ch;
}
/// \brief convert 1-D array index to 2-D row-column
void idx_to_rc( u16t idx, u16t *row, u16t *col ){
*row = idx/NR; *col = abs( idx - (*row * NR));
}
/// \brief make successor node with blank tile moved UDRL
/// \return success or error
u16t make_node(NODE_T *pSrc, NODE_T *pNew, u8t udlr ){
u16t row,col,home_idx,idx2;
if(udlr>=NDIRS||udlr<0 ){ printf("invalid udlr %u\n",udlr); return XX; }
if(my.nodes > MAX_NODES ){ printf("excessive nodes %u\n",my.nodes);
return XX; }
memcpy(pNew,pSrc,sizeof(NODE_T));
home_idx = tile_home(pNew);
idx_to_rc(home_idx, &row, &col );
if( udlr == LEFT) { if( col < 1 ) return 0; col--; }
if( udlr == RIGHT ){ if( col >= (NC-1) ) return 0; col++; }
if( udlr == DOWN ) { if(row >= (NR-1)) return 0; row++; }
if( udlr == UP ){ if(row < 1) return 0; row--; }
idx2 = row * NR + col;
if( idx2 < NCELLS ){
u8t *p = &pNew->data[0];
p[home_idx] = p[idx2];
p[idx2] = 0; // swap
pNew->src = pSrc->id;
pNew->g = pSrc->g + 1;
pNew->h = taxi_dist(pNew);
pNew->udlr = udlr; // latest move;
return OK;
}
return 0;
}
/// \brief sum of 'manhattan taxi' distance between tile locations
u16t taxi_dist( NODE_T *pN){
u16t tile,sum = 0, r1,c1,r2,c2;
u8t *p44 = &pN->data[0];
for( short i=0; i<(NR*NC); i++ ){
tile = p44[i];
if( tile==0 ) continue;
idx_to_rc(i, &r2, &c2 );
idx_to_rc(tile-1, &r1, &c1 );
sum += abs(r1-r2) + abs(c1-c2);
}
}
return sum;
}
|
http://rosettacode.org/wiki/99_bottles_of_beer | 99 bottles of beer | Task
Display the complete lyrics for the song: 99 Bottles of Beer on the Wall.
The beer song
The lyrics follow this form:
99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall
98 bottles of beer on the wall
98 bottles of beer
Take one down, pass it around
97 bottles of beer on the wall
... and so on, until reaching 0 (zero).
Grammatical support for 1 bottle of beer is optional.
As with any puzzle, try to do it in as creative/concise/comical a way
as possible (simple, obvious solutions allowed, too).
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
See also
http://99-bottles-of-beer.net/
Category:99_Bottles_of_Beer
Category:Programming language families
Wikipedia 99 bottles of beer
| #ALGOL_68 | ALGOL 68 | main:(
FOR bottles FROM 99 TO 1 BY -1 DO
printf(($z-d" bottles of beer on the wall"l$, bottles));
printf(($z-d" bottles of beer"l$, bottles));
printf(($"Take one down, pass it around"l$));
printf(($z-d" bottles of beer on the wall"ll$, bottles-1))
OD
) |
http://rosettacode.org/wiki/24_game | 24 game | The 24 Game tests one's mental arithmetic.
Task
Write a program that randomly chooses and displays four digits, each from 1 ──► 9 (inclusive) with repetitions allowed.
The program should prompt for the player to enter an arithmetic expression using just those, and all of those four digits, used exactly once each. The program should check then evaluate the expression.
The goal is for the player to enter an expression that (numerically) evaluates to 24.
Only the following operators/functions are allowed: multiplication, division, addition, subtraction
Division should use floating point or rational arithmetic, etc, to preserve remainders.
Brackets are allowed, if using an infix expression evaluator.
Forming multiple digit numbers from the supplied digits is disallowed. (So an answer of 12+12 when given 1, 2, 2, and 1 is wrong).
The order of the digits when given does not have to be preserved.
Notes
The type of expression evaluator used is not mandated. An RPN evaluator is equally acceptable for example.
The task is not for the program to generate the expression, or test whether an expression is even possible.
Related tasks
24 game/Solve
Reference
The 24 Game on h2g2.
| #Commodore_BASIC | Commodore BASIC | 1 rem 24 game
2 rem for rosetta code
10 rem use appropriate basic base address
11 bh=08:bl=01: rem $0801 commodore 64
12 rem bh=16:bl=01: rem $1001 commodore +4
13 rem bh=18:bl=01: rem $1201 commodore vic-20 (35k ram)
14 rem bh=04:bl=01: rem $0401 commodore pet
15 rem bh=28:bl=01: rem $1c01 commodore 128 (bank 0)
35 print chr$(147);chr$(14);"Initializing...":gosub 1400
40 n$="":x=rnd(-ti):rem similar to 'randomize'
45 for i=1 to 4
50 t$=str$(int(rnd(1)*9)+1)
55 n$=n$+mid$(t$,2,1)
60 next i
65 print chr$(147)
70 print spc(16);"24 Game"
71 print:print " The goal of this game is to formulate"
72 print:print " an arithmetic expression that"
73 print:print " evaluates to a value of 24, however"
74 print:print " you may use only the four numbers"
75 print:print " given at random by the computer and"
76 print:print " the standard arithmetic operations of"
77 print:print " add, subtract, multiply, and divide."
78 print:print " Each digit must be used by itself. "
79 print:print " (e.g. if given 1, 2, 3, 4, you cannot"
80 print:print " combine 1 and 2 to make 12.)"
89 gosub 1000
90 i$="":f$="":p$=""
95 print chr$(147);"Allowed characters:"
100 i$=n$+"+-*/()"
110 print
120 for i=1 to len(i$)
130 print mid$(i$,i,1);" ";
140 next i:print
150 print:print "Spaces are ignored."
155 print "Enter 'end' to end.":print
160 input "Enter the formula";f$
170 if f$="end" then print "Program terminated.":end
180 print:print "Checking syntax... ";tab(34);
190 for i=1 to len(f$)
200 if mid$(f$,i,1)=" " then next i
210 c$=mid$(f$,i,1)
220 if c$="+" or c$="-" or c$="*" or c$="/" then p$=p$+"o":goto 250
230 if c$="(" or c$=")" then p$=p$+c$:goto 250
240 p$=p$+"n"
250 next i
260 restore
270 for i=1 to 11
280 read t$
290 if t$=p$ then i=11
300 next i
310 if t$<>p$ then gosub 1100:gosub 1000:goto 90
315 print "OK":print "Checking for illegal numbers... ";tab(34);
320 for i=1 to len(f$)
330 for j=1 to 10
335 ft$=mid$(f$,i,1)
336 il$=left$(i$,j-1):it$=mid$(i$,j,1):ir$=mid$(i$,j+1,len(i$))
340 if ft$=it$ and ft$>"0" and ft$<="9" then i$=il$+" "+ir$
350 next j
360 next i
370 if mid$(i$,1,4)<>" " then gosub 1200:gosub 1000:goto 90
375 print "OK":print "Evaluating expression...":print:print tab(10);f$;" =";
380 gosub 600:rem r=val(f$)
390 print r;" "
400 if r<>24 then gosub 1300:gosub 1000:goto 90
410 print "Correct!"
420 print:print "Would you like to go again (y/n)? ";
425 get k$:if k$<>"y" and k$<>"n" then 425
430 print k$
435 if k$="y" then goto 40
440 print:print "Very well. Have a nice day!"
450 end
500 rem pattern matching
501 data "nononon","(non)onon","nono(non)"
504 data "no(no(non))","((non)on)on","no(non)on"
507 data "(non)o(non)","no((non)on)","(nonon)on"
510 data "(no(non))on","no(nonon)"
600 rem get basic to evaluate our expression
605 a$="r="+f$:gosub 1440
610 for i=1 to len(a$)
615 rem simple token translation
620 b=asc(mid$(a$,i,1))
625 if (b>41 and b<48) or b=61 or b=94 then b=t(b)
630 poke (ad+i-1),b
635 next
640 gosub 2000
645 rem gosub 1440:rem uncomment to clear evaluation line after use
650 return
1000 rem screen pause
1005 pt$=" Press a key to continue. "
1010 print:print spc(20-int(len(pt$)/2));
1015 print chr$(18);pt$;chr$(146);
1020 get k$:if k$=""then 1020
1030 return
1100 rem syntax error
1105 print "ERROR":print
1110 print "Maybe something is out of place..."
1120 return
1200 rem invalid arguments
1205 print "ERROR":print
1210 print "?Invalid Arguments - "
1215 print "You used a number that is not allowed."
1220 return
1300 rem wrong formula
1305 print:print "Wrong answer. Try again."
1310 return
1400 dim t(94):t(43)=170:t(45)=171:t(42)=172:t(47)=173:t(61)=178:t(94)=174
1405 rem locate line 2005 in ram
1410 lh=bh:ll=bl:nh=0:nl=0
1415 ad=lh*256+ll
1420 lh=peek(ad+1):ll=peek(ad)
1425 nl=peek(ad+2):nh=peek(ad+3):n=nh*256+nl
1430 if n<>2005 then goto 1415
1435 ad=ad+4:return
1440 for j=ad to ad+73:poke j,asc(":"):next
1445 return
2000 rem put 74 colons on the next line
2005 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
2010 return
|
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Swift | Swift | var cache = [[1]]
func namesOfGod(n:Int) -> [Int] {
for l in cache.count...n {
var r = [0]
for x in 1...l {
r.append(r[r.count - 1] + cache[l - x][min(x, l-x)])
}
cache.append(r)
}
return cache[n]
}
func row(n:Int) -> [Int] {
let r = namesOfGod(n)
var returnArray = [Int]()
for i in 0...n - 1 {
returnArray.append(r[i + 1] - r[i])
}
return returnArray
}
println("rows:")
for x in 1...25 {
println("\(x): \(row(x))")
}
println("\nsums: ")
for x in [23, 123, 1234, 12345] {
cache = [[1]]
var array = namesOfGod(x)
var numInt = array[array.count - 1]
println("\(x): \(numInt)")
} |
http://rosettacode.org/wiki/9_billion_names_of_God_the_integer | 9 billion names of God the integer | This task is a variation of the short story by Arthur C. Clarke.
(Solvers should be aware of the consequences of completing this task.)
In detail, to specify what is meant by a “name”:
The integer 1 has 1 name “1”.
The integer 2 has 2 names “1+1”, and “2”.
The integer 3 has 3 names “1+1+1”, “2+1”, and “3”.
The integer 4 has 5 names “1+1+1+1”, “2+1+1”, “2+2”, “3+1”, “4”.
The integer 5 has 7 names “1+1+1+1+1”, “2+1+1+1”, “2+2+1”, “3+1+1”, “3+2”, “4+1”, “5”.
Task
Display the first 25 rows of a number triangle which begins:
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1
1 3 3 2 1 1
Where row
n
{\displaystyle n}
corresponds to integer
n
{\displaystyle n}
, and each column
C
{\displaystyle C}
in row
m
{\displaystyle m}
from left to right corresponds to the number of names beginning with
C
{\displaystyle C}
.
A function
G
(
n
)
{\displaystyle G(n)}
should return the sum of the
n
{\displaystyle n}
-th row.
Demonstrate this function by displaying:
G
(
23
)
{\displaystyle G(23)}
,
G
(
123
)
{\displaystyle G(123)}
,
G
(
1234
)
{\displaystyle G(1234)}
, and
G
(
12345
)
{\displaystyle G(12345)}
.
Optionally note that the sum of the
n
{\displaystyle n}
-th row
P
(
n
)
{\displaystyle P(n)}
is the integer partition function.
Demonstrate this is equivalent to
G
(
n
)
{\displaystyle G(n)}
by displaying:
P
(
23
)
{\displaystyle P(23)}
,
P
(
123
)
{\displaystyle P(123)}
,
P
(
1234
)
{\displaystyle P(1234)}
, and
P
(
12345
)
{\displaystyle P(12345)}
.
Extra credit
If your environment is able, plot
P
(
n
)
{\displaystyle P(n)}
against
n
{\displaystyle n}
for
n
=
1
…
999
{\displaystyle n=1\ldots 999}
.
Related tasks
Partition function P
| #Tcl | Tcl | set cache 1
proc cumu {n} {
global cache
for {set l [llength $cache]} {$l <= $n} {incr l} {
set r 0
for {set x 1; set y [expr {$l-1}]} {$y >= 0} {incr x; incr y -1} {
lappend r [expr {
[lindex $r end] + [lindex $cache $y [expr {min($x, $y)}]]
}]
}
lappend cache $r
}
return [lindex $cache $n]
}
proc row {n} {
set r [cumu $n]
for {set i 0; set j 1} {$j < [llength $r]} {incr i; incr j} {
lappend result [expr {[lindex $r $j] - [lindex $r $i]}]
}
return $result
}
puts "rows:"
foreach x {1 2 3 4 5 6 7 8 9 10} {
puts "${x}: \[[join [row $x] {, }]\]"
}
puts "\nsums:"
foreach x {23 123 1234 12345} {
puts "${x}: [lindex [cumu $x] end]"
} |
http://rosettacode.org/wiki/A%2BB | A+B | A+B ─── a classic problem in programming contests, it's given so contestants can gain familiarity with the online judging system being used.
Task
Given two integers, A and B.
Their sum needs to be calculated.
Input data
Two integers are written in the input stream, separated by space(s):
(
−
1000
≤
A
,
B
≤
+
1000
)
{\displaystyle (-1000\leq A,B\leq +1000)}
Output data
The required output is one integer: the sum of A and B.
Example
input
output
2 2
4
3 2
5
| #C | C | // Standard input-output streams
#include <stdio.h>
int main()
{
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", a + b);
return 0;
} |
http://rosettacode.org/wiki/Ackermann_function | Ackermann function | The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.
The Ackermann function is usually defined as follows:
A
(
m
,
n
)
=
{
n
+
1
if
m
=
0
A
(
m
−
1
,
1
)
if
m
>
0
and
n
=
0
A
(
m
−
1
,
A
(
m
,
n
−
1
)
)
if
m
>
0
and
n
>
0.
{\displaystyle A(m,n)={\begin{cases}n+1&{\mbox{if }}m=0\\A(m-1,1)&{\mbox{if }}m>0{\mbox{ and }}n=0\\A(m-1,A(m,n-1))&{\mbox{if }}m>0{\mbox{ and }}n>0.\end{cases}}}
Its arguments are never negative and it always terminates.
Task
Write a function which returns the value of
A
(
m
,
n
)
{\displaystyle A(m,n)}
. Arbitrary precision is preferred (since the function grows so quickly), but not required.
See also
Conway chained arrow notation for the Ackermann function.
| #TI-89_BASIC | TI-89 BASIC | Define A(m,n) = when(m=0, n+1, when(n=0, A(m-1,1), A(m-1, A(m, n-1)))) |
http://rosettacode.org/wiki/ABC_problem | ABC problem | ABC problem
You are encouraged to solve this task according to the task description, using any language you may know.
You are given a collection of ABC blocks (maybe like the ones you had when you were a kid).
There are twenty blocks with two letters on each block.
A complete alphabet is guaranteed amongst all sides of the blocks.
The sample collection of blocks:
(B O)
(X K)
(D Q)
(C P)
(N A)
(G T)
(R E)
(T G)
(Q D)
(F S)
(J W)
(H U)
(V I)
(A N)
(O B)
(E R)
(F S)
(L Y)
(P C)
(Z M)
Task
Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.
The rules are simple:
Once a letter on a block is used that block cannot be used again
The function should be case-insensitive
Show the output on this page for the following 7 words in the following example
Example
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Euphoria | Euphoria |
include std/text.e
sequence blocks = {{'B','O'},{'X','K'},{'D','Q'},{'C','P'},{'N','A'},
{'G','T'},{'R','E'},{'T','G'},{'Q','D'},{'F','S'},
{'J','W'},{'H','U'},{'V','I'},{'A','N'},{'O','B'},
{'E','R'},{'F','S'},{'L','Y'},{'P','C'},{'Z','M'}}
sequence words = {"A","BarK","BOOK","TrEaT","COMMON","SQUAD","CONFUSE"}
sequence current_word
sequence temp
integer matches
for i = 1 to length(words) do
current_word = upper(words[i])
temp = blocks
matches = 0
for j = 1 to length(current_word) do
for k = 1 to length(temp) do
if find(current_word[j],temp[k]) then
temp = remove(temp,k)
matches += 1
exit
end if
end for
if length(current_word) = matches then
printf(1,"%s: TRUE\n",{words[i]})
exit
end if
end for
if length(current_word) != matches then
printf(1,"%s: FALSE\n",{words[i]})
end if
end for
if getc(0) then end if
|
http://rosettacode.org/wiki/100_prisoners | 100 prisoners |
The Problem
100 prisoners are individually numbered 1 to 100
A room having a cupboard of 100 opaque drawers numbered 1 to 100, that cannot be seen from outside.
Cards numbered 1 to 100 are placed randomly, one to a drawer, and the drawers all closed; at the start.
Prisoners start outside the room
They can decide some strategy before any enter the room.
Prisoners enter the room one by one, can open a drawer, inspect the card number in the drawer, then close the drawer.
A prisoner can open no more than 50 drawers.
A prisoner tries to find his own number.
A prisoner finding his own number is then held apart from the others.
If all 100 prisoners find their own numbers then they will all be pardoned. If any don't then all sentences stand.
The task
Simulate several thousand instances of the game where the prisoners randomly open drawers
Simulate several thousand instances of the game where the prisoners use the optimal strategy mentioned in the Wikipedia article, of:
First opening the drawer whose outside number is his prisoner number.
If the card within has his number then he succeeds otherwise he opens the drawer with the same number as that of the revealed card. (until he opens his maximum).
Show and compare the computed probabilities of success for the two strategies, here, on this page.
References
The unbelievable solution to the 100 prisoner puzzle standupmaths (Video).
wp:100 prisoners problem
100 Prisoners Escape Puzzle DataGenetics.
Random permutation statistics#One hundred prisoners on Wikipedia.
| #Commodore_BASIC | Commodore BASIC |
10 rem 100 prisoners
20 rem set arrays
30 rem dr = drawers containing card values
40 rem ig = a list of numbers 1 through 100, shuffled to become the
41 rem guess sequence for each inmate - method 1
50 dim dr(100),ig(100)
55 rem initialize drawers with own card in each drawer
60 for i=1 to 100:dr(i)=i:next
1000 print chr$(147);"how many trials for each method";:input tt
1010 for m=1 to 2:su(m)=0:fa(m)=0
1015 for tn=1 to tt
1020 on m gosub 2000,3000
1025 rem ip = number of inmates who passed
1030 if ip=100 then su(m)=su(m)+1
1040 if ip<100 then fa(m)=fa(m)+1
1045 next tn
1055 next m
1060 print chr$(147);"Results:":print
1070 print "Out of";tt;"trials, the results are"
1071 print "as follows...":print
1072 print "1. Random Guessing:"
1073 print " ";su(1);"successes"
1074 print " ";fa(1);"failures"
1075 print " ";su(1)/tn;"{left-crsr}% success rate.":print
1077 print "2. Chained Number Picking:"
1078 print " ";su(2);"successes"
1079 print " ";fa(2);"failures"
1080 print " ";(su(2)/tn)*100;"{left-crsr}% success rate.":print
1100 print:print "Again?"
1110 get k$:if k$="" then 1110
1120 if k$="y" then 1000
1500 end
2000 rem random guessing method
2005 for x=1 to 100:ig(x)=x:next:ip=0:gosub 4000
2007 for i=1 to 100
2010 for x=1 to 100:t=ig(x):np=int(rnd(1)*100)+1:ig(x)=ig(np):ig(np)=t:next
2015 for g=1 to 50
2020 if dr(ig(g))=i then ip=ip+1:next i:return
2025 next g
2030 return
3000 rem chained method
3005 ip=0:gosub 4000
3007 rem iterate through each inmate
3010 fori=1to100
3015 ng=i:forg=1to50
3020 cd=dr(ng)
3025 ifcd=ithenip=ip+1:nexti:return
3030 ifcd<>ithenng=cd
3035 nextg:return
4000 rem shuffle the drawer cards randomly
4010 x=rnd(-ti)
4020 for i=1 to 100
4030 r=int(rnd(1)*100)+1:t=dr(i):dr(i)=dr(r):dr(r)=t:next
4040 return
|
http://rosettacode.org/wiki/Abundant_odd_numbers | Abundant odd numbers | An Abundant number is a number n for which the sum of divisors σ(n) > 2n,
or, equivalently, the sum of proper divisors (or aliquot sum) s(n) > n.
E.G.
12 is abundant, it has the proper divisors 1,2,3,4 & 6 which sum to 16 ( > 12 or n);
or alternately, has the sigma sum of 1,2,3,4,6 & 12 which sum to 28 ( > 24 or 2n).
Abundant numbers are common, though even abundant numbers seem to be much more common than odd abundant numbers.
To make things more interesting, this task is specifically about finding odd abundant numbers.
Task
Find and display here: at least the first 25 abundant odd numbers and either their proper divisor sum or sigma sum.
Find and display here: the one thousandth abundant odd number and either its proper divisor sum or sigma sum.
Find and display here: the first abundant odd number greater than one billion (109) and either its proper divisor sum or sigma sum.
References
OEIS:A005231: Odd abundant numbers (odd numbers n whose sum of divisors exceeds 2n)
American Journal of Mathematics, Vol. 35, No. 4 (Oct., 1913), pp. 413-422 - Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors (LE Dickson)
| #Sidef | Sidef | func is_abundant(n) {
n.sigma > 2*n
}
func odd_abundants (from = 1) {
from = (from + 2)//3
from += (from%2 - 1)
3*from .. Inf `by` 6 -> lazy.grep(is_abundant)
}
say " Index | Number | proper divisor sum"
const sep = "-------+-------------+-------------------\n"
const fstr = "%6s | %11s | %11s\n"
print sep
odd_abundants().first(25).each_kv {|k,n|
printf(fstr, k+1, n, n.sigma-n)
}
with (odd_abundants().nth(1000)) {|n|
printf(sep + fstr, 1000, n, n.sigma-n)
}
with(odd_abundants(1e9).first) {|n|
printf(sep + fstr, '***', n, n.sigma-n)
} |
http://rosettacode.org/wiki/21_game | 21 game | 21 game
You are encouraged to solve this task according to the task description, using any language you may know.
21 is a two player game, the game is played by choosing
a number (1, 2, or 3) to be added to the running total.
The game is won by the player whose chosen number causes the running total
to reach exactly 21.
The running total starts at zero.
One player will be the computer.
Players alternate supplying a number to be added to the running total.
Task
Write a computer program that will:
do the prompting (or provide a button menu),
check for errors and display appropriate error messages,
do the additions (add a chosen number to the running total),
display the running total,
provide a mechanism for the player to quit/exit/halt/stop/close the program,
issue a notification when there is a winner, and
determine who goes first (maybe a random or user choice, or can be specified when the game begins).
| #Phix | Phix | --
-- demo\rosetta\21_Game.exw
-- ========================
--
with javascript_semantics -- DEV NORMALIZESIZE, CANFOCUS, "You" not checked, VALUE_HANDLE.
-- The radio_texts simply don't do anything at all in p2js.
constant title = "21 Game",
help_text = """
Play by choosing 1, 2, or 3 to add to the running total (initially 0).
The first player to reach 21 wins.
If the computer goes first you cannot win.
If you leave your opponent on 18, 19, or 20, they will play {3,2,1} and win.
If you leave your opponent on 17, simply match their play {1,2,3} with {3,2,1} and win.
If you leave your opponent on 14, 15, or 16, they'll leave you on 17 and win.
So the aim is 21 (doh), and before that 17, 13, 9, 5, and 1. Anything else loses.
""",
radio_texts = {"You","Computer","Random"},
button_text = {"one","two","three","concede","new game","quit"}
integer total = 0
include pGUI.e
Ihandle dlg, vbox, frame, radios, playstate
sequence radioset, buttons
function show_help()
IupMessage(title,help_text)
return IUP_IGNORE -- (don't open browser help!)
end function
function play(integer n)
if n!=0 then
if n=6 then return IUP_CLOSE end if
string title
if n>3 then
-- concede or new_game
total = 0
title = iff(n=4?"(conceded) ":"")
title &= "Total is 0"
Ihandle r = IupGetAttributePtr(radios,"VALUE_HANDLE")
n = find(r,radioset)
if n=2 or (n=3 and rand(2)=1) then
title &= "," -- trigger a computer move
end if
IupSetInt(buttons[1..3],"ACTIVE",true)
else
-- n = 1..3
title = sprintf("Total is %d",total)
if total=21 -- (from key_cb)
or total+n>21 then -- (invalid)
return IUP_IGNORE
end if
total += n
title &= sprintf(", you play %d (-> %d),",{n,total})
if total=21 then title &= " you win" end if
end if
if find(',',title) and total!=21 then
-- computer move
sequence moves = {1,rand(3),3,2}
n = moves[mod(total,4)+1]
total += n
title &= sprintf(" computer plays %d (-> %d)",{n,total})
if total=21 then
title &= ", computer wins"
elsif mod(total,4)=1 then
title &= ", (you've already lost)"
end if
end if
if total=21 then
title &= " GAME OVER"
IupSetInt(buttons[1..4],"ACTIVE",false)
else
if total>18 then
IupSetInt(buttons[22-total..3],"ACTIVE",false)
end if
IupSetInt(buttons[4],"ACTIVE",total!=0)
end if
IupSetFocus(dlg) -- (stops inactive button beeping)
IupSetStrAttribute(playstate,"TITLE",title)
end if
return IUP_IGNORE
end function
function button_cb(Ihandle ih)
string title = IupGetAttribute(ih,"TITLE")
return play(find(title,button_text))
end function
constant cb_button = Icallback("button_cb")
function key_cb(Ihandle /*dlg*/, atom c)
if c=K_ESC then return IUP_CLOSE end if -- (standard practice for me)
if c=K_F5 then return IUP_DEFAULT end if -- (let browser reload work)
if c=K_F1 then return show_help() end if
return play(find(upper(c),"123CNQ"))
end function
IupOpen()
playstate = IupLabel("","EXPAND=HORIZONTAL, PADDING=10x10")
radioset = apply(true,IupToggle,{radio_texts,{"RIGHTBUTTON=YES, CANFOCUS=NO"}})
buttons = apply(true,IupButton,{button_text,cb_button,{"PADDING=5x5"}})
radios = IupRadio(IupHbox(radioset,"GAP=45"))
frame = IupHbox({IupLabel(`First Player:`),radios},"NORMALIZESIZE=VERTICAL")
vbox = IupVbox({frame,playstate,IupHbox(buttons,"GAP=10")},"MARGIN=20x10")
dlg = IupDialog(vbox,`TITLE="%s", MINSIZE=540x200`,{title})
IupShow(dlg)
IupSetCallback({dlg,buttons},"KEY_CB",Icallback("key_cb"))
IupSetAttributeHandle(NULL,"PARENTDIALOG",dlg)
{} = play(find("new game",button_text))
if platform()!=JS then
IupMainLoop()
IupClose()
end if
|
http://rosettacode.org/wiki/24_game/Solve | 24 game/Solve | task
Write a program that takes four digits, either from user input or by random generation, and computes arithmetic expressions following the rules of the 24 game.
Show examples of solutions generated by the program.
Related task
Arithmetic Evaluator
| #F.23 | F# | open System
let rec gcd x y = if x = y || x = 0 then y else if x < y then gcd y x else gcd y (x-y)
let abs (x : int) = Math.Abs x
let sign (x: int) = Math.Sign x
let cint s = Int32.Parse(s)
type Rat(x : int, y : int) =
let g = if y = 0 then 0 else gcd (abs x) (abs y)
member this.n = if g = 0 then sign y * sign x else sign y * x / g // store a minus sign in the numerator
member this.d =
if y = 0 then 0 else sign y * y / g
static member (~-) (x : Rat) = Rat(-x.n, x.d)
static member (+) (x : Rat, y : Rat) = Rat(x.n * y.d + y.n * x.d, x.d * y.d)
static member (-) (x : Rat, y : Rat) = x + Rat(-y.n, y.d)
static member (*) (x : Rat, y : Rat) = Rat(x.n * y.n, x.d * y.d)
static member (/) (x : Rat, y : Rat) = x * Rat(y.d, y.n)
interface System.IComparable with
member this.CompareTo o =
match o with
| :? Rat as that -> compare (this.n * that.d) (that.n * this.d)
| _ -> invalidArg "o" "cannot compare values of differnet types."
override this.Equals(o) =
match o with
| :? Rat as that -> this.n = that.n && this.d = that.d
| _ -> false
override this.ToString() =
if this.d = 1 then this.n.ToString()
else sprintf @"<%d,%d>" this.n this.d
new(x : string, y : string) = if y = "" then Rat(cint x, 1) else Rat(cint x, cint y)
type expression =
| Const of Rat
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression
let rec eval = function
| Const c -> c
| Sum (f, g) -> eval f + eval g
| Diff(f, g) -> eval f - eval g
| Prod(f, g) -> eval f * eval g
| Quot(f, g) -> eval f / eval g
let print_expr expr =
let concat (s : seq<string>) = System.String.Concat s
let paren p prec op_prec = if prec > op_prec then p else ""
let rec print prec = function
| Const c -> c.ToString()
| Sum(f, g) ->
concat [ (paren "(" prec 0); (print 0 f); " + "; (print 0 g); (paren ")" prec 0) ]
| Diff(f, g) ->
concat [ (paren "(" prec 0); (print 0 f); " - "; (print 1 g); (paren ")" prec 0) ]
| Prod(f, g) ->
concat [ (paren "(" prec 2); (print 2 f); " * "; (print 2 g); (paren ")" prec 2) ]
| Quot(f, g) ->
concat [ (paren "(" prec 2); (print 2 f); " / "; (print 3 g); (paren ")" prec 2) ]
print 0 expr
let rec normal expr =
let norm epxr =
match expr with
| Sum(x, y) -> if eval x <= eval y then expr else Sum(normal y, normal x)
| Prod(x, y) -> if eval x <= eval y then expr else Prod(normal y, normal x)
| _ -> expr
match expr with
| Const c -> expr
| Sum(x, y) -> norm (Sum(normal x, normal y))
| Prod(x, y) -> norm (Prod(normal x, normal y))
| Diff(x, y) -> Diff(normal x, normal y)
| Quot(x, y) -> Quot(normal x, normal y)
let rec insert v = function
| [] -> [[v]]
| x::xs as li -> (v::li) :: (List.map (fun y -> x::y) (insert v xs))
let permutations li =
List.foldBack (fun x z -> List.concat (List.map (insert x) z)) li [[]]
let rec comp expr rest = seq {
match rest with
| x::xs ->
yield! comp (Sum (expr, x)) xs;
yield! comp (Diff(x, expr)) xs;
yield! comp (Diff(expr, x)) xs;
yield! comp (Prod(expr, x)) xs;
yield! comp (Quot(x, expr)) xs;
yield! comp (Quot(expr, x)) xs;
| [] -> if eval expr = Rat(24,1) then yield print_expr (normal expr)
}
[<EntryPoint>]
let main argv =
let digits = List.init 4 (fun i -> Const (Rat(argv.[i],"")))
let solutions =
permutations digits
|> Seq.groupBy (sprintf "%A")
|> Seq.map snd |> Seq.map Seq.head
|> Seq.map (fun x -> comp (List.head x) (List.tail x))
|> Seq.choose (fun x -> if Seq.isEmpty x then None else Some x)
|> Seq.concat
if Seq.isEmpty solutions then
printfn "No solutions."
else
solutions
|> Seq.groupBy id
|> Seq.iter (fun x -> printfn "%s" (fst x))
0 |
http://rosettacode.org/wiki/2048 | 2048 | Task
Implement a 2D sliding block puzzle game where blocks with numbers are combined to add their values.
Rules of the game
The rules are that on each turn the player must choose a direction (up, down, left or right).
All tiles move as far as possible in that direction, some move more than others.
Two adjacent tiles (in that direction only) with matching numbers combine into one bearing the sum of those numbers.
A move is valid when at least one tile can be moved, if only by combination.
A new tile with the value of 2 is spawned at the end of each turn at a randomly chosen empty square (if there is one).
Adding a new tile on a blank space. Most of the time, a new 2 is to be added, and occasionally (10% of the time), a 4.
To win, the player must create a tile with the number 2048.
The player loses if no valid moves are possible.
The name comes from the popular open-source implementation of this game mechanic, 2048.
Requirements
"Non-greedy" movement.
The tiles that were created by combining other tiles should not be combined again during the same turn (move).
That is to say, that moving the tile row of:
[2][2][2][2]
to the right should result in:
......[4][4]
and not:
.........[8]
"Move direction priority".
If more than one variant of combining is possible, move direction shall indicate which combination will take effect.
For example, moving the tile row of:
...[2][2][2]
to the right should result in:
......[2][4]
and not:
......[4][2]
Check for valid moves. The player shouldn't be able to skip their turn by trying a move that doesn't change the board.
Check for a win condition.
Check for a lose condition.
| #Applesoft_BASIC | Applesoft BASIC | PRINT "Game 2048"
10 REM ************
20 REM * 2024 *
30 REM ************
40 HOME
100 W = 2: REM **** W=0 FOR LOOSE W=1 FOR WIN W=2 FOR PLAYING ****
110 DIM MA(4,4)
120 FC = 16: REM FREECELLS
130 A$ = "":SC = 0:MT = 2
140 GOSUB 1000: DRAW THESCREEN
150 GOSUB 1500: REM PRINT SCORE AND MAXTILE
160 GOSUB 1700: REM BREED
170 GOSUB 2000: REM PRINT SCORES IN THE MATRIX AND CALC FC AND MT
200 REM ******************
210 REM MAIN PROGRAM
220 REM ******************
230 HTAB 38: VTAB 22
235 IF W < 2 THEN GOTO 950: REM ******* END GAME ********
240 WAIT - 16384,128:A = PEEK ( - 16384) - 128 - 68: POKE - 16368,0
250 ON A GOTO 999,900,900,900,300,350,400,900,450
280 REM ************************
285 REM FOLLOWING LINES HANDLE THE UP, LEFT, RIGHT, DOWN, NOP, EXIT
290 REM ************************
300 GOSUB 2500: GOSUB 3500: GOSUB 2500: GOSUB 1700: GOSUB 2000: GOSUB 1
500
310 GOTO 200
350 GOSUB 2600: GOSUB 3600: GOSUB 2600: GOSUB 1700: GOSUB 2000: GOSUB 1
500
360 GOTO 200
400 GOSUB 2700: GOSUB 3700: GOSUB 2700: GOSUB 1700: GOSUB 2000: GOSUB 1
500
410 GOTO 200
450 GOSUB 2800: GOSUB 3800: GOSUB 2800: GOSUB 1700: GOSUB 2000: GOSUB 1
500
460 GOTO 200
900 GOTO 200
950 HOME : VTAB 10
960 PRINT " ********************"
970 IF W = 1 THEN PRINT " * YOU WIN *"
980 IF W = 0 THEN PRINT " * YOU LOOSE *"
990 PRINT " ********************"
995 PRINT " SCORE =";SC
996 PRINT " MAXTILE=";MT
999 END
1000 REM DRAW FRAME + SCORE
1010 FOR I = 1 TO 5
1020 VTAB 1 + (I - 1) * 4: PRINT "---------------------"
1030 NEXT I
1040 FOR I = 1 TO 4
1050 FOR J = 1 TO 3
1060 VTAB 1 + (I - 1) * 4 + J: PRINT "| | | | |"
1070 NEXT J
1080 NEXT I
1090 HTAB 30: VTAB 3: PRINT "I";
1100 HTAB 30: VTAB 9: PRINT "M";
1110 HTAB 25: VTAB 6: PRINT "J";
1120 HTAB 35: VTAB 6: PRINT "K";
1130 HTAB 25: VTAB 12: PRINT "E = END"
1140 HTAB 25: VTAB 14: PRINT "SCORE:"
1150 HTAB 25: VTAB 16: PRINT "MAXTILE:"
1160 HTAB 1: VTAB 19: PRINT "YOU CAN SLIDE THE NUMBERS IN THE MATRIX"
1170 HTAB 1: VTAB 20: PRINT "BY PRESSING IJKM. WHEN MATCHING NUMBERS"
1180 HTAB 1: VTAB 21: PRINT "MEET THEY COMBINE IN THE SUM"
1190 HTAB 1: VTAB 22: PRINT "TO WIN YOU HAVE TO REACH THE SUM 2048"
1200 RETURN
1500 REM ***************
1501 REM PRINT SCORE + MAXTILE
1502 REM ***************
1510 VTAB 14: HTAB 32:
1520 SC$ = STR$ (SC):LS = LEN (SC$)
1530 FOR I = 1 TO 7 - LS: PRINT " ";: NEXT I
1540 PRINT SC$
1550 VTAB 16: HTAB 34:
1560 MT$ = STR$ (MT):LS = LEN (MT$)
1570 FOR I = 1 TO 5 - LS: PRINT " ";: NEXT I
1580 PRINT MT$
1590 IF SC = 2048 THEN W = 1: REM ******** YOU WIN ********
1690 RETURN
1700 REM ****************
1701 REM PUT A "2" IN A RANDOM EMPTY CELL
1702 REM ****************
1708 IF FC = 0 THEN W = 0: GOTO 1800: REM ***** YOU LOOSE *****
1710 K = INT ( RND (1) * FC + 1)
1720 N = 0
1730 FOR I = 1 TO 4
1740 FOR J = 1 TO 4
1750 IF MA(I,J) = 0 THEN N = N + 1
1760 IF N = K THEN MA(I,J) = 2:FC = FC - 1:I = 4:J = 4
1780 NEXT J
1790 NEXT I
1800 RETURN
2000 REM *************
2001 REM WRITE THE CELL CONTENT AND CALC. FREECELLS AND MAXTILE
2002 REM *************
2005 FC = 0:MT = 0: REM INITIALIZE FREECELLS AND MAXTILES
2010 FOR I = 1 TO 4
2020 FOR J = 1 TO 4
2030 HTAB 2 + (J - 1) * 5: VTAB 3 + (I - 1) * 4
2040 PRINT " ";: HTAB 2 + (J - 1) * 5
2050 IF MA(I,J) = 0 THEN FC = FC + 1: GOTO 2060
2055 PRINT MA(I,J);
2060 IF MA(I,J) > MT THEN MT = MA(I,J)
2090 NEXT J
2100 NEXT I
2190 RETURN
2500 REM *****************
2510 REM COMPACT UP - KIND OF BUBBLE SORT
2520 REM *****************
2530 FOR J = 1 TO 4
2540 FOR K = 3 TO 1 STEP - 1
2550 FOR I = 1 TO K
2560 IF MA(I,J) = 0 THEN MA(I,J) = MA(I + 1,J):MA(I + 1,J) = 0
2570 NEXT : NEXT : NEXT
2590 RETURN
2600 REM ************
2610 REM COMPACT LEFT
2620 REM ************
2630 FOR I = 1 TO 4
2640 FOR K = 3 TO 1 STEP - 1
2650 FOR J = 1 TO K
2660 IF MA(I,J) = 0 THEN MA(I,J) = MA(I,J + 1):MA(I,J + 1) = 0
2670 NEXT : NEXT : NEXT
2690 RETURN
2700 REM ************
2710 REM COMPACT RIGHT
2720 REM ************
2730 FOR I = 1 TO 4
2740 FOR K = 2 TO 4
2750 FOR J = 4 TO K STEP - 1
2760 IF MA(I,J) = 0 THEN MA(I,J) = MA(I,J - 1):MA(I,J - 1) = 0
2770 NEXT : NEXT : NEXT
2790 RETURN
2800 REM *****************
2810 REM COMPACT DOWN
2820 REM *****************
2830 FOR J = 1 TO 4
2840 FOR K = 2 TO 4
2850 FOR I = 4 TO K STEP - 1
2860 IF MA(I,J) = 0 THEN MA(I,J) = MA(I - 1,J):MA(I - 1,J) = 0
2870 NEXT : NEXT : NEXT
2890 RETURN
3500 REM ***************
3510 REM ADD UP
3520 REM ***************
3530 FOR J = 1 TO 4
3540 FOR I = 1 TO 3
3550 IF MA(I,J) = MA(I + 1,J) THEN MA(I,J) = MA(I,J) * 2:MA(I + 1,J) =
0:SC = SC + MA(I,J)
3560 NEXT : NEXT
3590 RETURN
3600 REM **************
3610 REM SUM LEFT
3620 REM **************
3630 FOR I = 1 TO 4
3640 FOR J = 1 TO 3
3650 IF MA(I,J) = MA(I,J + 1) THEN MA(I,J) = MA(I,J) * 2:MA(I,J + 1) =
0:SC = SC + MA(I,J)
3660 NEXT : NEXT
3690 RETURN
3700 REM **************
3710 REM SUM RIGHT
3720 REM **************
3730 FOR I = 1 TO 4
3740 FOR J = 4 TO 2 STEP - 1
3750 IF MA(I,J) = MA(I,J - 1) THEN MA(I,J) = MA(I,J) * 2:MA(I,J - 1) =
0:SC = SC + MA(I,J)
3760 NEXT : NEXT
3790 RETURN
3800 REM ***************
3810 REM ADD DOWN
3820 REM ***************
3830 FOR J = 1 TO 4
3840 FOR I = 4 TO 2 STEP - 1
3850 IF MA(I,J) = MA(I - 1,J) THEN MA(I,J) = MA(I,J) * 2:MA(I - 1,J) =
0:SC = SC + MA(I,J)
3860 NEXT : NEXT
3890 RETURN
-----
it runs somehow slowly but still fun to play. The only non standard basic is the input routine which reads directly the memory location (line 240) instead of using "input" od "get"
---------------------
| | | | |
|4 | | |2 | I
| | | | |
---------------------
| | | | | J K
|4 |2 | | |
| | | | |
--------------------- M
| | | | |
|2 |16 |4 | |
| | | | | E = END
---------------------
| | | | | SCORE: 4924
|128 |512 | | |
| | | | | MAXTILE: 512
---------------------
YOU CAN SLIDE THE NUMBERS IN THE MATRIX
BY PRESSING IJKM. WHEN MATCHING NUMBERS
MEET THEY COMBINE IN THE SUM
TO WIN YOU HAVE TO REACH THE SUM 2048
|
http://rosettacode.org/wiki/4-rings_or_4-squares_puzzle | 4-rings or 4-squares puzzle | 4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗
║ ║ ║ ║
║ a ║ ║ e ║
║ ║ ║ ║
║ ┌───╫──────╫───┐ ┌───╫─────────┐
║ │ ║ ║ │ │ ║ │
║ │ b ║ ║ d │ │ f ║ │
║ │ ║ ║ │ │ ║ │
║ │ ║ ║ │ │ ║ │
╚══════════╪═══╝ ╚═══╪══════╪═══╝ │
│ c │ │ g │
│ │ │ │
│ │ │ │
└──────────────┘ └─────────────┘
Show all output here.
Show all solutions for each letter being unique with
LOW=1 HIGH=7
Show all solutions for each letter being unique with
LOW=3 HIGH=9
Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
Related task
Solve the no connection puzzle
| #PL.2FSQL | PL/SQL |
CREATE TABLE allints (v NUMBER);
CREATE TABLE results
(
a NUMBER,
b NUMBER,
c NUMBER,
d NUMBER,
e NUMBER,
f NUMBER,
g NUMBER
);
CREATE OR REPLACE PROCEDURE foursquares(lo NUMBER,hi NUMBER,uniq BOOLEAN,show BOOLEAN)
AS
a NUMBER;
b NUMBER;
c NUMBER;
d NUMBER;
e NUMBER;
f NUMBER;
g NUMBER;
out_line VARCHAR2(2000);
CURSOR results_cur IS
SELECT
a,
b,
c,
d,
e,
f,
g
FROM
results
ORDER BY
a,b,c,d,e,f,g;
results_rec results_cur%ROWTYPE;
solutions NUMBER;
uorn VARCHAR2(2000);
BEGIN
solutions := 0;
DELETE FROM allints;
DELETE FROM results;
FOR i IN lo..hi LOOP
INSERT INTO allints VALUES (i);
END LOOP;
COMMIT;
IF uniq = TRUE THEN
INSERT INTO results
SELECT
a.v a,
b.v b,
c.v c,
d.v d,
e.v e,
f.v f,
g.v g
FROM
allints a, allints b, allints c,allints d,
allints e, allints f, allints g
WHERE
a.v NOT IN (b.v,c.v,d.v,e.v,f.v,g.v) AND
b.v NOT IN (c.v,d.v,e.v,f.v,g.v) AND
c.v NOT IN (d.v,e.v,f.v,g.v) AND
d.v NOT IN (e.v,f.v,g.v) AND
e.v NOT IN (f.v,g.v) AND
f.v NOT IN (g.v) AND
a.v = c.v + d.v AND
g.v = d.v + e.v AND
b.v = e.v + f.v - c.v
ORDER BY
a,b,c,d,e,f,g;
uorn := ' unique solutions in ';
ELSE
INSERT INTO results
SELECT
a.v a,
b.v b,
c.v c,
d.v d,
e.v e,
f.v f,
g.v g
FROM
allints a, allints b, allints c,allints d,
allints e, allints f, allints g
WHERE
a.v = c.v + d.v AND
g.v = d.v + e.v AND
b.v = e.v + f.v - c.v
ORDER BY
a,b,c,d,e,f,g;
uorn := ' non-unique solutions in ';
END IF;
COMMIT;
OPEN results_cur;
LOOP
FETCH results_cur INTO results_rec;
EXIT WHEN results_cur%notfound;
a := results_rec.a;
b := results_rec.b;
c := results_rec.c;
d := results_rec.d;
e := results_rec.e;
f := results_rec.f;
g := results_rec.g;
solutions := solutions + 1;
IF show = TRUE THEN
out_line := TO_CHAR(a) || ' ';
out_line := out_line || ' ' || TO_CHAR(b) || ' ';
out_line := out_line || ' ' || TO_CHAR(c) || ' ';
out_line := out_line || ' ' || TO_CHAR(d) || ' ';
out_line := out_line || ' ' || TO_CHAR(e) || ' ';
out_line := out_line || ' ' || TO_CHAR(f) ||' ';
out_line := out_line || ' ' || TO_CHAR(g);
END IF;
DBMS_OUTPUT.put_line(out_line);
END LOOP;
CLOSE results_cur;
out_line := TO_CHAR(solutions) || uorn;
out_line := out_line || TO_CHAR(lo) || ' to ' || TO_CHAR(hi);
DBMS_OUTPUT.put_line(out_line);
END;
/
|
Subsets and Splits