task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Pseudo-random_numbers/Middle-square_method
|
Pseudo-random numbers/Middle-square method
|
Middle-square_method Generator
The Method
To generate a sequence of n-digit pseudorandom numbers, an n-digit starting value is created and squared, producing a 2n-digit number. If the result has fewer than 2n digits, leading zeroes are added to compensate. The middle n digits of the result would be the next number in the sequence and returned as the result. This process is then repeated to generate more numbers.
Pseudo code
var seed = 675248
function random()
var s = str(seed * seed) 'str: turn a number into string
do while not len(s) = 12
s = "0" + s 'add zeroes before the string
end do
seed = val(mid(s, 4, 6)) 'mid: string variable, start, length
'val: turn a string into number
return seed
end function
Middle-square method use
for i = 1 to 5
print random()
end for
Task
Generate a class/set of functions that generates pseudo-random
numbers (6 digits) as shown above.
Show the first five integers generated with the seed 675248 as shown above.
Show your output here, on this page.
|
#VBA
|
VBA
|
Option Explicit
Dim seed As Long
Sub Main()
Dim i As Integer
seed = 675248
For i = 1 To 5
Debug.Print Rand
Next i
End Sub
Function Rand() As Variant
Dim s As String
s = CStr(seed ^ 2)
Do While Len(s) <> 12
s = "0" + s
Loop
seed = Val(Mid(s, 4, 6))
Rand = seed
End Function
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Middle-square_method
|
Pseudo-random numbers/Middle-square method
|
Middle-square_method Generator
The Method
To generate a sequence of n-digit pseudorandom numbers, an n-digit starting value is created and squared, producing a 2n-digit number. If the result has fewer than 2n digits, leading zeroes are added to compensate. The middle n digits of the result would be the next number in the sequence and returned as the result. This process is then repeated to generate more numbers.
Pseudo code
var seed = 675248
function random()
var s = str(seed * seed) 'str: turn a number into string
do while not len(s) = 12
s = "0" + s 'add zeroes before the string
end do
seed = val(mid(s, 4, 6)) 'mid: string variable, start, length
'val: turn a string into number
return seed
end function
Middle-square method use
for i = 1 to 5
print random()
end for
Task
Generate a class/set of functions that generates pseudo-random
numbers (6 digits) as shown above.
Show the first five integers generated with the seed 675248 as shown above.
Show your output here, on this page.
|
#Visual_Basic
|
Visual Basic
|
Option Explicit
Dim seed As Long
Sub Main()
Dim i As Integer
seed = 675248
For i = 1 To 5
Debug.Print Rand
Next i
End Sub
Function Rand() As Variant
Dim s As String
s = CStr(seed ^ 2)
Do While Len(s) <> 12
s = "0" + s
Loop
seed = Val(Mid(s, 4, 6))
Rand = seed
End Function
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Middle-square_method
|
Pseudo-random numbers/Middle-square method
|
Middle-square_method Generator
The Method
To generate a sequence of n-digit pseudorandom numbers, an n-digit starting value is created and squared, producing a 2n-digit number. If the result has fewer than 2n digits, leading zeroes are added to compensate. The middle n digits of the result would be the next number in the sequence and returned as the result. This process is then repeated to generate more numbers.
Pseudo code
var seed = 675248
function random()
var s = str(seed * seed) 'str: turn a number into string
do while not len(s) = 12
s = "0" + s 'add zeroes before the string
end do
seed = val(mid(s, 4, 6)) 'mid: string variable, start, length
'val: turn a string into number
return seed
end function
Middle-square method use
for i = 1 to 5
print random()
end for
Task
Generate a class/set of functions that generates pseudo-random
numbers (6 digits) as shown above.
Show the first five integers generated with the seed 675248 as shown above.
Show your output here, on this page.
|
#Wren
|
Wren
|
var random = Fn.new { |seed| ((seed * seed)/1e3).floor % 1e6 }
var seed = 675248
for (i in 1..5) System.print(seed = random.call(seed))
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Pony
|
Pony
|
actor Main
new create(env: Env) =>
let a = """env.out.print("actor Main\nnew create(env: Env) =>\nlet a = \"\"\""+a+"\"\"\"\n"+a)"""
env.out.print("actor Main\nnew create(env: Env) =>\nlet a = \"\"\""+a+"\"\"\"\n"+a)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#C.2B.2B
|
C++
|
#include <array>
#include <iostream>
int64_t mod(int64_t x, int64_t y) {
int64_t m = x % y;
if (m < 0) {
if (y < 0) {
return m - y;
} else {
return m + y;
}
}
return m;
}
class RNG {
private:
// First generator
const std::array<int64_t, 3> a1{ 0, 1403580, -810728 };
const int64_t m1 = (1LL << 32) - 209;
std::array<int64_t, 3> x1;
// Second generator
const std::array<int64_t, 3> a2{ 527612, 0, -1370589 };
const int64_t m2 = (1LL << 32) - 22853;
std::array<int64_t, 3> x2;
// other
const int64_t d = (1LL << 32) - 209 + 1; // m1 + 1
public:
void seed(int64_t state) {
x1 = { state, 0, 0 };
x2 = { state, 0, 0 };
}
int64_t next_int() {
int64_t x1i = mod((a1[0] * x1[0] + a1[1] * x1[1] + a1[2] * x1[2]), m1);
int64_t x2i = mod((a2[0] * x2[0] + a2[1] * x2[1] + a2[2] * x2[2]), m2);
int64_t z = mod(x1i - x2i, m1);
// keep last three values of the first generator
x1 = { x1i, x1[0], x1[1] };
// keep last three values of the second generator
x2 = { x2i, x2[0], x2[1] };
return z + 1;
}
double next_float() {
return static_cast<double>(next_int()) / d;
}
};
int main() {
RNG rng;
rng.seed(1234567);
std::cout << rng.next_int() << '\n';
std::cout << rng.next_int() << '\n';
std::cout << rng.next_int() << '\n';
std::cout << rng.next_int() << '\n';
std::cout << rng.next_int() << '\n';
std::cout << '\n';
std::array<int, 5> counts{ 0, 0, 0, 0, 0 };
rng.seed(987654321);
for (size_t i = 0; i < 100000; i++) {
auto value = floor(rng.next_float() * 5.0);
counts[value]++;
}
for (size_t i = 0; i < counts.size(); i++) {
std::cout << i << ": " << counts[i] << '\n';
}
return 0;
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Phix
|
Phix
|
puts(1,"NB: These are not expected to match the task spec!\n")
set_rand(42)
for i=1 to 5 do
printf(1,"%d\n",rand(-1))
end for
set_rand(987654321)
sequence s = repeat(0,5)
for i=1 to 100000 do
s[floor(rnd()*5)+1] += 1
end for
?s
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#JavaScript
|
JavaScript
|
(() => {
'use strict';
// main :: IO ()
const main = () => {
const xs = takeWhileGen(
x => 2200 >= x,
mergeInOrder(
powersOfTwo(),
fmapGen(x => 5 * x, powersOfTwo())
)
);
return (
console.log(JSON.stringify(xs)),
xs
);
}
// powersOfTwo :: Gen [Int]
const powersOfTwo = () =>
iterate(x => 2 * x, 1);
// mergeInOrder :: Gen [Int] -> Gen [Int] -> Gen [Int]
const mergeInOrder = (ga, gb) => {
function* go(ma, mb) {
let
a = ma,
b = mb;
while (!a.Nothing && !b.Nothing) {
let
ta = a.Just,
tb = b.Just;
if (fst(ta) < fst(tb)) {
yield(fst(ta));
a = uncons(snd(ta))
} else {
yield(fst(tb));
b = uncons(snd(tb))
}
}
}
return go(uncons(ga), uncons(gb))
};
// GENERIC FUNCTIONS ----------------------------
// fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
function* fmapGen(f, gen) {
const g = gen;
let v = take(1, g);
while (0 < v.length) {
yield(f(v))
v = take(1, g)
}
}
// fst :: (a, b) -> a
const fst = tpl => tpl[0];
// iterate :: (a -> a) -> a -> Generator [a]
function* iterate(f, x) {
let v = x;
while (true) {
yield(v);
v = f(v);
}
}
// Just :: a -> Maybe a
const Just = x => ({
type: 'Maybe',
Nothing: false,
Just: x
});
// Returns Infinity over objects without finite length
// this enables zip and zipWith to choose the shorter
// argument when one is non-finite, like cycle, repeat etc
// length :: [a] -> Int
const length = xs => xs.length || Infinity;
// Nothing :: Maybe a
const Nothing = () => ({
type: 'Maybe',
Nothing: true,
});
// snd :: (a, b) -> b
const snd = tpl => tpl[1];
// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = (n, xs) =>
xs.constructor.constructor.name !== 'GeneratorFunction' ? (
xs.slice(0, n)
) : [].concat.apply([], Array.from({
length: n
}, () => {
const x = xs.next();
return x.done ? [] : [x.value];
}));
// takeWhileGen :: (a -> Bool) -> Generator [a] -> [a]
const takeWhileGen = (p, xs) => {
const ys = [];
let
nxt = xs.next(),
v = nxt.value;
while (!nxt.done && p(v)) {
ys.push(v);
nxt = xs.next();
v = nxt.value
}
return ys;
};
// Tuple (,) :: a -> b -> (a, b)
const Tuple = (a, b) => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// uncons :: [a] -> Maybe (a, [a])
const uncons = xs => {
const lng = length(xs);
return (0 < lng) ? (
lng < Infinity ? (
Just(Tuple(xs[0], xs.slice(1))) // Finite list
) : (() => {
const nxt = take(1, xs);
return 0 < nxt.length ? (
Just(Tuple(nxt[0], xs))
) : Nothing();
})() // Lazy generator
) : Nothing();
};
// MAIN ---
return main();
})();
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#J
|
J
|
gnuplot --persist -e 'plot"<ijconsole /tmp/pt.ijs"w l'
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
Pseudo-random numbers/Splitmix64
|
Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.
Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.
The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.
Basic pseudocode algorithm:
uint64 state /* The state can be seeded with any (upto) 64 bit integer value. */
next_int() {
state += 0x9e3779b97f4a7c15 /* increment the state variable */
uint64 z = state /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9 /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31) /* return the variable xored with itself right bit shifted 31 */
}
next_float() {
return next_int() / (1 << 64) /* divide by 2^64 to return a value between 0 and 1 */
}
The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.
In keeping with the general layout of several recent pseudo-random number tasks:
Task
Write a class or set of functions that generates pseudo-random numbers using splitmix64.
Show the first five integers generated using the seed 1234567.
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
Show that for an initial seed of 987654321, the counts of 100_000 repetitions of floor next_float() * 5 is as follows:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
Show your output here, on this page.
See also
Java docs for splitmix64
Public domain C code used in many PRNG implementations; by Sebastiano Vigna
Related tasks
Pseudo-random numbers/Combined recursive generator MRG32k3a
Pseudo-random numbers/PCG32
Pseudo-random_numbers/Xorshift_star
|
#Raku
|
Raku
|
class splitmix64 {
has $!state;
submethod BUILD ( Int :$seed where * >= 0 = 1 ) { $!state = $seed }
method next-int {
my $next = $!state = ($!state + 0x9e3779b97f4a7c15) +& (2⁶⁴ - 1);
$next = ($next +^ ($next +> 30)) * 0xbf58476d1ce4e5b9 +& (2⁶⁴ - 1);
$next = ($next +^ ($next +> 27)) * 0x94d049bb133111eb +& (2⁶⁴ - 1);
($next +^ ($next +> 31)) +& (2⁶⁴ - 1);
}
method next-rat { self.next-int / 2⁶⁴ }
}
# Test next-int
say 'Seed: 1234567; first five Int values';
my $rng = splitmix64.new( :seed(1234567) );
.say for $rng.next-int xx 5;
# Test next-rat (since these are rational numbers by default)
say "\nSeed: 987654321; first 1e5 Rat values histogram";
$rng = splitmix64.new( :seed(987654321) );
say ( ($rng.next-rat * 5).floor xx 100_000 ).Bag;
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#ANSI_Standard_BASIC
|
ANSI Standard BASIC
|
100 DECLARE EXTERNAL SUB tri
110 !
120 PUBLIC NUMERIC U0(3,3), U1(3,3), U2(3,3), all, prim
130 DIM seed(3)
140 MAT READ U0, U1, U2
150 DATA 1, -2, 2, 2, -1, 2, 2, -2, 3
160 DATA 1, 2, 2, 2, 1, 2, 2, 2, 3
170 DATA -1, 2, 2, -2, 1, 2, -2, 2, 3
180 !
190 MAT READ seed
200 DATA 3, 4, 5
210 FOR power = 1 TO 7
220 LET all = 0
230 LET prim = 0
240 CALL tri(seed, 10^power , all , prim)
250 PRINT "Up to 10^";power,
260 PRINT USING "######### triples ######### primitives":all,prim
270 NEXT power
280 END
290 !
300 EXTERNAL SUB tri(i(), mp, all, prim)
310 DECLARE EXTERNAL FUNCTION SUM
320 DECLARE NUMERIC t(3)
330 !
340 IF SUM(i) > mp THEN EXIT SUB
350 LET prim = prim + 1
360 LET all = all + INT(mp / SUM(i))
370 !
380 MAT t = U0 * i
390 CALL tri(t, mp , all , prim)
400 MAT t = U1 * i
410 CALL tri(t, mp , all , prim)
420 MAT t = U2 * i
430 CALL tri(t, mp , all , prim)
440 END SUB
450 !
460 EXTERNAL FUNCTION SUM(a())
470 LET temp = 0
480 FOR i=LBOUND(a) TO UBOUND(a)
490 LET temp = temp + a(i)
500 NEXT i
510 LET SUM = temp
520 END FUNCTION
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Middle-square_method
|
Pseudo-random numbers/Middle-square method
|
Middle-square_method Generator
The Method
To generate a sequence of n-digit pseudorandom numbers, an n-digit starting value is created and squared, producing a 2n-digit number. If the result has fewer than 2n digits, leading zeroes are added to compensate. The middle n digits of the result would be the next number in the sequence and returned as the result. This process is then repeated to generate more numbers.
Pseudo code
var seed = 675248
function random()
var s = str(seed * seed) 'str: turn a number into string
do while not len(s) = 12
s = "0" + s 'add zeroes before the string
end do
seed = val(mid(s, 4, 6)) 'mid: string variable, start, length
'val: turn a string into number
return seed
end function
Middle-square method use
for i = 1 to 5
print random()
end for
Task
Generate a class/set of functions that generates pseudo-random
numbers (6 digits) as shown above.
Show the first five integers generated with the seed 675248 as shown above.
Show your output here, on this page.
|
#XPL0
|
XPL0
|
real Seed;
func Random;
[Seed:= Floor(Mod(Seed*Seed/1e3, 1e6));
return fix(Seed);
];
int N;
[Seed:= 675248.;
for N:= 1 to 5 do
[IntOut(0, Random); ChOut(0, ^ )];
]
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#PowerBASIC
|
PowerBASIC
|
FUNCTION PBMAIN () AS LONG
REDIM s(1 TO DATACOUNT) AS STRING
o$ = READ$(1)
d$ = READ$(2)
FOR n& = 1 TO DATACOUNT
s(n&) = READ$(n&)
NEXT
OPEN o$ FOR OUTPUT AS 1
FOR n& = 3 TO DATACOUNT - 1
PRINT #1, s(n&)
NEXT
PRINT #1,
FOR n& = 1 TO DATACOUNT
PRINT #1, d$ & $DQ & s(n&) & $DQ
NEXT
PRINT #1, s(DATACOUNT)
CLOSE
DATA "output.src"
DATA " DATA "
DATA "FUNCTION PBMAIN () AS LONG"
DATA " REDIM s(1 TO DATACOUNT) AS STRING"
DATA " o$ = READ$(1)"
DATA " d$ = READ$(2)"
DATA " FOR n& = 1 TO DATACOUNT"
DATA " s(n&) = READ$(n&)"
DATA " NEXT"
DATA " OPEN o$ FOR OUTPUT AS 1"
DATA " FOR n& = 3 TO DATACOUNT - 1"
DATA " PRINT #1, s(n&)"
DATA " NEXT"
DATA " PRINT #1,"
DATA " FOR n& = 1 TO DATACOUNT"
DATA " PRINT #1, d$ & $DQ & s(n&) & $DQ"
DATA " NEXT"
DATA " PRINT #1, s(DATACOUNT)"
DATA " CLOSE"
DATA "END FUNCTION"
END FUNCTION
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#D
|
D
|
import std.math;
import std.stdio;
long mod(long x, long y) {
long m = x % y;
if (m < 0) {
if (y < 0) {
return m - y;
} else {
return m + y;
}
}
return m;
}
class RNG {
private:
// First generator
immutable(long []) a1 = [0, 1403580, -810728];
immutable long m1 = (1L << 32) - 209;
long[3] x1;
// Second generator
immutable(long []) a2 = [527612, 0, -1370589];
immutable long m2 = (1L << 32) - 22853;
long[3] x2;
// other
immutable long d = m1 + 1;
public:
void seed(long state) {
x1 = [state, 0, 0];
x2 = [state, 0, 0];
}
long next_int() {
long x1i = mod((a1[0] * x1[0] + a1[1] * x1[1] + a1[2] * x1[2]), m1);
long x2i = mod((a2[0] * x2[0] + a2[1] * x2[1] + a2[2] * x2[2]), m2);
long z = mod(x1i - x2i, m1);
// keep the last three values of the first generator
x1 = [x1i, x1[0], x1[1]];
// keep the last three values of the second generator
x2 = [x2i, x2[0], x2[1]];
return z + 1;
}
double next_float() {
return cast(double) next_int() / d;
}
}
void main() {
auto rng = new RNG();
rng.seed(1234567);
writeln(rng.next_int);
writeln(rng.next_int);
writeln(rng.next_int);
writeln(rng.next_int);
writeln(rng.next_int);
writeln;
int[5] counts;
rng.seed(987654321);
foreach (i; 0 .. 100_000) {
auto value = cast(int) floor(rng.next_float * 5.0);
counts[value]++;
}
foreach (i,v; counts) {
writeln(i, ": ", v);
}
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Python
|
Python
|
mask64 = (1 << 64) - 1
mask32 = (1 << 32) - 1
CONST = 6364136223846793005
class PCG32():
def __init__(self, seed_state=None, seed_sequence=None):
if all(type(x) == int for x in (seed_state, seed_sequence)):
self.seed(seed_state, seed_sequence)
else:
self.state = self.inc = 0
def seed(self, seed_state, seed_sequence):
self.state = 0
self.inc = ((seed_sequence << 1) | 1) & mask64
self.next_int()
self.state = (self.state + seed_state)
self.next_int()
def next_int(self):
"return random 32 bit unsigned int"
old = self.state
self.state = ((old * CONST) + self.inc) & mask64
xorshifted = (((old >> 18) ^ old) >> 27) & mask32
rot = (old >> 59) & mask32
answer = (xorshifted >> rot) | (xorshifted << ((-rot) & 31))
answer = answer &mask32
return answer
def next_float(self):
"return random float between 0 and 1"
return self.next_int() / (1 << 32)
if __name__ == '__main__':
random_gen = PCG32()
random_gen.seed(42, 54)
for i in range(5):
print(random_gen.next_int())
random_gen.seed(987654321, 1)
hist = {i:0 for i in range(5)}
for i in range(100_000):
hist[int(random_gen.next_float() *5)] += 1
print(hist)
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#jq
|
jq
|
# Emit a proof that the input is a pythagorean quad, or else false
def is_pythagorean_quad:
. as $d
| (.*.) as $d2
| first(
label $continue_a | range(1; $d) | . as $a | (.*.) as $a2
| if 3*$a2 > $d2 then break $continue_a else . end
| label $continue_b | range($a; $d) | . as $b | (.*.) as $b2
| if $a2 + 2 * $b2 > $d2 then break $continue_b else . end
| (($d2-($a2+$b2)) | sqrt) as $c
| if ($c | floor) == $c then [$a, $b, $c] else empty end )
// false;
# The specific task:
[range(1; 2201) | select( is_pythagorean_quad | not )] | join(" ")
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Julia
|
Julia
|
function quadruples(N::Int=2200)
r = falses(N)
ab = falses(2N ^ 2)
for a in 1:N, b in a:N
ab[a ^ 2 + b ^ 2] = true
end
s = 3
for c in 1:N
s1, s, s2 = s, s + 2, s + 2
for d in c+1:N
if ab[s1] r[d] = true end
s1 += s2
s2 += 2
end
end
return findall(!, r)
end
println("Pythagorean quadruples up to 2200: ", join(quadruples(), ", "))
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Java
|
Java
|
import java.awt.*;
import java.awt.geom.Path2D;
import javax.swing.*;
public class PythagorasTree extends JPanel {
final int depthLimit = 7;
float hue = 0.15f;
public PythagorasTree() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);
}
private void drawTree(Graphics2D g, float x1, float y1, float x2, float y2,
int depth) {
if (depth == depthLimit)
return;
float dx = x2 - x1;
float dy = y1 - y2;
float x3 = x2 - dy;
float y3 = y2 - dx;
float x4 = x1 - dy;
float y4 = y1 - dx;
float x5 = x4 + 0.5F * (dx - dy);
float y5 = y4 - 0.5F * (dx + dy);
Path2D square = new Path2D.Float();
square.moveTo(x1, y1);
square.lineTo(x2, y2);
square.lineTo(x3, y3);
square.lineTo(x4, y4);
square.closePath();
g.setColor(Color.getHSBColor(hue + depth * 0.02f, 1, 1));
g.fill(square);
g.setColor(Color.lightGray);
g.draw(square);
Path2D triangle = new Path2D.Float();
triangle.moveTo(x3, y3);
triangle.lineTo(x4, y4);
triangle.lineTo(x5, y5);
triangle.closePath();
g.setColor(Color.getHSBColor(hue + depth * 0.035f, 1, 1));
g.fill(triangle);
g.setColor(Color.lightGray);
g.draw(triangle);
drawTree(g, x4, y4, x5, y5, depth + 1);
drawTree(g, x5, y5, x3, y3, depth + 1);
}
@Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
drawTree((Graphics2D) g, 275, 500, 375, 500, 0);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Pythagoras Tree");
f.setResizable(false);
f.add(new PythagorasTree(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
Pseudo-random numbers/Splitmix64
|
Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.
Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.
The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.
Basic pseudocode algorithm:
uint64 state /* The state can be seeded with any (upto) 64 bit integer value. */
next_int() {
state += 0x9e3779b97f4a7c15 /* increment the state variable */
uint64 z = state /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9 /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31) /* return the variable xored with itself right bit shifted 31 */
}
next_float() {
return next_int() / (1 << 64) /* divide by 2^64 to return a value between 0 and 1 */
}
The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.
In keeping with the general layout of several recent pseudo-random number tasks:
Task
Write a class or set of functions that generates pseudo-random numbers using splitmix64.
Show the first five integers generated using the seed 1234567.
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
Show that for an initial seed of 987654321, the counts of 100_000 repetitions of floor next_float() * 5 is as follows:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
Show your output here, on this page.
See also
Java docs for splitmix64
Public domain C code used in many PRNG implementations; by Sebastiano Vigna
Related tasks
Pseudo-random numbers/Combined recursive generator MRG32k3a
Pseudo-random numbers/PCG32
Pseudo-random_numbers/Xorshift_star
|
#REXX
|
REXX
|
/*REXX program generates pseudo─random numbers using the split mix 64 bit method.*/
numeric digits 200 /*ensure enough decimal digs for mult. */
parse arg n reps pick seed1 seed2 . /*obtain optional arguments from the CL*/
if n=='' | n=="," then n= 5 /*Not specified? Then use the default.*/
if reps=='' | reps=="," then reps= 100000 /* " " " " " " */
if pick=='' | pick=="," then pick= 5 /* " " " " " " */
if seed1=='' | seed1=="," then seed1= 1234567 /* " " " " " " */
if seed2=='' | seed2=="," then seed2= 987654321 /* " " " " " " */
const.1= x2d( 9e3779b97f4a7c15 ) /*initialize 1st constant to be used. */
const.2= x2d('bf58476d1ce4e5b9') /* " 2nd " " " " */
const.3= x2d( 94d049bb133111eb ) /* " 3rd " " " " */
o.30= copies(0, 30) /*construct 30 bits of zeros. */
o.27= copies(0, 27) /* " 27 " " " */
o.31= copies(0, 31) /* " 31 " " " */
w= max(3, length(n) ) /*for aligning the left side of output.*/
state= seed1 /* " the state to seed #1. */
do j=1 for n
if j==1 then do; say center('n', w) " pseudo─random number "
say copies('═', w) " ════════════════════════════"
end
say right(j':', w)" " right(commas(next()), 27) /*display a random number*/
end /*j*/
say
if reps==0 then exit 0 /*stick a fork in it, we're all done. */
say center('#', w) " count of pseudo─random #"
say copies('═', w) " ════════════════════════════"
state= seed2 /* " the state to seed #2. */
@.= 0; div= pick / 2**64 /*convert division to inverse multiply.*/
do k=1 for reps
parse value next()*div with _ '.' /*get random #, floor of a "division". */
@._= @._ + 1 /*bump the counter for this random num.*/
end /*k*/
do #=0 for pick
say right(#':', w)" " right(commas(@.#), 15) /*show count of a random num.*/
end /*#*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _; do ?=length(_)-3 to 1 by -3; _= insert(',', _, ?); end; return _
b2d: parse arg ?; return x2d( b2x(?) ) /*convert bin──►decimal. */
d2b: parse arg ?; return right( x2b( d2x(?) ), 64, 0) /*convert dec──►64 bit bin.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
next: procedure expose state const. o.
state= state + const.1 ; z= d2b(state) /*add const1──►STATE; conv.*/
z= xor(z, left(o.30 || z, 64)); z= d2b(b2d(z)*const.2) /*shiftR 30 bits & XOR; " */
z= xor(z, left(o.27 || z, 64)); z= d2b(b2d(z)*const.3) /* " 27 " " " " */
z= xor(z, left(o.31 || z, 64)); return b2d(z) /* " 31 " " " " */
/*──────────────────────────────────────────────────────────────────────────────────────*/
xor: parse arg a, b; $= /*perform a bit─wise XOR. */
do !=1 for length(a); $= $ || (substr(a,!,1) && substr(b,!,1) )
end /*!*/; return $
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Arturo
|
Arturo
|
triples: new []
loop 1..50 'x [
loop 1..50 'y [
loop (max @[x y])..100 'z [
if 100 > sum @[x y z] [
if (z^2) = add x^2 y^2 ->
'triples ++ @[sort @[x y z]]
]
]
]
]
unique 'triples
print ["Found" size triples "pythagorean triples with a perimeter no larger than 100:"]
print triples
primitive: select triples => [1 = gcd]
print ""
print [size primitive "of them are primitive:"]
print primitive
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#PowerShell
|
PowerShell
|
$S = '$S = $S.Substring(0,5) + [string][char]39 + $S + [string][char]39 + [string][char]10 + $S.Substring(5)'
$S.Substring(0,5) + [string][char]39 + $S + [string][char]39 + [string][char]10 + $S.Substring(5)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Factor
|
Factor
|
USING: arrays kernel math math.order math.statistics
math.vectors prettyprint sequences ;
CONSTANT: m1 4294967087
CONSTANT: m2 4294944443
: seed ( n -- seq1 seq2 )
dup 1 m1 between? t assert= 0 0 3array dup ;
: new-state ( seq1 seq2 n -- new-seq )
[ dup ] [ vdot ] [ rem prefix but-last ] tri* ;
: next-state ( a b -- a' b' )
[ { 0 1403580 -810728 } m1 new-state ]
[ { 527612 0 -1370589 } m2 new-state ] bi* ;
: next-int ( a b -- a' b' n )
next-state 2dup [ first ] bi@ - m1 rem 1 + ;
: next-float ( a b -- a' b' x ) next-int m1 1 + /f ;
! Task
1234567 seed 5 [ next-int . ] times 2drop
987654321 seed 100,000 [ next-float 5 * >integer ] replicate
2nip histogram .
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Forth
|
Forth
|
6 array (seed) \ holds the seed
6 array (gens) \ holds the generators
\ set up constants
0 (gens) 0 th ! \ 1st generator
1403580 (gens) 1 th !
-810728 (gens) 2 th !
527612 (gens) 3 th ! \ 2nd generator
0 (gens) 4 th !
-1370589 (gens) 5 th !
1 32 lshift 209 - value (m) \ 1st generator constant
1 32 lshift 22853 - value (n) \ 2nd generator constant
( n1 n2 -- n3)
: (mod) tuck mod tuck 0< if abs + ;then drop ;
: (generate) do (seed) i th @ (gens) i th @ * + loop swap (mod) ;
: (reseed) ?do (seed) i th ! loop ; ( n1 n2 n3 limit index --)
: randomize 6 0 do dup i 3 mod if >zero then (seed) i th ! loop drop ;
( n --)
: random ( -- n)
(m) 0 3 0 (generate) (n) 0 6 3 (generate) over over
(seed) 4 th @ (seed) 3 th @ rot 6 3 (reseed)
(seed) 1 th @ (seed) 0 th @ rot 3 0 (reseed) - (m) (mod) 1+
;
include lib/fp1.4th \ simple floating point support
include lib/zenfloor.4th \ for FLOOR
5 array (count) \ setup an array of 5 elements
: test
1234567 randomize
random . cr random . cr random . cr
random . cr random . cr cr \ perform the first test
987654321 randomize (m) 1+ s>f \ set up denominator
100000 0 ?do \ do this 100,000 times
random s>f fover f/ 5 s>f f* floor f>s cells (count) + 1 swap +!
loop fdrop
\ show the results
5 0 ?do i . ." : " (count) i th ? cr loop
;
test
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Raku
|
Raku
|
class PCG32 {
has $!state;
has $!incr;
constant mask32 = 2³² - 1;
constant mask64 = 2⁶⁴ - 1;
constant const = 6364136223846793005;
submethod BUILD (
Int :$seed = 0x853c49e6748fea9b, # default seed
Int :$incr = 0xda3e39cb94b95bdb # default increment
) {
$!incr = $incr +< 1 +| 1 +& mask64;
$!state = (($!incr + $seed) * const + $!incr) +& mask64;
}
method next-int {
my $shift = ($!state +> 18 +^ $!state) +> 27 +& mask32;
my $rotate = $!state +> 59 +& 31;
$!state = ($!state * const + $!incr) +& mask64;
($shift +> $rotate) +| ($shift +< (32 - $rotate) +& mask32)
}
method next-rat { self.next-int / 2³² }
}
# Test next-int with custom seed and increment
say 'Seed: 42, Increment: 54; first five Int values:';
my $rng = PCG32.new( :seed(42), :incr(54) );
.say for $rng.next-int xx 5;
# Test next-rat (since these are rational numbers by default)
say "\nSeed: 987654321, Increment: 1; first 1e5 Rat values histogram:";
$rng = PCG32.new( :seed(987654321), :incr(1) );
say ( ($rng.next-rat * 5).floor xx 100_000 ).Bag;
# Test next-int with default seed and increment
say "\nSeed: default, Increment: default; first five Int values:";
$rng = PCG32.new;
.say for $rng.next-int xx 5;
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Kotlin
|
Kotlin
|
// version 1.1.3
const val MAX = 2200
const val MAX2 = MAX * MAX - 1
fun main(args: Array<String>) {
val found = BooleanArray(MAX + 1) // all false by default
val p2 = IntArray(MAX + 1) { it * it } // pre-compute squares
// compute all possible positive values of d * d - c * c and map them back to d
val dc = mutableMapOf<Int, MutableList<Int>>()
for (d in 1..MAX) {
for (c in 1 until d) {
val diff = p2[d] - p2[c]
val v = dc[diff]
if (v == null)
dc.put(diff, mutableListOf(d))
else if (d !in v)
v.add(d)
}
}
for (a in 1..MAX) {
for (b in 1..a) {
if ((a and 1) != 0 && (b and 1) != 0) continue
val sum = p2[a] + p2[b]
if (sum > MAX2) continue
val v = dc[sum]
if (v != null) v.forEach { found[it] = true }
}
}
println("The values of d <= $MAX which can't be represented:")
for (i in 1..MAX) if (!found[i]) print("$i ")
println()
}
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#JavaScript
|
JavaScript
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<style>
canvas {
position: absolute;
top: 45%;
left: 50%;
width: 640px;
height: 640px;
margin: -320px 0 0 -320px;
}
</style>
</head>
<body>
<canvas></canvas>
<script>
'use strict';
var canvas = document.querySelector('canvas');
canvas.width = 640;
canvas.height = 640;
var g = canvas.getContext('2d');
var depthLimit = 7;
var hue = 0.15;
function drawTree(x1, y1, x2, y2, depth) {
if (depth == depthLimit)
return;
var dx = x2 - x1;
var dy = y1 - y2;
var x3 = x2 - dy;
var y3 = y2 - dx;
var x4 = x1 - dy;
var y4 = y1 - dx;
var x5 = x4 + 0.5 * (dx - dy);
var y5 = y4 - 0.5 * (dx + dy);
g.beginPath();
g.moveTo(x1, y1);
g.lineTo(x2, y2);
g.lineTo(x3, y3);
g.lineTo(x4, y4);
g.closePath();
g.fillStyle = HSVtoRGB(hue + depth * 0.02, 1, 1);
g.fill();
g.strokeStyle = "lightGray";
g.stroke();
g.beginPath();
g.moveTo(x3, y3);
g.lineTo(x4, y4);
g.lineTo(x5, y5);
g.closePath();
g.fillStyle = HSVtoRGB(hue + depth * 0.035, 1, 1);
g.fill();
g.strokeStyle = "lightGray";
g.stroke();
drawTree(x4, y4, x5, y5, depth + 1);
drawTree(x5, y5, x3, y3, depth + 1);
}
/* copied from stackoverflow */
function HSVtoRGB(h, s, v) {
var r, g, b, i, f, p, q, t;
i = Math.floor(h * 6);
f = h * 6 - i;
p = v * (1 - s);
q = v * (1 - f * s);
t = v * (1 - (1 - f) * s);
switch (i % 6) {
case 0: r = v, g = t, b = p; break;
case 1: r = q, g = v, b = p; break;
case 2: r = p, g = v, b = t; break;
case 3: r = p, g = q, b = v; break;
case 4: r = t, g = p, b = v; break;
case 5: r = v, g = p, b = q; break;
}
return "rgb("
+ Math.round(r * 255) + ","
+ Math.round(g * 255) + ","
+ Math.round(b * 255) + ")";
}
function draw() {
g.clearRect(0, 0, canvas.width, canvas.height);
drawTree(275, 500, 375, 500, 0);
}
draw();
</script>
</body>
</html>
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
Pseudo-random numbers/Splitmix64
|
Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.
Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.
The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.
Basic pseudocode algorithm:
uint64 state /* The state can be seeded with any (upto) 64 bit integer value. */
next_int() {
state += 0x9e3779b97f4a7c15 /* increment the state variable */
uint64 z = state /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9 /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31) /* return the variable xored with itself right bit shifted 31 */
}
next_float() {
return next_int() / (1 << 64) /* divide by 2^64 to return a value between 0 and 1 */
}
The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.
In keeping with the general layout of several recent pseudo-random number tasks:
Task
Write a class or set of functions that generates pseudo-random numbers using splitmix64.
Show the first five integers generated using the seed 1234567.
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
Show that for an initial seed of 987654321, the counts of 100_000 repetitions of floor next_float() * 5 is as follows:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
Show your output here, on this page.
See also
Java docs for splitmix64
Public domain C code used in many PRNG implementations; by Sebastiano Vigna
Related tasks
Pseudo-random numbers/Combined recursive generator MRG32k3a
Pseudo-random numbers/PCG32
Pseudo-random_numbers/Xorshift_star
|
#Ruby
|
Ruby
|
class Splitmix64
MASK64 = (1 << 64) - 1
C1, C2, C3 = 0x9e3779b97f4a7c15, 0xbf58476d1ce4e5b9, 0x94d049bb133111eb
def initialize(seed = 0) = @state = seed & MASK64
def rand_i
z = @state = (@state + C1) & MASK64
z = ((z ^ (z >> 30)) * C2) & MASK64
z = ((z ^ (z >> 27)) * C3) & MASK64
(z ^ (z >> 31)) & MASK64
end
def rand_f = rand_i.fdiv(1<<64)
end
rand_gen = Splitmix64.new(1234567)
5.times{ puts rand_gen.rand_i }
rand_gen = Splitmix64.new(987654321)
p 100_000.times.lazy.map{(rand_gen.rand_f * 5).floor}.tally.sort.to_h
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
Pseudo-random numbers/Splitmix64
|
Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.
Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.
The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.
Basic pseudocode algorithm:
uint64 state /* The state can be seeded with any (upto) 64 bit integer value. */
next_int() {
state += 0x9e3779b97f4a7c15 /* increment the state variable */
uint64 z = state /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9 /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31) /* return the variable xored with itself right bit shifted 31 */
}
next_float() {
return next_int() / (1 << 64) /* divide by 2^64 to return a value between 0 and 1 */
}
The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.
In keeping with the general layout of several recent pseudo-random number tasks:
Task
Write a class or set of functions that generates pseudo-random numbers using splitmix64.
Show the first five integers generated using the seed 1234567.
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
Show that for an initial seed of 987654321, the counts of 100_000 repetitions of floor next_float() * 5 is as follows:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
Show your output here, on this page.
See also
Java docs for splitmix64
Public domain C code used in many PRNG implementations; by Sebastiano Vigna
Related tasks
Pseudo-random numbers/Combined recursive generator MRG32k3a
Pseudo-random numbers/PCG32
Pseudo-random_numbers/Xorshift_star
|
#Sidef
|
Sidef
|
class Splitmix64(state) {
define (
mask64 = (2**64 - 1)
)
method next_int {
var n = (state = ((state + 0x9e3779b97f4a7c15) & mask64))
n = ((n ^ (n >> 30)) * 0xbf58476d1ce4e5b9 & mask64)
n = ((n ^ (n >> 27)) * 0x94d049bb133111eb & mask64)
(n ^ (n >> 31)) & mask64
}
method next_float {
self.next_int / (mask64+1)
}
}
say 'Seed: 1234567, first 5 values:'
var rng = Splitmix64(1234567)
5.of { rng.next_int.say }
say "\nSeed: 987654321, values histogram:"
var rng = Splitmix64(987654321)
var histogram = Bag(1e5.of { floor(5*rng.next_float) }...)
histogram.pairs.sort.each { .join(": ").say }
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#APL
|
APL
|
⍝ Determine whether given list of integers has GCD = 1
primitive←∧/1=2∨/⊢
⍝ Filter list given as right operand by applying predicate given as left operand
filter←{⍵⌿⍨⍺⍺ ⍵}
⍝ Function pytriples finds all triples given a maximum perimeter
∇res←pytriples maxperimeter;sos;sqrt;cartprod;ascending;ab_max;c_max;a_b_pairs;sos_is_sq;add_c;perimeter_rule
⍝ Input parameter maxperimeter is the maximum perimeter
⍝ Sum of squares of given list of nrs
sos←+/(×⍨⊢)
⍝ Square root
sqrt←(÷2)*⍨⊢
⍝ (cartesian product) all possible pairs of integers
⍝ from 1 to ⍵
cartprod←{,{⍺∘.,⍵}⍨⍳⍵}
⍝ Predicate: are values in given list ascending
⍝ Given e.g. pair a, b, c: is a ≤ b ≤ c?
ascending←∧/2≤/⊢
ab_max←⌊maxperimeter÷2
c_max←⌈maxperimeter×sqrt 2
⍝ Selects from all a,b combinations (a<abmax, b<abmax)
⍝ only those pairs where a ≤ b.
a_b_pairs←ascending filter¨cartprod(ab_max)
⍝ Predicate: is the sum of squares of a and b
⍝ itself a square? (does it occur in the squares list)
sos_is_sq←{{⍵≠1+c_max}(×⍨⍳c_max)⍳sos¨⍵}
⍝ Given a pair a,b add corresponding c to form a triple
add_c←{⍵,sqrt sos ⍵}
⍝ Predicate: sum of items less than or equal to max
perimeter_rule←{maxperimeter≥+/⍵}
res←perimeter_rule¨filter add_c¨sos_is_sq filter a_b_pairs
∇
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Processing
|
Processing
|
String p="String p=%c%s%1$c;System.out.printf(p,34,p);";System.out.printf(p,34,p);
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Prolog
|
Prolog
|
quine :-
listing(quine).
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Go
|
Go
|
package main
import (
"fmt"
"log"
"math"
)
var a1 = []int64{0, 1403580, -810728}
var a2 = []int64{527612, 0, -1370589}
const m1 = int64((1 << 32) - 209)
const m2 = int64((1 << 32) - 22853)
const d = m1 + 1
// Python style modulus
func mod(x, y int64) int64 {
m := x % y
if m < 0 {
if y < 0 {
return m - y
} else {
return m + y
}
}
return m
}
type MRG32k3a struct{ x1, x2 [3]int64 }
func MRG32k3aNew() *MRG32k3a { return &MRG32k3a{} }
func (mrg *MRG32k3a) seed(seedState int64) {
if seedState <= 0 || seedState >= d {
log.Fatalf("Argument must be in the range [0, %d].\n", d)
}
mrg.x1 = [3]int64{seedState, 0, 0}
mrg.x2 = [3]int64{seedState, 0, 0}
}
func (mrg *MRG32k3a) nextInt() int64 {
x1i := mod(a1[0]*mrg.x1[0]+a1[1]*mrg.x1[1]+a1[2]*mrg.x1[2], m1)
x2i := mod(a2[0]*mrg.x2[0]+a2[1]*mrg.x2[1]+a2[2]*mrg.x2[2], m2)
mrg.x1 = [3]int64{x1i, mrg.x1[0], mrg.x1[1]} /* keep last three */
mrg.x2 = [3]int64{x2i, mrg.x2[0], mrg.x2[1]} /* keep last three */
return mod(x1i-x2i, m1) + 1
}
func (mrg *MRG32k3a) nextFloat() float64 { return float64(mrg.nextInt()) / float64(d) }
func main() {
randomGen := MRG32k3aNew()
randomGen.seed(1234567)
for i := 0; i < 5; i++ {
fmt.Println(randomGen.nextInt())
}
var counts [5]int
randomGen.seed(987654321)
for i := 0; i < 1e5; i++ {
j := int(math.Floor(randomGen.nextFloat() * 5))
counts[j]++
}
fmt.Println("\nThe counts for 100,000 repetitions are:")
for i := 0; i < 5; i++ {
fmt.Printf(" %d : %d\n", i, counts[i])
}
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#REXX
|
REXX
|
Numeric Digits 40
N = 6364136223846793005
state = x2d('853c49e6748fea9b',16)
inc = x2d('da3e39cb94b95bdb',16)
Call seed 42,54
Do zz=1 To 5
res=nextint()
Say int2str(res)
End
Call seed 987654321,1
cnt.=0
Do i=1 To 100000
z=nextfloat()
cnt.z=cnt.z+1
End
Say ''
Say 'The counts for 100,000 repetitions are:'
Do z=0 To 4
Say format(z,2) ':' format(cnt.z,5)
End
Exit
int2str: Procedure
int=arg(1)
intx=d2x(int,8)
res=x2d(copies(0,8)intx,16)
Return res
seed:
Parse Arg seedState,seedSequence
state=0
inc=dshift(seedSequence,-1)
inc=x2d(or(d2x(inc,16),d2x(1,16)),16)
z=nextint()
state=javaadd(state,seedState)
z=nextint()
Return
nextInt:
old = state
oldxN = javamult(old,n)
statex= javaadd(oldxN,inc)
state=statex
oldx=d2x(old,16)
oldb=x2b(oldx)
oldb18=copies(0,18)left(oldb,64-18)
oldb18o=bxor(oldb18,oldb)
rb=copies(0,27)left(oldb18o,64-27)
rx=b2x(rb)
shifted=x2d(substr(rx,9),8)
oldx=d2x(old,16)
oldb=x2b(oldx)
oldb2=copies(0,59)left(oldb,length(oldb)-59)
oldx2=b2x(oldb2)
rotx=x2d(substr(oldx2,9),8)
t1=ishift(shifted,rotx,'L')
t2=x2d(xneg(d2x(rotx,8)),8)
t3=t2+1
t4=x2d(xand(d2x(t3,8),d2x(31,8)),8)
t5=dshift(shifted,-t4)
t5x=d2x(t5,16)
t5y=substr(t5x,9)
t5z=x2d(t5y,16)
t7=x2d(or(d2x(t1,16),d2x(t5z,16)),16)
t8=long2int(t7)
Return t8
nextfloat:
ni=nextint()
nix=d2x(ni,8)
niz=copies(0,8)nix
u=x2d(niz,16)
uu=u/(2**32)
z=uu*5%1
Return z
javaadd: Procedure
/**********************************************************************
* Add two long integers and ignore the possible overflow
**********************************************************************/
Numeric Digits 40
Parse Arg a,b
r=a+b
rx=d2x(r,18)
res=right(rx,16)
return x2d(res,16)
javamult: Procedure
/**********************************************************************
* Multiply java style
**********************************************************************/
Numeric Digits 40
Parse Arg a,b
m=d2x(a*b,16)
res=x2d(m,16)
Return res
bxor: Procedure
/**********************************************************************
* Exclusive Or two bit strings
**********************************************************************/
Parse arg a,b
res=''
Do i=1 To length(a)
res=res||(substr(a,i,1)<>substr(b,i,1))
End
Return res
xxor: Procedure
/**********************************************************************
* Exclusive Or two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To 64
res=res||(substr(ub,i,1)<>substr(vb,i,1))
End
res=b2x(res)
Return res
xand: Procedure
/**********************************************************************
* And two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To length(ub)
res=res||(substr(ub,i,1)&substr(vb,i,1))
End
res=b2x(res)
Return res
or: Procedure
/**********************************************************************
* Or two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To length(ub)
res=res||(substr(ub,i,1)|substr(vb,i,1))
End
res=b2x(res)
Return res
long2int: Procedure
/**********************************************************************
* Cast long to int
**********************************************************************/
Parse Arg long
longx=d2x(long,16)
int=x2d(substr(longx,9),8)
Return int
xneg: Procedure
/**********************************************************************
* Negate a hex string
**********************************************************************/
Parse Arg s
sb=x2b(s)
res=''
Do i=1 To length(sb)
res=res||\substr(sb,i,1)
End
res=b2x(res)
Return res
dshift: Procedure
/**********************************************************************
* Implement the shift operations for a long variable
* r = dshift(long,shift[,mode]) >> Mode='L' logical right shift
* >>> Mode='A' arithmetic right shift
* << xhift<0 left shift
********************************************`*************************/
Parse Upper Arg n,s,o
Numeric Digits 40
If o='' Then o='L'
nx=d2x(n,16)
nb=x2b(nx)
If s<0 Then Do
s=abs(s)
rb=substr(nb,s+1)||copies('0',s)
rx=b2x(rb)
r=x2d(rx,16)
End
Else Do
If o='L' Then Do
rb=left(copies('0',s)nb,length(nb))
rx=b2x(rb)
r=x2d(rx,16)
End
Else Do
rb=left(copies(left(nb,1),s)nb,length(nb))
rx=b2x(rb)
r=x2d(rx,16)
End
End
Return r
ishift: Procedure
/**********************************************************************
* Implement the shift operations for an int variable
* r = dshift(int,shift[,mode]) >> Mode='L' logical right shift
* >>> Mode='A' arithmetic right shift
* << xhift<0 left shift
********************************************`*************************/
Parse Upper Arg n,s,o
Numeric Digits 40
If o='' Then o='L'
nx=d2x(n,8)
nb=x2b(nx)
If s<0 Then Do
s=abs(s)
rb=substr(nb,s+1)||copies('0',s)
rx=b2x(rb)
r=x2d(rx,8)
End
Else Do
If o='L' Then Do
rb=left(copies('0',s)nb,length(nb))
rx=b2x(rb)
r=x2d(rx,8)
End
Else Do
rb=left(copies(left(nb,1),s)nb,length(nb))
rx=b2x(rb)
r=x2d(rx,8)
End
End
Return r
b2x: Procedure Expose x.
/**********************************************************************
* Convert a Bit string to a Hex stríng
**********************************************************************/
Parse Arg b
z='0'; bits.z='0000'; y=bits.z; x.y=z
z='1'; bits.z='0001'; y=bits.z; x.y=z
z='2'; bits.z='0010'; y=bits.z; x.y=z
z='3'; bits.z='0011'; y=bits.z; x.y=z
z='4'; bits.z='0100'; y=bits.z; x.y=z
z='5'; bits.z='0101'; y=bits.z; x.y=z
z='6'; bits.z='0110'; y=bits.z; x.y=z
z='7'; bits.z='0111'; y=bits.z; x.y=z
z='8'; bits.z='1000'; y=bits.z; x.y=z
z='9'; bits.z='1001'; y=bits.z; x.y=z
z='A'; bits.z='1010'; y=bits.z; x.y=z
z='B'; bits.z='1011'; y=bits.z; x.y=z
z='C'; bits.z='1100'; y=bits.z; x.y=z
z='D'; bits.z='1101'; y=bits.z; x.y=z
z='E'; bits.z='1110'; y=bits.z; x.y=z
z='F'; bits.z='1111'; y=bits.z; x.y=z
x=''
Do While b<>''
Parse Var b b4 +4 b
x=x||x.b4
End
Return x
x2b: Procedure Expose bits.
/***********************************************************************
* Convert a Hex string to a Bit stríng
***********************************************************************/
Parse Arg x
z='0'; bits.z='0000'; y=bits.z; x.y=z
z='1'; bits.z='0001'; y=bits.z; x.y=z
z='2'; bits.z='0010'; y=bits.z; x.y=z
z='3'; bits.z='0011'; y=bits.z; x.y=z
z='4'; bits.z='0100'; y=bits.z; x.y=z
z='5'; bits.z='0101'; y=bits.z; x.y=z
z='6'; bits.z='0110'; y=bits.z; x.y=z
z='7'; bits.z='0111'; y=bits.z; x.y=z
z='8'; bits.z='1000'; y=bits.z; x.y=z
z='9'; bits.z='1001'; y=bits.z; x.y=z
z='A'; bits.z='1010'; y=bits.z; x.y=z
z='B'; bits.z='1011'; y=bits.z; x.y=z
z='C'; bits.z='1100'; y=bits.z; x.y=z
z='D'; bits.z='1101'; y=bits.z; x.y=z
z='E'; bits.z='1110'; y=bits.z; x.y=z
z='F'; bits.z='1111'; y=bits.z; x.y=z
b=''
Do While x<>''
Parse Var x c +1 x
b=b||bits.c
End
Return b
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Lua
|
Lua
|
-- initialize
local N = 2200
local ar = {}
for i=1,N do
ar[i] = false
end
-- process
for a=1,N do
for b=a,N do
if (a % 2 ~= 1) or (b % 2 ~= 1) then
local aabb = a * a + b * b
for c=b,N do
local aabbcc = aabb + c * c
local d = math.floor(math.sqrt(aabbcc))
if (aabbcc == d * d) and (d <= N) then
ar[d] = true
end
end
end
end
-- print('done with a='..a)
end
-- print
for i=1,N do
if not ar[i] then
io.write(i.." ")
end
end
print()
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#jq
|
jq
|
# viewBox = <min-x> <min-y> <width> <height>
# Input: {svg, minx, miny, maxx, maxy}
def svg:
"<svg viewBox='\(.minx - 4|floor) \(.miny - 4 |floor) \(6 + .maxx - .minx|ceil) \(6 + .maxy - .miny|ceil)'",
" preserveAspectRatio='xMinYmin meet'",
" xmlns='http://www.w3.org/2000/svg' >",
.svg,
"</svg>";
def minmax($xy):
.minx = ([.minx, $xy[0]]|min)
| .miny = ([.miny, $xy[1]]|min)
| .maxx = ([.maxx, $xy[0]]|max)
| .maxy = ([.maxy, $xy[1]]|max) ;
# default values for $fill and $stroke are provided
def Polygon( $ary; $fill; $stroke):
def rnd: 1000*.|round/1000;
($fill // "none") as $fill
| ($stroke // "black") as $stroke
| ($ary | map(rnd) | join(" ")) as $a
| .svg += "\n<polygon points='\($a)' fill='\($fill)' stroke='\($stroke)' />"
| minmax($ary | [ ([ .[ range(0;length;2)]] |min), ([ .[range(1;length;2)]]|min) ] )
| minmax($ary | [ ([ .[ range(0;length;2)]] |max), ([ .[range(1;length;2)]]|max) ] ) ;
def Square($A; $B; $C; $D; $fill; $stroke):
Polygon( $A + $B + $C + $D; $fill; $stroke);
def Triangle($A; $B; $C; $fill; $stroke):
Polygon( $A + $B + $C; $fill; $stroke);
def PythagorasTree:
def drawTree($x1; $y1; $x2; $y2; $depth):
if $depth <= 0 then .
else ($x2 - $x1) as $dx
| ($y1 - $y2) as $dy
| ($x2 - $dy) as $x3
| ($y2 - $dx) as $y3
| ($x1 - $dy) as $x4
| ($y1 - $dx) as $y4
| ($x4 + 0.5 * ($dx - $dy)) as $x5
| ($y4 - 0.5 * ($dx + $dy)) as $y5
# draw a square
| "rgb(\(256 - $depth * 20), 0, 0)" as $col
| Square([$x1, $y1]; [$x2, $y2]; [$x3, $y3] ; [$x4, $y4] ; $col; "lightgray")
# draw a triangle
| "rgb( 128, \(256 - $depth * 20), 128)" as $col
| Triangle([$x3, $y3]; [$x4, $y4]; [$x5, $y5]; $col; "lightgray")
| drawTree($x4; $y4; $x5; $y5; $depth - 1)
| drawTree($x5; $y5; $x3; $y3; $depth - 1)
end ;
{svg: "", minx: infinite, miny: infinite, maxx: -infinite, maxy: -infinite}
| drawTree(275; 500; 375; 500; 7);
PythagorasTree | svg
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Julia
|
Julia
|
using Gadfly
using DataFrames
const xarray = zeros(Float64, 80000)
const yarray = zeros(Float64, 80000)
const arraypos = ones(Int32,1)
const maxdepth = zeros(Int32, 1)
function addpoints(x1, y1, x2, y2)
xarray[arraypos[1]] = x1
xarray[arraypos[1]+1] = x2
yarray[arraypos[1]] = y1
yarray[arraypos[1]+1] = y2
arraypos[1] += 2
end
function pythtree(ax, ay, bx, by, depth)
if(depth > maxdepth[1])
return
end
dx=bx-ax; dy=ay-by;
x3=bx-dy; y3=by-dx;
x4=ax-dy; y4=ay-dx;
x5=x4+(dx-dy)/2; y5=y4-(dx+dy)/2;
addpoints(ax, ay, bx, by)
addpoints(bx, by, x3, y3)
addpoints(x3, y3, x4, y4)
addpoints(x4, y4, ax, ay)
pythtree(x4, y4, x5, y5, depth + 1)
pythtree(x5, y5, x3, y3, depth + 1)
end
function pythagorastree(x1, y1, x2, y2, size, maxdep)
maxdepth[1] = maxdep
println("Pythagoras Tree, depth $(maxdepth[1]), size $size, starts at ($x1, $y1, $x2, $y2)");
pythtree(x1, y1, x2, y2, 0);
df = DataFrame(x=xarray[1:arraypos[1]-1], y=-yarray[1:arraypos[1]-1])
plot(df, x=:x, y=:y, Geom.path(), Theme(default_color="green", point_size=0.4mm))
end
pythagorastree(275.,500.,375.,500.,640., 9)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
Pseudo-random numbers/Splitmix64
|
Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.
Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.
The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.
Basic pseudocode algorithm:
uint64 state /* The state can be seeded with any (upto) 64 bit integer value. */
next_int() {
state += 0x9e3779b97f4a7c15 /* increment the state variable */
uint64 z = state /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9 /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31) /* return the variable xored with itself right bit shifted 31 */
}
next_float() {
return next_int() / (1 << 64) /* divide by 2^64 to return a value between 0 and 1 */
}
The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.
In keeping with the general layout of several recent pseudo-random number tasks:
Task
Write a class or set of functions that generates pseudo-random numbers using splitmix64.
Show the first five integers generated using the seed 1234567.
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
Show that for an initial seed of 987654321, the counts of 100_000 repetitions of floor next_float() * 5 is as follows:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
Show your output here, on this page.
See also
Java docs for splitmix64
Public domain C code used in many PRNG implementations; by Sebastiano Vigna
Related tasks
Pseudo-random numbers/Combined recursive generator MRG32k3a
Pseudo-random numbers/PCG32
Pseudo-random_numbers/Xorshift_star
|
#Wren
|
Wren
|
import "/big" for BigInt
var Const1 = BigInt.fromBaseString("9e3779b97f4a7c15", 16)
var Const2 = BigInt.fromBaseString("bf58476d1ce4e5b9", 16)
var Const3 = BigInt.fromBaseString("94d049bb133111eb", 16)
var Mask64 = (BigInt.one << 64) - BigInt.one
class Splitmix64 {
construct new(state) {
_state = state
}
nextInt {
_state = (_state + Const1) & Mask64
var z = _state
z = ((z ^ (z >> 30)) * Const2) & Mask64
z = ((z ^ (z >> 27)) * Const3) & Mask64
return (z ^ (z >> 31)) & Mask64
}
nextFloat { nextInt.toNum / 2.pow(64) }
}
var randomGen = Splitmix64.new(BigInt.new(1234567))
for (i in 0..4) System.print(randomGen.nextInt)
var counts = List.filled(5, 0)
randomGen = Splitmix64.new(BigInt.new(987654321))
for (i in 1..1e5) {
var i = (randomGen.nextFloat * 5).floor
counts[i] = counts[i] + 1
}
System.print("\nThe counts for 100,000 repetitions are:")
for (i in 0..4) System.print(" %(i) : %(counts[i])")
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#AutoHotkey
|
AutoHotkey
|
#NoEnv
SetBatchLines, -1
#SingleInstance, Force
; Greatest common divisor, from http://rosettacode.org/wiki/Greatest_common_divisor#AutoHotkey
gcd(a,b) {
Return b=0 ? Abs(a) : Gcd(b,mod(a,b))
}
count_triples(max) {
primitives := 0, triples := 0, m := 2
while m <= (max / 2)**0.5
{
n := mod(m, 2) + 1
,p := 2*m*(m + n)
, delta := 4*m
while n < m and p <= max
gcd(m, n) = 1
? (primitives++
, triples += max // p)
: ""
, n += 2
, p += delta
m++
}
Return primitives " primitives out of " triples " triples"
}
Loop, 8
Msgbox % 10**A_Index ": " count_triples(10**A_Index)
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#PureBasic
|
PureBasic
|
s$="s$= : Debug Mid(s$,1,3)+Chr(34)+s$+Chr(34)+Mid(s$,4,100)" : Debug Mid(s$,1,3)+Chr(34)+s$+Chr(34)+Mid(s$,4,100)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Haskell
|
Haskell
|
import Data.List
randoms :: Int -> [Int]
randoms seed = unfoldr go ([seed,0,0],[seed,0,0])
where
go (x1,x2) =
let x1i = sum (zipWith (*) x1 a1) `mod` m1
x2i = sum (zipWith (*) x2 a2) `mod` m2
in Just $ ((x1i - x2i) `mod` m1, (x1i:init x1, x2i:init x2))
a1 = [0, 1403580, -810728]
m1 = 2^32 - 209
a2 = [527612, 0, -1370589]
m2 = 2^32 - 22853
randomsFloat = map ((/ (2^32 - 208)) . fromIntegral) . randoms
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Ruby
|
Ruby
|
class PCG32
MASK64 = (1 << 64) - 1
MASK32 = (1 << 32) - 1
CONST = 6364136223846793005
def seed(seed_state, seed_sequence)
@state = 0
@inc = ((seed_sequence << 1) | 1) & MASK64
next_int
@state = @state + seed_state
next_int
end
def next_int
old = @state
@state = ((old * CONST) + @inc) & MASK64
xorshifted = (((old >> 18) ^ old) >> 27) & MASK32
rot = (old >> 59) & MASK32
answer = (xorshifted >> rot) | (xorshifted << ((-rot) & 31))
answer & MASK32
end
def next_float
next_int.fdiv(1 << 32)
end
end
random_gen = PCG32.new
random_gen.seed(42, 54)
5.times{puts random_gen.next_int}
random_gen.seed(987654321, 1)
p 100_000.times.each{(random_gen.next_float * 5).floor}.tally.sort.to_h
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
max = 2200;
maxsq = max^2;
d = Range[max]^2;
Dynamic[{a, b, Length[d]}]
Do[
Do[
c = Range[1, Floor[(maxsq - a^2 - b^2)^(1/2)]];
dposs = a^2 + b^2 + c^2;
d = Complement[d, dposs]
,
{b, Floor[(maxsq - a^2)^(1/2)]}
]
,
{a, Floor[maxsq^(1/2)]}
]
Sqrt[d]
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Modula-2
|
Modula-2
|
MODULE PythagoreanQuadruples;
FROM FormatString IMPORT FormatString;
FROM RealMath IMPORT sqrt;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE WriteInteger(i : INTEGER);
VAR buffer : ARRAY[0..16] OF CHAR;
BEGIN
FormatString("%i", buffer, i);
WriteString(buffer)
END WriteInteger;
(* Main *)
CONST N = 2200;
VAR
r : ARRAY[0..N] OF BOOLEAN;
a,b,c,d : INTEGER;
aabb,aabbcc : INTEGER;
BEGIN
(* Initialize *)
FOR a:=0 TO HIGH(r) DO
r[a] := FALSE
END;
(* Process *)
FOR a:=1 TO N DO
FOR b:=a TO N DO
IF (a MOD 2 = 1) AND (b MOD 2 = 1) THEN
(* For positive odd a and b, no solution *)
CONTINUE
END;
aabb := a*a + b*b;
FOR c:=b TO N DO
aabbcc := aabb + c*c;
d := INT(sqrt(FLOAT(aabbcc)));
IF (aabbcc = d*d) AND (d <= N) THEN
(* solution *)
r[d] := TRUE
END
END
END
END;
FOR a:=1 TO N DO
IF NOT r[a] THEN
(* pritn non-solution *)
WriteInteger(a);
WriteString(" ")
END
END;
WriteLn;
ReadChar
END PythagoreanQuadruples.
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Kotlin
|
Kotlin
|
// version 1.1.2
import java.awt.*
import java.awt.geom.Path2D
import javax.swing.*
class PythagorasTree : JPanel() {
val depthLimit = 7
val hue = 0.15f
init {
preferredSize = Dimension(640, 640)
background = Color.white
}
private fun drawTree(g: Graphics2D, x1: Float, y1: Float,
x2: Float, y2: Float, depth: Int) {
if (depth == depthLimit) return
val dx = x2 - x1
val dy = y1 - y2
val x3 = x2 - dy
val y3 = y2 - dx
val x4 = x1 - dy
val y4 = y1 - dx
val x5 = x4 + 0.5f * (dx - dy)
val y5 = y4 - 0.5f * (dx + dy)
val square = Path2D.Float()
with (square) {
moveTo(x1, y1)
lineTo(x2, y2)
lineTo(x3, y3)
lineTo(x4, y4)
closePath()
}
g.color = Color.getHSBColor(hue + depth * 0.02f, 1.0f, 1.0f)
g.fill(square)
g.color = Color.lightGray
g.draw(square)
val triangle = Path2D.Float()
with (triangle) {
moveTo(x3, y3)
lineTo(x4, y4)
lineTo(x5, y5)
closePath()
}
g.color = Color.getHSBColor(hue + depth * 0.035f, 1.0f, 1.0f)
g.fill(triangle)
g.color = Color.lightGray
g.draw(triangle)
drawTree(g, x4, y4, x5, y5, depth + 1)
drawTree(g, x5, y5, x3, y3, depth + 1)
}
override fun paintComponent(g: Graphics) {
super.paintComponent(g)
drawTree(g as Graphics2D, 275.0f, 500.0f, 375.0f, 500.0f, 0)
}
}
fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
with (f) {
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
title = "Pythagoras Tree"
isResizable = false
add(PythagorasTree(), BorderLayout.CENTER)
pack()
setLocationRelativeTo(null);
setVisible(true)
}
}
}
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#AWK
|
AWK
|
# syntax: GAWK -f PYTHAGOREAN_TRIPLES.AWK
# converted from Go
BEGIN {
printf("%5s %11s %11s %11s %s\n","limit","limit","triples","primitives","seconds")
for (max_peri=10; max_peri<=1E9; max_peri*=10) {
t = systime()
prim = 0
total = 0
new_tri(3,4,5)
printf("10^%-2d %11d %11d %11d %d\n",++n,max_peri,total,prim,systime()-t)
}
exit(0)
}
function new_tri(s0,s1,s2, p) {
p = s0 + s1 + s2
if (p <= max_peri) {
prim++
total += int(max_peri / p)
new_tri(+1*s0-2*s1+2*s2,+2*s0-1*s1+2*s2,+2*s0-2*s1+3*s2)
new_tri(+1*s0+2*s1+2*s2,+2*s0+1*s1+2*s2,+2*s0+2*s1+3*s2)
new_tri(-1*s0+2*s1+2*s2,-2*s0+1*s1+2*s2,-2*s0+2*s1+3*s2)
}
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Python
|
Python
|
w = "print('w = ' + chr(34) + w + chr(34) + chr(10) + w)"
print('w = ' + chr(34) + w + chr(34) + chr(10) + w)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Java
|
Java
|
public class App {
private static long mod(long x, long y) {
long m = x % y;
if (m < 0) {
if (y < 0) {
return m - y;
} else {
return m + y;
}
}
return m;
}
public static class RNG {
// first generator
private final long[] a1 = {0, 1403580, -810728};
private static final long m1 = (1L << 32) - 209;
private long[] x1;
// second generator
private final long[] a2 = {527612, 0, -1370589};
private static final long m2 = (1L << 32) - 22853;
private long[] x2;
// other
private static final long d = m1 + 1;
public void seed(long state) {
x1 = new long[]{state, 0, 0};
x2 = new long[]{state, 0, 0};
}
public long nextInt() {
long x1i = mod(a1[0] * x1[0] + a1[1] * x1[1] + a1[2] * x1[2], m1);
long x2i = mod(a2[0] * x2[0] + a2[1] * x2[1] + a2[2] * x2[2], m2);
long z = mod(x1i - x2i, m1);
// keep the last three values of the first generator
x1 = new long[]{x1i, x1[0], x1[1]};
// keep the last three values of the second generator
x2 = new long[]{x2i, x2[0], x2[1]};
return z + 1;
}
public double nextFloat() {
return 1.0 * nextInt() / d;
}
}
public static void main(String[] args) {
RNG rng = new RNG();
rng.seed(1234567);
System.out.println(rng.nextInt());
System.out.println(rng.nextInt());
System.out.println(rng.nextInt());
System.out.println(rng.nextInt());
System.out.println(rng.nextInt());
System.out.println();
int[] counts = {0, 0, 0, 0, 0};
rng.seed(987654321);
for (int i = 0; i < 100_000; i++) {
int value = (int) Math.floor(rng.nextFloat() * 5.0);
counts[value]++;
}
for (int i = 0; i < counts.length; i++) {
System.out.printf("%d: %d%n", i, counts[i]);
}
}
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Scheme
|
Scheme
|
(import (scheme small) (srfi 33))
(define PCG-DEFAULT-MULTIPLIER 6364136223846793005)
(define MASK64 (- (arithmetic-shift 1 64) 1))
(define MASK32 (- (arithmetic-shift 1 32) 1))
(define-record-type <pcg32-random> (make-pcg32-random-record) pcg32?
(state pcg32-state pcg32-state!)
(inc pcg32-inc pcg32-inc!))
(define (make-pcg32)
(define rng (make-pcg32-random-record))
(pcg32-seed rng 31415926 535897932)
rng)
(define (pcg32-seed rng init-state init-seq)
(pcg32-state! rng 0)
(pcg32-inc! rng
(bitwise-and
(bitwise-ior (arithmetic-shift init-seq 1) 1)
MASK64))
(pcg32-next-int rng)
(pcg32-state! rng (bitwise-and (+ (pcg32-state rng) init-state) MASK64))
(pcg32-next-int rng))
(define (pcg32-next-int rng)
(define xorshifted 0)
(define rot 0)
(define answer 0)
(define oldstate (pcg32-state rng))
(pcg32-state! rng
(bitwise-and
(+ (* oldstate PCG-DEFAULT-MULTIPLIER) (pcg32-inc rng))
MASK64))
(set! xorshifted (bitwise-xor (arithmetic-shift oldstate -18) oldstate))
(set! xorshifted (arithmetic-shift xorshifted -27))
(set! xorshifted (bitwise-and xorshifted MASK32))
(set! rot (bitwise-and (arithmetic-shift oldstate -59) MASK32))
(set! answer (bitwise-ior
(arithmetic-shift xorshifted (- rot))
(arithmetic-shift xorshifted (bitwise-and (- rot) 31))))
(set! answer (bitwise-and answer MASK32))
answer)
(define (pcg32-next-float rng)
(inexact (/ (pcg32-next-int rng) (arithmetic-shift 1 32))))
;; task
(define rng (make-pcg32))
(pcg32-seed rng 42 54)
(let lp ((i 0)) (when (< i 5)
(display (pcg32-next-int rng))(newline)
(lp (+ i 1))))
(newline)
(pcg32-seed rng 987654321 1)
(define vec (make-vector 5 0))
(let lp ((i 0)) (when (< i 100000)
(let ((j (exact (floor (* (pcg32-next-float rng) 5)))))
(vector-set! vec j (+ (vector-ref vec j) 1)))
(lp (+ i 1))))
(let lp ((i 0)) (when (< i 5)
(display i)
(display " : ")
(display (vector-ref vec i))
(newline)
(lp (+ i 1))))
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Nim
|
Nim
|
import math
const N = 2_200
template isOdd(n: int): bool = (n and 1) != 0
var r = newSeq[bool](N + 1)
for a in 1..N:
for b in a..N:
if a.isOdd and b.isOdd: continue
let aabb = a * a + b * b
for c in b..N:
let aabbcc = aabb + c * c
d = sqrt(aabbcc.float).int
if aabbcc == d * d and d <= N: r[d] = true
for i in 1..N:
if not r[I]: stdout.write i, " "
echo()
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Pascal
|
Pascal
|
program pythQuad;
//find phythagorean Quadrupel up to a,b,c,d <= 2200
//a^2 + b^2 +c^2 = d^2
//find all values of d which are not possible
//brute force
//split in two procedure to reduce register pressure for CPU32
const
MaxFactor =2200;
limit = MaxFactor*MaxFactor;
type
tIdx = NativeUint;
tSum = NativeUint;
var
check : array[0..MaxFactor] of boolean;
checkCnt : LongWord;
procedure Find2(s:tSum;idx:tSum);
//second sum (a*a+b*b) +c*c =?= d*d
var
s1 : tSum;
d : tSum;
begin
d := trunc(sqrt(s+idx*idx));// calculate first sqrt
For idx := idx to MaxFactor do
Begin
s1 := s+idx*idx;
If s1 <= limit then
Begin
while s1 > d*d do //adjust sqrt
inc(d);
inc(checkCnt);
IF s1=d*d then
check[d] := true;
end
else
Break;
end;
end;
procedure Find1;
//first sum a*a+b*b
var
a,b : tIdx;
s : tSum;
begin
For a := 1 to MaxFactor do
For b := a to MaxFactor do
Begin
s := a*a+b*b;
if s < limit then
Find1(s,b)
else
break;
end;
end;
var
i : NativeUint;
begin
Find1;
For i := 1 to MaxFactor do
If Not(Check[i]) then
write(i,' ');
writeln;
writeln(CheckCnt,' checks were done');
end.
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#M2000_Interpreter
|
M2000 Interpreter
|
MODULE Pythagoras_tree {
CLS 5, 0 ' MAGENTA, NO SPLIT SCREEN
PEN 14 ' YELLOW
\\ code from zkl/Free Basic
LET w = scale.x, h = w * 11 div 16
LET w2 = w div 2, diff = w div 12
LET TreeOrder = 6
pythagoras_tree(w2 - diff, h -10, w2 + diff, h -10, 0)
SUB pythagoras_tree(x1, y1, x2, y2, depth)
IF depth > TreeOrder THEN EXIT SUB
LOCAL dx = x2 - x1, dy = y1 - y2
LOCAL x3 = x2 - dy, y3 = y2 - dx
LOCAL x4 = x1 - dy, y4 = y1 - dx
LOCAL x5 = x4 + (dx - dy) / 2
LOCAL y5 = y4 - (dx + dy) / 2
MOVE x1, y1
DRAW TO x2, y2
DRAW TO x3, y3
DRAW TO x4, y4
DRAW TO x1, y1
pythagoras_tree(x4, y4, x5, y5, depth +1)
pythagoras_tree(x5, y5, x3, y3, depth +1)
END SUB
}
Pythagoras_tree
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Mathematica_.2F_Wolfram_Language
|
Mathematica / Wolfram Language
|
n = 7;
colors = Blend[{Orange, Yellow, Green}, #] & /@ Subdivide[n - 1];
ClearAll[NextConfigs, NewConfig]
NewConfig[b1_List, b2_List] := Module[{diff, perp},
diff = b2 - b1;
perp = Cross[b2 - b1];
<|"quad" -> Polygon[{b1, b2, b2 + perp, b1 + perp}], "triang" -> Polygon[{b1 + 1.5 perp + diff/2, b1 + perp, b2 + perp}]|>
]
NextConfigs[config_Association] := Module[{tr},
tr = config["triangs"][[All, 1]];
tr = Join[NewConfig @@@ tr[[All, {2, 1}]], NewConfig @@@ tr[[All, {1, 3}]]];
<|"quads" -> tr[[All, "quad"]], "triangs" -> tr[[All, "triang"]]|>
]
nc = NewConfig[{-0.5, 0.0}, {0.5, 0.0}];
config = <|"quads" -> {nc["quad"]}, "triangs" -> {nc["triang"]}|>;
config = NestList[NextConfigs, config, n - 1];
Graphics[MapThread[{EdgeForm[Black], FaceForm[#2], #1["quads"], #1["triangs"]} &, {config, colors}]]
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#BBC_BASIC
|
BBC BASIC
|
DIM U0%(2,2), U1%(2,2), U2%(2,2), seed%(2)
U0%() = 1, -2, 2, 2, -1, 2, 2, -2, 3
U1%() = 1, 2, 2, 2, 1, 2, 2, 2, 3
U2%() = -1, 2, 2, -2, 1, 2, -2, 2, 3
seed%() = 3, 4, 5
FOR power% = 1 TO 7
all% = 0 : prim% = 0
PROCtri(seed%(), 10^power%, all%, prim%)
PRINT "Up to 10^"; power%, ": " all% " triples" prim% " primitives"
NEXT
END
DEF PROCtri(i%(), mp%, RETURN all%, RETURN prim%)
LOCAL t%() : DIM t%(2)
IF SUM(i%()) > mp% ENDPROC
prim% += 1
all% += mp% DIV SUM(i%())
t%() = U0%() . i%()
PROCtri(t%(), mp%, all%, prim%)
t%() = U1%() . i%()
PROCtri(t%(), mp%, all%, prim%)
t%() = U2%() . i%()
PROCtri(t%(), mp%, all%, prim%)
ENDPROC
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Quackery
|
Quackery
|
[ ' [ ' unbuild dup 4 split rot space rot 3 times join echo$ ] unbuild dup 4 split rot space rot 3 times join echo$ ]
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#R
|
R
|
(function(){x<-intToUtf8(34);s<-"(function(){x<-intToUtf8(34);s<-%s%s%s;cat(sprintf(s,x,s,x))})()";cat(sprintf(s,x,s,x))})()
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Julia
|
Julia
|
const a1 = [0, 1403580, -810728]
const m1 = 2^32 - 209
const a2 = [527612, 0, -1370589]
const m2 = 2^32 - 22853
const d = m1 + 1
mutable struct MRG32k3a
x1::Tuple{Int64, Int64, Int64}
x2::Tuple{Int64, Int64, Int64}
MRG32k3a() = new((0, 0, 0), (0, 0, 0))
MRG32k3a(seed_state) = new((seed_state, 0, 0), (seed_state, 0, 0))
end
seed(sd) = begin @assert(0 < sd < d); MRG32k3a(sd) end
function next_int(x::MRG32k3a)
x1i = mod1(a1[1] * x.x1[1] + a1[2] * x.x1[2] + a1[3] * x.x1[3], m1)
x2i = mod1(a2[1] * x.x2[1] + a2[2] * x.x2[2] + a2[3] * x.x2[3], m2)
x.x1 = (x1i, x.x1[1], x.x1[2])
x.x2 = (x2i, x.x2[1], x.x2[2])
return mod1(x1i - x2i, m1) + 1
end
next_float(x::MRG32k3a) = next_int(x) / d
const g1 = seed(1234567)
for _ in 1:5
println(next_int(g1))
end
const g2 = seed(987654321)
hist = fill(0, 5)
for _ in 1:100_000
hist[Int(floor(next_float(g2) * 5)) + 1] += 1
end
foreach(p -> print(p[1], ": ", p[2], " "), enumerate(hist))
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Kotlin
|
Kotlin
|
import kotlin.math.floor
fun mod(x: Long, y: Long): Long {
val m = x % y
return if (m < 0) {
if (y < 0) {
m - y
} else {
m + y
}
} else m
}
class RNG {
// first generator
private val a1 = arrayOf(0L, 1403580L, -810728L)
private val m1 = (1L shl 32) - 209
private var x1 = arrayOf(0L, 0L, 0L)
// second generator
private val a2 = arrayOf(527612L, 0L, -1370589L)
private val m2 = (1L shl 32) - 22853
private var x2 = arrayOf(0L, 0L, 0L)
private val d = m1 + 1
fun seed(state: Long) {
x1 = arrayOf(state, 0, 0)
x2 = arrayOf(state, 0, 0)
}
fun nextInt(): Long {
val x1i = mod(a1[0] * x1[0] + a1[1] * x1[1] + a1[2] * x1[2], m1)
val x2i = mod(a2[0] * x2[0] + a2[1] * x2[1] + a2[2] * x2[2], m2)
val z = mod(x1i - x2i, m1)
// keep last three values of the first generator
x1 = arrayOf(x1i, x1[0], x1[1])
// keep last three values of the second generator
x2 = arrayOf(x2i, x2[0], x2[1])
return z + 1
}
fun nextFloat(): Double {
return nextInt().toDouble() / d
}
}
fun main() {
val rng = RNG()
rng.seed(1234567)
println(rng.nextInt())
println(rng.nextInt())
println(rng.nextInt())
println(rng.nextInt())
println(rng.nextInt())
println()
val counts = IntArray(5)
rng.seed(987654321)
for (i in 0 until 100_000) {
val v = floor((rng.nextFloat() * 5.0)).toInt()
counts[v]++
}
for (iv in counts.withIndex()) {
println("${iv.index}: ${iv.value}")
}
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Sidef
|
Sidef
|
class PCG32(seed, incr) {
has state
define (
mask32 = (2**32 - 1),
mask64 = (2**64 - 1),
N = 6364136223846793005,
)
method init {
seed := 1
incr := 2
incr = (((incr << 1) | 1) & mask64)
state = (((incr + seed)*N + incr) & mask64)
}
method next_int {
var shift = ((((state >> 18) ^ state) >> 27) & mask32)
var rotate = ((state >> 59) & mask32)
state = ((state*N + incr) & mask64)
((shift >> rotate) | (shift << (32-rotate))) & mask32
}
method next_float {
self.next_int / (mask32+1)
}
}
say "Seed: 42, Increment: 54, first 5 values:";
var rng = PCG32(seed: 42, incr: 54)
say 5.of { rng.next_int }
say "\nSeed: 987654321, Increment: 1, values histogram:";
var rng = PCG32(seed: 987654321, incr: 1)
var histogram = Bag(1e5.of { floor(5*rng.next_float) }...)
histogram.pairs.sort.each { .join(": ").say }
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Perl
|
Perl
|
my $N = 2200;
push @sq, $_**2 for 0 .. $N;
my @not = (0) x $N;
@not[0] = 1;
for my $d (1 .. $N) {
my $last = 0;
for my $a (reverse ceiling($d/3) .. $d) {
for my $b (1 .. ceiling($a/2)) {
my $ab = $sq[$a] + $sq[$b];
last if $ab > $sq[$d];
my $x = sqrt($sq[$d] - $ab);
if ($x == int $x) {
$not[$d] = 1;
$last = 1;
last
}
}
last if $last;
}
}
sub ceiling { int $_[0] + 1 - 1e-15 }
for (0 .. $#not) {
$result .= "$_ " unless $not[$_]
}
print "$result\n"
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Nim
|
Nim
|
import imageman
const
Width = 1920
Height = 1080
MaxDepth = 10
Color = ColorRGBU([byte 0, 255, 0])
proc drawTree(img: var Image; x1, y1, x2, y2: int; depth: Natural) =
if depth == 0: return
let
dx = x2 - x1
dy = y1 - y2
x3 = x2 - dy
y3 = y2 - dx
x4 = x1 - dy
y4 = y1 - dx
x5 = x4 + (dx - dy) div 2
y5 = y4 - (dx + dy) div 2
# Draw square.
img.drawPolyline(true, Color, (x1, y1), (x2, y2), (x3, y3), (x4, y4))
# Draw triangle.
img.drawPolyline(true, Color, (x3, y3), (x4, y4), (x5, y5))
# Next level.
img.drawTree(x4, y4, x5, y5, depth - 1)
img.drawTree(x5, y5, x3, y3, depth - 1)
var image = initImage[ColorRGBU](Width, Height)
image.drawTree(int(Width / 2.3), Height - 1, int(Width / 1.8), Height - 1, MaxDepth)
image.savePNG("pythagoras_tree.png", compression = 9)
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Bracmat
|
Bracmat
|
(pythagoreanTriples=
total prim max-peri U
. (.(1,-2,2) (2,-1,2) (2,-2,3))
(.(1,2,2) (2,1,2) (2,2,3))
(.(-1,2,2) (-2,1,2) (-2,2,3))
: ?U
& ( new-tri
= i t p Urows Urow Ucols
, a b c loop A B C
. !arg:(,?a,?b,?c)
& !a+!b+!c:~>!max-peri:?p
& 1+!prim:?prim
& div$(!max-peri.!p)+!total:?total
& !U:?Urows
& ( loop
= !Urows:(.?Urow) ?Urows
& !Urow:?Ucols
& :?t
& whl
' ( !Ucols:(?A,?B,?C) ?Ucols
& (!t,!a*!A+!b*!B+!c*!C):?t
)
& new-tri$!t
& !loop
)
& !loop
|
)
& ( Main
= seed
. (,3,4,5):?seed
& 10:?max-peri
& whl
' ( 0:?total:?prim
& new-tri$!seed
& out
$ ( str
$ ( "Up to "
!max-peri
": "
!total
" triples, "
!prim
" primitives."
)
)
& !max-peri*10:~>10000000:?max-peri
)
)
& Main$
);
pythagoreanTriples$;
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Racket
|
Racket
|
((λ (x) `(,x ',x)) '(λ (x) `(,x ',x)))
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Nim
|
Nim
|
import algorithm, math, sequtils, strutils, tables
const
# First generator.
a1 = [int64 0, 1403580, -810728]
m1: int64 = 2^32 - 209
# Second generator.
a2 = [int64 527612, 0, -1370589]
m2: int64 = 2^32 - 22853
d = m1 + 1
type MRG32k3a = object
x1: array[3, int64] # List of three last values of gen #1.
x2: array[3, int64] # List of three last values of gen #2.
func seed(gen: var MRG32k3a; seedState: int64) =
assert seedState in 1..<d
gen.x1 = [seedState, 0, 0]
gen.x2 = [seedState, 0, 0]
func nextInt(gen: var MRG32k3a): int64 =
let x1i = floormod(a1[0] * gen.x1[0] + a1[1] * gen.x1[1] + a1[2] * gen.x1[2], m1)
let x2i = floormod(a2[0] * gen.x2[0] + a2[1] * gen.x2[1] + a2[2] * gen.x2[2], m2)
# In version 1.4, the following two lines doesn't work.
# gen.x1 = [x1i, gen.x1[0], gen.x1[1]] # Keep last three.
# gen.x2 = [x2i, gen.x2[0], gen.x2[1]] # Keep last three.
gen.x1[2] = gen.x1[1]; gen.x1[1] = gen.x1[0]; gen.x1[0] = x1i
gen.x2[2] = gen.x2[1]; gen.x2[1] = gen.x2[0]; gen.x2[0] = x2i
result = floormod(x1i - x2i, m1) + 1
func nextFloat(gen: var MRG32k3a): float =
gen.nextInt().float / d.float
when isMainModule:
var gen: MRG32k3a
gen.seed(1234567)
for _ in 1..5:
echo gen.nextInt()
echo ""
gen.seed(987654321)
var counts: CountTable[int]
for _ in 1..100_000:
counts.inc int(gen.nextFloat() * 5)
echo sorted(toSeq(counts.pairs)).mapIt($it[0] & ": " & $it[1]).join(", ")
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Pari.2FGP
|
Pari/GP
|
a1 = [0, 1403580, -810728];
m1 = 2^32-209;
a2 = [527612, 0, -1370589];
m2 = 2^32-22853;
d = m1+1;
seed(s)=x1=x2=[s,0,0];
next_int()=
{
my(x1i=a1*x1~%m1, x2i=a2*x2~%m2);
x1 = [x1i, x1[1], x1[2]];
x2 = [x2i, x2[1], x2[2]];
(x1i-x2i)%m1 + 1;
}
next_float()=next_int()/d;
seed(1234567);
vector(5,i,next_int())
seed(987654321);
v=vector(5); for(i=1,1e5, v[next_float()*5\1+1]++); v
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Standard_ML
|
Standard ML
|
type pcg32 = LargeWord.word * LargeWord.word
local
infix 5 >>
val op >> = LargeWord.>>
and m = 0w6364136223846793005 : LargeWord.word
and rotate32 = fn a as (x, n) =>
Word32.orb (Word32.>> a, Word32.<< (x, Word.andb (~ n, 0w31)))
in
fun pcg32Init (seed, seq) : pcg32 =
let
val inc = LargeWord.<< (LargeWord.fromInt seq, 0w1) + 0w1
in
((LargeWord.fromInt seed + inc) * m + inc, inc)
end
fun pcg32Random ((state, inc) : pcg32) : Word32.word * pcg32 = (
rotate32 (
Word32.xorb (
Word32.fromLarge (state >> 0w27),
Word32.fromLarge (state >> 0w45)),
Word.fromLarge (state >> 0w59)),
(state * m + inc, inc))
end
|
http://rosettacode.org/wiki/Pseudo-random_numbers/PCG32
|
Pseudo-random numbers/PCG32
|
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111
PCG32 Generator (pseudo-code)
PCG32 has two unsigned 64-bit integers of internal state:
state: All 2**64 values may be attained.
sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).
Values of sequence allow 2**63 different sequences of random numbers from the same state.
The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-
const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
xs<-U32 (((state>>18)^state)>>27)
rot<-INT (state>>59)
OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
state<-state*N+inc
end do
Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.
Task
Generate a class/set of functions that generates pseudo-random
numbers using the above.
Show that the first five integers generated with the seed 42, 54
are: 2707161783 2068313097 3122475824 2211639955 3215226955
Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
Show your output here, on this page.
|
#Wren
|
Wren
|
import "/big" for BigInt
var Const = BigInt.new("6364136223846793005")
var Mask64 = (BigInt.one << 64) - BigInt.one
var Mask32 = (BigInt.one << 32) - BigInt.one
class Pcg32 {
construct new() {
_state = BigInt.fromBaseString("853c49e6748fea9b", 16)
_inc = BigInt.fromBaseString("da3e39cb94b95bdb", 16)
}
seed(seedState, seedSequence) {
_state = BigInt.zero
_inc = ((seedSequence << BigInt.one) | BigInt.one) & Mask64
nextInt
_state = _state + seedState
nextInt
}
nextInt {
var old = _state
_state = (old*Const + _inc) & Mask64
var xorshifted = (((old >> 18) ^ old) >> 27) & Mask32
var rot = (old >> 59) & Mask32
return ((xorshifted >> rot) | (xorshifted << ((-rot) & 31))) & Mask32
}
nextFloat { nextInt.toNum / 2.pow(32) }
}
var randomGen = Pcg32.new()
randomGen.seed(BigInt.new(42), BigInt.new(54))
for (i in 0..4) System.print(randomGen.nextInt)
var counts = List.filled(5, 0)
randomGen.seed(BigInt.new(987654321), BigInt.one)
for (i in 1..1e5) {
var i = (randomGen.nextFloat * 5).floor
counts[i] = counts[i] + 1
}
System.print("\nThe counts for 100,000 repetitions are:")
for (i in 0..4) System.print(" %(i) : %(counts[i])")
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Phix
|
Phix
|
with javascript_semantics
constant N = 2200,
N2 = N*N*2
sequence found = repeat(false,N),
squares = repeat(false,N2)
-- first mark all numbers that can be the sum of two squares
for a=1 to N do
integer a2 = a*a
for b=a to N do
squares[a2+b*b] = true
end for
end for
-- now find all d such that d^2 - c^2 is in squares
for d=1 to N do
integer d2 = d*d
for c=1 to d-1 do
if squares[d2-c*c] then
found[d] = true
exit
end if
end for
end for
sequence res = {}
for i=1 to N do
if not found[i] then res &= i end if
end for
pp(res)
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Ol
|
Ol
|
(import (lib gl))
(import (OpenGL version-1-0))
(gl:set-window-size 700 600)
(gl:set-window-title "http://rosettacode.org/wiki/Pythagoras_tree")
(glLineWidth 2)
(gl:set-renderer (lambda (mouse)
(glClear GL_COLOR_BUFFER_BIT)
(glLoadIdentity)
(glOrtho -3 4 -1 5 0 1)
(let loop ((a '(0 . 0)) (b '(1 . 0)) (n 7))
(unless (zero? n)
(define dx (- (car b) (car a)))
(define dy (- (cdr b) (cdr a)))
(define c (cons
(- (car b) dy)
(+ (cdr b) dx)))
(define d (cons
(- (car a) dy)
(+ (cdr a) dx)))
(define e (cons
(- (/ (+ (car c) (car d)) 2) (/ dy 2))
(+ (/ (+ (cdr c) (cdr d)) 2) (/ dx 2))))
(glColor3f 0 (+ 1/3 (/ 2/3 n)) 0)
(glBegin GL_QUADS)
(glVertex2f (car a) (cdr a))
(glVertex2f (car b) (cdr b))
(glVertex2f (car c) (cdr c))
(glVertex2f (car d) (cdr d))
(glEnd)
(glColor3f 1 0 0)
(glBegin GL_TRIANGLES)
(glVertex2f (car c) (cdr c))
(glVertex2f (car e) (cdr e))
(glVertex2f (car d) (cdr d))
(glEnd)
(loop d e (- n 1))
(loop e c (- n 1))
))
))
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#C
|
C
|
#include <stdio.h>
#include <stdlib.h>
typedef unsigned long long xint;
typedef unsigned long ulong;
inline ulong gcd(ulong m, ulong n)
{
ulong t;
while (n) { t = n; n = m % n; m = t; }
return m;
}
int main()
{
ulong a, b, c, pytha = 0, prim = 0, max_p = 100;
xint aa, bb, cc;
for (a = 1; a <= max_p / 3; a++) {
aa = (xint)a * a;
printf("a = %lu\r", a); /* show that we are working */
fflush(stdout);
/* max_p/2: valid limit, because one side of triangle
* must be less than the sum of the other two
*/
for (b = a + 1; b < max_p/2; b++) {
bb = (xint)b * b;
for (c = b + 1; c < max_p/2; c++) {
cc = (xint)c * c;
if (aa + bb < cc) break;
if (a + b + c > max_p) break;
if (aa + bb == cc) {
pytha++;
if (gcd(a, b) == 1) prim++;
}
}
}
}
printf("Up to %lu, there are %lu triples, of which %lu are primitive\n",
max_p, pytha, prim);
return 0;
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Raku
|
Raku
|
my &f = {say $^s, $^s.raku;}; f "my \&f = \{say \$^s, \$^s.raku;}; f "
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Perl
|
Perl
|
use strict;
use warnings;
use feature 'say';
package MRG32k3a {
use constant {
m1 => 2**32 - 209,
m2 => 2**32 - 22853
};
use Const::Fast;
const my @a1 => < 0 1403580 -810728>;
const my @a2 => <527612 0 -1370589>;
sub new {
my ($class,undef,$seed) = @_;
my @x1 = my @x2 = ($seed, 0, 0);
bless {x1 => \@x1, x2 => \@x2}, $class;
}
sub next_int {
my ($self) = @_;
unshift @{$$self{x1}}, ($a1[0] * $$self{x1}[0] + $a1[1] * $$self{x1}[1] + $a1[2] * $$self{x1}[2]) % m1; pop @{$$self{x1}};
unshift @{$$self{x2}}, ($a2[0] * $$self{x2}[0] + $a2[1] * $$self{x2}[1] + $a2[2] * $$self{x2}[2]) % m2; pop @{$$self{x2}};
($$self{x1}[0] - $$self{x2}[0]) % (m1 + 1)
}
sub next_float { $_[0]->next_int / (m1 + 1) }
}
say 'Seed: 1234567, first 5 values:';
my $rng = MRG32k3a->new( seed => 1234567 );
say $rng->next_int for 1..5;
my %h;
say "\nSeed: 987654321, values histogram:";
$rng = MRG32k3a->new( seed => 987654321 );
$h{int 5 * $rng->next_float}++ for 1..100_000;
say "$_ $h{$_}" for sort keys %h;
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#PicoLisp
|
PicoLisp
|
(de quadruples (N)
(let (AB NIL S 3 R)
(for A N
(for (B A (>= N B) (inc B))
(idx
'AB
(+ (* A A) (* B B))
T ) ) )
(for C N
(let (S1 S S2)
(inc 'S 2)
(setq S2 S)
(for (D (+ C 1) (>= N D) (inc D))
(and (idx 'AB S1) (idx 'R D T))
(inc 'S1 S2)
(inc 'S2 2) ) ) )
(make
(for A N
(or (idx 'R A) (link A)) ) ) ) )
(println (quadruples 2200))
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#PureBasic
|
PureBasic
|
OpenConsole()
limite.i = 2200
s.i = 3
Dim l.i(limite)
Dim ladd.i(limite * limite * 2)
For x.i = 1 To limite
x2.i = x * x
For y = x To limite
ladd(x2 + y * y) = 1
Next y
Next x
For x.i = 1 To limite
s1.i = s
s.i + 2
s2.i = s
For y = x +1 To limite
If ladd(s1) = 1
l(y) = 1
EndIf
s1 + s2
s2 + 2
Next y
Next x
For x.i = 1 To limite
If l(x) = 0
Print(Str(x) + " ")
EndIf
Next x
Input()
CloseConsole()
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#PARI.2FGP
|
PARI/GP
|
\\ Pythagoras Tree (w/recursion)
\\ 4/11/16 aev
plotline(x1,y1,x2,y2)={plotmove(0, x1,y1);plotrline(0,x2-x1,y2-y1);}
pythtree(ax,ay,bx,by,d=0)={
my(dx,dy,x3,y3,x4,y4,x5,y5);
if(d>10, return());
dx=bx-ax; dy=ay-by;
x3=bx-dy; y3=by-dx;
x4=ax-dy; y4=ay-dx;
x5=x4+(dx-dy)\2; y5=y4-(dx+dy)\2;
plotline(ax,ay,bx,by);
plotline(bx,by,x3,y3);
plotline(x3,y3,x4,y4);
plotline(x4,y4,ax,ay);
pythtree(x4,y4,x5,y5,d+1);
pythtree(x5,y5,x3,y3,d+1);
}
PythagorTree(x1,y1,x2,y2,depth=9,size)={
my(dx=1,dy=0,ttlb="Pythagoras Tree, depth ",ttl=Str(ttlb,depth));
print1(" *** ",ttl); print(", size ",size);
print(" *** Start: ",x1,",",y1,",",x2,",",y2);
plotinit(0);
plotcolor(0,6); \\green
plotscale(0, -size,size, size,0 );
plotmove(0, 0,0);
pythtree(x1,y1, x2,y2);
plotdraw([0,size,size]);
}
{\\ Executing:
PythagorTree(275,500,375,500,9,640); \\PythTree1.png
}
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#Ada
|
Ada
|
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Numerics.Real_Arrays; use Ada.Numerics.Real_Arrays;
with Ada.Numerics.Generic_Elementary_Functions;
procedure QR is
procedure Show (mat : Real_Matrix) is
package FIO is new Ada.Text_IO.Float_IO (Float);
begin
for row in mat'Range (1) loop
for col in mat'Range (2) loop
FIO.Put (mat (row, col), Exp => 0, Aft => 4, Fore => 5);
end loop;
New_Line;
end loop;
end Show;
function GetCol (mat : Real_Matrix; n : Integer) return Real_Matrix is
column : Real_Matrix (mat'Range (1), 1 .. 1);
begin
for row in mat'Range (1) loop
column (row, 1) := mat (row, n);
end loop;
return column;
end GetCol;
function Mag (mat : Real_Matrix) return Float is
sum : Real_Matrix := Transpose (mat) * mat;
package Math is new Ada.Numerics.Generic_Elementary_Functions
(Float);
begin
return Math.Sqrt (sum (1, 1));
end Mag;
function eVect (col : Real_Matrix; n : Integer) return Real_Matrix is
vect : Real_Matrix (col'Range (1), 1 .. 1);
begin
for row in col'Range (1) loop
if row /= n then vect (row, 1) := 0.0;
else vect (row, 1) := 1.0; end if;
end loop;
return vect;
end eVect;
function Identity (n : Integer) return Real_Matrix is
mat : Real_Matrix (1 .. n, 1 .. n) := (1 .. n => (others => 0.0));
begin
for i in Integer range 1 .. n loop mat (i, i) := 1.0; end loop;
return mat;
end Identity;
function Chop (mat : Real_Matrix; n : Integer) return Real_Matrix is
small : Real_Matrix (n .. mat'Length (1), n .. mat'Length (2));
begin
for row in small'Range (1) loop
for col in small'Range (2) loop
small (row, col) := mat (row, col);
end loop;
end loop;
return small;
end Chop;
function H_n (inmat : Real_Matrix; n : Integer)
return Real_Matrix is
mat : Real_Matrix := Chop (inmat, n);
col : Real_Matrix := GetCol (mat, n);
colT : Real_Matrix (1 .. 1, mat'Range (1));
H : Real_Matrix := Identity (mat'Length (1));
Hall : Real_Matrix := Identity (inmat'Length (1));
begin
col := col - Mag (col) * eVect (col, n);
col := col / Mag (col);
colT := Transpose (col);
H := H - 2.0 * (col * colT);
for row in H'Range (1) loop
for col in H'Range (2) loop
Hall (n - 1 + row, n - 1 + col) := H (row, col);
end loop;
end loop;
return Hall;
end H_n;
A : constant Real_Matrix (1 .. 3, 1 .. 3) := (
(12.0, -51.0, 4.0),
(6.0, 167.0, -68.0),
(-4.0, 24.0, -41.0));
Q1, Q2, Q3, Q, R: Real_Matrix (1 .. 3, 1 .. 3);
begin
Q1 := H_n (A, 1);
Q2 := H_n (Q1 * A, 2);
Q3 := H_n (Q2 * Q1* A, 3);
Q := Transpose (Q1) * Transpose (Q2) * TransPose(Q3);
R := Q3 * Q2 * Q1 * A;
Put_Line ("Q:"); Show (Q);
Put_Line ("R:"); Show (R);
end QR;
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#C.2B.2B
|
C++
|
#include <cmath>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
using namespace std;
auto CountTriplets(unsigned long long maxPerimeter)
{
unsigned long long totalCount = 0;
unsigned long long primitveCount = 0;
auto max_M = (unsigned long long)sqrt(maxPerimeter/2) + 1;
for(unsigned long long m = 2; m < max_M; ++m)
{
for(unsigned long long n = 1 + m % 2; n < m; n+=2)
{
if(gcd(m,n) != 1)
{
continue;
}
// The formulas below will generate primitive triples if:
// 0 < n < m
// m and n are relatively prime (gcd == 1)
// m + n is odd
auto a = m * m - n * n;
auto b = 2 * m * n;
auto c = m * m + n * n;
auto perimeter = a + b + c;
if(perimeter <= maxPerimeter)
{
primitveCount++;
totalCount+= maxPerimeter / perimeter;
}
}
}
return tuple(totalCount, primitveCount);
}
int main()
{
vector<unsigned long long> inputs{100, 1000, 10'000, 100'000,
1000'000, 10'000'000, 100'000'000, 1000'000'000,
10'000'000'000}; // This last one takes almost a minute
for(auto maxPerimeter : inputs)
{
auto [total, primitive] = CountTriplets(maxPerimeter);
cout << "\nMax Perimeter: " << maxPerimeter << ", Total: " << total << ", Primitive: " << primitive ;
}
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#REBOL
|
REBOL
|
rebol [] q: [print ["rebol [] q:" mold q "do q"]] do q
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Phix
|
Phix
|
with javascript_semantics
constant
-- First generator
a1 = {0, 1403580, -810728},
m1 = power(2,32) - 209,
-- Second Generator
a2 = {527612, 0, -1370589},
m2 = power(2,32) - 22853,
d = m1 + 1
sequence x1 = {0, 0, 0}, /* list of three last values of gen #1 */
x2 = {0, 0, 0} /* list of three last values of gen #2 */
procedure seed(integer seed_state)
assert(seed_state>0 and seed_state<d)
x1 = {seed_state, 0, 0}
x2 = {seed_state, 0, 0}
end procedure
function next_int()
atom x1i = mod(a1[1]*x1[1] + a1[2]*x1[2] + a1[3]*x1[3],m1),
x2i = mod(a2[1]*x2[1] + a2[2]*x2[2] + a2[3]*x2[3],m2)
x1 = {x1i, x1[1], x1[2]} /* Keep last three */
x2 = {x2i, x2[1], x2[2]} /* Keep last three */
atom z = mod(x1i-x2i,m1),
answer = (z + 1)
return answer
end function
function next_float()
return next_int() / d
end function
seed(1234567)
for i=1 to 5 do
printf(1,"%d\n",next_int())
end for
seed(987654321)
sequence r = repeat(0,5)
for i=1 to 100_000 do
integer rdx = floor(next_float()*5)+1
r[rdx] += 1
end for
?r
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Python
|
Python
|
def quad(top=2200):
r = [False] * top
ab = [False] * (top * 2)**2
for a in range(1, top):
for b in range(a, top):
ab[a * a + b * b] = True
s = 3
for c in range(1, top):
s1, s, s2 = s, s + 2, s + 2
for d in range(c + 1, top):
if ab[s1]:
r[d] = True
s1 += s2
s2 += 2
return [i for i, val in enumerate(r) if not val and i]
if __name__ == '__main__':
n = 2200
print(f"Those values of d in 1..{n} that can't be represented: {quad(n)}")
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Perl
|
Perl
|
use Imager;
sub tree {
my ($img, $x1, $y1, $x2, $y2, $depth) = @_;
return () if $depth <= 0;
my $dx = ($x2 - $x1);
my $dy = ($y1 - $y2);
my $x3 = ($x2 - $dy);
my $y3 = ($y2 - $dx);
my $x4 = ($x1 - $dy);
my $y4 = ($y1 - $dx);
my $x5 = ($x4 + 0.5 * ($dx - $dy));
my $y5 = ($y4 - 0.5 * ($dx + $dy));
# Square
$img->polygon(
points => [
[$x1, $y1],
[$x2, $y2],
[$x3, $y3],
[$x4, $y4],
],
color => [0, 255 / $depth, 0],
);
# Triangle
$img->polygon(
points => [
[$x3, $y3],
[$x4, $y4],
[$x5, $y5],
],
color => [0, 255 / $depth, 0],
);
tree($img, $x4, $y4, $x5, $y5, $depth - 1);
tree($img, $x5, $y5, $x3, $y3, $depth - 1);
}
my ($width, $height) = (1920, 1080);
my $img = Imager->new(xsize => $width, ysize => $height);
$img->box(filled => 1, color => 'white');
tree($img, $width/2.3, $height, $width/1.8, $height, 10);
$img->write(file => 'pythagoras_tree.png');
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#Axiom
|
Axiom
|
)abbrev package TESTP TestPackage
TestPackage(R:Join(Field,RadicalCategory)): with
unitVector: NonNegativeInteger -> Vector(R)
"/": (Vector(R),R) -> Vector(R)
"^": (Vector(R),NonNegativeInteger) -> Vector(R)
solveUpperTriangular: (Matrix(R),Vector(R)) -> Vector(R)
signValue: R -> R
householder: Vector(R) -> Matrix(R)
qr: Matrix(R) -> Record(q:Matrix(R),r:Matrix(R))
lsqr: (Matrix(R),Vector(R)) -> Vector(R)
polyfit: (Vector(R),Vector(R),NonNegativeInteger) -> Vector(R)
== add
unitVector(dim) ==
out := new(dim,0@R)$Vector(R)
out(1) := 1@R
out
v:Vector(R) / a:R == map((vi:R):R +-> vi/a, v)$Vector(R)
v:Vector(R) ^ n:NonNegativeInteger == map((vi:R):R +-> vi^n, v)$Vector(R)
solveUpperTriangular(r,b) ==
n := ncols r
x := new(n,0@R)$Vector(R)
for k in n..1 by -1 repeat
index := min(n,k+1)
x(k) := (b(k)-reduce("+",subMatrix(r,k,k,index,n)*x.(index..n)))/r(k,k)
x
signValue(r) ==
R has (sign: R -> Integer) => coerce(sign(r)$R)$R
zero? r => r
if sqrt(r*r) = r then 1 else -1
householder(a) ==
m := #a
u := a + length(a)*signValue(a(1))*unitVector(m)
v := u/u(1)
beta := (1+1)/dot(v,v)
scalarMatrix(m,1) - beta*transpose(outerProduct(v,v))
qr(a) ==
(m,n) := (nrows a, ncols a)
qm := scalarMatrix(m,1)
rm := copy a
for i in 1..(if m=n then n-1 else n) repeat
x := column(subMatrix(rm,i,m,i,i),1)
h := scalarMatrix(m,1)
setsubMatrix!(h,i,i,householder x)
qm := qm*h
rm := h*rm
[qm,rm]
lsqr(a,b) ==
dc := qr a
n := ncols(dc.r)
solveUpperTriangular(subMatrix(dc.r,1,n,1,n),transpose(dc.q)*b)
polyfit(x,y,n) ==
a := new(#x,n+1,0@R)$Matrix(R)
for j in 0..n repeat
setColumn!(a,j+1,x^j)
lsqr(a,y)
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#C.23
|
C#
|
using System;
namespace RosettaCode.CSharp
{
class Program
{
static void Count_New_Triangle(ulong A, ulong B, ulong C, ulong Max_Perimeter, ref ulong Total_Cnt, ref ulong Primitive_Cnt)
{
ulong Perimeter = A + B + C;
if (Perimeter <= Max_Perimeter)
{
Primitive_Cnt = Primitive_Cnt + 1;
Total_Cnt = Total_Cnt + Max_Perimeter / Perimeter;
Count_New_Triangle(A + 2 * C - 2 * B, 2 * A + 2 * C - B, 2 * A + 3 * C - 2 * B, Max_Perimeter, ref Total_Cnt, ref Primitive_Cnt);
Count_New_Triangle(A + 2 * B + 2 * C, 2 * A + B + 2 * C, 2 * A + 2 * B + 3 * C, Max_Perimeter, ref Total_Cnt, ref Primitive_Cnt);
Count_New_Triangle(2 * B + 2 * C - A, B + 2 * C - 2 * A, 2 * B + 3 * C - 2 * A, Max_Perimeter, ref Total_Cnt, ref Primitive_Cnt);
}
}
static void Count_Pythagorean_Triples()
{
ulong T_Cnt, P_Cnt;
for (int I = 1; I <= 8; I++)
{
T_Cnt = 0;
P_Cnt = 0;
ulong ExponentNumberValue = (ulong)Math.Pow(10, I);
Count_New_Triangle(3, 4, 5, ExponentNumberValue, ref T_Cnt, ref P_Cnt);
Console.WriteLine("Perimeter up to 10E" + I + " : " + T_Cnt + " Triples, " + P_Cnt + " Primitives");
}
}
static void Main(string[] args)
{
Count_Pythagorean_Triples();
}
}
}
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#REXX
|
REXX
|
/*REXX program outputs its own 1─line source.*/ say sourceline(1)
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Ring
|
Ring
|
v = "see substr(`v = ` + char(34) + `@` + char(34) + nl + `@` ,`@`,v)"
see substr(`v = ` + char(34) + `@` + char(34) + nl + `@` ,`@`,v)
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Python
|
Python
|
# Constants
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
#
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
#
d = m1 + 1
class MRG32k3a():
def __init__(self, seed_state=123):
self.seed(seed_state)
def seed(self, seed_state):
assert 0 <seed_state < d, f"Out of Range 0 x < {d}"
self.x1 = [seed_state, 0, 0]
self.x2 = [seed_state, 0, 0]
def next_int(self):
"return random int in range 0..d"
x1i = sum(aa * xx for aa, xx in zip(a1, self.x1)) % m1
x2i = sum(aa * xx for aa, xx in zip(a2, self.x2)) % m2
self.x1 = [x1i] + self.x1[:2]
self.x2 = [x2i] + self.x2[:2]
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
def next_float(self):
"return random float between 0 and 1"
return self.next_int() / d
if __name__ == '__main__':
random_gen = MRG32k3a()
random_gen.seed(1234567)
for i in range(5):
print(random_gen.next_int())
random_gen.seed(987654321)
hist = {i:0 for i in range(5)}
for i in range(100_000):
hist[int(random_gen.next_float() *5)] += 1
print(hist)
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#R
|
R
|
squares <- d <- seq_len(2200)^2
aAndb <- outer(squares, squares, '+')
aAndb <- aAndb[upper.tri(aAndb, diag = TRUE)]
sapply(squares, function(c) d <<- setdiff(d, aAndb + c))
print(sqrt(d))
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Racket
|
Racket
|
#lang racket
(require data/bit-vector)
(define (quadruples top)
(define top+1 (add1 top))
(define 1..top (in-range 1 top+1))
(define r (make-bit-vector top+1))
(define ab (make-bit-vector (add1 (sqr (* top 2)))))
(for* ((a 1..top) (b (in-range a top+1))) (bit-vector-set! ab (+ (sqr a) (sqr b)) #t))
(for/fold ((s 3))
((c 1..top))
(for/fold ((s1 s) (s2 (+ s 2)))
((d (in-range (add1 c) top+1)))
(when (bit-vector-ref ab s1)
(bit-vector-set! r d #t))
(values (+ s1 s2) (+ s2 2)))
(+ 2 s))
(for/list ((i (in-naturals 1)) (v (in-bit-vector r 1)) #:unless v) i))
(define (report n)
(printf "Those values of d in 1..~a that can't be represented: ~a~%" n (quadruples n)))
(report 2200)
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Phix
|
Phix
|
-- demo\rosetta\PythagorasTree.exw
with javascript_semantics
include pGUI.e
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
enum FILL, BORDER
procedure drawTree(atom x1, y1, x2, y2, integer depth, dd)
atom dx = x2 - x1,
dy = y1 - y2,
x3 = x2 - dy,
y3 = y2 - dx,
x4 = x1 - dy,
y4 = y1 - dx,
x5 = x4 + 0.5 * (dx - dy),
y5 = y4 - 0.5 * (dx + dy)
if depth=dd then
integer r = 250-depth*20
for draw=FILL to BORDER do
-- one square...
cdCanvasSetForeground(cddbuffer, iff(draw=FILL?rgb(r,#FF,0):CD_GRAY))
integer mode = iff(draw=FILL?CD_FILL:CD_CLOSED_LINES)
cdCanvasBegin(cddbuffer,mode)
cdCanvasVertex(cddbuffer, x1, 640-y1)
cdCanvasVertex(cddbuffer, x2, 640-y2)
cdCanvasVertex(cddbuffer, x3, 640-y3)
cdCanvasVertex(cddbuffer, x4, 640-y4)
cdCanvasEnd(cddbuffer)
-- ...and the attached triangle
if draw=FILL then
cdCanvasSetForeground(cddbuffer, rgb(r-depth*10,#FF,0))
end if
cdCanvasBegin(cddbuffer,mode)
cdCanvasVertex(cddbuffer, x3, 640-y3)
cdCanvasVertex(cddbuffer, x4, 640-y4)
cdCanvasVertex(cddbuffer, x5, 640-y5)
cdCanvasEnd(cddbuffer)
end for
elsif depth<dd then
drawTree(x4, y4, x5, y5, depth + 1, dd)
drawTree(x5, y5, x3, y3, depth + 1, dd)
end if
end procedure
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/)
cdCanvasActivate(cddbuffer)
for i=0 to 7 do -- (draw leaves last)
drawTree(275, 500, 375, 500, 0, i)
end for
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function
function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_WHITE)
cdCanvasSetForeground(cddbuffer, CD_RED)
return IUP_DEFAULT
end function
procedure main()
IupOpen()
canvas = IupCanvas(NULL)
IupSetAttribute(canvas, "RASTERSIZE", "640x640")
IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
dlg = IupDialog(canvas,"RESIZE=NO")
IupSetAttribute(dlg, "TITLE", "Pythagoras Tree")
IupShow(dlg)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#BBC_BASIC
|
BBC BASIC
|
*FLOAT 64
@% = &2040A
INSTALL @lib$+"ARRAYLIB"
REM Test matrix for QR decomposition:
DIM A(2,2)
A() = 12, -51, 4, \
\ 6, 167, -68, \
\ -4, 24, -41
REM Do the QR decomposition:
DIM Q(2,2), R(2,2)
PROCqrdecompose(A(), Q(), R())
PRINT "Q:"
PRINT Q(0,0), Q(0,1), Q(0,2)
PRINT Q(1,0), Q(1,1), Q(1,2)
PRINT Q(2,0), Q(2,1), Q(2,2)
PRINT "R:"
PRINT R(0,0), R(0,1), R(0,2)
PRINT R(1,0), R(1,1), R(1,2)
PRINT R(2,0), R(2,1), R(2,2)
REM Test data for least-squares solution:
DIM x(10) : x() = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
DIM y(10) : y() = 1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321
REM Do the least-squares solution:
DIM a(10,2), q(10,10), r(10,2), t(10,10), b(10), z(2)
FOR i% = 0 TO 10
FOR j% = 0 TO 2
a(i%,j%) = x(i%) ^ j%
NEXT
NEXT
PROCqrdecompose(a(), q(), r())
PROC_transpose(q(),t())
b() = t() . y()
FOR k% = 2 TO 0 STEP -1
s = 0
IF k% < 2 THEN
FOR j% = k%+1 TO 2
s += r(k%,j%) * z(j%)
NEXT
ENDIF
z(k%) = (b(k%) - s) / r(k%,k%)
NEXT k%
PRINT '"Least-squares solution:"
PRINT z(0), z(1), z(2)
END
DEF PROCqrdecompose(A(), Q(), R())
LOCAL i%, k%, m%, n%, H()
m% = DIM(A(),1) : n% = DIM(A(),2)
DIM H(m%,m%)
FOR i% = 0 TO m% : Q(i%,i%) = 1 : NEXT
WHILE n%
PROCqrstep(n%, k%, A(), H())
A() = H() . A()
Q() = Q() . H()
k% += 1
m% -= 1
n% -= 1
ENDWHILE
R() = A()
ENDPROC
DEF PROCqrstep(n%, k%, A(), H())
LOCAL a(), h(), i%, j%
DIM a(n%,0), h(n%,n%)
FOR i% = 0 TO n% : a(i%,0) = A(i%+k%,k%) : NEXT
PROChouseholder(h(), a())
H() = 0 : H(0,0) = 1
FOR i% = 0 TO n%
FOR j% = 0 TO n%
H(i%+k%,j%+k%) = h(i%,j%)
NEXT
NEXT
ENDPROC
REM Create the Householder matrix for the supplied column vector:
DEF PROChouseholder(H(), a())
LOCAL e(), u(), v(), vt(), vvt(), I(), d()
LOCAL i%, n% : n% = DIM(a(),1)
REM Create the scaled standard basis vector e():
DIM e(n%,0) : e(0,0) = SGN(a(0,0)) * MOD(a())
REM Create the normal vector u():
DIM u(n%,0) : u() = a() + e()
REM Normalise with respect to the first element:
DIM v(n%,0) : v() = u() / u(0,0)
REM Get the transpose of v() and its dot product with v():
DIM vt(0,n%), d(0) : PROC_transpose(v(), vt()) : d() = vt() . v()
REM Get the product of v() and vt():
DIM vvt(n%,n%) : vvt() = v() . vt()
REM Create an identity matrix I():
DIM I(n%,n%) : FOR i% = 0 TO n% : I(i%,i%) = 1 : NEXT
REM Create the Householder matrix H() = I - 2/vt()v() v()vt():
vvt() *= 2 / d(0) : H() = I() - vvt()
ENDPROC
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Clojure
|
Clojure
|
(defn gcd [a b] (if (zero? b) a (recur b (mod a b))))
(defn pyth [peri]
(for [m (range 2 (Math/sqrt (/ peri 2)))
n (range (inc (mod m 2)) m 2) ; n<m, opposite polarity
:let [p (* 2 m (+ m n))] ; = a+b+c for this (m,n)
:while (<= p peri)
:when (= 1 (gcd m n))
:let [m2 (* m m), n2 (* n n),
[a b] (sort [(- m2 n2) (* 2 m n)]), c (+ m2 n2)]
k (range 1 (inc (quot peri p)))]
[(= k 1) (* k a) (* k b) (* k c)]))
(defn rcount [ts] ; (->> peri pyth rcount) produces [total, primitive] counts
(reduce (fn [[total prims] t] [(inc total), (if (first t) (inc prims) prims)])
[0 0]
ts))
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Ruby
|
Ruby
|
_="_=%p;puts _%%_";puts _%_
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Rust
|
Rust
|
fn main() {
let x = "fn main() {\n let x = ";
let y = "print!(\"{}{:?};\n let y = {:?};\n {}\", x, x, y, y)\n}\n";
print!("{}{:?};
let y = {:?};
{}", x, x, y, y)
}
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Raku
|
Raku
|
class MRG32k3a {
has @!x1;
has @!x2;
constant a1 = 0, 1403580, -810728;
constant a2 = 527612, 0, -1370589;
constant m1 = 2**32 - 209;
constant m2 = 2**32 - 22853;
submethod BUILD ( Int :$seed where 0 < * <= m1 = 1 ) { @!x1 = @!x2 = $seed, 0, 0 }
method next-int {
@!x1.unshift: (a1[0] * @!x1[0] + a1[1] * @!x1[1] + a1[2] * @!x1[2]) % m1; @!x1.pop;
@!x2.unshift: (a2[0] * @!x2[0] + a2[1] * @!x2[1] + a2[2] * @!x2[2]) % m2; @!x2.pop;
(@!x1[0] - @!x2[0]) % (m1 + 1)
}
method next-rat { self.next-int / (m1 + 1) }
}
# Test next-int with custom seed
say 'Seed: 1234567; first five Int values:';
my $rng = MRG32k3a.new :seed(1234567);
.say for $rng.next-int xx 5;
# Test next-rat (since these are rational numbers by default)
say "\nSeed: 987654321; first 1e5 Rat values histogram:";
$rng = MRG32k3a.new :seed(987654321);
say ( ($rng.next-rat * 5).floor xx 100_000 ).Bag;
# Test next-int with default seed
say "\nSeed: default; first five Int values:";
$rng = MRG32k3a.new;
.say for $rng.next-int xx 5;
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#Raku
|
Raku
|
my \N = 2200;
my @sq = (0 .. N)»²;
my @not = False xx N;
@not[0] = True;
(1 .. N).race.map: -> $d {
my $last = 0;
for $d ... ($d/3).ceiling -> $a {
for 1 .. ($a/2).ceiling -> $b {
last if (my $ab = @sq[$a] + @sq[$b]) > @sq[$d];
if (@sq[$d] - $ab).sqrt.narrow ~~ Int {
@not[$d] = True;
$last = 1;
last
}
}
last if $last;
}
}
say @not.grep( *.not, :k );
|
http://rosettacode.org/wiki/Pythagoras_tree
|
Pythagoras tree
|
The Pythagoras tree is a fractal tree constructed from squares. It is named after Pythagoras because each triple of touching squares encloses a right triangle, in a configuration traditionally used to represent the Pythagorean theorem.
Task
Construct a Pythagoras tree of order 7 using only vectors (no rotation or trigonometric functions).
Related tasks
Fractal tree
|
#Processing
|
Processing
|
void tree(float x1, float y1, float x2, float y2, int depth) {
if (depth <= 0) {
return;
}
float dx = (x2 - x1);
float dy = (y1 - y2);
float x3 = (x2 - dy);
float y3 = (y2 - dx);
float x4 = (x1 - dy);
float y4 = (y1 - dx);
float x5 = (x4 + 0.5*(dx - dy));
float y5 = (y4 - 0.5*(dx + dy));
// square
beginShape();
fill(0.0, 255.0/depth, 0.0);
vertex(x1, y1);
vertex(x2, y2);
vertex(x3, y3);
vertex(x4, y4);
vertex(x1, y1);
endShape();
// triangle
beginShape();
fill(0.0, 255.0/depth, 0.0);
vertex(x3, y3);
vertex(x4, y4);
vertex(x5, y5);
vertex(x3, y3);
endShape();
tree(x4, y4, x5, y5, depth-1);
tree(x5, y5, x3, y3, depth-1);
}
void setup() {
size(1920, 1080);
background(255);
stroke(0, 255, 0);
tree(width/2.3, height, width/1.8, height, 10);
}
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#C
|
C
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef struct {
int m, n;
double ** v;
} mat_t, *mat;
mat matrix_new(int m, int n)
{
mat x = malloc(sizeof(mat_t));
x->v = malloc(sizeof(double*) * m);
x->v[0] = calloc(sizeof(double), m * n);
for (int i = 0; i < m; i++)
x->v[i] = x->v[0] + n * i;
x->m = m;
x->n = n;
return x;
}
void matrix_delete(mat m)
{
free(m->v[0]);
free(m->v);
free(m);
}
void matrix_transpose(mat m)
{
for (int i = 0; i < m->m; i++) {
for (int j = 0; j < i; j++) {
double t = m->v[i][j];
m->v[i][j] = m->v[j][i];
m->v[j][i] = t;
}
}
}
mat matrix_copy(int n, double a[][n], int m)
{
mat x = matrix_new(m, n);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
x->v[i][j] = a[i][j];
return x;
}
mat matrix_mul(mat x, mat y)
{
if (x->n != y->m) return 0;
mat r = matrix_new(x->m, y->n);
for (int i = 0; i < x->m; i++)
for (int j = 0; j < y->n; j++)
for (int k = 0; k < x->n; k++)
r->v[i][j] += x->v[i][k] * y->v[k][j];
return r;
}
mat matrix_minor(mat x, int d)
{
mat m = matrix_new(x->m, x->n);
for (int i = 0; i < d; i++)
m->v[i][i] = 1;
for (int i = d; i < x->m; i++)
for (int j = d; j < x->n; j++)
m->v[i][j] = x->v[i][j];
return m;
}
/* c = a + b * s */
double *vmadd(double a[], double b[], double s, double c[], int n)
{
for (int i = 0; i < n; i++)
c[i] = a[i] + s * b[i];
return c;
}
/* m = I - v v^T */
mat vmul(double v[], int n)
{
mat x = matrix_new(n, n);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
x->v[i][j] = -2 * v[i] * v[j];
for (int i = 0; i < n; i++)
x->v[i][i] += 1;
return x;
}
/* ||x|| */
double vnorm(double x[], int n)
{
double sum = 0;
for (int i = 0; i < n; i++) sum += x[i] * x[i];
return sqrt(sum);
}
/* y = x / d */
double* vdiv(double x[], double d, double y[], int n)
{
for (int i = 0; i < n; i++) y[i] = x[i] / d;
return y;
}
/* take c-th column of m, put in v */
double* mcol(mat m, double *v, int c)
{
for (int i = 0; i < m->m; i++)
v[i] = m->v[i][c];
return v;
}
void matrix_show(mat m)
{
for(int i = 0; i < m->m; i++) {
for (int j = 0; j < m->n; j++) {
printf(" %8.3f", m->v[i][j]);
}
printf("\n");
}
printf("\n");
}
void householder(mat m, mat *R, mat *Q)
{
mat q[m->m];
mat z = m, z1;
for (int k = 0; k < m->n && k < m->m - 1; k++) {
double e[m->m], x[m->m], a;
z1 = matrix_minor(z, k);
if (z != m) matrix_delete(z);
z = z1;
mcol(z, x, k);
a = vnorm(x, m->m);
if (m->v[k][k] > 0) a = -a;
for (int i = 0; i < m->m; i++)
e[i] = (i == k) ? 1 : 0;
vmadd(x, e, a, e, m->m);
vdiv(e, vnorm(e, m->m), e, m->m);
q[k] = vmul(e, m->m);
z1 = matrix_mul(q[k], z);
if (z != m) matrix_delete(z);
z = z1;
}
matrix_delete(z);
*Q = q[0];
*R = matrix_mul(q[0], m);
for (int i = 1; i < m->n && i < m->m - 1; i++) {
z1 = matrix_mul(q[i], *Q);
if (i > 1) matrix_delete(*Q);
*Q = z1;
matrix_delete(q[i]);
}
matrix_delete(q[0]);
z = matrix_mul(*Q, m);
matrix_delete(*R);
*R = z;
matrix_transpose(*Q);
}
double in[][3] = {
{ 12, -51, 4},
{ 6, 167, -68},
{ -4, 24, -41},
{ -1, 1, 0},
{ 2, 0, 3},
};
int main()
{
mat R, Q;
mat x = matrix_copy(3, in, 5);
householder(x, &R, &Q);
puts("Q"); matrix_show(Q);
puts("R"); matrix_show(R);
// to show their product is the input matrix
mat m = matrix_mul(Q, R);
puts("Q * R"); matrix_show(m);
matrix_delete(x);
matrix_delete(R);
matrix_delete(Q);
matrix_delete(m);
return 0;
}
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#11l
|
11l
|
:start:
print(‘Program: ’:argv[0])
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#CoffeeScript
|
CoffeeScript
|
gcd = (x, y) ->
return x if y == 0
gcd(y, x % y)
# m,n generate primitive Pythag triples
#
# preconditions:
# m, n are integers of different parity
# m > n
# gcd(m,n) == 1 (coprime)
#
# m, n generate: [m*m - n*n, 2*m*n, m*m + n*n]
# perimeter is 2*m*m + 2*m*n = 2 * m * (m+n)
count_triples = (max_perim) ->
num_primitives = 0
num_triples = 0
m = 2
upper_limit = Math.sqrt max_perim / 2
while m <= upper_limit
n = m % 2 + 1
p = 2*m*m + 2*m*n
delta = 4*m
while n < m and p <= max_perim
if gcd(m, n) == 1
num_primitives += 1
num_triples += Math.floor max_perim / p
n += 2
p += delta
m += 1
console.log num_primitives, num_triples
max_perim = Math.pow 10, 9 # takes under a minute
count_triples(max_perim)
|
http://rosettacode.org/wiki/Quine
|
Quine
|
A quine is a self-referential program that can,
without any external access, output its own source.
A quine (named after Willard Van Orman Quine) is also known as:
self-reproducing automata (1972)
self-replicating program or self-replicating computer program
self-reproducing program or self-reproducing computer program
self-copying program or self-copying computer program
It is named after the philosopher and logician
who studied self-reference and quoting in natural language,
as for example in the paradox "'Yields falsehood when preceded by its quotation' yields falsehood when preceded by its quotation."
"Source" has one of two meanings. It can refer to the text-based program source.
For languages in which program source is represented as a data structure, "source" may refer to the data structure: quines in these languages fall into two categories: programs which print a textual representation of themselves, or expressions which evaluate to a data structure which is equivalent to that expression.
The usual way to code a quine works similarly to this paradox: The program consists of two identical parts, once as plain code and once quoted in some way (for example, as a character string, or a literal data structure). The plain code then accesses the quoted code and prints it out twice, once unquoted and once with the proper quotation marks added. Often, the plain code and the quoted code have to be nested.
Task
Write a program that outputs its own source code in this way. If the language allows it, you may add a variant that accesses the code directly. You are not allowed to read any external files with the source code. The program should also contain some sort of self-reference, so constant expressions which return their own value which some top-level interpreter will print out. Empty programs producing no output are not allowed.
There are several difficulties that one runs into when writing a quine, mostly dealing with quoting:
Part of the code usually needs to be stored as a string or structural literal in the language, which needs to be quoted somehow. However, including quotation marks in the string literal itself would be troublesome because it requires them to be escaped, which then necessitates the escaping character (e.g. a backslash) in the string, which itself usually needs to be escaped, and so on.
Some languages have a function for getting the "source code representation" of a string (i.e. adds quotation marks, etc.); in these languages, this can be used to circumvent the quoting problem.
Another solution is to construct the quote character from its character code, without having to write the quote character itself. Then the character is inserted into the string at the appropriate places. The ASCII code for double-quote is 34, and for single-quote is 39.
Newlines in the program may have to be reproduced as newlines in the string, which usually requires some kind of escape sequence (e.g. "\n"). This causes the same problem as above, where the escaping character needs to itself be escaped, etc.
If the language has a way of getting the "source code representation", it usually handles the escaping of characters, so this is not a problem.
Some languages allow you to have a string literal that spans multiple lines, which embeds the newlines into the string without escaping.
Write the entire program on one line, for free-form languages (as you can see for some of the solutions here, they run off the edge of the screen), thus removing the need for newlines. However, this may be unacceptable as some languages require a newline at the end of the file; and otherwise it is still generally good style to have a newline at the end of a file. (The task is not clear on whether a newline is required at the end of the file.) Some languages have a print statement that appends a newline; which solves the newline-at-the-end issue; but others do not.
Next to the Quines presented here, many other versions can be found on the Quine page.
Related task
print itself.
|
#Scala
|
Scala
|
val q = "\"" * 3
val c = """val q = "\"" * 3
val c = %s%s%s
println(c format (q, c, q))
"""
println(c format (q, c, q))
|
http://rosettacode.org/wiki/Pseudo-random_numbers/Combined_recursive_generator_MRG32k3a
|
Pseudo-random numbers/Combined recursive generator MRG32k3a
|
MRG32k3a Combined recursive generator (pseudo-code)
/* Constants */
/* First generator */
a1 = [0, 1403580, -810728]
m1 = 2**32 - 209
/* Second Generator */
a2 = [527612, 0, -1370589]
m2 = 2**32 - 22853
d = m1 + 1
class MRG32k3a
x1 = [0, 0, 0] /* list of three last values of gen #1 */
x2 = [0, 0, 0] /* list of three last values of gen #2 */
method seed(u64 seed_state)
assert seed_state in range >0 and < d
x1 = [seed_state, 0, 0]
x2 = [seed_state, 0, 0]
end method
method next_int()
x1i = (a1[0]*x1[0] + a1[1]*x1[1] + a1[2]*x1[2]) mod m1
x2i = (a2[0]*x2[0] + a2[1]*x2[1] + a2[2]*x2[2]) mod m2
x1 = [x1i, x1[0], x1[1]] /* Keep last three */
x2 = [x2i, x2[0], x2[1]] /* Keep last three */
z = (x1i - x2i) % m1
answer = (z + 1)
return answer
end method
method next_float():
return float next_int() / d
end method
end class
MRG32k3a Use:
random_gen = instance MRG32k3a
random_gen.seed(1234567)
print(random_gen.next_int()) /* 1459213977 */
print(random_gen.next_int()) /* 2827710106 */
print(random_gen.next_int()) /* 4245671317 */
print(random_gen.next_int()) /* 3877608661 */
print(random_gen.next_int()) /* 2595287583 */
Task
Generate a class/set of functions that generates pseudo-random
numbers as shown above.
Show that the first five integers generated with the seed `1234567`
are as shown above
Show that for an initial seed of '987654321' the counts of 100_000
repetitions of
floor(random_gen.next_float() * 5)
Is as follows:
0: 20002, 1: 20060, 2: 19948, 3: 20059, 4: 19931
Show your output here, on this page.
|
#Ruby
|
Ruby
|
def mod(x, y)
m = x % y
if m < 0 then
if y < 0 then
return m - y
else
return m + y
end
end
return m
end
# Constants
# First generator
A1 = [0, 1403580, -810728]
A1.freeze
M1 = (1 << 32) - 209
# Second generator
A2 = [527612, 0, -1370589]
A2.freeze
M2 = (1 << 32) - 22853
D = M1 + 1
# the last three values of the first generator
$x1 = [0, 0, 0]
# the last three values of the second generator
$x2 = [0, 0, 0]
def seed(seed_state)
$x1 = [seed_state, 0, 0]
$x2 = [seed_state, 0, 0]
end
def next_int()
x1i = mod((A1[0] * $x1[0] + A1[1] * $x1[1] + A1[2] * $x1[2]), M1)
x2i = mod((A2[0] * $x2[0] + A2[1] * $x2[1] + A2[2] * $x2[2]), M2)
z = mod(x1i - x2i, M1)
$x1 = [x1i, $x1[0], $x1[1]]
$x2 = [x2i, $x2[0], $x2[1]]
return z + 1
end
def next_float()
return 1.0 * next_int() / D
end
########################################
seed(1234567)
print next_int(), "\n"
print next_int(), "\n"
print next_int(), "\n"
print next_int(), "\n"
print next_int(), "\n"
print "\n"
counts = [0, 0, 0, 0, 0]
seed(987654321)
for i in 1 .. 100000
value = (next_float() * 5.0).floor
counts[value] = counts[value] + 1
end
counts.each_with_index { |v,i|
print i, ": ", v, "\n"
}
|
http://rosettacode.org/wiki/Pythagorean_quadruples
|
Pythagorean quadruples
|
One form of Pythagorean quadruples is (for positive integers a, b, c, and d):
a2 + b2 + c2 = d2
An example:
22 + 32 + 62 = 72
which is:
4 + 9 + 36 = 49
Task
For positive integers up 2,200 (inclusive), for all values of a,
b, c, and d,
find (and show here) those values of d that can't be represented.
Show the values of d on one line of output (optionally with a title).
Related tasks
Euler's sum of powers conjecture.
Pythagorean triples.
Reference
the Wikipedia article: Pythagorean quadruple.
|
#REXX
|
REXX
|
/*REXX pgm computes/shows (integers), D that aren't possible for: a² + b² + c² = d² */
parse arg hi . /*obtain optional argument from the CL.*/
if hi=='' | hi=="," then hi=2200; high= 3 * hi /*Not specified? Then use the default.*/
@.=. /*array of integers to be squared. */
!.=. /* " " " squared. */
do j=1 for high /*precompute possible squares (to max).*/
_= j*j; !._= j; if j<=hi then @.j= _ /*define a square; D value; squared # */
end /*j*/
d.=. /*array of possible solutions (D) */
do a=1 for hi-2; aodd= a//2 /*go hunting for solutions to equation.*/
do b=a to hi-1;
if aodd then if b//2 then iterate /*Are A and B both odd? Then skip.*/
ab = @.a + @.b /*calculate sum of 2 (A,B) squares.*/
do c=b to hi; abc= ab + @.c /* " " " 3 (A,B,C) " */
if !.abc==. then iterate /*Not a square? Then skip it*/
s=!.abc; d.s= /*define this D solution as being found*/
end /*c*/
end /*b*/
end /*a*/
say
say 'Not possible positive integers for d ≤' hi " using equation: a² + b² + c² = d²"
say
$= /* [↓] find all the "not possibles". */
do p=1 for hi; if d.p==. then $=$ p /*Not possible? Then add it to the list*/
end /*p*/ /* [↓] display list of not-possibles. */
say substr($, 2) /*stick a fork in it, we're all done. */
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.