title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Efficient Probabilistic Inference with Partial Ranking Queries
cs.LG cs.AI stat.ML
Distributions over rankings are used to model data in various settings such as preference analysis and political elections. The factorial size of the space of rankings, however, typically forces one to make structural assumptions, such as smoothness, sparsity, or probabilistic independence about these underlying distributions. We approach the modeling problem from the computational principle that one should make structural assumptions which allow for efficient calculation of typical probabilistic queries. For ranking models, "typical" queries predominantly take the form of partial ranking queries (e.g., given a user's top-k favorite movies, what are his preferences over remaining movies?). In this paper, we argue that riffled independence factorizations proposed in recent literature [7, 8] are a natural structural assumption for ranking distributions, allowing for particularly efficient processing of partial ranking queries.
Jonathan Huang, Ashish Kapoor, Carlos E. Guestrin
null
1202.3734
null
null
Noisy-OR Models with Latent Confounding
cs.LG stat.ML
Given a set of experiments in which varying subsets of observed variables are subject to intervention, we consider the problem of identifiability of causal models exhibiting latent confounding. While identifiability is trivial when each experiment intervenes on a large number of variables, the situation is more complicated when only one or a few variables are subject to intervention per experiment. For linear causal models with latent variables Hyttinen et al. (2010) gave precise conditions for when such data are sufficient to identify the full model. While their result cannot be extended to discrete-valued variables with arbitrary cause-effect relationships, we show that a similar result can be obtained for the class of causal models whose conditional probability distributions are restricted to a `noisy-OR' parameterization. We further show that identification is preserved under an extension of the model that allows for negative influences, and present learning algorithms that we test for accuracy, scalability and robustness.
Antti Hyttinen, Frederick Eberhardt, Patrik O. Hoyer
null
1202.3735
null
null
Discovering causal structures in binary exclusive-or skew acyclic models
cs.LG stat.ML
Discovering causal relations among observed variables in a given data set is a main topic in studies of statistics and artificial intelligence. Recently, some techniques to discover an identifiable causal structure have been explored based on non-Gaussianity of the observed data distribution. However, most of these are limited to continuous data. In this paper, we present a novel causal model for binary data and propose a new approach to derive an identifiable causal structure governing the data based on skew Bernoulli distributions of external noise. Experimental evaluation shows excellent performance for both artificial and real world data sets.
Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara
null
1202.3736
null
null
Detecting low-complexity unobserved causes
cs.LG stat.ML
We describe a method that infers whether statistical dependences between two observed variables X and Y are due to a "direct" causal link or only due to a connecting causal path that contains an unobserved variable of low complexity, e.g., a binary variable. This problem is motivated by statistical genetics. Given a genetic marker that is correlated with a phenotype of interest, we want to detect whether this marker is causal or it only correlates with a causal one. Our method is based on the analysis of the location of the conditional distributions P(Y|x) in the simplex of all distributions of Y. We report encouraging results on semi-empirical data.
Dominik Janzing, Eleni Sgouritsa, Oliver Stegle, Jonas Peters, Bernhard Schoelkopf
null
1202.3737
null
null
Learning Determinantal Point Processes
cs.LG cs.AI stat.ML
Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs offer tractable algorithms for exact inference, including computing marginal probabilities and sampling; however, an important open question has been how to learn a DPP from labeled training data. In this paper we propose a natural feature-based parameterization of conditional DPPs, and show how it leads to a convex and efficient learning formulation. We analyze the relationship between our model and binary Markov random fields with repulsive potentials, which are qualitatively similar but computationally intractable. Finally, we apply our approach to the task of extractive summarization, where the goal is to choose a small subset of sentences conveying the most important information from a set of documents. In this task there is a fundamental tradeoff between sentences that are highly relevant to the collection as a whole, and sentences that are diverse and not repetitive. Our parameterization allows us to naturally balance these two characteristics. We evaluate our system on data from the DUC 2003/04 multi-document summarization task, achieving state-of-the-art results.
Alex Kulesza, Ben Taskar
null
1202.3738
null
null
Variational Algorithms for Marginal MAP
cs.LG cs.AI cs.IT math.IT stat.ML
Marginal MAP problems are notoriously difficult tasks for graphical models. We derive a general variational framework for solving marginal MAP problems, in which we apply analogues of the Bethe, tree-reweighted, and mean field approximations. We then derive a "mixed" message passing algorithm and a convergent alternative using CCCP to solve the BP-type approximations. Theoretically, we give conditions under which the decoded solution is a global or local optimum, and obtain novel upper bounds on solutions. Experimentally we demonstrate that our algorithms outperform related approaches. We also show that EM and variational EM comprise a special case of our framework.
Qiang Liu, Alexander T. Ihler
null
1202.3742
null
null
Asymptotic Efficiency of Deterministic Estimators for Discrete Energy-Based Models: Ratio Matching and Pseudolikelihood
cs.LG stat.ML
Standard maximum likelihood estimation cannot be applied to discrete energy-based models in the general case because the computation of exact model probabilities is intractable. Recent research has seen the proposal of several new estimators designed specifically to overcome this intractability, but virtually nothing is known about their theoretical properties. In this paper, we present a generalized estimator that unifies many of the classical and recently proposed estimators. We use results from the standard asymptotic theory for M-estimators to derive a generic expression for the asymptotic covariance matrix of our generalized estimator. We apply these results to study the relative statistical efficiency of classical pseudolikelihood and the recently-proposed ratio matching estimator.
Benjamin Marlin, Nando de Freitas
null
1202.3746
null
null
Reconstructing Pompeian Households
cs.LG stat.ML
A database of objects discovered in houses in the Roman city of Pompeii provides a unique view of ordinary life in an ancient city. Experts have used this collection to study the structure of Roman households, exploring the distribution and variability of tasks in architectural spaces, but such approaches are necessarily affected by modern cultural assumptions. In this study we present a data-driven approach to household archeology, treating it as an unsupervised labeling problem. This approach scales to large data sets and provides a more objective complement to human interpretation.
David Mimno
null
1202.3747
null
null
Conditional Restricted Boltzmann Machines for Structured Output Prediction
cs.LG stat.ML
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems.
Volodymyr Mnih, Hugo Larochelle, Geoffrey E. Hinton
null
1202.3748
null
null
Fractional Moments on Bandit Problems
cs.LG stat.ML
Reinforcement learning addresses the dilemma between exploration to find profitable actions and exploitation to act according to the best observations already made. Bandit problems are one such class of problems in stateless environments that represent this explore/exploit situation. We propose a learning algorithm for bandit problems based on fractional expectation of rewards acquired. The algorithm is theoretically shown to converge on an eta-optimal arm and achieve O(n) sample complexity. Experimental results show the algorithm incurs substantially lower regrets than parameter-optimized eta-greedy and SoftMax approaches and other low sample complexity state-of-the-art techniques.
Ananda Narayanan B, Balaraman Ravindran
null
1202.3750
null
null
Multidimensional counting grids: Inferring word order from disordered bags of words
cs.IR cs.CL cs.LG stat.ML
Models of bags of words typically assume topic mixing so that the words in a single bag come from a limited number of topics. We show here that many sets of bag of words exhibit a very different pattern of variation than the patterns that are efficiently captured by topic mixing. In many cases, from one bag of words to the next, the words disappear and new ones appear as if the theme slowly and smoothly shifted across documents (providing that the documents are somehow ordered). Examples of latent structure that describe such ordering are easily imagined. For example, the advancement of the date of the news stories is reflected in a smooth change over the theme of the day as certain evolving news stories fall out of favor and new events create new stories. Overlaps among the stories of consecutive days can be modeled by using windows over linearly arranged tight distributions over words. We show here that such strategy can be extended to multiple dimensions and cases where the ordering of data is not readily obvious. We demonstrate that this way of modeling covariation in word occurrences outperforms standard topic models in classification and prediction tasks in applications in biology, text modeling and computer vision.
Nebojsa Jojic, Alessandro Perina
null
1202.3752
null
null
Partial Order MCMC for Structure Discovery in Bayesian Networks
cs.LG stat.ML
We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The method draws samples from the posterior distribution of partial orders on the nodes; for each sampled partial order, the conditional probabilities of interest are computed exactly. We give both analytical and empirical results that suggest the superiority of the new method compared to previous methods, which sample either directed acyclic graphs or linear orders on the nodes.
Teppo Niinimaki, Pekka Parviainen, Mikko Koivisto
null
1202.3753
null
null
Identifiability of Causal Graphs using Functional Models
cs.LG stat.ML
This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings.
Jonas Peters, Joris Mooij, Dominik Janzing, Bernhard Schoelkopf
null
1202.3757
null
null
Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions
cs.LG stat.ML
Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets.
Barnabas Poczos, Liang Xiong, Jeff Schneider
null
1202.3758
null
null
Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
stat.ME cs.LG stat.ML
Markov jump processes and continuous time Bayesian networks are important classes of continuous time dynamical systems. In this paper, we tackle the problem of inferring unobserved paths in these models by introducing a fast auxiliary variable Gibbs sampler. Our approach is based on the idea of uniformization, and sets up a Markov chain over paths by sampling a finite set of virtual jump times and then running a standard hidden Markov model forward filtering-backward sampling algorithm over states at the set of extant and virtual jump times. We demonstrate significant computational benefits over a state-of-the-art Gibbs sampler on a number of continuous time Bayesian networks.
Vinayak Rao, Yee Whye Teh
null
1202.3760
null
null
New Probabilistic Bounds on Eigenvalues and Eigenvectors of Random Kernel Matrices
cs.LG stat.ML
Kernel methods are successful approaches for different machine learning problems. This success is mainly rooted in using feature maps and kernel matrices. Some methods rely on the eigenvalues/eigenvectors of the kernel matrix, while for other methods the spectral information can be used to estimate the excess risk. An important question remains on how close the sample eigenvalues/eigenvectors are to the population values. In this paper, we improve earlier results on concentration bounds for eigenvalues of general kernel matrices. For distance and inner product kernel functions, e.g. radial basis functions, we provide new concentration bounds, which are characterized by the eigenvalues of the sample covariance matrix. Meanwhile, the obstacles for sharper bounds are accounted for and partially addressed. As a case study, we derive a concentration inequality for sample kernel target-alignment.
Nima Reyhani, Hideitsu Hino, Ricardo Vigario
null
1202.3761
null
null
An Efficient Algorithm for Computing Interventional Distributions in Latent Variable Causal Models
cs.LG stat.ML
Probabilistic inference in graphical models is the task of computing marginal and conditional densities of interest from a factorized representation of a joint probability distribution. Inference algorithms such as variable elimination and belief propagation take advantage of constraints embedded in this factorization to compute such densities efficiently. In this paper, we propose an algorithm which computes interventional distributions in latent variable causal models represented by acyclic directed mixed graphs(ADMGs). To compute these distributions efficiently, we take advantage of a recursive factorization which generalizes the usual Markov factorization for DAGs and the more recent factorization for ADMGs. Our algorithm can be viewed as a generalization of variable elimination to the mixed graph case. We show our algorithm is exponential in the mixed graph generalization of treewidth.
Ilya Shpitser, Thomas S. Richardson, James M. Robins
null
1202.3763
null
null
Learning mixed graphical models from data with p larger than n
stat.ME cs.LG stat.ML
Structure learning of Gaussian graphical models is an extensively studied problem in the classical multivariate setting where the sample size n is larger than the number of random variables p, as well as in the more challenging setting when p>>n. However, analogous approaches for learning the structure of graphical models with mixed discrete and continuous variables when p>>n remain largely unexplored. Here we describe a statistical learning procedure for this problem based on limited-order correlations and assess its performance with synthetic and real data.
Inma Tur, Robert Castelo
null
1202.3765
null
null
Robust learning Bayesian networks for prior belief
cs.LG stat.ML
Recent reports have described that learning Bayesian networks are highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders some unstable or undesirable results. This paper describes some asymptotic analyses of BDeu to explain the reasons for the sensitivity and its effects. Furthermore, this paper presents a proposal for a robust learning score for ESS by eliminating the sensitive factors from the approximation of log-BDeu.
Maomi Ueno
null
1202.3766
null
null
Sparse matrix-variate Gaussian process blockmodels for network modeling
cs.LG stat.ML
We face network data from various sources, such as protein interactions and online social networks. A critical problem is to model network interactions and identify latent groups of network nodes. This problem is challenging due to many reasons. For example, the network nodes are interdependent instead of independent of each other, and the data are known to be very noisy (e.g., missing edges). To address these challenges, we propose a new relational model for network data, Sparse Matrix-variate Gaussian process Blockmodel (SMGB). Our model generalizes popular bilinear generative models and captures nonlinear network interactions using a matrix-variate Gaussian process with latent membership variables. We also assign sparse prior distributions on the latent membership variables to learn sparse group assignments for individual network nodes. To estimate the latent variables efficiently from data, we develop an efficient variational expectation maximization method. We compared our approaches with several state-of-the-art network models on both synthetic and real-world network datasets. Experimental results demonstrate SMGBs outperform the alternative approaches in terms of discovering latent classes or predicting unknown interactions.
Feng Yan, Zenglin Xu, Yuan (Alan) Qi
null
1202.3769
null
null
Hierarchical Maximum Margin Learning for Multi-Class Classification
cs.LG stat.ML
Due to myriads of classes, designing accurate and efficient classifiers becomes very challenging for multi-class classification. Recent research has shown that class structure learning can greatly facilitate multi-class learning. In this paper, we propose a novel method to learn the class structure for multi-class classification problems. The class structure is assumed to be a binary hierarchical tree. To learn such a tree, we propose a maximum separating margin method to determine the child nodes of any internal node. The proposed method ensures that two classgroups represented by any two sibling nodes are most separable. In the experiments, we evaluate the accuracy and efficiency of the proposed method over other multi-class classification methods on real world large-scale problems. The results show that the proposed method outperforms benchmark methods in terms of accuracy for most datasets and performs comparably with other class structure learning methods in terms of efficiency for all datasets.
Jian-Bo Yang, Ivor W. Tsang
null
1202.3770
null
null
Tightening MRF Relaxations with Planar Subproblems
cs.LG stat.ML
We describe a new technique for computing lower-bounds on the minimum energy configuration of a planar Markov Random Field (MRF). Our method successively adds large numbers of constraints and enforces consistency over binary projections of the original problem state space. These constraints are represented in terms of subproblems in a dual-decomposition framework that is optimized using subgradient techniques. The complete set of constraints we consider enforces cycle consistency over the original graph. In practice we find that the method converges quickly on most problems with the addition of a few subproblems and outperforms existing methods for some interesting classes of hard potentials.
Julian Yarkony, Ragib Morshed, Alexander T. Ihler, Charless C. Fowlkes
null
1202.3771
null
null
Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering
cs.LG cs.NA stat.ML
When data is sampled from an unknown subspace, principal component analysis (PCA) provides an effective way to estimate the subspace and hence reduce the dimension of the data. At the heart of PCA is the Eckart-Young-Mirsky theorem, which characterizes the best rank k approximation of a matrix. In this paper, we prove a generalization of the Eckart-Young-Mirsky theorem under all unitarily invariant norms. Using this result, we obtain closed-form solutions for a set of rank/norm regularized problems, and derive closed-form solutions for a general class of subspace clustering problems (where data is modelled by unions of unknown subspaces). From these results we obtain new theoretical insights and promising experimental results.
Yao-Liang Yu, Dale Schuurmans
null
1202.3772
null
null
Risk Bounds for Infinitely Divisible Distribution
stat.ML cs.LG
In this paper, we study the risk bounds for samples independently drawn from an infinitely divisible (ID) distribution. In particular, based on a martingale method, we develop two deviation inequalities for a sequence of random variables of an ID distribution with zero Gaussian component. By applying the deviation inequalities, we obtain the risk bounds based on the covering number for the ID distribution. Finally, we analyze the asymptotic convergence of the risk bound derived from one of the two deviation inequalities and show that the convergence rate of the bound is faster than the result for the generic i.i.d. empirical process (Mendelson, 2003).
Chao Zhang, Dacheng Tao
null
1202.3774
null
null
Kernel-based Conditional Independence Test and Application in Causal Discovery
cs.LG stat.ML
Conditional independence testing is an important problem, especially in Bayesian network learning and causal discovery. Due to the curse of dimensionality, testing for conditional independence of continuous variables is particularly challenging. We propose a Kernel-based Conditional Independence test (KCI-test), by constructing an appropriate test statistic and deriving its asymptotic distribution under the null hypothesis of conditional independence. The proposed method is computationally efficient and easy to implement. Experimental results show that it outperforms other methods, especially when the conditioning set is large or the sample size is not very large, in which case other methods encounter difficulties.
Kun Zhang, Jonas Peters, Dominik Janzing, Bernhard Schoelkopf
null
1202.3775
null
null
Smoothing Multivariate Performance Measures
cs.LG stat.ML
A Support Vector Method for multivariate performance measures was recently introduced by Joachims (2005). The underlying optimization problem is currently solved using cutting plane methods such as SVM-Perf and BMRM. One can show that these algorithms converge to an eta accurate solution in O(1/Lambda*e) iterations, where lambda is the trade-off parameter between the regularizer and the loss function. We present a smoothing strategy for multivariate performance scores, in particular precision/recall break-even point and ROCArea. When combined with Nesterov's accelerated gradient algorithm our smoothing strategy yields an optimization algorithm which converges to an eta accurate solution in O(min{1/e,1/sqrt(lambda*e)}) iterations. Furthermore, the cost per iteration of our scheme is the same as that of SVM-Perf and BMRM. Empirical evaluation on a number of publicly available datasets shows that our method converges significantly faster than cutting plane methods without sacrificing generalization ability.
Xinhua Zhang, Ankan Saha, S. V.N. Vishwanatan
null
1202.3776
null
null
Sparse Topical Coding
cs.LG stat.ML
We present sparse topical coding (STC), a non-probabilistic formulation of topic models for discovering latent representations of large collections of data. Unlike probabilistic topic models, STC relaxes the normalization constraint of admixture proportions and the constraint of defining a normalized likelihood function. Such relaxations make STC amenable to: 1) directly control the sparsity of inferred representations by using sparsity-inducing regularizers; 2) be seamlessly integrated with a convex error function (e.g., SVM hinge loss) for supervised learning; and 3) be efficiently learned with a simply structured coordinate descent algorithm. Our results demonstrate the advantages of STC and supervised MedSTC on identifying topical meanings of words and improving classification accuracy and time efficiency.
Jun Zhu, Eric P. Xing
null
1202.3778
null
null
Testing whether linear equations are causal: A free probability theory approach
cs.LG stat.ML
We propose a method that infers whether linear relations between two high-dimensional variables X and Y are due to a causal influence from X to Y or from Y to X. The earlier proposed so-called Trace Method is extended to the regime where the dimension of the observed variables exceeds the sample size. Based on previous work, we postulate conditions that characterize a causal relation between X and Y. Moreover, we describe a statistical test and argue that both causal directions are typically rejected if there is a common cause. A full theoretical analysis is presented for the deterministic case but our approach seems to be valid for the noisy case, too, for which we additionally present an approach based on a sparsity constraint. The discussed method yields promising results for both simulated and real world data.
Jakob Zscheischler, Dominik Janzing, Kun Zhang
null
1202.3779
null
null
Graphical Models for Bandit Problems
cs.LG cs.AI stat.ML
We introduce a rich class of graphical models for multi-armed bandit problems that permit both the state or context space and the action space to be very large, yet succinctly specify the payoffs for any context-action pair. Our main result is an algorithm for such models whose regret is bounded by the number of parameters and whose running time depends only on the treewidth of the graph substructure induced by the action space.
Kareem Amin, Michael Kearns, Umar Syed
null
1202.3782
null
null
PAC Bounds for Discounted MDPs
cs.LG
We study upper and lower bounds on the sample-complexity of learning near-optimal behaviour in finite-state discounted Markov Decision Processes (MDPs). For the upper bound we make the assumption that each action leads to at most two possible next-states and prove a new bound for a UCRL-style algorithm on the number of time-steps when it is not Probably Approximately Correct (PAC). The new lower bound strengthens previous work by being both more general (it applies to all policies) and tighter. The upper and lower bounds match up to logarithmic factors.
Tor Lattimore and Marcus Hutter
null
1202.3890
null
null
Generalized Principal Component Analysis (GPCA)
cs.CV cs.LG
This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point. When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high- dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems such as face clustering, temporal video segmentation, and 3D motion segmentation from point correspondences in multiple affine views.
Rene Vidal, Yi Ma, Shankar Sastry
null
1202.4002
null
null
On the Sample Complexity of Predictive Sparse Coding
cs.LG stat.ML
The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but their generalization properties have not been studied. We establish the first generalization error bounds for predictive sparse coding, covering two settings: 1) the overcomplete setting, where the number of features k exceeds the original dimensionality d; and 2) the high or infinite-dimensional setting, where only dimension-free bounds are useful. Both learning bounds intimately depend on stability properties of the learned sparse encoder, as measured on the training sample. Consequently, we first present a fundamental stability result for the LASSO, a result characterizing the stability of the sparse codes with respect to perturbations to the dictionary. In the overcomplete setting, we present an estimation error bound that decays as \tilde{O}(sqrt(d k/m)) with respect to d and k. In the high or infinite-dimensional setting, we show a dimension-free bound that is \tilde{O}(sqrt(k^2 s / m)) with respect to k and s, where s is an upper bound on the number of non-zeros in the sparse code for any training data point.
Nishant A. Mehta and Alexander G. Gray
null
1202.4050
null
null
The best of both worlds: stochastic and adversarial bandits
cs.LG cs.DS
We present a new bandit algorithm, SAO (Stochastic and Adversarial Optimal), whose regret is, essentially, optimal both for adversarial rewards and for stochastic rewards. Specifically, SAO combines the square-root worst-case regret of Exp3 (Auer et al., SIAM J. on Computing 2002) and the (poly)logarithmic regret of UCB1 (Auer et al., Machine Learning 2002) for stochastic rewards. Adversarial rewards and stochastic rewards are the two main settings in the literature on (non-Bayesian) multi-armed bandits. Prior work on multi-armed bandits treats them separately, and does not attempt to jointly optimize for both. Our result falls into a general theme of achieving good worst-case performance while also taking advantage of "nice" problem instances, an important issue in the design of algorithms with partially known inputs.
Sebastien Bubeck and Aleksandrs Slivkins
null
1202.4473
null
null
(weak) Calibration is Computationally Hard
cs.GT cs.AI cs.LG stat.ML
We show that the existence of a computationally efficient calibration algorithm, with a low weak calibration rate, would imply the existence of an efficient algorithm for computing approximate Nash equilibria - thus implying the unlikely conclusion that every problem in PPAD is solvable in polynomial time.
Elad Hazan, Sham Kakade
null
1202.4478
null
null
Metabolic cost as an organizing principle for cooperative learning
q-bio.NC cs.LG nlin.AO
This paper investigates how neurons can use metabolic cost to facilitate learning at a population level. Although decision-making by individual neurons has been extensively studied, questions regarding how neurons should behave to cooperate effectively remain largely unaddressed. Under assumptions that capture a few basic features of cortical neurons, we show that constraining reward maximization by metabolic cost aligns the information content of actions with their expected reward. Thus, metabolic cost provides a mechanism whereby neurons encode expected reward into their outputs. Further, aside from reducing energy expenditures, imposing a tight metabolic constraint also increases the accuracy of empirical estimates of rewards, increasing the robustness of distributed learning. Finally, we present two implementations of metabolically constrained learning that confirm our theoretical finding. These results suggest that metabolic cost may be an organizing principle underlying the neural code, and may also provide a useful guide to the design and analysis of other cooperating populations.
David Balduzzi, Pedro A Ortega, Michel Besserve
null
1202.4482
null
null
Min Max Generalization for Two-stage Deterministic Batch Mode Reinforcement Learning: Relaxation Schemes
cs.SY cs.LG
We study the minmax optimization problem introduced in [22] for computing policies for batch mode reinforcement learning in a deterministic setting. First, we show that this problem is NP-hard. In the two-stage case, we provide two relaxation schemes. The first relaxation scheme works by dropping some constraints in order to obtain a problem that is solvable in polynomial time. The second relaxation scheme, based on a Lagrangian relaxation where all constraints are dualized, leads to a conic quadratic programming problem. We also theoretically prove and empirically illustrate that both relaxation schemes provide better results than those given in [22].
Raphael Fonteneau, Damien Ernst, Bernard Boigelot and Quentin Louveaux
null
1202.5298
null
null
Classification approach based on association rules mining for unbalanced data
stat.ML cs.LG
This paper deals with the binary classification task when the target class has the lower probability of occurrence. In such situation, it is not possible to build a powerful classifier by using standard methods such as logistic regression, classification tree, discriminant analysis, etc. To overcome this short-coming of these methods which yield classifiers with low sensibility, we tackled the classification problem here through an approach based on the association rules learning. This approach has the advantage of allowing the identification of the patterns that are well correlated with the target class. Association rules learning is a well known method in the area of data-mining. It is used when dealing with large database for unsupervised discovery of local patterns that expresses hidden relationships between input variables. In considering association rules from a supervised learning point of view, a relevant set of weak classifiers is obtained from which one derives a classifier that performs well.
Cheikh Ndour (1,2,3), Aliou Diop (1), Simplice Dossou-Gb\'et\'e (2) ((1) Universit\'e Gaston Berger, Saint-Louis, S\'en\'egal (2) Universit\'e de Pau et des Pays de l 'Adour, Pau, France (3) Universit\'e de Bordeaux, Bordeaux, France)
null
1202.5514
null
null
Hybrid Batch Bayesian Optimization
cs.AI cs.LG
Bayesian Optimization aims at optimizing an unknown non-convex/concave function that is costly to evaluate. We are interested in application scenarios where concurrent function evaluations are possible. Under such a setting, BO could choose to either sequentially evaluate the function, one input at a time and wait for the output of the function before making the next selection, or evaluate the function at a batch of multiple inputs at once. These two different settings are commonly referred to as the sequential and batch settings of Bayesian Optimization. In general, the sequential setting leads to better optimization performance as each function evaluation is selected with more information, whereas the batch setting has an advantage in terms of the total experimental time (the number of iterations). In this work, our goal is to combine the strength of both settings. Specifically, we systematically analyze Bayesian optimization using Gaussian process as the posterior estimator and provide a hybrid algorithm that, based on the current state, dynamically switches between a sequential policy and a batch policy with variable batch sizes. We provide theoretical justification for our algorithm and present experimental results on eight benchmark BO problems. The results show that our method achieves substantial speedup (up to %78) compared to a pure sequential policy, without suffering any significant performance loss.
Javad Azimi, Ali Jalali and Xiaoli Fern
null
1202.5597
null
null
Clustering using Max-norm Constrained Optimization
cs.LG stat.ML
We suggest using the max-norm as a convex surrogate constraint for clustering. We show how this yields a better exact cluster recovery guarantee than previously suggested nuclear-norm relaxation, and study the effectiveness of our method, and other related convex relaxations, compared to other clustering approaches.
Ali Jalali and Nathan Srebro
null
1202.5598
null
null
Training Restricted Boltzmann Machines on Word Observations
cs.LG stat.ML
The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter.
George E. Dahl, Ryan P. Adams and Hugo Larochelle
null
1202.5695
null
null
Efficiently Sampling Multiplicative Attribute Graphs Using a Ball-Dropping Process
stat.ML cs.LG
We introduce a novel and efficient sampling algorithm for the Multiplicative Attribute Graph Model (MAGM - Kim and Leskovec (2010)}). Our algorithm is \emph{strictly} more efficient than the algorithm proposed by Yun and Vishwanathan (2012), in the sense that our method extends the \emph{best} time complexity guarantee of their algorithm to a larger fraction of parameter space. Both in theory and in empirical evaluation on sparse graphs, our new algorithm outperforms the previous one. To design our algorithm, we first define a stochastic \emph{ball-dropping process} (BDP). Although a special case of this process was introduced as an efficient approximate sampling algorithm for the Kronecker Product Graph Model (KPGM - Leskovec et al. (2010)}), neither \emph{why} such an approximation works nor \emph{what} is the actual distribution this process is sampling from has been addressed so far to the best of our knowledge. Our rigorous treatment of the BDP enables us to clarify the rational behind a BDP approximation of KPGM, and design an efficient sampling algorithm for the MAGM.
Hyokun Yun and S. V. N. Vishwanathan
null
1202.6001
null
null
Protocols for Learning Classifiers on Distributed Data
stat.ML cs.LG
We consider the problem of learning classifiers for labeled data that has been distributed across several nodes. Our goal is to find a single classifier, with small approximation error, across all datasets while minimizing the communication between nodes. This setting models real-world communication bottlenecks in the processing of massive distributed datasets. We present several very general sampling-based solutions as well as some two-way protocols which have a provable exponential speed-up over any one-way protocol. We focus on core problems for noiseless data distributed across two or more nodes. The techniques we introduce are reminiscent of active learning, but rather than actively probing labels, nodes actively communicate with each other, each node simultaneously learning the important data from another node.
Hal Daume III, Jeff M. Phillips, Avishek Saha, Suresh Venkatasubramanian
null
1202.6078
null
null
Nonlinear Laplacian spectral analysis: Capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data
physics.data-an cs.LG
We present a technique for spatiotemporal data analysis called nonlinear Laplacian spectral analysis (NLSA), which generalizes singular spectrum analysis (SSA) to take into account the nonlinear manifold structure of complex data sets. The key principle underlying NLSA is that the functions used to represent temporal patterns should exhibit a degree of smoothness on the nonlinear data manifold M; a constraint absent from classical SSA. NLSA enforces such a notion of smoothness by requiring that temporal patterns belong in low-dimensional Hilbert spaces V_l spanned by the leading l Laplace-Beltrami eigenfunctions on M. These eigenfunctions can be evaluated efficiently in high ambient-space dimensions using sparse graph-theoretic algorithms. Moreover, they provide orthonormal bases to expand a family of linear maps, whose singular value decomposition leads to sets of spatiotemporal patterns at progressively finer resolution on the data manifold. The Riemannian measure of M and an adaptive graph kernel width enhances the capability of NLSA to detect important nonlinear processes, including intermittency and rare events. The minimum dimension of V_l required to capture these features while avoiding overfitting is estimated here using spectral entropy criteria.
Dimitrios Giannakis and Andrew J. Majda
null
1202.6103
null
null
Distributed Power Allocation with SINR Constraints Using Trial and Error Learning
cs.GT cs.AI cs.LG
In this paper, we address the problem of global transmit power minimization in a self-congiguring network where radio devices are subject to operate at a minimum signal to interference plus noise ratio (SINR) level. We model the network as a parallel Gaussian interference channel and we introduce a fully decentralized algorithm (based on trial and error) able to statistically achieve a congiguration where the performance demands are met. Contrary to existing solutions, our algorithm requires only local information and can learn stable and efficient working points by using only one bit feedback. We model the network under two different game theoretical frameworks: normal form and satisfaction form. We show that the converging points correspond to equilibrium points, namely Nash and satisfaction equilibrium. Similarly, we provide sufficient conditions for the algorithm to converge in both formulations. Moreover, we provide analytical results to estimate the algorithm's performance, as a function of the network parameters. Finally, numerical results are provided to validate our theoretical conclusions. Keywords: Learning, power control, trial and error, Nash equilibrium, spectrum sharing.
Luca Rose, Samir M. Perlaza, M\'erouane Debbah, Christophe J. Le Martret
null
1202.6157
null
null
Confusion Matrix Stability Bounds for Multiclass Classification
cs.LG
In this paper, we provide new theoretical results on the generalization properties of learning algorithms for multiclass classification problems. The originality of our work is that we propose to use the confusion matrix of a classifier as a measure of its quality; our contribution is in the line of work which attempts to set up and study the statistical properties of new evaluation measures such as, e.g. ROC curves. In the confusion-based learning framework we propose, we claim that a targetted objective is to minimize the size of the confusion matrix C, measured through its operator norm ||C||. We derive generalization bounds on the (size of the) confusion matrix in an extended framework of uniform stability, adapted to the case of matrix valued loss. Pivotal to our study is a very recent matrix concentration inequality that generalizes McDiarmid's inequality. As an illustration of the relevance of our theoretical results, we show how two SVM learning procedures can be proved to be confusion-friendly. To the best of our knowledge, the present paper is the first that focuses on the confusion matrix from a theoretical point of view.
Pierre Machart (LIF, LSIS), Liva Ralaivola (LIF)
null
1202.6221
null
null
PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification
stat.ML cs.LG
In this work, we propose a PAC-Bayes bound for the generalization risk of the Gibbs classifier in the multi-class classification framework. The novelty of our work is the critical use of the confusion matrix of a classifier as an error measure; this puts our contribution in the line of work aiming at dealing with performance measure that are richer than mere scalar criterion such as the misclassification rate. Thanks to very recent and beautiful results on matrix concentration inequalities, we derive two bounds showing that the true confusion risk of the Gibbs classifier is upper-bounded by its empirical risk plus a term depending on the number of training examples in each class. To the best of our knowledge, this is the first PAC-Bayes bounds based on confusion matrices.
Emilie Morvant (LIF), Sokol Ko\c{c}o (LIF), Liva Ralaivola (LIF)
null
1202.6228
null
null
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
math.OC cs.LG
We propose a new stochastic gradient method for optimizing the sum of a finite set of smooth functions, where the sum is strongly convex. While standard stochastic gradient methods converge at sublinear rates for this problem, the proposed method incorporates a memory of previous gradient values in order to achieve a linear convergence rate. In a machine learning context, numerical experiments indicate that the new algorithm can dramatically outperform standard algorithms, both in terms of optimizing the training error and reducing the test error quickly.
Nicolas Le Roux (INRIA Paris - Rocquencourt, LIENS), Mark Schmidt (INRIA Paris - Rocquencourt, LIENS), Francis Bach (INRIA Paris - Rocquencourt, LIENS)
null
1202.6258
null
null
Learning from Distributions via Support Measure Machines
stat.ML cs.LG
This paper presents a kernel-based discriminative learning framework on probability measures. Rather than relying on large collections of vectorial training examples, our framework learns using a collection of probability distributions that have been constructed to meaningfully represent training data. By representing these probability distributions as mean embeddings in the reproducing kernel Hilbert space (RKHS), we are able to apply many standard kernel-based learning techniques in straightforward fashion. To accomplish this, we construct a generalization of the support vector machine (SVM) called a support measure machine (SMM). Our analyses of SMMs provides several insights into their relationship to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-SVM) that places different kernel functions on each training example. Experimental results on both synthetic and real-world data demonstrate the effectiveness of our proposed framework.
Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, Bernhard Sch\"olkopf
null
1202.6504
null
null
mlpy: Machine Learning Python
cs.MS cs.LG stat.ML
mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is distributed under GPL3 at the website http://mlpy.fbk.eu.
Davide Albanese and Roberto Visintainer and Stefano Merler and Samantha Riccadonna and Giuseppe Jurman and Cesare Furlanello
null
1202.6548
null
null
Inference in Hidden Markov Models with Explicit State Duration Distributions
stat.ML cs.LG
In this letter we borrow from the inference techniques developed for unbounded state-cardinality (nonparametric) variants of the HMM and use them to develop a tuning-parameter free, black-box inference procedure for Explicit-state-duration hidden Markov models (EDHMM). EDHMMs are HMMs that have latent states consisting of both discrete state-indicator and discrete state-duration random variables. In contrast to the implicit geometric state duration distribution possessed by the standard HMM, EDHMMs allow the direct parameterisation and estimation of per-state duration distributions. As most duration distributions are defined over the positive integers, truncation or other approximations are usually required to perform EDHMM inference.
Michael Dewar, Chris Wiggins, Frank Wood
10.1109/LSP.2012.2184795
1203.0038
null
null
A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration
cs.DB cs.LG
In practical data integration systems, it is common for the data sources being integrated to provide conflicting information about the same entity. Consequently, a major challenge for data integration is to derive the most complete and accurate integrated records from diverse and sometimes conflicting sources. We term this challenge the truth finding problem. We observe that some sources are generally more reliable than others, and therefore a good model of source quality is the key to solving the truth finding problem. In this work, we propose a probabilistic graphical model that can automatically infer true records and source quality without any supervision. In contrast to previous methods, our principled approach leverages a generative process of two types of errors (false positive and false negative) by modeling two different aspects of source quality. In so doing, ours is also the first approach designed to merge multi-valued attribute types. Our method is scalable, due to an efficient sampling-based inference algorithm that needs very few iterations in practice and enjoys linear time complexity, with an even faster incremental variant. Experiments on two real world datasets show that our new method outperforms existing state-of-the-art approaches to the truth finding problem.
Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, Jiawei Han
null
1203.0058
null
null
Scaling Datalog for Machine Learning on Big Data
cs.DB cs.LG cs.PF
In this paper, we present the case for a declarative foundation for data-intensive machine learning systems. Instead of creating a new system for each specific flavor of machine learning task, or hardcoding new optimizations, we argue for the use of recursive queries to program a variety of machine learning systems. By taking this approach, database query optimization techniques can be utilized to identify effective execution plans, and the resulting runtime plans can be executed on a single unified data-parallel query processing engine. As a proof of concept, we consider two programming models--Pregel and Iterative Map-Reduce-Update---from the machine learning domain, and show how they can be captured in Datalog, tuned for a specific task, and then compiled into an optimized physical plan. Experiments performed on a large computing cluster with real data demonstrate that this declarative approach can provide very good performance while offering both increased generality and programming ease.
Yingyi Bu, Vinayak Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis, Tyson Condie, Markus Weimer, Raghu Ramakrishnan
null
1203.0160
null
null
Fast Reinforcement Learning with Large Action Sets using Error-Correcting Output Codes for MDP Factorization
cs.LG stat.ML
The use of Reinforcement Learning in real-world scenarios is strongly limited by issues of scale. Most RL learning algorithms are unable to deal with problems composed of hundreds or sometimes even dozens of possible actions, and therefore cannot be applied to many real-world problems. We consider the RL problem in the supervised classification framework where the optimal policy is obtained through a multiclass classifier, the set of classes being the set of actions of the problem. We introduce error-correcting output codes (ECOCs) in this setting and propose two new methods for reducing complexity when using rollouts-based approaches. The first method consists in using an ECOC-based classifier as the multiclass classifier, reducing the learning complexity from O(A2) to O(Alog(A)). We then propose a novel method that profits from the ECOC's coding dictionary to split the initial MDP into O(log(A)) seperate two-action MDPs. This second method reduces learning complexity even further, from O(A2) to O(log(A)), thus rendering problems with large action sets tractable. We finish by experimentally demonstrating the advantages of our approach on a set of benchmark problems, both in speed and performance.
Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, Patrick Gallinari
null
1203.0203
null
null
Application of Gist SVM in Cancer Detection
cs.LG
In this paper, we study the application of GIST SVM in disease prediction (detection of cancer). Pattern classification problems can be effectively solved by Support vector machines. Here we propose a classifier which can differentiate patients having benign and malignant cancer cells. To improve the accuracy of classification, we propose to determine the optimal size of the training set and perform feature selection. To find the optimal size of the training set, different sizes of training sets are experimented and the one with highest classification rate is selected. The optimal features are selected through their F-Scores.
S. Aruna, S. P. Rajagopalan and L. V. Nandakishore
null
1203.0298
null
null
Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation
stat.ML cs.LG stat.ME
The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method.
Song Liu, Makoto Yamada, Nigel Collier, Masashi Sugiyama
10.1016/j.neunet.2013.01.012
1203.0453
null
null
Algorithms for Learning Kernels Based on Centered Alignment
cs.LG cs.AI
This paper presents new and effective algorithms for learning kernels. In particular, as shown by our empirical results, these algorithms consistently outperform the so-called uniform combination solution that has proven to be difficult to improve upon in the past, as well as other algorithms for learning kernels based on convex combinations of base kernels in both classification and regression. Our algorithms are based on the notion of centered alignment which is used as a similarity measure between kernels or kernel matrices. We present a number of novel algorithmic, theoretical, and empirical results for learning kernels based on our notion of centered alignment. In particular, we describe efficient algorithms for learning a maximum alignment kernel by showing that the problem can be reduced to a simple QP and discuss a one-stage algorithm for learning both a kernel and a hypothesis based on that kernel using an alignment-based regularization. Our theoretical results include a novel concentration bound for centered alignment between kernel matrices, the proof of the existence of effective predictors for kernels with high alignment, both for classification and for regression, and the proof of stability-based generalization bounds for a broad family of algorithms for learning kernels based on centered alignment. We also report the results of experiments with our centered alignment-based algorithms in both classification and regression.
Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh
null
1203.0550
null
null
Learning DNF Expressions from Fourier Spectrum
cs.LG cs.CC cs.DS
Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We introduce a new approach to learning (or approximating) a polynomial threshold functions which is based on creating a function with range [-1,1] that approximately agrees with the unknown function on low-degree Fourier coefficients. We then describe conditions under which this is sufficient for learning polynomial threshold functions. Our approach yields a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability of DNF expressions over smoothed product distributions. We also describe an application of our algorithm to learning monotone DNF expressions over product distributions. Building on the work of Servedio (2001), we give an algorithm that runs in time $\poly((s \cdot \log{(s/\eps)})^{\log{(s/\eps)}}, n)$, where $s$ is the size of the target DNF expression and $\eps$ is the accuracy. This improves on $\poly((s \cdot \log{(ns/\eps)})^{\log{(s/\eps)} \cdot \log{(1/\eps)}}, n)$ bound of Servedio (2001).
Vitaly Feldman
null
1203.0594
null
null
Checking Tests for Read-Once Functions over Arbitrary Bases
cs.DM cs.CC cs.LG
A Boolean function is called read-once over a basis B if it can be expressed by a formula over B where no variable appears more than once. A checking test for a read-once function f over B depending on all its variables is a set of input vectors distinguishing f from all other read-once functions of the same variables. We show that every read-once function f over B has a checking test containing O(n^l) vectors, where n is the number of relevant variables of f and l is the largest arity of functions in B. For some functions, this bound cannot be improved by more than a constant factor. The employed technique involves reconstructing f from its l-variable projections and provides a stronger form of Kuznetsov's classic theorem on read-once representations.
Dmitry V. Chistikov
null
1203.0631
null
null
A Method of Moments for Mixture Models and Hidden Markov Models
cs.LG stat.ML
Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which typically scale exponentially with the number of mixture components. This work develops an efficient method of moments approach to parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians (such as mixtures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous unsupervised learning results for mixture models that were not achieved by previous works; and, because of its simplicity, it offers a viable alternative to EM for practical deployment.
Animashree Anandkumar, Daniel Hsu, Sham M. Kakade
null
1203.0683
null
null
Learning High-Dimensional Mixtures of Graphical Models
stat.ML cs.AI cs.LG
We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable corresponding to the mixture components is hidden and each mixture component over the observed variables can have a potentially different Markov graph structure and parameters. We propose a novel approach for estimating the mixture components, and our output is a tree-mixture model which serves as a good approximation to the underlying graphical model mixture. Our method is efficient when the union graph, which is the union of the Markov graphs of the mixture components, has sparse vertex separators between any pair of observed variables. This includes tree mixtures and mixtures of bounded degree graphs. For such models, we prove that our method correctly recovers the union graph structure and the tree structures corresponding to maximum-likelihood tree approximations of the mixture components. The sample and computational complexities of our method scale as $\poly(p, r)$, for an $r$-component mixture of $p$-variate graphical models. We further extend our results to the case when the union graph has sparse local separators between any pair of observed variables, such as mixtures of locally tree-like graphs, and the mixture components are in the regime of correlation decay.
A. Anandkumar, D. Hsu, F. Huang and S. M. Kakade
null
1203.0697
null
null
Infinite Shift-invariant Grouped Multi-task Learning for Gaussian Processes
cs.LG astro-ph.IM stat.ML
Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component capturing individual variation, in addition to each task being phase shifted. We develop an efficient \textsc{em} algorithm to learn the parameters of the model. As a special case we obtain the Gaussian mixture model and \textsc{em} algorithm for phased-shifted periodic time series. Furthermore, we extend the proposed model by using a Dirichlet Process prior and thereby leading to an infinite mixture model that is capable of doing automatic model selection. A Variational Bayesian approach is developed for inference in this model. Experiments in regression, classification and class discovery demonstrate the performance of the proposed models using both synthetic data and real-world time series data from astrophysics. Our methods are particularly useful when the time series are sparsely and non-synchronously sampled.
Yuyang Wang, Roni Khardon, Pavlos Protopapas
null
1203.0970
null
null
Sparse Subspace Clustering: Algorithm, Theory, and Applications
cs.CV cs.IR cs.IT cs.LG math.IT math.OC stat.ML
In many real-world problems, we are dealing with collections of high-dimensional data, such as images, videos, text and web documents, DNA microarray data, and more. Often, high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories the data belongs to. In this paper, we propose and study an algorithm, called Sparse Subspace Clustering (SSC), to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of subspaces and the distribution of data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm can be solved efficiently and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal with data nuisances, such as noise, sparse outlying entries, and missing entries, directly by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering.
Ehsan Elhamifar and Rene Vidal
null
1203.1005
null
null
Agnostic System Identification for Model-Based Reinforcement Learning
cs.LG cs.AI cs.SY stat.ML
A fundamental problem in control is to learn a model of a system from observations that is useful for controller synthesis. To provide good performance guarantees, existing methods must assume that the real system is in the class of models considered during learning. We present an iterative method with strong guarantees even in the agnostic case where the system is not in the class. In particular, we show that any no-regret online learning algorithm can be used to obtain a near-optimal policy, provided some model achieves low training error and access to a good exploration distribution. Our approach applies to both discrete and continuous domains. We demonstrate its efficacy and scalability on a challenging helicopter domain from the literature.
Stephane Ross, J. Andrew Bagnell
null
1203.1007
null
null
Learning Random Kernel Approximations for Object Recognition
cs.CV cs.LG
Approximations based on random Fourier features have recently emerged as an efficient and formally consistent methodology to design large-scale kernel machines. By expressing the kernel as a Fourier expansion, features are generated based on a finite set of random basis projections, sampled from the Fourier transform of the kernel, with inner products that are Monte Carlo approximations of the original kernel. Based on the observation that different kernel-induced Fourier sampling distributions correspond to different kernel parameters, we show that an optimization process in the Fourier domain can be used to identify the different frequency bands that are useful for prediction on training data. Moreover, the application of group Lasso to random feature vectors corresponding to a linear combination of multiple kernels, leads to efficient and scalable reformulations of the standard multiple kernel learning model \cite{Varma09}. In this paper we develop the linear Fourier approximation methodology for both single and multiple gradient-based kernel learning and show that it produces fast and accurate predictors on a complex dataset such as the Visual Object Challenge 2011 (VOC2011).
Eduard Gabriel B\u{a}z\u{a}van, Fuxin Li and Cristian Sminchisescu
null
1203.1483
null
null
Multiple Operator-valued Kernel Learning
stat.ML cs.LG
Positive definite operator-valued kernels generalize the well-known notion of reproducing kernels, and are naturally adapted to multi-output learning situations. This paper addresses the problem of learning a finite linear combination of infinite-dimensional operator-valued kernels which are suitable for extending functional data analysis methods to nonlinear contexts. We study this problem in the case of kernel ridge regression for functional responses with an lr-norm constraint on the combination coefficients. The resulting optimization problem is more involved than those of multiple scalar-valued kernel learning since operator-valued kernels pose more technical and theoretical issues. We propose a multiple operator-valued kernel learning algorithm based on solving a system of linear operator equations by using a block coordinatedescent procedure. We experimentally validate our approach on a functional regression task in the context of finger movement prediction in brain-computer interfaces.
Hachem Kadri (INRIA Lille - Nord Europe), Alain Rakotomamonjy (LITIS), Francis Bach (INRIA Paris - Rocquencourt, LIENS), Philippe Preux (INRIA Lille - Nord Europe)
null
1203.1596
null
null
Graph partitioning advance clustering technique
cs.LG cs.DB
Clustering is a common technique for statistical data analysis, Clustering is the process of grouping the data into classes or clusters so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering is an unsupervised learning technique, where interesting patterns and structures can be found directly from very large data sets with little or none of the background knowledge. This paper also considers the partitioning of m-dimensional lattice graphs using Fiedler's approach, which requires the determination of the eigenvector belonging to the second smallest Eigenvalue of the Laplacian with K-means partitioning algorithm.
T Soni Madhulatha
null
1203.2002
null
null
Regret Bounds for Deterministic Gaussian Process Bandits
cs.LG stat.ML
This paper analyses the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, (Srinivas et al., 2010) proved that the regret vanishes at the approximate rate of $O(\frac{1}{\sqrt{t}})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-\frac{\tau t}{(\ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and $\tau$ is a constant that depends on the behaviour of the objective function near its global maximum.
Nando de Freitas, Alex Smola, Masrour Zoghi
null
1203.2177
null
null
Role-Dynamics: Fast Mining of Large Dynamic Networks
cs.SI cs.AI cs.LG stat.ML
To understand the structural dynamics of a large-scale social, biological or technological network, it may be useful to discover behavioral roles representing the main connectivity patterns present over time. In this paper, we propose a scalable non-parametric approach to automatically learn the structural dynamics of the network and individual nodes. Roles may represent structural or behavioral patterns such as the center of a star, peripheral nodes, or bridge nodes that connect different communities. Our novel approach learns the appropriate structural role dynamics for any arbitrary network and tracks the changes over time. In particular, we uncover the specific global network dynamics and the local node dynamics of a technological, communication, and social network. We identify interesting node and network patterns such as stationary and non-stationary roles, spikes/steps in role-memberships (perhaps indicating anomalies), increasing/decreasing role trends, among many others. Our results indicate that the nodes in each of these networks have distinct connectivity patterns that are non-stationary and evolve considerably over time. Overall, the experiments demonstrate the effectiveness of our approach for fast mining and tracking of the dynamics in large networks. Furthermore, the dynamic structural representation provides a basis for building more sophisticated models and tools that are fast for exploring large dynamic networks.
Ryan Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson
null
1203.2200
null
null
Decentralized, Adaptive, Look-Ahead Particle Filtering
stat.ML cs.LG stat.CO
The decentralized particle filter (DPF) was proposed recently to increase the level of parallelism of particle filtering. Given a decomposition of the state space into two nested sets of variables, the DPF uses a particle filter to sample the first set and then conditions on this sample to generate a set of samples for the second set of variables. The DPF can be understood as a variant of the popular Rao-Blackwellized particle filter (RBPF), where the second step is carried out using Monte Carlo approximations instead of analytical inference. As a result, the range of applications of the DPF is broader than the one for the RBPF. In this paper, we improve the DPF in two ways. First, we derive a Monte Carlo approximation of the optimal proposal distribution and, consequently, design and implement a more efficient look-ahead DPF. Although the decentralized filters were initially designed to capitalize on parallel implementation, we show that the look-ahead DPF can outperform the standard particle filter even on a single machine. Second, we propose the use of bandit algorithms to automatically configure the state space decomposition of the DPF.
Mohamed Osama Ahmed, Pouyan T. Bibalan, Nando de Freitas and Simon Fauvel
null
1203.2394
null
null
Deviation optimal learning using greedy Q-aggregation
math.ST cs.LG stat.ML stat.TH
Given a finite family of functions, the goal of model selection aggregation is to construct a procedure that mimics the function from this family that is the closest to an unknown regression function. More precisely, we consider a general regression model with fixed design and measure the distance between functions by the mean squared error at the design points. While procedures based on exponential weights are known to solve the problem of model selection aggregation in expectation, they are, surprisingly, sub-optimal in deviation. We propose a new formulation called Q-aggregation that addresses this limitation; namely, its solution leads to sharp oracle inequalities that are optimal in a minimax sense. Moreover, based on the new formulation, we design greedy Q-aggregation procedures that produce sparse aggregation models achieving the optimal rate. The convergence and performance of these greedy procedures are illustrated and compared with other standard methods on simulated examples.
Dong Dai, Philippe Rigollet, Tong Zhang
10.1214/12-AOS1025
1203.2507
null
null
A Simple Flood Forecasting Scheme Using Wireless Sensor Networks
cs.LG cs.CE cs.NI cs.SY stat.AP
This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.
Victor Seal, Arnab Raha, Shovan Maity, Souvik Kr Mitra, Amitava Mukherjee and Mrinal Kanti Naskar
10.5121/ijasuc.2012.3105
1203.2511
null
null
On the Necessity of Irrelevant Variables
cs.LG
This work explores the effects of relevant and irrelevant boolean variables on the accuracy of classifiers. The analysis uses the assumption that the variables are conditionally independent given the class, and focuses on a natural family of learning algorithms for such sources when the relevant variables have a small advantage over random guessing. The main result is that algorithms relying predominately on irrelevant variables have error probabilities that quickly go to 0 in situations where algorithms that limit the use of irrelevant variables have errors bounded below by a positive constant. We also show that accurate learning is possible even when there are so few examples that one cannot determine with high confidence whether or not any individual variable is relevant.
David P. Helmbold and Philip M. Long
null
1203.2557
null
null
Differential Privacy for Functions and Functional Data
stat.ML cs.LG
Differential privacy is a framework for privately releasing summaries of a database. Previous work has focused mainly on methods for which the output is a finite dimensional vector, or an element of some discrete set. We develop methods for releasing functions while preserving differential privacy. Specifically, we show that adding an appropriate Gaussian process to the function of interest yields differential privacy. When the functions lie in the same RKHS as the Gaussian process, then the correct noise level is established by measuring the "sensitivity" of the function in the RKHS norm. As examples we consider kernel density estimation, kernel support vector machines, and functions in reproducing kernel Hilbert spaces.
Rob Hall, Alessandro Rinaldo, Larry Wasserman
null
1203.2570
null
null
Graphlet decomposition of a weighted network
stat.ME cs.LG cs.SI physics.soc-ph
We introduce the graphlet decomposition of a weighted network, which encodes a notion of social information based on social structure. We develop a scalable inference algorithm, which combines EM with Bron-Kerbosch in a novel fashion, for estimating the parameters of the model underlying graphlets using one network sample. We explore some theoretical properties of the graphlet decomposition, including computational complexity, redundancy and expected accuracy. We demonstrate graphlets on synthetic and real data. We analyze messaging patterns on Facebook and criminal associations in the 19th century.
Hossein Azari Soufiani, Edoardo M Airoldi
null
1203.2821
null
null
Mining Education Data to Predict Student's Retention: A comparative Study
cs.LG cs.DB
The main objective of higher education is to provide quality education to students. One way to achieve highest level of quality in higher education system is by discovering knowledge for prediction regarding enrolment of students in a course. This paper presents a data mining project to generate predictive models for student retention management. Given new records of incoming students, these predictive models can produce short accurate prediction lists identifying students who tend to need the support from the student retention program most. This paper examines the quality of the predictive models generated by the machine learning algorithms. The results show that some of the machines learning algorithms are able to establish effective predictive models from the existing student retention data.
Surjeet Kumar Yadav, Brijesh Bharadwaj and Saurabh Pal
null
1203.2987
null
null
Evolving Culture vs Local Minima
cs.LG cs.AI
We propose a theory that relates difficulty of learning in deep architectures to culture and language. It is articulated around the following hypotheses: (1) learning in an individual human brain is hampered by the presence of effective local minima; (2) this optimization difficulty is particularly important when it comes to learning higher-level abstractions, i.e., concepts that cover a vast and highly-nonlinear span of sensory configurations; (3) such high-level abstractions are best represented in brains by the composition of many levels of representation, i.e., by deep architectures; (4) a human brain can learn such high-level abstractions if guided by the signals produced by other humans, which act as hints or indirect supervision for these high-level abstractions; and (5), language and the recombination and optimization of mental concepts provide an efficient evolutionary recombination operator, and this gives rise to rapid search in the space of communicable ideas that help humans build up better high-level internal representations of their world. These hypotheses put together imply that human culture and the evolution of ideas have been crucial to counter an optimization difficulty: this optimization difficulty would otherwise make it very difficult for human brains to capture high-level knowledge of the world. The theory is grounded in experimental observations of the difficulties of training deep artificial neural networks. Plausible consequences of this theory for the efficiency of cultural evolutions are sketched.
Yoshua Bengio
null
1203.2990
null
null
Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test
cs.AI cs.LG nlin.AO
The Turing Test (TT) checks for human intelligence, rather than any putative general intelligence. It involves repeated interaction requiring learning in the form of adaption to the human conversation partner. It is a macro-level post-hoc test in contrast to the definition of a Turing Machine (TM), which is a prior micro-level definition. This raises the question of whether learning is just another computational process, i.e. can be implemented as a TM. Here we argue that learning or adaption is fundamentally different from computation, though it does involve processes that can be seen as computations. To illustrate this difference we compare (a) designing a TM and (b) learning a TM, defining them for the purpose of the argument. We show that there is a well-defined sequence of problems which are not effectively designable but are learnable, in the form of the bounded halting problem. Some characteristics of human intelligence are reviewed including it's: interactive nature, learning abilities, imitative tendencies, linguistic ability and context-dependency. A story that explains some of these is the Social Intelligence Hypothesis. If this is broadly correct, this points to the necessity of a considerable period of acculturation (social learning in context) if an artificial intelligence is to pass the TT. Whilst it is always possible to 'compile' the results of learning into a TM, this would not be a designed TM and would not be able to continually adapt (pass future TTs). We conclude three things, namely that: a purely "designed" TM will never pass the TT; that there is no such thing as a general intelligence since it necessary involves learning; and that learning/adaption and computation should be clearly distinguished.
Bruce Edmonds and Carlos Gershenson
10.1007/978-3-642-30870-3_18
1203.3376
null
null
Robust Metric Learning by Smooth Optimization
cs.LG stat.ML
Most existing distance metric learning methods assume perfect side information that is usually given in pairwise or triplet constraints. Instead, in many real-world applications, the constraints are derived from side information, such as users' implicit feedbacks and citations among articles. As a result, these constraints are usually noisy and contain many mistakes. In this work, we aim to learn a distance metric from noisy constraints by robust optimization in a worst-case scenario, to which we refer as robust metric learning. We formulate the learning task initially as a combinatorial optimization problem, and show that it can be elegantly transformed to a convex programming problem. We present an efficient learning algorithm based on smooth optimization [7]. It has a worst-case convergence rate of O(1/{\surd}{\varepsilon}) for smooth optimization problems, where {\varepsilon} is the desired error of the approximate solution. Finally, our empirical study with UCI data sets demonstrate the effectiveness of the proposed method in comparison to state-of-the-art methods.
Kaizhu Huang, Rong Jin, Zenglin Xu, Cheng-Lin Liu
null
1203.3461
null
null
Gaussian Process Topic Models
cs.LG stat.ML
We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learning GPTMs involves a novel component-solving a suitable Sylvester equation capturing both topic and document dependencies. The efficacy of GPTMs is demonstrated with experiments evaluating the quality of both topic modeling and embedding.
Amrudin Agovic, Arindam Banerjee
null
1203.3462
null
null
Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream
cs.IR cs.LG stat.ML
Topic models have proven to be a useful tool for discovering latent structures in document collections. However, most document collections often come as temporal streams and thus several aspects of the latent structure such as the number of topics, the topics' distribution and popularity are time-evolving. Several models exist that model the evolution of some but not all of the above aspects. In this paper we introduce infinite dynamic topic models, iDTM, that can accommodate the evolution of all the aforementioned aspects. Our model assumes that documents are organized into epochs, where the documents within each epoch are exchangeable but the order between the documents is maintained across epochs. iDTM allows for unbounded number of topics: topics can die or be born at any epoch, and the representation of each topic can evolve according to a Markovian dynamics. We use iDTM to analyze the birth and evolution of topics in the NIPS community and evaluated the efficacy of our model on both simulated and real datasets with favorable outcome.
Amr Ahmed, Eric P. Xing
null
1203.3463
null
null
Bayesian Rose Trees
cs.LG stat.ML
Hierarchical structure is ubiquitous in data across many domains. There are many hierarchical clustering methods, frequently used by domain experts, which strive to discover this structure. However, most of these methods limit discoverable hierarchies to those with binary branching structure. This limitation, while computationally convenient, is often undesirable. In this paper we explore a Bayesian hierarchical clustering algorithm that can produce trees with arbitrary branching structure at each node, known as rose trees. We interpret these trees as mixtures over partitions of a data set, and use a computationally efficient, greedy agglomerative algorithm to find the rose trees which have high marginal likelihood given the data. Lastly, we perform experiments which demonstrate that rose trees are better models of data than the typical binary trees returned by other hierarchical clustering algorithms.
Charles Blundell, Yee Whye Teh, Katherine A. Heller
null
1203.3468
null
null
An Online Learning-based Framework for Tracking
cs.LG cs.AI stat.ML
We study the tracking problem, namely, estimating the hidden state of an object over time, from unreliable and noisy measurements. The standard framework for the tracking problem is the generative framework, which is the basis of solutions such as the Bayesian algorithm and its approximation, the particle filters. However, these solutions can be very sensitive to model mismatches. In this paper, motivated by online learning, we introduce a new framework for tracking. We provide an efficient tracking algorithm for this framework. We provide experimental results comparing our algorithm to the Bayesian algorithm on simulated data. Our experiments show that when there are slight model mismatches, our algorithm outperforms the Bayesian algorithm.
Kamalika Chaudhuri, Yoav Freund, Daniel Hsu
null
1203.3471
null
null
Super-Samples from Kernel Herding
cs.LG stat.ML
We extend the herding algorithm to continuous spaces by using the kernel trick. The resulting "kernel herding" algorithm is an infinite memory deterministic process that learns to approximate a PDF with a collection of samples. We show that kernel herding decreases the error of expectations of functions in the Hilbert space at a rate O(1/T) which is much faster than the usual O(1/pT) for iid random samples. We illustrate kernel herding by approximating Bayesian predictive distributions.
Yutian Chen, Max Welling, Alex Smola
null
1203.3472
null
null
Inferring deterministic causal relations
cs.LG stat.ML
We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noise-free) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the distribution of the effect will, in a certain sense, depend on the function. We provide a theoretical analysis of this method, showing that it also works in the low noise regime, and link it to information geometry. We report strong empirical results on various real-world data sets from different domains.
Povilas Daniusis, Dominik Janzing, Joris Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schoelkopf
null
1203.3475
null
null
Inference-less Density Estimation using Copula Bayesian Networks
cs.LG stat.ML
We consider learning continuous probabilistic graphical models in the face of missing data. For non-Gaussian models, learning the parameters and structure of such models depends on our ability to perform efficient inference, and can be prohibitive even for relatively modest domains. Recently, we introduced the Copula Bayesian Network (CBN) density model - a flexible framework that captures complex high-dimensional dependency structures while offering direct control over the univariate marginals, leading to improved generalization. In this work we show that the CBN model also offers significant computational advantages when training data is partially observed. Concretely, we leverage on the specialized form of the model to derive a computationally amenable learning objective that is a lower bound on the log-likelihood function. Importantly, our energy-like bound circumvents the need for costly inference of an auxiliary distribution, thus facilitating practical learning of highdimensional densities. We demonstrate the effectiveness of our approach for learning the structure and parameters of a CBN model for two reallife continuous domains.
Gal Elidan
null
1203.3476
null
null
Real-Time Scheduling via Reinforcement Learning
cs.LG cs.AI stat.ML
Cyber-physical systems, such as mobile robots, must respond adaptively to dynamic operating conditions. Effective operation of these systems requires that sensing and actuation tasks are performed in a timely manner. Additionally, execution of mission specific tasks such as imaging a room must be balanced against the need to perform more general tasks such as obstacle avoidance. This problem has been addressed by maintaining relative utilization of shared resources among tasks near a user-specified target level. Producing optimal scheduling strategies requires complete prior knowledge of task behavior, which is unlikely to be available in practice. Instead, suitable scheduling strategies must be learned online through interaction with the system. We consider the sample complexity of reinforcement learning in this domain, and demonstrate that while the problem state space is countably infinite, we may leverage the problem's structure to guarantee efficient learning.
Robert Glaubius, Terry Tidwell, Christopher Gill, William D. Smart
null
1203.3481
null
null
Regularized Maximum Likelihood for Intrinsic Dimension Estimation
cs.LG stat.ML
We propose a new method for estimating the intrinsic dimension of a dataset by applying the principle of regularized maximum likelihood to the distances between close neighbors. We propose a regularization scheme which is motivated by divergence minimization principles. We derive the estimator by a Poisson process approximation, argue about its convergence properties and apply it to a number of simulated and real datasets. We also show it has the best overall performance compared with two other intrinsic dimension estimators.
Mithun Das Gupta, Thomas S. Huang
null
1203.3483
null
null
The Hierarchical Dirichlet Process Hidden Semi-Markov Model
cs.LG stat.ML
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the traditional HMM. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markovianity, which has been developed in the parametric setting to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicitduration HDP-HSMM and develop posterior sampling algorithms for efficient inference in both the direct-assignment and weak-limit approximation settings. We demonstrate the utility of the model and our inference methods on synthetic data as well as experiments on a speaker diarization problem and an example of learning the patterns in Morse code.
Matthew J. Johnson, Alan Willsky
null
1203.3485
null
null
Combining Spatial and Telemetric Features for Learning Animal Movement Models
cs.LG stat.ML
We introduce a new graphical model for tracking radio-tagged animals and learning their movement patterns. The model provides a principled way to combine radio telemetry data with an arbitrary set of userdefined, spatial features. We describe an efficient stochastic gradient algorithm for fitting model parameters to data and demonstrate its effectiveness via asymptotic analysis and synthetic experiments. We also apply our model to real datasets, and show that it outperforms the most popular radio telemetry software package used in ecology. We conclude that integration of different data sources under a single statistical framework, coupled with appropriate parameter and state estimation procedures, produces both accurate location estimates and an interpretable statistical model of animal movement.
Berk Kapicioglu, Robert E. Schapire, Martin Wikelski, Tamara Broderick
null
1203.3486
null
null
Causal Conclusions that Flip Repeatedly and Their Justification
cs.LG cs.AI stat.ML
Over the past two decades, several consistent procedures have been designed to infer causal conclusions from observational data. We prove that if the true causal network might be an arbitrary, linear Gaussian network or a discrete Bayes network, then every unambiguous causal conclusion produced by a consistent method from non-experimental data is subject to reversal as the sample size increases any finite number of times. That result, called the causal flipping theorem, extends prior results to the effect that causal discovery cannot be reliable on a given sample size. We argue that since repeated flipping of causal conclusions is unavoidable in principle for consistent methods, the best possible discovery methods are consistent methods that retract their earlier conclusions no more than necessary. A series of simulations of various methods across a wide range of sample sizes illustrates concretely both the theorem and the principle of comparing methods in terms of retractions.
Kevin T. Kelly, Conor Mayo-Wilson
null
1203.3488
null
null
Bayesian exponential family projections for coupled data sources
cs.LG stat.ML
Exponential family extensions of principal component analysis (EPCA) have received a considerable amount of attention in recent years, demonstrating the growing need for basic modeling tools that do not assume the squared loss or Gaussian distribution. We extend the EPCA model toolbox by presenting the first exponential family multi-view learning methods of the partial least squares and canonical correlation analysis, based on a unified representation of EPCA as matrix factorization of the natural parameters of exponential family. The models are based on a new family of priors that are generally usable for all such factorizations. We also introduce new inference strategies, and demonstrate how the methods outperform earlier ones when the Gaussianity assumption does not hold.
Arto Klami, Seppo Virtanen, Samuel Kaski
null
1203.3489
null
null
Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost
cs.LG stat.ML
Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logitboost with the prior work of abc-boost. Previously, abc-boost was implemented as abc-mart using the mart algorithm. Our extensive experiments on multi-class classification compare four algorithms: mart, abcmart, (robust) logitboost, and abc-logitboost, and demonstrate the superiority of abc-logitboost. Comparisons with other learning methods including SVM and deep learning are also available through prior publications.
Ping Li
null
1203.3491
null
null
Approximating Higher-Order Distances Using Random Projections
cs.LG stat.ML
We provide a simple method and relevant theoretical analysis for efficiently estimating higher-order lp distances. While the analysis mainly focuses on l4, our methodology extends naturally to p = 6,8,10..., (i.e., when p is even). Distance-based methods are popular in machine learning. In large-scale applications, storing, computing, and retrieving the distances can be both space and time prohibitive. Efficient algorithms exist for estimating lp distances if 0 < p <= 2. The task for p > 2 is known to be difficult. Our work partially fills this gap.
Ping Li, Michael W. Mahoney, Yiyuan She
null
1203.3492
null
null
Negative Tree Reweighted Belief Propagation
cs.LG stat.ML
We introduce a new class of lower bounds on the log partition function of a Markov random field which makes use of a reversed Jensen's inequality. In particular, our method approximates the intractable distribution using a linear combination of spanning trees with negative weights. This technique is a lower-bound counterpart to the tree-reweighted belief propagation algorithm, which uses a convex combination of spanning trees with positive weights to provide corresponding upper bounds. We develop algorithms to optimize and tighten the lower bounds over the non-convex set of valid parameter values. Our algorithm generalizes mean field approaches (including naive and structured mean field approximations), which it includes as a limiting case.
Qiang Liu, Alexander T. Ihler
null
1203.3494
null
null
Parameter-Free Spectral Kernel Learning
cs.LG stat.ML
Due to the growing ubiquity of unlabeled data, learning with unlabeled data is attracting increasing attention in machine learning. In this paper, we propose a novel semi-supervised kernel learning method which can seamlessly combine manifold structure of unlabeled data and Regularized Least-Squares (RLS) to learn a new kernel. Interestingly, the new kernel matrix can be obtained analytically with the use of spectral decomposition of graph Laplacian matrix. Hence, the proposed algorithm does not require any numerical optimization solvers. Moreover, by maximizing kernel target alignment on labeled data, we can also learn model parameters automatically with a closed-form solution. For a given graph Laplacian matrix, our proposed method does not need to tune any model parameter including the tradeoff parameter in RLS and the balance parameter for unlabeled data. Extensive experiments on ten benchmark datasets show that our proposed two-stage parameter-free spectral kernel learning algorithm can obtain comparable performance with fine-tuned manifold regularization methods in transductive setting, and outperform multiple kernel learning in supervised setting.
Qi Mao, Ivor W. Tsang
null
1203.3495
null
null
Dirichlet Process Mixtures of Generalized Mallows Models
cs.LG stat.ML
We present a Dirichlet process mixture model over discrete incomplete rankings and study two Gibbs sampling inference techniques for estimating posterior clusterings. The first approach uses a slice sampling subcomponent for estimating cluster parameters. The second approach marginalizes out several cluster parameters by taking advantage of approximations to the conditional posteriors. We empirically demonstrate (1) the effectiveness of this approximation for improving convergence, (2) the benefits of the Dirichlet process model over alternative clustering techniques for ranked data, and (3) the applicability of the approach to exploring large realworld ranking datasets.
Marina Meila, Harr Chen
null
1203.3496
null
null
Parametric Return Density Estimation for Reinforcement Learning
cs.LG stat.ML
Most conventional Reinforcement Learning (RL) algorithms aim to optimize decision-making rules in terms of the expected returns. However, especially for risk management purposes, other risk-sensitive criteria such as the value-at-risk or the expected shortfall are sometimes preferred in real applications. Here, we describe a parametric method for estimating density of the returns, which allows us to handle various criteria in a unified manner. We first extend the Bellman equation for the conditional expected return to cover a conditional probability density of the returns. Then we derive an extension of the TD-learning algorithm for estimating the return densities in an unknown environment. As test instances, several parametric density estimation algorithms are presented for the Gaussian, Laplace, and skewed Laplace distributions. We show that these algorithms lead to risk-sensitive as well as robust RL paradigms through numerical experiments.
Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka
null
1203.3497
null
null
Algorithms and Complexity Results for Exact Bayesian Structure Learning
cs.LG cs.DS stat.ML
Bayesian structure learning is the NP-hard problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian structure learning under graph theoretic restrictions on the super-structure. The super-structure (a concept introduced by Perrier, Imoto, and Miyano, JMLR 2008) is an undirected graph that contains as subgraphs the skeletons of solution networks. Our results apply to several variants of score-based Bayesian structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth and in linear time if in addition the super-structure has bounded maximum degree. We complement this with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but we aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).
Sebastian Ordyniak, Stefan Szeider
null
1203.3501
null
null
A Family of Computationally Efficient and Simple Estimators for Unnormalized Statistical Models
cs.LG stat.ML
We introduce a new family of estimators for unnormalized statistical models. Our family of estimators is parameterized by two nonlinear functions and uses a single sample from an auxiliary distribution, generalizing Maximum Likelihood Monte Carlo estimation of Geyer and Thompson (1992). The family is such that we can estimate the partition function like any other parameter in the model. The estimation is done by optimizing an algebraically simple, well defined objective function, which allows for the use of dedicated optimization methods. We establish consistency of the estimator family and give an expression for the asymptotic covariance matrix, which enables us to further analyze the influence of the nonlinearities and the auxiliary density on estimation performance. Some estimators in our family are particularly stable for a wide range of auxiliary densities. Interestingly, a specific choice of the nonlinearity establishes a connection between density estimation and classification by nonlinear logistic regression. Finally, the optimal amount of auxiliary samples relative to the given amount of the data is considered from the perspective of computational efficiency.
Miika Pihlaja, Michael Gutmann, Aapo Hyvarinen
null
1203.3506
null
null
Sparse-posterior Gaussian Processes for general likelihoods
cs.LG stat.ML
Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse pseudo-input Gaussian process (SPGP) (Snelson and Ghahramani, 2006) and variablesigma GP (VSGP) Walder et al. (2008), which generalizes SPGP and allows each basis point to have its own length scale. However, VSGP was only derived for regression. In this paper, we propose a new sparse GP framework that uses expectation propagation to directly approximate general GP likelihoods using a sparse and smooth basis. It includes both SPGP and VSGP for regression as special cases. Plus as an EP algorithm, it inherits the ability to process data online. As a particular choice of approximating family, we blur each basis point with a Gaussian distribution that has a full covariance matrix representing the data distribution around that basis point; as a result, we can summarize local data manifold information with a small set of basis points. Our experiments demonstrate that this framework outperforms previous GP classification methods on benchmark datasets in terms of minimizing divergence to the non-sparse GP solution as well as lower misclassification rate.
Yuan (Alan) Qi, Ahmed H. Abdel-Gawad, Thomas P. Minka
null
1203.3507
null
null