title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Complexity Analysis of the Lasso Regularization Path
stat.ML cs.LG math.OC
The regularization path of the Lasso can be shown to be piecewise linear, making it possible to "follow" and explicitly compute the entire path. We analyze in this paper this popular strategy, and prove that its worst case complexity is exponential in the number of variables. We then oppose this pessimistic result to an (optimistic) approximate analysis: We show that an approximate path with at most O(1/sqrt(epsilon)) linear segments can always be obtained, where every point on the path is guaranteed to be optimal up to a relative epsilon-duality gap. We complete our theoretical analysis with a practical algorithm to compute these approximate paths.
Julien Mairal and Bin Yu
null
1205.0079
null
null
ProPPA: A Fast Algorithm for $\ell_1$ Minimization and Low-Rank Matrix Completion
cs.LG math.OC
We propose a Projected Proximal Point Algorithm (ProPPA) for solving a class of optimization problems. The algorithm iteratively computes the proximal point of the last estimated solution projected into an affine space which itself is parallel and approaching to the feasible set. We provide convergence analysis theoretically supporting the general algorithm, and then apply it for solving $\ell_1$-minimization problems and the matrix completion problem. These problems arise in many applications including machine learning, image and signal processing. We compare our algorithm with the existing state-of-the-art algorithms. Experimental results on solving these problems show that our algorithm is very efficient and competitive.
Ranch Y.Q. Lai and Pong C. Yuen
null
1205.0088
null
null
A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning
cs.LG stat.ML
We consider the problem of simultaneously learning to linearly combine a very large number of kernels and learn a good predictor based on the learnt kernel. When the number of kernels $d$ to be combined is very large, multiple kernel learning methods whose computational cost scales linearly in $d$ are intractable. We propose a randomized version of the mirror descent algorithm to overcome this issue, under the objective of minimizing the group $p$-norm penalized empirical risk. The key to achieve the required exponential speed-up is the computationally efficient construction of low-variance estimates of the gradient. We propose importance sampling based estimates, and find that the ideal distribution samples a coordinate with a probability proportional to the magnitude of the corresponding gradient. We show the surprising result that in the case of learning the coefficients of a polynomial kernel, the combinatorial structure of the base kernels to be combined allows the implementation of sampling from this distribution to run in $O(\log(d))$ time, making the total computational cost of the method to achieve an $\epsilon$-optimal solution to be $O(\log(d)/\epsilon^2)$, thereby allowing our method to operate for very large values of $d$. Experiments with simulated and real data confirm that the new algorithm is computationally more efficient than its state-of-the-art alternatives.
Arash Afkanpour, Andr\'as Gy\"orgy, Csaba Szepesv\'ari, Michael Bowling
null
1205.0288
null
null
Minimax Classifier for Uncertain Costs
cs.LG
Many studies on the cost-sensitive learning assumed that a unique cost matrix is known for a problem. However, this assumption may not hold for many real-world problems. For example, a classifier might need to be applied in several circumstances, each of which associates with a different cost matrix. Or, different human experts have different opinions about the costs for a given problem. Motivated by these facts, this study aims to seek the minimax classifier over multiple cost matrices. In summary, we theoretically proved that, no matter how many cost matrices are involved, the minimax problem can be tackled by solving a number of standard cost-sensitive problems and sub-problems that involve only two cost matrices. As a result, a general framework for achieving minimax classifier over multiple cost matrices is suggested and justified by preliminary empirical studies.
Rui Wang and Ke Tang
null
1205.0406
null
null
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
cs.LG stat.ME stat.ML
We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. The equivalence holds when energy distances are computed with semimetrics of negative type, in which case a kernel may be defined such that the RKHS distance between distributions corresponds exactly to the energy distance. We determine the class of probability distributions for which kernels induced by semimetrics are characteristic (that is, for which embeddings of the distributions to an RKHS are injective). Finally, we investigate the performance of this family of kernels in two-sample and independence tests: we show in particular that the energy distance most commonly employed in statistics is just one member of a parametric family of kernels, and that other choices from this family can yield more powerful tests.
Dino Sejdinovic, Arthur Gretton, Bharath Sriperumbudur, Kenji Fukumizu
null
1205.0411
null
null
Greedy Multiple Instance Learning via Codebook Learning and Nearest Neighbor Voting
cs.LG
Multiple instance learning (MIL) has attracted great attention recently in machine learning community. However, most MIL algorithms are very slow and cannot be applied to large datasets. In this paper, we propose a greedy strategy to speed up the multiple instance learning process. Our contribution is two fold. First, we propose a density ratio model, and show that maximizing a density ratio function is the low bound of the DD model under certain conditions. Secondly, we make use of a histogram ratio between positive bags and negative bags to represent the density ratio function and find codebooks separately for positive bags and negative bags by a greedy strategy. For testing, we make use of a nearest neighbor strategy to classify new bags. We test our method on both small benchmark datasets and the large TRECVID MED11 dataset. The experimental results show that our method yields comparable accuracy to the current state of the art, while being up to at least one order of magnitude faster.
Gang Chen and Jason Corso
null
1205.0610
null
null
Generative Maximum Entropy Learning for Multiclass Classification
cs.IT cs.LG math.IT
Maximum entropy approach to classification is very well studied in applied statistics and machine learning and almost all the methods that exists in literature are discriminative in nature. In this paper, we introduce a maximum entropy classification method with feature selection for large dimensional data such as text datasets that is generative in nature. To tackle the curse of dimensionality of large data sets, we employ conditional independence assumption (Naive Bayes) and we perform feature selection simultaneously, by enforcing a `maximum discrimination' between estimated class conditional densities. For two class problems, in the proposed method, we use Jeffreys ($J$) divergence to discriminate the class conditional densities. To extend our method to the multi-class case, we propose a completely new approach by considering a multi-distribution divergence: we replace Jeffreys divergence by Jensen-Shannon ($JS$) divergence to discriminate conditional densities of multiple classes. In order to reduce computational complexity, we employ a modified Jensen-Shannon divergence ($JS_{GM}$), based on AM-GM inequality. We show that the resulting divergence is a natural generalization of Jeffreys divergence to a multiple distributions case. As far as the theoretical justifications are concerned we show that when one intends to select the best features in a generative maximum entropy approach, maximum discrimination using $J-$divergence emerges naturally in binary classification. Performance and comparative study of the proposed algorithms have been demonstrated on large dimensional text and gene expression datasets that show our methods scale up very well with large dimensional datasets.
Ambedkar Dukkipati, Gaurav Pandey, Debarghya Ghoshdastidar, Paramita Koley, D. M. V. Satya Sriram
null
1205.0651
null
null
Weighted Patterns as a Tool for Improving the Hopfield Model
cond-mat.dis-nn cs.LG cs.NE
We generalize the standard Hopfield model to the case when a weight is assigned to each input pattern. The weight can be interpreted as the frequency of the pattern occurrence at the input of the network. In the framework of the statistical physics approach we obtain the saddle-point equation allowing us to examine the memory of the network. In the case of unequal weights our model does not lead to the catastrophic destruction of the memory due to its overfilling (that is typical for the standard Hopfield model). The real memory consists only of the patterns with weights exceeding a critical value that is determined by the weights distribution. We obtain the algorithm allowing us to find this critical value for an arbitrary distribution of the weights, and analyze in detail some particular weights distributions. It is shown that the memory decreases as compared to the case of the standard Hopfield model. However, in our model the network can learn online without the catastrophic destruction of the memory.
Iakov Karandashev, Boris Kryzhanovsky and Leonid Litinskii
10.1103/PhysRevE.85.041925
1205.0908
null
null
Variable Selection for Latent Dirichlet Allocation
cs.LG stat.ML
In latent Dirichlet allocation (LDA), topics are multinomial distributions over the entire vocabulary. However, the vocabulary usually contains many words that are not relevant in forming the topics. We adopt a variable selection method widely used in statistical modeling as a dimension reduction tool and combine it with LDA. In this variable selection model for LDA (vsLDA), topics are multinomial distributions over a subset of the vocabulary, and by excluding words that are not informative for finding the latent topic structure of the corpus, vsLDA finds topics that are more robust and discriminative. We compare three models, vsLDA, LDA with symmetric priors, and LDA with asymmetric priors, on heldout likelihood, MCMC chain consistency, and document classification. The performance of vsLDA is better than symmetric LDA for likelihood and classification, better than asymmetric LDA for consistency and classification, and about the same in the other comparisons.
Dongwoo Kim, Yeonseung Chung, Alice Oh
null
1205.1053
null
null
On the Complexity of Trial and Error
cs.CC cs.DS cs.LG
Motivated by certain applications from physics, biochemistry, economics, and computer science, in which the objects under investigation are not accessible because of various limitations, we propose a trial-and-error model to examine algorithmic issues in such situations. Given a search problem with a hidden input, we are asked to find a valid solution, to find which we can propose candidate solutions (trials), and use observed violations (errors), to prepare future proposals. In accordance with our motivating applications, we consider the fairly broad class of constraint satisfaction problems, and assume that errors are signaled by a verification oracle in the format of the index of a violated constraint (with the content of the constraint still hidden). Our discoveries are summarized as follows. On one hand, despite the seemingly very little information provided by the verification oracle, efficient algorithms do exist for a number of important problems. For the Nash, Core, Stable Matching, and SAT problems, the unknown-input versions are as hard as the corresponding known-input versions, up to a factor of polynomial. We further give almost tight bounds on the latter two problems' trial complexities. On the other hand, there are problems whose complexities are substantially increased in the unknown-input model. In particular, no time-efficient algorithms exist (under standard hardness assumptions) for Graph Isomorphism and Group Isomorphism problems. The tools used to achieve these results include order theory, strong ellipsoid method, and some non-standard reductions. Our model investigates the value of information, and our results demonstrate that the lack of input information can introduce various levels of extra difficulty. The model exhibits intimate connections with (and we hope can also serve as a useful supplement to) certain existing learning and complexity theories.
Xiaohui Bei, Ning Chen, Shengyu Zhang
null
1205.1183
null
null
Convex Relaxation for Combinatorial Penalties
stat.ML cs.LG
In this paper, we propose an unifying view of several recently proposed structured sparsity-inducing norms. We consider the situation of a model simultaneously (a) penalized by a set- function de ned on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in Lp-norm. We show that the natural combinatorial optimization problems obtained may be relaxed into convex optimization problems and introduce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness of our relaxations. We moreover establish links with norms based on latent representations including the latent group Lasso and block-coding, and with norms obtained from submodular functions.
Guillaume Obozinski (INRIA Paris - Rocquencourt, LIENS), Francis Bach (INRIA Paris - Rocquencourt, LIENS)
null
1205.1240
null
null
Sparse group lasso and high dimensional multinomial classification
stat.ML cs.LG stat.CO
The sparse group lasso optimization problem is solved using a coordinate gradient descent algorithm. The algorithm is applicable to a broad class of convex loss functions. Convergence of the algorithm is established, and the algorithm is used to investigate the performance of the multinomial sparse group lasso classifier. On three different real data examples the multinomial group lasso clearly outperforms multinomial lasso in terms of achieved classification error rate and in terms of including fewer features for the classification. The run-time of our sparse group lasso implementation is of the same order of magnitude as the multinomial lasso algorithm implemented in the R package glmnet. Our implementation scales well with the problem size. One of the high dimensional examples considered is a 50 class classification problem with 10k features, which amounts to estimating 500k parameters. The implementation is available as the R package msgl.
Martin Vincent, Niels Richard Hansen
null
1205.1245
null
null
Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG via Block Sparse Bayesian Learning
stat.ML cs.LG stat.AP
Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body-area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. This work proposes to use the block sparse Bayesian learning (BSBL) framework to compress/reconstruct non-sparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.
Zhilin Zhang, Tzyy-Ping Jung, Scott Makeig, Bhaskar D. Rao
10.1109/TBME.2012.2226175
1205.1287
null
null
Detecting Spammers via Aggregated Historical Data Set
cs.CR cs.LG
The battle between email service providers and senders of mass unsolicited emails (Spam) continues to gain traction. Vast numbers of Spam emails are sent mainly from automatic botnets distributed over the world. One method for mitigating Spam in a computationally efficient manner is fast and accurate blacklisting of the senders. In this work we propose a new sender reputation mechanism that is based on an aggregated historical data-set which encodes the behavior of mail transfer agents over time. A historical data-set is created from labeled logs of received emails. We use machine learning algorithms to build a model that predicts the \emph{spammingness} of mail transfer agents in the near future. The proposed mechanism is targeted mainly at large enterprises and email service providers and can be used for updating both the black and the white lists. We evaluate the proposed mechanism using 9.5M anonymized log entries obtained from the biggest Internet service provider in Europe. Experiments show that proposed method detects more than 94% of the Spam emails that escaped the blacklist (i.e., TPR), while having less than 0.5% false-alarms. Therefore, the effectiveness of the proposed method is much higher than of previously reported reputation mechanisms, which rely on emails logs. In addition, the proposed method, when used for updating both the black and white lists, eliminated the need in automatic content inspection of 4 out of 5 incoming emails, which resulted in dramatic reduction in the filtering computational load.
Eitan Menahem and Rami Puzis
null
1205.1357
null
null
Dynamic Multi-Relational Chinese Restaurant Process for Analyzing Influences on Users in Social Media
cs.SI cs.LG physics.soc-ph
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Facebook data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends, beyond the capability of existing approaches.
Himabindu Lakkaraju, Indrajit Bhattacharya, Chiranjib Bhattacharyya
null
1205.1456
null
null
Risk estimation for matrix recovery with spectral regularization
math.OC cs.IT cs.LG math.IT math.ST stat.ML stat.TH
In this paper, we develop an approach to recursively estimate the quadratic risk for matrix recovery problems regularized with spectral functions. Toward this end, in the spirit of the SURE theory, a key step is to compute the (weak) derivative and divergence of a solution with respect to the observations. As such a solution is not available in closed form, but rather through a proximal splitting algorithm, we propose to recursively compute the divergence from the sequence of iterates. A second challenge that we unlocked is the computation of the (weak) derivative of the proximity operator of a spectral function. To show the potential applicability of our approach, we exemplify it on a matrix completion problem to objectively and automatically select the regularization parameter.
Charles-Alban Deledalle (CEREMADE), Samuel Vaiter (CEREMADE), Gabriel Peyr\'e (CEREMADE), Jalal Fadili (GREYC), Charles Dossal (IMB)
null
1205.1482
null
null
Graph-based Learning with Unbalanced Clusters
stat.ML cs.LG
Graph construction is a crucial step in spectral clustering (SC) and graph-based semi-supervised learning (SSL). Spectral methods applied on standard graphs such as full-RBF, $\epsilon$-graphs and $k$-NN graphs can lead to poor performance in the presence of proximal and unbalanced data. This is because spectral methods based on minimizing RatioCut or normalized cut on these graphs tend to put more importance on balancing cluster sizes over reducing cut values. We propose a novel graph construction technique and show that the RatioCut solution on this new graph is able to handle proximal and unbalanced data. Our method is based on adaptively modulating the neighborhood degrees in a $k$-NN graph, which tends to sparsify neighborhoods in low density regions. Our method adapts to data with varying levels of unbalancedness and can be naturally used for small cluster detection. We justify our ideas through limit cut analysis. Unsupervised and semi-supervised experiments on synthetic and real data sets demonstrate the superiority of our method.
Jing Qian, Venkatesh Saligrama, Manqi Zhao
null
1205.1496
null
null
Approximate Dynamic Programming By Minimizing Distributionally Robust Bounds
stat.ML cs.LG
Approximate dynamic programming is a popular method for solving large Markov decision processes. This paper describes a new class of approximate dynamic programming (ADP) methods- distributionally robust ADP-that address the curse of dimensionality by minimizing a pessimistic bound on the policy loss. This approach turns ADP into an optimization problem, for which we derive new mathematical program formulations and analyze its properties. DRADP improves on the theoretical guarantees of existing ADP methods-it guarantees convergence and L1 norm based error bounds. The empirical evaluation of DRADP shows that the theoretical guarantees translate well into good performance on benchmark problems.
Marek Petrik
null
1205.1782
null
null
The Natural Gradient by Analogy to Signal Whitening, and Recipes and Tricks for its Use
cs.LG stat.ML
The natural gradient allows for more efficient gradient descent by removing dependencies and biases inherent in a function's parameterization. Several papers present the topic thoroughly and precisely. It remains a very difficult idea to get your head around however. The intent of this note is to provide simple intuition for the natural gradient and its use. We review how an ill conditioned parameter space can undermine learning, introduce the natural gradient by analogy to the more widely understood concept of signal whitening, and present tricks and specific prescriptions for applying the natural gradient to learning problems.
Jascha Sohl-Dickstein
null
1205.1828
null
null
Hamiltonian Annealed Importance Sampling for partition function estimation
cs.LG physics.data-an
We introduce an extension to annealed importance sampling that uses Hamiltonian dynamics to rapidly estimate normalization constants. We demonstrate this method by computing log likelihoods in directed and undirected probabilistic image models. We compare the performance of linear generative models with both Gaussian and Laplace priors, product of experts models with Laplace and Student's t experts, the mc-RBM, and a bilinear generative model. We provide code to compare additional models.
Jascha Sohl-Dickstein and Benjamin J. Culpepper
null
1205.1925
null
null
The representer theorem for Hilbert spaces: a necessary and sufficient condition
math.FA cs.LG
A family of regularization functionals is said to admit a linear representer theorem if every member of the family admits minimizers that lie in a fixed finite dimensional subspace. A recent characterization states that a general class of regularization functionals with differentiable regularizer admits a linear representer theorem if and only if the regularization term is a non-decreasing function of the norm. In this report, we improve over such result by replacing the differentiability assumption with lower semi-continuity and deriving a proof that is independent of the dimensionality of the space.
Francesco Dinuzzo, Bernhard Sch\"olkopf
null
1205.1928
null
null
Hamiltonian Monte Carlo with Reduced Momentum Flips
physics.data-an cs.LG
Hamiltonian Monte Carlo (or hybrid Monte Carlo) with partial momentum refreshment explores the state space more slowly than it otherwise would due to the momentum reversals which occur on proposal rejection. These cause trajectories to double back on themselves, leading to random walk behavior on timescales longer than the typical rejection time, and leading to slower mixing. I present a technique by which the number of momentum reversals can be reduced. This is accomplished by maintaining the net exchange of probability between states with opposite momenta, but reducing the rate of exchange in both directions such that it is 0 in one direction. An experiment illustrates these reduced momentum flips accelerating mixing for a particular distribution.
Jascha Sohl-Dickstein
null
1205.1939
null
null
Dynamic Behavioral Mixed-Membership Model for Large Evolving Networks
cs.SI cs.LG physics.soc-ph stat.ML
The majority of real-world networks are dynamic and extremely large (e.g., Internet Traffic, Twitter, Facebook, ...). To understand the structural behavior of nodes in these large dynamic networks, it may be necessary to model the dynamics of behavioral roles representing the main connectivity patterns over time. In this paper, we propose a dynamic behavioral mixed-membership model (DBMM) that captures the roles of nodes in the graph and how they evolve over time. Unlike other node-centric models, our model is scalable for analyzing large dynamic networks. In addition, DBMM is flexible, parameter-free, has no functional form or parameterization, and is interpretable (identifies explainable patterns). The performance results indicate our approach can be applied to very large networks while the experimental results show that our model uncovers interesting patterns underlying the dynamics of these networks.
Ryan Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson
null
1205.2056
null
null
A Converged Algorithm for Tikhonov Regularized Nonnegative Matrix Factorization with Automatic Regularization Parameters Determination
cs.LG
We present a converged algorithm for Tikhonov regularized nonnegative matrix factorization (NMF). We specially choose this regularization because it is known that Tikhonov regularized least square (LS) is the more preferable form in solving linear inverse problems than the conventional LS. Because an NMF problem can be decomposed into LS subproblems, it can be expected that Tikhonov regularized NMF will be the more appropriate approach in solving NMF problems. The algorithm is derived using additive update rules which have been shown to have convergence guarantee. We equip the algorithm with a mechanism to automatically determine the regularization parameters based on the L-curve, a well-known concept in the inverse problems community, but is rather unknown in the NMF research. The introduction of this algorithm thus solves two inherent problems in Tikhonov regularized NMF algorithm research, i.e., convergence guarantee and regularization parameters determination.
Andri Mirzal
null
1205.2151
null
null
A Generalized Kernel Approach to Structured Output Learning
stat.ML cs.LG
We study the problem of structured output learning from a regression perspective. We first provide a general formulation of the kernel dependency estimation (KDE) problem using operator-valued kernels. We show that some of the existing formulations of this problem are special cases of our framework. We then propose a covariance-based operator-valued kernel that allows us to take into account the structure of the kernel feature space. This kernel operates on the output space and encodes the interactions between the outputs without any reference to the input space. To address this issue, we introduce a variant of our KDE method based on the conditional covariance operator that in addition to the correlation between the outputs takes into account the effects of the input variables. Finally, we evaluate the performance of our KDE approach using both covariance and conditional covariance kernels on two structured output problems, and compare it to the state-of-the-art kernel-based structured output regression methods.
Hachem Kadri (INRIA Lille - Nord Europe), Mohammad Ghavamzadeh (INRIA Lille - Nord Europe), Philippe Preux (INRIA Lille - Nord Europe)
null
1205.2171
null
null
Modularity-Based Clustering for Network-Constrained Trajectories
stat.ML cs.LG physics.data-an
We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.
Mohamed Khalil El Mahrsi (LTCI), Fabrice Rossi (SAMM)
null
1205.2172
null
null
Efficient Constrained Regret Minimization
cs.LG
Online learning constitutes a mathematical and compelling framework to analyze sequential decision making problems in adversarial environments. The learner repeatedly chooses an action, the environment responds with an outcome, and then the learner receives a reward for the played action. The goal of the learner is to maximize his total reward. However, there are situations in which, in addition to maximizing the cumulative reward, there are some additional constraints on the sequence of decisions that must be satisfied on average by the learner. In this paper we study an extension to the online learning where the learner aims to maximize the total reward given that some additional constraints need to be satisfied. By leveraging on the theory of Lagrangian method in constrained optimization, we propose Lagrangian exponentially weighted average (LEWA) algorithm, which is a primal-dual variant of the well known exponentially weighted average algorithm, to efficiently solve constrained online decision making problems. Using novel theoretical analysis, we establish the regret and the violation of the constraint bounds in full information and bandit feedback models.
Mehrdad Mahdavi, Tianbao Yang, Rong Jin
null
1205.2265
null
null
A Discussion on Parallelization Schemes for Stochastic Vector Quantization Algorithms
stat.ML cs.DC cs.LG
This paper studies parallelization schemes for stochastic Vector Quantization algorithms in order to obtain time speed-ups using distributed resources. We show that the most intuitive parallelization scheme does not lead to better performances than the sequential algorithm. Another distributed scheme is therefore introduced which obtains the expected speed-ups. Then, it is improved to fit implementation on distributed architectures where communications are slow and inter-machines synchronization too costly. The schemes are tested with simulated distributed architectures and, for the last one, with Microsoft Windows Azure platform obtaining speed-ups up to 32 Virtual Machines.
Matthieu Durut (LTCI), Beno\^it Patra (LSTA), Fabrice Rossi (SAMM)
null
1205.2282
null
null
Sparse Approximation via Penalty Decomposition Methods
cs.LG math.OC stat.CO stat.ML
In this paper we consider sparse approximation problems, that is, general $l_0$ minimization problems with the $l_0$-"norm" of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of penalty subproblems are solved by a block coordinate descent (BCD) method. Under some suitable assumptions, we establish that any accumulation point of the sequence generated by the PD methods satisfies the first-order optimality conditions of the problems. Furthermore, for the problems in which the $l_0$ part is the only nonconvex part, we show that such an accumulation point is a local minimizer of the problems. In addition, we show that any accumulation point of the sequence generated by the BCD method is a saddle point of the penalty subproblem. Moreover, for the problems in which the $l_0$ part is the only nonconvex part, we establish that such an accumulation point is a local minimizer of the penalty subproblem. Finally, we test the performance of our PD methods by applying them to sparse logistic regression, sparse inverse covariance selection, and compressed sensing problems. The computational results demonstrate that our methods generally outperform the existing methods in terms of solution quality and/or speed.
Zhaosong Lu and Yong Zhang
null
1205.2334
null
null
Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC
cs.NA cs.LG math.OC
The damped Gauss-Newton (dGN) algorithm for CANDECOMP/PARAFAC (CP) decomposition can handle the challenges of collinearity of factors and different magnitudes of factors; nevertheless, for factorization of an $N$-D tensor of size $I_1\times I_N$ with rank $R$, the algorithm is computationally demanding due to construction of large approximate Hessian of size $(RT \times RT)$ and its inversion where $T = \sum_n I_n$. In this paper, we propose a fast implementation of the dGN algorithm which is based on novel expressions of the inverse approximate Hessian in block form. The new implementation has lower computational complexity, besides computation of the gradient (this part is common to both methods), requiring the inversion of a matrix of size $NR^2\times NR^2$, which is much smaller than the whole approximate Hessian, if $T \gg NR$. In addition, the implementation has lower memory requirements, because neither the Hessian nor its inverse never need to be stored in their entirety. A variant of the algorithm working with complex valued data is proposed as well. Complexity and performance of the proposed algorithm is compared with those of dGN and ALS with line search on examples of difficult benchmark tensors.
Anh Huy Phan and Petr Tichavsk\'y and Andrzej Cichocki
null
1205.2584
null
null
On the Identifiability of the Post-Nonlinear Causal Model
stat.ML cs.LG
By taking into account the nonlinear effect of the cause, the inner noise effect, and the measurement distortion effect in the observed variables, the post-nonlinear (PNL) causal model has demonstrated its excellent performance in distinguishing the cause from effect. However, its identifiability has not been properly addressed, and how to apply it in the case of more than two variables is also a problem. In this paper, we conduct a systematic investigation on its identifiability in the two-variable case. We show that this model is identifiable in most cases; by enumerating all possible situations in which the model is not identifiable, we provide sufficient conditions for its identifiability. Simulations are given to support the theoretical results. Moreover, in the case of more than two variables, we show that the whole causal structure can be found by applying the PNL causal model to each structure in the Markov equivalent class and testing if the disturbance is independent of the direct causes for each variable. In this way the exhaustive search over all possible causal structures is avoided.
Kun Zhang, Aapo Hyvarinen
null
1205.2599
null
null
A Uniqueness Theorem for Clustering
cs.LG
Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like "What distinguishes a clustering of data from other data partitioning?", "Are there any principles governing all clustering paradigms?", "How should a user choose an appropriate clustering algorithm for a particular task?", etc. are almost completely unanswered by the existing body of clustering literature. We consider an axiomatic approach to the theory of Clustering. We adopt the framework of Kleinberg, [Kle03]. By relaxing one of Kleinberg's clustering axioms, we sidestep his impossibility result and arrive at a consistent set of axioms. We suggest to extend these axioms, aiming to provide an axiomatic taxonomy of clustering paradigms. Such a taxonomy should provide users some guidance concerning the choice of the appropriate clustering paradigm for a given task. The main result of this paper is a set of abstract properties that characterize the Single-Linkage clustering function. This characterization result provides new insight into the properties of desired data groupings that make Single-Linkage the appropriate choice. We conclude by considering a taxonomy of clustering functions based on abstract properties that each satisfies.
Reza Bosagh Zadeh, Shai Ben-David
null
1205.2600
null
null
The Entire Quantile Path of a Risk-Agnostic SVM Classifier
cs.LG
A quantile binary classifier uses the rule: Classify x as +1 if P(Y = 1|X = x) >= t, and as -1 otherwise, for a fixed quantile parameter t {[0, 1]. It has been shown that Support Vector Machines (SVMs) in the limit are quantile classifiers with t = 1/2 . In this paper, we show that by using asymmetric cost of misclassification SVMs can be appropriately extended to recover, in the limit, the quantile binary classifier for any t. We then present a principled algorithm to solve the extended SVM classifier for all values of t simultaneously. This has two implications: First, one can recover the entire conditional distribution P(Y = 1|X = x) = t for t {[0, 1]. Second, we can build a risk-agnostic SVM classifier where the cost of misclassification need not be known apriori. Preliminary numerical experiments show the effectiveness of the proposed algorithm.
Jin Yu, S. V.N. Vishwanatan, Jian Zhang
null
1205.2602
null
null
The Infinite Latent Events Model
stat.ML cs.LG
We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultaneously inferring a set of latent events, which events fired at each timestep, and how those events are causally linked. We illustrate the model on a sound factorization task, a network topology identification task, and a video game task.
David Wingate, Noah Goodman, Daniel Roy, Joshua Tenenbaum
null
1205.2604
null
null
Herding Dynamic Weights for Partially Observed Random Field Models
cs.LG stat.ML
Learning the parameters of a (potentially partially observable) random field model is intractable in general. Instead of focussing on a single optimal parameter value we propose to treat parameters as dynamical quantities. We introduce an algorithm to generate complex dynamics for parameters and (both visible and hidden) state vectors. We show that under certain conditions averages computed over trajectories of the proposed dynamical system converge to averages computed over the data. Our "herding dynamics" does not require expensive operations such as exponentiation and is fully deterministic.
Max Welling
null
1205.2605
null
null
Exploring compact reinforcement-learning representations with linear regression
cs.LG cs.AI
This paper presents a new algorithm for online linear regression whose efficiency guarantees satisfy the requirements of the KWIK (Knows What It Knows) framework. The algorithm improves on the complexity bounds of the current state-of-the-art procedure in this setting. We explore several applications of this algorithm for learning compact reinforcement-learning representations. We show that KWIK linear regression can be used to learn the reward function of a factored MDP and the probabilities of action outcomes in Stochastic STRIPS and Object Oriented MDPs, none of which have been proven to be efficiently learnable in the RL setting before. We also combine KWIK linear regression with other KWIK learners to learn larger portions of these models, including experiments on learning factored MDP transition and reward functions together.
Thomas J. Walsh, Istvan Szita, Carlos Diuk, Michael L. Littman
null
1205.2606
null
null
Temporal-Difference Networks for Dynamical Systems with Continuous Observations and Actions
cs.LG stat.ML
Temporal-difference (TD) networks are a class of predictive state representations that use well-established TD methods to learn models of partially observable dynamical systems. Previous research with TD networks has dealt only with dynamical systems with finite sets of observations and actions. We present an algorithm for learning TD network representations of dynamical systems with continuous observations and actions. Our results show that the algorithm is capable of learning accurate and robust models of several noisy continuous dynamical systems. The algorithm presented here is the first fully incremental method for learning a predictive representation of a continuous dynamical system.
Christopher M. Vigorito
null
1205.2608
null
null
Which Spatial Partition Trees are Adaptive to Intrinsic Dimension?
stat.ML cs.LG
Recent theory work has found that a special type of spatial partition tree - called a random projection tree - is adaptive to the intrinsic dimension of the data from which it is built. Here we examine this same question, with a combination of theory and experiments, for a broader class of trees that includes k-d trees, dyadic trees, and PCA trees. Our motivation is to get a feel for (i) the kind of intrinsic low dimensional structure that can be empirically verified, (ii) the extent to which a spatial partition can exploit such structure, and (iii) the implications for standard statistical tasks such as regression, vector quantization, and nearest neighbor search.
Nakul Verma, Samory Kpotufe, Sanjoy Dasgupta
null
1205.2609
null
null
Probabilistic Structured Predictors
cs.LG
We consider MAP estimators for structured prediction with exponential family models. In particular, we concentrate on the case that efficient algorithms for uniform sampling from the output space exist. We show that under this assumption (i) exact computation of the partition function remains a hard problem, and (ii) the partition function and the gradient of the log partition function can be approximated efficiently. Our main result is an approximation scheme for the partition function based on Markov Chain Monte Carlo theory. We also show that the efficient uniform sampling assumption holds in several application settings that are of importance in machine learning.
Shankar Vembu, Thomas Gartner, Mario Boley
null
1205.2610
null
null
Ordinal Boltzmann Machines for Collaborative Filtering
cs.IR cs.LG
Collaborative filtering is an effective recommendation technique wherein the preference of an individual can potentially be predicted based on preferences of other members. Early algorithms often relied on the strong locality in the preference data, that is, it is enough to predict preference of a user on a particular item based on a small subset of other users with similar tastes or of other items with similar properties. More recently, dimensionality reduction techniques have proved to be equally competitive, and these are based on the co-occurrence patterns rather than locality. This paper explores and extends a probabilistic model known as Boltzmann Machine for collaborative filtering tasks. It seamlessly integrates both the similarity and co-occurrence in a principled manner. In particular, we study parameterisation options to deal with the ordinal nature of the preferences, and propose a joint modelling of both the user-based and item-based processes. Experiments on moderate and large-scale movie recommendation show that our framework rivals existing well-known methods.
Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh
null
1205.2611
null
null
Computing Posterior Probabilities of Structural Features in Bayesian Networks
cs.LG stat.ML
We study the problem of learning Bayesian network structures from data. Koivisto and Sood (2004) and Koivisto (2006) presented algorithms that can compute the exact marginal posterior probability of a subnetwork, e.g., a single edge, in O(n2n) time and the posterior probabilities for all n(n-1) potential edges in O(n2n) total time, assuming that the number of parents per node or the indegree is bounded by a constant. One main drawback of their algorithms is the requirement of a special structure prior that is non uniform and does not respect Markov equivalence. In this paper, we develop an algorithm that can compute the exact posterior probability of a subnetwork in O(3n) time and the posterior probabilities for all n(n-1) potential edges in O(n3n) total time. Our algorithm also assumes a bounded indegree but allows general structure priors. We demonstrate the applicability of the algorithm on several data sets with up to 20 variables.
Jin Tian, Ru He
null
1205.2612
null
null
Products of Hidden Markov Models: It Takes N>1 to Tango
cs.LG stat.ML
Products of Hidden Markov Models(PoHMMs) are an interesting class of generative models which have received little attention since their introduction. This maybe in part due to their more computationally expensive gradient-based learning algorithm,and the intractability of computing the log likelihood of sequences under the model. In this paper, we demonstrate how the partition function can be estimated reliably via Annealed Importance Sampling. We perform experiments using contrastive divergence learning on rainfall data and data captured from pairs of people dancing. Our results suggest that advances in learning and evaluation for undirected graphical models and recent increases in available computing power make PoHMMs worth considering for complex time-series modeling tasks.
Graham W Taylor, Geoffrey E. Hinton
null
1205.2614
null
null
Modeling Discrete Interventional Data using Directed Cyclic Graphical Models
stat.ML cs.LG stat.ME
We outline a representation for discrete multivariate distributions in terms of interventional potential functions that are globally normalized. This representation can be used to model the effects of interventions, and the independence properties encoded in this model can be represented as a directed graph that allows cycles. In addition to discussing inference and sampling with this representation, we give an exponential family parametrization that allows parameter estimation to be stated as a convex optimization problem; we also give a convex relaxation of the task of simultaneous parameter and structure learning using group l1-regularization. The model is evaluated on simulated data and intracellular flow cytometry data.
Mark Schmidt, Kevin Murphy
null
1205.2617
null
null
BPR: Bayesian Personalized Ranking from Implicit Feedback
cs.IR cs.LG stat.ML
Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive knearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars Schmidt-Thieme
null
1205.2618
null
null
Using the Gene Ontology Hierarchy when Predicting Gene Function
cs.LG cs.CE stat.ML
The problem of multilabel classification when the labels are related through a hierarchical categorization scheme occurs in many application domains such as computational biology. For example, this problem arises naturally when trying to automatically assign gene function using a controlled vocabularies like Gene Ontology. However, most existing approaches for predicting gene functions solve independent classification problems to predict genes that are involved in a given function category, independently of the rest. Here, we propose two simple methods for incorporating information about the hierarchical nature of the categorization scheme. In the first method, we use information about a gene's previous annotation to set an initial prior on its label. In a second approach, we extend a graph-based semi-supervised learning algorithm for predicting gene function in a hierarchy. We show that we can efficiently solve this problem by solving a linear system of equations. We compare these approaches with a previous label reconciliation-based approach. Results show that using the hierarchy information directly, compared to using reconciliation methods, improves gene function prediction.
Sara Mostafavi, Quaid Morris
null
1205.2622
null
null
Virtual Vector Machine for Bayesian Online Classification
cs.LG stat.ML
In a typical online learning scenario, a learner is required to process a large data stream using a small memory buffer. Such a requirement is usually in conflict with a learner's primary pursuit of prediction accuracy. To address this dilemma, we introduce a novel Bayesian online classi cation algorithm, called the Virtual Vector Machine. The virtual vector machine allows you to smoothly trade-off prediction accuracy with memory size. The virtual vector machine summarizes the information contained in the preceding data stream by a Gaussian distribution over the classi cation weights plus a constant number of virtual data points. The virtual data points are designed to add extra non-Gaussian information about the classi cation weights. To maintain the constant number of virtual points, the virtual vector machine adds the current real data point into the virtual point set, merges two most similar virtual points into a new virtual point or deletes a virtual point that is far from the decision boundary. The information lost in this process is absorbed into the Gaussian distribution. The extra information provided by the virtual points leads to improved predictive accuracy over previous online classification algorithms.
Thomas P. Minka, Rongjing Xiang, Yuan (Alan) Qi
null
1205.2623
null
null
Convexifying the Bethe Free Energy
cs.AI cs.LG
The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. However, empirically LBP still outperforms most of its convex variants in a variety of settings, as we also demonstrate here. Motivated by this fact we seek convexified free energies that directly approximate the Bethe free energy. We show that the proposed approximations compare favorably with state-of-the art convex free energy approximations.
Ofer Meshi, Ariel Jaimovich, Amir Globerson, Nir Friedman
null
1205.2624
null
null
Convergent message passing algorithms - a unifying view
cs.AI cs.LG
Message-passing algorithms have emerged as powerful techniques for approximate inference in graphical models. When these algorithms converge, they can be shown to find local (or sometimes even global) optima of variational formulations to the inference problem. But many of the most popular algorithms are not guaranteed to converge. This has lead to recent interest in convergent message-passing algorithms. In this paper, we present a unified view of convergent message-passing algorithms. We present a simple derivation of an abstract algorithm, tree-consistency bound optimization (TCBO) that is provably convergent in both its sum and max product forms. We then show that many of the existing convergent algorithms are instances of our TCBO algorithm, and obtain novel convergent algorithms "for free" by exchanging maximizations and summations in existing algorithms. In particular, we show that Wainwright's non-convergent sum-product algorithm for tree based variational bounds, is actually convergent with the right update order for the case where trees are monotonic chains.
Talya Meltzer, Amir Globerson, Yair Weiss
null
1205.2625
null
null
Group Sparse Priors for Covariance Estimation
stat.ML cs.LG
Recently it has become popular to learn sparse Gaussian graphical models (GGMs) by imposing l1 or group l1,2 penalties on the elements of the precision matrix. Thispenalized likelihood approach results in a tractable convex optimization problem. In this paper, we reinterpret these results as performing MAP estimation under a novel prior which we call the group l1 and l1,2 positivedefinite matrix distributions. This enables us to build a hierarchical model in which the l1 regularization terms vary depending on which group the entries are assigned to, which in turn allows us to learn block structured sparse GGMs with unknown group assignments. Exact inference in this hierarchical model is intractable, due to the need to compute the normalization constant of these matrix distributions. However, we derive upper bounds on the partition functions, which lets us use fast variational inference (optimizing a lower bound on the joint posterior). We show that on two real world data sets (motion capture and financial data), our method which infers the block structure outperforms a method that uses a fixed block structure, which in turn outperforms baseline methods that ignore block structure.
Benjamin Marlin, Mark Schmidt, Kevin Murphy
null
1205.2626
null
null
Domain Knowledge Uncertainty and Probabilistic Parameter Constraints
cs.LG stat.ML
Incorporating domain knowledge into the modeling process is an effective way to improve learning accuracy. However, as it is provided by humans, domain knowledge can only be specified with some degree of uncertainty. We propose to explicitly model such uncertainty through probabilistic constraints over the parameter space. In contrast to hard parameter constraints, our approach is effective also when the domain knowledge is inaccurate and generally results in superior modeling accuracy. We focus on generative and conditional modeling where the parameters are assigned a Dirichlet or Gaussian prior and demonstrate the framework with experiments on both synthetic and real-world data.
Yi Mao, Guy Lebanon
null
1205.2627
null
null
Multiple Source Adaptation and the Renyi Divergence
cs.LG stat.ML
This paper presents a novel theoretical study of the general problem of multiple source adaptation using the notion of Renyi divergence. Our results build on our previous work [12], but significantly broaden the scope of that work in several directions. We extend previous multiple source loss guarantees based on distribution weighted combinations to arbitrary target distributions P, not necessarily mixtures of the source distributions, analyze both known and unknown target distribution cases, and prove a lower bound. We further extend our bounds to deal with the case where the learner receives an approximate distribution for each source instead of the exact one, and show that similar loss guarantees can be achieved depending on the divergence between the approximate and true distributions. We also analyze the case where the labeling functions of the source domains are somewhat different. Finally, we report the results of experiments with both an artificial data set and a sentiment analysis task, showing the performance benefits of the distribution weighted combinations and the quality of our bounds based on the Renyi divergence.
Yishay Mansour, Mehryar Mohri, Afshin Rostamizadeh
null
1205.2628
null
null
Interpretation and Generalization of Score Matching
cs.LG stat.ML
Score matching is a recently developed parameter learning method that is particularly effective to complicated high dimensional density models with intractable partition functions. In this paper, we study two issues that have not been completely resolved for score matching. First, we provide a formal link between maximum likelihood and score matching. Our analysis shows that score matching finds model parameters that are more robust with noisy training data. Second, we develop a generalization of score matching. Based on this generalization, we further demonstrate an extension of score matching to models of discrete data.
Siwei Lyu
null
1205.2629
null
null
Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization
cs.LG cs.CV stat.ML
The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the l2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the l2,1-norm regularization is that it encourages multiple predictors to share similar sparsity patterns. However, the resulting optimization problem is challenging to solve due to the non-smoothness of the l2,1-norm regularization. In this paper, we propose to accelerate the computation by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov's method-an optimal first-order black-box method for smooth convex optimization. A key building block in solving the reformulations is the Euclidean projection. We show that the Euclidean projection for the first reformulation can be analytically computed, while the Euclidean projection for the second one can be computed in linear time. Empirical evaluations on several data sets verify the efficiency of the proposed algorithms.
Jun Liu, Shuiwang Ji, Jieping Ye
null
1205.2631
null
null
Improving Compressed Counting
cs.DS cs.LG stat.ML
Compressed Counting (CC) [22] was recently proposed for estimating the ath frequency moments of data streams, where 0 < a <= 2. CC can be used for estimating Shannon entropy, which can be approximated by certain functions of the ath frequency moments as a -> 1. Monitoring Shannon entropy for anomaly detection (e.g., DDoS attacks) in large networks is an important task. This paper presents a new algorithm for improving CC. The improvement is most substantial when a -> 1--. For example, when a = 0:99, the new algorithm reduces the estimation variance roughly by 100-fold. This new algorithm would make CC considerably more practical for estimating Shannon entropy. Furthermore, the new algorithm is statistically optimal when a = 0.5.
Ping Li
null
1205.2632
null
null
Identifying confounders using additive noise models
stat.ML cs.LG
We propose a method for inferring the existence of a latent common cause ('confounder') of two observed random variables. The method assumes that the two effects of the confounder are (possibly nonlinear) functions of the confounder plus independent, additive noise. We discuss under which conditions the model is identifiable (up to an arbitrary reparameterization of the confounder) from the joint distribution of the effects. We state and prove a theoretical result that provides evidence for the conjecture that the model is generically identifiable under suitable technical conditions. In addition, we propose a practical method to estimate the confounder from a finite i.i.d. sample of the effects and illustrate that the method works well on both simulated and real-world data.
Dominik Janzing, Jonas Peters, Joris Mooij, Bernhard Schoelkopf
null
1205.2640
null
null
Bayesian Discovery of Linear Acyclic Causal Models
stat.ML cs.LG stat.ME
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accuracy is as good as or better than existing methods. We provide a complete code package (in R) which implements all algorithms and performs all of the analysis provided in the paper, and hope that this will further the application of these methods to solving causal inference problems.
Patrik O. Hoyer, Antti Hyttinen
null
1205.2641
null
null
New inference strategies for solving Markov Decision Processes using reversible jump MCMC
cs.LG cs.SY math.OC stat.CO stat.ML
In this paper we build on previous work which uses inferences techniques, in particular Markov Chain Monte Carlo (MCMC) methods, to solve parameterized control problems. We propose a number of modifications in order to make this approach more practical in general, higher-dimensional spaces. We first introduce a new target distribution which is able to incorporate more reward information from sampled trajectories. We also show how to break strong correlations between the policy parameters and sampled trajectories in order to sample more freely. Finally, we show how to incorporate these techniques in a principled manner to obtain estimates of the optimal policy.
Matthias Hoffman, Hendrik Kueck, Nando de Freitas, Arnaud Doucet
null
1205.2643
null
null
Censored Exploration and the Dark Pool Problem
cs.LG cs.GT
We introduce and analyze a natural algorithm for multi-venue exploration from censored data, which is motivated by the Dark Pool Problem of modern quantitative finance. We prove that our algorithm converges in polynomial time to a near-optimal allocation policy; prior results for similar problems in stochastic inventory control guaranteed only asymptotic convergence and examined variants in which each venue could be treated independently. Our analysis bears a strong resemblance to that of efficient exploration/ exploitation schemes in the reinforcement learning literature. We describe an extensive experimental evaluation of our algorithm on the Dark Pool Problem using real trading data.
Kuzman Ganchev, Michael Kearns, Yuriy Nevmyvaka, Jennifer Wortman Vaughan
null
1205.2646
null
null
Learning Continuous-Time Social Network Dynamics
cs.SI cs.LG physics.soc-ph stat.ML
We demonstrate that a number of sociology models for social network dynamics can be viewed as continuous time Bayesian networks (CTBNs). A sampling-based approximate inference method for CTBNs can be used as the basis of an expectation-maximization procedure that achieves better accuracy in estimating the parameters of the model than the standard method of moments algorithmfromthe sociology literature. We extend the existing social network models to allow for indirect and asynchronous observations of the links. A Markov chain Monte Carlo sampling algorithm for this new model permits estimation and inference. We provide results on both a synthetic network (for verification) and real social network data.
Yu Fan, Christian R. Shelton
null
1205.2648
null
null
Correlated Non-Parametric Latent Feature Models
cs.LG stat.ML
We are often interested in explaining data through a set of hidden factors or features. When the number of hidden features is unknown, the Indian Buffet Process (IBP) is a nonparametric latent feature model that does not bound the number of active features in dataset. However, the IBP assumes that all latent features are uncorrelated, making it inadequate for many realworld problems. We introduce a framework for correlated nonparametric feature models, generalising the IBP. We use this framework to generate several specific models and demonstrate applications on realworld datasets.
Finale Doshi-Velez, Zoubin Ghahramani
null
1205.2650
null
null
L2 Regularization for Learning Kernels
cs.LG stat.ML
The choice of the kernel is critical to the success of many learning algorithms but it is typically left to the user. Instead, the training data can be used to learn the kernel by selecting it out of a given family, such as that of non-negative linear combinations of p base kernels, constrained by a trace or L1 regularization. This paper studies the problem of learning kernels with the same family of kernels but with an L2 regularization instead, and for regression problems. We analyze the problem of learning kernels with ridge regression. We derive the form of the solution of the optimization problem and give an efficient iterative algorithm for computing that solution. We present a novel theoretical analysis of the problem based on stability and give learning bounds for orthogonal kernels that contain only an additive term O(pp/m) when compared to the standard kernel ridge regression stability bound. We also report the results of experiments indicating that L1 regularization can lead to modest improvements for a small number of kernels, but to performance degradations in larger-scale cases. In contrast, L2 regularization never degrades performance and in fact achieves significant improvements with a large number of kernels.
Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh
null
1205.2653
null
null
Convex Coding
cs.LG cs.IT math.IT stat.ML
Inspired by recent work on convex formulations of clustering (Lashkari & Golland, 2008; Nowozin & Bakir, 2008) we investigate a new formulation of the Sparse Coding Problem (Olshausen & Field, 1997). In sparse coding we attempt to simultaneously represent a sequence of data-vectors sparsely (i.e. sparse approximation (Tropp et al., 2006)) in terms of a 'code' defined by a set of basis elements, while also finding a code that enables such an approximation. As existing alternating optimization procedures for sparse coding are theoretically prone to severe local minima problems, we propose a convex relaxation of the sparse coding problem and derive a boosting-style algorithm, that (Nowozin & Bakir, 2008) serves as a convex 'master problem' which calls a (potentially non-convex) sub-problem to identify the next code element to add. Finally, we demonstrate the properties of our boosted coding algorithm on an image denoising task.
David M. Bradley, J Andrew Bagnell
null
1205.2656
null
null
Multilingual Topic Models for Unaligned Text
cs.CL cs.IR cs.LG stat.ML
We develop the multilingual topic model for unaligned text (MuTo), a probabilistic model of text that is designed to analyze corpora composed of documents in two languages. From these documents, MuTo uses stochastic EM to simultaneously discover both a matching between the languages and multilingual latent topics. We demonstrate that MuTo is able to find shared topics on real-world multilingual corpora, successfully pairing related documents across languages. MuTo provides a new framework for creating multilingual topic models without needing carefully curated parallel corpora and allows applications built using the topic model formalism to be applied to a much wider class of corpora.
Jordan Boyd-Graber, David Blei
null
1205.2657
null
null
Optimization of Structured Mean Field Objectives
stat.ML cs.LG
In intractable, undirected graphical models, an intuitive way of creating structured mean field approximations is to select an acyclic tractable subgraph. We show that the hardness of computing the objective function and gradient of the mean field objective qualitatively depends on a simple graph property. If the tractable subgraph has this property- we call such subgraphs v-acyclic-a very fast block coordinate ascent algorithm is possible. If not, optimization is harder, but we show a new algorithm based on the construction of an auxiliary exponential family that can be used to make inference possible in this case as well. We discuss the advantages and disadvantages of each regime and compare the algorithms empirically.
Alexandre Bouchard-Cote, Michael I. Jordan
null
1205.2658
null
null
Alternating Projections for Learning with Expectation Constraints
cs.LG stat.ML
We present an objective function for learning with unlabeled data that utilizes auxiliary expectation constraints. We optimize this objective function using a procedure that alternates between information and moment projections. Our method provides an alternate interpretation of the posterior regularization framework (Graca et al., 2008), maintains uncertainty during optimization unlike constraint-driven learning (Chang et al., 2007), and is more efficient than generalized expectation criteria (Mann & McCallum, 2008). Applications of this framework include minimally supervised learning, semisupervised learning, and learning with constraints that are more expressive than the underlying model. In experiments, we demonstrate comparable accuracy to generalized expectation criteria for minimally supervised learning, and use expressive structural constraints to guide semi-supervised learning, providing a 3%-6% improvement over stateof-the-art constraint-driven learning.
Kedar Bellare, Gregory Druck, Andrew McCallum
null
1205.2660
null
null
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs
cs.LG
We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~O(HSpAT). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.
Peter L. Bartlett, Ambuj Tewari
null
1205.2661
null
null
On Smoothing and Inference for Topic Models
cs.LG stat.ML
Latent Dirichlet analysis, or topic modeling, is a flexible latent variable framework for modeling high-dimensional sparse count data. Various learning algorithms have been developed in recent years, including collapsed Gibbs sampling, variational inference, and maximum a posteriori estimation, and this variety motivates the need for careful empirical comparisons. In this paper, we highlight the close connections between these approaches. We find that the main differences are attributable to the amount of smoothing applied to the counts. When the hyperparameters are optimized, the differences in performance among the algorithms diminish significantly. The ability of these algorithms to achieve solutions of comparable accuracy gives us the freedom to select computationally efficient approaches. Using the insights gained from this comparative study, we show how accurate topic models can be learned in several seconds on text corpora with thousands of documents.
Arthur Asuncion, Max Welling, Padhraic Smyth, Yee Whye Teh
null
1205.2662
null
null
A Bayesian Sampling Approach to Exploration in Reinforcement Learning
cs.LG
We present a modular approach to reinforcement learning that uses a Bayesian representation of the uncertainty over models. The approach, BOSS (Best of Sampled Set), drives exploration by sampling multiple models from the posterior and selecting actions optimistically. It extends previous work by providing a rule for deciding when to resample and how to combine the models. We show that our algorithm achieves nearoptimal reward with high probability with a sample complexity that is low relative to the speed at which the posterior distribution converges during learning. We demonstrate that BOSS performs quite favorably compared to state-of-the-art reinforcement-learning approaches and illustrate its flexibility by pairing it with a non-parametric model that generalizes across states.
John Asmuth, Lihong Li, Michael L. Littman, Ali Nouri, David Wingate
null
1205.2664
null
null
Decoupling Exploration and Exploitation in Multi-Armed Bandits
cs.LG
We consider a multi-armed bandit problem where the decision maker can explore and exploit different arms at every round. The exploited arm adds to the decision maker's cumulative reward (without necessarily observing the reward) while the explored arm reveals its value. We devise algorithms for this setup and show that the dependence on the number of arms, k, can be much better than the standard square root of k dependence, depending on the behavior of the arms' reward sequences. For the important case of piecewise stationary stochastic bandits, we show a significant improvement over existing algorithms. Our algorithms are based on a non-uniform sampling policy, which we show is essential to the success of any algorithm in the adversarial setup. Finally, we show some simulation results on an ultra-wide band channel selection inspired setting indicating the applicability of our algorithms.
Orly Avner, Shie Mannor, Ohad Shamir
null
1205.2874
null
null
Density Sensitive Hashing
cs.IR cs.LG
Nearest neighbors search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, e.g., Locality Sensitive Hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbors search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called {\em Density Sensitive Hashing} (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.
Yue Lin and Deng Cai and Cheng Li
null
1205.2930
null
null
b-Bit Minwise Hashing in Practice: Large-Scale Batch and Online Learning and Using GPUs for Fast Preprocessing with Simple Hash Functions
cs.IR cs.DB cs.LG
In this paper, we study several critical issues which must be tackled before one can apply b-bit minwise hashing to the volumes of data often used industrial applications, especially in the context of search. 1. (b-bit) Minwise hashing requires an expensive preprocessing step that computes k (e.g., 500) minimal values after applying the corresponding permutations for each data vector. We developed a parallelization scheme using GPUs and observed that the preprocessing time can be reduced by a factor of 20-80 and becomes substantially smaller than the data loading time. 2. One major advantage of b-bit minwise hashing is that it can substantially reduce the amount of memory required for batch learning. However, as online algorithms become increasingly popular for large-scale learning in the context of search, it is not clear if b-bit minwise yields significant improvements for them. This paper demonstrates that $b$-bit minwise hashing provides an effective data size/dimension reduction scheme and hence it can dramatically reduce the data loading time for each epoch of the online training process. This is significant because online learning often requires many (e.g., 10 to 100) epochs to reach a sufficient accuracy. 3. Another critical issue is that for very large data sets it becomes impossible to store a (fully) random permutation matrix, due to its space requirements. Our paper is the first study to demonstrate that $b$-bit minwise hashing implemented using simple hash functions, e.g., the 2-universal (2U) and 4-universal (4U) hash families, can produce very similar learning results as using fully random permutations. Experiments on datasets of up to 200GB are presented.
Ping Li and Anshumali Shrivastava and Arnd Christian Konig
null
1205.2958
null
null
Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks
cs.CR cs.LG
Malicious software is abundant in a world of innumerable computer users, who are constantly faced with these threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at breaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such threats.
Priyank Singhal, Nataasha Raul
10.5121/ijnsa.2012.4106
1205.3062
null
null
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search
cs.LG cs.AI stat.ML
Bayesian model-based reinforcement learning is a formally elegant approach to learning optimal behaviour under model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal policies is notoriously taxing, since the search space becomes enormous. In this paper we introduce a tractable, sample-based method for approximate Bayes-optimal planning which exploits Monte-Carlo tree search. Our approach outperformed prior Bayesian model-based RL algorithms by a significant margin on several well-known benchmark problems -- because it avoids expensive applications of Bayes rule within the search tree by lazily sampling models from the current beliefs. We illustrate the advantages of our approach by showing it working in an infinite state space domain which is qualitatively out of reach of almost all previous work in Bayesian exploration.
Arthur Guez and David Silver and Peter Dayan
null
1205.3109
null
null
Unsupervised Discovery of Mid-Level Discriminative Patches
cs.CV cs.AI cs.LG
The goal of this paper is to discover a set of discriminative patches which can serve as a fully unsupervised mid-level visual representation. The desired patches need to satisfy two requirements: 1) to be representative, they need to occur frequently enough in the visual world; 2) to be discriminative, they need to be different enough from the rest of the visual world. The patches could correspond to parts, objects, "visual phrases", etc. but are not restricted to be any one of them. We pose this as an unsupervised discriminative clustering problem on a huge dataset of image patches. We use an iterative procedure which alternates between clustering and training discriminative classifiers, while applying careful cross-validation at each step to prevent overfitting. The paper experimentally demonstrates the effectiveness of discriminative patches as an unsupervised mid-level visual representation, suggesting that it could be used in place of visual words for many tasks. Furthermore, discriminative patches can also be used in a supervised regime, such as scene classification, where they demonstrate state-of-the-art performance on the MIT Indoor-67 dataset.
Saurabh Singh, Abhinav Gupta, Alexei A. Efros
null
1205.3137
null
null
Multiple Identifications in Multi-Armed Bandits
cs.LG stat.ML
We study the problem of identifying the top $m$ arms in a multi-armed bandit game. Our proposed solution relies on a new algorithm based on successive rejects of the seemingly bad arms, and successive accepts of the good ones. This algorithmic contribution allows to tackle other multiple identifications settings that were previously out of reach. In particular we show that this idea of successive accepts and rejects applies to the multi-bandit best arm identification problem.
S\'ebastien Bubeck, Tengyao Wang, Nitin Viswanathan
null
1205.3181
null
null
Genetic Programming for Multibiometrics
cs.NE cs.CR cs.LG
Biometric systems suffer from some drawbacks: a biometric system can provide in general good performances except with some individuals as its performance depends highly on the quality of the capture. One solution to solve some of these problems is to use multibiometrics where different biometric systems are combined together (multiple captures of the same biometric modality, multiple feature extraction algorithms, multiple biometric modalities...). In this paper, we are interested in score level fusion functions application (i.e., we use a multibiometric authentication scheme which accept or deny the claimant for using an application). In the state of the art, the weighted sum of scores (which is a linear classifier) and the use of an SVM (which is a non linear classifier) provided by different biometric systems provide one of the best performances. We present a new method based on the use of genetic programming giving similar or better performances (depending on the complexity of the database). We derive a score fusion function by assembling some classical primitives functions (+, *, -, ...). We have validated the proposed method on three significant biometric benchmark datasets from the state of the art.
Romain Giot (GREYC), Christophe Rosenberger (GREYC)
10.1016/j.eswa.2011.08.066
1205.3441
null
null
Normalized Maximum Likelihood Coding for Exponential Family with Its Applications to Optimal Clustering
cs.LG
We are concerned with the issue of how to calculate the normalized maximum likelihood (NML) code-length. There is a problem that the normalization term of the NML code-length may diverge when it is continuous and unbounded and a straightforward computation of it is highly expensive when the data domain is finite . In previous works it has been investigated how to calculate the NML code-length for specific types of distributions. We first propose a general method for computing the NML code-length for the exponential family. Then we specifically focus on Gaussian mixture model (GMM), and propose a new efficient method for computing the NML to them. We develop it by generalizing Rissanen's re-normalizing technique. Then we apply this method to the clustering issue, in which a clustering structure is modeled using a GMM, and the main task is to estimate the optimal number of clusters on the basis of the NML code-length. We demonstrate using artificial data sets the superiority of the NML-based clustering over other criteria such as AIC, BIC in terms of the data size required for high accuracy rate to be achieved.
So Hirai and Kenji Yamanishi
null
1205.3549
null
null
Universal Algorithm for Online Trading Based on the Method of Calibration
cs.LG q-fin.PM
We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized well-calibrated algorithm. Our strategy is based on Dawid's notion of calibration with more general checking rules and on some modification of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. We combine the method of randomized calibration with Vovk's method of defensive forecasting in RKHS. Unlike the statistical theory, no stochastic assumptions are made about the stock prices. Our empirical results on historical markets provide strong evidence that this type of technical trading can "beat the market" if transaction costs are ignored.
Vladimir V'yugin and Vladimir Trunov
null
1205.3767
null
null
kLog: A Language for Logical and Relational Learning with Kernels
cs.AI cs.LG cs.PL
We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials.
Paolo Frasconi, Fabrizio Costa, Luc De Raedt, Kurt De Grave
10.1016/j.artint.2014.08.003
1205.3981
null
null
Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling
math.NA cs.LG
We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical learning algorithm, based on projected subgradients and Douglas-Rachford splitting technique, and demonstrate its ability to robustly recover a ground truth analysis operator, when provided with a clean training set, of sufficient size. We also find an analysis operator for images, using some noisy cosparse signals, which is indeed a more realistic experiment. As the derived optimisation problem is not a convex program, we often find a local minimum using such variational methods. Some local optimality conditions are derived for two different settings, providing preliminary theoretical support for the well-posedness of the learning problem under appropriate conditions.
Mehrdad Yaghoobi, Sangnam Nam, Remi Gribonval and Mike E. Davies
10.1109/TSP.2013.2250968
1205.4133
null
null
Theory of Dependent Hierarchical Normalized Random Measures
cs.LG math.ST stat.ML stat.TH
This paper presents theory for Normalized Random Measures (NRMs), Normalized Generalized Gammas (NGGs), a particular kind of NRM, and Dependent Hierarchical NRMs which allow networks of dependent NRMs to be analysed. These have been used, for instance, for time-dependent topic modelling. In this paper, we first introduce some mathematical background of completely random measures (CRMs) and their construction from Poisson processes, and then introduce NRMs and NGGs. Slice sampling is also introduced for posterior inference. The dependency operators in Poisson processes and for the corresponding CRMs and NRMs is then introduced and Posterior inference for the NGG presented. Finally, we give dependency and composition results when applying these operators to NRMs so they can be used in a network with hierarchical and dependent relations.
Changyou Chen, Wray Buntine and Nan Ding
null
1205.4159
null
null
Online Structured Prediction via Coactive Learning
cs.LG cs.AI cs.IR
We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user. At each step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object (e.g. ranking). The user responds by correcting the system if necessary, providing a slightly improved -- but not necessarily optimal -- object as feedback. We argue that such feedback can often be inferred from observable user behavior, for example, from clicks in web-search. Evaluating predictions by their cardinal utility to the user, we propose efficient learning algorithms that have ${\cal O}(\frac{1}{\sqrt{T}})$ average regret, even though the learning algorithm never observes cardinal utility values as in conventional online learning. We demonstrate the applicability of our model and learning algorithms on a movie recommendation task, as well as ranking for web-search.
Pannaga Shivaswamy and Thorsten Joachims
null
1205.4213
null
null
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
stat.ML cs.LG
The question of the optimality of Thompson Sampling for solving the stochastic multi-armed bandit problem had been open since 1933. In this paper we answer it positively for the case of Bernoulli rewards by providing the first finite-time analysis that matches the asymptotic rate given in the Lai and Robbins lower bound for the cumulative regret. The proof is accompanied by a numerical comparison with other optimal policies, experiments that have been lacking in the literature until now for the Bernoulli case.
Emilie Kaufmann, Nathaniel Korda and R\'emi Munos
null
1205.4217
null
null
Diffusion Adaptation over Networks
cs.MA cs.LG
Adaptive networks are well-suited to perform decentralized information processing and optimization tasks and to model various types of self-organized and complex behavior encountered in nature. Adaptive networks consist of a collection of agents with processing and learning abilities. The agents are linked together through a connection topology, and they cooperate with each other through local interactions to solve distributed optimization, estimation, and inference problems in real-time. The continuous diffusion of information across the network enables agents to adapt their performance in relation to streaming data and network conditions; it also results in improved adaptation and learning performance relative to non-cooperative agents. This article provides an overview of diffusion strategies for adaptation and learning over networks. The article is divided into several sections: 1. Motivation; 2. Mean-Square-Error Estimation; 3. Distributed Optimization via Diffusion Strategies; 4. Adaptive Diffusion Strategies; 5. Performance of Steepest-Descent Diffusion Strategies; 6. Performance of Adaptive Diffusion Strategies; 7. Comparing the Performance of Cooperative Strategies; 8. Selecting the Combination Weights; 9. Diffusion with Noisy Information Exchanges; 10. Extensions and Further Considerations; Appendix A: Properties of Kronecker Products; Appendix B: Graph Laplacian and Network Connectivity; Appendix C: Stochastic Matrices; Appendix D: Block Maximum Norm; Appendix E: Comparison with Consensus Strategies; References.
Ali H. Sayed
null
1205.4220
null
null
Visualization of features of a series of measurements with one-dimensional cellular structure
cs.LG
This paper describes the method of visualization of periodic constituents and instability areas in series of measurements, being based on the algorithm of smoothing out and concept of one-dimensional cellular automata. A method can be used at the analysis of temporal series, related to the volumes of thematic publications in web-space.
D. V. Lande
null
1205.4234
null
null
Efficient Methods for Unsupervised Learning of Probabilistic Models
cs.LG cs.AI cs.IT cs.NE math.IT physics.data-an
In this thesis I develop a variety of techniques to train, evaluate, and sample from intractable and high dimensional probabilistic models. Abstract exceeds arXiv space limitations -- see PDF.
Jascha Sohl-Dickstein
null
1205.4295
null
null
New Analysis and Algorithm for Learning with Drifting Distributions
cs.LG stat.ML
We present a new analysis of the problem of learning with drifting distributions in the batch setting using the notion of discrepancy. We prove learning bounds based on the Rademacher complexity of the hypothesis set and the discrepancy of distributions both for a drifting PAC scenario and a tracking scenario. Our bounds are always tighter and in some cases substantially improve upon previous ones based on the $L_1$ distance. We also present a generalization of the standard on-line to batch conversion to the drifting scenario in terms of the discrepancy and arbitrary convex combinations of hypotheses. We introduce a new algorithm exploiting these learning guarantees, which we show can be formulated as a simple QP. Finally, we report the results of preliminary experiments demonstrating the benefits of this algorithm.
Mehryar Mohri and Andres Munoz Medina
null
1205.4343
null
null
From Exact Learning to Computing Boolean Functions and Back Again
cs.LG cs.DM
The goal of the paper is to relate complexity measures associated with the evaluation of Boolean functions (certificate complexity, decision tree complexity) and learning dimensions used to characterize exact learning (teaching dimension, extended teaching dimension). The high level motivation is to discover non-trivial relations between exact learning of an unknown concept and testing whether an unknown concept is part of a concept class or not. Concretely, the goal is to provide lower and upper bounds of complexity measures for one problem type in terms of the other.
Sergiu Goschin
null
1205.4349
null
null
Sparse Signal Recovery in the Presence of Intra-Vector and Inter-Vector Correlation
cs.IT cs.LG math.IT stat.ME stat.ML
This work discusses the problem of sparse signal recovery when there is correlation among the values of non-zero entries. We examine intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector model, as well as their combination. Algorithms based on the sparse Bayesian learning are presented and the benefits of incorporating correlation at the algorithm level are discussed. The impact of correlation on the limits of support recovery is also discussed highlighting the different impact intra-vector and inter-vector correlations have on such limits.
Bhaskar D. Rao, Zhilin Zhang, Yuzhe Jin
null
1205.4471
null
null
Soft Rule Ensembles for Statistical Learning
stat.ML cs.LG stat.AP
In this article supervised learning problems are solved using soft rule ensembles. We first review the importance sampling learning ensembles (ISLE) approach that is useful for generating hard rules. The soft rules are then obtained with logistic regression from the corresponding hard rules. In order to deal with the perfect separation problem related to the logistic regression, Firth's bias corrected likelihood is used. Various examples and simulation results show that soft rule ensembles can improve predictive performance over hard rule ensembles.
Deniz Akdemir and Nicolas Heslot
null
1205.4476
null
null
Streaming Algorithms for Pattern Discovery over Dynamically Changing Event Sequences
cs.LG cs.DB
Discovering frequent episodes over event sequences is an important data mining task. In many applications, events constituting the data sequence arrive as a stream, at furious rates, and recent trends (or frequent episodes) can change and drift due to the dynamical nature of the underlying event generation process. The ability to detect and track such the changing sets of frequent episodes can be valuable in many application scenarios. Current methods for frequent episode discovery are typically multipass algorithms, making them unsuitable in the streaming context. In this paper, we propose a new streaming algorithm for discovering frequent episodes over a window of recent events in the stream. Our algorithm processes events as they arrive, one batch at a time, while discovering the top frequent episodes over a window consisting of several batches in the immediate past. We derive approximation guarantees for our algorithm under the condition that frequent episodes are approximately well-separated from infrequent ones in every batch of the window. We present extensive experimental evaluations of our algorithm on both real and synthetic data. We also present comparisons with baselines and adaptations of streaming algorithms from itemset mining literature.
Debprakash Patnaik and Naren Ramakrishnan and Srivatsan Laxman and Badrish Chandramouli
null
1205.4477
null
null
Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure
cs.LG stat.CO stat.ML
In this work we consider the stochastic minimization of nonsmooth convex loss functions, a central problem in machine learning. We propose a novel algorithm called Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), which exploits the structure of common nonsmooth loss functions to achieve optimal convergence rates for a class of problems including SVMs. It is the first stochastic algorithm that can achieve the optimal O(1/t) rate for minimizing nonsmooth loss functions (with strong convexity). The fast rates are confirmed by empirical comparisons, in which ANSGD significantly outperforms previous subgradient descent algorithms including SGD.
Hua Ouyang, Alexander Gray
null
1205.4481
null
null
Conditional mean embeddings as regressors - supplementary
cs.LG stat.ML
We demonstrate an equivalence between reproducing kernel Hilbert space (RKHS) embeddings of conditional distributions and vector-valued regressors. This connection introduces a natural regularized loss function which the RKHS embeddings minimise, providing an intuitive understanding of the embeddings and a justification for their use. Furthermore, the equivalence allows the application of vector-valued regression methods and results to the problem of learning conditional distributions. Using this link we derive a sparse version of the embedding by considering alternative formulations. Further, by applying convergence results for vector-valued regression to the embedding problem we derive minimax convergence rates which are O(\log(n)/n) -- compared to current state of the art rates of O(n^{-1/4}) -- and are valid under milder and more intuitive assumptions. These minimax upper rates coincide with lower rates up to a logarithmic factor, showing that the embedding method achieves nearly optimal rates. We study our sparse embedding algorithm in a reinforcement learning task where the algorithm shows significant improvement in sparsity over an incomplete Cholesky decomposition.
Steffen Gr\"unew\"alder, Guy Lever, Luca Baldassarre, Sam Patterson, Arthur Gretton, Massimilano Pontil
null
1205.4656
null
null
The Role of Weight Shrinking in Large Margin Perceptron Learning
cs.LG
We introduce into the classical perceptron algorithm with margin a mechanism that shrinks the current weight vector as a first step of the update. If the shrinking factor is constant the resulting algorithm may be regarded as a margin-error-driven version of NORMA with constant learning rate. In this case we show that the allowed strength of shrinking depends on the value of the maximum margin. We also consider variable shrinking factors for which there is no such dependence. In both cases we obtain new generalizations of the perceptron with margin able to provably attain in a finite number of steps any desirable approximation of the maximal margin hyperplane. The new approximate maximum margin classifiers appear experimentally to be very competitive in 2-norm soft margin tasks involving linear kernels.
Constantinos Panagiotakopoulos and Petroula Tsampouka
null
1205.4698
null
null
Visual and semantic interpretability of projections of high dimensional data for classification tasks
cs.HC cs.LG
A number of visual quality measures have been introduced in visual analytics literature in order to automatically select the best views of high dimensional data from a large number of candidate data projections. These methods generally concentrate on the interpretability of the visualization and pay little attention to the interpretability of the projection axes. In this paper, we argue that interpretability of the visualizations and the feature transformation functions are both crucial for visual exploration of high dimensional labeled data. We present a two-part user study to examine these two related but orthogonal aspects of interpretability. We first study how humans judge the quality of 2D scatterplots of various datasets with varying number of classes and provide comparisons with ten automated measures, including a number of visual quality measures and related measures from various machine learning fields. We then investigate how the user perception on interpretability of mathematical expressions relate to various automated measures of complexity that can be used to characterize data projection functions. We conclude with a discussion of how automated measures of visual and semantic interpretability of data projections can be used together for exploratory analysis in classification tasks.
Ilknur Icke and Andrew Rosenberg
10.1109/VAST.2011.6102474
1205.4776
null
null
Safe Exploration in Markov Decision Processes
cs.LG
In environments with uncertain dynamics exploration is necessary to learn how to perform well. Existing reinforcement learning algorithms provide strong exploration guarantees, but they tend to rely on an ergodicity assumption. The essence of ergodicity is that any state is eventually reachable from any other state by following a suitable policy. This assumption allows for exploration algorithms that operate by simply favoring states that have rarely been visited before. For most physical systems this assumption is impractical as the systems would break before any reasonable exploration has taken place, i.e., most physical systems don't satisfy the ergodicity assumption. In this paper we address the need for safe exploration methods in Markov decision processes. We first propose a general formulation of safety through ergodicity. We show that imposing safety by restricting attention to the resulting set of guaranteed safe policies is NP-hard. We then present an efficient algorithm for guaranteed safe, but potentially suboptimal, exploration. At the core is an optimization formulation in which the constraints restrict attention to a subset of the guaranteed safe policies and the objective favors exploration policies. Our framework is compatible with the majority of previously proposed exploration methods, which rely on an exploration bonus. Our experiments, which include a Martian terrain exploration problem, show that our method is able to explore better than classical exploration methods.
Teodor Mihai Moldovan, Pieter Abbeel
null
1205.4810
null
null
Off-Policy Actor-Critic
cs.LG
This paper presents the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in off-policy gradient temporal-difference learning. Off-policy techniques, such as Greedy-GQ, enable a target policy to be learned while following and obtaining data from another (behavior) policy. For many problems, however, actor-critic methods are more practical than action value methods (like Greedy-GQ) because they explicitly represent the policy; consequently, the policy can be stochastic and utilize a large action space. In this paper, we illustrate how to practically combine the generality and learning potential of off-policy learning with the flexibility in action selection given by actor-critic methods. We derive an incremental, linear time and space complexity algorithm that includes eligibility traces, prove convergence under assumptions similar to previous off-policy algorithms, and empirically show better or comparable performance to existing algorithms on standard reinforcement-learning benchmark problems.
Thomas Degris, Martha White, Richard S. Sutton
null
1205.4839
null
null
Clustering is difficult only when it does not matter
cs.LG cs.DS
Numerous papers ask how difficult it is to cluster data. We suggest that the more relevant and interesting question is how difficult it is to cluster data sets {\em that can be clustered well}. More generally, despite the ubiquity and the great importance of clustering, we still do not have a satisfactory mathematical theory of clustering. In order to properly understand clustering, it is clearly necessary to develop a solid theoretical basis for the area. For example, from the perspective of computational complexity theory the clustering problem seems very hard. Numerous papers introduce various criteria and numerical measures to quantify the quality of a given clustering. The resulting conclusions are pessimistic, since it is computationally difficult to find an optimal clustering of a given data set, if we go by any of these popular criteria. In contrast, the practitioners' perspective is much more optimistic. Our explanation for this disparity of opinions is that complexity theory concentrates on the worst case, whereas in reality we only care for data sets that can be clustered well. We introduce a theoretical framework of clustering in metric spaces that revolves around a notion of "good clustering". We show that if a good clustering exists, then in many cases it can be efficiently found. Our conclusion is that contrary to popular belief, clustering should not be considered a hard task.
Amit Daniely and Nati Linial and Michael Saks
null
1205.4891
null
null
On the practically interesting instances of MAXCUT
cs.CC cs.LG
The complexity of a computational problem is traditionally quantified based on the hardness of its worst case. This approach has many advantages and has led to a deep and beautiful theory. However, from the practical perspective, this leaves much to be desired. In application areas, practically interesting instances very often occupy just a tiny part of an algorithm's space of instances, and the vast majority of instances are simply irrelevant. Addressing these issues is a major challenge for theoretical computer science which may make theory more relevant to the practice of computer science. Following Bilu and Linial, we apply this perspective to MAXCUT, viewed as a clustering problem. Using a variety of techniques, we investigate practically interesting instances of this problem. Specifically, we show how to solve in polynomial time distinguished, metric, expanding and dense instances of MAXCUT under mild stability assumptions. In particular, $(1+\epsilon)$-stability (which is optimal) suffices for metric and dense MAXCUT. We also show how to solve in polynomial time $\Omega(\sqrt{n})$-stable instances of MAXCUT, substantially improving the best previously known result.
Yonatan Bilu and Amit Daniely and Nati Linial and Michael Saks
null
1205.4893
null
null
Learning Mixed Graphical Models
stat.ML cs.CV cs.LG math.OC
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model.
Jason D. Lee and Trevor J. Hastie
null
1205.5012
null
null