task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | CholeskyDecomposition[{{25, 15, -5}, {15, 18, 0}, {-5, 0, 11}}] |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Perl | Perl | sub filter {
my($test,@dates) = @_;
my(%M,%D,@filtered);
# analysis of potential birthdays, keyed by month and by day
for my $date (@dates) {
my($mon,$day) = split '-', $date;
$M{$mon}{cnt}++;
$D{$day}{cnt}++;
push @{$M{$mon}{day}}, $day;
push @{$D{$day}{mon}}, $mon;
push @{$M{$mon}{bday}}, "$mon-$day";
push @{$D{$day}{bday}}, "$mon-$day";
}
# eliminates May/Jun dates based on 18th and 19th being singletons
if ($test eq 'singleton') {
my %skip;
for my $day (grep { $D{$_}{cnt} == 1 } keys %D) { $skip{ @{$D{$day}{mon}}[0] }++ }
for my $mon (grep { ! $skip{$_} } keys %M) { push @filtered, @{$M{$mon}{bday}} }
# eliminates Jul/Aug 14th because day count > 1 across months
} elsif ($test eq 'duplicate') {
for my $day (grep { $D{$_}{cnt} == 1 } keys %D) { push @filtered, @{$D{$day}{bday}} }
# eliminates Aug 15th/17th because day count > 1, within month
} elsif ($test eq 'multiple') {
for my $day (grep { $M{$_}{cnt} == 1 } keys %M) { push @filtered, @{$M{$day}{bday}} }
}
return @filtered;
}
# doesn't matter what order singleton/duplicate tests are run, but 'multiple' must be last;
my @dates = qw<5-15 5-16 5-19 6-17 6-18 7-14 7-16 8-14 8-15 8-17>;
@dates = filter($_, @dates) for qw<singleton duplicate multiple>;
my @months = qw<_ January February March April May June July August September October November December>;
my ($m, $d) = split '-', $dates[0];
print "Cheryl's birthday is $months[$m] $d.\n"; |
http://rosettacode.org/wiki/Checkpoint_synchronization | Checkpoint synchronization | The checkpoint synchronization is a problem of synchronizing multiple tasks. Consider a workshop where several workers (tasks) assembly details of some mechanism. When each of them completes his work they put the details together. There is no store, so a worker who finished its part first must wait for others before starting another one. Putting details together is the checkpoint at which tasks synchronize themselves before going their paths apart.
The task
Implement checkpoint synchronization in your language.
Make sure that the solution is race condition-free. Note that a straightforward solution based on events is exposed to race condition. Let two tasks A and B need to be synchronized at a checkpoint. Each signals its event (EA and EB correspondingly), then waits for the AND-combination of the events (EA&EB) and resets its event. Consider the following scenario: A signals EA first and gets blocked waiting for EA&EB. Then B signals EB and loses the processor. Then A is released (both events are signaled) and resets EA. Now if B returns and enters waiting for EA&EB, it gets lost.
When a worker is ready it shall not continue before others finish. A typical implementation bug is when a worker is counted twice within one working cycle causing its premature completion. This happens when the quickest worker serves its cycle two times while the laziest one is lagging behind.
If you can, implement workers joining and leaving.
| #zkl | zkl | const NUM_PARTS=5; // number of parts used to make the product
var requested=Atomic.Int(-1); // the id of the part the consumer needs
var pipe=Thread.Pipe(); // "conveyor belt" of parts to consumer
fcn producer(id,pipe){
while(True){ // make part forever
requested.waitFor(id); // wait for consumer to ask for my part
requested.set(-1); // I'm making the part
pipe.write(id); // ship my part
}
println(id," stopped");
}
foreach id in (NUM_PARTS){ producer.launch(id,pipe) } // start workers/threads
product:=NUM_PARTS.pump(List(),0); // parts I have on hand
do(10){ // make 10 products
while(False!=(id:=product.filter1n('==(0)))){ // gather parts to make product
requested.set(id);
part:=pipe.read(); // get requested part
product[part]+=1; // assemble part into product
}
println("product made: ",product);
foreach n in (NUM_PARTS){ product[n]-=1 } // remove parts from bin
}
println("Done"); // but workers are still waiting |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Lua | Lua | collection = {0, '1'}
print(collection[1]) -- prints 0
collection = {["foo"] = 0, ["bar"] = '1'} -- a collection of key/value pairs
print(collection["foo"]) -- prints 0
print(collection.foo) -- syntactic sugar, also prints 0
collection = {0, '1', ["foo"] = 0, ["bar"] = '1'} |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #PHP | PHP |
<?php
$a=array(1,2,3,4,5);
$k=3;
$n=5;
$c=array_splice($a, $k);
$b=array_splice($a, 0, $k);
$j=$k-1;
print_r($b);
while (1) {
$m=array_search($b[$j]+1,$c);
if ($m!==false) {
$c[$m]-=1;
$b[$j]=$b[$j]+1;
print_r($b);
}
if ($b[$k-1]==$n) {
$i=$k-1;
while ($i >= 0) {
if ($i == 0 && $b[$i] == $n-$k+1) break 2;
$m=array_search($b[$i]+1,$c);
if ($m!==false) {
$c[$m]=$c[$m]-1;
$b[$i]=$b[$i]+1;
$g=$i;
while ($g != $k-1) {
array_unshift ($c, $b[$g+1]);
$b[$g+1]=$b[$g]+1;
$g++;
}
$c=array_diff($c,$b);
print_r($b);
break;
}
$i--;
}
}
}
?>
|
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Seed7 | Seed7 | if condition then
statement
end if;
if condition then
statement1
else
statement2;
end if;
if condition1 then
statement1
elsif condition2 then
statement2;
end if;
if condition1 then
statement1
elsif condition2 then
statement2;
else
statement3;
end if; |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #JavaScript | JavaScript |
function crt(num, rem) {
let sum = 0;
const prod = num.reduce((a, c) => a * c, 1);
for (let i = 0; i < num.length; i++) {
const [ni, ri] = [num[i], rem[i]];
const p = Math.floor(prod / ni);
sum += ri * p * mulInv(p, ni);
}
return sum % prod;
}
function mulInv(a, b) {
const b0 = b;
let [x0, x1] = [0, 1];
if (b === 1) {
return 1;
}
while (a > 1) {
const q = Math.floor(a / b);
[a, b] = [b, a % b];
[x0, x1] = [x1 - q * x0, x0];
}
if (x1 < 0) {
x1 += b0;
}
return x1;
}
console.log(crt([3,5,7], [2,3,2])) |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #REXX | REXX | /*REXX program computes/displays chowla numbers (and may count primes & perfect numbers.*/
parse arg LO HI . /*obtain optional arguments from the CL*/
if LO=='' | LO=="," then LO= 1 /*Not specified? Then use the default.*/
perf= LO<0; LO= abs(LO) /*Negative? Then determine if perfect.*/
if HI=='' | HI=="," then HI= LO /*Not specified? Then use the default.*/
prim= HI<0; HI= abs(HI) /*Negative? Then determine if a prime.*/
numeric digits max(9, length(HI) + 1 ) /*use enough decimal digits for // */
w= length( commas(HI) ) /*W: used in aligning output numbers.*/
tell= \(prim | perf) /*set boolean value for showing chowlas*/
p= 0 /*the number of primes found (so far).*/
do j=LO to HI; #= chowla(j) /*compute the cholwa number for J. */
if tell then say right('chowla('commas(j)")", w+9) ' = ' right( commas(#), w)
else if #==0 then if j>1 then p= p+1
if perf then if j-1==# & j>1 then say right(commas(j), w) ' is a perfect number.'
end /*j*/
if prim & \perf then say 'number of primes found for the range ' commas(LO) " to " ,
commas(HI) " (inclusive) is: " commas(p)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
chowla: procedure; parse arg x; if x<2 then return 0; odd= x // 2
s=0 /* [↓] use EVEN or ODD integers. ___*/
do k=2+odd by 1+odd while k*k<x /*divide by all the integers up to √ X */
if x//k==0 then s=s + k + x%k /*add the two divisors to the sum. */
end /*k*/ /* [↓] adkust for square. ___*/
if k*k==x then s=s + k /*Was X a square? If so, add √ X */
return s /*return " " " " " */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _; do k=length(_)-3 to 1 by -3; _= insert(',', _, k); end; return _ |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #MiniScript | MiniScript | // MiniScript is prototype based
Weapon = { "name": "Sword", "damage": 3 }
Weapon.slice = function()
print "Did " + self.damage + " damage with " + self.name
end function
wep = new Weapon // Same as: wep = { "__isa": Weapon }
wep.name = "Lance"
wep.slice |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Pascal | Pascal | program closestPoints;
{$IFDEF FPC}
{$MODE Delphi}
{$ENDIF}
const
PointCnt = 10000;//31623;
type
TdblPoint = Record
ptX,
ptY : double;
end;
tPtLst = array of TdblPoint;
tMinDIstIdx = record
md1,
md2 : NativeInt;
end;
function ClosPointBruteForce(var ptl :tPtLst):tMinDIstIdx;
Var
i,j,k : NativeInt;
mindst2,dst2: double; //square of distance, no need to sqrt
p0,p1 : ^TdblPoint; //using pointer, since calc of ptl[?] takes much time
Begin
i := Low(ptl);
j := High(ptl);
result.md1 := i;result.md2 := j;
mindst2 := sqr(ptl[i].ptX-ptl[j].ptX)+sqr(ptl[i].ptY-ptl[j].ptY);
repeat
p0 := @ptl[i];
p1 := p0; inc(p1);
For k := i+1 to j do
Begin
dst2:= sqr(p0^.ptX-p1^.ptX)+sqr(p0^.ptY-p1^.ptY);
IF mindst2 > dst2 then
Begin
mindst2 := dst2;
result.md1 := i;
result.md2 := k;
end;
inc(p1);
end;
inc(i);
until i = j;
end;
var
PointLst :tPtLst;
cloPt : tMinDIstIdx;
i : NativeInt;
Begin
randomize;
setlength(PointLst,PointCnt);
For i := 0 to PointCnt-1 do
with PointLst[i] do
Begin
ptX := random;
ptY := random;
end;
cloPt:= ClosPointBruteForce(PointLst) ;
i := cloPt.md1;
Writeln('P[',i:4,']= x: ',PointLst[i].ptX:0:8,
' y: ',PointLst[i].ptY:0:8);
i := cloPt.md2;
Writeln('P[',i:4,']= x: ',PointLst[i].ptX:0:8,
' y: ',PointLst[i].ptY:0:8);
end. |
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Kotlin | Kotlin | // version 1.1.51
typealias IAE = IllegalArgumentException
class Point(val x: Double, val y: Double) {
fun distanceFrom(other: Point): Double {
val dx = x - other.x
val dy = y - other.y
return Math.sqrt(dx * dx + dy * dy )
}
override fun equals(other: Any?): Boolean {
if (other == null || other !is Point) return false
return (x == other.x && y == other.y)
}
override fun toString() = "(%.4f, %.4f)".format(x, y)
}
fun findCircles(p1: Point, p2: Point, r: Double): Pair<Point, Point> {
if (r < 0.0) throw IAE("the radius can't be negative")
if (r == 0.0 && p1 != p2) throw IAE("no circles can ever be drawn")
if (r == 0.0) return p1 to p1
if (p1 == p2) throw IAE("an infinite number of circles can be drawn")
val distance = p1.distanceFrom(p2)
val diameter = 2.0 * r
if (distance > diameter) throw IAE("the points are too far apart to draw a circle")
val center = Point((p1.x + p2.x) / 2.0, (p1.y + p2.y) / 2.0)
if (distance == diameter) return center to center
val mirrorDistance = Math.sqrt(r * r - distance * distance / 4.0)
val dx = (p2.x - p1.x) * mirrorDistance / distance
val dy = (p2.y - p1.y) * mirrorDistance / distance
return Point(center.x - dy, center.y + dx) to
Point(center.x + dy, center.y - dx)
}
fun main(args: Array<String>) {
val p = arrayOf(
Point(0.1234, 0.9876),
Point(0.8765, 0.2345),
Point(0.0000, 2.0000),
Point(0.0000, 0.0000)
)
val points = arrayOf(
p[0] to p[1], p[2] to p[3], p[0] to p[0], p[0] to p[1], p[0] to p[0]
)
val radii = doubleArrayOf(2.0, 1.0, 2.0, 0.5, 0.0)
for (i in 0..4) {
try {
val (p1, p2) = points[i]
val r = radii[i]
println("For points $p1 and $p2 with radius $r")
val (c1, c2) = findCircles(p1, p2, r)
if (c1 == c2)
println("there is just one circle with center at $c1")
else
println("there are two circles with centers at $c1 and $c2")
}
catch(ex: IllegalArgumentException) {
println(ex.message)
}
println()
}
} |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Kotlin | Kotlin | // version 1.1.2
class ChineseZodiac(val year: Int) {
val stem : Char
val branch : Char
val sName : String
val bName : String
val element: String
val animal : String
val aspect : String
val cycle : Int
private companion object {
val animals = listOf("Rat", "Ox", "Tiger", "Rabbit", "Dragon", "Snake",
"Horse", "Goat", "Monkey", "Rooster", "Dog", "Pig")
val aspects = listOf("Yang","Yin")
val elements = listOf("Wood", "Fire", "Earth", "Metal", "Water")
val stems = listOf('甲', '乙', '丙', '丁', '戊', '己', '庚', '辛', '壬', '癸')
val branches = listOf('子', '丑', '寅', '卯', '辰', '巳', '午', '未', '申', '酉', '戌', '亥')
val sNames = listOf("jiă", "yĭ", "bĭng", "dīng", "wù", "jĭ", "gēng", "xīn", "rén", "gŭi")
val bNames = listOf("zĭ", "chŏu", "yín", "măo", "chén", "sì", "wŭ", "wèi", "shēn", "yŏu", "xū", "hài")
val fmt = "%d %c%c %-9s %-7s %-7s %-6s %02d/60"
}
init {
val y = year - 4
val s = y % 10
val b = y % 12
stem = stems[s]
branch = branches[b]
sName = sNames[s]
bName = bNames[b]
element = elements[s / 2]
animal = animals[b]
aspect = aspects[s % 2]
cycle = y % 60 + 1
}
override fun toString() =
fmt.format(year, stem, branch, sName + "-" + bName, element, animal, aspect, cycle)
}
fun main(args: Array<String>) {
val years = intArrayOf(1935, 1938, 1968, 1972, 1976, 1984, 2017)
println("Year Chinese Pinyin Element Animal Aspect Cycle")
println("---- ------- --------- ------- ------- ------ -----")
for (year in years) println(ChineseZodiac(year))
} |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #E | E | for file in [<file:input.txt>,
<file:///input.txt>] {
require(file.exists(), fn { `$file is missing!` })
require(!file.isDirectory(), fn { `$file is a directory!` })
}
for file in [<file:docs>,
<file:///docs>] {
require(file.exists(), fn { `$file is missing!` })
require(file.isDirectory(), fn { `$file is not a directory!` })
} |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Gnuplot | Gnuplot |
## Chaos Game (Sierpinski triangle) 2/16/17 aev
reset
fn="ChGS3Gnu1"; clr='"red"';
ttl="Chaos Game (Sierpinski triangle)"
sz=600; sz1=sz/2; sz2=sz1*sqrt(3);
x=y=xf=yf=v=0;
dfn=fn.".dat"; ofn=fn.".png";
set terminal png font arial 12 size 640,640
set print dfn append
set output ofn
unset border; unset xtics; unset ytics; unset key;
set size square
set title ttl font "Arial:Bold,12"
lim=30000; max=100; x=y=xw=yw=p=0;
randgp(top) = floor(rand(0)*top)
x=randgp(sz); y=randgp(sz2);
do for [i=1:lim] {
v=randgp(3);
if (v==0) {x=x/2; y=y/2}
if (v==1) {x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2}
if (v==2) {x=sz-(sz-x)/2; y=y/2}
xf=floor(x); yf=floor(y);
if(!(xf<1||xf>sz||yf<1||yf>sz)) {print xf," ",yf};
}
plot dfn using 1:2 with points pt 7 ps 0.5 lc @clr
set output
unset print
|
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Kotlin | Kotlin | import java.io.BufferedReader
import java.io.IOException
import java.io.InputStreamReader
import java.io.OutputStreamWriter
import java.io.Writer
import java.net.ServerSocket
import java.net.Socket
import java.util.ArrayList
import java.util.Collections
class ChatServer private constructor(private val port: Int) : Runnable {
private val clients = ArrayList<Client>()
private val onlineListCSV: String
@Synchronized get() {
val sb = StringBuilder()
sb.append(clients.size).append(" user(s) online: ")
for (i in clients.indices) {
sb.append(if (i > 0) ", " else "").append(clients[i].clientName)
}
return sb.toString()
}
override fun run() {
try {
val ss = ServerSocket(port)
while (true) {
val s = ss.accept()
Thread(Client(s)).start()
}
} catch (e: Exception) {
e.printStackTrace()
}
}
@Synchronized
private fun registerClient(client: Client): Boolean {
for (otherClient in clients) {
if (otherClient.clientName!!.equals(client.clientName!!, ignoreCase = true)) {
return false
}
}
clients.add(client)
return true
}
private fun deRegisterClient(client: Client) {
var wasRegistered = false
synchronized(this) {
wasRegistered = clients.remove(client)
}
if (wasRegistered) {
broadcast(client, "--- " + client.clientName + " left ---")
}
}
private fun broadcast(fromClient: Client, msg: String) {
// Copy client list (don't want to hold lock while doing IO)
var clients: List<Client> = Collections.emptyList()
synchronized(this) {
clients = ArrayList(this.clients)
}
for (client in clients) {
if (client.equals(fromClient)) {
continue
}
try {
client.write(msg + "\r\n")
} catch (e: Exception) {
e.printStackTrace()
}
}
}
inner class Client internal constructor(private var socket: Socket?) : Runnable {
private var output: Writer? = null
var clientName: String? = null
override fun run() {
try {
socket!!.sendBufferSize = 16384
socket!!.tcpNoDelay = true
val input = BufferedReader(InputStreamReader(socket!!.getInputStream()))
output = OutputStreamWriter(socket!!.getOutputStream())
write("Please enter your name: ")
var line: String
while (true) {
line = input.readLine()
if (null == line) {
break
}
if (clientName == null) {
line = line.trim { it <= ' ' }
if (line.isEmpty()) {
write("A name is required. Please enter your name: ")
continue
}
clientName = line
if (!registerClient(this)) {
clientName = null
write("Name already registered. Please enter your name: ")
continue
}
write(onlineListCSV + "\r\n")
broadcast(this, "+++ $clientName arrived +++")
continue
}
if (line.equals("/quit", ignoreCase = true)) {
return
}
broadcast(this, "$clientName> $line")
}
} catch (e: Exception) {
e.printStackTrace()
} finally {
deRegisterClient(this)
output = null
try {
socket!!.close()
} catch (e: Exception) {
e.printStackTrace()
}
socket = null
}
}
@Throws(IOException::class)
internal fun write(msg: String) {
output!!.write(msg)
output!!.flush()
}
internal fun equals(client: Client?): Boolean {
return (client != null
&& clientName != null
&& client.clientName != null
&& clientName == client.clientName)
}
}
companion object {
@JvmStatic
fun main(args: Array<String>) {
var port = 4004
if (args.isNotEmpty()) {
port = Integer.parseInt(args[0])
}
ChatServer(port).run()
}
}
} |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #R | R |
#lang R
library(Rmpfr)
prec <- 1000 # precision in bits
`%:%` <- function(e1, e2) '/'(mpfr(e1, prec), mpfr(e2, prec)) # operator %:% for high precision division
# function for checking identity of tan of expression and 1, making use of high precision division operator %:%
tanident_1 <- function(x) identical(round(tan(eval(parse(text = gsub("/", "%:%", deparse(substitute(x)))))), (prec/10)), mpfr(1, prec))
|
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Clojure | Clojure | (print (int \a)) ; prints "97"
(print (char 97)) ; prints \a
; Unicode is also available, as Clojure uses the underlying java Strings & chars
(print (int \π)) ; prints 960
(print (char 960)) ; prints \π
; use String because char in Java can't represent characters outside Basic Multilingual Plane
(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136
(print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮 |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #MATLAB_.2F_Octave | MATLAB / Octave | A = [
25 15 -5
15 18 0
-5 0 11 ];
B = [
18 22 54 42
22 70 86 62
54 86 174 134
42 62 134 106 ];
[L] = chol(A,'lower')
[L] = chol(B,'lower')
|
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Phix | Phix | -- demo\rosetta\Cheryls_Birthday.exw
with javascript_semantics
sequence choices = {{5, 15}, {5, 16}, {5, 19}, {6, 17}, {6, 18},
{7, 14}, {7, 16}, {8, 14}, {8, 15}, {8, 17}}
sequence mwud = repeat(false,12) -- months with unique days
for step=1 to 4 do
sequence {months,days} = columnize(choices)
bool impossible = false
for i=length(choices) to 1 by -1 do
integer {m,d} = choices[i]
switch step do
case 1: mwud[m] += (sum(sq_eq(days,d))=1)
case 2: impossible = mwud[m]
case 3: impossible = (sum(sq_eq(days,d))!=1)
case 4: impossible = (sum(sq_eq(months,m))!=1)
end switch
if impossible then
choices[i..i] = {}
end if
end for
end for
?choices
|
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #M2000_Interpreter | M2000 Interpreter |
Module Arr {
\\ array as tuple
A=(1,2,3,4,5)
Print Array(A,0)=1
Print A
\\ add two arrays
A=Cons(A, (6,))
Print Len(A)=6
Print A
\\ arrays may have arrays, inventories, stacks as items
A=((1,2,3),(4,5,6))
Print Array(Array(A, 0),2)=3
}
Arr
|
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Picat | Picat | go =>
% Integers 1..K
N = 3,
K = 5,
printf("comb1(3,5): %w\n", comb1(N,K)),
nl.
% Recursive (numbers)
comb1(M,N) = comb1_(M, 1..N).
comb1_(0, _X) = [[]].
comb1_(_M, []) = [].
comb1_(M, [X|Xs]) = [ [X] ++ Xs2 : Xs2 in comb1_(M-1, Xs) ] ++ comb1_(M, Xs). |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #SIMPOL | SIMPOL | if x == 1
foo()
else if x == 2
bar()
else
foobar()
end if |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #jq | jq | # mul_inv(a;b) returns x where (a * x) % b == 1, or else null
def mul_inv(a; b):
# state: [a, b, x0, x1]
def iterate:
.[0] as $a | .[1] as $b
| if $a > 1 then
if $b == 0 then null
else ($a / $b | floor) as $q
| [$b, ($a % $b), (.[3] - ($q * .[2])), .[2]] | iterate
end
else .
end ;
if (b == 1) then 1
else [a,b,0,1] | iterate
| if . == null then .
else .[3] | if . < 0 then . + b else . end
end
end;
def chinese_remainder(mods; remainders):
(reduce mods[] as $i (1; . * $i)) as $prod
| reduce range(0; mods|length) as $i
(0;
($prod/mods[$i]) as $p
| mul_inv($p; mods[$i]) as $mi
| if $mi == null then error("nogo: p=\($p) mods[\($i)]=\(mods[$i])")
else . + (remainders[$i] * $mi * $p)
end )
| . % $prod ; |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Julia | Julia | function chineseremainder(n::Array, a::Array)
Π = prod(n)
mod(sum(ai * invmod(Π ÷ ni, ni) * (Π ÷ ni) for (ni, ai) in zip(n, a)), Π)
end
@show chineseremainder([3, 5, 7], [2, 3, 2]) |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Ruby | Ruby | def chowla(n)
sum = 0
i = 2
while i * i <= n do
if n % i == 0 then
sum = sum + i
j = n / i
if i != j then
sum = sum + j
end
end
i = i + 1
end
return sum
end
def main
for n in 1 .. 37 do
puts "chowla(%d) = %d" % [n, chowla(n)]
end
count = 0
power = 100
for n in 2 .. 10000000 do
if chowla(n) == 0 then
count = count + 1
end
if n % power == 0 then
puts "There are %d primes < %d" % [count, power]
power = power * 10
end
end
count = 0
limit = 350000000
k = 2
kk = 3
loop do
p = k * kk
if p > limit then
break
end
if chowla(p) == p - 1 then
puts "%d is a perfect number" % [p]
count = count + 1
end
k = kk + 1
kk = kk + k
end
puts "There are %d perfect numbers < %d" % [count, limit]
end
main() |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #MiniZinc | MiniZinc | % define a Rectangle "class"
var int: Rectangle(var int: width, var int: height) =
let {
var int: this;
constraint Type(this) = Rectangle; %define the "type" of the instance
%define some "instance methods"
constraint area(this) = width*height;
constraint width(this) = width;
constraint height(this) = height;
} in this;
%this enum should contain the list of class names
enum Type = {Rectangle};
function var Type: Type(var int:a);
%declare the "instance methods"
function var int: area(var int:this) = let {var int:result;} in result;
function var int: height(var int:a) = let {var int:result;} in result;
function var int: width(var int:a) = let {var int:result;} in result;
%create an instance of the "class"
var int: rect = Rectangle(3,4);
var int: area1 = area(rect);
solve satisfy;
% print the area of the rectangle
output [show(area1),"\n"]; |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Nanoquery | Nanoquery | class MyClass
declare name
// constructors are methods with the same name as the class
def MyClass(name)
this.name = name
end
def getName()
return name
end
end
// instantiate a new MyClass object
inst = new(MyClass, "name string goes here")
// display the name value
println inst.getName() |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Perl | Perl | use strict;
use warnings;
use POSIX qw(ceil);
sub dist {
my ($a, $b) = @_;
return sqrt(($a->[0] - $b->[0])**2 +
($a->[1] - $b->[1])**2)
}
sub closest_pair_simple {
my @points = @{ shift @_ };
my ($a, $b, $d) = ( $points[0], $points[1], dist($points[0], $points[1]) );
while( @points ) {
my $p = pop @points;
for my $l (@points) {
my $t = dist($p, $l);
($a, $b, $d) = ($p, $l, $t) if $t < $d;
}
}
$a, $b, $d
}
sub closest_pair {
my @r = @{ shift @_ };
closest_pair_real( [sort { $a->[0] <=> $b->[0] } @r], [sort { $a->[1] <=> $b->[1] } @r] )
}
sub closest_pair_real {
my ($rx, $ry) = @_;
return closest_pair_simple($rx) if scalar(@$rx) <= 3;
my(@yR, @yL, @yS);
my $N = @$rx;
my $midx = ceil($N/2)-1;
my @PL = @$rx[ 0 .. $midx];
my @PR = @$rx[$midx+1 .. $N-1];
my $xm = $$rx[$midx]->[0];
$_->[0] <= $xm ? push @yR, $_ : push @yL, $_ for @$ry;
my ($al, $bl, $dL) = closest_pair_real(\@PL, \@yR);
my ($ar, $br, $dR) = closest_pair_real(\@PR, \@yL);
my ($w1, $w2, $closest) = $dR > $dL ? ($al, $bl, $dL) : ($ar, $br, $dR);
abs($xm - $_->[0]) < $closest and push @yS, $_ for @$ry;
for my $i (0 .. @yS-1) {
my $k = $i + 1;
while ( $k <= $#yS and ($yS[$k]->[1] - $yS[$i]->[1]) < $closest ) {
my $d = dist($yS[$k], $yS[$i]);
($w1, $w2, $closest) = ($yS[$k], $yS[$i], $d) if $d < $closest;
$k++;
}
}
$w1, $w2, $closest
}
my @points;
push @points, [rand(20)-10, rand(20)-10] for 1..5000;
printf "%.8f between (%.5f, %.5f), (%.5f, %.5f)\n", $_->[2], @{$$_[0]}, @{$$_[1]}
for [closest_pair_simple(\@points)], [closest_pair(\@points)]; |
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Lambdatalk | Lambdatalk |
input: OP1=(x1,y1), OP2=(x2,y2), r
output: OC = OH + HC
where OH = (OP1+OP2)/2
and HC = j*|HC|
where j is the unit vector rotated -90° from P1P2
and |HC| = √(r^2 - (|P1P2|/2)^2) if exists
{def circleby2points
{lambda {:x1 :y1 :x2 :y2 :r}
{if {= :r 0}
then radius is zero
else {if {and {= :x1 :x2} {= :y1 :y2}}
then same points
else {let { {:r :r}
{:vx {- :x2 :x1}} {:vy {- :y2 :y1}} // v = P1P2
{:hx {/ {+ :x1 :x2} 2}} {:hy {/ {+ :y1 :y2} 2}} } // h = OH
{let { {:r :r} {:vx :vx} {:vy :vy} {:hx :hx} {:hy :hy} // closure
{:d {sqrt {+ {* :px :px} {* :py :py}}} } } // d = |P1P2|
{if {> :d {* 2 :r}} // d > diam
then no circle, points are too far apart
else {if {= :d {* 2 :r}} // d = diam
then one circle: opposite ends of diameter with centre (:hx,:hy)
else {let { {:r :r} {:hx :hx} {:hy :hy} // closure
{:jx {- {/ :vy :d}}} {:jy {/ :vx :d}} // j unit -90° to P1P2
{:d {sqrt {- {* :r :r} {/ {* :d :d} 4}}}} } // |HC|
two circles: {br}({+ :hx {* :d :jx}},{+ :hy {* :d :jy}}) // OH + j*|HC|
{br}({- :hx {* :d :jx}},{- :hy {* :d :jy}}) // OH - j*|HC|
}}}}}}}}}
{circleby2points -1 0 1 0 0.5}
-> no circle:
points are too far apart
{circleby2points -1 0 1 0 1}
-> one circle:
opposite ends of diameter with centre (0,0)
{circleby2points -1 0 1 0 {sqrt 2}}
-> two circles:
(0,1.0000000000000002)
(0,-1.0000000000000002)
rosetta's task:
{circleby2points 0.1234 0.9876 0.8765 0.2345 2.0}
-> two circles:
(1.8631118016581893,1.974211801658189)
(-0.8632118016581896,-0.7521118016581892)
{circleby2points 0.0000 2.0000 0.0000 0.0000 1.0}
-> one circle: opposite ends of diameter with centre (0,1)
{circleby2points 0.1234 0.9876 0.1234 0.9876 2.0}
-> same points
{circleby2points 0.1234 0.9876 0.8765 0.2345 0.5}
-> no circle, points are too far apart
{circleby2points 0.1234 0.9876 0.1234 0.9876 0.0}
-> radius is zero
|
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Lua | Lua | local ANIMALS = {"Rat","Ox","Tiger","Rabbit","Dragon","Snake","Horse","Goat","Monkey","Rooster","Dog","Pig"}
local ELEMENTS = {"Wood","Fire","Earth","Metal","Water"}
function element(year)
local idx = math.floor(((year - 4) % 10) / 2)
return ELEMENTS[idx + 1]
end
function animal(year)
local idx = (year - 4) % 12
return ANIMALS[idx + 1]
end
function yy(year)
if year % 2 == 0 then
return "yang"
else
return "yin"
end
end
function zodiac(year)
local e = element(year)
local a = animal(year)
local y = yy(year)
print(year.." is the year of the "..e.." "..a.." ("..y..")")
end
zodiac(1935)
zodiac(1938)
zodiac(1968)
zodiac(1972)
zodiac(1976)
zodiac(2017) |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Elena | Elena | import system'io;
import extensions;
extension op
{
validatePath()
= self.Available.iif("exists","not found");
}
public program()
{
console.printLine("input.txt file ",File.assign("input.txt").validatePath());
console.printLine("\input.txt file ",File.assign("\input.txt").validatePath());
console.printLine("docs directory ",Directory.assign("docs").validatePath());
console.printLine("\docs directory ",Directory.assign("\docs").validatePath())
} |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Elixir | Elixir | File.regular?("input.txt")
File.dir?("docs")
File.regular?("/input.txt")
File.dir?("/docs") |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Go | Go | package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/gif"
"log"
"math"
"math/rand"
"os"
"time"
)
var bwPalette = color.Palette{
color.Transparent,
color.White,
color.RGBA{R: 0xff, A: 0xff},
color.RGBA{G: 0xff, A: 0xff},
color.RGBA{B: 0xff, A: 0xff},
}
func main() {
const (
width = 160
frames = 100
pointsPerFrame = 50
delay = 100 * time.Millisecond
filename = "chaos_anim.gif"
)
var tan60 = math.Sin(math.Pi / 3)
height := int(math.Round(float64(width) * tan60))
b := image.Rect(0, 0, width, height)
vertices := [...]image.Point{
{0, height}, {width, height}, {width / 2, 0},
}
// Make a filled triangle.
m := image.NewPaletted(b, bwPalette)
for y := b.Min.Y; y < b.Max.Y; y++ {
bg := int(math.Round(float64(b.Max.Y-y) / 2 / tan60))
for x := b.Min.X + bg; x < b.Max.X-bg; x++ {
m.SetColorIndex(x, y, 1)
}
}
// Pick starting point
var p image.Point
rand.Seed(time.Now().UnixNano())
p.Y = rand.Intn(height) + b.Min.Y
p.X = rand.Intn(width) + b.Min.X // TODO: make within triangle
anim := newAnim(frames, delay)
addFrame(anim, m)
for i := 1; i < frames; i++ {
for j := 0; j < pointsPerFrame; j++ {
// Pick a random vertex
vi := rand.Intn(len(vertices))
v := vertices[vi]
// Move p halfway there
p.X = (p.X + v.X) / 2
p.Y = (p.Y + v.Y) / 2
m.SetColorIndex(p.X, p.Y, uint8(2+vi))
}
addFrame(anim, m)
}
if err := writeAnim(anim, filename); err != nil {
log.Fatal(err)
}
fmt.Printf("wrote to %q\n", filename)
}
// Stuff for making a simple GIF animation.
func newAnim(frames int, delay time.Duration) *gif.GIF {
const gifDelayScale = 10 * time.Millisecond
g := &gif.GIF{
Image: make([]*image.Paletted, 0, frames),
Delay: make([]int, 1, frames),
}
g.Delay[0] = int(delay / gifDelayScale)
return g
}
func addFrame(anim *gif.GIF, m *image.Paletted) {
b := m.Bounds()
dst := image.NewPaletted(b, m.Palette)
draw.Draw(dst, b, m, image.ZP, draw.Src)
anim.Image = append(anim.Image, dst)
if len(anim.Delay) < len(anim.Image) {
anim.Delay = append(anim.Delay, anim.Delay[0])
}
}
func writeAnim(anim *gif.GIF, filename string) error {
f, err := os.Create(filename)
if err != nil {
return err
}
err = gif.EncodeAll(f, anim)
if cerr := f.Close(); err == nil {
err = cerr
}
return err
} |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Nim | Nim | import asyncnet, asyncdispatch
type
Client = tuple
socket: AsyncSocket
name: string
connected: bool
var clients {.threadvar.}: seq[Client]
proc sendOthers(client: Client, line: string) {.async.} =
for c in clients:
if c != client and c.connected:
await c.socket.send(line & "\c\L")
proc processClient(socket: AsyncSocket) {.async.} =
await socket.send("Please enter your name: ")
var client: Client = (socket, await socket.recvLine(), true)
clients.add(client)
asyncCheck client.sendOthers("+++ " & client.name & " arrived +++")
while true:
let line = await client.socket.recvLine()
if line == "":
asyncCheck client.sendOthers("--- " & client.name & " leaves ---")
client.connected = false
return
asyncCheck client.sendOthers(client.name & "> " & line)
proc serve() {.async.} =
clients = @[]
var server = newAsyncSocket()
server.bindAddr(Port(4004))
server.listen()
while true:
let socket = await server.accept()
asyncCheck processClient(socket)
asyncCheck serve()
runForever() |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Racket | Racket |
#lang racket
(define (reduce e)
(match e
[(? number? a) a]
[(list '+ (? number? a) (? number? b)) (+ a b)]
[(list '- (? number? a) (? number? b)) (- a b)]
[(list '- (? number? a)) (- a)]
[(list '* (? number? a) (? number? b)) (* a b)]
[(list '/ (? number? a) (? number? b)) (/ a b)]
[(list '+ a b) (reduce `(+ ,(reduce a) ,(reduce b)))]
[(list '- a b) (reduce `(- ,(reduce a) ,(reduce b)))]
[(list '- a) (reduce `(- ,(reduce a)))]
[(list '* a b) (reduce `(* ,(reduce a) ,(reduce b)))]
[(list '/ a b) (reduce `(/ ,(reduce a) ,(reduce b)))]
[(list 'tan (list 'arctan a)) (reduce a)]
[(list 'tan (list '- a)) (reduce `(- ,(reduce `(tan ,a))))]
[(list 'tan (list '+ a b)) (reduce `(/ (+ (tan ,a) (tan ,b))
(- 1 (* (tan ,a) (tan ,b)))))]
[(list 'tan (list '+ a b c ...)) (reduce `(tan (+ ,a (+ ,b ,@c))))]
[(list 'tan (list '- a b)) (reduce `(/ (+ (tan ,a) (tan (- ,b)))
(- 1 (* (tan ,a) (tan (- ,b))))))]
[(list 'tan (list '* 1 a)) (reduce `(tan ,a))]
[(list 'tan (list '* (? number? n) a))
(cond [(< n 0) (reduce `(- (tan (* ,(- n) ,a))))]
[(= n 0) 0]
[(even? n) (reduce `(tan (+ (* ,(/ n 2) ,a) (* ,(/ n 2) ,a))))]
[else (reduce `(tan (+ ,a (* ,(- n 1) ,a))))])]))
(define correct-formulas
'((tan (+ (arctan 1/2) (arctan 1/3)))
(tan (+ (* 2 (arctan 1/3)) (arctan 1/7)))
(tan (- (* 4 (arctan 1/5)) (arctan 1/239)))
(tan (+ (* 5 (arctan 1/7)) (* 2 (arctan 3/79))))
(tan (+ (* 5 (arctan 29/278)) (* 7 (arctan 3/79))))
(tan (+ (arctan 1/2) (arctan 1/5) (arctan 1/8)))
(tan (+ (* 4 (arctan 1/5)) (* -1 (arctan 1/70)) (arctan 1/99)))
(tan (+ (* 5 (arctan 1/7)) (* 4 (arctan 1/53)) (* 2 (arctan 1/4443))))
(tan (+ (* 6 (arctan 1/8)) (* 2 (arctan 1/57)) (arctan 1/239)))
(tan (+ (* 8 (arctan 1/10)) (* -1 (arctan 1/239)) (* -4 (arctan 1/515))))
(tan (+ (* 12 (arctan 1/18)) (* 8 (arctan 1/57)) (* -5 (arctan 1/239))))
(tan (+ (* 16 (arctan 1/21)) (* 3 (arctan 1/239)) (* 4 (arctan 3/1042))))
(tan (+ (* 22 (arctan 1/28)) (* 2 (arctan 1/443)) (* -5 (arctan 1/1393)) (* -10 (arctan 1/11018))))
(tan (+ (* 22 (arctan 1/38)) (* 17 (arctan 7/601)) (* 10 (arctan 7/8149))))
(tan (+ (* 44 (arctan 1/57)) (* 7 (arctan 1/239)) (* -12 (arctan 1/682)) (* 24 (arctan 1/12943))))
(tan (+ (* 88 (arctan 1/172)) (* 51 (arctan 1/239)) (* 32 (arctan 1/682))
(* 44 (arctan 1/5357)) (* 68 (arctan 1/12943))))))
(define wrong-formula
'(tan (+ (* 88 (arctan 1/172)) (* 51 (arctan 1/239)) (* 32 (arctan 1/682))
(* 44 (arctan 1/5357)) (* 68 (arctan 1/12944)))))
(displayln "Do all correct formulas reduce to 1?")
(for/and ([f correct-formulas]) (= 1 (reduce f)))
(displayln "The incorrect formula reduces to:")
(reduce wrong-formula)
|
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Raku | Raku | sub taneval ($coef, $f) {
return 0 if $coef == 0;
return $f if $coef == 1;
return -taneval(-$coef, $f) if $coef < 0;
my $a = taneval($coef+>1, $f);
my $b = taneval($coef - $coef+>1, $f);
($a+$b)/(1-$a*$b);
}
sub tans (@xs) {
return taneval(@xs[0;0], @xs[0;1].FatRat) if @xs == 1;
my $a = tans(@xs[0 .. (-1+@xs+>1)]);
my $b = tans(@xs[(-1+@xs+>1)+1 .. -1+@xs]);
($a+$b)/(1-$a*$b);
}
sub verify (@eqn) {
printf "%5s (%s)\n", (tans(@eqn) == 1) ?? "OK" !! "Error",
(map { "[{.[0]} {.[1].nude.join('/')}]" }, @eqn).join(' ');
}
verify($_) for
([[1,1/2], [1,1/3]],
[[2,1/3], [1,1/7]],
[[4,1/5], [-1,1/239]],
[[5,1/7], [2,3/79]],
[[5,29/278], [7,3/79]],
[[1,1/2], [1,1/5], [1,1/8]],
[[4,1/5], [-1,1/70], [1,1/99]],
[[5,1/7], [4,1/53], [2,1/4443]],
[[6,1/8], [2,1/57], [1,1/239]],
[[8,1/10], [-1,1/239], [-4,1/515]],
[[12,1/18], [8,1/57], [-5,1/239]],
[[16,1/21], [3,1/239], [4,3/1042]],
[[22,1/28], [2,1/443], [-5,1/1393], [-10,1/11018]],
[[22,1/38], [17,7/601], [10,7/8149]],
[[44,1/57], [7,1/239], [-12,1/682], [24,1/12943]],
[[88,1/172], [51,1/239], [32,1/682], [44,1/5357], [68,1/12943]],
[[88,1/172], [51,1/239], [32,1/682], [44,1/5357], [68,1/21944]]
); |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #CLU | CLU | start_up = proc ()
po: stream := stream$primary_output()
% To turn a character code into an integer, use char$c2i
% (but then to print it, it needs to be turned into a string first
% with int$unparse)
stream$putl(po, int$unparse( char$c2i( 'a' ) ) ) % prints '97'
% To turn an integer into a character code, use char$i2c
stream$putc(po, char$i2c( 97 ) ); % prints 'a'
end start_up |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #COBOL | COBOL | identification division.
program-id. character-codes.
remarks. COBOL is an ordinal language, first is 1.
remarks. 42nd ASCII code is ")" not, "*".
procedure division.
display function char(42)
display function ord('*')
goback.
end program character-codes. |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Maxima | Maxima | /* Cholesky decomposition is built-in */
a: hilbert_matrix(4)$
b: cholesky(a);
/* matrix([1, 0, 0, 0 ],
[1/2, 1/(2*sqrt(3)), 0, 0 ],
[1/3, 1/(2*sqrt(3)), 1/(6*sqrt(5)), 0 ],
[1/4, 3^(3/2)/20, 1/(4*sqrt(5)), 1/(20*sqrt(7))]) */
b . transpose(b) - a;
matrix([0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]) |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Nim | Nim | import math, strutils, strformat
type Matrix[N: static int, T: SomeFloat] = array[N, array[N, T]]
proc cholesky[Matrix](a: Matrix): Matrix =
for i in 0 ..< a[0].len:
for j in 0 .. i:
var s = 0.0
for k in 0 ..< j:
s += result[i][k] * result[j][k]
result[i][j] = if i == j: sqrt(a[i][i]-s)
else: 1.0 / result[j][j] * (a[i][j] - s)
proc `$`(a: Matrix): string =
result = ""
for b in a:
var line = ""
for c in b:
line.addSep(" ", 0)
line.add fmt"{c:8.5f}"
result.add line & '\n'
let m1 = [[25.0, 15.0, -5.0],
[15.0, 18.0, 0.0],
[-5.0, 0.0, 11.0]]
echo cholesky(m1)
let m2 = [[18.0, 22.0, 54.0, 42.0],
[22.0, 70.0, 86.0, 62.0],
[54.0, 86.0, 174.0, 134.0],
[42.0, 62.0, 134.0, 106.0]]
echo cholesky(m2) |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Python | Python | '''Cheryl's Birthday'''
from itertools import groupby
from re import split
# main :: IO ()
def main():
'''Derivation of the date.'''
month, day = 0, 1
print(
# (3 :: A "Then I also know")
# (A's month contains only one remaining day)
uniquePairing(month)(
# (2 :: B "I know now")
# (B's day is paired with only one remaining month)
uniquePairing(day)(
# (1 :: A "I know that Bernard does not know")
# (A's month is not among those with unique days)
monthsWithUniqueDays(False)([
# 0 :: Cheryl's list:
tuple(x.split()) for x in
split(
', ',
'May 15, May 16, May 19, ' +
'June 17, June 18, ' +
'July 14, July 16, ' +
'Aug 14, Aug 15, Aug 17'
)
])
)
)
)
# ------------------- QUERY FUNCTIONS --------------------
# monthsWithUniqueDays :: Bool -> [(Month, Day)] -> [(Month, Day)]
def monthsWithUniqueDays(blnInclude):
'''The subset of months with (or without) unique days.
'''
def go(xs):
month, day = 0, 1
months = [fst(x) for x in uniquePairing(day)(xs)]
return [
md for md in xs
if blnInclude or not (md[month] in months)
]
return go
# uniquePairing :: DatePart -> [(Month, Day)] -> [(Month, Day)]
def uniquePairing(i):
'''Subset of months (or days) with a unique intersection.
'''
def go(xs):
def inner(md):
dct = md[i]
uniques = [
k for k in dct.keys()
if 1 == len(dct[k])
]
return [tpl for tpl in xs if tpl[i] in uniques]
return inner
return ap(bindPairs)(go)
# bindPairs :: [(Month, Day)] ->
# ((Dict String [String], Dict String [String])
# -> [(Month, Day)]) -> [(Month, Day)]
def bindPairs(xs):
'''List monad injection operator for lists
of (Month, Day) pairs.
'''
return lambda f: f(
(
dictFromPairs(xs),
dictFromPairs(
[(b, a) for (a, b) in xs]
)
)
)
# dictFromPairs :: [(Month, Day)] -> Dict Text [Text]
def dictFromPairs(xs):
'''A dictionary derived from a list of
month day pairs.
'''
return {
k: [snd(x) for x in m] for k, m in groupby(
sorted(xs, key=fst), key=fst
)
}
# ----------------------- GENERIC ------------------------
# ap :: (a -> b -> c) -> (a -> b) -> a -> c
def ap(f):
'''Applicative instance for functions.
'''
def go(g):
def fxgx(x):
return f(x)(
g(x)
)
return fxgx
return go
# fst :: (a, b) -> a
def fst(tpl):
'''First component of a pair.
'''
return tpl[0]
# snd :: (a, b) -> b
def snd(tpl):
'''Second component of a pair.
'''
return tpl[1]
if __name__ == '__main__':
main() |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Maple | Maple |
L1 := [3, 4, 5, 6];
L1 := [3, 4, 5, 6]
L2 := [7, 8, 9];
L2 := [7, 8, 9]
|
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #PicoLisp | PicoLisp | (de comb (M Lst)
(cond
((=0 M) '(NIL))
((not Lst))
(T
(conc
(mapcar
'((Y) (cons (car Lst) Y))
(comb (dec M) (cdr Lst)) )
(comb M (cdr Lst)) ) ) ) )
(comb 3 (1 2 3 4 5)) |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Simula | Simula | statement::= if conditional_expression then statement else statement
if X=Y then K:=I else K:=J
statement::= if conditional_expression then statement
if X=Y then K:=I
|
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Kotlin | Kotlin | // version 1.1.2
/* returns x where (a * x) % b == 1 */
fun multInv(a: Int, b: Int): Int {
if (b == 1) return 1
var aa = a
var bb = b
var x0 = 0
var x1 = 1
while (aa > 1) {
val q = aa / bb
var t = bb
bb = aa % bb
aa = t
t = x0
x0 = x1 - q * x0
x1 = t
}
if (x1 < 0) x1 += b
return x1
}
fun chineseRemainder(n: IntArray, a: IntArray): Int {
val prod = n.fold(1) { acc, i -> acc * i }
var sum = 0
for (i in 0 until n.size) {
val p = prod / n[i]
sum += a[i] * multInv(p, n[i]) * p
}
return sum % prod
}
fun main(args: Array<String>) {
val n = intArrayOf(3, 5, 7)
val a = intArrayOf(2, 3, 2)
println(chineseRemainder(n, a))
} |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Scala | Scala | object ChowlaNumbers {
def main(args: Array[String]): Unit = {
println("Chowla Numbers...")
for(n <- 1 to 37){println(s"$n: ${chowlaNum(n)}")}
println("\nPrime Counts...")
for(i <- (2 to 7).map(math.pow(10, _).toInt)){println(f"$i%,d: ${primesPar(i).size}%,d")}
println("\nPerfect Numbers...")
print(perfectsPar(35000000).toVector.sorted.zipWithIndex.map{case (n, i) => f"${i + 1}%,d: $n%,d"}.mkString("\n"))
}
def primesPar(num: Int): ParVector[Int] = ParVector.range(2, num + 1).filter(n => chowlaNum(n) == 0)
def perfectsPar(num: Int): ParVector[Int] = ParVector.range(6, num + 1).filter(n => chowlaNum(n) + 1 == n)
def chowlaNum(num: Int): Int = Iterator.range(2, math.sqrt(num).toInt + 1).filter(n => num%n == 0).foldLeft(0){case (s, n) => if(n*n == num) s + n else s + n + (num/n)}
} |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Nemerle | Nemerle | public class MyClass
{
public this() { } // the constructor in Nemerle is always named 'this'
public MyVariable : int
{
get;
set;
}
public MyMethod() : void
{
}
}
def myInstance = MyClass(); // no 'new' keyword needed
myInstance.MyVariable = 42; // set MyVariable
System.Console.WriteLine($"My variable is $(myInstance.MyVariable)") // get MyVariable |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #NetRexx | NetRexx | class ClassExample
properties private -- class scope
foo = int
properties public -- publicly visible
bar = boolean
properties indirect -- generates bean patterns
baz = String()
method main(args=String[]) static -- main method
clsex = ClassExample() -- instantiate
clsex.foo = 42
clsex.baz = 'forty-two'
clsex.bar = 0 -- boolean false
clsex.test(clsex.foo)
clsex.test(clsex.bar)
clsex.test(clsex.baz)
method test(s=int)
aap = 1 -- local (stack) variable
say s aap
method test(s=String)
noot = 2
say s noot
method test(s=boolean)
mies = 3
say s mies |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #Phix | Phix | with javascript_semantics
function bruteForceClosestPair(sequence s)
atom {x1,y1} = s[1], {x2,y2} = s[2],
dx = x1-x2, dy = y1-y2,
mind = dx*dx+dy*dy
sequence minp = s[1..2]
for i=1 to length(s)-1 do
{x1,y1} = s[i]
for j=i+1 to length(s) do
{x2,y2} = s[j]
dx = x1-x2
dx = dx*dx
if dx<mind then
dy = y1-y2
dx += dy*dy
if dx<mind then
mind = dx
minp = {s[i],s[j]}
end if
end if
end for
end for
return {sqrt(mind),minp}
end function
sequence testset = sq_rnd(repeat({1,1},10000))
atom t0 = time()
{atom d, sequence points} = bruteForceClosestPair(testset)
-- (Sorting the final point pair makes brute/dc more likely to tally. Note however
-- when >1 equidistant pairs exist, brute and dc may well return different pairs;
-- it is only a problem if they decide to return different minimum distances.)
atom {{x1,y1},{x2,y2}} = sort(deep_copy(points))
printf(1,"Closest pair: {%f,%f} {%f,%f}, distance=%f (%3.2fs)\n",{x1,y2,x2,y2,d,time()-t0})
t0 = time()
constant X = 1, Y = 2
sequence xP = sort(deep_copy(testset))
function byY(sequence p1, p2)
return compare(p1[Y],p2[Y])
end function
sequence yP = custom_sort(routine_id("byY"),deep_copy(testset))
function distsq(sequence p1,p2)
atom {x1,y1} = p1, {x2,y2} = p2
x1 -= x2
y1 -= y2
return x1*x1 + y1*y1
end function
function closestPair(sequence xP, yP)
-- where xP is P(1) .. P(N) sorted by x coordinate, and
-- yP is P(1) .. P(N) sorted by y coordinate (ascending order)
integer N = length(xP),
midN = floor(N/2)
assert(length(yP)=N)
if N<=3 then
return bruteForceClosestPair(xP)
end if
sequence xL = xP[1..midN],
xR = xP[midN+1..N],
yL = {},
yR = {}
atom xm = xP[midN][X]
for i=1 to N do
if yP[i][X]<=xm then
yL = append(yL,yP[i])
else
yR = append(yR,yP[i])
end if
end for
{atom dL, sequence pairL} = closestPair(xL, yL)
{atom dR, sequence pairR} = closestPair(xR, yR)
{atom dmin, sequence pairMin} = min({dL, pairL},{dR, pairR})
sequence yS = {}
for i=1 to length(yP) do
if abs(xm-yP[i][X])<dmin then
yS = append(yS,yP[i])
end if
end for
integer nS = length(yS)
{atom closest, sequence cPair} = {dmin*dmin, pairMin}
for i=1 to nS-1 do
integer k = i + 1
while k<=nS and (yS[k][Y]-yS[i][Y])<dmin do
d = distsq(yS[k],yS[i])
if d<closest then
{closest, cPair} = {d, {yS[k], yS[i]}}
end if
k += 1
end while
end for
return {sqrt(closest), cPair}
end function
{d,points} = closestPair(xP,yP)
{{x1,y1},{x2,y2}} = sort(deep_copy(points)) -- (see note above)
printf(1,"Closest pair: {%f,%f} {%f,%f}, distance=%f (%3.2fs)\n",{x1,y2,x2,y2,d,time()-t0})
|
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Liberty_BASIC | Liberty BASIC |
'[RC] Circles of given radius through two points
for i = 1 to 5
read x1, y1, x2, y2,r
print i;") ";x1, y1, x2, y2,r
call twoCircles x1, y1, x2, y2,r
next
end
'p1 p2 r
data 0.1234, 0.9876, 0.8765, 0.2345, 2.0
data 0.0000, 2.0000, 0.0000, 0.0000, 1.0
data 0.1234, 0.9876, 0.1234, 0.9876, 2.0
data 0.1234, 0.9876, 0.8765, 0.2345, 0.5
data 0.1234, 0.9876, 0.1234, 0.9876, 0.0
sub twoCircles x1, y1, x2, y2,r
if x1=x2 and y1=y2 then '2.If the points are coincident
if r=0 then ' unless r==0.0
print "It will be a single point (";x1;",";y1;") of radius 0"
exit sub
else
print "There are any number of circles via single point (";x1;",";y1;") of radius ";r
exit sub
end if
end if
r2 = sqr((x1-x2)^2+(y1-y2)^2)/2 'half distance between points
if r<r2 then
print "Points are too far apart (";2*r2;") - there are no circles of radius ";r
exit sub
end if
'else, calculate two centers
cx=(x1+x2)/2 'middle point
cy=(y1+y2)/2
'should move from middle point along perpendicular by dd2
dd2=sqr(r^2-r2^2) 'perpendicular distance
dx1=x2-cx 'vector to middle point
dy1=y2-cy
dx = 0-dy1/r2*dd2 'perpendicular:
dy = dx1/r2*dd2 'rotate and scale
print "(";cx+dy;",";cy+dx;")" 'two points, with (+)
print "(";cx-dy;",";cy-dx;")" 'and (-)
end sub
|
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Maple | Maple |
zodiac:=proc(year::integer)
local year60,yinyang,animal,element;
year60:= (year-3) mod 60;
yinyang:=["Yin","Yang"];
animal:=["Pig","Rat","Ox","Tiger","Rabbit","Dragon","Snake","Horse","Goat","Monkey","Rooster","Dog"];
element:=["Water","Wood","Wood","Fire","Fire","Earth","Earth","Metal","Metal","Water"];
return sprintf("%a",cat(year," is the year of the ",element[(year60 mod 10)+1]," ",animal[(year60 mod 12)+1]," (",yinyang[(year60 mod 2)+1],")"));
end proc:
|
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Emacs_Lisp | Emacs Lisp | (file-exists-p "input.txt")
(file-directory-p "docs")
(file-exists-p "/input.txt")
(file-directory-p "/docs") |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Groovy | Groovy | import javafx.animation.AnimationTimer
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.layout.Pane
import javafx.scene.paint.Color
import javafx.scene.shape.Circle
import javafx.stage.Stage
class ChaosGame extends Application {
final randomNumberGenerator = new Random()
@Override
void start(Stage primaryStage) {
primaryStage.title = 'Chaos Game'
primaryStage.scene = getScene()
primaryStage.show()
}
def getScene() {
def colors = [Color.RED, Color.GREEN, Color.BLUE]
final width = 640, height = 640, margin = 60
final size = width - 2 * margin
def points = [
new Circle(width / 2, margin, 1, colors[0]),
new Circle(margin, size, 1, colors[1]),
new Circle(margin + size, size, 1, colors[2])
]
def pane = new Pane()
pane.style = '-fx-background-color: black;'
points.each {
pane.children.add it
}
def currentPoint = new Circle().with {
centerX = randomNumberGenerator.nextInt(size - margin) + margin
centerY = randomNumberGenerator.nextInt(size - margin) + margin
it
}
({
def newPoint = generatePoint(currentPoint, points, colors)
pane.children.add newPoint
currentPoint = newPoint
} as AnimationTimer).start()
new Scene(pane, width, height)
}
def generatePoint(currentPoint, points, colors) {
def selection = randomNumberGenerator.nextInt 3
new Circle().with {
centerX = (currentPoint.centerX + points[selection].centerX) / 2
centerY = (currentPoint.centerY + points[selection].centerY) / 2
radius = 1
fill = colors[selection]
it
}
}
static main(args) {
launch(ChaosGame)
}
} |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Objeck | Objeck |
use System.IO.Net;
use System.Concurrency;
use Collection;
bundle Default {
class ChatServer {
@clients : StringMap;
@clients_mutex : ThreadMutex;
New() {
@clients := StringMap->New();
@clients_mutex := ThreadMutex->New("clients_mutex");
}
method : ValidLogin(login_name : String, clients : StringMap) ~ Bool {
if(clients->Has(login_name)) {
return false;
};
return true;
}
function : Main(args : String[]) ~ Nil {
chat_server := ChatServer->New();
chat_server->Run();
}
method : public : Broadcast(message : String, sender : Client) ~ Nil {
client_array : Vector;
critical(@clients_mutex) {
client_array := @clients->GetValues();
};
each(i : client_array) {
client := client_array->Get(i)->As(Client);
if(client <> sender) {
client->Send(message);
};
};
}
method : public : Disconnect(sender : Client) ~ Nil {
send_name := sender->GetName();
Broadcast("+++ {$send_name} has left +++", sender);
critical(@clients_mutex) {
@clients->Remove(sender->GetName());
};
sender->Close();
}
method : public : Run() ~ Nil {
server := TCPSocketServer->New(4661);
if(server->Listen(5)) {
while(true) {
client_sock := server->Accept();
critical(@clients_mutex) {
client_sock->WriteString("login: ");
login_name := client_sock->ReadString();
if(ValidLogin(login_name, @clients)) {
client := Client->New(login_name, client_sock, @self);
@clients->Insert(client->GetName(), client);
client->Execute(Nil);
}
else {
client_sock->WriteString("+++ login in use +++\r\n");
client_sock->Close();
};
};
};
};
server->Close();
}
}
class Client from Thread {
@client_sock : TCPSocket;
@server : ChatServer;
New(login_name : String, client_sock : TCPSocket, server : ChatServer) {
Parent(login_name);
@client_sock := client_sock;
@server := server;
}
method : public : Close() ~ Nil {
@client_sock->Close();
}
method : public : Send(message : String) ~ Nil {
if(@client_sock->IsOpen() & message->Size() > 0) {
@client_sock->WriteString("{$message}\r\n");
}
else {
@server->Disconnect(@self);
};
}
method : public : Run(param : Base) ~ Nil {
client_name := GetName();
@server->Broadcast("+++ {$client_name} has arrived +++", @self);
message := @client_sock->ReadString();
while(message->Size() > 0 & message->Equals("/quit") = false) {
@server->Broadcast("{$client_name}> {$message}", @self);
message := @client_sock->ReadString();
};
@server->Disconnect(@self);
}
}
}
|
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #REXX | REXX | /*REXX program evaluates some Machin─like formulas and verifies their veracity. */
@.=; pi= pi(); numeric digits( length(pi) ) - length(.); numeric fuzz 3
say center(' computing with ' digits() " decimal digits ", 110, '═')
@.1 = 'pi/4 = atan(1/2) + atan(1/3)'
@.2 = 'pi/4 = 2*atan(1/3) + atan(1/7)'
@.3 = 'pi/4 = 4*atan(1/5) - atan(1/239)'
@.4 = 'pi/4 = 5*atan(1/7) + 2*atan(3/79)'
@.5 = 'pi/4 = 5*atan(29/278) + 7*atan(3/79)'
@.6 = 'pi/4 = atan(1/2) + atan(1/5) + atan(1/8)'
@.7 = 'pi/4 = 4*atan(1/5) - atan(1/70) + atan(1/99)'
@.8 = 'pi/4 = 5*atan(1/7) + 4*atan(1/53) + 2*atan(1/4443)'
@.9 = 'pi/4 = 6*atan(1/8) + 2*atan(1/57) + atan(1/239)'
@.10= 'pi/4 = 8*atan(1/10) - atan(1/239) - 4*atan(1/515)'
@.11= 'pi/4 = 12*atan(1/18) + 8*atan(1/57) - 5*atan(1/239)'
@.12= 'pi/4 = 16*atan(1/21) + 3*atan(1/239) + 4*atan(3/1042)'
@.13= 'pi/4 = 22*atan(1/28) + 2*atan(1/443) - 5*atan(1/1393) - 10*atan(1/11018)'
@.14= 'pi/4 = 22*atan(1/38) + 17*atan(7/601) + 10*atan(7/8149)'
@.15= 'pi/4 = 44*atan(1/57) + 7*atan(1/239) - 12*atan(1/682) + 24*atan(1/12943)'
@.16= 'pi/4 = 88*atan(1/172) + 51*atan(1/239) + 32*atan(1/682) + 44*atan(1/5357) + 68 *atan(1/12943)'
@.17= 'pi/4 = 88*atan(1/172) + 51*atan(1/239) + 32*atan(1/682) + 44*atan(1/5357) + 68 *atan(1/12944)'
@.18= 'pi/4 = 88*atan(1/172) + 51*atan(1/239) + 32*atan(1/682) + 44*atan(1/5357) + 67.9999999994*atan(1/12943)'
do j=1 while @.j\=='' /*evaluate each "Machin─like" formulas.*/
interpret 'answer=' @.j /*where REXX does the heavy lifting. */
say right( word( 'bad OK', answer + 1), 3)": " @.j
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi: return 3.141592653589793238462643383279502884197169399375105820974944592307816406286
Acos: procedure; parse arg x; return pi() * .5 - Asin(x)
Atan: procedure; arg x; if abs(x)=1 then return pi()/4*sign(x); return Asin(x/sqrt(1+x*x))
/*──────────────────────────────────────────────────────────────────────────────────────*/
Asin: procedure; parse arg x 1 z 1 o 1 p; a=abs(x); aa=a*a
if a>=sqrt(2)*.5 then return sign(x) * Acos( sqrt(1 - aa) )
do j=2 by 2 until p=z; p=z; o=o*aa*(j-1)/j; z=z+o/(j+1); end /*j*/; return z
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; h=d+6; numeric form
numeric digits; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g *.5'e'_ % 2
do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/; return g |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #CoffeeScript | CoffeeScript | console.log 'a'.charCodeAt 0 # 97
console.log String.fromCharCode 97 # a |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #Objeck | Objeck |
class Cholesky {
function : Main(args : String[]) ~ Nil {
n := 3;
m1 := [25.0, 15.0, -5.0, 15.0, 18.0, 0.0, -5.0, 0.0, 11.0];
c1 := Cholesky(m1, n);
ShowMatrix(c1, n);
IO.Console->PrintLine();
n := 4;
m2 := [18.0, 22.0, 54.0, 42.0, 22.0, 70.0, 86.0, 62.0,
54.0, 86.0, 174.0, 134.0, 42.0, 62.0, 134.0, 106.0];
c2 := Cholesky(m2, n);
ShowMatrix(c2, n);
}
function : ShowMatrix(A : Float[], n : Int) ~ Nil {
for (i := 0; i < n; i+=1;) {
for (j := 0; j < n; j+=1;) {
IO.Console->Print(A[i * n + j])->Print('\t');
};
IO.Console->PrintLine();
};
}
function : Cholesky(A : Float[], n : Int) ~ Float[] {
L := Float->New[n * n];
for (i := 0; i < n; i+=1;) {
for (j := 0; j < (i+1); j+=1;) {
s := 0.0;
for (k := 0; k < j; k+=1;) {
s += L[i * n + k] * L[j * n + k];
};
L[i * n + j] := (i = j) ?
(A[i * n + i] - s)->SquareRoot() :
(1.0 / L[j * n + j] * (A[i * n + j] - s));
};
};
return L;
}
}
|
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #R | R | options <- dplyr::tibble(mon = rep(c("May", "June", "July", "August"),times = c(3,2,2,3)),
day = c(15, 16, 19, 17, 18, 14, 16, 14, 15, 17))
okMonths <- c()
# Albert's first clue - it is a month with no unique day
for (i in unique(options$mon)){
if(all(options$day[options$mon == i] %in% options$day[options$mon != i])) {okMonths <- c(okMonths, i)}
}
okDays <- c()
# Bernard's clue - it is a day that only occurs once in the remaining dates
for (i in unique(options$day)){
if(!all(options$mon[options$day == i] %in% options$mon[(options$mon %in% okMonths)])) {okDays <- c(okDays, i)}
}
remaining <- options[(options$mon %in% okMonths) & (options$day %in% okDays), ]
# Albert's second clue - must be a month with only one un-eliminated date
for(i in unique(remaining$mon)){
if(sum(remaining$mon == i) == 1) {print(remaining[remaining$mon == i,])}
} |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | Lst = {3, 4, 5, 6}
->{3, 4, 5, 6}
PrependTo[ Lst, 2]
->{2, 3, 4, 5, 6}
PrependTo[ Lst, 1]
->{1, 2, 3, 4, 5, 6}
Lst
->{1, 2, 3, 4, 5, 6}
Insert[ Lst, X, 4]
->{1, 2, 3, X, 4, 5, 6} |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Pop11 | Pop11 | define comb(n, m);
lvars ress = [];
define do_combs(l, m, el_lst);
lvars i;
if m = 0 then
cons(rev(el_lst), ress) -> ress;
else
for i from l to n - m do
do_combs(i + 1, m - 1, cons(i, el_lst));
endfor;
endif;
enddefine;
do_combs(0, m, []);
rev(ress);
enddefine;
comb(5, 3) ==> |
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Slate | Slate | "Conditionals in Slate are really messages sent to Boolean objects. Like Smalltalk. (But the compiler might optimize some cases)"
balance > 0
ifTrue: [inform: 'still sitting pretty!'.]
ifFalse: [inform: 'No money till payday!'.]. |
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Lobster | Lobster | import std
def extended_gcd(a, b):
var s = 0
var old_s = 1
var t = 1
var old_t = 0
var r = b
var old_r = a
while r != 0:
let quotient = old_r / r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
return old_r, old_s, old_t, t, s
def for2(xs, ys, fun): return for xs.length: fun(xs[_], ys[_])
def crt(xs, ys):
let p = reduce(xs): _a * _b
var r = 0
for2(xs,ys) x, y:
let q = p / x
let z,s,_t,_qt,_qs = q.extended_gcd(x)
if z != 1:
return "ng " + x + " not coprime", 0
if s < 0: r += y * (s + x) * q
else: r += y * s * q
return "ok", r % p
def print_crt(xs, ys):
let msg, res = crt(xs, ys)
print(msg + " " + res)
print_crt([3,5,7],[2,3,2])
print_crt([11,12,13],[10,4,12])
print_crt([11,22,19],[10,4,9])
print_crt([100,23],[19,0])
|
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Swift | Swift | import Foundation
@inlinable
public func chowla<T: BinaryInteger>(n: T) -> T {
stride(from: 2, to: T(Double(n).squareRoot()+1), by: 1)
.lazy
.filter({ n % $0 == 0 })
.reduce(0, {(s: T, m: T) in
m*m == n ? s + m : s + m + (n / m)
})
}
extension Dictionary where Key == ClosedRange<Int> {
subscript(n: Int) -> Value {
get {
guard let key = keys.first(where: { $0.contains(n) }) else {
fatalError("dict does not contain range for \(n)")
}
return self[key]!
}
set {
guard let key = keys.first(where: { $0.contains(n) }) else {
fatalError("dict does not contain range for \(n)")
}
self[key] = newValue
}
}
}
let lock = DispatchSemaphore(value: 1)
var perfect = [Int]()
var primeCounts = [
1...100: 0,
101...1_000: 0,
1_001...10_000: 0,
10_001...100_000: 0,
100_001...1_000_000: 0,
1_000_001...10_000_000: 0
]
for i in 1...37 {
print("chowla(\(i)) = \(chowla(n: i))")
}
DispatchQueue.concurrentPerform(iterations: 35_000_000) {i in
let chowled = chowla(n: i)
if chowled == 0 && i > 1 && i < 10_000_000 {
lock.wait()
primeCounts[i] += 1
lock.signal()
}
if chowled == i - 1 && i > 1 {
lock.wait()
perfect.append(i)
lock.signal()
}
}
let numPrimes = primeCounts
.sorted(by: { $0.key.lowerBound < $1.key.lowerBound })
.reduce(into: [(Int, Int)](), {counts, oneCount in
guard !counts.isEmpty else {
counts.append((oneCount.key.upperBound, oneCount.value))
return
}
counts.append((oneCount.key.upperBound, counts.last!.1 + oneCount.value))
})
for (upper, count) in numPrimes {
print("Number of primes < \(upper) = \(count)")
}
for p in perfect {
print("\(p) is a perfect number")
}
|
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Visual_Basic | Visual Basic | Option Explicit
Private Declare Function AllocConsole Lib "kernel32.dll" () As Long
Private Declare Function FreeConsole Lib "kernel32.dll" () As Long
Dim mStdOut As Scripting.TextStream
Function chowla(ByVal n As Long) As Long
Dim j As Long, i As Long
i = 2
Do While i * i <= n
j = n \ i
If n Mod i = 0 Then
chowla = chowla + i
If i <> j Then
chowla = chowla + j
End If
End If
i = i + 1
Loop
End Function
Function sieve(ByVal limit As Long) As Boolean()
Dim c() As Boolean
Dim i As Long
Dim j As Long
i = 3
ReDim c(limit - 1)
Do While i * 3 < limit
If Not c(i) Then
If (chowla(i) = 0) Then
j = 3 * i
Do While j < limit
c(j) = True
j = j + 2 * i
Loop
End If
End If
i = i + 2
Loop
sieve = c()
End Function
Sub Display(ByVal s As String)
Debug.Print s
mStdOut.Write s & vbNewLine
End Sub
Sub Main()
Dim i As Long
Dim count As Long
Dim limit As Long
Dim power As Long
Dim c() As Boolean
Dim p As Long
Dim k As Long
Dim kk As Long
Dim s As String * 30
Dim mFSO As Scripting.FileSystemObject
Dim mStdIn As Scripting.TextStream
AllocConsole
Set mFSO = New Scripting.FileSystemObject
Set mStdIn = mFSO.GetStandardStream(StdIn)
Set mStdOut = mFSO.GetStandardStream(StdOut)
For i = 1 To 37
Display "chowla(" & i & ")=" & chowla(i)
Next i
count = 1
limit = 10000000
power = 100
c = sieve(limit)
For i = 3 To limit - 1 Step 2
If Not c(i) Then
count = count + 1
End If
If i = power - 1 Then
RSet s = FormatNumber(power, 0, vbUseDefault, vbUseDefault, True)
Display "Count of primes up to " & s & " = " & FormatNumber(count, 0, vbUseDefault, vbUseDefault, True)
power = power * 10
End If
Next i
count = 0: limit = 35000000
k = 2: kk = 3
Do
p = k * kk
If p > limit Then
Exit Do
End If
If chowla(p) = p - 1 Then
RSet s = FormatNumber(p, 0, vbUseDefault, vbUseDefault, True)
Display s & " is a number that is perfect"
count = count + 1
End If
k = kk + 1
kk = kk + k
Loop
Display "There are " & CStr(count) & " perfect numbers <= 35.000.000"
mStdOut.Write "press enter to quit program."
mStdIn.Read 1
FreeConsole
End Sub |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Nim | Nim | type MyClass = object
name: int
proc initMyClass(): MyClass =
result.name = 2
proc someMethod(m: var MyClass) =
m.name = 1
var mc = initMyClass()
mc.someMethod()
type
Gender = enum male, female, other
MyOtherClass = object
name: string
gender: Gender
age: Natural
proc initMyOtherClass(name; gender = female; age = 50): auto =
MyOtherClass(name: name, gender: gender, age: age)
var person1 = initMyOtherClass("Jane")
echo person1.name, " ", person1.gender, " ", person1.age # Jane female 50
var person2 = initMyOtherClass("John", male, 23)
echo person2.name, " ", person2.gender, " ", person2.age # John male 23 |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #PicoLisp | PicoLisp | (de closestPairBF (Lst)
(let Min T
(use (Pt1 Pt2)
(for P Lst
(for Q Lst
(or
(== P Q)
(>=
(setq N
(let (A (- (car P) (car Q)) B (- (cdr P) (cdr Q)))
(+ (* A A) (* B B)) ) )
Min )
(setq Min N Pt1 P Pt2 Q) ) ) )
(list Pt1 Pt2 (sqrt Min)) ) ) ) |
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Lua | Lua | function distance(p1, p2)
local dx = (p1.x-p2.x)
local dy = (p1.y-p2.y)
return math.sqrt(dx*dx + dy*dy)
end
function findCircles(p1, p2, radius)
local seperation = distance(p1, p2)
if seperation == 0.0 then
if radius == 0.0 then
print("No circles can be drawn through ("..p1.x..", "..p1.y..")")
else
print("Infinitely many circles can be drawn through ("..p1.x..", "..p1.y..")")
end
elseif seperation == 2*radius then
local cx = (p1.x+p2.x)/2
local cy = (p1.y+p2.y)/2
print("Given points are opposite ends of a diameter of the circle with center ("..cx..", "..cy..") and radius "..radius)
elseif seperation > 2*radius then
print("Given points are further away from each other than a diameter of a circle with radius "..radius)
else
local mirrorDistance = math.sqrt(math.pow(radius,2) - math.pow(seperation/2,2))
local dx = p2.x - p1.x
local dy = p1.y - p2.y
local ax = (p1.x + p2.x) / 2
local ay = (p1.y + p2.y) / 2
local mx = mirrorDistance * dx / seperation
local my = mirrorDistance * dy / seperation
c1 = {x=ax+my, y=ay+mx}
c2 = {x=ax-my, y=ay-mx}
print("Two circles are possible.")
print("Circle C1 with center ("..c1.x..", "..c1.y.."), radius "..radius)
print("Circle C2 with center ("..c2.x..", "..c2.y.."), radius "..radius)
end
print()
end
cases = {
{x=0.1234, y=0.9876}, {x=0.8765, y=0.2345},
{x=0.0000, y=2.0000}, {x=0.0000, y=0.0000},
{x=0.1234, y=0.9876}, {x=0.1234, y=0.9876},
{x=0.1234, y=0.9876}, {x=0.8765, y=0.2345},
{x=0.1234, y=0.9876}, {x=0.1234, y=0.9876}
}
radii = { 2.0, 1.0, 2.0, 0.5, 0.0 }
for i=1, #radii do
print("Case "..i)
findCircles(cases[i*2-1], cases[i*2], radii[i])
end |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | pinyin = <|"甲" -> "jiă", "乙" -> "yĭ", "丙" -> "bĭng", "丁" -> "dīng",
"戊" -> "wù", "己" -> "jĭ", "庚" -> "gēng", "辛" -> "xīn",
"壬" -> "rén", "癸" -> "gŭi", "子" -> "zĭ", "丑" -> "chŏu",
"寅" -> "yín", "卯" -> "măo", "辰" -> "chén", "巳" -> "sì",
"午" -> "wŭ", "未" -> "wèi", "申" -> "shēn", "酉" -> "yŏu",
"戌" -> "xū", "亥" -> "hài"|>;
animals = {"Rat", "Ox", "Tiger", "Rabbit", "Dragon", "Snake", "Horse",
"Goat", "Monkey", "Rooster", "Dog", "Pig"};
elements = {"Wood", "Fire", "Earth", "Metal", "Water"};
celestial = {"甲", "乙", "丙", "丁", "戊", "己", "庚", "辛", "壬", "癸"};
terrestrial = {"子", "丑", "寅", "卯", "辰", "巳", "午", "未", "申", "酉", "戌",
"亥"};
aspects = {"yang", "yin"};
ClearAll[calculate]
calculate[year_] := Module[{BASE, cycleyear, stemnumber, stempinyin, element,
elementnumber, branchnumber, branchhan, branchpinyin, animal,
aspectnumber, aspect, stemhan},
BASE = 4;
cycleyear = year - BASE;
stemnumber = Mod[cycleyear + 1, 10, 1];
stemhan = celestial[[stemnumber]];
stempinyin = pinyin[[stemhan]];
elementnumber = Floor[stemnumber/2 + 1/2];
element = elements[[elementnumber]];
branchnumber = Mod[cycleyear + 1, 12, 1];
branchhan = terrestrial[[branchnumber]];
branchpinyin = pinyin[[branchhan]];
animal = animals[[branchnumber]];
aspectnumber = Mod[cycleyear + 1, 2, 1];
aspect = aspects[[aspectnumber]];
Row@{year, ": ", stemhan, branchhan, " (", stempinyin, "-", branchpinyin, ", ", element, " ", animal, "; ", aspect, ")"}
]
calculate[1935]
calculate[1938]
calculate[1941]
calculate[1947]
calculate[1968]
calculate[1972]
calculate[1976] |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Erlang | Erlang | #!/usr/bin/escript
existence( true ) ->"exists";
existence( false ) ->"does not exist".
print_result(Type, Name, Flag) -> io:fwrite( "~s ~s ~s~n", [Type, Name, existence(Flag)] ).
main(_) ->
print_result( "File", "input.txt", filelib:is_regular("input.txt") ),
print_result( "Directory", "docs", filelib:is_dir("docs") ),
print_result( "File", "/input.txt", filelib:is_regular("/input.txt") ),
print_result( "Directory", "/docs", filelib:is_dir("/docs") ).
|
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Haskell | Haskell | import Control.Monad (replicateM)
import Control.Monad.Random (fromList)
type Point = (Float,Float)
type Transformations = [(Point -> Point, Float)] -- weighted transformations
-- realization of the game for given transformations
gameOfChaos :: MonadRandom m => Int -> Transformations -> Point -> m [Point]
gameOfChaos n transformations x = iterateA (fromList transformations) x
where iterateA f x = scanr ($) x <$> replicateM n f |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Ol | Ol |
(define (timestamp) (syscall 201 "%c"))
(fork-server 'chat-room (lambda ()
(let this ((visitors #empty))
(let* ((envelope (wait-mail))
(sender msg envelope))
(case msg
(['join who name]
(let ((visitors (put visitors who name)))
(for-each (lambda (who)
(print-to (car who) name " joined to as"))
(ff->alist visitors))
(this visitors)))
(['talk message]
(for-each (lambda (who)
(print-to (car who) (cdr who) ": " message))
(ff->alist visitors))
(this visitors))
(['part who]
(for-each (lambda (who)
(print-to (car who) (visitors (car who) "unknown") " leaved"))
(ff->alist visitors))
(let ((visitors (del visitors who)))
(this visitors))))))))
(define (on-accept name fd)
(lambda ()
(print "# " (timestamp) "> we got new visitor: " name)
(mail 'chat-room ['join fd name])
(let*((ss1 ms1 (clock)))
(let loop ((str #null) (stream (force (port->bytestream fd))))
(cond
((null? stream)
#false)
((function? stream)
(mail 'chat-room ['talk (list->string (reverse str))])
(loop #null (force stream)))
(else
(loop (cons (car stream) str) (cdr stream)))))
(syscall 3 fd)
(let*((ss2 ms2 (clock)))
(print "# " (timestamp) "> visitor leave us. It takes " (+ (* (- ss2 ss1) 1000) (- ms2 ms1)) "ms.")))
(mail 'chat-room ['part fd])
))
(define (run port)
(let ((socket (syscall 41)))
; bind
(let loop ((port port))
(if (not (syscall 49 socket port)) ; bind
(loop (+ port 2))
(print "Server binded to " port)))
; listen
(if (not (syscall 50 socket)) ; listen
(shutdown (print "Can't listen")))
; accept
(let loop ()
(if (syscall 23 socket) ; select
(let ((fd (syscall 43 socket))) ; accept
;(print "\n# " (timestamp) ": new request from " (syscall 51 fd))
(fork (on-accept (syscall 51 fd) fd))))
(sleep 0)
(loop))))
(run 8080)
|
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
include "bigint.s7i";
include "bigrat.s7i";
const type: mTerms is array array bigInteger;
const array mTerms: testCases is [] (
[] ([] ( 1_, 1_, 2_), [] ( 1_, 1_, 3_)),
[] ([] ( 2_, 1_, 3_), [] ( 1_, 1_, 7_)),
[] ([] ( 4_, 1_, 5_), [] (-1_, 1_, 239_)),
[] ([] ( 5_, 1_, 7_), [] ( 2_, 3_, 79_)),
[] ([] ( 1_, 1_, 2_), [] ( 1_, 1_, 5_), [] ( 1_, 1_, 8_)),
[] ([] ( 4_, 1_, 5_), [] (-1_, 1_, 70_), [] ( 1_, 1_, 99_)),
[] ([] ( 5_, 1_, 7_), [] ( 4_, 1_, 53_), [] ( 2_, 1_, 4443_)),
[] ([] ( 6_, 1_, 8_), [] ( 2_, 1_, 57_), [] ( 1_, 1_, 239_)),
[] ([] ( 8_, 1_, 10_), [] (-1_, 1_, 239_), [] ( -4_, 1_, 515_)),
[] ([] (12_, 1_, 18_), [] ( 8_, 1_, 57_), [] ( -5_, 1_, 239_)),
[] ([] (16_, 1_, 21_), [] ( 3_, 1_, 239_), [] ( 4_, 3_, 1042_)),
[] ([] (22_, 1_, 28_), [] ( 2_, 1_, 443_), [] ( -5_, 1_, 1393_), [] (-10_, 1_, 11018_)),
[] ([] (22_, 1_, 38_), [] (17_, 7_, 601_), [] ( 10_, 7_, 8149_)),
[] ([] (44_, 1_, 57_), [] ( 7_, 1_, 239_), [] (-12_, 1_, 682_), [] ( 24_, 1_, 12943_)),
[] ([] (88_, 1_, 172_), [] (51_, 1_, 239_), [] ( 32_, 1_, 682_), [] ( 44_, 1_, 5357_), [] (68_, 1_, 12943_)),
[] ([] (88_, 1_, 172_), [] (51_, 1_, 239_), [] ( 32_, 1_, 682_), [] ( 44_, 1_, 5357_), [] (68_, 1_, 12944_))
);
const func bigRational: tanEval (in bigInteger: coef, in bigRational: f) is func
result
var bigRational: tanEval is bigRational.value;
local
var bigRational: a is bigRational.value;
var bigRational: b is bigRational.value;
begin
if coef = 1_ then
tanEval := f;
elsif coef < 0_ then
tanEval := -tanEval(-coef, f);
else
a := tanEval(coef div 2_, f);
b := tanEval(coef - coef div 2_, f);
tanEval := (a + b) / (1_/1_ - a * b);
end if;
end func;
const func bigRational: tans (in mTerms: terms) is func
result
var bigRational: tans is bigRational.value;
local
var bigRational: a is bigRational.value;
var bigRational: b is bigRational.value;
begin
if length(terms) = 1 then
tans := tanEval(terms[1][1], terms[1][2] / terms[1][3]);
else
a := tans(terms[.. length(terms) div 2]);
b := tans(terms[succ(length(terms) div 2) ..]);
tans := (a + b) / (1_/1_ - a * b);
end if;
end func;
const proc: main is func
local
var integer: index is 0;
var array bigInteger: term is 0 times 0_;
begin
for key index range testCases do
write(tans(testCases[index]) = 1_/1_ <& ": pi/4 = ");
for term range testCases[index] do
write([0] ("+", "-")[ord(term[1] < 0_)] <& abs(term[1]) <& "*arctan(" <& term[2] <& "/" <& term[3] <& ")");
end for;
writeln;
end for;
end func; |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Sidef | Sidef | var equationtext = <<'EOT'
pi/4 = arctan(1/2) + arctan(1/3)
pi/4 = 2*arctan(1/3) + arctan(1/7)
pi/4 = 4*arctan(1/5) - arctan(1/239)
pi/4 = 5*arctan(1/7) + 2*arctan(3/79)
pi/4 = 5*arctan(29/278) + 7*arctan(3/79)
pi/4 = arctan(1/2) + arctan(1/5) + arctan(1/8)
pi/4 = 4*arctan(1/5) - arctan(1/70) + arctan(1/99)
pi/4 = 5*arctan(1/7) + 4*arctan(1/53) + 2*arctan(1/4443)
pi/4 = 6*arctan(1/8) + 2*arctan(1/57) + arctan(1/239)
pi/4 = 8*arctan(1/10) - arctan(1/239) - 4*arctan(1/515)
pi/4 = 12*arctan(1/18) + 8*arctan(1/57) - 5*arctan(1/239)
pi/4 = 16*arctan(1/21) + 3*arctan(1/239) + 4*arctan(3/1042)
pi/4 = 22*arctan(1/28) + 2*arctan(1/443) - 5*arctan(1/1393) - 10*arctan(1/11018)
pi/4 = 22*arctan(1/38) + 17*arctan(7/601) + 10*arctan(7/8149)
pi/4 = 44*arctan(1/57) + 7*arctan(1/239) - 12*arctan(1/682) + 24*arctan(1/12943)
pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12943)
pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12944)
EOT
func parse_eqn(equation) {
static eqn_re = %r{
(^ \s* pi/4 \s* = \s* )? # LHS of equation
(?: # RHS
\s* ( [-+] )? \s*
(?: ( \d+ ) \s* \*)?
\s* arctan\((.*?)\)
)}x
gather {
for lhs,sign,mult,rat in (equation.findall(eqn_re)) {
take([
[+1, -1][sign == '-'] * (mult ? Num(mult) : 1),
Num(rat)
])
}
}
}
func tanEval(coef, f) {
return f if (coef == 1)
return -tanEval(-coef, f) if (coef < 0)
var ca = coef>>1
var cb = (coef - ca)
var (a, b) = (tanEval(ca, f), tanEval(cb, f))
(a + b) / (1 - a*b)
}
func tans(xs) {
var xslen = xs.len
return tanEval(xs[0]...) if (xslen == 1)
var (aa, bb) = xs.part(xslen>>1)
var (a, b) = (tans(aa), tans(bb))
(a + b) / (1 - a*b)
}
var machins = equationtext.lines.map(parse_eqn)
for machin,eqn in (machins ~Z equationtext.lines) {
var ans = tans(machin)
printf("%5s: %s\n", (ans == 1 ? 'OK' : 'ERROR'), eqn)
} |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Common_Lisp | Common Lisp | (princ (char-code #\a)) ; prints "97"
(princ (code-char 97)) ; prints "a" |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Component_Pascal | Component Pascal | PROCEDURE CharCodes*;
VAR
c : CHAR;
BEGIN
c := 'A';
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln;
c := CHR(3A9H);
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln
END CharCodes; |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #OCaml | OCaml | let cholesky inp =
let n = Array.length inp in
let res = Array.make_matrix n n 0.0 in
let factor i k =
let rec sum j =
if j = k then 0.0 else
res.(i).(j) *. res.(k).(j) +. sum (j+1) in
inp.(i).(k) -. sum 0 in
for col = 0 to n-1 do
res.(col).(col) <- sqrt (factor col col);
for row = col+1 to n-1 do
res.(row).(col) <- (factor row col) /. res.(col).(col)
done
done;
res
let pr_vec v = Array.iter (Printf.printf " %9.5f") v; print_newline()
let show = Array.iter pr_vec
let test a =
print_endline "\nin:"; show a;
print_endline "out:"; show (cholesky a)
let _ =
test [| [|25.0; 15.0; -5.0|];
[|15.0; 18.0; 0.0|];
[|-5.0; 0.0; 11.0|] |];
test [| [|18.0; 22.0; 54.0; 42.0|];
[|22.0; 70.0; 86.0; 62.0|];
[|54.0; 86.0; 174.0; 134.0|];
[|42.0; 62.0; 134.0; 106.0|] |]; |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Racket | Racket | #lang racket
(define ((is x #:key [key identity]) y) (equal? (key x) (key y)))
(define albert first)
(define bernard second)
(define (((unique who) chs) date) (= 1 (count (is date #:key who) chs)))
(define (((unique-fix who-fix who) chs) date)
(ormap (conjoin (is date #:key who-fix) ((unique who) chs)) chs))
(define-syntax-rule (solve <chs> [<act> <arg>] ...)
(let* ([chs <chs>] [chs (<act> (<arg> chs) chs)] ...) chs))
(solve '((May 15) (May 16) (May 19) (June 17) (June 18)
(July 14) (July 16) (August 14) (August 15) (August 17))
;; Albert knows the month but doesn't know the day.
;; So the month can't be unique within the choices.
[filter-not (unique albert)]
;; Albert also knows that Bernard doesn't know the answer.
;; So the month can't have a unique day.
[filter-not (unique-fix albert bernard)]
;; Bernard now knows the answer.
;; So the day must be unique within the remaining choices.
[filter (unique bernard)]
;; Albert now knows the answer too.
;; So the month must be unique within the remaining choices
[filter (unique albert)]) |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #Raku | Raku | my @dates =
{ :15day, :5month },
{ :16day, :5month },
{ :19day, :5month },
{ :17day, :6month },
{ :18day, :6month },
{ :14day, :7month },
{ :16day, :7month },
{ :14day, :8month },
{ :15day, :8month },
{ :17day, :8month }
;
# Month can't have a unique day
my @filtered = @dates.grep(*.<month> != one(@dates.grep(*.<day> == one(@dates».<day>))».<month>));
# Day must be unique and unambiguous in remaining months
my $birthday = @filtered.grep(*.<day> == one(@filtered».<day>)).classify({.<month>})\
.first(*.value.elems == 1).value[0];
# convenience array
my @months = <'' January February March April May June July August September October November December>;
say "Cheryl's birthday is { @months[$birthday<month>] } {$birthday<day>}."; |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #MATLAB_.2F_Octave | MATLAB / Octave | >> A = {2,'TPS Report'} %Declare cell-array and initialize
A =
[2] 'TPS Report'
>> A{2} = struct('make','honda','year',2003)
A =
[2] [1x1 struct]
>> A{3} = {3,'HOVA'} %Create and assign A{3}
A =
[2] [1x1 struct] {1x2 cell}
>> A{2} %Get A{2}
ans =
make: 'honda'
year: 2003 |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #PowerShell | PowerShell |
$source = @'
using System;
using System.Collections.Generic;
namespace Powershell
{
public class CSharp
{
public static IEnumerable<int[]> Combinations(int m, int n)
{
int[] result = new int[m];
Stack<int> stack = new Stack<int>();
stack.Push(0);
while (stack.Count > 0) {
int index = stack.Count - 1;
int value = stack.Pop();
while (value < n) {
result[index++] = value++;
stack.Push(value);
if (index == m) {
yield return result;
break;
}
}
}
}
}
}
'@
Add-Type -TypeDefinition $source -Language CSharp
[Powershell.CSharp]::Combinations(3,5) | Format-Wide {$_} -Column 3 -Force
|
http://rosettacode.org/wiki/Conditional_structures | Conditional structures | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Task
List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions.
Common conditional structures include if-then-else and switch.
Less common are arithmetic if, ternary operator and Hash-based conditionals.
Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
| #Smalltalk | Smalltalk |
balance > 0
ifTrue: [Transcript cr; show: 'still sitting pretty!'.]
ifFalse: [Transcript cr; show: 'No money till payday!'.].
balance < 10 ifTrue:[ self goGetSomeMoney ].
balance > 1000 ifTrue:[ self beHappy ].
(balance < 10)
ifFalse:[ self gotoHappyHour ]
ifTrue:[ self noDrinksToday ].
|
http://rosettacode.org/wiki/Chinese_remainder_theorem | Chinese remainder theorem | Suppose
n
1
{\displaystyle n_{1}}
,
n
2
{\displaystyle n_{2}}
,
…
{\displaystyle \ldots }
,
n
k
{\displaystyle n_{k}}
are positive integers that are pairwise co-prime.
Then, for any given sequence of integers
a
1
{\displaystyle a_{1}}
,
a
2
{\displaystyle a_{2}}
,
…
{\displaystyle \dots }
,
a
k
{\displaystyle a_{k}}
, there exists an integer
x
{\displaystyle x}
solving the following system of simultaneous congruences:
x
≡
a
1
(
mod
n
1
)
x
≡
a
2
(
mod
n
2
)
⋮
x
≡
a
k
(
mod
n
k
)
{\displaystyle {\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\x&\equiv a_{2}{\pmod {n_{2}}}\\&{}\ \ \vdots \\x&\equiv a_{k}{\pmod {n_{k}}}\end{aligned}}}
Furthermore, all solutions
x
{\displaystyle x}
of this system are congruent modulo the product,
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
.
Task
Write a program to solve a system of linear congruences by applying the Chinese Remainder Theorem.
If the system of equations cannot be solved, your program must somehow indicate this.
(It may throw an exception or return a special false value.)
Since there are infinitely many solutions, the program should return the unique solution
s
{\displaystyle s}
where
0
≤
s
≤
n
1
n
2
…
n
k
{\displaystyle 0\leq s\leq n_{1}n_{2}\ldots n_{k}}
.
Show the functionality of this program by printing the result such that the
n
{\displaystyle n}
's are
[
3
,
5
,
7
]
{\displaystyle [3,5,7]}
and the
a
{\displaystyle a}
's are
[
2
,
3
,
2
]
{\displaystyle [2,3,2]}
.
Algorithm: The following algorithm only applies if the
n
i
{\displaystyle n_{i}}
's are pairwise co-prime.
Suppose, as above, that a solution is required for the system of congruences:
x
≡
a
i
(
mod
n
i
)
f
o
r
i
=
1
,
…
,
k
{\displaystyle x\equiv a_{i}{\pmod {n_{i}}}\quad \mathrm {for} \;i=1,\ldots ,k}
Again, to begin, the product
N
=
n
1
n
2
…
n
k
{\displaystyle N=n_{1}n_{2}\ldots n_{k}}
is defined.
Then a solution
x
{\displaystyle x}
can be found as follows:
For each
i
{\displaystyle i}
, the integers
n
i
{\displaystyle n_{i}}
and
N
/
n
i
{\displaystyle N/n_{i}}
are co-prime.
Using the Extended Euclidean algorithm, we can find integers
r
i
{\displaystyle r_{i}}
and
s
i
{\displaystyle s_{i}}
such that
r
i
n
i
+
s
i
N
/
n
i
=
1
{\displaystyle r_{i}n_{i}+s_{i}N/n_{i}=1}
.
Then, one solution to the system of simultaneous congruences is:
x
=
∑
i
=
1
k
a
i
s
i
N
/
n
i
{\displaystyle x=\sum _{i=1}^{k}a_{i}s_{i}N/n_{i}}
and the minimal solution,
x
(
mod
N
)
{\displaystyle x{\pmod {N}}}
.
| #Lua | Lua | -- Taken from https://www.rosettacode.org/wiki/Sum_and_product_of_an_array#Lua
function prodf(a, ...) return a and a * prodf(...) or 1 end
function prodt(t) return prodf(unpack(t)) end
function mulInv(a, b)
local b0 = b
local x0 = 0
local x1 = 1
if b == 1 then
return 1
end
while a > 1 do
local q = math.floor(a / b)
local amb = math.fmod(a, b)
a = b
b = amb
local xqx = x1 - q * x0
x1 = x0
x0 = xqx
end
if x1 < 0 then
x1 = x1 + b0
end
return x1
end
function chineseRemainder(n, a)
local prod = prodt(n)
local p
local sm = 0
for i=1,#n do
p = prod / n[i]
sm = sm + a[i] * mulInv(p, n[i]) * p
end
return math.fmod(sm, prod)
end
n = {3, 5, 7}
a = {2, 3, 2}
io.write(chineseRemainder(n, a)) |
http://rosettacode.org/wiki/Chowla_numbers | Chowla numbers | Chowla numbers are also known as:
Chowla's function
chowla numbers
the chowla function
the chowla number
the chowla sequence
The chowla number of n is (as defined by Chowla's function):
the sum of the divisors of n excluding unity and n
where n is a positive integer
The sequence is named after Sarvadaman D. S. Chowla, (22 October 1907 ──► 10 December 1995),
a London born Indian American mathematician specializing in number theory.
German mathematician Carl Friedrich Gauss (1777─1855) said:
"Mathematics is the queen of the sciences ─ and number theory is the queen of mathematics".
Definitions
Chowla numbers can also be expressed as:
chowla(n) = sum of divisors of n excluding unity and n
chowla(n) = sum( divisors(n)) - 1 - n
chowla(n) = sum( properDivisors(n)) - 1
chowla(n) = sum(aliquotDivisors(n)) - 1
chowla(n) = aliquot(n) - 1
chowla(n) = sigma(n) - 1 - n
chowla(n) = sigmaProperDivisiors(n) - 1
chowla(a*b) = a + b, if a and b are distinct primes
if chowla(n) = 0, and n > 1, then n is prime
if chowla(n) = n - 1, and n > 1, then n is a perfect number
Task
create a chowla function that returns the chowla number for a positive integer n
Find and display (1 per line) for the 1st 37 integers:
the integer (the index)
the chowla number for that integer
For finding primes, use the chowla function to find values of zero
Find and display the count of the primes up to 100
Find and display the count of the primes up to 1,000
Find and display the count of the primes up to 10,000
Find and display the count of the primes up to 100,000
Find and display the count of the primes up to 1,000,000
Find and display the count of the primes up to 10,000,000
For finding perfect numbers, use the chowla function to find values of n - 1
Find and display all perfect numbers up to 35,000,000
use commas within appropriate numbers
show all output here
Related tasks
totient function
perfect numbers
Proper divisors
Sieve of Eratosthenes
See also
the OEIS entry for A48050 Chowla's function.
| #Visual_Basic_.NET | Visual Basic .NET | Imports System
Module Program
Function chowla(ByVal n As Integer) As Integer
chowla = 0 : Dim j As Integer, i As Integer = 2
While i * i <= n
j = n / i : If n Mod i = 0 Then chowla += i + (If(i = j, 0, j))
i += 1
End While
End Function
Function sieve(ByVal limit As Integer) As Boolean()
Dim c As Boolean() = New Boolean(limit - 1) {}, i As Integer = 3
While i * 3 < limit
If Not c(i) AndAlso (chowla(i) = 0) Then
Dim j As Integer = 3 * i
While j < limit : c(j) = True : j += 2 * i : End While
End If : i += 2
End While
Return c
End Function
Sub Main(args As String())
For i As Integer = 1 To 37
Console.WriteLine("chowla({0}) = {1}", i, chowla(i))
Next
Dim count As Integer = 1, limit As Integer = CInt((10000000.0)), power As Integer = 100,
c As Boolean() = sieve(limit)
For i As Integer = 3 To limit - 1 Step 2
If Not c(i) Then count += 1
If i = power - 1 Then
Console.WriteLine("Count of primes up to {0,10:n0} = {1:n0}", power, count)
power = power * 10
End If
Next
count = 0 : limit = 35000000
Dim p As Integer, k As Integer = 2, kk As Integer = 3
While True
p = k * kk : If p > limit Then Exit While
If chowla(p) = p - 1 Then
Console.WriteLine("{0,10:n0} is a number that is perfect", p)
count += 1
End If
k = kk + 1 : kk += k
End While
Console.WriteLine("There are {0} perfect numbers <= 35,000,000", count)
If System.Diagnostics.Debugger.IsAttached Then Console.ReadKey()
End Sub
End Module |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Oberon-2 | Oberon-2 | MODULE M;
TYPE
T = POINTER TO TDesc;
TDesc = RECORD
x: INTEGER
END;
PROCEDURE New*(): T;
VAR t: T;
BEGIN
NEW(t); t.x := 0;
RETURN t
END New;
PROCEDURE (t: T) Increment*;
BEGIN
INC(t.x)
END Increment;
END M. |
http://rosettacode.org/wiki/Classes | Classes | In object-oriented programming class is a set (a transitive closure) of types bound by the relation of inheritance. It is said that all types derived from some base type T and the type T itself form a class T.
The first type T from the class T sometimes is called the root type of the class.
A class of types itself, as a type, has the values and operations of its own.
The operations of are usually called methods of the root type.
Both operations and values are called polymorphic.
A polymorphic operation (method) selects an implementation depending on the actual specific type of the polymorphic argument.
The action of choice the type-specific implementation of a polymorphic operation is called dispatch. Correspondingly, polymorphic operations are often called dispatching or virtual.
Operations with multiple arguments and/or the results of the class are called multi-methods.
A further generalization of is the operation with arguments and/or results from different classes.
single-dispatch languages are those that allow only one argument or result to control the dispatch. Usually it is the first parameter, often hidden, so that a prefix notation x.f() is used instead of mathematical f(x).
multiple-dispatch languages allow many arguments and/or results to control the dispatch.
A polymorphic value has a type tag indicating its specific type from the class and the corresponding specific value of that type.
This type is sometimes called the most specific type of a [polymorphic] value.
The type tag of the value is used in order to resolve the dispatch.
The set of polymorphic values of a class is a transitive closure of the sets of values of all types from that class.
In many OO languages
the type of the class of T and T itself are considered equivalent.
In some languages they are distinct (like in Ada).
When class T and T are equivalent, there is no way to distinguish
polymorphic and specific values.
Task
Create a basic class with a method, a constructor, an instance variable and how to instantiate it.
| #Objeck | Objeck | bundle Default {
class MyClass {
@var : Int;
New() {
}
method : public : SomeMethod() ~ Nil {
@var := 1;
}
method : public : SetVar(var : Int) ~ Nil {
@var := var;
}
method : public : GetVar() ~ Int {
return @var;
}
}
class Test {
function : Main(args : String[]) ~ Nil {
inst := MyClass->New();
inst->GetVar()->PrintLine();
inst->SomeMethod();
inst->GetVar()->PrintLine();
inst->SetVar(15);
inst->GetVar()->PrintLine();
}
}
} |
http://rosettacode.org/wiki/Closest-pair_problem | Closest-pair problem |
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)
Task
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the Closest pair of points problem in the planar case.
The straightforward solution is a O(n2) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:
bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
A better algorithm is based on the recursive divide&conquer approach, as explained also at Wikipedia's Closest pair of points problem, which is O(n log n); a pseudo-code could be:
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)x
yL ← { p ∈ yP : px ≤ xm }
yR ← { p ∈ yP : px > xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL < dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - px| < dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)y - yS(i)y < dmin
if |yS(k) - yS(i)| < closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
References and further readings
Closest pair of points problem
Closest Pair (McGill)
Closest Pair (UCSB)
Closest pair (WUStL)
Closest pair (IUPUI)
| #PL.2FI | PL/I |
/* Closest Pair Problem */
closest: procedure options (main);
declare n fixed binary;
get list (n);
begin;
declare 1 P(n),
2 x float,
2 y float;
declare (i, ii, j, jj) fixed binary;
declare (distance, min_distance initial (0) ) float;
get list (P);
min_distance = sqrt( (P.x(1) - P.x(2))**2 + (P.y(1) - P.y(2))**2 );
ii = 1; jj = 2;
do i = 1 to n;
do j = 1 to n;
distance = sqrt( (P.x(i) - P.x(j))**2 + (P.y(i) - P.y(j))**2 );
if distance > 0 then
if distance < min_distance then
do;
min_distance = distance;
ii = i; jj = j;
end;
end;
end;
put skip edit ('The minimum distance ', min_distance,
' is between the points [', P.x(ii),
',', P.y(ii), '] and [', P.x(jj), ',', P.y(jj), ']' )
(a, f(6,2));
end;
end closest;
|
http://rosettacode.org/wiki/Circles_of_given_radius_through_two_points | Circles of given radius through two points |
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Exceptions
r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
If the points are too far apart then no circles can be drawn.
Task detail
Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
Show here the output for the following inputs:
p1 p2 r
0.1234, 0.9876 0.8765, 0.2345 2.0
0.0000, 2.0000 0.0000, 0.0000 1.0
0.1234, 0.9876 0.1234, 0.9876 2.0
0.1234, 0.9876 0.8765, 0.2345 0.5
0.1234, 0.9876 0.1234, 0.9876 0.0
Related task
Total circles area.
See also
Finding the Center of a Circle from 2 Points and Radius from Math forum @ Drexel
| #Maple | Maple | drawCircles := proc(x1, y1, x2, y2, r, $)
local c1, c2, p1, p2;
use geometry in
if x1 = x2 and y1 = y2 then
if r = 0 then
printf("The circle is a point at [%a, %a].\n", x1, y1);
else
printf("The two points are the same. Infinite circles can be drawn.\n");
end if;
elif evalf(distance(point(A, x1, y1), point(B, x2, y2))) >r*2 then
printf("The two points are too far apart. No circles can be drawn.\n");
else
circle(P1Cir, [A, r]);#make a circle around the first point
circle(P2Cir, [B, r]);#make a circle around the second point
intersection('i', P1Cir, P2Cir);
#the intersection of the above 2 circles should give you the centers of the two circles you need to draw
c1 := plottools[circle](coordinates(`if`(type(i, list), i[1], i)), r);#make the first circle
c2 := plottools[circle](coordinates(`if`(type(i, list), i[2], i)), r);#make the second circle
plots[display](c1, c2, scaling = constrained);#draw
end if;
end use;
end proc:
drawCircles(0.1234, 0.9876, 0.8765, 0.2345, 2.0);
drawCircles(0.0000, 2.0000, 0.0000, 0.0000, 1.0);
drawCircles(0.1234, 0.9876, 0.1234, 0.9876, 2.0);
drawCircles(0.1234, 0.9876, 0.8765, 0.2345, 0.5);
drawCircles(0.1234, 0.9876, 0.1234, 0.9876, 0.0); |
http://rosettacode.org/wiki/Chinese_zodiac | Chinese zodiac | Traditionally, the Chinese have counted years using two simultaneous cycles, one of length 10 (the "celestial stems") and one of length 12 (the "terrestrial branches"); the combination results in a repeating 60-year pattern. Mapping the branches to twelve traditional animal deities results in the well-known "Chinese zodiac", assigning each year to a given animal. For example, Tuesday, February 1, 2022 CE (in the common Gregorian calendar) will begin the lunisolar Year of the Tiger.
The celestial stems have no one-to-one mapping like that of the branches to animals; however, the five pairs of consecutive stems each belong to one of the five traditional Chinese elements (Wood, Fire, Earth, Metal, and Water). Further, one of the two years within each element's governance is associated with yin, the other with yang.
Thus, 2022 is also the yang year of Water. Note that since 12 is an even number, the association between animals and yin/yang doesn't change. Consecutive Years of the Rooster will cycle through the five elements, but will always be yin, despite the apparent conceptual mismatch between the specifically-male English animal name and the female aspect denoted by yin.
Task
Create a subroutine or program that will return or output the animal, yin/yang association, and element for the lunisolar year that begins in a given CE year.
You may optionally provide more information in the form of the year's numerical position within the 60-year cycle and/or its actual Chinese stem-branch name (in Han characters or Pinyin transliteration).
Requisite information
The animal cycle runs in this order: Rat, Ox, Tiger, Rabbit, Dragon, Snake, Horse, Goat, Monkey, Rooster, Dog, Pig.
The element cycle runs in this order: Wood, Fire, Earth, Metal, Water.
The yang year precedes the yin year within each element.
The current 60-year cycle began in 1984 CE; the first cycle of the Common Era began in 4 CE.
Thus, 1984 was the year of the Wood Rat (yang), 1985 was the year of the Wood Ox (yin), and 1986 the year of the Fire Tiger (yang); 2022 - which, as already noted, is the year of the Water Tiger (yang) - is the 39th year of the current cycle.
Information for optional task
The ten celestial stems are 甲 jiă, 乙 yĭ, 丙 bĭng, 丁 dīng, 戊 wù, 己 jĭ, 庚 gēng, 辛 xīn, 壬 rén, and 癸 gŭi. With the ASCII version of Pinyin tones, the names are written "jia3", "yi3", "bing3", "ding1", "wu4", "ji3", "geng1", "xin1", "ren2", and "gui3".
The twelve terrestrial branches are 子 zĭ, 丑 chŏu, 寅 yín, 卯 măo, 辰 chén, 巳 sì, 午 wŭ, 未 wèi, 申 shēn, 酉 yŏu, 戌 xū, 亥 hài. In ASCII Pinyin, those are "zi3", "chou3", "yin2", "mao3", "chen2", "si4", "wu3", "wei4", "shen1", "you3", "xu1", and "hai4".
Therefore 1984 was 甲子 (jiă-zĭ, or jia3-zi3). 2022 is 壬寅 (rén-yín or ren2-yin2).
| #Modula-2 | Modula-2 | MODULE ChineseZodiac;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,ReadChar;
TYPE Str = ARRAY[0..7] OF CHAR;
TYPE AA = ARRAY[0..11] OF Str;
CONST ANIMALS = AA{"Rat","Ox","Tiger","Rabbit","Dragon","Snake","Horse","Goat","Monkey","Rooster","Dog","Pig"};
TYPE EA = ARRAY[0..4] OF Str;
CONST ELEMENTS = EA{"Wood","Fire","Earth","Metal","Water"};
PROCEDURE element(year : INTEGER) : Str;
VAR idx : CARDINAL;
BEGIN
idx := ((year - 4) MOD 10) / 2;
RETURN ELEMENTS[idx];
END element;
PROCEDURE animal(year : INTEGER) : Str;
VAR idx : CARDINAL;
BEGIN
idx := (year - 4) MOD 12;
RETURN ANIMALS[idx];
END animal;
PROCEDURE yy(year : INTEGER) : Str;
BEGIN
IF year MOD 2 = 0 THEN
RETURN "yang"
ELSE
RETURN "yin"
END
END yy;
PROCEDURE print(year : INTEGER);
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
FormatString("%i is the year of the %s %s (%s)\n", buf, year, element(year), animal(year), yy(year));
WriteString(buf);
END print;
(* main *)
BEGIN
print(1935);
print(1938);
print(1968);
print(1972);
print(1976);
print(2017);
ReadChar
END ChineseZodiac. |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #Euphoria | Euphoria | include file.e
procedure ensure_exists(sequence name)
object x
sequence s
x = dir(name)
if sequence(x) then
if find('d',x[1][D_ATTRIBUTES]) then
s = "directory"
else
s = "file"
end if
printf(1,"%s %s exists.\n",{name,s})
else
printf(1,"%s does not exist.\n",{name})
end if
end procedure
ensure_exists("input.txt")
ensure_exists("docs")
ensure_exists("/input.txt")
ensure_exists("/docs") |
http://rosettacode.org/wiki/Check_that_file_exists | Check that file exists | Task
Verify that a file called input.txt and a directory called docs exist.
This should be done twice:
once for the current working directory, and
once for a file and a directory in the filesystem root.
Optional criteria (May 2015): verify it works with:
zero-length files
an unusual filename: `Abdu'l-Bahá.txt
| #F.23 | F# | open System.IO
File.Exists("input.txt")
Directory.Exists("docs")
File.Exists("/input.txt")
Directory.Exists(@"\docs") |
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #J | J |
Note 'plan, Working in complex plane'
Make an equilateral triangle.
Make a list of N targets
Starting with a random point near the triangle,
iteratively generate new points.
plot the new points.
j has a particularly rich notation for numbers.
1ad_90 specifies a complex number with radius 1
at an angle of negative 90 degrees.
2p1 is 2 times (pi raised to the first power).
)
N=: 3000
require'plot'
TAU=: 2p1 NB. tauday.com
mean=: +/ % #
NB. equilateral triangle with vertices on unit circle
NB. rotated for fun.
TRIANGLE=: *(j./2 1 o.(TAU%6)*?0)*1ad_90 1ad150 1ad30
TARGETS=: (N ?@:# 3) { TRIANGLE
NB. start on unit circle
START=: j./2 1 o.TAU*?0
NEW_POINTS=: (mean@:(, {.) , ])/ TARGETS , START
'marker'plot NEW_POINTS
|
http://rosettacode.org/wiki/Chaos_game | Chaos game | The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
See also
The Game of Chaos
| #Java | Java | import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;
import javax.swing.Timer;
public class ChaosGame extends JPanel {
static class ColoredPoint extends Point {
int colorIndex;
ColoredPoint(int x, int y, int idx) {
super(x, y);
colorIndex = idx;
}
}
Stack<ColoredPoint> stack = new Stack<>();
Point[] points = new Point[3];
Color[] colors = {Color.red, Color.green, Color.blue};
Random r = new Random();
public ChaosGame() {
Dimension dim = new Dimension(640, 640);
setPreferredSize(dim);
setBackground(Color.white);
int margin = 60;
int size = dim.width - 2 * margin;
points[0] = new Point(dim.width / 2, margin);
points[1] = new Point(margin, size);
points[2] = new Point(margin + size, size);
stack.push(new ColoredPoint(-1, -1, 0));
new Timer(10, (ActionEvent e) -> {
if (stack.size() < 50_000) {
for (int i = 0; i < 1000; i++)
addPoint();
repaint();
}
}).start();
}
private void addPoint() {
try {
int colorIndex = r.nextInt(3);
Point p1 = stack.peek();
Point p2 = points[colorIndex];
stack.add(halfwayPoint(p1, p2, colorIndex));
} catch (EmptyStackException e) {
e.printStackTrace();
}
}
void drawPoints(Graphics2D g) {
for (ColoredPoint p : stack) {
g.setColor(colors[p.colorIndex]);
g.fillOval(p.x, p.y, 1, 1);
}
}
ColoredPoint halfwayPoint(Point a, Point b, int idx) {
return new ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx);
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawPoints(g);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Chaos Game");
f.setResizable(false);
f.add(new ChaosGame(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
} |
http://rosettacode.org/wiki/Chat_server | Chat server | Task
Write a server for a minimal text based chat.
People should be able to connect via ‘telnet’, sign on with a nickname, and type messages which will then be seen by all other connected users. Arrivals and departures of chat members should generate appropriate notification messages.
| #Perl | Perl | use 5.010;
use strict;
use warnings;
use threads;
use threads::shared;
use IO::Socket::INET;
use Time::HiRes qw(sleep ualarm);
my $HOST = "localhost";
my $PORT = 4004;
my @open;
my %users : shared;
sub broadcast {
my ($id, $message) = @_;
print "$message\n";
foreach my $i (keys %users) {
if ($i != $id) {
$open[$i]->send("$message\n");
}
}
}
sub sign_in {
my ($conn) = @_;
state $id = 0;
threads->new(
sub {
while (1) {
$conn->send("Please enter your name: ");
$conn->recv(my $name, 1024, 0);
if (defined $name) {
$name = unpack('A*', $name);
if (exists $users{$name}) {
$conn->send("Name entered is already in use.\n");
}
elsif ($name ne '') {
$users{$id} = $name;
broadcast($id, "+++ $name arrived +++");
last;
}
}
}
}
);
++$id;
push @open, $conn;
}
my $server = IO::Socket::INET->new(
Timeout => 0,
LocalPort => $PORT,
Proto => "tcp",
LocalAddr => $HOST,
Blocking => 0,
Listen => 1,
Reuse => 1,
);
local $| = 1;
print "Listening on $HOST:$PORT\n";
while (1) {
my ($conn) = $server->accept;
if (defined($conn)) {
sign_in($conn);
}
foreach my $i (keys %users) {
my $conn = $open[$i];
my $message;
eval {
local $SIG{ALRM} = sub { die "alarm\n" };
ualarm(500);
$conn->recv($message, 1024, 0);
ualarm(0);
};
if ($@ eq "alarm\n") {
next;
}
if (defined($message)) {
if ($message ne '') {
$message = unpack('A*', $message);
broadcast($i, "$users{$i}> $message");
}
else {
broadcast($i, "--- $users{$i} leaves ---");
delete $users{$i};
undef $open[$i];
}
}
}
sleep(0.1);
} |
http://rosettacode.org/wiki/Check_Machin-like_formulas | Check Machin-like formulas | Machin-like formulas are useful for efficiently computing numerical approximations for
π
{\displaystyle \pi }
Task
Verify the following Machin-like formulas are correct by calculating the value of tan (right hand side) for each equation using exact arithmetic and showing they equal 1:
π
4
=
arctan
1
2
+
arctan
1
3
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 3}}
π
4
=
2
arctan
1
3
+
arctan
1
7
{\displaystyle {\pi \over 4}=2\arctan {1 \over 3}+\arctan {1 \over 7}}
π
4
=
4
arctan
1
5
−
arctan
1
239
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 239}}
π
4
=
5
arctan
1
7
+
2
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+2\arctan {3 \over 79}}
π
4
=
5
arctan
29
278
+
7
arctan
3
79
{\displaystyle {\pi \over 4}=5\arctan {29 \over 278}+7\arctan {3 \over 79}}
π
4
=
arctan
1
2
+
arctan
1
5
+
arctan
1
8
{\displaystyle {\pi \over 4}=\arctan {1 \over 2}+\arctan {1 \over 5}+\arctan {1 \over 8}}
π
4
=
4
arctan
1
5
−
arctan
1
70
+
arctan
1
99
{\displaystyle {\pi \over 4}=4\arctan {1 \over 5}-\arctan {1 \over 70}+\arctan {1 \over 99}}
π
4
=
5
arctan
1
7
+
4
arctan
1
53
+
2
arctan
1
4443
{\displaystyle {\pi \over 4}=5\arctan {1 \over 7}+4\arctan {1 \over 53}+2\arctan {1 \over 4443}}
π
4
=
6
arctan
1
8
+
2
arctan
1
57
+
arctan
1
239
{\displaystyle {\pi \over 4}=6\arctan {1 \over 8}+2\arctan {1 \over 57}+\arctan {1 \over 239}}
π
4
=
8
arctan
1
10
−
arctan
1
239
−
4
arctan
1
515
{\displaystyle {\pi \over 4}=8\arctan {1 \over 10}-\arctan {1 \over 239}-4\arctan {1 \over 515}}
π
4
=
12
arctan
1
18
+
8
arctan
1
57
−
5
arctan
1
239
{\displaystyle {\pi \over 4}=12\arctan {1 \over 18}+8\arctan {1 \over 57}-5\arctan {1 \over 239}}
π
4
=
16
arctan
1
21
+
3
arctan
1
239
+
4
arctan
3
1042
{\displaystyle {\pi \over 4}=16\arctan {1 \over 21}+3\arctan {1 \over 239}+4\arctan {3 \over 1042}}
π
4
=
22
arctan
1
28
+
2
arctan
1
443
−
5
arctan
1
1393
−
10
arctan
1
11018
{\displaystyle {\pi \over 4}=22\arctan {1 \over 28}+2\arctan {1 \over 443}-5\arctan {1 \over 1393}-10\arctan {1 \over 11018}}
π
4
=
22
arctan
1
38
+
17
arctan
7
601
+
10
arctan
7
8149
{\displaystyle {\pi \over 4}=22\arctan {1 \over 38}+17\arctan {7 \over 601}+10\arctan {7 \over 8149}}
π
4
=
44
arctan
1
57
+
7
arctan
1
239
−
12
arctan
1
682
+
24
arctan
1
12943
{\displaystyle {\pi \over 4}=44\arctan {1 \over 57}+7\arctan {1 \over 239}-12\arctan {1 \over 682}+24\arctan {1 \over 12943}}
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12943
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12943}}
and confirm that the following formula is incorrect by showing tan (right hand side) is not 1:
π
4
=
88
arctan
1
172
+
51
arctan
1
239
+
32
arctan
1
682
+
44
arctan
1
5357
+
68
arctan
1
12944
{\displaystyle {\pi \over 4}=88\arctan {1 \over 172}+51\arctan {1 \over 239}+32\arctan {1 \over 682}+44\arctan {1 \over 5357}+68\arctan {1 \over 12944}}
These identities are useful in calculating the values:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
{\displaystyle \tan(a+b)={\tan(a)+\tan(b) \over 1-\tan(a)\tan(b)}}
tan
(
arctan
a
b
)
=
a
b
{\displaystyle \tan \left(\arctan {a \over b}\right)={a \over b}}
tan
(
−
a
)
=
−
tan
(
a
)
{\displaystyle \tan(-a)=-\tan(a)}
You can store the equations in any convenient data structure, but for extra credit parse them from human-readable text input.
Note: to formally prove the formula correct, it would have to be shown that
−
3
p
i
4
{\displaystyle {-3pi \over 4}}
< right hand side <
5
p
i
4
{\displaystyle {5pi \over 4}}
due to
tan
(
)
{\displaystyle \tan()}
periodicity.
| #Tcl | Tcl | package require Tcl 8.5
# Compute tan(atan(p)+atan(q)) using rationals
proc tadd {p q} {
lassign $p pp pq
lassign $q qp qq
set topp [expr {$pp*$qq + $qp*$pq}]
set topq [expr {$pq*$qq}]
set prodp [expr {$pp*$qp}]
set prodq [expr {$pq*$qq}]
set lowp [expr {$prodq - $prodp}]
set resultp [set gcd1 [expr {$topp * $prodq}]]
set resultq [set gcd2 [expr {$topq * $lowp}]]
# Critical! Normalize using the GCD
while {$gcd2 != 0} {
lassign [list $gcd2 [expr {$gcd1 % $gcd2}]] gcd1 gcd2
}
list [expr {$resultp / abs($gcd1)}] [expr {$resultq / abs($gcd1)}]
}
proc termTan {n a b} {
if {$n < 0} {
set n [expr {-$n}]
set a [expr {-$a}]
}
if {$n == 1} {
return [list $a $b]
}
set k [expr {$n - [set m [expr {$n / 2}]]*2}]
set t2 [termTan $m $a $b]
set m2 [tadd $t2 $t2]
if {$k == 0} {
return $m2
}
return [tadd [termTan $k $a $b] $m2]
}
proc machinTan {terms} {
set sum {0 1}
foreach term $terms {
set sum [tadd $sum [termTan {*}$term]]
}
return $sum
}
# Assumes that the formula is in the very specific form below!
proc parseFormula {formula} {
set RE {(-?\s*\d*\s*\*?)\s*arctan\s*\(\s*(-?\s*\d+)\s*/\s*(-?\s*\d+)\s*\)}
set nospace {" " "" "*" ""}
foreach {all n a b} [regexp -inline -all $RE $formula] {
if {![regexp {\d} $n]} {append n 1}
lappend result [list [string map $nospace $n] [string map $nospace $a] [string map $nospace $b]]
}
return $result
}
foreach formula {
"pi/4 = arctan(1/2) + arctan(1/3)"
"pi/4 = 2*arctan(1/3) + arctan(1/7)"
"pi/4 = 4*arctan(1/5) - arctan(1/239)"
"pi/4 = 5*arctan(1/7) + 2*arctan(3/79)"
"pi/4 = 5*arctan(29/278) + 7*arctan(3/79)"
"pi/4 = arctan(1/2) + arctan(1/5) + arctan(1/8)"
"pi/4 = 4*arctan(1/5) - arctan(1/70) + arctan(1/99)"
"pi/4 = 5*arctan(1/7) + 4*arctan(1/53) + 2*arctan(1/4443)"
"pi/4 = 6*arctan(1/8) + 2*arctan(1/57) + arctan(1/239)"
"pi/4 = 8*arctan(1/10) - arctan(1/239) - 4*arctan(1/515)"
"pi/4 = 12*arctan(1/18) + 8*arctan(1/57) - 5*arctan(1/239)"
"pi/4 = 16*arctan(1/21) + 3*arctan(1/239) + 4*arctan(3/1042)"
"pi/4 = 22*arctan(1/28) + 2*arctan(1/443) - 5*arctan(1/1393) - 10*arctan(1/11018)"
"pi/4 = 22*arctan(1/38) + 17*arctan(7/601) + 10*arctan(7/8149)"
"pi/4 = 44*arctan(1/57) + 7*arctan(1/239) - 12*arctan(1/682) + 24*arctan(1/12943)"
"pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12943)"
"pi/4 = 88*arctan(1/172) + 51*arctan(1/239) + 32*arctan(1/682) + 44*arctan(1/5357) + 68*arctan(1/12944)"
} {
if {[tcl::mathop::== {*}[machinTan [parseFormula $formula]]]} {
puts "Yes! '$formula' is true"
} else {
puts "No! '$formula' not true"
}
} |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #D | D | void main() {
import std.stdio, std.utf;
string test = "a";
size_t index = 0;
// Get four-byte utf32 value for index 0.
writefln("%d", test.decode(index));
// 'index' has moved to next character input position.
assert(index == 1);
} |
http://rosettacode.org/wiki/Character_codes | Character codes |
Task
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses).
Example
The character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode).
Conversely, given a code, print out the corresponding character.
| #Dc | Dc | 97P |
http://rosettacode.org/wiki/Cholesky_decomposition | Cholesky decomposition | Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
A
=
L
L
T
{\displaystyle A=LL^{T}}
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition.
In a 3x3 example, we have to solve the following system of equations:
A
=
(
a
11
a
21
a
31
a
21
a
22
a
32
a
31
a
32
a
33
)
=
(
l
11
0
0
l
21
l
22
0
l
31
l
32
l
33
)
(
l
11
l
21
l
31
0
l
22
l
32
0
0
l
33
)
≡
L
L
T
=
(
l
11
2
l
21
l
11
l
31
l
11
l
21
l
11
l
21
2
+
l
22
2
l
31
l
21
+
l
32
l
22
l
31
l
11
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
)
{\displaystyle {\begin{aligned}A&={\begin{pmatrix}a_{11}&a_{21}&a_{31}\\a_{21}&a_{22}&a_{32}\\a_{31}&a_{32}&a_{33}\\\end{pmatrix}}\\&={\begin{pmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\\\end{pmatrix}}{\begin{pmatrix}l_{11}&l_{21}&l_{31}\\0&l_{22}&l_{32}\\0&0&l_{33}\end{pmatrix}}\equiv LL^{T}\\&={\begin{pmatrix}l_{11}^{2}&l_{21}l_{11}&l_{31}l_{11}\\l_{21}l_{11}&l_{21}^{2}+l_{22}^{2}&l_{31}l_{21}+l_{32}l_{22}\\l_{31}l_{11}&l_{31}l_{21}+l_{32}l_{22}&l_{31}^{2}+l_{32}^{2}+l_{33}^{2}\end{pmatrix}}\end{aligned}}}
We can see that for the diagonal elements (
l
k
k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern:
l
11
=
a
11
{\displaystyle l_{11}={\sqrt {a_{11}}}}
l
22
=
a
22
−
l
21
2
{\displaystyle l_{22}={\sqrt {a_{22}-l_{21}^{2}}}}
l
33
=
a
33
−
(
l
31
2
+
l
32
2
)
{\displaystyle l_{33}={\sqrt {a_{33}-(l_{31}^{2}+l_{32}^{2})}}}
or in general:
l
k
k
=
a
k
k
−
∑
j
=
1
k
−
1
l
k
j
2
{\displaystyle l_{kk}={\sqrt {a_{kk}-\sum _{j=1}^{k-1}l_{kj}^{2}}}}
For the elements below the diagonal (
l
i
k
{\displaystyle l_{ik}}
, where
i
>
k
{\displaystyle i>k}
) there is also a calculation pattern:
l
21
=
1
l
11
a
21
{\displaystyle l_{21}={\frac {1}{l_{11}}}a_{21}}
l
31
=
1
l
11
a
31
{\displaystyle l_{31}={\frac {1}{l_{11}}}a_{31}}
l
32
=
1
l
22
(
a
32
−
l
31
l
21
)
{\displaystyle l_{32}={\frac {1}{l_{22}}}(a_{32}-l_{31}l_{21})}
which can also be expressed in a general formula:
l
i
k
=
1
l
k
k
(
a
i
k
−
∑
j
=
1
k
−
1
l
i
j
l
k
j
)
{\displaystyle l_{ik}={\frac {1}{l_{kk}}}\left(a_{ik}-\sum _{j=1}^{k-1}l_{ij}l_{kj}\right)}
Task description
The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output.
Example 1:
25 15 -5 5 0 0
15 18 0 --> 3 3 0
-5 0 11 -1 1 3
Example 2:
18 22 54 42 4.24264 0.00000 0.00000 0.00000
22 70 86 62 --> 5.18545 6.56591 0.00000 0.00000
54 86 174 134 12.72792 3.04604 1.64974 0.00000
42 62 134 106 9.89949 1.62455 1.84971 1.39262
Note
The Cholesky decomposition of a Pascal upper-triangle matrix is the Identity matrix of the same size.
The Cholesky decomposition of a Pascal symmetric matrix is the Pascal lower-triangle matrix of the same size. | #ooRexx | ooRexx | /*REXX program performs the Cholesky decomposition on a square matrix. */
niner = '25 15 -5' , /*define a 3x3 matrix. */
'15 18 0' ,
'-5 0 11'
call Cholesky niner
hexer = 18 22 54 42, /*define a 4x4 matrix. */
22 70 86 62,
54 86 174 134,
42 62 134 106
call Cholesky hexer
exit /*stick a fork in it, we're all done. */
/*----------------------------------------------------------------------------*/
Cholesky: procedure; parse arg mat; say; say; call tell 'input matrix',mat
do r=1 for ord
do c=1 for r; d=0; do i=1 for c-1; d=d+!.r.i*!.c.i; end /*i*/
if r=c then !.r.r=sqrt(!.r.r-d)
else !.r.c=1/!.c.c*(a.r.c-d)
end /*c*/
end /*r*/
call tell 'Cholesky factor',,!.,'-'
return
/*----------------------------------------------------------------------------*/
err: say; say; say '***error***!'; say; say arg(1); say; say; exit 13
/*----------------------------------------------------------------------------*/
tell: parse arg hdr,x,y,sep; n=0; if sep=='' then sep='-'
dPlaces= 5 /*n decimal places past the decimal point*/
width =10 /*width of field used to display elements*/
if y=='' then !.=0
else do row=1 for ord; do col=1 for ord; x=x !.row.col; end; end
w=words(x)
do ord=1 until ord**2>=w; end /*a fast way to find matrix's order*/
say
if ord**2\==w then call err "matrix elements don't form a square matrix."
say center(hdr, ((width+1)*w)%ord, sep)
say
do row=1 for ord; z=''
do col=1 for ord; n=n+1
a.row.col=word(x,n)
if col<=row then !.row.col=a.row.col
z=z right( format(a.row.col,, dPlaces) / 1, width)
end /*col*/
say z
end /*row*/
return
/*----------------------------------------------------------------------------*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); i=''; m.=9
numeric digits 9; numeric form; h=d+6; if x<0 then do; x=-x; i='i'; end
parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_%2
do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/
numeric digits d; return (g/1)i /*make complex if X < 0.*/ |
http://rosettacode.org/wiki/Cheryl%27s_birthday | Cheryl's birthday | Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is.
Cheryl gave them a list of ten possible dates:
May 15, May 16, May 19
June 17, June 18
July 14, July 16
August 14, August 15, August 17
Cheryl then tells Albert the month of birth, and Bernard the day (of the month) of birth.
1) Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.
2) Bernard: At first I don't know when Cheryl's birthday is, but I know now.
3) Albert: Then I also know when Cheryl's birthday is.
Task
Write a computer program to deduce, by successive elimination, Cheryl's birthday.
Related task
Sum and Product Puzzle
References
Wikipedia article of the same name.
Tuple Relational Calculus
| #REXX | REXX | /*REXX pgm finds Cheryl's birth date based on a person knowing the birth month, another */
/*──────────────────────── person knowing the birth day, given a list of possible dates.*/
$= 'May-15 May-16 May-19 June-17 June-18 July-14 July-16 August-14 August-15 August-17'
call delDays unique('day')
$= unique('day')
$= unique('month')
if words($)==1 then say "Cheryl's birthday is" translate($, , '-')
else say "error in the program's logic."
exit 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
unique: arg u 2, dups; #= words($); $$= $
do j=# to 2 by -1
if u=='D' then parse value word($, j) with '-' x
else parse value word($, j) with x '-'
do k=1 for j-1
if u=='D' then parse value word($, k) with '-' y
else parse value word($, k) with y '-'
if x==y then dups= dups k j
end /*k*/
end /*j*/
do d=# for # by -1
do p=1 for words(dups) until ?==d; ?= word(dups,p)
if ?==d then $$= delword($$, ?, 1)
end /*d*/
end /*d*/
if words($$)==0 then return $
else return $$
/*──────────────────────────────────────────────────────────────────────────────────────*/
delDays: parse arg days; #= words(days)
do j=# for # by -1; parse value word(days, j) with x '-'; ##= words($)
do k=## for ## by -1; parse value word($, k) with y '-'
if x\==y then iterate; $= delword($, k, 1)
end /*k*/
end /*j*/
return $ |
http://rosettacode.org/wiki/Collections | Collections | This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.
Collections are abstractions to represent sets of values.
In statically-typed languages, the values are typically of a common data type.
Task
Create a collection, and add a few values to it.
See also
Array
Associative array: Creation, Iteration
Collections
Compound data type
Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal
Linked list
Queue: Definition, Usage
Set
Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal
Stack
| #MiniScript | MiniScript | seq = [0, "foo", pi]
seq.push 42
seq = seq + [1, 2, 3]
print seq |
http://rosettacode.org/wiki/Combinations | Combinations | Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
Example
3 comb 5 is:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant
Order Important
Without replacement
(
n
k
)
=
n
C
k
=
n
(
n
−
1
)
…
(
n
−
k
+
1
)
k
(
k
−
1
)
…
1
{\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}
n
P
k
=
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋯
(
n
−
k
+
1
)
{\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}
Task: Combinations
Task: Permutations
With replacement
(
n
+
k
−
1
k
)
=
n
+
k
−
1
C
k
=
(
n
+
k
−
1
)
!
(
n
−
1
)
!
k
!
{\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}
n
k
{\displaystyle n^{k}}
Task: Combinations with repetitions
Task: Permutations with repetitions
| #Prolog | Prolog | :- use_module(library(clpfd)).
comb_clpfd(L, M, N) :-
length(L, M),
L ins 1..N,
chain(L, #<),
label(L). |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.