task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #SNOBOL4 | SNOBOL4 | A = "true"
* "if-then-else"
if A "true" :s(goTrue)f(goFalse)
goTrue output = "A is TRUE" :(fi)
goFalse output = "A is not TRUE" :(fi)
fi
* "switch"
switch A ("true" | "false") . switch :s($("case" switch))f(default)
casetrue output = "A is TRUE" :(esac)
casefalse output = "A is FALSE" :(esac)
default output = "A is neither FALSE nor TRUE"
esac
end |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #M2000_Interpreter | M2000 Interpreter |
Function ChineseRemainder(n(), a()) {
Function mul_inv(a, b) {
if b==1 then =1 : exit
b0=b
x1=1 : x0=0
while a>1
q=a div b
t=b : b=a mod b: a=t
t=x0: x0=x1-q*x0:x1=t
end while
if x1<0 then x1+=b0
=x1
}
def p, i, prod=1, sum
for i=0 to len(n())-1 {prod*=n(i)}
for i=0 to len(a())-1
p=prod div n(i)
sum+=a(i)*mul_inv(p, n(i))*p
next
=sum mod prod
}
Print ChineseRemainder((3,5,7), (2,3,2))
|
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Maple | Maple | > chrem( [2, 3, 2], [3, 5, 7] );
23
|
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Vlang | Vlang | fn chowla(n int) int {
if n < 1 {
panic("argument must be a positive integer")
}
mut sum := 0
for i := 2; i*i <= n; i++ {
if n%i == 0 {
j := n / i
if i == j {
sum += i
} else {
sum += i + j
}
}
}
return sum
}
fn sieve(limit int) []bool {
// True denotes composite, false denotes prime.
// Only interested in odd numbers >= 3
mut c := []bool{len: limit}
for i := 3; i*3 < limit; i += 2 {
if !c[i] && chowla(i) == 0 {
for j := 3 * i; j < limit; j += 2 * i {
c[j] = true
}
}
}
return c
}
fn main() {
for i := 1; i <= 37; i++ {
println("chowla(${i:2}) = ${chowla(i)}")
}
println('')
mut count := 1
mut limit := int(1e7)
c := sieve(limit)
mut power := 100
for i := 3; i < limit; i += 2 {
if !c[i] {
count++
}
if i == power-1 {
println("Count of primes up to ${power:-10} = $count")
power *= 10
}
}
println('')
count = 0
limit = 35000000
for i := 2; ; i++ {
p := (1 << (i -1)) * ((1<<i) - 1)
if p > limit {
break
}
if chowla(p) == p-1 {
println("$p is a perfect number")
count++
}
}
println("There are $count perfect numbers <= 35,000,000")
} |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Wren | Wren | import "./fmt" for Fmt
import "./math" for Int, Nums
var chowla = Fn.new { |n| (n > 1) ? Nums.sum(Int.properDivisors(n)) - 1 : 0 }
for (i in 1..37) Fmt.print("chowla($2d) = $d", i, chowla.call(i))
System.print()
var count = 1
var limit = 1e7
var c = Int.primeSieve(limit, false)
var power = 100
var i = 3
while (i < limit) {
if (!c[i]) count = count + 1
if (i == power - 1) {
Fmt.print("Count of primes up to $,-10d = $,d", power, count)
power = power * 10
}
i = i + 2
}
System.print()
count = 0
limit = 35 * 1e6
i = 2
while (true) {
var p = (1 << (i -1)) * ((1<<i) - 1) // perfect numbers must be of this form
if (p > limit) break
if (chowla.call(p) == p-1) {
Fmt.print("$,d is a perfect number", p)
count = count + 1
}
i = i + 1
}
System.print("There are %(count) perfect numbers <= 35,000,000") |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Object_Pascal | Object Pascal | type
MyClass = object
variable: integer;
constructor init;
destructor done;
procedure someMethod;
end;
constructor MyClass.init;
begin
variable := 0;
end;
procedure MyClass.someMethod;
begin
variable := 1;
end;
var
instance: MyClass; { as variable }
pInstance: ^MyClass; { on free store }
begin
{ create instances }
instance.init;
new(pInstance, init); { alternatively: pInstance := new(MyClass, init); }
{ call method }
instance.someMethod;
pInstance^.someMethod;
{ get rid of the objects }
instance.done;
dispose(pInstance, done);
end; |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Prolog | Prolog |
% main predicate, find and print closest point
do_find_closest_points(Points) :-
points_closest(Points, points(point(X1,Y1),point(X2,Y2),Dist)),
format('Point 1 : (~p, ~p)~n', [X1,Y1]),
format('Point 1 : (~p, ~p)~n', [X2,Y2]),
format('Distance: ~p~n', [Dist]).
% Find the distance between two points
distance(point(X1,Y1), point(X2,Y2), points(point(X1,Y1),point(X2,Y2),Dist)) :-
Dx is X2 - X1,
Dy is Y2 - Y1,
Dist is sqrt(Dx * Dx + Dy * Dy).
% find the closest point that relatest to another point
point_closest(Points, Point, Closest) :-
select(Point, Points, Remaining),
maplist(distance(Point), Remaining, PointList),
foldl(closest, PointList, 0, Closest).
% find the closest point/dist pair for all points
points_closest(Points, Closest) :-
maplist(point_closest(Points), Points, ClosestPerPoint),
foldl(closest, ClosestPerPoint, 0, Closest).
% used by foldl to get the lowest point/distance combination
closest(points(P1,P2,Dist), 0, points(P1,P2,Dist)).
closest(points(_,_,Dist), points(P1,P2,Dist2), points(P1,P2,Dist2)) :-
Dist2 < Dist.
closest(points(P1,P2,Dist), points(_,_,Dist2), points(P1,P2,Dist)) :-
Dist =< Dist2.
|
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | Off[Solve::ratnz];
circs::invrad = "The radius is invalid.";
circs::equpts = "The given points (`1`, `2`) are equivalent.";
circs::dist =
"The given points (`1`, `2`) and (`3`, `4`) are too far apart for \
radius `5`.";
circs[_, _, 0.] := Message[circs::invrad];
circs[{p1x_, p1y_}, {p1x_, p1y_}, _] :=
Message[circs::equpts, p1x, p1y];
circs[p1 : {p1x_, p1y_}, p2 : {p2x_, p2y_}, r_] /;
EuclideanDistance[p1, p2] > 2 r :=
Message[circs::dist, p1x, p1y, p2x, p2y, r];
circs[p1 : {p1x_, p1y_}, p2 : {p2x_, p2y_}, r_] :=
Values /@
Solve[Abs[x - p1x]^2 + Abs[y - p1y]^2 ==
Abs[x - p2x]^2 + Abs[y - p2y]^2 == r^2, {x, y}]; |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Nim | Nim | import strformat
const ANIMALS: array[12, string] = ["Rat", "Ox",
"Tiger", "Rabbit",
"Dragon", "Snake",
"Horse", "Goat",
"Monkey", "Rooster",
"Dog", "Pig"]
const ASPECTS: array[2, string] = ["Yang", "Yin"]
const ELEMENTS: array[5, string] = ["Wood", "Fire",
"Earth", "Metal",
"Water"]
const STEMS: array[10, string] = ["甲", "乙", "丙", "丁", "戊",
"己", "庚", "辛", "壬", "癸"]
const BRANCHES: array[12, string] = ["子", "丑", "寅", "卯", "辰", "巳",
"午", "未", "申", "酉", "戌", "亥"]
const S_NAMES: array[10, string] = ["jiă", "yĭ", "bĭng", "dīng", "wù",
"jĭ", "gēng", "xīn", "rén", "gŭi"]
const B_NAMES: array[12, string] = ["zĭ", "chŏu", "yín", "măo", "chén", "sì",
"wŭ", "wèi", "shēn", "yŏu", "xū", "hài"]
proc chineseZodiac(year: int): string =
let y = year - 4
let s = y mod 10
let b = y mod 12
let stem = STEMS[s]
let branch = BRANCHES[b]
let name = S_NAMES[s] & "-" & B_NAMES[b]
let element = ELEMENTS[s div 2]
let animal = ANIMALS[b]
let aspect = ASPECTS[s mod 2]
let cycle = y mod 60 + 1
&"{year} {stem}{branch} {name:9} {element:7} {animal:7} {aspect:6} {cycle:02}/60"
let years = [1935, 1938, 1968, 1972, 1976, 1984, 2017, 2020]
echo "Year Chinese Pinyin Element Animal Aspect Cycle"
echo "---- ------- ------ ------- ------ ------ -----"
for year in years:
echo &"{chineseZodiac(year)}" |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Pascal | Pascal | type
animalCycle = (rat, ox, tiger, rabbit, dragon, snake,
horse, goat, monkey, rooster, dog, pig);
elementCycle = (wood, fire, earth, metal, water);
aspectCycle = (yang, yin);
zodiac = record
animal: animalCycle;
element: elementCycle;
aspect: aspectCycle;
end;
function getZodiac(year: integer): zodiac;
begin
year := pred(year, 4);
getZodiac := zodiac[
animal: succ(rat, year mod 12);
element: succ(wood, year mod 10 div 2);
aspect: succ(yang, year mod 2);
]
end; |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Factor | Factor | : print-exists? ( path -- )
[ write ": " write ] [ exists? "exists." "doesn't exist." ? print ] bi ;
{ "input.txt" "/input.txt" "docs" "/docs" } [ print-exists? ] each |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Forth | Forth | : .exists ( str len -- ) 2dup file-status nip 0= if ." exists" else ." does not exist" then type ;
s" input.txt" .exists
s" /input.txt" .exists
s" docs" .exists
s" /docs" .exists |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #JavaScript | JavaScript | <html>
<head>
<meta charset="UTF-8">
<title>Chaos Game</title>
</head>
<body>
<p>
<canvas id="sierpinski" width=400 height=346></canvas>
</p>
<p>
<button onclick="chaosGame()">Click here to see a Sierpiński triangle</button>
</p>
<script>
function chaosGame() {
var canv = document.getElementById('sierpinski').getContext('2d');
var x = Math.random() * 400;
var y = Math.random() * 346;
for (var i=0; i<30000; i++) {
var vertex = Math.floor(Math.random() * 3);
switch(vertex) {
case 0:
x = x / 2;
y = y / 2;
canv.fillStyle = 'green';
break;
case 1:
x = 200 + (200 - x) / 2
y = 346 - (346 - y) / 2
canv.fillStyle = 'red';
break;
case 2:
x = 400 - (400 - x) / 2
y = y / 2;
canv.fillStyle = 'blue';
}
canv.fillRect(x,y, 1,1);
}
}
</script>
</body>
</html> |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Phix | Phix | --
-- demo\rosetta\ChatServer.exw
-- ========================
--
-- translation of (qchat) chatServ.exw
--
-- Run this first, then ChatClient.exw, see also IRC_Gateway.exw
--
-- Note that I've only got a 32-bit windows eulibnet.dll, but it should not
-- be dificult to use a "real" libnet.dll/so, or something a little newer.
--
without js
include pGUI.e
constant dl = `Download rosetta\eulibnet\ from http://phix.x10.mx/pmwiki/pmwiki.php?n=Main.Eulibnet`
assert(get_file_type("eulibnet")=FILETYPE_DIRECTORY,dl)
include eulibnet/eulibnet.ew
Ihandle log_list, log_window, statusbar, timer
atom listconn
constant IP = "127.0.0.1",
port = "29029",
IPaddress = IP & ":" & port
constant MAX_MSG = 550
sequence connections = {},
nicknames = {}
constant max_log_len = 300
procedure log_to_window(string txt)
integer count = to_number(IupGetAttribute(log_list,"COUNT"))
if count > max_log_len then
for t=1 to count-max_log_len do
IupSetAttribute(log_list,"REMOVEITEM","1")
end for
end if
IupSetAttribute(log_list,"APPENDITEM",txt)
IupSetAttribute(log_list,"TOPITEM",IupGetAttribute(log_list,"COUNT"))
IupUpdate(log_list)
end procedure
procedure message(string msg, sequence args={})
if length(args) then msg = sprintf(msg,args) end if
IupSetStrAttribute(statusbar, "TITLE", msg)
log_to_window(msg)
end procedure
procedure shutDown()
message("Shutting down euLibnet...")
for i = 1 to length(connections) do
if net_closeconn(connections[i]) then crash("Error closing connection!") end if
end for
if net_closeconn(listconn) then crash("Error closing listconn!") end if
if net_shutdown() then crash("Error shutting down euLibnet!") end if
end procedure
procedure sendToAll(string msg)
-- Send msg to all clients
for i=1 to length(connections) do
atom ci = connections[i]
message("Sending to connection %d (%s)",{ci,nicknames[i]})
if net_send_rdm(ci, msg) then
message("Error sending to connection %d",{ci})
end if
end for
end procedure
procedure mainWindow_onOpen()
message("Initializing euLibnet...")
if net_init() then crash("Error initializing euLibnet!") end if
message("done.")
message("Initializing driver...")
if net_initdriver(NET_DRIVER_WSOCK_WIN) != 1 then
crash("Error initializing WinSock driver!")
end if
message("done.")
message("Opening port " & IPaddress & "...")
listconn = net_openconn(NET_DRIVER_WSOCK_WIN, IPaddress)
if listconn = NULL then
crash("Couldn't open connection (server already running?)")
end if
message("done.")
if net_listen(listconn) then
crash("Error trying to listen to port")
end if
message("Listening on port " & IPaddress)
end procedure
function timer_cb(Ihandle /*timer*/)
integer conn = net_poll_listen(listconn)
if conn != NULL then
connections = append(connections, conn)
nicknames = append(nicknames, "")
message("New connection open from " & net_getpeer(conn))
end if
-- Check for messages from clients
for i = 1 to length(connections) do
integer ci = connections[i]
if net_query_rdm(ci) > 0 then
string ni = nicknames[i]
--Get the message
sequence msg = net_receive_rdm(ci, MAX_MSG)
message("received msg \"%s\" of length %d from %d aka %s",{msg[2],msg[1],ci,ni})
if msg[1] < 0 then --Exit on error
{} = net_ignore_rdm(ci)
sendToAll("Server error: some data may be lost")
exit
end if
msg = msg[2]
if length(msg) > 4 and equal(msg[1..3], "/n:") then
if find(msg[4..length(msg)], nicknames) then
if net_send_rdm(ci, "/nt") then
message("Error sending to %d",{ci})
end if
else
string prevname = ni
ni = msg[4..length(msg)]
nicknames[i] = ni
if length(prevname) = 0 then
sendToAll("/j:" & ni & " has joined")
-- send fake "has joined"s to the new joiner,
-- so that it can build a full members list (see allj)
for n=1 to length(nicknames) do
if n!=i then
msg = "/j:" & nicknames[n] & " has joined"
if net_send_rdm(ci, msg) then
message("Error sending to connection %d",{ci})
exit
end if
end if
end for
else
sendToAll("/c:" & prevname & " has changed name to " & ni)
end if
end if
elsif equal(msg, "/d") then
msg = "/l:"& ni & " has left"
message(msg)
nicknames[i..i] = {}
connections[i..i] = {}
sendToAll(msg)
exit
-- Aside: bunch of popup and file transfer stuff was here in qchat.exw,
-- all ripped out in the name of keeping this short and sweet.
else
sendToAll(ni & ": " & msg) -- (Add nickname to message)
end if
end if
end for
return IUP_IGNORE
end function
function close_cb(Ihandle /*ih*/)
shutDown()
return IUP_DEFAULT
end function
IupOpen()
log_list = IupList("EXPAND=YES, CANFOCUS=NO, MULTIPLE=YES")
statusbar = IupLabel("Loading...","EXPAND=HORIZONTAL")
log_window = IupDialog(IupVbox({log_list,statusbar}),
`TITLE="Chat Server", RASTERSIZE=400x400`)
IupSetCallback(log_window,"CLOSE_CB",Icallback("close_cb"))
IupShow(log_window)
mainWindow_onOpen()
timer = IupTimer(Icallback("timer_cb"), 500)
IupMainLoop()
IupClose()
|
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Visual_Basic_.NET | Visual Basic .NET | Imports System.Numerics
Public Class BigRat ' Big Rational Class constructed with BigIntegers
Implements IComparable
Public nu, de As BigInteger
Public Shared Zero = New BigRat(BigInteger.Zero, BigInteger.One),
One = New BigRat(BigInteger.One, BigInteger.One)
Sub New(bRat As BigRat)
nu = bRat.nu : de = bRat.de
End Sub
Sub New(n As BigInteger, d As BigInteger)
If d = BigInteger.Zero Then _
Throw (New Exception(String.Format("tried to set a BigRat with ({0}/{1})", n, d)))
Dim bi As BigInteger = BigInteger.GreatestCommonDivisor(n, d)
If bi > BigInteger.One Then n /= bi : d /= bi
If d < BigInteger.Zero Then n = -n : d = -d
nu = n : de = d
End Sub
Shared Operator -(x As BigRat) As BigRat
Return New BigRat(-x.nu, x.de)
End Operator
Shared Operator +(x As BigRat, y As BigRat)
Return New BigRat(x.nu * y.de + x.de * y.nu, x.de * y.de)
End Operator
Shared Operator -(x As BigRat, y As BigRat) As BigRat
Return x + (-y)
End Operator
Shared Operator *(x As BigRat, y As BigRat) As BigRat
Return New BigRat(x.nu * y.nu, x.de * y.de)
End Operator
Shared Operator /(x As BigRat, y As BigRat) As BigRat
Return New BigRat(x.nu * y.de, x.de * y.nu)
End Operator
Public Function CompareTo(obj As Object) As Integer Implements IComparable.CompareTo
Dim dif As BigRat = New BigRat(nu, de) - obj
If dif.nu < BigInteger.Zero Then Return -1
If dif.nu > BigInteger.Zero Then Return 1
Return 0
End Function
Shared Operator =(x As BigRat, y As BigRat) As Boolean
Return x.CompareTo(y) = 0
End Operator
Shared Operator <>(x As BigRat, y As BigRat) As Boolean
Return x.CompareTo(y) <> 0
End Operator
Overrides Function ToString() As String
If de = BigInteger.One Then Return nu.ToString
Return String.Format("({0}/{1})", nu, de)
End Function
Shared Function Combine(a As BigRat, b As BigRat) As BigRat
Return (a + b) / (BigRat.One - (a * b))
End Function
End Class
Public Structure Term ' coefficent, BigRational construction for each term
Dim c As Integer, br As BigRat
Sub New(cc As Integer, bigr As BigRat)
c = cc : br = bigr
End Sub
End Structure
Module Module1
Function Eval(c As Integer, x As BigRat) As BigRat
If c = 1 Then Return x Else If c < 0 Then Return Eval(-c, -x)
Dim hc As Integer = c \ 2
Return BigRat.Combine(Eval(hc, x), Eval(c - hc, x))
End Function
Function Sum(terms As List(Of Term)) As BigRat
If terms.Count = 1 Then Return Eval(terms(0).c, terms(0).br)
Dim htc As Integer = terms.Count / 2
Return BigRat.Combine(Sum(terms.Take(htc).ToList), Sum(terms.Skip(htc).ToList))
End Function
Function ParseLine(ByVal s As String) As List(Of Term)
ParseLine = New List(Of Term) : Dim t As String = s.ToLower, p As Integer, x As New Term(1, BigRat.Zero)
While t.Contains(" ") : t = t.Replace(" ", "") : End While
p = t.IndexOf("pi/4=") : If p < 0 Then _
Console.WriteLine("warning: tan(left side of equation) <> 1") : ParseLine.Add(x) : Exit Function
t = t.Substring(p + 5)
For Each item As String In t.Split(")")
If item.Length > 5 Then
If (Not item.Contains("tan") OrElse item.IndexOf("a") < 0 OrElse
item.IndexOf("a") > item.IndexOf("tan")) AndAlso Not item.Contains("atn") Then
Console.WriteLine("warning: a term is mising a valid arctangent identifier on the right side of the equation: [{0})]", item)
ParseLine = New List(Of Term) : ParseLine.Add(New Term(1, BigRat.Zero)) : Exit Function
End If
x.c = 1 : x.br = New BigRat(BigRat.One)
p = item.IndexOf("/") : If p > 0 Then
x.br.de = UInt64.Parse(item.Substring(p + 1))
item = item.Substring(0, p)
p = item.IndexOf("(") : If p > 0 Then
x.br.nu = UInt64.Parse(item.Substring(p + 1))
p = item.IndexOf("a") : If p > 0 Then
Integer.TryParse(item.Substring(0, p).Replace("*", ""), x.c)
If x.c = 0 Then x.c = 1
If item.Contains("-") AndAlso x.c > 0 Then x.c = -x.c
End If
ParseLine.Add(x)
End If
End If
End If
Next
End Function
Sub Main(ByVal args As String())
Dim nl As String = vbLf
For Each item In ("pi/4 = ATan(1 / 2) + ATan(1/3)" & nl &
"pi/4 = 2Atan(1/3) + ATan(1/7)" & nl &
"pi/4 = 4ArcTan(1/5) - ATan(1 / 239)" & nl &
"pi/4 = 5arctan(1/7) + 2 * atan(3/79)" & nl &
"Pi/4 = 5ATan(29/278) + 7*ATan(3/79)" & nl &
"pi/4 = atn(1/2) + ATan(1/5) + ATan(1/8)" & nl &
"PI/4 = 4ATan(1/5) - Atan(1/70) + ATan(1/99)" & nl &
"pi /4 = 5*ATan(1/7) + 4 ATan(1/53) + 2ATan(1/4443)" & nl &
"pi / 4 = 6ATan(1/8) + 2arctangent(1/57) + ATan(1/239)" & nl &
"pi/ 4 = 8ATan(1/10) - ATan(1/239) - 4ATan(1/515)" & nl &
"pi/4 = 12ATan(1/18) + 8ATan(1/57) - 5ATan(1/239)" & nl &
"pi/4 = 16 * ATan(1/21) + 3ATan(1/239) + 4ATan(3/1042)" & nl &
"pi/4 = 22ATan(1/28) + 2ATan(1/443) - 5ATan(1/1393) - 10 ATan( 1 / 11018 )" & nl &
"pi/4 = 22ATan(1/38) + 17ATan(7/601) + 10ATan(7 / 8149)" & nl &
"pi/4 = 44ATan(1/57) + 7ATan(1/239) - 12ATan(1/682) + 24ATan(1/12943)" & nl &
"pi/4 = 88ATan(1/172) + 51ATan(1/239) + 32ATan(1/682) + 44ATan(1/5357) + 68ATan(1/12943)" & nl &
"pi/4 = 88ATan(1/172) + 51ATan(1/239) + 32ATan(1/682) + 44ATan(1/5357) + 68ATan(1/12944)").Split(nl)
Console.WriteLine("{0}: {1}", If(Sum(ParseLine(item)) = BigRat.One, "Pass", "Fail"), item)
Next
End Sub
End Module |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Delphi | Delphi | program Project1;
{$APPTYPE CONSOLE}
uses
SysUtils;
var
aChar:Char;
aCode:Byte;
uChar:WideChar;
uCode:Word;
begin
aChar := Chr(97); Writeln(aChar);
aCode := Ord(aChar); Writeln(aCode);
uChar := WideChar(97); Writeln(uChar);
uCode := Ord(uChar); Writeln(uCode);
Readln;
end. |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #PARI.2FGP | PARI/GP | cholesky(M) =
{
my (L = matrix(#M,#M));
for (i = 1, #M,
for (j = 1, i,
s = sum (k = 1, j-1, L[i,k] * L[j,k]);
L[i,j] = if (i == j, sqrt(M[i,i] - s), (M[i,j] - s) / L[j,j])
)
);
L
} |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Ruby | Ruby | dates = [
["May", 15],
["May", 16],
["May", 19],
["June", 17],
["June", 18],
["July", 14],
["July", 16],
["August", 14],
["August", 15],
["August", 17],
]
print dates.length, " remaining\n"
# the month cannot have a unique day
uniqueMonths = dates.group_by { |m,d| d }
.select { |k,v| v.size == 1 }
.map { |k,v| v.flatten }
.map { |m,d| m }
dates.delete_if { |m,d| uniqueMonths.include? m }
print dates.length, " remaining\n"
# the day must be unique
dates = dates .group_by { |m,d| d }
.select { |k,v| v.size == 1 }
.map { |k,v| v.flatten }
print dates.length, " remaining\n"
# the month must now be unique
dates = dates .group_by { |m,d| m }
.select { |k,v| v.size == 1 }
.map { |k,v| v }
.flatten
print dates |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #MS_SmallBasic | MS SmallBasic |
ll=LDList.CreateFromValues("")
LDList.Add(ll "Cars")
LDList.Add(ll "Toys")
LDList.Print(ll)
|
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Pure | Pure | comb m n = comb m (0..n-1) with
comb 0 _ = [[]];
comb _ [] = [];
comb m (x:xs) = [x:xs | xs = comb (m-1) xs] + comb m xs;
end;
comb 3 5; |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #SNUSP | SNUSP | $==?\==zero=====!/==#
\==non zero==/ |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | ChineseRemainder[{2, 3, 2}, {3, 5, 7}]
23 |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #MATLAB_.2F_Octave | MATLAB / Octave | function f = chineseRemainder(r, m)
s = prod(m) ./ m;
[~, t] = gcd(s, m);
f = s .* t * r'; |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #XPL0 | XPL0 | func Chowla(N); \Return sum of divisors
int N, Div, Sum, Quot;
[Div:= 2; Sum:= 0;
loop [Quot:= N/Div;
if Quot < Div then quit;
if Quot = Div and rem(0) = 0 then \N is a square
[Sum:= Sum+Quot; quit];
if rem(0) = 0 then
Sum:= Sum + Div + Quot;
Div:= Div+1;
];
return Sum;
];
int N, C, P;
[for N:= 1 to 37 do
[IntOut(0, N); Text(0, ": ");
IntOut(0, Chowla(N)); CrLf(0);
];
C:= 1; \count 2 as prime
N:= 3; \only check odd numbers
repeat if Chowla(N) = 0 then \N is prime
C:= C+1;
case N+1 of 100, 1000, 10_000, 100_000, 1_000_000, 10_000_000:
[Text(0, "There are "); IntOut(0, C); Text(0, " primes < ");
IntOut(0, N+1); CrLf(0)]
other [];
N:= N+2;
until N >= 10_000_000;
P:= 1; \perfect numbers are of form: 2^(P-1) * (2^P - 1)
loop [P:= P*2;
N:= P*(P*2-1);
if N > 35_000_000 then quit;
if Chowla(N) = N-1 then \N is perfect
[IntOut(0, N); CrLf(0)];
];
] |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #zkl | zkl | fcn chowla(n){
if(n<1)
throw(Exception.ValueError("Chowla function argument must be positive"));
sum:=0;
foreach i in ([2..n.toFloat().sqrt()]){
if(n%i == 0){
j:=n/i;
if(i==j) sum+=i;
else sum+=i+j;
}
}
sum
}
fcn chowlaSieve(limit){
// True denotes composite, false denotes prime.
// Only interested in odd numbers >= 3
c:=Data(limit+100).fill(0); # slop at the end (for reverse wrap around)
foreach i in ([3..limit/3,2]){
if(not c[i] and chowla(i)==0)
{ foreach j in ([3*i..limit,2*i]){ c[j]=True } }
}
c
} |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Objective-C | Objective-C | // There are no class variables, so static variables are used.
static int myClassVariable = 0;
@interface MyClass : NSObject
{
int variable; // instance variable
}
- (int)variable; // Typical accessor - you should use the same name as the variable
@end |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #PureBasic | PureBasic | Procedure.d bruteForceClosestPair(Array P.coordinate(1))
Protected N=ArraySize(P()), i, j
Protected mindistance.f=Infinity(), t.d
Shared a, b
If N<2
a=0: b=0
Else
For i=0 To N-1
For j=i+1 To N
t=Pow(Pow(P(i)\x-P(j)\x,2)+Pow(P(i)\y-P(j)\y,2),0.5)
If mindistance>t
mindistance=t
a=i: b=j
EndIf
Next
Next
EndIf
ProcedureReturn mindistance
EndProcedure
|
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Maxima | Maxima | /* define helper function */
vabs(a):= sqrt(a.a);
realp(e):=freeof(%i, e);
/* get a general solution */
sol: block(
[p1: [x1, y1], p2: [x2, y2], c: [x0, y0], eq],
local(r),
eq: [vabs(p1-c) = r, vabs(p2-c) = r],
load(to_poly_solve),
assume(r>0),
args(to_poly_solve(eq, c, use_grobner = true)))$
/* use general solution for concrete case */
getsol(sol, x1, y1, x2, y2, r):=block([n, lsol],
if [x1, y1]=[x2, y2] then (
print("infinity many solutions"),
return('infmany)),
lsol: sublist(''sol, 'realp),
n: length(lsol),
if n=0 then (
print("no solutions"),
[])
else if n=1 then (
print("single solution"),
lsol[1])
else if [assoc('x0, lsol[1]), assoc('y0, lsol[1])]=[assoc('x0, lsol[2]), assoc('y0, lsol[2])] then (
print("single solution"),
lsol[1])
else (
print("two solutions"),
lsol))$
/* [x1, y1, x2, y2, r] */
d[1]: [0.1234, 0.9876, 0.8765, 0.2345, 2];
d[2]: [0.0000, 2.0000, 0.0000, 0.0000, 1];
d[3]: [0, 0, 0, 1, 0.4];
d[4]: [0, 0, 0, 0, 0.4];
apply('getsol, cons(sol, d[1]));
apply('getsol, cons(sol, d[2]));
apply('getsol, cons(sol, d[3]));
apply('getsol, cons(sol, d[4])); |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Perl | Perl | sub zodiac {
my $year = shift;
my @animals = qw/Rat Ox Tiger Rabbit Dragon Snake Horse Goat Monkey Rooster Dog Pig/;
my @elements = qw/Wood Fire Earth Metal Water/;
my @terrestrial_han = qw/子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥/;
my @terrestrial_pinyin = qw/zĭ chŏu yín măo chén sì wŭ wèi shēn yŏu xū hài/;
my @celestial_han = qw/甲 乙 丙 丁 戊 己 庚 辛 壬 癸/;
my @celestial_pinyin = qw/jiă yĭ bĭng dīng wù jĭ gēng xīn rén gŭi/;
my @aspect = qw/yang yin/;
my $cycle_year = ($year-4) % 60;
my($i2, $i10, $i12) = ($cycle_year % 2, $cycle_year % 10, $cycle_year % 12);
($year,
$celestial_han[$i10], $terrestrial_han[$i12],
$celestial_pinyin[$i10], $terrestrial_pinyin[$i12],
$elements[$i10 >> 1], $animals[$i12], $aspect[$i2], $cycle_year+1);
}
printf("%4d: %s%s (%s-%s) %s %s; %s - year %d of the cycle\n", zodiac($_))
for (1935, 1938, 1968, 1972, 1976, 2017); |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Fortran | Fortran | LOGICAL :: file_exists
INQUIRE(FILE="input.txt", EXIST=file_exists) ! file_exists will be TRUE if the file
! exists and FALSE otherwise
INQUIRE(FILE="/input.txt", EXIST=file_exists) |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
' Enable FileExists() function to be used
#include "file.bi"
' Use Win32 function to check if directory exists on Windows 10
Declare Function GetFileAttributes Lib "kernel32.dll" Alias "GetFileAttributesA" _
(ByVal lpFileName As ZString Ptr) As ULong
Const InvalidFileAttributes As ULong = -1UL
Const FileAttributeDirectory As ULong = &H10UL
Sub CheckFileExists(ByRef filePath As String)
If FileExists(filePath) Then
Print "'"; filePath; "' exists"
Else
Print "'"; filePath; "' does not exist"
End If
End Sub
Sub CheckDirectoryExists(ByVal dirPath As ZString Ptr)
Dim attrib As ULong = GetFileAttributes(dirPath)
Dim dirExists As ULong = attrib <> InvalidFileAttributes AndAlso (attrib And FileAttributeDirectory) <> 0
If dirExists Then
Print "'"; *dirPath; "' exists"
Else
Print "'"; *dirPath; "' does not exist"
End If
End Sub
CheckFileExists(CurDir + "\input.txt")
Dim dirPath As String = CurDir + "\docs"
CheckDirectoryExists(StrPtr(dirPath))
CheckFileExists("c:\input.txt")
CheckDirectoryExists(StrPtr("c:\docs"))
Print
Print "Press any key to quit the program"
Sleep |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Julia | Julia | using Luxor
function chaos()
width = 1000
height = 1000
Drawing(width, height, "./chaos.png")
t = Turtle(0, 0, true, 0, (0., 0., 0.))
x = rand(1:width)
y = rand(1:height)
for l in 1:30_000
v = rand(1:3)
if v == 1
x /= 2
y /= 2
elseif v == 2
x = width/2 + (width/2 - x)/2
y = height - (height - y)/2
else
x = width - (width - x)/2
y = y / 2
end
Reposition(t, x, height-y)
Circle(t, 3)
end
end
chaos()
finish()
preview()
|
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Kotlin | Kotlin | //Version 1.1.51
import java.awt.*
import java.util.Stack
import java.util.Random
import javax.swing.JPanel
import javax.swing.JFrame
import javax.swing.Timer
import javax.swing.SwingUtilities
class ChaosGame : JPanel() {
class ColoredPoint(x: Int, y: Int, val colorIndex: Int) : Point(x, y)
val stack = Stack<ColoredPoint>()
val points: List<Point>
val colors = listOf(Color.red, Color.green, Color.blue)
val r = Random()
init {
val dim = Dimension(640, 640)
preferredSize = dim
background = Color.white
val margin = 60
val size = dim.width - 2 * margin
points = listOf(
Point(dim.width / 2, margin),
Point(margin, size),
Point(margin + size, size)
)
stack.push(ColoredPoint(-1, -1, 0))
Timer(10) {
if (stack.size < 50_000) {
for (i in 0 until 1000) addPoint()
repaint()
}
}.start()
}
private fun addPoint() {
val colorIndex = r.nextInt(3)
val p1 = stack.peek()
val p2 = points[colorIndex]
stack.add(halfwayPoint(p1, p2, colorIndex))
}
fun drawPoints(g: Graphics2D) {
for (cp in stack) {
g.color = colors[cp.colorIndex]
g.fillOval(cp.x, cp.y, 1, 1)
}
}
fun halfwayPoint(a: Point, b: Point, idx: Int) =
ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx)
override fun paintComponent(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)
drawPoints(g)
}
}
fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
with (f) {
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
title = "Chaos Game"
isResizable = false
add(ChaosGame(), BorderLayout.CENTER)
pack()
setLocationRelativeTo(null)
isVisible = true
}
}
} |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #PicoLisp | PicoLisp | #!/usr/bin/picolisp /usr/lib/picolisp/lib.l
(de chat Lst
(out *Sock
(mapc prin Lst)
(prinl) ) )
(setq *Port (port 4004))
(loop
(setq *Sock (listen *Port))
(NIL (fork) (close *Port))
(close *Sock) )
(out *Sock
(prin "Please enter your name: ")
(flush) )
(in *Sock (setq *Name (line T)))
(tell 'chat "+++ " *Name " arrived +++")
(task *Sock
(in @
(ifn (eof)
(tell 'chat *Name "> " (line T))
(tell 'chat "--- " *Name " left ---")
(bye) ) ) )
(wait) |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Wren | Wren | import "/big" for BigRat
import "/fmt" for Fmt
/** represents a term of the form: c * atan(n / d) */
class Term {
construct new(c, n, d) {
_c = c
_n = n
_d = d
}
c { _c }
n { _n }
d { _d }
toString {
var a = "atan(%(n)/%(d))"
return ((_c == 1) ? " + " :
(_c == -1) ? " - " :
(_c < 0) ? " - %(-c)*" : " + %(c)*") + a
}
}
var tanEval // recursive function
tanEval = Fn.new { |c, f|
if (c == 1) return f
if (c < 0) return -tanEval.call(-c, f)
var ca = (c/2).truncate
var cb = c - ca
var a = tanEval.call(ca, f)
var b = tanEval.call(cb, f)
return (a + b) / (BigRat.one - (a * b))
}
var tanSum // recursive function
tanSum = Fn.new { |terms|
if (terms.count == 1) return tanEval.call(terms[0].c, BigRat.new(terms[0].n, terms[0].d))
var half = (terms.count/2).floor
var a = tanSum.call(terms.take(half).toList)
var b = tanSum.call(terms.skip(half).toList)
return (a + b) / (BigRat.one - (a * b))
}
var T = Term // type alias
var termsList = [
[T.new(1, 1, 2), T.new(1, 1, 3)],
[T.new(2, 1, 3), T.new(1, 1, 7)],
[T.new(4, 1, 5), T.new(-1, 1, 239)],
[T.new(5, 1, 7), T.new(2, 3, 79)],
[T.new(5, 29, 278), T.new(7, 3, 79)],
[T.new(1, 1, 2), T.new(1, 1, 5), T.new(1, 1, 8)],
[T.new(4, 1, 5), T.new(-1, 1, 70), T.new(1, 1, 99)],
[T.new(5, 1, 7), T.new(4, 1, 53), T.new(2, 1, 4443)],
[T.new(6, 1, 8), T.new(2, 1, 57), T.new(1, 1, 239)],
[T.new(8, 1, 10), T.new(-1, 1, 239), T.new(-4, 1, 515)],
[T.new(12, 1, 18), T.new(8, 1, 57), T.new(-5, 1, 239)],
[T.new(16, 1, 21), T.new(3, 1, 239), T.new(4, 3, 1042)],
[T.new(22, 1, 28), T.new(2, 1, 443), T.new(-5, 1, 1393), T.new(-10, 1, 11018)],
[T.new(22, 1, 38), T.new(17, 7, 601), T.new(10, 7, 8149)],
[T.new(44, 1, 57), T.new(7, 1, 239), T.new(-12, 1, 682), T.new(24, 1, 12943)],
[T.new(88, 1, 172), T.new(51, 1, 239), T.new(32, 1, 682), T.new(44, 1, 5357), T.new(68, 1, 12943)],
[T.new(88, 1, 172), T.new(51, 1, 239), T.new(32, 1, 682), T.new(44, 1, 5357), T.new(68, 1, 12944)]
]
for (terms in termsList) {
var f = Fmt.swrite("$-5s: 1 == tan(", tanSum.call(terms) == BigRat.one)
System.write(f)
System.write(terms[0].toString.skip(3).join())
for (i in 1...terms.count) System.write(terms[i])
System.print(")")
} |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Dyalect | Dyalect | print('a'.Order())
print(Char(97)) |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #DWScript | DWScript | PrintLn(Ord('a'));
PrintLn(Chr(97)); |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Pascal | Pascal | program CholeskyApp;
type
D2Array = array of array of double;
function cholesky(const A: D2Array): D2Array;
var
i, j, k: integer;
s: double;
begin
setlength(Result, length(A), length(A));
for i := low(Result) to high(Result) do
for j := 0 to i do
begin
s := 0;
for k := 0 to j - 1 do
s := s + Result[i][k] * Result[j][k];
if i = j then
Result[i][j] := sqrt(A[i][i] - s)
else
Result[i][j] := (A[i][j] - s) / Result[j][j]; // save one multiplication compared to the original
end;
end;
procedure printM(const A: D2Array);
var
i, j: integer;
begin
for i := low(A) to high(A) do
begin
for j := low(A) to high(A) do
write(A[i, j]: 8: 5);
writeln;
end;
end;
const
m1: array[0..2, 0..2] of double = ((25, 15, -5), (15, 18, 0), (-5, 0, 11));
m2: array[0..3, 0..3] of double = ((18, 22, 54, 42), (22, 70, 86, 62), (54, 86,
174, 134), (42, 62, 134, 106));
var
index, i: integer;
cIn, cOut: D2Array;
begin
setlength(cIn, length(m1), length(m1));
for index := low(m1) to high(m1) do
begin
SetLength(cIn[index], length(m1[index]));
for i := 0 to High(m1[Index]) do
cIn[index][i] := m1[index][i];
end;
cOut := cholesky(cIn);
printM(cOut);
writeln;
setlength(cIn, length(m2), length(m2));
for index := low(m2) to high(m2) do
begin
SetLength(cIn[index], length(m2[Index]));
for i := 0 to High(m2[Index]) do
cIn[index][i] := m2[index][i];
end;
cOut := cholesky(cIn);
printM(cOut);
end. |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Rust | Rust |
// This version is based on the Go version on Rosettacode
#[derive(PartialEq, Debug, Copy, Clone)]
enum Month {
May,
June,
July,
August,
}
#[derive(PartialEq, Debug, Copy, Clone)]
struct Birthday {
month: Month,
day: u8,
}
impl Birthday {
fn month_unique_in(&self, birthdays: &[Birthday]) -> bool {
birthdays
.iter()
.filter(|birthday| birthday.month == self.month)
.count()
== 1
}
fn day_unique_in(&self, birthdays: &[Birthday]) -> bool {
birthdays
.iter()
.filter(|birthday| birthday.day == self.day)
.count()
== 1
}
fn month_with_unique_day_in(&self, birthdays: &[Birthday]) -> bool {
birthdays
.iter()
.any(|birthday| self.month == birthday.month && birthday.day_unique_in(birthdays))
}
}
fn solution() -> Option<Birthday> {
let mut choices: Vec<Birthday> = vec![
Birthday {
month: Month::May,
day: 15,
},
Birthday {
month: Month::May,
day: 16,
},
Birthday {
month: Month::May,
day: 19,
},
Birthday {
month: Month::June,
day: 17,
},
Birthday {
month: Month::June,
day: 18,
},
Birthday {
month: Month::July,
day: 14,
},
Birthday {
month: Month::July,
day: 16,
},
Birthday {
month: Month::August,
day: 14,
},
Birthday {
month: Month::August,
day: 15,
},
Birthday {
month: Month::August,
day: 17,
},
];
// Albert knows the month but doesn't know the day.
// So the month can't be unique within the choices.
let choices_copy = choices.clone();
choices.retain(|birthday| !(&birthday.month_unique_in(&choices_copy)));
// Albert also knows that Bernard doesn't know the answer.
// So the month can't have a unique day.
let choices_copy = choices.clone();
choices.retain(|birthday| !(birthday.month_with_unique_day_in(&choices_copy)));
// Bernard now knows the answer.
// So the day must be unique within the remaining choices.
let choices_copy = choices.clone();
choices.retain(|birthday| birthday.day_unique_in(&choices_copy));
// Albert now knows the answer too.
// So the month must be unique within the remaining choices.
let choices_copy = choices.clone();
choices.retain(|birthday| birthday.month_unique_in(&choices_copy));
if choices.len() == 1 {
Some(choices[0])
} else {
None
}
}
fn main() {
match solution() {
Some(solution) => println!("Cheryl's birthday is {:?}", solution),
None => panic!("Didn't work!"),
}
}
|
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Scala | Scala | import java.time.format.DateTimeFormatter
import java.time.{LocalDate, Month}
object Cheryl {
def main(args: Array[String]): Unit = {
val choices = List(
LocalDate.of(2019, Month.MAY, 15),
LocalDate.of(2019, Month.MAY, 16),
LocalDate.of(2019, Month.MAY, 19),
LocalDate.of(2019, Month.JUNE, 17),
LocalDate.of(2019, Month.JUNE, 18),
LocalDate.of(2019, Month.JULY, 14),
LocalDate.of(2019, Month.JULY, 16),
LocalDate.of(2019, Month.AUGUST, 14),
LocalDate.of(2019, Month.AUGUST, 15),
LocalDate.of(2019, Month.AUGUST, 17)
)
// The month cannot have a unique day because Albert knows the month, and knows that Bernard does not know the answer
val uniqueMonths = choices.groupBy(_.getDayOfMonth)
.filter(a => a._2.length == 1)
.flatMap(a => a._2)
.map(a => a.getMonth)
val filter1 = choices.filterNot(a => uniqueMonths.exists(b => a.getMonth == b))
// Bernard now knows the answer, so the day must be unique within the remaining choices
val uniqueDays = filter1.groupBy(_.getDayOfMonth)
.filter(a => a._2.length == 1)
.flatMap(a => a._2)
.map(a => a.getDayOfMonth)
val filter2 = filter1.filter(a => uniqueDays.exists(b => a.getDayOfMonth == b))
// Albert knows the answer too, so the month must be unique within the remaining choices
val birthDay = filter2.groupBy(_.getMonth)
.filter(a => a._2.length == 1)
.flatMap(a => a._2)
.head
// print the result
printf(birthDay.format(DateTimeFormatter.ofPattern("MMMM dd")))
}
} |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
myVals = [ 'zero', 'one', 'two', 'three', 'four', 'five' ]
mySet = Set
mySet = HashSet()
loop val over myVals
mySet.add(val)
end val
loop val over mySet
say val
end val
return
|
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #PureBasic | PureBasic | Procedure.s Combinations(amount, choose)
NewList comb.s()
; all possible combinations with {amount} Bits
For a = 0 To 1 << amount
count = 0
; count set bits
For x = 0 To amount
If (1 << x)&a
count + 1
EndIf
Next
; if set bits are equal to combination length
; we generate a String representing our combination and add it to list
If count = choose
string$ = ""
For x = 0 To amount
If (a >> x)&1
; replace x by x+1 to start counting with 1
String$ + Str(x) + " "
EndIf
Next
AddElement(comb())
comb() = string$
EndIf
Next
; now we sort our list and format it for output as string
SortList(comb(), #PB_Sort_Ascending)
ForEach comb()
out$ + ", [ " + comb() + "]"
Next
ProcedureReturn Mid(out$, 3)
EndProcedure
Debug Combinations(5, 3) |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Sparkling | Sparkling | var odd = 13;
if odd % 2 != 0 {
print("odd");
} |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Modula-2 | Modula-2 | MODULE CRT;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE WriteInt(n : INTEGER);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
FormatString("%i", buf, n);
WriteString(buf)
END WriteInt;
PROCEDURE MulInv(a,b : INTEGER) : INTEGER;
VAR
b0,x0,x1,q,amb,xqx : INTEGER;
BEGIN
b0 := b;
x0 := 0;
x1 := 1;
IF b=1 THEN
RETURN 1
END;
WHILE a>1 DO
q := a DIV b;
amb := a MOD b;
a := b;
b := amb;
xqx := x1 - q * x0;
x1 := x0;
x0 := xqx
END;
IF x1<0 THEN
x1 := x1 + b0
END;
RETURN x1
END MulInv;
PROCEDURE ChineseRemainder(n,a : ARRAY OF INTEGER) : INTEGER;
VAR
i : CARDINAL;
prod,p,sm : INTEGER;
BEGIN
prod := n[0];
FOR i:=1 TO HIGH(n) DO
prod := prod * n[i]
END;
sm := 0;
FOR i:=0 TO HIGH(n) DO
p := prod DIV n[i];
sm := sm + a[i] * MulInv(p, n[i]) * p
END;
RETURN sm MOD prod
END ChineseRemainder;
TYPE TA = ARRAY[0..2] OF INTEGER;
VAR n,a : TA;
BEGIN
n := TA{3, 5, 7};
a := TA{2, 3, 2};
WriteInt(ChineseRemainder(n, a));
WriteLn;
ReadChar
END CRT. |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #OCaml | OCaml | class my_class =
object (self)
val mutable variable = 0
method some_method = variable <- 1
end |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Oforth | Oforth | Object Class new: MyClass(att)
MyClass method: initialize(v) v := att ; |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Python | Python | """
Compute nearest pair of points using two algorithms
First algorithm is 'brute force' comparison of every possible pair.
Second, 'divide and conquer', is based on:
www.cs.iupui.edu/~xkzou/teaching/CS580/Divide-and-conquer-closestPair.ppt
"""
from random import randint, randrange
from operator import itemgetter, attrgetter
infinity = float('inf')
# Note the use of complex numbers to represent 2D points making distance == abs(P1-P2)
def bruteForceClosestPair(point):
numPoints = len(point)
if numPoints < 2:
return infinity, (None, None)
return min( ((abs(point[i] - point[j]), (point[i], point[j]))
for i in range(numPoints-1)
for j in range(i+1,numPoints)),
key=itemgetter(0))
def closestPair(point):
xP = sorted(point, key= attrgetter('real'))
yP = sorted(point, key= attrgetter('imag'))
return _closestPair(xP, yP)
def _closestPair(xP, yP):
numPoints = len(xP)
if numPoints <= 3:
return bruteForceClosestPair(xP)
Pl = xP[:numPoints/2]
Pr = xP[numPoints/2:]
Yl, Yr = [], []
xDivider = Pl[-1].real
for p in yP:
if p.real <= xDivider:
Yl.append(p)
else:
Yr.append(p)
dl, pairl = _closestPair(Pl, Yl)
dr, pairr = _closestPair(Pr, Yr)
dm, pairm = (dl, pairl) if dl < dr else (dr, pairr)
# Points within dm of xDivider sorted by Y coord
closeY = [p for p in yP if abs(p.real - xDivider) < dm]
numCloseY = len(closeY)
if numCloseY > 1:
# There is a proof that you only need compare a max of 7 next points
closestY = min( ((abs(closeY[i] - closeY[j]), (closeY[i], closeY[j]))
for i in range(numCloseY-1)
for j in range(i+1,min(i+8, numCloseY))),
key=itemgetter(0))
return (dm, pairm) if dm <= closestY[0] else closestY
else:
return dm, pairm
def times():
''' Time the different functions
'''
import timeit
functions = [bruteForceClosestPair, closestPair]
for f in functions:
print 'Time for', f.__name__, timeit.Timer(
'%s(pointList)' % f.__name__,
'from closestpair import %s, pointList' % f.__name__).timeit(number=1)
pointList = [randint(0,1000)+1j*randint(0,1000) for i in range(2000)]
if __name__ == '__main__':
pointList = [(5+9j), (9+3j), (2+0j), (8+4j), (7+4j), (9+10j), (1+9j), (8+2j), 10j, (9+6j)]
print pointList
print ' bruteForceClosestPair:', bruteForceClosestPair(pointList)
print ' closestPair:', closestPair(pointList)
for i in range(10):
pointList = [randrange(11)+1j*randrange(11) for i in range(10)]
print '\n', pointList
print ' bruteForceClosestPair:', bruteForceClosestPair(pointList)
print ' closestPair:', closestPair(pointList)
print '\n'
times()
times()
times() |
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #.D0.9C.D0.9A-61.2F52 | МК-61/52 | П0 С/П П1 С/П П2 С/П П3 С/П П4
ИП2 ИП0 - x^2 ИП3 ИП1 - x^2 + КвКор П5
ИП0 ИП2 + 2 / П6 ИП1 ИП3 + 2 / П7
ИП4 x^2 ИП5 2 / x^2 - КвКор ИП5 / П8
ИП6 ИП1 ИП3 - ИП8 * П9 + ПA
ИП6 ИП9 - ПC
ИП7 ИП2 ИП0 - ИП8 * П9 + ПB
ИП7 ИП9 - ПD
ИП5 x#0 97 8 4 ИНВ С/П
ИП4 2 * ИП5 - ПE x#0 97 ИПB ИПA 8 5 ИНВ С/П
ИПE x>=0 97 8 3 ИНВ С/П
ИПD ИПC ИПB ИПA С/П |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Phix | Phix | with javascript_semantics
constant animals = {"Rat","Ox","Tiger","Rabbit","Dragon","Snake","Horse","Goat","Monkey","Rooster","Dog","Pig"},
elements = {"Wood","Fire","Earth","Metal","Water"},
yinyang = {"yang","yin"},
years = {1935,1938,1968,1972,1976,2018}
for i=1 to length(years) do
integer year = years[i],
cycle = mod(year-4,60)
string element = elements[floor(mod(cycle,10)/2)+1],
animal = animals[mod(cycle,12)+1],
yy = yinyang[mod(cycle,2)+1]
printf(1,"%d: %s %s; %s, year %d of the cycle.\n",
{year,element,animal,yy,cycle+1})
end for
|
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Frink | Frink |
checkFile[filename] :=
{
file = newJava["java.io.File", [filename]]
if file.exists[] and file.isFile[]
println["$filename is a file"]
else
println["$filename is not a file"]
}
checkDir[filename] :=
{
file = newJava["java.io.File", [filename]]
if file.exists[] and file.isDirectory[]
println["$filename is a directory"]
else
println["$filename is not a directory"]
}
checkFile["input.txt"]
checkFile["/input.txt"]
checkDir["docs"]
checkDir["/docs"]
// This tests the "unusual" filename with various Unicode
// normalizations that would look identical to a human
// For example, the á character could be written as either
// the Unicode sequences
// \u00e1 ('LATIN SMALL LETTER A WITH ACUTE')
// or
// \u0061\u0301 ('LATIN SMALL LETTER A' 'COMBINING ACUTE ACCENT')
unusual = "`Abdu'l-Bahá.txt"
checkFile[unusual]
checkFile[normalizeUnicode[unusual, "NFC"]]
checkFile[normalizeUnicode[unusual, "NFD"]]
|
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Gambas | Gambas | Public Sub Main()
If Exist(User.Home &/ "input.txt") Then Print "'input.txt' does exist in the Home folder"
If Not Exist("/input.txt") Then Print "'input.txt' does NOT exist in Root" 'Not messing With my Root files
If Exist(User.home &/ "docs/") Then Print "The folder '~/docs' does exist"
If Not Exist("/docs/") Then Print "The folder '/docs' does NOT exist" 'Not messing With my Root files
File.Save(User.Home &/ "`Abdu'l-Bahá.txt", "")
If Exist(User.Home &/ "`Abdu'l-Bahá.txt") Then Print "'`Abdu'l-Bahá.txt' does exist (zero length and unusual name)"
End |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Logo | Logo | to chaosgame :sidelength :iterations
make "width :sidelength
make "height (:sidelength/2 * sqrt 3)
make "x (random :width)
make "y (random :height)
repeat :iterations [
make "vertex (random 3)
if :vertex = 0 [
make "x (:x / 2)
make "y (:y / 2)
setpencolor "green
]
if :vertex = 1 [
make "x (:width / 2 + ((:width / 2 - :x) / 2))
make "y (:height - ((:height - :y) / 2))
setpencolor "red
]
if :vertex = 2 [
make "x (:width - ((:width - :x) / 2))
make "y (:y / 2)
setpencolor "blue
]
penup
setxy (:x - :width / 2) (:y - :height / 2)
pendown
forward 1
]
hideturtle
end |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Lua | Lua |
math.randomseed( os.time() )
colors, orig = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 } }, {}
function love.load()
wid, hei = love.graphics.getWidth(), love.graphics.getHeight()
orig[1] = { wid / 2, 3 }
orig[2] = { 3, hei - 3 }
orig[3] = { wid - 3, hei - 3 }
local w, h = math.random( 10, 40 ), math.random( 10, 40 )
if math.random() < .5 then w = -w end
if math.random() < .5 then h = -h end
orig[4] = { wid / 2 + w, hei / 2 + h }
canvas = love.graphics.newCanvas( wid, hei )
love.graphics.setCanvas( canvas ); love.graphics.clear()
love.graphics.setColor( 255, 255, 255 )
love.graphics.points( orig )
love.graphics.setCanvas()
end
function love.draw()
local iter = 100 --> make this number bigger to speed up rendering
for rp = 1, iter do
local r, pts = math.random( 6 ), {}
if r == 1 or r == 4 then
pt = 1
elseif r == 2 or r == 5 then
pt = 2
else
pt = 3
end
local x, y = ( orig[4][1] + orig[pt][1] ) / 2, ( orig[4][2] + orig[pt][2] ) / 2
orig[4][1] = x; orig[4][2] = y
pts[1] = { x, y, colors[pt][1], colors[pt][2], colors[pt][3], 255 }
love.graphics.setCanvas( canvas )
love.graphics.points( pts )
end
love.graphics.setCanvas()
love.graphics.draw( canvas )
end
|
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Prolog | Prolog | :- initialization chat_server(5000).
chat_server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, AcceptFd, _),
dispatch(AcceptFd).
dispatch(AcceptFd) :-
tcp_accept(AcceptFd, Socket, _),
thread_create(process_client(Socket, _), _, [detached(true)]),
dispatch(AcceptFd).
process_client(Socket, _) :-
setup_call_cleanup(
tcp_open_socket(Socket, Str),
handle_connection(Str),
close(Str)).
% a connection was made, get the username and add the streams so the
% client can be broadcast to.
handle_connection(Str) :-
send_msg(Str, msg_welcome, []),
repeat,
send_msg(Str, msg_username, []),
read_line_to_string(Str, Name),
connect_user(Name, Str), !.
% connections are stored here
:- dynamic(connected/2).
connect_user(Name, Str) :-
connected(Name, _),
send_msg(Str, msg_username_taken, []),
fail.
connect_user(Name, Str) :-
\+ connected(Name, _),
send_msg(Str, msg_welcome_name, Name),
% make sure that the connection is removed when the client leaves.
setup_call_cleanup(
assert(connected(Name, Str)),
(
broadcast(Name, msg_joined, Name),
chat_loop(Name, Str), !,
broadcast(Name, msg_left, Name)
),
retractall(connected(Name, _))
).
% wait for a line to be sent then broadcast to the rest of the clients
% finish this goal when the client disconnects (end of stream)
chat_loop(Name, Str) :-
read_line_to_string(Str, S),
dif(S, end_of_file),
broadcast(Name, msg_by_user, [Name, S]),
chat_loop(Name, Str).
chat_loop(_, Str) :- at_end_of_stream(Str).
% send a message to all connected clients except Name (the sender)
broadcast(Name, Msg, Params) :-
forall(
(connected(N, Str), dif(N, Name)),
(send_msg(Str, Msg, Params), send_msg(Str, msg_new_line, []))
).
send_msg(St, MsgConst, Params) :-
call(MsgConst, Msg),
format(St, Msg, Params),
flush_output(St).
% constants for the various message types that are sent
msg_welcome('Welcome to Chatalot\n\r').
msg_username('Please enter your nickname: ').
msg_welcome_name('Welcome ~p\n\r').
msg_joined(' -- "~w" has joined the chat --').
msg_left(' -- "~w" has left the chat. --').
msg_username_taken('That username is already taken, choose another\n\r').
msg_new_line('\n\r').
msg_by_user('~w> ~w'). |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #XPL0 | XPL0 | code ChOut=8, Text=12; \intrinsic routines
int Number(18); \numbers from equations
def LF=$0A; \ASCII line feed (end-of-line character)
func Parse(S); \Convert numbers in string S to binary in Number array
char S;
int I, Neg;
proc GetNum; \Get number from string S
int N;
[while S(0)<^0 ! S(0)>^9 do S:= S+1;
N:= S(0)-^0; S:= S+1;
while S(0)>=^0 & S(0)<=^9 do
[N:= N*10 + S(0) - ^0; S:= S+1];
Number(I):= N; I:= I+1;
];
[while S(0)#^= do S:= S+1; \skip to "="
I:= 0;
loop [Neg:= false; \assume positive term
loop [S:= S+1; \next char
case S(0) of
LF: [Number(I):= 0; return S+1]; \mark end of array
^-: Neg:= true; \term is negative
^a: [Number(I):= 1; I:= I+1; quit] \no coefficient so use 1
other if S(0)>=^0 & S(0)<=^9 then \if digit
[S:= S-1; GetNum; quit]; \backup and get number
];
GetNum; \numerator
if Neg then Number(I-1):= -Number(I-1); \tan(-a) = -tan(a)
GetNum; \denominator
];
];
func GCD(U, V); \Return the greatest common divisor of U and V
int U, V;
int T;
[while V do \Euclid's method
[T:= U; U:= V; V:= rem(T/V)];
return abs(U);
];
proc Verify; \Verify that tangent of equation = 1 (i.e: E = F)
int E, F, I, J;
proc Machin(A, B, C, D);
int A, B, C, D;
int Div;
\tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)*tan(b))
\tan(arctan(A/B) + arctan(C/D))
\ = (tan(arctan(A/B)) + tan(arctan(C/D))) / (1 - tan(arctan(A/B))*tan(arctan(C/D)))
\ = (A/B + C/D) / (1 - A/B*C/D)
\ = (A*D/B*D + B*C/B*D) / (B*D/B*D - A*C/B*D)
\ = (A*D + B*C) / (B*D - A*C)
[E:= A*D + B*C; F:= B*D - A*C;
Div:= GCD(E, F); \keep integers from getting too big
E:= E/Div; F:= F/Div;
];
[E:= 0; F:= 1; I:= 0;
while Number(I) do
[for J:= 1 to Number(I) do
Machin(E, F, Number(I+1), Number(I+2));
I:= I+3;
];
Text(0, if E=F then "Yes " else "No ");
];
char S, SS; int I;
[S:= "pi/4 = arctan(1/2) + arctan(1/3)
pi/4 = 2*arctan(1/3) + arctan(1/7)
pi/4 = 4*arctan(1/5) - arctan(1/239)
pi/4 = 5*arctan(1/7) + 2*arctan(3/79)
pi/4 = 5*arctan(29/278) + 7*arctan(3/79)
pi/4 = arctan(1/2) + arctan(1/5) + arctan(1/8)
pi/4 = 4*arctan(1/5) - arctan(1/70) + arctan(1/99)
pi/4 = 5*arctan(1/7) + 4*arctan(1/53) + 2*arctan(1/4443)
pi/4 = 6*arctan(1/8) + 2*arctan(1/57) + arctan(1/239)
pi/4 = 8*arctan(1/10) - arctan(1/239) - 4*arctan(1/515)
pi/4 = 12*arctan(1/18) + 8*arctan(1/57) - 5*arctan(1/239)
pi/4 = 16*arctan(1/21) + 3*arctan(1/239) + 4*arctan(3/1042)
pi/4 = 22*arctan(1/28) + 2*arctan(1/443) - 5*arctan(1/1393) - 10*arctan(1/11018)
pi/4 = 22*arctan(1/38) + 17*arctan(7/601) + 10*arctan(7/8149)
pi/4 = 44*arctan(1/57) + 7*arctan(1/239) - 12*arctan(1/682) + 24*arctan(1/12943)
pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12943)
pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12944)
"; \Python version of equations (thanks!)
for I:= 1 to 17 do
[SS:= S; \save start of string line
S:= Parse(S); \returns start of next line
Verify; \correct Machin equation? Yes or No
repeat ChOut(0, SS(0)); SS:= SS+1 until SS(0)=LF; ChOut(0, LF); \show equation
];
] |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #E | E | ? 'a'.asInteger()
# value: 97
? <import:java.lang.makeCharacter>.asChar(97)
# value: 'a' |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #EasyLang | EasyLang | print strcode "a"
print strchar 97 |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Perl | Perl | sub cholesky {
my $matrix = shift;
my $chol = [ map { [(0) x @$matrix ] } @$matrix ];
for my $row (0..@$matrix-1) {
for my $col (0..$row) {
my $x = $$matrix[$row][$col];
$x -= $$chol[$row][$_]*$$chol[$col][$_] for 0..$col;
$$chol[$row][$col] = $row == $col ? sqrt $x : $x/$$chol[$col][$col];
}
}
return $chol;
}
my $example1 = [ [ 25, 15, -5 ],
[ 15, 18, 0 ],
[ -5, 0, 11 ] ];
print "Example 1:\n";
print +(map { sprintf "%7.4f\t", $_ } @$_), "\n" for @{ cholesky $example1 };
my $example2 = [ [ 18, 22, 54, 42],
[ 22, 70, 86, 62],
[ 54, 86, 174, 134],
[ 42, 62, 134, 106] ];
print "\nExample 2:\n";
print +(map { sprintf "%7.4f\t", $_ } @$_), "\n" for @{ cholesky $example2 };
|
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Sidef | Sidef | func f(day, month) {
Date.parse("#{day} #{month}", "%d %B")
}
var dates = [
f(15, "May"),
f(16, "May"),
f(19, "May"),
f(17, "June"),
f(18, "June"),
f(14, "July"),
f(16, "July"),
f(14, "August"),
f(15, "August"),
f(17, "August")
]
var filtered = dates.grep {
dates.grep {
dates.map{ .day }.count(.day) == 1
}.map{ .month }.count(.month) != 1
}
var birthday = filtered.grep {
filtered.map{ .day }.count(.day) == 1
}.group_by{ .month }.values.first_by { .len == 1 }[0]
say "Cheryl's birthday is #{birthday.fullmonth} #{birthday.day}." |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Nim | Nim | var a = [1,2,3,4,5,6,7,8,9]
var b: array[128, int]
b[9] = 10
b[0..8] = a
var c: array['a'..'d', float] = [1.0, 1.1, 1.2, 1.3]
c['b'] = 10000 |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Pyret | Pyret |
fun combos<a>(lst :: List<a>, size :: Number) -> List<List<a>>:
# return all subsets of lst of a certain size,
# maintaining the original ordering of the list
# Let's handle a bunch of degenerate cases up front
# to be defensive...
if lst.length() < size:
# return an empty list if size is too big
[list:]
else if lst.length() == size:
# combos([list: 1,2,3,4]) == list[list: 1,2,3,4]]
[list: lst]
else if size == 1:
# combos(list: 5, 9]) == list[[list: 5], [list: 9]]
lst.map(lam(elem): [list: elem] end)
else:
# The main resursive step here is to consider
# all the combinations of the list that have the
# first element (aka head) and then those that don't
# don't.
cases(List) lst:
| empty => [list:]
| link(head, rest) =>
# All the subsets of our list either include the
# first element of the list (aka head) or they don't.
with-head-combos = combos(rest, size - 1).map(
lam(combo):
link(head, combo) end
)
without-head-combos = combos(rest, size)
with-head-combos._plus(without-head-combos)
end
end
where:
# define semantics for the degenerate cases, although
# maybe we should just make some of these raise errors
combos([list:], 0) is [list: [list:]]
combos([list:], 1) is [list:]
combos([list: "foo"], 1) is [list: [list: "foo"]]
combos([list: "foo"], 2) is [list:]
# test the normal stuff
lst = [list: 1, 2, 3]
combos(lst, 1) is [list:
[list: 1],
[list: 2],
[list: 3]
]
combos(lst, 2) is [list:
[list: 1, 2],
[list: 1, 3],
[list: 2, 3]
]
combos(lst, 3) is [list:
[list: 1, 2, 3]
]
# remember the 10th row of Pascal's Triangle? :)
lst10 = [list: 1,2,3,4,5,6,7,8,9,10]
combos(lst10, 3).length() is 120
combos(lst10, 4).length() is 210
combos(lst10, 5).length() is 252
combos(lst10, 6).length() is 210
combos(lst10, 7).length() is 120
# more sanity checks...
for each(sublst from combos(lst10, 6)):
sublst.length() is 6
end
for each(sublst from combos(lst10, 9)):
sublst.length() is 9
end
end
fun int-combos(n :: Number, m :: Number) -> List<List<Number>>:
doc: "return all lists of size m containing distinct, ordered nonnegative ints < n"
lst = range(0, n)
combos(lst, m)
where:
int-combos(5, 5) is [list: [list: 0,1,2,3,4]]
int-combos(3, 2) is [list:
[list: 0, 1],
[list: 0, 2],
[list: 1, 2]
]
end
fun display-3-comb-5-for-rosetta-code():
# The very concrete nature of this function is driven
# by the web page from Rosetta Code. We want to display
# output similar to the top of this page:
#
# https://rosettacode.org/wiki/Combinations
results = int-combos(5, 3)
for each(lst from results):
print(lst.join-str(" "))
end
end
display-3-comb-5-for-rosetta-code()
|
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #SQL | SQL | CASE WHEN a THEN b ELSE c END
DECLARE @n INT
SET @n=124
print CASE WHEN @n=123 THEN 'equal' ELSE 'not equal' END
--If/ElseIf expression
SET @n=5
print CASE WHEN @n=3 THEN 'Three' WHEN @n=4 THEN 'Four' ELSE 'Other' END |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Nim | Nim | proc mulInv(a0, b0: int): int =
var (a, b, x0) = (a0, b0, 0)
result = 1
if b == 1: return
while a > 1:
let q = a div b
a = a mod b
swap a, b
result = result - q * x0
swap x0, result
if result < 0: result += b0
proc chineseRemainder[T](n, a: T): int =
var prod = 1
var sum = 0
for x in n: prod *= x
for i in 0..<n.len:
let p = prod div n[i]
sum += a[i] * mulInv(p, n[i]) * p
sum mod prod
echo chineseRemainder([3,5,7], [2,3,2]) |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #OCaml | OCaml |
exception Modular_inverse
let inverse_mod a = function
| 1 -> 1
| b -> let rec inner a b x0 x1 =
if a <= 1 then x1
else if b = 0 then raise Modular_inverse
else inner b (a mod b) (x1 - (a / b) * x0) x0 in
let x = inner a b 0 1 in
if x < 0 then x + b else x
let chinese_remainder_exn congruences =
let mtot = congruences
|> List.map (fun (_, x) -> x)
|> List.fold_left ( *) 1 in
(List.fold_left (fun acc (r, n) ->
acc + r * inverse_mod (mtot / n) n * (mtot / n)
) 0 congruences)
mod mtot
let chinese_remainder congruences =
try Some (chinese_remainder_exn congruences)
with modular_inverse -> None
|
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Ol | Ol | p = .point~new
c = .circle~new
p~print
c~print
::class point
::method init
expose x y
use strict arg x = 0, y = 0 -- defaults to 0 for any non-specified coordinates
::attribute x
::attribute y
::method print
expose x y
say "A point at location ("||x","y")"
::class circle subclass point
::method init
expose radius
use strict arg x = 0, y = 0, radius = 0
self~init:super(x, y) -- call superclass constructor
::attribute radius
::method print
expose radius
say "A circle of radius" radius "centered at location ("||self~x","self~y")" |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #R | R | closest_pair_brute <-function(x,y,plotxy=F) {
xy = cbind(x,y)
cp = bruteforce(xy)
cat("\n\nShortest path found = \n From:\t\t(",cp[1],',',cp[2],")\n To:\t\t(",cp[3],',',cp[4],")\n Distance:\t",cp[5],"\n\n",sep="")
if(plotxy) {
plot(x,y,pch=19,col='black',main="Closest Pair", asp=1)
points(cp[1],cp[2],pch=19,col='red')
points(cp[3],cp[4],pch=19,col='red')
}
distance <- function(p1,p2) {
x1 = (p1[1])
y1 = (p1[2])
x2 = (p2[1])
y2 = (p2[2])
sqrt((x2-x1)^2 + (y2-y1)^2)
}
bf_iter <- function(m,p,idx=NA,d=NA,n=1) {
dd = distance(p,m[n,])
if((is.na(d) || dd<=d) && p!=m[n,]){d = dd; idx=n;}
if(n == length(m[,1])) { c(m[idx,],d) }
else bf_iter(m,p,idx,d,n+1)
}
bruteforce <- function(pmatrix,n=1,pd=c(NA,NA,NA,NA,NA)) {
p = pmatrix[n,]
ppd = c(p,bf_iter(pmatrix,p))
if(ppd[5]<pd[5] || is.na(pd[5])) pd = ppd
if(n==length(pmatrix[,1])) pd
else bruteforce(pmatrix,n+1,pd)
}
} |
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Modula-2 | Modula-2 | MODULE Circles;
FROM EXCEPTIONS IMPORT AllocateSource,ExceptionSource,GetMessage,RAISE;
FROM FormatString IMPORT FormatString;
FROM LongMath IMPORT sqrt;
FROM LongStr IMPORT RealToStr;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
VAR
TextWinExSrc : ExceptionSource;
TYPE
Point = RECORD
x,y : LONGREAL;
END;
Pair = RECORD
a,b : Point;
END;
PROCEDURE Distance(p1,p2 : Point) : LONGREAL;
VAR dx,dy : LONGREAL;
BEGIN
dx := p1.x - p2.x;
dy := p1.y - p2.y;
RETURN sqrt(dx*dx + dy*dy)
END Distance;
PROCEDURE Equal(p1,p2 : Point) : BOOLEAN;
BEGIN
RETURN (p1.x=p2.x) AND (p1.y=p2.y)
END Equal;
PROCEDURE WritePoint(p : Point);
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
WriteString("(");
RealToStr(p.x, buf);
WriteString(buf);
WriteString(", ");
RealToStr(p.y, buf);
WriteString(buf);
WriteString(")");
END WritePoint;
PROCEDURE FindCircles(p1,p2 : Point; r : LONGREAL) : Pair;
VAR
distance,diameter,mirrorDistance,dx,dy : LONGREAL;
center : Point;
BEGIN
IF r < 0.0 THEN RAISE(TextWinExSrc, 0, "the radius can't be negative") END;
IF (r = 0.0) AND NOT Equal(p1,p2) THEN RAISE(TextWinExSrc, 0, "No circles can ever be drawn") END;
IF r = 0.0 THEN RETURN Pair{p1,p1} END;
IF Equal(p1,p2) THEN RAISE(TextWinExSrc, 0, "an infinite number of circles can be drawn") END;
distance := Distance(p1,p2);
diameter := 2.0 * r;
IF distance > diameter THEN RAISE(TextWinExSrc, 0, "the points are too far apart to draw a circle") END;
center := Point{(p1.x + p2.x) / 2.0, (p1.y + p2.y) / 2.0};
IF distance = diameter THEN RETURN Pair{center, center} END;
mirrorDistance := sqrt(r * r - distance * distance / 4.0);
dx := (p2.x - p1.x) * mirrorDistance / distance;
dy := (p2.y - p1.y) * mirrorDistance / distance;
RETURN Pair{
{center.x - dy, center.y + dx},
{center.x + dy, center.y - dx}
}
END FindCircles;
PROCEDURE Print(p1,p2 : Point; r : LONGREAL) : BOOLEAN;
VAR
buf : ARRAY[0..63] OF CHAR;
result : Pair;
BEGIN
WriteString("For points ");
WritePoint(p1);
WriteString(" and ");
WritePoint(p2);
WriteString(" with radius ");
RealToStr(r, buf);
WriteString(buf);
WriteLn;
result := FindCircles(p1,p2,r);
IF Equal(result.a, result.b) THEN
WriteString("there is just one circle with the center at ");
WritePoint(result.a);
WriteLn;
ELSE
WriteString("there are two circles with centers at ");
WritePoint(result.a);
WriteString(" and ");
WritePoint(result.b);
WriteLn;
END;
WriteLn;
RETURN TRUE
EXCEPT
GetMessage(buf);
WriteString(buf);
WriteLn;
WriteLn;
RETURN FALSE
END Print;
VAR p0,p1,p2,p3 : Point;
BEGIN
AllocateSource(TextWinExSrc);
p0 := Point{0.1234,0.9876};
p1 := Point{0.8765,0.2345};
p2 := Point{0.0000,2.0000};
p3 := Point{0.0000,0.0000};
Print(p0,p1,2.0);
Print(p2,p3,1.0);
Print(p0,p0,2.0);
Print(p0,p1,0.5);
Print(p0,p0,0.0);
ReadChar
END Circles. |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Picat | Picat |
animals({"Rat", "Ox", "Tiger", "Rabbit", "Dragon", "Snake", "Horse", "Goat", "Monkey", "Rooster", "Dog", "Pig"}).
elements({"Wood", "Fire", "Earth", "Metal", "Water"}).
animal_chars({"子","丑","寅","卯","辰","巳","午","未","申","酉","戌","亥"}).
element_chars({{"甲", "丙", "戊", "庚", "壬"}, {"乙", "丁", "己", "辛", "癸"}}).
years({1935, 1938, 1968, 1972, 1976, 1984, 1985, 2017}).
year_animal(Year) = Animal =>
I = ((Year - 4) mod 12) + 1,
animals(Animals),
Animal = Animals[I].
year_element(Year) = Element =>
I = ((Year - 4) mod 10) div 2 + 1,
elements(Elements),
Element = Elements[I].
year_animal_char(Year) = AnimalChar =>
I = (Year - 4) mod 12 + 1,
animal_chars(AnimalChars),
AnimalChar = AnimalChars[I].
year_element_char(Year) = ElementChar =>
I1 = Year mod 2 + 1,
element_chars(ElementChars),
ElementChars1 = ElementChars[I1],
I2 = (Year - 4) mod 10 div 2 + 1,
ElementChar = ElementChars1[I2].
year_yin_yang(Year) = YinYang =>
Year mod 2 == 0 -> YinYang = "yang" ; YinYang = "yin".
main :-
years(Years),
foreach (Year in Years)
Element = year_element(Year),
Animal = year_animal(Year),
YinYang = year_yin_yang(Year),
ElementChar = year_element_char(Year),
AnimalChar = year_animal_char(Year),
printf("%d is the year of the %w %w (%w). %w%w\n", Year, Element, Animal, YinYang, ElementChar, AnimalChar)
end.
|
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #GAP | GAP | IsExistingFile("input.txt");
IsDirectoryPath("docs");
IsExistingFile("/input.txt");
IsDirectoryPath("/docs"); |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Genie | Genie | [indent=4]
/*
Check file exists, in Genie
valac --pkg=gio-2.0 checkFile.gs
*/
init
Intl.setlocale()
files:array of string[] = {"input.txt", "docs",
Path.DIR_SEPARATOR_S + "input.txt", Path.DIR_SEPARATOR_S + "docs", "`Abdu'l-Bahá.txt"}
for f:string in files
var file = File.new_for_path(f)
var exists = file.query_exists()
var dir = false
if exists
dir = file.query_file_type(0) == FileType.DIRECTORY
print("%s %sexist%s%s", f, exists ? "" : "does not ", exists ? "s" : "", dir ? " and is a directory" : "") |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Maple | Maple | chaosGame := proc(numPoints)
local points, i;
randomize();
use geometry in
RegularPolygon(triSideways, 3, point(cent, [0, 0]), 1);
rotation(tri, triSideways, Pi/2, counterclockwise);
randpoint(currentP, -1/2*sqrt(3)..1/2*sqrt(3), -1/2..1/2);
points := [coordinates(currentP)];
for i to numPoints do
midpoint(mid, currentP, parse(cat("rotate_triSideways_", rand(1..3)(), "_tri")));
points := [op(points), coordinates(mid)];
point(currentP, coordinates(mid));
end do:
end use;
use plottools in
plots:-display( seq([plots:-display([seq(point(points[i]), i = 1..j)])], j = 1..numelems(points) ), insequence=true);
end use;
end proc: |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Python | Python | #!/usr/bin/env python
import socket
import thread
import time
HOST = ""
PORT = 4004
def accept(conn):
"""
Call the inner func in a thread so as not to block. Wait for a
name to be entered from the given connection. Once a name is
entered, set the connection to non-blocking and add the user to
the users dict.
"""
def threaded():
while True:
conn.send("Please enter your name: ")
try:
name = conn.recv(1024).strip()
except socket.error:
continue
if name in users:
conn.send("Name entered is already in use.\n")
elif name:
conn.setblocking(False)
users[name] = conn
broadcast(name, "+++ %s arrived +++" % name)
break
thread.start_new_thread(threaded, ())
def broadcast(name, message):
"""
Send a message to all users from the given name.
"""
print message
for to_name, conn in users.items():
if to_name != name:
try:
conn.send(message + "\n")
except socket.error:
pass
# Set up the server socket.
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.setblocking(False)
server.bind((HOST, PORT))
server.listen(1)
print "Listening on %s" % ("%s:%s" % server.getsockname())
# Main event loop.
users = {}
while True:
try:
# Accept new connections.
while True:
try:
conn, addr = server.accept()
except socket.error:
break
accept(conn)
# Read from connections.
for name, conn in users.items():
try:
message = conn.recv(1024)
except socket.error:
continue
if not message:
# Empty string is given on disconnect.
del users[name]
broadcast(name, "--- %s leaves ---" % name)
else:
broadcast(name, "%s> %s" % (name, message.strip()))
time.sleep(.1)
except (SystemExit, KeyboardInterrupt):
break |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Eiffel | Eiffel |
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
make
-- Run application.
local
c8: CHARACTER_8
c32: CHARACTER_32
do
c8 := '%/97/' -- using code value notation
c8 := '%/0x61/' -- same as above, but using hexadecimal literal
print(c8.natural_32_code) -- prints "97"
print(c8) -- prints the character "a"
c32 := 'a' -- using character literal
print(c32.natural_32_code) -- prints "97"
print(c32) -- prints "U+00000061"
--c8 := 'π' -- compile-time error (c8 does not have enough range)
c32 := 'π' -- assigns Unicode value 960
end
end
|
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Phix | Phix | with javascript_semantics
function cholesky(sequence matrix)
integer l = length(matrix)
sequence chol = repeat(repeat(0,l),l)
for row=1 to l do
for col=1 to row do
atom x = matrix[row][col]
for i=1 to col do
x -= chol[row][i] * chol[col][i]
end for
chol[row][col] = iff(row == col ? sqrt(x) : x/chol[col][col])
end for
end for
return chol
end function
ppOpt({pp_Nest,1})
pp(cholesky({{ 25, 15, -5 },
{ 15, 18, 0 },
{ -5, 0, 11 }}))
pp(cholesky({{ 18, 22, 54, 42},
{ 22, 70, 86, 62},
{ 54, 86, 174, 134},
{ 42, 62, 134, 106}}))
|
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Swift | Swift | struct MonthDay: CustomStringConvertible {
static let months = [
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"
]
var month: Int
var day: Int
var description: String { "\(MonthDay.months[month - 1]) \(day)" }
private func isUniqueIn(months: [MonthDay], by prop: KeyPath<MonthDay, Int>) -> Bool {
return months.lazy.filter({ $0[keyPath: prop] == self[keyPath: prop] }).count == 1
}
func monthIsUniqueIn(months: [MonthDay]) -> Bool {
return isUniqueIn(months: months, by: \.month)
}
func dayIsUniqueIn(months: [MonthDay]) -> Bool {
return isUniqueIn(months: months, by: \.day)
}
func monthWithUniqueDayIn(months: [MonthDay]) -> Bool {
return months.firstIndex(where: { $0.month == month && $0.dayIsUniqueIn(months: months) }) != nil
}
}
let choices = [
MonthDay(month: 5, day: 15),
MonthDay(month: 5, day: 16),
MonthDay(month: 5, day: 19),
MonthDay(month: 6, day: 17),
MonthDay(month: 6, day: 18),
MonthDay(month: 7, day: 14),
MonthDay(month: 7, day: 16),
MonthDay(month: 8, day: 14),
MonthDay(month: 8, day: 15),
MonthDay(month: 8, day: 17)
]
// Albert knows the month, but not the day, so he doesn't have a gimmie month
let albertKnows = choices.filter({ !$0.monthIsUniqueIn(months: choices) })
// Albert also knows that Bernard doesn't know, so it can't be a gimmie day
let bernardKnows = albertKnows.filter({ !$0.monthWithUniqueDayIn(months: albertKnows) })
// Bernard now knows the birthday, so it must be a unique day within the remaining choices
let bernardKnowsMore = bernardKnows.filter({ $0.dayIsUniqueIn(months: bernardKnows) })
// Albert knows the birthday now, so it must be a unique month within the remaining choices
guard let birthday = bernardKnowsMore.filter({ $0.monthIsUniqueIn(months: bernardKnowsMore) }).first else {
fatalError()
}
print("Cheryl's birthday is \(birthday)") |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #VBA | VBA | Private Sub exclude_unique_days(w As Collection)
Dim number_of_dates(31) As Integer
Dim months_to_exclude As New Collection
For Each v In w
number_of_dates(v(1)) = number_of_dates(v(1)) + 1
Next v
For i = w.Count To 1 Step -1
If number_of_dates(w(i)(1)) = 1 Then
months_to_exclude.Add w(i)(0)
w.Remove i
End If
Next i
For Each m In months_to_exclude
exclude_month w, m
Next m
End Sub
Private Sub exclude_month(x As Collection, v As Variant)
For i = x.Count To 1 Step -1
If x(i)(0) = v Then x.Remove i
Next i
End Sub
Private Sub exclude_non_unique_days(w As Collection)
Dim number_of_dates(31) As Integer
For Each v In w
number_of_dates(v(1)) = number_of_dates(v(1)) + 1
Next v
For i = w.Count To 1 Step -1
If number_of_dates(w(i)(1)) > 1 Then
w.Remove i
End If
Next i
End Sub
Private Sub exclude_non_unique_months(w As Collection)
Dim months As New Collection
For Each v In w
On Error GoTo 1
months.Add v(0), v(0)
Next v
1:
For i = w.Count To 1 Step -1
If w(i)(0) = v(0) Then
w.Remove i
End If
Next i
End Sub
Public Sub cherylsbirthday()
Dim v As New Collection
s = "May 15, May 16, May 19, June 17, June 18, July 14, July 16, August 14, August 15, August 17"
t = Split(s, ",")
For Each u In t
v.Add Split(Trim(u), " ")
Next u
'1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
exclude_unique_days v
'2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
exclude_non_unique_days v
'3) Albert: Then I also know when Cheryl's birthday is.
exclude_non_unique_months v
Debug.Print v(1)(0); " "; v(1)(1)
End Sub |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Objeck | Objeck |
values := IntVector->New();
values->AddBack(7);
values->AddBack(3);
values->AddBack(10);
|
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Python | Python | >>> from itertools import combinations
>>> list(combinations(range(5),3))
[(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)] |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #SSEM | SSEM | 01010000000000100000000000000000 -10 to c
00000000000000110000000000000000 Test
01110000000000000000000000000000 14 to CI |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Stata | Stata | clear
set obs 4
gen a = cond(mod(_n, 2)==1, "A", "B")
list, noobs noheader
+---+
| A |
| B |
| A |
| B |
+---+ |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #PARI.2FGP | PARI/GP | chivec(residues, moduli)={
my(m=Mod(0,1));
for(i=1,#residues,
m=chinese(Mod(residues[i],moduli[i]),m)
);
lift(m)
};
chivec([2,3,2], [3,5,7]) |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Pascal | Pascal |
// Rosetta Code task "Chinese remainder theorem".
program ChineseRemThm;
uses SysUtils;
type TIntArray = array of integer;
// Defining EXTRA adds optional explanatory code
{$DEFINE EXTRA}
// Return (if possible) a residue res_out that satifies
// res_out = res1 modulo mod1, res_out = res2 modulo mod2.
// Return mod_out = LCM( mod1, mod2), or mod_out = 0 if there's no solution.
procedure Solve2( const res1, res2, mod1, mod2 : integer;
out res_out, mod_out : integer);
var
a, c, d, k, m, m1, m2, r, temp : integer;
p, p_prev : integer;
{$IFDEF EXTRA}
q, q_prev : integer;
{$ENDIF}
begin
if (mod1 = 0) or (mod2 = 0) then
raise SysUtils.Exception.Create( 'Solve2: Modulus cannot be 0');
m1 := Abs( mod1);
m2 := Abs( mod2);
// Extended Euclid's algorithm for HCF( m1, m2), except that only one
// of the Bezout coefficients is needed (here p, could have used q)
c := m1; d := m2;
p :=0; p_prev := 1;
{$IFDEF EXTRA}
q := 1; q_prev := 0;
{$ENDIF}
a := 0;
while (d > 0) do begin
temp := p_prev - a*p; p_prev := p; p := temp;
{$IFDEF EXTRA}
temp := q_prev - a*q; q_prev := q; q := temp;
{$ENDIF}
a := c div d;
temp := c - a*d; c := d; d := temp;
end;
// Here with c = HCF( m1, m2)
{$IFDEF EXTRA}
Assert( c = p*m2 + q*m1); // p and q are the Bezout coefficients
{$ENDIF}
// A soution exists iff c divides (res2 - res1)
k := (res2 - res1) div c;
if res2 - res1 <> k*c then begin
res_out := 0; mod_out := 0; // indicate that there's no xolution
end
else begin
m := (m1 div c) * m2; // m := LCM( m1, m2)
r:= res2 - k*p*m2; // r := a solution modulo m
{$IFDEF EXTRA}
Assert( r = res1 + k*q*m1); // alternative formula in terms of q
{$ENDIF}
// Return the solution in the range 0..(m - 1)
// Don't trust the compiler with a negative argument to mod
if (r >= 0) then r := r mod m
else begin
r := (-r) mod m;
if (r > 0) then r := m - r;
end;
res_out := r; mod_out := m;
end;
end;
// Return (if possible) a residue res_out that satifies
// res_out = res_array[j] modulo mod_array[j], for j = 0..High(res_array).
// Return mod_out = LCM of the moduli, or mod_out = 0 if there's no solution.
procedure SolveMulti( const res_array, mod_array : TIntArray;
out res_out, mod_out : integer);
var
count, k, m, r : integer;
begin
count := Length( mod_array);
if count <> Length( res_array) then
raise SysUtils.Exception.Create( 'Arrays are different sizes')
else if count = 0 then
raise SysUtils.Exception.Create( 'Arrays are empty');
k := 1;
m := mod_array[0]; r := res_array[0];
while (k < count) and (m > 0) do begin
Solve2( r, res_array[k], m, mod_array[k], r, m);
inc(k);
end;
res_out := r; mod_out := m;
end;
// Cosmetic to turn an integer array into a string for printout.
function ArrayToString( a : TIntArray) : string;
var
j : integer;
begin
result := '[';
for j := 0 to High(a) do begin
result := result + SysUtils.IntToStr(a[j]);
if j < High(a) then result := result + ', '
else result := result + ']';
end;
end;
// For the passed-in res_array and mod_array, show the solution
// found by SolveMulti (above), or state that there's no solution.
procedure ShowSolution( const res_array, mod_array : TIntArray);
var
mod_out, res_out : integer;
begin
SolveMulti( res_array, mod_array, res_out, mod_out);
Write( ArrayToString( res_array) + ' mod '
+ ArrayToString( mod_array) + ' --> ');
if mod_out = 0 then
WriteLn( 'No solution')
else
WriteLn( SysUtils.Format( '%d mod %d', [res_out, mod_out]));
end;
// Main routine. Examples for Rosetta Code task.
begin
ShowSolution([2, 3, 2], [3, 5, 7]);
ShowSolution([3, 5, 7], [2, 3, 2]);
ShowSolution([10, 4, 12], [11, 12, 13]);
ShowSolution([1, 2, 3, 4], [5, 7, 9, 11]);
ShowSolution([11, 22, 19], [10, 4, 9]);
ShowSolution([2328, 410], [16256, 5418]);
ShowSolution([19, 0], [100, 23]);
end.
|
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #ooRexx | ooRexx | p = .point~new
c = .circle~new
p~print
c~print
::class point
::method init
expose x y
use strict arg x = 0, y = 0 -- defaults to 0 for any non-specified coordinates
::attribute x
::attribute y
::method print
expose x y
say "A point at location ("||x","y")"
::class circle subclass point
::method init
expose radius
use strict arg x = 0, y = 0, radius = 0
self~init:super(x, y) -- call superclass constructor
::attribute radius
::method print
expose radius
say "A circle of radius" radius "centered at location ("||self~x","self~y")" |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #OxygenBasic | OxygenBasic |
Class MyObject
static int count 'statics are private
int a,b,c
bstring s
method constructor(int pa,pb,pc)
s="constructed"
a=pa : b=pb : c=pc
count++
end method
method destructor()
del s
end method
method sum() as int
return a+b+c
end method
end class
new MyObject v(2,4,6)
print "Sum: " v.sum
del v
|
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Racket | Racket |
#lang racket
(define (dist z0 z1) (magnitude (- z1 z0)))
(define (dist* zs) (apply dist zs))
(define (closest-pair zs)
(if (< (length zs) 2)
-inf.0
(first
(sort (for/list ([z0 zs])
(list z0 (argmin (λ(z) (if (= z z0) +inf.0 (dist z z0))) zs)))
< #:key dist*))))
(define result (closest-pair '(0+1i 1+2i 3+4i)))
(displayln (~a "Closest points: " result))
(displayln (~a "Distance: " (dist* result)))
|
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Nim | Nim | import math
type
Point = tuple[x, y: float]
Circle = tuple[x, y, r: float]
proc circles(p1, p2: Point, r: float): tuple[c1, c2: Circle] =
if r == 0: raise newException(ValueError,
"radius of zero")
if p1 == p2: raise newException(ValueError,
"coincident points gives infinite number of Circles")
# delta x, delta y between points
let (dx, dy) = (p2.x - p1.x, p2.y - p1.y)
# dist between points
let q = sqrt(dx*dx + dy*dy)
if q > 2.0*r: raise newException(ValueError,
"separation of points > diameter")
# halfway point
let p3: Point = ((p1.x+p2.x)/2, (p1.y+p2.y)/2)
# distance along the mirror line
let d = sqrt(r*r - (q/2)*(q/2))
# One answer
result.c1 = (p3.x - d*dy/q, p3.y + d*dx/q, abs(r))
# The other answer
result.c2 = (p3.x + d*dy/q, p3.y - d*dx/q, abs(r))
const tries: seq[tuple[p1, p2: Point, r: float]] =
@[((0.1234, 0.9876), (0.8765, 0.2345), 2.0),
((0.0000, 2.0000), (0.0000, 0.0000), 1.0),
((0.1234, 0.9876), (0.1234, 0.9876), 2.0),
((0.1234, 0.9876), (0.8765, 0.2345), 0.5),
((0.1234, 0.9876), (0.1234, 0.9876), 0.0)]
for p1, p2, r in tries.items:
echo "Through points:"
echo " ", p1
echo " ", p2
echo " and radius ", r
echo "You can construct the following circles:"
try:
let (c1, c2) = circles(p1, p2, r)
echo " ", c1
echo " ", c2
except ValueError:
echo " ERROR: ", getCurrentExceptionMsg()
echo "" |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #PowerShell | PowerShell |
function Get-ChineseZodiac
{
[CmdletBinding()]
[OutputType([PSCustomObject])]
Param
(
[Parameter(Mandatory=$false,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=$true,
Position=0)]
[ValidateRange(1,9999)]
[int]
$Year = (Get-Date).Year
)
Begin
{
$pinyin = @{
'甲' = 'jiă'
'乙' = 'yĭ'
'丙' = 'bĭng'
'丁' = 'dīng'
'戊' = 'wù'
'己' = 'jĭ'
'庚' = 'gēng'
'辛' = 'xīn'
'壬' = 'rén'
'癸' = 'gŭi'
'子' = 'zĭ'
'丑' = 'chŏu'
'寅' = 'yín'
'卯' = 'măo'
'辰' = 'chén'
'巳' = 'sì'
'午' = 'wŭ'
'未' = 'wèi'
'申' = 'shēn'
'酉' = 'yŏu'
'戌' = 'xū'
'亥' = 'hài'
}
$celestial = '甲', '乙', '丙', '丁', '戊', '己', '庚', '辛', '壬', '癸'
$terrestrial = '子', '丑', '寅', '卯', '辰', '巳', '午', '未', '申', '酉', '戌', '亥'
$animals = 'Rat', 'Ox', 'Tiger', 'Rabbit', 'Dragon', 'Snake', 'Horse', 'Goat', 'Monkey', 'Rooster', 'Dog', 'Pig'
$elements = 'Wood', 'Fire', 'Earth', 'Metal', 'Water'
$aspects = 'yang', 'yin'
$base = 4
}
Process
{
foreach ($ce_year in $Year)
{
$cycle_year = $ce_year - $base
$stem_number = $cycle_year % 10
$stem_han = $celestial[$stem_number]
$stem_pinyin = $pinyin[$stem_han]
$element_number = [Math]::Floor($stem_number / 2)
$element = $elements[$element_number]
$branch_number = $cycle_year % 12
$branch_han = $terrestrial[$branch_number]
$branch_pinyin = $pinyin[$branch_han]
$animal = $animals[$branch_number]
$aspect_number = $cycle_year % 2
$aspect = $aspects[$aspect_number]
$index = $cycle_year % 60 + 1
[PSCustomObject]@{
Year = $Year
Element = $element
Animal = $animal
Aspect = $aspect
YearOfCycle = $index
ASCII = "$stem_pinyin-$branch_pinyin"
Chinese = "$stem_han$branch_han"
}
}
}
}
|
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Go | Go | package main
import (
"fmt"
"os"
)
func printStat(p string) {
switch i, err := os.Stat(p); {
case err != nil:
fmt.Println(err)
case i.IsDir():
fmt.Println(p, "is a directory")
default:
fmt.Println(p, "is a file")
}
}
func main() {
printStat("input.txt")
printStat("/input.txt")
printStat("docs")
printStat("/docs")
} |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Groovy | Groovy | println new File('input.txt').exists()
println new File('/input.txt').exists()
println new File('docs').exists()
println new File('/docs').exists() |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | points = 5000;
a = {0, 0};
b = {1, 0};
c = {0.5, 1};
d = {.7, .3};
S = {};
For[i = 1, i < points, i++, t = RandomInteger[2];
If[t == 0, d = Mean[{a, d}],
If[t == 1, d = Mean[{b, d}], d = Mean[{c, d}]]]; AppendTo[S, d]]
Graphics[Point[S]] |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Nim | Nim | import random
import rapid/gfx
var
window = initRWindow()
.title("Rosetta Code - Chaos Game")
.open()
surface = window.openGfx()
sierpinski = window.newRCanvas()
points: array[3, Vec2[float]]
for i in 0..<3:
points[i] = vec2(cos(PI * 2 / 3 * i.float), sin(PI * 2 / 3 * i.float)) * 300
var point = vec2(rand(0.0..surface.width), rand(0.0..surface.height))
surface.vsync = false
surface.loop:
draw ctx, step:
let vertex = sample(points)
point = (point + vertex) / 2
ctx.renderTo(sierpinski):
ctx.transform():
ctx.translate(surface.width / 2, surface.height / 2)
ctx.rotate(-PI / 2)
ctx.begin()
ctx.point((point.x, point.y))
ctx.draw(prPoints)
ctx.clear(gray(0))
ctx.begin()
ctx.texture = sierpinski
ctx.rect(0, 0, surface.width, surface.height)
ctx.draw()
ctx.noTexture()
update step:
discard |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #R | R |
chat_loop <- function(server, sockets, delay = 0.5) {
repeat {
Sys.sleep(delay) # Saves CPU resources
## Exhausts queue each iteration
while (in_queue(server))
sockets <- new_socket_entry(server, sockets)
## Update which sockets have sent messages
sockets <- check_messages(sockets)
## No sockets, nothing to do
if (nrow(sockets) == 0)
next
## No new messages, nothing to do
if (all(!sockets$message_ready))
next
sockets <- read_messages(sockets) # Messages are stored until sent
sockets <- drop_dead(sockets) # Dead = ready to read, but no data
## In case all sockets were dropped
if (nrow(sockets) == 0)
next
sockets <- update_nicknames(sockets)
sockets <- send_messages(sockets) # Only to users with nicknames
}
}
check_messages <- function(sockets) {
if (nrow(sockets) != 0)
sockets$message_ready <- socketSelect(sockets$conn, timeout = 0)
sockets
}
drop_dead <- function(sockets) {
lapply(with(sockets, conn[!alive]), close)
dropped <- with(sockets, nickname[nickname_exists(sockets) & !alive])
sockets <- sockets[sockets$alive, ]
if (length(dropped) != 0) {
send_named(sockets, paste0(dropped, " has disconnected."))
}
sockets
}
in_queue <- function(server) socketSelect(list(server), timeout = 0)
is_valid_name <- function(nicks) gsub("[A-Za-z0-9]*", "", nicks) == ""
message_exists <- function(sockets) !is.na(sockets$message)
new_row <- function(df) {
df[nrow(df) + 1, ] <- NA
df
}
new_socket_entry <- function(server, sockets) {
sockets <- new_row(sockets)
n <- nrow(sockets)
within(sockets, {
conn[[n]] <- new_user(server)
alive[n] <- TRUE
message_ready[n] <- FALSE
})
}
new_user <- function(server) {
conn <- socketAccept(server)
writeLines("Hello! Please enter a nickname.", conn)
conn
}
nickname_exists <- function(sockets) !is.na(sockets$nickname)
read_messages <- function(sockets) {
if (all(!sockets$message_ready))
return(sockets)
msgs <- lapply(with(sockets, conn[message_ready]), readLines, n = 1)
empty_msgs <- sapply(msgs, identical, character(0))
sockets <- within(sockets, alive[message_ready & empty_msgs] <- FALSE)
msgs <- unlist(ifelse(empty_msgs, NA, msgs))
within(sockets, message[message_ready] <- msgs)
}
send_messages <- function(sockets) {
named_message <- message_exists(sockets) & nickname_exists(sockets)
if (all(!named_message))
return(sockets)
rows <- which(named_message)
socksub <- sockets[rows, ]
time <- format(Sys.time(), "[%H:%M:%S] ")
with(socksub, send_named(sockets, paste0(time, nickname, ": ", message)))
within(sockets, message[rows] <- NA)
}
send_named <- function(sockets, msg) {
has_nickname <- nickname_exists(sockets)
invisible(lapply(sockets$conn[has_nickname], writeLines, text = msg))
}
start_chat_server <- function(port = 50525) {
server <- serverSocket(port) # Start listening
on.exit(closeAllConnections()) # Cleanup connections
## All socket data is stored and passed using this object
sockets <- data.frame(conn = I(list()), nickname = character(),
message = character(), alive = logical(),
message_ready = logical())
## Main event loop
chat_loop(server, sockets)
}
update_nicknames <- function(sockets) {
sent_nickname <- message_exists(sockets) & !nickname_exists(sockets)
nickname_valid <- is_valid_name(sockets$message)
if (all(!sent_nickname))
return(sockets)
is_taken <- with(sockets, (tolower(message) %in% tolower(sockets$nickname)) &
!is.na(message))
sent_ok <- sent_nickname & nickname_valid & !is_taken
sockets <- within(sockets, {
nickname[sent_ok] <- message[sent_ok]
message[sent_nickname] <- NA
lapply(conn[sent_nickname & !nickname_valid], writeLines,
text = "Alphanumeric characters only. Try again.")
lapply(conn[is_taken], writeLines,
text = "Name already taken. Try again.")
})
if (any(sent_ok))
send_named(sockets, paste0(sockets$nickname[sent_ok], " has connected."))
sockets
}
start_chat_server() |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Elena | Elena | import extensions;
public program()
{
var ch := $97;
console.printLine:ch;
console.printLine(ch.toInt())
} |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #PicoLisp | PicoLisp | (scl 9)
(load "@lib/math.l")
(de cholesky (A)
(let L (mapcar '(() (need (length A) 0)) A)
(for (I . R) A
(for J I
(let S (get R J)
(for K (inc J)
(dec 'S (*/ (get L I K) (get L J K) 1.0)) )
(set (nth L I J)
(if (= I J)
(sqrt S 1.0)
(*/ S 1.0 (get L J J)) ) ) ) ) )
(for R L
(for N R (prin (align 9 (round N 5))))
(prinl) ) ) ) |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Visual_Basic_.NET | Visual Basic .NET | Module Module1
Structure MonDay
Dim month As String
Dim day As Integer
Sub New(m As String, d As Integer)
month = m
day = d
End Sub
Public Overrides Function ToString() As String
Return String.Format("({0}, {1})", month, day)
End Function
End Structure
Sub Main()
Dim dates = New HashSet(Of MonDay) From {
New MonDay("May", 15),
New MonDay("May", 16),
New MonDay("May", 19),
New MonDay("June", 17),
New MonDay("June", 18),
New MonDay("July", 14),
New MonDay("July", 16),
New MonDay("August", 14),
New MonDay("August", 15),
New MonDay("August", 17)
}
Console.WriteLine("{0} remaining.", dates.Count)
' The month cannot have a unique day.
Dim monthsWithUniqueDays = dates.GroupBy(Function(d) d.day).Where(Function(g) g.Count() = 1).Select(Function(g) g.First().month).ToHashSet()
dates.RemoveWhere(Function(d) monthsWithUniqueDays.Contains(d.month))
Console.WriteLine("{0} remaining.", dates.Count)
' The day must now be unique.
dates.IntersectWith(dates.GroupBy(Function(d) d.day).Where(Function(g) g.Count() = 1).Select(Function(g) g.First()))
Console.WriteLine("{0} remaining.", dates.Count)
' The month must now be unique.
dates.IntersectWith(dates.GroupBy(Function(d) d.month).Where(Function(g) g.Count() = 1).Select(Function(g) g.First()))
Console.WriteLine(dates.Single())
End Sub
End Module |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Objective-C | Objective-C | #import <Foundation/Foundation.h>
void show_collection(id coll)
{
for ( id el in coll )
{
if ( [coll isKindOfClass: [NSCountedSet class]] ) {
NSLog(@"%@ appears %lu times", el, [coll countForObject: el]);
} else if ( [coll isKindOfClass: [NSDictionary class]] ) {
NSLog(@"%@ -> %@", el, coll[el]);
} else {
NSLog(@"%@", el);
}
}
printf("\n");
}
int main()
{
@autoreleasepool {
// create an empty set
NSMutableSet *set = [[NSMutableSet alloc] init];
// populate it
[set addObject: @"one"];
[set addObject: @10];
[set addObjectsFromArray: @[@"one", @20, @10, @"two"] ];
// let's show it
show_collection(set);
// create an empty counted set (a bag)
NSCountedSet *cset = [[NSCountedSet alloc] init];
// populate it
[cset addObject: @"one"];
[cset addObject: @"one"];
[cset addObject: @"two"];
// show it
show_collection(cset);
// create a dictionary
NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
// populate it
dict[@"four"] = @4;
dict[@"eight"] = @8;
// show it
show_collection(dict);
}
return EXIT_SUCCESS;
} |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Quackery | Quackery | [ 0 swap
[ dup 0 != while
dup 1 & if
[ dip 1+ ]
1 >> again ]
drop ] is bits ( n --> n )
[ [] unrot
bit times
[ i bits
over = if
[ dip
[ i join ] ] ]
drop ] is combnums ( n n --> [ )
[ [] 0 rot
[ dup 0 != while
dup 1 & if
[ dip
[ dup dip join ] ]
dip 1+
1 >>
again ]
2drop ] is makecomb ( n --> [ )
[ over 0 = iff
[ 2drop [] ] done
combnums
[] swap witheach
[ makecomb
nested join ] ] is comb ( n n --> [ )
[ behead swap witheach max ] is largest ( [ --> n )
[ 0 rot witheach
[ [ dip [ over * ] ] + ]
nip ] is comborder ( [ n --> n )
[ dup [] != while
sortwith
[ 2dup join
largest 1+ dup dip
[ comborder swap ]
comborder < ] ] is sortcombs ( [ --> [ )
3 5 comb
sortcombs
witheach [ witheach [ echo sp ] cr ] |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Swahili | Swahili | kama (kweli) {
andika("statement")
} au (kweli /* condition */) {
andika("statement")
} au (kweli /* condition */) {
andika("statement")
} sivyo {
andika("statement")
} |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Perl | Perl | use ntheory qw/chinese/;
say chinese([2,3], [3,5], [2,7]); |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Phix | Phix | function mul_inv(integer a, n)
if n<0 then n = -n end if
if a<0 then a = n - mod(-a,n) end if
integer t = 0, nt = 1,
r = n, nr = a;
while nr!=0 do
integer q = floor(r/nr)
{t, nt} = {nt, t-q*nt}
{r, nr} = {nr, r-q*nr}
end while
if r>1 then return "a is not invertible" end if
if t<0 then t += n end if
return t
end function
function chinese_remainder(sequence n, a)
integer p, prod = 1, tot = 0;
for i=1 to length(n) do prod *= n[i] end for
for i=1 to length(n) do
p = prod / n[i];
object m = mul_inv(p, n[i])
if string(m) then return "fail" end if
tot += a[i] * m * p;
end for
return mod(tot,prod)
end function
?chinese_remainder({3,5,7},{2,3,2})
?chinese_remainder({11,12,13},{10,4,12})
?chinese_remainder({11,22,19},{10,4,9})
?chinese_remainder({100,23},{19,0})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.