title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
History-Adaption Knowledge Incorporation Mechanism for Multi-Turn Dialogue System
null
Keeping the conversation consistent and avoiding its repetition are two key factors to construct an intelligent multi-turn knowledge-grounded dialogue system. Although some works tend to combine history with external knowledge such as personal background information to boost dialogue quality, they are prone to ignore the fact that incorporating the same knowledge multiple times into the conversation leads to repetition. The main reason is the lack of effective control over the use of knowledge on the conversation level. So we design a history-adaption knowledge incorporation mechanism to build an effective multi-turn dialogue model. Our proposed model addresses repetition by recurrently updating the knowledge from the conversation level and progressively incorporating it into the history step-by-step. And the knowledge-grounded history representation also enhances the conversation consistency. Experimental results show that our proposed model significantly outperforms several retrieval-based models on some benchmark datasets. The human evaluation demonstrates that our model can maintain conversation consistent and reduce conversation repetition.
Yajing Sun, Yue Hu, Luxi Xing, Jing Yu, Yuqiang Xie
null
null
2,020
aaai
Neural Semantic Parsing in Low-Resource Settings with Back-Translation and Meta-Learning
null
Neural semantic parsing has achieved impressive results in recent years, yet its success relies on the availability of large amounts of supervised data. Our goal is to learn a neural semantic parser when only prior knowledge about a limited number of simple rules is available, without access to either annotated programs or execution results. Our approach is initialized by rules, and improved in a back-translation paradigm using generated question-program pairs from the semantic parser and the question generator. A phrase table with frequent mapping patterns is automatically derived, also updated as training progresses, to measure the quality of generated instances. We train the model with model-agnostic meta-learning to guarantee the accuracy and stability on examples covered by rules, and meanwhile acquire the versatility to generalize well on examples uncovered by rules. Results on three benchmark datasets with different domains and programs show that our approach incrementally improves the accuracy. On WikiSQL, our best model is comparable to the state-of-the-art system learned from denotations.
Yibo Sun, Duyu Tang, Nan Duan, Yeyun Gong, Xiaocheng Feng, Bing Qin, Daxin Jiang
null
null
2,020
aaai
SPARQA: Skeleton-Based Semantic Parsing for Complex Questions over Knowledge Bases
null
Semantic parsing transforms a natural language question into a formal query over a knowledge base. Many existing methods rely on syntactic parsing like dependencies. However, the accuracy of producing such expressive formalisms is not satisfying on long complex questions. In this paper, we propose a novel skeleton grammar to represent the high-level structure of a complex question. This dedicated coarse-grained formalism with a BERT-based parsing algorithm helps to improve the accuracy of the downstream fine-grained semantic parsing. Besides, to align the structure of a question with the structure of a knowledge base, our multi-strategy method combines sentence-level and word-level semantics. Our approach shows promising performance on several datasets.
Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu
null
null
2,020
aaai
Relation Extraction with Convolutional Network over Learnable Syntax-Transport Graph
null
A large majority of approaches have been proposed to leverage the dependency tree in the relation classification task. Recent works have focused on pruning irrelevant information from the dependency tree. The state-of-the-art Attention Guided Graph Convolutional Networks (AGGCNs) transforms the dependency tree into a weighted-graph to distinguish the relevance of nodes and edges for relation classification. However, in their approach, the graph is fully connected, which destroys the structure information of the original dependency tree. How to effectively make use of relevant information while ignoring irrelevant information from the dependency trees remains a challenge in the relation classification task. In this work, we learn to transform the dependency tree into a weighted graph by considering the syntax dependencies of the connected nodes and persisting the structure of the original dependency tree. We refer to this graph as a syntax-transport graph. We further propose a learnable syntax-transport attention graph convolutional network (LST-AGCN) which operates on the syntax-transport graph directly to distill the final representation which is sufficient for classification. Experiments on Semeval-2010 Task 8 and Tacred show our approach outperforms previous methods.
Kai Sun, Richong Zhang, Yongyi Mao, Samuel Mensah, Xudong Liu
null
null
2,020
aaai
Solving Sequential Text Classification as Board-Game Playing
null
Sequential Text Classification (STC) aims to classify a sequence of text fragments (e.g., words in a sentence or sentences in a document) into a sequence of labels. In addition to the intra-fragment text contents, considering the inter-fragment context dependencies is also important for STC. Previous sequence labeling approaches largely generate a sequence of labels in left-to-right reading order. However, the need for context information in making decisions varies across different fragments and is not strictly organized in a left-to-right order. Therefore, it is appealing to label the fragments that need less consideration of context information first before labeling the fragments that need more. In this paper, we propose a novel model that labels a sequence of fragments in jumping order. Specifically, we devise a dedicated board-game to develop a correspondence between solving STC and board-game playing. By defining proper game rules and devising a game state evaluator in which context clues are injected, at each round, each player is effectively pushed to find the optimal move without position restrictions via considering the current game state, which corresponds to producing a label for an unlabeled fragment jumpily with the consideration of the contexts clues. The final game-end state is viewed as the optimal label sequence. Extensive results on three representative datasets show that the proposed approach outperforms the state-of-the-art methods with statistical significance.
Chen Qian, Fuli Feng, Lijie Wen, Zhenpeng Chen, Li Lin, Yanan Zheng, Tat-Seng Chua
null
null
2,020
aaai
Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs
null
Large-scale knowledge graphs (KGs) are shown to become more important in current information systems. To expand the coverage of KGs, previous studies on knowledge graph completion need to collect adequate training instances for newly-added relations. In this paper, we consider a novel formulation, zero-shot learning, to free this cumbersome curation. For newly-added relations, we attempt to learn their semantic features from their text descriptions and hence recognize the facts of unseen relations with no examples being seen. For this purpose, we leverage Generative Adversarial Networks (GANs) to establish the connection between text and knowledge graph domain: The generator learns to generate the reasonable relation embeddings merely with noisy text descriptions. Under this setting, zero-shot learning is naturally converted to a traditional supervised classification task. Empirically, our method is model-agnostic that could be potentially applied to any version of KG embeddings, and consistently yields performance improvements on NELL and Wiki dataset.
Pengda Qin, Xin Wang, Wenhu Chen, Chunyun Zhang, Weiran Xu, William Yang Wang
null
null
2,020
aaai
Lexical Simplification with Pretrained Encoders
null
Lexical simplification (LS) aims to replace complex words in a given sentence with their simpler alternatives of equivalent meaning. Recently unsupervised lexical simplification approaches only rely on the complex word itself regardless of the given sentence to generate candidate substitutions, which will inevitably produce a large number of spurious candidates. We present a simple LS approach that makes use of the Bidirectional Encoder Representations from Transformers (BERT) which can consider both the given sentence and the complex word during generating candidate substitutions for the complex word. Specifically, we mask the complex word of the original sentence for feeding into the BERT to predict the masked token. The predicted results will be used as candidate substitutions. Despite being entirely unsupervised, experimental results show that our approach obtains obvious improvement compared with these baselines leveraging linguistic databases and parallel corpus, outperforming the state-of-the-art by more than 12 Accuracy points on three well-known benchmarks.
Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Xindong Wu
null
null
2,020
aaai
DCR-Net: A Deep Co-Interactive Relation Network for Joint Dialog Act Recognition and Sentiment Classification
null
In dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers' intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately (Kim and Kim 2018). Most of the existing systems either treat them as separate tasks or just jointly model the two tasks by sharing parameters in an implicit way without explicitly modeling mutual interaction and relation. To address this problem, we propose a Deep Co-Interactive Relation Network (DCR-Net) to explicitly consider the cross-impact and model the interaction between the two tasks by introducing a co-interactive relation layer. In addition, the proposed relation layer can be stacked to gradually capture mutual knowledge with multiple steps of interaction. Especially, we thoroughly study different relation layers and their effects. Experimental results on two public datasets (Mastodon and Dailydialog) show that our model outperforms the state-of-the-art joint model by 4.3% and 3.4% in terms of F1 score on dialog act recognition task, 5.7% and 12.4% on sentiment classification respectively. Comprehensive analysis empirically verifies the effectiveness of explicitly modeling the relation between the two tasks and the multi-steps interaction mechanism. Finally, we employ the Bidirectional Encoder Representation from Transformer (BERT) in our framework, which can further boost our performance in both tasks.
Libo Qin, Wanxiang Che, Yangming Li, Mingheng Ni, Ting Liu
null
null
2,020
aaai
Getting Closer to AI Complete Question Answering: A Set of Prerequisite Real Tasks
null
The recent explosion in question answering research produced a wealth of both factoid reading comprehension (RC) and commonsense reasoning datasets. Combining them presents a different kind of task: deciding not simply whether information is present in the text, but also whether a confident guess could be made for the missing information. We present QuAIL, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system. QuAIL contains 15K multi-choice questions for 800 texts in 4 domains. Crucially, it offers both general and text-specific questions, unlikely to be found in pretraining data. We show that QuAIL poses substantial challenges to the current state-of-the-art systems, with a 30% drop in accuracy compared to the most similar existing dataset.
Anna Rogers, Olga Kovaleva, Matthew Downey, Anna Rumshisky
null
null
2,020
aaai
Dynamic Knowledge Routing Network for Target-Guided Open-Domain Conversation
null
Target-guided open-domain conversation aims to proactively and naturally guide a dialogue agent or human to achieve specific goals, topics or keywords during open-ended conversations. Existing methods mainly rely on single-turn data-driven learning and simple target-guided strategy without considering semantic or factual knowledge relations among candidate topics/keywords. This results in poor transition smoothness and low success rate. In this work, we adopt a structured approach that controls the intended content of system responses by introducing coarse-grained keywords, attains smooth conversation transition through turn-level supervised learning and knowledge relations between candidate keywords, and drives an conversation towards an specified target with discourse-level guiding strategy. Specially, we propose a novel dynamic knowledge routing network (DRKN) which considers semantic knowledge relations among candidate keywords for accurate next topic prediction of next discourse. With the help of more accurate keyword prediction, our keyword-augmented response retrieval module can achieve better retrieval performance and more meaningful conversations. Besides, we also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate. Furthermore, to push the research boundary of target-guided open-domain conversation to match real-world scenarios better, we introduce a new large-scale Chinese target-guided open-domain conversation dataset (more than 900K conversations) crawled from Sina Weibo. Quantitative and human evaluations show our method can produce meaningful and effective target-guided conversations, significantly improving over other state-of-the-art methods by more than 20% in success rate and more than 0.6 in average smoothness score.
Jinghui Qin, Zheng Ye, Jianheng Tang, Xiaodan Liang
null
null
2,020
aaai
Multi-Task Learning with Generative Adversarial Training for Multi-Passage Machine Reading Comprehension
null
Multi-passage machine reading comprehension (MRC) aims to answer a question by multiple passages. Existing multi-passage MRC approaches have shown that employing passages with and without golden answers (i.e. labeled and unlabeled passages) for model training can improve prediction accuracy. In this paper, we present MG-MRC, a novel approach for multi-passage MRC via multi-task learning with generative adversarial training. MG-MRC adopts the extract-then-select framework, where an extractor is first used to predict answer candidates, then a selector is used to choose the final answer. In MG-MRC, we adopt multi-task learning to train the extractor by using both labeled and unlabeled passages. In particular, we use labeled passages to train the extractor by supervised learning, while using unlabeled passages to train the extractor by generative adversarial training, where the extractor is regarded as the generator and a discriminator is introduced to evaluate the generated answer candidates. Moreover, to train the extractor by backpropagation in the generative adversarial training process, we propose a hybrid method which combines boundary-based and content-based extracting methods to produce the answer candidate set and its representation. The experimental results on three open-domain QA datasets confirm the effectiveness of our approach.
Qiyu Ren, Xiang Cheng, Sen Su
null
null
2,020
aaai
Rare Words: A Major Problem for Contextualized Embeddings and How to Fix it by Attentive Mimicking
null
Pretraining deep neural network architectures with a language modeling objective has brought large improvements for many natural language processing tasks. Exemplified by BERT, a recently proposed such architecture, we demonstrate that despite being trained on huge amounts of data, deep language models still struggle to understand rare words. To fix this problem, we adapt Attentive Mimicking, a method that was designed to explicitly learn embeddings for rare words, to deep language models. In order to make this possible, we introduce one-token approximation, a procedure that enables us to use Attentive Mimicking even when the underlying language model uses subword-based tokenization, i.e., it does not assign embeddings to all words. To evaluate our method, we create a novel dataset that tests the ability of language models to capture semantic properties of words without any task-specific fine-tuning. Using this dataset, we show that adding our adapted version of Attentive Mimicking to BERT does substantially improve its understanding of rare words.
Timo Schick, Hinrich Schütze
null
null
2,020
aaai
SensEmBERT: Context-Enhanced Sense Embeddings for Multilingual Word Sense Disambiguation
null
Contextual representations of words derived by neural language models have proven to effectively encode the subtle distinctions that might occur between different meanings of the same word. However, these representations are not tied to a semantic network, hence they leave the word meanings implicit and thereby neglect the information that can be derived from the knowledge base itself. In this paper, we propose SensEmBERT, a knowledge-based approach that brings together the expressive power of language modelling and the vast amount of knowledge contained in a semantic network to produce high-quality latent semantic representations of word meanings in multiple languages. Our vectors lie in a space comparable with that of contextualized word embeddings, thus allowing a word occurrence to be easily linked to its meaning by applying a simple nearest neighbour approach.We show that, whilst not relying on manual semantic annotations, SensEmBERT is able to either achieve or surpass state-of-the-art results attained by most of the supervised neural approaches on the English Word Sense Disambiguation task. When scaling to other languages, our representations prove to be equally effective as their English counterpart and outperform the existing state of the art on all the Word Sense Disambiguation multilingual datasets. The embeddings are released in five different languages at http://sensembert.org.
Bianca Scarlini, Tommaso Pasini, Roberto Navigli
null
null
2,020
aaai
CASIE: Extracting Cybersecurity Event Information from Text
null
We present CASIE, a system that extracts information about cybersecurity events from text and populates a semantic model, with the ultimate goal of integration into a knowledge graph of cybersecurity data. It was trained on a new corpus of 1,000 English news articles from 2017–2019 that are labeled with rich, event-based annotations and that covers both cyberattack and vulnerability-related events. Our model defines five event subtypes along with their semantic roles and 20 event-relevant argument types (e.g., file, device, software, money). CASIE uses different deep neural networks approaches with attention and can incorporate rich linguistic features and word embeddings. We have conducted experiments on each component in the event detection pipeline and the results show that each subsystem performs well.
Taneeya Satyapanich, Francis Ferraro, Tim Finin
null
null
2,020
aaai
Thinking Globally, Acting Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation
null
Background Based Conversation (BBCs) have been introduced to help conversational systems avoid generating overly generic responses. In a BBC, the conversation is grounded in a knowledge source. A key challenge in BBCs is Knowledge Selection (KS): given a conversational context, try to find the appropriate background knowledge (a text fragment containing related facts or comments, etc.) based on which to generate the next response. Previous work addresses KS by employing attention and/or pointer mechanisms. These mechanisms use a local perspective, i.e., they select a token at a time based solely on the current decoding state. We argue for the adoption of a global perspective, i.e., pre-selecting some text fragments from the background knowledge that could help determine the topic of the next response. We enhance KS in BBCs by introducing a Global-to-Local Knowledge Selection (GLKS) mechanism. Given a conversational context and background knowledge, we first learn a topic transition vector to encode the most likely text fragments to be used in the next response, which is then used to guide the local KS at each decoding timestamp. In order to effectively learn the topic transition vector, we propose a distantly supervised learning schema. Experimental results show that the GLKS model significantly outperforms state-of-the-art methods in terms of both automatic and human evaluation. More importantly, GLKS achieves this without requiring any extra annotations, which demonstrates its high degree of scalability.
Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke
null
null
2,020
aaai
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
null
The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense.To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4 – 79.1%, which are ∼15-35% (absolute) below human performance of 94.0%, depending on the amount of the training data allowed (2% – 100% respectively).Furthermore, we establish new state-of-the-art results on five related benchmarks — WSC (→ 90.1%), DPR (→ 93.1%), COPA(→ 90.6%), KnowRef (→ 85.6%), and Winogender (→ 97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
null
null
2,020
aaai
Entrainment2Vec: Embedding Entrainment for Multi-Party Dialogues
null
Entrainment is the propensity of speakers to begin behaving like one another in conversation. While most entrainment studies have focused on dyadic interactions, researchers have also started to investigate multi-party conversations. In these studies, multi-party entrainment has typically been estimated by averaging the pairs' entrainment values or by averaging individuals' entrainment to the group. While such multi-party measures utilize the strength of dyadic entrainment, they have not yet exploited different aspects of the dynamics of entrainment relations in multi-party groups. In this paper, utilizing an existing pairwise asymmetric entrainment measure, we propose a novel graph-based vector representation of multi-party entrainment that incorporates both strength and dynamics of pairwise entrainment relations. The proposed kernel approach and weakly-supervised representation learning method show promising results at the downstream task of predicting team outcomes. Also, examining the embedding, we found interesting information about the dynamics of the entrainment relations. For example, teams with more influential members have more process conflict.
Zahra Rahimi, Diane Litman
null
null
2,020
aaai
Probing Natural Language Inference Models through Semantic Fragments
null
Do state-of-the-art models for language understanding already have, or can they easily learn, abilities such as boolean coordination, quantification, conditionals, comparatives, and monotonicity reasoning (i.e., reasoning about word substitutions in sentential contexts)? While such phenomena are involved in natural language inference (NLI) and go beyond basic linguistic understanding, it is unclear the extent to which they are captured in existing NLI benchmarks and effectively learned by models. To investigate this, we propose the use of semantic fragments—systematically generated datasets that each target a different semantic phenomenon—for probing, and efficiently improving, such capabilities of linguistic models. This approach to creating challenge datasets allows direct control over the semantic diversity and complexity of the targeted linguistic phenomena, and results in a more precise characterization of a model's linguistic behavior. Our experiments, using a library of 8 such semantic fragments, reveal two remarkable findings: (a) State-of-the-art models, including BERT, that are pre-trained on existing NLI benchmark datasets perform poorly on these new fragments, even though the phenomena probed here are central to the NLI task; (b) On the other hand, with only a few minutes of additional fine-tuning—with a carefully selected learning rate and a novel variation of “inoculation”—a BERT-based model can master all of these logic and monotonicity fragments while retaining its performance on established NLI benchmarks.
Kyle Richardson, Hai Hu, Lawrence Moss, Ashish Sabharwal
null
null
2,020
aaai
Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset
null
Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting.
Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, Pranav Khaitan
null
null
2,020
aaai
Simplify-Then-Translate: Automatic Preprocessing for Black-Box Translation
null
Black-box machine translation systems have proven incredibly useful for a variety of applications yet by design are hard to adapt, tune to a specific domain, or build on top of. In this work, we introduce a method to improve such systems via automatic pre-processing (APP) using sentence simplification. We first propose a method to automatically generate a large in-domain paraphrase corpus through back-translation with a black-box MT system, which is used to train a paraphrase model that “simplifies” the original sentence to be more conducive for translation. The model is used to preprocess source sentences of multiple low-resource language pairs. We show that this preprocessing leads to better translation performance as compared to non-preprocessed source sentences. We further perform side-by-side human evaluation to verify that translations of the simplified sentences are better than the original ones. Finally, we provide some guidance on recommended language pairs for generating the simplification model corpora by investigating the relationship between ease of translation of a language pair (as measured by BLEU) and quality of the resulting simplification model from back-translations of this language pair (as measured by SARI), and tie this into the downstream task of low-resource translation.
Sneha Mehta, Bahareh Azarnoush, Boris Chen, Avneesh Saluja, Vinith Misra, Ballav Bihani, Ritwik Kumar
null
null
2,020
aaai
Robust Named Entity Recognition with Truecasing Pretraining
null
Although modern named entity recognition (NER) systems show impressive performance on standard datasets, they perform poorly when presented with noisy data. In particular, capitalization is a strong signal for entities in many languages, and even state of the art models overfit to this feature, with drastically lower performance on uncapitalized text. In this work, we address the problem of robustness of NER systems in data with noisy or uncertain casing, using a pretraining objective that predicts casing in text, or a truecaser, leveraging unlabeled data. The pretrained truecaser is combined with a standard BiLSTM-CRF model for NER by appending output distributions to character embeddings. In experiments over several datasets of varying domain and casing quality, we show that our new model improves performance in uncased text, even adding value to uncased BERT embeddings. Our method achieves a new state of the art on the WNUT17 shared task dataset.
Stephen Mayhew, Gupta Nitish, Dan Roth
null
null
2,020
aaai
RefNet: A Reference-Aware Network for Background Based Conversation
null
Existing conversational systems tend to generate generic responses. Recently, Background Based Conversation (BBCs) have been introduced to address this issue. Here, the generated responses are grounded in some background information. The proposed methods for BBCs are able to generate more informative responses, however, they either cannot generate natural responses or have difficulties in locating the right background information. In this paper, we propose a Reference-aware Network (RefNet) to address both issues. Unlike existing methods that generate responses token by token, RefNet incorporates a novel reference decoder that provides an alternative way to learn to directly select a semantic unit (e.g., a span containing complete semantic information) from the background. Experimental results show that RefNet significantly outperforms state-of-the-art methods in terms of both automatic and human evaluations, indicating that RefNet can generate more appropriate and human-like responses.
Chuan Meng, Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke
null
null
2,020
aaai
Automatic Fact-Guided Sentence Modification
null
Online encyclopediae like Wikipedia contain large amounts of text that need frequent corrections and updates. The new information may contradict existing content in encyclopediae. In this paper, we focus on rewriting such dynamically changing articles. This is a challenging constrained generation task, as the output must be consistent with the new information and fit into the rest of the existing document. To this end, we propose a two-step solution: (1) We identify and remove the contradicting components in a target text for a given claim, using a neutralizing stance model; (2) We expand the remaining text to be consistent with the given claim, using a novel two-encoder sequence-to-sequence model with copy attention. Applied to a Wikipedia fact update dataset, our method successfully generates updated sentences for new claims, achieving the highest SARI score. Furthermore, we demonstrate that generating synthetic data through such rewritten sentences can successfully augment the FEVER fact-checking training dataset, leading to a relative error reduction of 13%.1
Darsh Shah, Tal Schuster, Regina Barzilay
null
null
2,020
aaai
TRENDNERT: A Benchmark for Trend and Downtrend Detection in a Scientific Domain
null
Computational analysis and modeling of the evolution of trends is an important area of research in Natural Language Processing (NLP) because of its socio-economic impact. However, no large publicly available benchmark for trend detection currently exists, making a comparative evaluation of methods impossible. We remedy this situation by publishing the benchmark TRENDNERT, consisting of a set of gold trends and downtrends and document labels that is available as an unrestricted download, and a large underlying document collection that can also be obtained for free. We propose Mean Average Precision (MAP) as an evaluation measure for trend detection and apply this measure in an investigation of several baselines.
Alena Moiseeva, Hinrich Schütze
null
null
2,020
aaai
Interpretable Rumor Detection in Microblogs by Attending to User Interactions
null
We address rumor detection by learning to differentiate between the community's response to real and fake claims in microblogs. Existing state-of-the-art models are based on tree models that model conversational trees. However, in social media, a user posting a reply might be replying to the entire thread rather than to a specific user. We propose a post-level attention model (PLAN) to model long distance interactions between tweets with the multi-head attention mechanism in a transformer network. We investigated variants of this model: (1) a structure aware self-attention model (StA-PLAN) that incorporates tree structure information in the transformer network, and (2) a hierarchical token and post-level attention model (StA-HiTPLAN) that learns a sentence representation with token-level self-attention. To the best of our knowledge, we are the first to evaluate our models on two rumor detection data sets: the PHEME data set as well as the Twitter15 and Twitter16 data sets. We show that our best models outperform current state-of-the-art models for both data sets. Moreover, the attention mechanism allows us to explain rumor detection predictions at both token-level and post-level.
Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, Jing Jiang
null
null
2,020
aaai
Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction
null
A relation tuple consists of two entities and the relation between them, and often such tuples are found in unstructured text. There may be multiple relation tuples present in a text and they may share one or both entities among them. Extracting such relation tuples from a sentence is a difficult task and sharing of entities or overlapping entities among the tuples makes it more challenging. Most prior work adopted a pipeline approach where entities were identified first followed by finding the relations among them, thus missing the interaction among the relation tuples in a sentence. In this paper, we propose two approaches to use encoder-decoder architecture for jointly extracting entities and relations. In the first approach, we propose a representation scheme for relation tuples which enables the decoder to generate one word at a time like machine translation models and still finds all the tuples present in a sentence with full entity names of different length and with overlapping entities. Next, we propose a pointer network-based decoding approach where an entire tuple is generated at every time step. Experiments on the publicly available New York Times corpus show that our proposed approaches outperform previous work and achieve significantly higher F1 scores.
Tapas Nayak, Hwee Tou Ng
null
null
2,020
aaai
Enhancing Natural Language Inference Using New and Expanded Training Data Sets and New Learning Models
null
Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.
Arindam Mitra, Ishan Shrivastava, Chitta Baral
null
null
2,020
aaai
Controlling Neural Machine Translation Formality with Synthetic Supervision
null
This work aims to produce translations that convey source language content at a formality level that is appropriate for a particular audience. Framing this problem as a neural sequence-to-sequence task ideally requires training triplets consisting of a bilingual sentence pair labeled with target language formality. However, in practice, available training examples are limited to English sentence pairs of different styles, and bilingual parallel sentences of unknown formality. We introduce a novel training scheme for multi-task models that automatically generates synthetic training triplets by inferring the missing element on the fly, thus enabling end-to-end training. Comprehensive automatic and human assessments show that our best model outperforms existing models by producing translations that better match desired formality levels while preserving the source meaning.1
Xing Niu, Marine Carpuat
null
null
2,020
aaai
Message Passing Attention Networks for Document Understanding
null
Graph neural networks have recently emerged as a very effective framework for processing graph-structured data. These models have achieved state-of-the-art performance in many tasks. Most graph neural networks can be described in terms of message passing, vertex update, and readout functions. In this paper, we represent documents as word co-occurrence networks and propose an application of the message passing framework to NLP, the Message Passing Attention network for Document understanding (MPAD). We also propose several hierarchical variants of MPAD. Experiments conducted on 10 standard text classification datasets show that our architectures are competitive with the state-of-the-art. Ablation studies reveal further insights about the impact of the different components on performance. Code is publicly available at: https://github.com/giannisnik/mpad.
Giannis Nikolentzos, Antoine Tixier, Michalis Vazirgiannis
null
null
2,020
aaai
Can Embeddings Adequately Represent Medical Terminology? New Large-Scale Medical Term Similarity Datasets Have the Answer!
null
A large number of embeddings trained on medical data have emerged, but it remains unclear how well they represent medical terminology, in particular whether the close relationship of semantically similar medical terms is encoded in these embeddings. To date, only small datasets for testing medical term similarity are available, not allowing to draw conclusions about the generalisability of embeddings to the enormous amount of medical terms used by doctors. We present multiple automatically created large-scale medical term similarity datasets and confirm their high quality in an annotation study with doctors. We evaluate state-of-the-art word and contextual embeddings on our new datasets, comparing multiple vector similarity metrics and word vector aggregation techniques. Our results show that current embeddings are limited in their ability to adequately encode medical terms. The novel datasets thus form a challenging new benchmark for the development of medical embeddings able to accurately represent the whole medical terminology.
Claudia Schulz, Damir Juric
null
null
2,020
aaai
MTSS: Learn from Multiple Domain Teachers and Become a Multi-Domain Dialogue Expert
null
How to build a high-quality multi-domain dialogue system is a challenging work due to its complicated and entangled dialogue state space among each domain, which seriously limits the quality of dialogue policy, and further affects the generated response. In this paper, we propose a novel method to acquire a satisfying policy and subtly circumvent the knotty dialogue state representation problem in the multi-domain setting. Inspired by real school teaching scenarios, our method is composed of multiple domain-specific teachers and a universal student. Each individual teacher only focuses on one specific domain and learns its corresponding domain knowledge and dialogue policy based on a precisely extracted single domain dialogue state representation. Then, these domain-specific teachers impart their domain knowledge and policies to a universal student model and collectively make this student model a multi-domain dialogue expert. Experiment results show that our method reaches competitive results with SOTAs in both multi-domain and single domain setting.
Shuke Peng, Feng Ji, Zehao Lin, Shaobo Cui, Haiqing Chen, Yin Zhang
null
null
2,020
aaai
MOSS: End-to-End Dialog System Framework with Modular Supervision
null
A major bottleneck in training end-to-end task-oriented dialog system is the lack of data. To utilize limited training data more efficiently, we propose Modular Supervision Network (MOSS), an encoder-decoder training framework that could incorporate supervision from various intermediate dialog system modules including natural language understanding, dialog state tracking, dialog policy learning and natural language generation. With only 60% of the training data, MOSS-all (i.e., MOSS with supervision from all four dialog modules) outperforms state-of-the-art models on CamRest676. Moreover, introducing modular supervision has even bigger benefits when the dialog task has a more complex dialog state and action space. With only 40% of the training data, MOSS-all outperforms the state-of-the-art model on a complex laptop network trouble shooting dataset, LaptopNetwork, that we introduced. LaptopNetwork consists of conversations between real customers and customer service agents in Chinese. Moreover, MOSS framework can accommodate dialogs that have supervision from different dialog modules at both framework level and model level. Therefore, MOSS is extremely flexible to update in real-world deployment.
Weixin Liang, Youzhi Tian, Chengcai Chen, Zhou Yu
null
null
2,020
aaai
Verb Class Induction with Partial Supervision
null
Dirichlet-multinomial (D-M) mixtures like latent Dirichlet allocation (LDA) are widely used for both topic modeling and clustering. Prior work on constructing Levin-style semantic verb clusters achieves state-of-the-art results using D-M mixtures for verb sense induction and clustering. We add a bias toward known clusters by explicitly labeling a small number of observations with their correct VerbNet class. We demonstrate that this partial supervision guides the resulting clusters effectively, improving the recovery of both labeled and unlabeled classes by 16%, for a joint 12% absolute improvement in F1 score compared to clustering without supervision. The resulting clusters are also more semantically coherent. Although the technical change is minor, it produces a large effect, with important practical consequences for supervised topic modeling in general.
Daniel Peterson, Susan Brown, Martha Palmer
null
null
2,020
aaai
Global Greedy Dependency Parsing
null
Most syntactic dependency parsing models may fall into one of two categories: transition- and graph-based models. The former models enjoy high inference efficiency with linear time complexity, but they rely on the stacking or re-ranking of partially-built parse trees to build a complete parse tree and are stuck with slower training for the necessity of dynamic oracle training. The latter, graph-based models, may boast better performance but are unfortunately marred by polynomial time inference. In this paper, we propose a novel parsing order objective, resulting in a novel dependency parsing model capable of both global (in sentence scope) feature extraction as in graph models and linear time inference as in transitional models. The proposed global greedy parser only uses two arc-building actions, left and right arcs, for projective parsing. When equipped with two extra non-projective arc-building actions, the proposed parser may also smoothly support non-projective parsing. Using multiple benchmark treebanks, including the Penn Treebank (PTB), the CoNLL-X treebanks, and the Universal Dependency Treebanks, we evaluate our parser and demonstrate that the proposed novel parser achieves good performance with faster training and decoding.
Zuchao Li, Hai Zhao, Kevin Parnow
null
null
2,020
aaai
Towards Building a Multilingual Sememe Knowledge Base: Predicting Sememes for BabelNet Synsets
null
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over 15 thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on https://github.com/thunlp/BabelNet-Sememe-Prediction.
Fanchao Qi, Liang Chang, Maosong Sun, Sicong Ouyang, Zhiyuan Liu
null
null
2,020
aaai
Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis
null
Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.
Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu, Luo Si
null
null
2,020
aaai
Translation-Based Matching Adversarial Network for Cross-Lingual Natural Language Inference
null
Cross-lingual natural language inference is a fundamental task in cross-lingual natural language understanding, widely addressed by neural models recently. Existing neural model based methods either align sentence embeddings between source and target languages, heavily relying on annotated parallel corpora, or exploit pre-trained cross-lingual language models that are fine-tuned on a single language and hard to transfer knowledge to another language. To resolve these limitations in existing methods, this paper proposes an adversarial training framework to enhance both pre-trained models and classical neural models for cross-lingual natural language inference. It trains on the union of data in the source language and data in the target language, learning language-invariant features to improve the inference performance. Experimental results on the XNLI benchmark demonstrate that three popular neural models enhanced by the proposed framework significantly outperform the original models.
Kunxun Qi, Jianfeng Du
null
null
2,020
aaai
Discovering New Intents via Constrained Deep Adaptive Clustering with Cluster Refinement
null
Identifying new user intents is an essential task in the dialogue system. However, it is hard to get satisfying clustering results since the definition of intents is strongly guided by prior knowledge. Existing methods incorporate prior knowledge by intensive feature engineering, which not only leads to overfitting but also makes it sensitive to the number of clusters. In this paper, we propose constrained deep adaptive clustering with cluster refinement (CDAC+), an end-to-end clustering method that can naturally incorporate pairwise constraints as prior knowledge to guide the clustering process. Moreover, we refine the clusters by forcing the model to learn from the high confidence assignments. After eliminating low confidence assignments, our approach is surprisingly insensitive to the number of clusters. Experimental results on the three benchmark datasets show that our method can yield significant improvements over strong baselines. 1
Ting-En Lin, Hua Xu, Hanlei Zhang
null
null
2,020
aaai
Hierarchical Attention Network with Pairwise Loss for Chinese Zero Pronoun Resolution
null
Recent neural network methods for Chinese zero pronoun resolution didn't take bidirectional attention between zero pronouns and candidate antecedents into consideration, and simply treated the task as a classification task, ignoring the relationship between different candidates of a zero pronoun. To solve these problems, we propose a Hierarchical Attention Network with Pairwise Loss (HAN-PL), for Chinese zero pronoun resolution. In the proposed HAN-PL, we design a two-layer attention model to generate more powerful representations for zero pronouns and candidate antecedents. Furthermore, we propose a novel pairwise loss by introducing the correct-antecedent similarity constraint and the pairwise-margin loss, making the learned model more discriminative. Extensive experiments have been conducted on OntoNotes 5.0 dataset, and our model achieves state-of-the-art performance in the task of Chinese zero pronoun resolution.
Peiqin Lin, Meng Yang
null
null
2,020
aaai
Revision in Continuous Space: Unsupervised Text Style Transfer without Adversarial Learning
null
Typical methods for unsupervised text style transfer often rely on two key ingredients: 1) seeking the explicit disentanglement of the content and the attributes, and 2) troublesome adversarial learning. In this paper, we show that neither of these components is indispensable. We propose a new framework that utilizes the gradients to revise the sentence in a continuous space during inference to achieve text style transfer. Our method consists of three key components: a variational auto-encoder (VAE), some attribute predictors (one for each attribute), and a content predictor. The VAE and the two types of predictors enable us to perform gradient-based optimization in the continuous space, which is mapped from sentences in a discrete space, to find the representation of a target sentence with the desired attributes and preserved content. Moreover, the proposed method naturally has the ability to simultaneously manipulate multiple fine-grained attributes, such as sentence length and the presence of specific words, when performing text style transfer tasks. Compared with previous adversarial learning based methods, the proposed method is more interpretable, controllable and easier to train. Extensive experimental studies on three popular text style transfer tasks show that the proposed method significantly outperforms five state-of-the-art methods.
Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, Jiancheng Lv
null
null
2,020
aaai
CatGAN: Category-Aware Generative Adversarial Networks with Hierarchical Evolutionary Learning for Category Text Generation
null
Generating multiple categories of texts is a challenging task and draws more and more attention. Since generative adversarial nets (GANs) have shown competitive results on general text generation, they are extended for category text generation in some previous works. However, the complicated model structures and learning strategies limit their performance and exacerbate the training instability. This paper proposes a category-aware GAN (CatGAN) which consists of an efficient category-aware model for category text generation and a hierarchical evolutionary learning algorithm for training our model. The category-aware model directly measures the gap between real samples and generated samples on each category, then reducing this gap will guide the model to generate high-quality category samples. The Gumbel-Softmax relaxation further frees our model from complicated learning strategies for updating CatGAN on discrete data. Moreover, only focusing on the sample quality normally leads the mode collapse problem, thus a hierarchical evolutionary learning algorithm is introduced to stabilize the training procedure and obtain the trade-off between quality and diversity while training CatGAN. Experimental results demonstrate that CatGAN outperforms most of the existing state-of-the-art methods.
Zhiyue Liu, Jiahai Wang, Zhiwei Liang
null
null
2,020
aaai
Integrating Linguistic Knowledge to Sentence Paraphrase Generation
null
Paraphrase generation aims to rewrite a text with different words while keeping the same meaning. Previous work performs the task based solely on the given dataset while ignoring the availability of external linguistic knowledge. However, it is intuitive that a model can generate more expressive and diverse paraphrase with the help of such knowledge. To fill this gap, we propose Knowledge-Enhanced Paraphrase Network (KEPN), a transformer-based framework that can leverage external linguistic knowledge to facilitate paraphrase generation. (1) The model integrates synonym information from the external linguistic knowledge into the paraphrase generator, which is used to guide the decision on whether to generate a new word or replace it with a synonym. (2) To locate the synonym pairs more accurately, we adopt an incremental encoding scheme to incorporate position information of each synonym. Besides, a multi-task architecture is designed to help the framework jointly learn the selection of synonym pairs and the generation of expressive paraphrase. Experimental results on both English and Chinese datasets show that our method significantly outperforms the state-of-the-art approaches in terms of both automatic and human evaluation.
Zibo Lin, Ziran Li, Ning Ding, Hai-Tao Zheng, Ying Shen, Wei Wang, Cong-Zhi Zhao
null
null
2,020
aaai
Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding
null
Speech-to-text translation (ST), which translates source language speech into target language text, has attracted intensive attention in recent years. Compared to the traditional pipeline system, the end-to-end ST model has potential benefits of lower latency, smaller model size, and less error propagation. However, it is notoriously difficult to implement such a model without transcriptions as intermediate. Existing works generally apply multi-task learning to improve translation quality by jointly training end-to-end ST along with automatic speech recognition (ASR). However, different tasks in this method cannot utilize information from each other, which limits the improvement. Other works propose a two-stage model where the second model can use the hidden state from the first one, but its cascade manner greatly affects the efficiency of training and inference process. In this paper, we propose a novel interactive attention mechanism which enables ASR and ST to perform synchronously and interactively in a single model. Specifically, the generation of transcriptions and translations not only relies on its previous outputs but also the outputs predicted in the other task. Experiments on TED speech translation corpora have shown that our proposed model can outperform strong baselines on the quality of speech translation and achieve better speech recognition performances as well.
Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, Chengqing Zong
null
null
2,020
aaai
Joint Character-Level Word Embedding and Adversarial Stability Training to Defend Adversarial Text
null
Text classification is a basic task in natural language processing, but the small character perturbations in words can greatly decrease the effectiveness of text classification models, which is called character-level adversarial example attack. There are two main challenges in character-level adversarial examples defense, which are out-of-vocabulary words in word embedding model and the distribution difference between training and inference. Both of these two challenges make the character-level adversarial examples difficult to defend. In this paper, we propose a framework which jointly uses the character embedding and the adversarial stability training to overcome these two challenges. Our experimental results on five text classification data sets show that the models based on our framework can effectively defend character-level adversarial examples, and our models can defend 93.19% gradient-based adversarial examples and 94.83% natural adversarial examples, which outperforms the state-of-the-art defense models.
Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin, Yige Chen
null
null
2,020
aaai
Semi-Supervised Learning on Meta Structure: Multi-Task Tagging and Parsing in Low-Resource Scenarios
null
Multi-view learning makes use of diverse models arising from multiple sources of input or different feature subsets for the same task. For example, a given natural language processing task can combine evidence from models arising from character, morpheme, lexical, or phrasal views. The most common strategy with multi-view learning, especially popular in the neural network community, is to unify multiple representations into one unified vector through concatenation, averaging, or pooling, and then build a single-view model on top of the unified representation. As an alternative, we examine whether building one model per view and then unifying the different models can lead to improvements, especially in low-resource scenarios. More specifically, taking inspiration from co-training methods, we propose a semi-supervised learning approach based on multi-view models through consensus promotion, and investigate whether this improves overall performance. To test the multi-view hypothesis, we use moderately low-resource scenarios for nine languages and test the performance of the joint model for part-of-speech tagging and dependency parsing. The proposed model shows significant improvements across the test cases, with average gains of -0.9 ∼ +9.3 labeled attachment score (LAS) points. We also investigate the effect of unlabeled data on the proposed model by varying the amount of training data and by using different domains of unlabeled data.
KyungTae Lim, Jay Yoon Lee, Jaime Carbonell, Thierry Poibeau
null
null
2,020
aaai
A Robust Adversarial Training Approach to Machine Reading Comprehension
null
Lacking robustness is a serious problem for Machine Reading Comprehension (MRC) models. To alleviate this problem, one of the most promising ways is to augment the training dataset with sophisticated designed adversarial examples. Generally, those examples are created by rules according to the observed patterns of successful adversarial attacks. Since the types of adversarial examples are innumerable, it is not adequate to manually design and enrich training data to defend against all types of adversarial attacks. In this paper, we propose a novel robust adversarial training approach to improve the robustness of MRC models in a more generic way. Given an MRC model well-trained on the original dataset, our approach dynamically generates adversarial examples based on the parameters of current model and further trains the model by using the generated examples in an iterative schedule. When applied to the state-of-the-art MRC models, including QANET, BERT and ERNIE2.0, our approach obtains significant and comprehensive improvements on 5 adversarial datasets constructed in different ways, without sacrificing the performance on the original SQuAD development set. Moreover, when coupled with other data augmentation strategy, our approach further boosts the overall performance on adversarial datasets and outperforms the state-of-the-art methods.
Kai Liu, Xin Liu, An Yang, Jing Liu, Jinsong Su, Sujian Li, Qiaoqiao She
null
null
2,020
aaai
HAMNER: Headword Amplified Multi-Span Distantly Supervised Method for Domain Specific Named Entity Recognition
null
To tackle Named Entity Recognition (NER) tasks, supervised methods need to obtain sufficient cleanly annotated data, which is labor and time consuming. On the contrary, distantly supervised methods acquire automatically annotated data using dictionaries to alleviate this requirement. Unfortunately, dictionaries hinder the effectiveness of distantly supervised methods for NER due to its limited coverage, especially in specific domains. In this paper, we aim at the limitations of the dictionary usage and mention boundary detection. We generalize the distant supervision by extending the dictionary with headword based non-exact matching. We apply a function to better weight the matched entity mentions. We propose a span-level model, which classifies all the possible spans then infers the selected spans with a proposed dynamic programming algorithm. Experiments on all three benchmark datasets demonstrate that our method outperforms previous state-of-the-art distantly supervised methods.
Shifeng Liu, Yifang Sun, Bing Li, Wei Wang, Xiang Zhao
null
null
2,020
aaai
Simultaneous Learning of Pivots and Representations for Cross-Domain Sentiment Classification
null
Cross-domain sentiment classification aims to leverage useful knowledge from a source domain to mitigate the supervision sparsity in a target domain. A series of approaches depend on the pivot features that behave similarly for polarity prediction in both domains. However, the engineering of such pivot features remains cumbersome and prevents us from learning the disentangled and transferable representations from rich semantic and syntactic information. Towards learning the pivots and representations simultaneously, we propose a new Transferable Pivot Transformer (TPT). Our model consists of two networks: a Pivot Selector that learns to detect transferable n-gram pivots from contexts, and a Transferable Transformer that learns to generate domain-invariant representations by modeling the correlation between pivot and non-pivot words. The Pivot Selector and Transferable Transformer are jointly optimized through end-to-end back-propagation. We experiment with real tasks of cross-domain sentiment classification over 20 domain pairs where our model outperforms prior arts.
Liang Li, Weirui Ye, Mingsheng Long, Yateng Tang, Jin Xu, Jianmin Wang
null
null
2,020
aaai
Aspect-Aware Multimodal Summarization for Chinese E-Commerce Products
null
We present an abstractive summarization system that produces summary for Chinese e-commerce products. This task is more challenging than general text summarization. First, the appearance of a product typically plays a significant role in customers' decisions to buy the product or not, which requires that the summarization model effectively use the visual information of the product. Furthermore, different products have remarkable features in various aspects, such as “energy efficiency” and “large capacity” for refrigerators. Meanwhile, different customers may care about different aspects. Thus, the summarizer needs to capture the most attractive aspects of a product that resonate with potential purchasers. We propose an aspect-aware multimodal summarization model that can effectively incorporate the visual information and also determine the most salient aspects of a product. We construct a large-scale Chinese e-commerce product summarization dataset that contains approximately 1.4 million manually created product summaries that are paired with detailed product information, including an image, a title, and other textual descriptions for each product. The experimental results on this dataset demonstrate that our models significantly outperform the comparative methods in terms of both the ROUGE score and manual evaluations.
Haoran Li, Peng Yuan, Song Xu, Youzheng Wu, Xiaodong He, Bowen Zhou
null
null
2,020
aaai
Neuron Interaction Based Representation Composition for Neural Machine Translation
null
Recent NLP studies reveal that substantial linguistic information can be attributed to single neurons, i.e., individual dimensions of the representation vectors. We hypothesize that modeling strong interactions among neurons helps to better capture complex information by composing the linguistic properties embedded in individual neurons. Starting from this intuition, we propose a novel approach to compose representations learned by different components in neural machine translation (e.g., multi-layer networks or multi-head attention), based on modeling strong interactions among neurons in the representation vectors. Specifically, we leverage bilinear pooling to model pairwise multiplicative interactions among individual neurons, and a low-rank approximation to make the model computationally feasible. We further propose extended bilinear pooling to incorporate first-order representations. Experiments on WMT14 English⇒German and English⇒French translation tasks show that our model consistently improves performances over the SOTA Transformer baseline. Further analyses demonstrate that our approach indeed captures more syntactic and semantic information as expected.
Jian Li, Xing Wang, Baosong Yang, Shuming Shi, Michael R. Lyu, Zhaopeng Tu
null
null
2,020
aaai
FPETS: Fully Parallel End-to-End Text-to-Speech System
null
End-to-end Text-to-speech (TTS) system can greatly improve the quality of synthesised speech. But it usually suffers form high time latency due to its auto-regressive structure. And the synthesised speech may also suffer from some error modes, e.g. repeated words, mispronunciations, and skipped words. In this paper, we propose a novel non-autoregressive, fully parallel end-to-end TTS system (FPETS). It utilizes a new alignment model and the recently proposed U-shape convolutional structure, UFANS. Different from RNN, UFANS can capture long term information in a fully parallel manner. Trainable position encoding and two-step training strategy are used for learning better alignments. Experimental results show FPETS utilizes the power of parallel computation and reaches a significant speed up of inference compared with state-of-the-art end-to-end TTS systems. More specifically, FPETS is 600X faster than Tacotron2, 50X faster than DCTTS and 10X faster than Deep Voice3. And FPETS can generates audios with equal or better quality and fewer errors comparing with other system. As far as we know, FPETS is the first end-to-end TTS system which is fully parallel.
Dabiao Ma, Zhiba Su, Wenxuan Wang, Yuhao Lu
null
null
2,020
aaai
Attention-Informed Mixed-Language Training for Zero-Shot Cross-Lingual Task-Oriented Dialogue Systems
null
Recently, data-driven task-oriented dialogue systems have achieved promising performance in English. However, developing dialogue systems that support low-resource languages remains a long-standing challenge due to the absence of high-quality data. In order to circumvent the expensive and time-consuming data collection, we introduce Attention-Informed Mixed-Language Training (MLT), a novel zero-shot adaptation method for cross-lingual task-oriented dialogue systems. It leverages very few task-related parallel word pairs to generate code-switching sentences for learning the inter-lingual semantics across languages. Instead of manually selecting the word pairs, we propose to extract source words based on the scores computed by the attention layer of a trained English task-related model and then generate word pairs using existing bilingual dictionaries. Furthermore, intensive experiments with different cross-lingual embeddings demonstrate the effectiveness of our approach. Finally, with very few word pairs, our model achieves significant zero-shot adaptation performance improvements in both cross-lingual dialogue state tracking and natural language understanding (i.e., intent detection and slot filling) tasks compared to the current state-of-the-art approaches, which utilize a much larger amount of bilingual data.
Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng Xu, Pascale Fung
null
null
2,020
aaai
Cross-Lingual Low-Resource Set-to-Description Retrieval for Global E-Commerce
null
With the prosperous of cross-border e-commerce, there is an urgent demand for designing intelligent approaches for assisting e-commerce sellers to offer local products for consumers from all over the world. In this paper, we explore a new task of cross-lingual information retrieval, i.e., cross-lingual set-to-description retrieval in cross-border e-commerce, which involves matching product attribute sets in the source language with persuasive product descriptions in the target language. We manually collect a new and high-quality paired dataset, where each pair contains an unordered product attribute set in the source language and an informative product description in the target language. As the dataset construction process is both time-consuming and costly, the new dataset only comprises of 13.5k pairs, which is a low-resource setting and can be viewed as a challenging testbed for model development and evaluation in cross-border e-commerce. To tackle this cross-lingual set-to-description retrieval task, we propose a novel cross-lingual matching network (CLMN) with the enhancement of context-dependent cross-lingual mapping upon the pre-trained monolingual BERT representations. Experimental results indicate that our proposed CLMN yields impressive results on the challenging task and the context-dependent cross-lingual mapping on BERT yields noticeable improvement over the pre-trained multi-lingual BERT model.
Juntao Li, Chang Liu, Jian Wang, Lidong Bing, Hongsong Li, Xiaozhong Liu, Dongyan Zhao, Rui Yan
null
null
2,020
aaai
Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense Question Answering
null
Commonsense question answering aims to answer questions which require background knowledge that is not explicitly expressed in the question. The key challenge is how to obtain evidence from external knowledge and make predictions based on the evidence. Recent studies either learn to generate evidence from human-annotated evidence which is expensive to collect, or extract evidence from either structured or unstructured knowledge bases which fails to take advantages of both sources simultaneously. In this work, we propose to automatically extract evidence from heterogeneous knowledge sources, and answer questions based on the extracted evidence. Specifically, we extract evidence from both structured knowledge base (i.e. ConceptNet) and Wikipedia plain texts. We construct graphs for both sources to obtain the relational structures of evidence. Based on these graphs, we propose a graph-based approach consisting of a graph-based contextual word representation learning module and a graph-based inference module. The first module utilizes graph structural information to re-define the distance between words for learning better contextual word representations. The second module adopts graph convolutional network to encode neighbor information into the representations of nodes, and aggregates evidence with graph attention mechanism for predicting the final answer. Experimental results on CommonsenseQA dataset illustrate that our graph-based approach over both knowledge sources brings improvement over strong baselines. Our approach achieves the state-of-the-art accuracy (75.3%) on the CommonsenseQA dataset.
Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang, Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Songlin Hu
null
null
2,020
aaai
RobuTrans: A Robust Transformer-Based Text-to-Speech Model
null
Recently, neural network based speech synthesis has achieved outstanding results, by which the synthesized audios are of excellent quality and naturalness. However, current neural TTS models suffer from the robustness issue, which results in abnormal audios (bad cases) especially for unusual text (unseen context). To build a neural model which can synthesize both natural and stable audios, in this paper, we make a deep analysis of why the previous neural TTS models are not robust, based on which we propose RobuTrans (Robust Transformer), a robust neural TTS model based on Transformer. Comparing to TransformerTTS, our model first converts input texts to linguistic features, including phonemic features and prosodic features, then feed them to the encoder. In the decoder, the encoder-decoder attention is replaced with a duration-based hard attention mechanism, and the causal self-attention is replaced with a "pseudo non-causal attention" mechanism to model the holistic information of the input. Besides, the position embedding is replaced with a 1-D CNN, since it constrains the maximum length of synthesized audio. With these modifications, our model not only fix the robustness problem, but also achieves on parity MOS (4.36) with TransformerTTS (4.37) and Tacotron2 (4.37) on our general set.
Naihan Li, Yanqing Liu, Yu Wu, Shujie Liu, Sheng Zhao, Ming Liu
null
null
2,020
aaai
Keywords-Guided Abstractive Sentence Summarization
null
We study the problem of generating a summary for a given sentence. Existing researches on abstractive sentence summarization ignore that keywords in the input sentence provide significant clues for valuable content, and humans tend to write summaries covering these keywords. In this paper, we propose an abstractive sentence summarization method by applying guidance signals of keywords to both the encoder and the decoder in the sequence-to-sequence model. A multi-task learning framework is adopted to jointly learn to extract keywords and generate a summary for the input sentence. We apply keywords-guided selective encoding strategies to filter source information by investigating the interactions between the input sentence and the keywords. We extend pointer-generator network by a dual-attention and a dual-copy mechanism, which can integrate the semantics of the input sentence and the keywords, and copy words from both the input sentence and the keywords. We demonstrate that multi-task learning and keywords-oriented guidance facilitate sentence summarization task, achieving better performance than the competitive models on the English Gigaword sentence summarization dataset.
Haoran Li, Junnan Zhu, Jiajun Zhang, Chengqing Zong, Xiaodong He
null
null
2,020
aaai
ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural Network
null
Automated ICD coding, which assigns the International Classification of Disease codes to patient visits, has attracted much research attention since it can save time and labor for billing. The previous state-of-the-art model utilized one convolutional layer to build document representations for predicting ICD codes. However, the lengths and grammar of text fragments, which are closely related to ICD coding, vary a lot in different documents. Therefore, a flat and fixed-length convolutional architecture may not be capable of learning good document representations. In this paper, we proposed a Multi-Filter Residual Convolutional Neural Network (MultiResCNN) for ICD coding. The innovations of our model are two-folds: it utilizes a multi-filter convolutional layer to capture various text patterns with different lengths and a residual convolutional layer to enlarge the receptive field. We evaluated the effectiveness of our model on the widely-used MIMIC dataset. On the full code set of MIMIC-III, our model outperformed the state-of-the-art model in 4 out of 6 evaluation metrics. On the top-50 code set of MIMIC-III and the full code set of MIMIC-II, our model outperformed all the existing and state-of-the-art models in all evaluation metrics. The code is available at https://github.com/foxlf823/Multi-Filter-Residual-Convolutional-Neural-Network.
Fei Li, Hong Yu
null
null
2,020
aaai
GraphER: Token-Centric Entity Resolution with Graph Convolutional Neural Networks
null
Entity resolution (ER) aims to identify entity records that refer to the same real-world entity, which is a critical problem in data cleaning and integration. Most of the existing models are attribute-centric, that is, matching entity pairs by comparing similarities of pre-aligned attributes, which require the schemas of records to be identical and are too coarse-grained to capture subtle key information within a single attribute. In this paper, we propose a novel graph-based ER model GraphER. Our model is token-centric: the final matching results are generated by directly aggregating token-level comparison features, in which both the semantic and structural information has been softly embedded into token embeddings by training an Entity Record Graph Convolutional Network (ER-GCN). To the best of our knowledge, our work is the first effort to do token-centric entity resolution with the help of GCN in entity resolution task. Extensive experiments on two real-world datasets demonstrate that our model stably outperforms state-of-the-art models.
Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, Yi Wang
null
null
2,020
aaai
Improving Question Generation with Sentence-Level Semantic Matching and Answer Position Inferring
null
Taking an answer and its context as input, sequence-to-sequence models have made considerable progress on question generation. However, we observe that these approaches often generate wrong question words or keywords and copy answer-irrelevant words from the input. We believe that lacking global question semantics and exploiting answer position-awareness not well are the key root causes. In this paper, we propose a neural question generation model with two general modules: sentence-level semantic matching and answer position inferring. Further, we enhance the initial state of the decoder by leveraging the answer-aware gated fusion mechanism. Experimental results demonstrate that our model outperforms the state-of-the-art (SOTA) models on SQuAD and MARCO datasets. Owing to its generality, our work also improves the existing models significantly.
Xiyao Ma, Qile Zhu, Yanlin Zhou, Xiaolin Li
null
null
2,020
aaai
Recursively Binary Modification Model for Nested Named Entity Recognition
null
Recently, there has been an increasing interest in identifying named entities with nested structures. Existing models only make independent typing decisions on the entire entity span while ignoring strong modification relations between sub-entity types. In this paper, we present a novel Recursively Binary Modification model for nested named entity recognition. Our model utilizes the modification relations among sub-entities types to infer the head component on top of a Bayesian framework and uses entity head as a strong evidence to determine the type of the entity span. The process is recursive, allowing lower-level entities to help better model those on the outer-level. To the best of our knowledge, our work is the first effort that uses modification relation in nested NER task. Extensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art models in nested NER tasks, and delivers competitive results with state-of-the-art models in flat NER task, without relying on any extra annotations or NLP tools.
Bing Li, Shifeng Liu, Yifang Sun, Wei Wang, Xiang Zhao
null
null
2,020
aaai
MetaMT, a Meta Learning Method Leveraging Multiple Domain Data for Low Resource Machine Translation
null
Neural machine translation (NMT) models have achieved state-of-the-art translation quality with a large quantity of parallel corpora available. However, their performance suffers significantly when it comes to domain-specific translations, in which training data are usually scarce. In this paper, we present a novel NMT model with a new word embedding transition technique for fast domain adaption. We propose to split parameters in the model into two groups: model parameters and meta parameters. The former are used to model the translation while the latter are used to adjust the representational space to generalize the model to different domains. We mimic the domain adaptation of the machine translation model to low-resource domains using multiple translation tasks on different domains. A new training strategy based on meta-learning is developed along with the proposed model to update the model parameters and meta parameters alternately. Experiments on datasets of different domains showed substantial improvements of NMT performances on a limited amount of data.
Rumeng Li, Xun Wang, Hong Yu
null
null
2,020
aaai
Towards Zero-Shot Learning for Automatic Phonemic Transcription
null
Automatic phonemic transcription tools are useful for low-resource language documentation. However, due to the lack of training sets, only a tiny fraction of languages have phonemic transcription tools. Fortunately, multilingual acoustic modeling provides a solution given limited audio training data. A more challenging problem is to build phonemic transcribers for languages with zero training data. The difficulty of this task is that phoneme inventories often differ between the training languages and the target language, making it infeasible to recognize unseen phonemes. In this work, we address this problem by adopting the idea of zero-shot learning. Our model is able to recognize unseen phonemes in the target language without any training data. In our model, we decompose phonemes into corresponding articulatory attributes such as vowel and consonant. Instead of predicting phonemes directly, we first predict distributions over articulatory attributes, and then compute phoneme distributions with a customized acoustic model. We evaluate our model by training it using 13 languages and testing it using 7 unseen languages. We find that it achieves 7.7% better phoneme error rate on average over a standard multilingual model.
Xinjian Li, Siddharth Dalmia, David Mortensen, Juncheng Li, Alan Black, Florian Metze
null
null
2,020
aaai
Span-Based Neural Buffer: Towards Efficient and Effective Utilization of Long-Distance Context for Neural Sequence Models
null
Neural sequence model, though widely used for modeling sequential data such as the language model, has sequential recency bias (Kuncoro et al. 2018) to the local context, limiting its full potential to capture long-distance context. To address this problem, this paper proposes augmenting sequence models with a span-based neural buffer that efficiently represents long-distance context, allowing a gate policy network to make interpolated predictions from both the neural buffer and the underlying sequence model. Training this policy network to utilize long-distance context is however challenging due to the simple sentence dominance problem (Marvin and Linzen 2018). To alleviate this problem, we propose a novel training algorithm that combines an annealed maximum likelihood estimation with an intrinsic reward-driven reinforcement learning. Sequence models with the proposed span-based neural buffer significantly improve the state-of-the-art perplexities on the benchmark Penn Treebank and WikiText-2 datasets to 43.9 and 35.2 respectively. We conduct extensive analysis and confirm that the proposed architecture and the training algorithm both contribute to the improvements.
Yangming Li, Kaisheng Yao, Libo Qin, Shuang Peng, Yijia Liu, Xiaolong Li
null
null
2,020
aaai
Neural Machine Translation with Joint Representation
null
Though early successes of Statistical Machine Translation (SMT) systems are attributed in part to the explicit modelling of the interaction between any two source and target units, e.g., alignment, the recent Neural Machine Translation (NMT) systems resort to the attention which partially encodes the interaction for efficiency. In this paper, we employ Joint Representation that fully accounts for each possible interaction. We sidestep the inefficiency issue by refining representations with the proposed efficient attention operation. The resulting Reformer models offer a new Sequence-to-Sequence modelling paradigm besides the Encoder-Decoder framework and outperform the Transformer baseline in either the small scale IWSLT14 German-English, English-German and IWSLT15 Vietnamese-English or the large scale NIST12 Chinese-English translation tasks by about 1 BLEU point. We also propose a systematic model scaling approach, allowing the Reformer model to beat the state-of-the-art Transformer in IWSLT14 German-English and NIST12 Chinese-English with about 50% fewer parameters. The code is publicly available at https://github.com/lyy1994/reformer.
Yanyang Li, Qiang Wang, Tong Xiao, Tongran Liu, Jingbo Zhu
null
null
2,020
aaai
End-to-End Trainable Non-Collaborative Dialog System
null
End-to-end task-oriented dialog models have achieved promising performance on collaborative tasks where users willingly coordinate with the system to complete a given task. While in non-collaborative settings, for example, negotiation and persuasion, users and systems do not share a common goal. As a result, compared to collaborate tasks, people use social content to build rapport and trust in these non-collaborative settings in order to advance their goals. To handle social content, we introduce a hierarchical intent annotation scheme, which can be generalized to different non-collaborative dialog tasks. Building upon TransferTransfo (Wolf et al. 2019), we propose an end-to-end neural network model to generate diverse coherent responses. Our model utilizes intent and semantic slots as the intermediate sentence representation to guide the generation process. In addition, we design a filter to select appropriate responses based on whether these intermediate representations fit the designed task and conversation constraints. Our non-collaborative dialog model guides users to complete the task while simultaneously keeps them engaged. We test our approach on our newly proposed AntiScam dataset and an existing PersuasionForGood dataset. Both automatic and human evaluations suggest that our model outperforms multiple baselines in these two non-collaborative tasks.
Yu Li, Kun Qian, Weiyan Shi, Zhou Yu
null
null
2,020
aaai
Bayes-Adaptive Monte-Carlo Planning and Learning for Goal-Oriented Dialogues
null
We consider a strategic dialogue task, where the ability to infer the other agent's goal is critical to the success of the conversational agent. While this problem can be naturally formulated as Bayesian planning, it is known to be a very difficult problem due to its enormous search space consisting of all possible utterances. In this paper, we introduce an efficient Bayes-adaptive planning algorithm for goal-oriented dialogues, which combines RNN-based dialogue generation and MCTS-based Bayesian planning in a novel way, leading to robust decision-making under the uncertainty of the other agent's goal. We then introduce reinforcement learning for the dialogue agent that uses MCTS as a strong policy improvement operator, casting reinforcement learning as iterative alternation of planning and supervised-learning of self-generated dialogues. In the experiments, we demonstrate that our Bayes-adaptive dialogue planning agent significantly outperforms the state-of-the-art in a negotiation dialogue domain. We also show that reinforcement learning via MCTS further improves end-task performance without diverging from human language.
Youngsoo Jang, Jongmin Lee, Kee-Eung Kim
null
null
2,020
aaai
Self-Attention Enhanced Selective Gate with Entity-Aware Embedding for Distantly Supervised Relation Extraction
null
Distantly supervised relation extraction intrinsically suffers from noisy labels due to the strong assumption of distant supervision. Most prior works adopt a selective attention mechanism over sentences in a bag to denoise from wrongly labeled data, which however could be incompetent when there is only one sentence in a bag. In this paper, we propose a brand-new light-weight neural framework to address the distantly supervised relation extraction problem and alleviate the defects in previous selective attention framework. Specifically, in the proposed framework, 1) we use an entity-aware word embedding method to integrate both relative position information and head/tail entity embeddings, aiming to highlight the essence of entities for this task; 2) we develop a self-attention mechanism to capture the rich contextual dependencies as a complement for local dependencies captured by piecewise CNN; and 3) instead of using selective attention, we design a pooling-equipped gate, which is based on rich contextual representations, as an aggregator to generate bag-level representation for final relation classification. Compared to selective attention, one major advantage of the proposed gating mechanism is that, it performs stably and promisingly even if only one sentence appears in a bag and thus keeps the consistency across all training examples. The experiments on NYT dataset demonstrate that our approach achieves a new state-of-the-art performance in terms of both AUC and top-n precision metrics.
Yang Li, Guodong Long, Tao Shen, Tianyi Zhou, Lina Yao, Huan Huo, Jing Jiang
null
null
2,020
aaai
Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network
null
Real-time emotion recognition (RTER) in conversations is significant for developing emotionally intelligent chatting machines. Without the future context in RTER, it becomes critical to build the memory bank carefully for capturing historical context and summarize the memories appropriately to retrieve relevant information. We propose an Attention Gated Hierarchical Memory Network (AGHMN) to address the problems of prior work: (1) Commonly used convolutional neural networks (CNNs) for utterance feature extraction are less compatible in the memory modules; (2) Unidirectional gated recurrent units (GRUs) only allow each historical utterance to have context before it, preventing information propagation in the opposite direction; (3) The Soft Attention for summarizing loses the positional and ordering information of memories, regardless of how the memory bank is built. Particularly, we propose a Hierarchical Memory Network (HMN) with a bidirectional GRU (BiGRU) as the utterance reader and a BiGRU fusion layer for the interaction between historical utterances. For memory summarizing, we propose an Attention GRU (AGRU) where we utilize the attention weights to update the internal state of GRU. We further promote the AGRU to a bidirectional variant (BiAGRU) to balance the contextual information from recent memories and that from distant memories. We conduct experiments on two emotion conversation datasets with extensive analysis, demonstrating the efficacy of our AGHMN models.
Wenxiang Jiao, Michael Lyu, Irwin King
null
null
2,020
aaai
Relevance-Promoting Language Model for Short-Text Conversation
null
Despite the effectiveness of sequence-to-sequence framework on the task of Short-Text Conversation (STC), the issue of under-exploitation of training data (i.e., the supervision signals from query text is ignored) still remains unresolved. Also, the adopted maximization-based decoding strategies, inclined to generating the generic responses or responses with repetition, are unsuited to the STC task. In this paper, we propose to formulate the STC task as a language modeling problem and tailor-make a training strategy to adapt a language model for response generation. To enhance generation performance, we design a relevance-promoting transformer language model, which performs additional supervised source attention after the self-attention to increase the importance of informative query tokens in calculating the token-level representation. The model further refines the query representation with relevance clues inferred from its multiple references during training. In testing, we adopt a randomization-over-maximization strategy to reduce the generation of generic responses. Experimental results on a large Chinese STC dataset demonstrate the superiority of the proposed model on relevance metrics and diversity metrics.1
Xin Li, Piji Li, Wei Bi, Xiaojiang Liu, Wai Lam
null
null
2,020
aaai
MMM: Multi-Stage Multi-Task Learning for Multi-Choice Reading Comprehension
null
Machine Reading Comprehension (MRC) for question answering (QA), which aims to answer a question given the relevant context passages, is an important way to test the ability of intelligence systems to understand human language. Multiple-Choice QA (MCQA) is one of the most difficult tasks in MRC because it often requires more advanced reading comprehension skills such as logical reasoning, summarization, and arithmetic operations, compared to the extractive counterpart where answers are usually spans of text within given passages. Moreover, most existing MCQA datasets are small in size, making the task even harder. We introduce MMM, a Multi-stage Multi-task learning framework for Multi-choice reading comprehension. Our method involves two sequential stages: coarse-tuning stage using out-of-domain datasets and multi-task learning stage using a larger in-domain dataset to help model generalize better with limited data. Furthermore, we propose a novel multi-step attention network (MAN) as the top-level classifier for this task. We demonstrate MMM significantly advances the state-of-the-art on four representative MCQA datasets.
Di Jin, Shuyang Gao, Jiun-Yu Kao, Tagyoung Chung, Dilek Hakkani-tur
null
null
2,020
aaai
Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER
null
BiLSTM has been prevalently used as a core module for NER in a sequence-labeling setup. State-of-the-art approaches use BiLSTM with additional resources such as gazetteers, language-modeling, or multi-task supervision to further improve NER. This paper instead takes a step back and focuses on analyzing problems of BiLSTM itself and how exactly self-attention can bring improvements. We formally show the limitation of (CRF-)BiLSTM in modeling cross-context patterns for each word – the XOR limitation. Then, we show that two types of simple cross-structures – self-attention and Cross-BiLSTM – can effectively remedy the problem. We test the practical impacts of the deficiency on real-world NER datasets, OntoNotes 5.0 and WNUT 2017, with clear and consistent improvements over the baseline, up to 8.7% on some of the multi-token entity mentions. We give in-depth analyses of the improvements across several aspects of NER, especially the identification of multi-token mentions. This study should lay a sound foundation for future improvements on sequence-labeling NER1.
Peng-Hsuan Li, Tsu-Jui Fu, Wei-Yun Ma
null
null
2,020
aaai
Explicit Sentence Compression for Neural Machine Translation
null
State-of-the-art Transformer-based neural machine translation (NMT) systems still follow a standard encoder-decoder framework, in which source sentence representation can be well done by an encoder with self-attention mechanism. Though Transformer-based encoder may effectively capture general information in its resulting source sentence representation, the backbone information, which stands for the gist of a sentence, is not specifically focused on. In this paper, we propose an explicit sentence compression method to enhance the source sentence representation for NMT. In practice, an explicit sentence compression goal used to learn the backbone information in a sentence. We propose three ways, including backbone source-side fusion, target-side fusion, and both-side fusion, to integrate the compressed sentence into NMT. Our empirical tests on the WMT English-to-French and English-to-German translation tasks show that the proposed sentence compression method significantly improves the translation performances over strong baselines.
Zuchao Li, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Zhuosheng Zhang, Hai Zhao
null
null
2,020
aaai
Monolingual Transfer Learning via Bilingual Translators for Style-Sensitive Paraphrase Generation
null
We tackle the low-resource problem in style transfer by employing transfer learning that utilizes abundantly available raw corpora. Our method consists of two steps: pre-training learns to generate a semantically equivalent sentence with an input assured grammaticality, and fine-tuning learns to add a desired style. Pre-training has two options, auto-encoding and machine translation based methods. Pre-training based on AutoEncoder is a simple way to learn these from a raw corpus. If machine translators are available, the model can learn more diverse paraphrasing via roundtrip translation. After these, fine-tuning achieves high-quality paraphrase generation even in situations where only 1k sentence pairs of the parallel corpus for style transfer is available. Experimental results of formality style transfer indicated the effectiveness of both pre-training methods and the method based on roundtrip translation achieves state-of-the-art performance.
Tomoyuki Kajiwara, Biwa Miura, Yuki Arase
null
null
2,020
aaai
Complementary Auxiliary Classifiers for Label-Conditional Text Generation
null
Learning to generate text with a given label is a challenging task because natural language sentences are highly variable and ambiguous. It renders difficulties in trade-off between sentence quality and label fidelity. In this paper, we present CARA to alleviate the issue, where two auxiliary classifiers work simultaneously to ensure that (1) the encoder learns disentangled features and (2) the generator produces label-related sentences. Two practical techniques are further proposed to improve the performance, including annealing the learning signal from the auxiliary classifier, and enhancing the encoder with pre-trained language models. To establish a comprehensive benchmark fostering future research, we consider a suite of four datasets, and systematically reproduce three representative methods. CARA shows consistent improvement over the previous methods on the task of label-conditional text generation, and achieves state-of-the-art on the task of attribute transfer.
Yuan Li, Chunyuan Li, Yizhe Zhang, Xiujun Li, Guoqing Zheng, Lawrence Carin, Jianfeng Gao
null
null
2,020
aaai
Relation Extraction Exploiting Full Dependency Forests
null
Dependency syntax has long been recognized as a crucial source of features for relation extraction. Previous work considers 1-best trees produced by a parser during preprocessing. However, error propagation from the out-of-domain parser may impact the relation extraction performance. We propose to leverage full dependency forests for this task, where a full dependency forest encodes all possible trees. Such representations of full dependency forests provide a differentiable connection between a parser and a relation extraction model, and thus we are also able to study adjusting the parser parameters based on end-task loss. Experiments on three datasets show that full dependency forests and parser adjustment give significant improvements over carefully designed baselines, showing state-of-the-art or competitive performances on biomedical or newswire benchmarks.
Lifeng Jin, Linfeng Song, Yue Zhang, Kun Xu, Wei-Yun Ma, Dong Yu
null
null
2,020
aaai
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
null
Machine learning algorithms are often vulnerable to adversarial examples that have imperceptible alterations from the original counterparts but can fool the state-of-the-art models. It is helpful to evaluate or even improve the robustness of these models by exposing the maliciously crafted adversarial examples. In this paper, we present TextFooler, a simple but strong baseline to generate adversarial text. By applying it to two fundamental natural language tasks, text classification and textual entailment, we successfully attacked three target models, including the powerful pre-trained BERT, and the widely used convolutional and recurrent neural networks. We demonstrate three advantages of this framework: (1) effective—it outperforms previous attacks by success rate and perturbation rate, (2) utility-preserving—it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient—it generates adversarial text with computational complexity linear to the text length.1
Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits
null
null
2,020
aaai
SemSUM: Semantic Dependency Guided Neural Abstractive Summarization
null
In neural abstractive summarization, the generated summaries often face semantic irrelevance and content deviation from the input sentences. In this work, we incorporate semantic dependency graphs about predicate-argument structure of input sentences into neural abstractive summarization for the problem. We propose a novel semantics dependency guided summarization model (SemSUM), which can leverage the information of original input texts and the corresponding semantic dependency graphs in a complementary way to guide summarization process. We evaluate our model on the English Gigaword, DUC 2004 and MSR abstractive sentence summarization datasets. Experiments show that the proposed model improves semantic relevance and reduces content deviation, and also brings significant improvements on automatic evaluation ROUGE metrics.
Hanqi Jin, Tianming Wang, Xiaojun Wan
null
null
2,020
aaai
Weakly Supervised POS Taggers Perform Poorly on Truly Low-Resource Languages
null
Part-of-speech (POS) taggers for low-resource languages which are exclusively based on various forms of weak supervision – e.g., cross-lingual transfer, type-level supervision, or a combination thereof – have been reported to perform almost as well as supervised ones. However, weakly supervised POS taggers are commonly only evaluated on languages that are very different from truly low-resource languages, and the taggers use sources of information, like high-coverage and almost error-free dictionaries, which are likely not available for resource-poor languages. We train and evaluate state-of-the-art weakly supervised POS taggers for a typologically diverse set of 15 truly low-resource languages. On these languages, given a realistic amount of resources, even our best model gets only less than half of the words right. Our results highlight the need for new and different approaches to POS tagging for truly low-resource languages.
Katharina Kann, Ophélie Lacroix, Anders Søgaard
null
null
2,020
aaai
Learning to Learn Morphological Inflection for Resource-Poor Languages
null
We propose to cast the task of morphological inflection—mapping a lemma to an indicated inflected form—for resource-poor languages as a meta-learning problem. Treating each language as a separate task, we use data from high-resource source languages to learn a set of model parameters that can serve as a strong initialization point for fine-tuning on a resource-poor target language. Experiments with two model architectures on 29 target languages from 3 families show that our suggested approach outperforms all baselines. In particular, it obtains a 31.7% higher absolute accuracy than a previously proposed cross-lingual transfer model and outperforms the previous state of the art by 1.7% absolute accuracy on average over languages.
Katharina Kann, Samuel R. Bowman, Kyunghyun Cho
null
null
2,020
aaai
Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks
null
Textual entailment is a fundamental task in natural language processing. Most approaches for solving this problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageRank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture the structural and semantic information in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps the model to be robust and improves prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.
Pavan Kapanipathi, Veronika Thost, Siva Sankalp Patel, Spencer Whitehead, Ibrahim Abdelaziz, Avinash Balakrishnan, Maria Chang, Kshitij Fadnis, Chulaka Gunasekara, Bassem Makni, Nicholas Mattei, Kartik Talamadupula, Achille Fokoue
null
null
2,020
aaai
Modality-Balanced Models for Visual Dialogue
null
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue. However, via manual analysis, we find that a large number of conversational questions can be answered by only looking at the image without any access to the context history, while others still need the conversation context to predict the correct answers. We demonstrate that due to this reason, previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history (e.g., by extracting certain keywords or patterns in the context information), whereas image-only models are more generalizable (because they cannot memorize or extract keywords from history) and perform substantially better at the primary normalized discounted cumulative gain (NDCG) task metric which allows multiple correct answers. Hence, this observation encourages us to explicitly maintain two models, i.e., an image-only model and an image-history joint model, and combine their complementary abilities for a more balanced multimodal model. We present multiple methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters. Empirically, our models achieve strong results on the Visual Dialog challenge 2019 (rank 3 on NDCG and high balance across metrics), and substantially outperform the winner of the Visual Dialog challenge 2018 on most metrics.
Hyounghun Kim, Hao Tan, Mohit Bansal
null
null
2,020
aaai
Segment-Then-Rank: Non-Factoid Question Answering on Instructional Videos
null
We study the problem of non-factoid QA on instructional videos. Existing work focuses either on visual or textual modality of video content, to find matching answers to the question. However, neither is flexible enough for our problem setting of non-factoid answers with varying lengths. Motivated by this, we propose a two-stage model: (a) multimodal segmentation of video into span candidates and (b) length-adaptive ranking of the candidates to the question. First, for segmentation, we propose Segmenter for generating span candidates of diverse length, considering both textual and visual modality. Second, for ranking, we propose Ranker to score the candidates, dynamically combining the two models with complementary strength for both short and long spans respectively. Experimental result demonstrates that our model achieves state-of-the-art performance.
Kyungjae Lee, Nan Duan, Lei Ji, Jason Li, Seung-won Hwang
null
null
2,020
aaai
Syntactically Look-Ahead Attention Network for Sentence Compression
null
Sentence compression is the task of compressing a long sentence into a short one by deleting redundant words. In sequence-to-sequence (Seq2Seq) based models, the decoder unidirectionally decides to retain or delete words. Thus, it cannot usually explicitly capture the relationships between decoded words and unseen words that will be decoded in the future time steps. Therefore, to avoid generating ungrammatical sentences, the decoder sometimes drops important words in compressing sentences. To solve this problem, we propose a novel Seq2Seq model, syntactically look-ahead attention network (SLAHAN), that can generate informative summaries by explicitly tracking both dependency parent and child words during decoding and capturing important words that will be decoded in the future. The results of the automatic evaluation on the Google sentence compression dataset showed that SLAHAN achieved the best kept-token-based-F1, ROUGE-1, ROUGE-2 and ROUGE-L scores of 85.5, 79.3, 71.3 and 79.1, respectively. SLAHAN also improved the summarization performance on longer sentences. Furthermore, in the human evaluation, SLAHAN improved informativeness without losing readability.
Hidetaka Kamigaito, Manabu Okumura
null
null
2,020
aaai
QASC: A Dataset for Question Answering via Sentence Composition
null
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition (QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance.
Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, Ashish Sabharwal
null
null
2,020
aaai
CSI: A Coarse Sense Inventory for 85% Word Sense Disambiguation
null
Word Sense Disambiguation (WSD) is the task of associating a word in context with one of its meanings. While many works in the past have focused on raising the state of the art, none has even come close to achieving an F-score in the 80% ballpark when using WordNet as its sense inventory. We contend that one of the main reasons for this failure is the excessively fine granularity of this inventory, resulting in senses that are hard to differentiate between, even for an experienced human annotator. In this paper we cope with this long-standing problem by introducing Coarse Sense Inventory (CSI), obtained by linking WordNet concepts to a new set of 45 labels. The results show that the coarse granularity of CSI leads a WSD model to achieve 85.9% F1, while maintaining a high expressive power. Our set of labels also exhibits ease of use in tagging and a descriptiveness that other coarse inventories lack, as demonstrated in two annotation tasks which we performed. Moreover, a few-shot evaluation proves that the class-based nature of CSI allows the model to generalise over unseen or under-represented words.
Caterina Lacerra, Michele Bevilacqua, Tommaso Pasini, Roberto Navigli
null
null
2,020
aaai
Top-Down RST Parsing Utilizing Granularity Levels in Documents
null
Some downstream NLP tasks exploit discourse dependency trees converted from RST trees. To obtain better discourse dependency trees, we need to improve the accuracy of RST trees at the upper parts of the structures. Thus, we propose a novel neural top-down RST parsing method. Then, we exploit three levels of granularity in a document, paragraphs, sentences and Elementary Discourse Units (EDUs), to parse a document accurately and efficiently. The parsing is done in a top-down manner for each granularity level, by recursively splitting a larger text span into two smaller ones while predicting nuclearity and relation labels for the divided spans. The results on the RST-DT corpus show that our method achieved the state-of-the-art results, 87.0 unlabeled span score, 74.6 nuclearity labeled span score, and the comparable result with the state-of-the-art, 60.0 relation labeled span score. Furthermore, discourse dependency trees converted from our RST trees also achieved the state-of-the-art results, 64.9 unlabeled attachment score and 48.5 labeled attachment score.
Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kamigaito, Manabu Okumura, Masaaki Nagata
null
null
2,020
aaai
MA-DST: Multi-Attention-Based Scalable Dialog State Tracking
null
Task oriented dialog agents provide a natural language interface for users to complete their goal. Dialog State Tracking (DST), which is often a core component of these systems, tracks the system's understanding of the user's goal throughout the conversation. To enable accurate multi-domain DST, the model needs to encode dependencies between past utterances and slot semantics and understand the dialog context, including long-range cross-domain references. We introduce a novel architecture for this task to encode the conversation history and slot semantics more robustly by using attention mechanisms at multiple granularities. In particular, we use cross-attention to model relationships between the context and slots at different semantic levels and self-attention to resolve cross-domain coreferences. In addition, our proposed architecture does not rely on knowing the domain ontologies beforehand and can also be used in a zero-shot setting for new domains or unseen slot values. Our model improves the joint goal accuracy by 5% (absolute) in the full-data setting and by up to 2% (absolute) in the zero-shot setting over the present state-of-the-art on the MultiWoZ 2.1 dataset.
Adarsh Kumar, Peter Ku, Anuj Goyal, Angeliki Metallinou, Dilek Hakkani-Tur
null
null
2,020
aaai
A General Framework for Implicit and Explicit Debiasing of Distributional Word Vector Spaces
null
Distributional word vectors have recently been shown to encode many of the human biases, most notably gender and racial biases, and models for attenuating such biases have consequently been proposed. However, existing models and studies (1) operate on under-specified and mutually differing bias definitions, (2) are tailored for a particular bias (e.g., gender bias) and (3) have been evaluated inconsistently and non-rigorously. In this work, we introduce a general framework for debiasing word embeddings. We operationalize the definition of a bias by discerning two types of bias specification: explicit and implicit. We then propose three debiasing models that operate on explicit or implicit bias specifications and that can be composed towards more robust debiasing. Finally, we devise a full-fledged evaluation framework in which we couple existing bias metrics with newly proposed ones. Experimental findings across three embedding methods suggest that the proposed debiasing models are robust and widely applicable: they often completely remove the bias both implicitly and explicitly without degradation of semantic information encoded in any of the input distributional spaces. Moreover, we successfully transfer debiasing models, by means of cross-lingual embedding spaces, and remove or attenuate biases in distributional word vector spaces of languages that lack readily available bias specifications.
Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, Ivan Vulić
null
null
2,020
aaai
Multi-Task Learning for Metaphor Detection with Graph Convolutional Neural Networks and Word Sense Disambiguation
null
The current deep learning works on metaphor detection have only considered this task independently, ignoring the useful knowledge from the related tasks and knowledge resources. In this work, we introduce two novel mechanisms to improve the performance of the deep learning models for metaphor detection. The first mechanism employs graph convolutional neural networks (GCN) with dependency parse trees to directly connect the words of interest with their important context words for metaphor detection. The GCN networks in this work also present a novel control mechanism to filter the learned representation vectors to retain the most important information for metaphor detection. The second mechanism, on the other hand, features a multi-task learning framework that exploits the similarity between word sense disambiguation and metaphor detection to transfer the knowledge between the two tasks. The extensive experiments demonstrate the effectiveness of the proposed techniques, yielding the state-of-the-art performance over several datasets.
Duong Le, My Thai, Thien Nguyen
null
null
2,020
aaai
Multi-Source Domain Adaptation for Text Classification via DistanceNet-Bandits
null
Domain adaptation performance of a learning algorithm on a target domain is a function of its source domain error and a divergence measure between the data distribution of these two domains. We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates. We first conduct analysis experiments to show which of these distance measures can best differentiate samples from same versus different domains, and are correlated with empirical results. Next, we develop a DistanceNet model which uses these distance measures, or a mixture of these distance measures, as an additional loss function to be minimized jointly with the task's loss function, so as to achieve better unsupervised domain adaptation. Finally, we extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains and allow the model to learn an optimal trajectory and mixture of domains for transfer to the low-resource target domain. We conduct experiments on popular sentiment analysis datasets with several diverse domains and show that our DistanceNet model, as well as its dynamic bandit variant, can outperform competitive baselines in the context of unsupervised domain adaptation.
Han Guo, Ramakanth Pasunuru, Mohit Bansal
null
null
2,020
aaai
Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation
null
Non-autoregressive translation (NAT) models remove the dependence on previous target tokens and generate all target tokens in parallel, resulting in significant inference speedup but at the cost of inferior translation accuracy compared to autoregressive translation (AT) models. Considering that AT models have higher accuracy and are easier to train than NAT models, and both of them share the same model configurations, a natural idea to improve the accuracy of NAT models is to transfer a well-trained AT model to an NAT model through fine-tuning. However, since AT and NAT models differ greatly in training strategy, straightforward fine-tuning does not work well. In this work, we introduce curriculum learning into fine-tuning for NAT. Specifically, we design a curriculum in the fine-tuning process to progressively switch the training from autoregressive generation to non-autoregressive generation. Experiments on four benchmark translation datasets show that the proposed method achieves good improvement (more than 1 BLEU score) over previous NAT baselines in terms of translation accuracy, and greatly speed up (more than 10 times) the inference process over AT baselines.
Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen, Tie-Yan Liu
null
null
2,020
aaai
What Do You Mean ‘Why?’: Resolving Sluices in Conversations
null
In conversation, we often ask one-word questions such as ‘Why?’ or ‘Who?’. Such questions are typically easy for humans to answer, but can be hard for computers, because their resolution requires retrieving both the right semantic frames and the right arguments from context. This paper introduces the novel ellipsis resolution task of resolving such one-word questions, referred to as sluices in linguistics. We present a crowd-sourced dataset containing annotations of sluices from over 4,000 dialogues collected from conversational QA datasets, as well as a series of strong baseline architectures.
Victor Petrén Bach Hansen, Anders Søgaard
null
null
2,020
aaai
Interactive Fiction Games: A Colossal Adventure
null
A hallmark of human intelligence is the ability to understand and communicate with language. Interactive Fiction games are fully text-based simulation environments where a player issues text commands to effect change in the environment and progress through the story. We argue that IF games are an excellent testbed for studying language-based autonomous agents. In particular, IF games combine challenges of combinatorial action spaces, language understanding, and commonsense reasoning. To facilitate rapid development of language-based agents, we introduce Jericho, a learning environment for man-made IF games and conduct a comprehensive study of text-agents across a rich set of games, highlighting directions in which agents can improve.
Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, Xingdi Yuan
null
null
2,020
aaai
CASE: Context-Aware Semantic Expansion
null
In this paper, we define and study a new task called Context-Aware Semantic Expansion (CASE). Given a seed term in a sentential context, we aim to suggest other terms that well fit the context as the seed. CASE has many interesting applications such as query suggestion, computer-assisted writing, and word sense disambiguation, to name a few. Previous explorations, if any, only involve some similar tasks, and all require human annotations for evaluation. In this study, we demonstrate that annotations for this task can be harvested at scale from existing corpora, in a fully automatic manner. On a dataset of 1.8 million sentences thus derived, we propose a network architecture that encodes the context and seed term separately before suggesting alternative terms. The context encoder in this architecture can be easily extended by incorporating seed-aware attention. Our experiments demonstrate that competitive results are achieved with appropriate choices of context encoder and attention scoring function.
Jialong Han, Aixin Sun, Haisong Zhang, Chenliang Li, Shuming Shi
null
null
2,020
aaai
Fact-Aware Sentence Split and Rephrase with Permutation Invariant Training
null
Sentence Split and Rephrase aims to break down a complex sentence into several simple sentences with its meaning preserved. Previous studies tend to address the issue by seq2seq learning from parallel sentence pairs, which takes a complex sentence as input and sequentially generates a series of simple sentences. However, the conventional seq2seq learning has two limitations for this task: (1) it does not take into account the facts stated in the long sentence; As a result, the generated simple sentences may miss or inaccurately state the facts in the original sentence. (2) The order variance of the simple sentences to be generated may confuse the seq2seq model during training because the simple sentences derived from the long source sentence could be in any order.To overcome the challenges, we first propose the Fact-aware Sentence Encoding, which enables the model to learn facts from the long sentence and thus improves the precision of sentence split; then we introduce Permutation Invariant Training to alleviate the effects of order variance in seq2seq learning for this task. Experiments on the WebSplit-v1.0 benchmark dataset show that our approaches can largely improve the performance over the previous seq2seq learning approaches. Moreover, an extrinsic evaluation on oie-benchmark verifies the effectiveness of our approaches by an observation that splitting long sentences with our state-of-the-art model as preprocessing is helpful for improving OpenIE performance.
Yinuo Guo, Tao Ge, Furu Wei
null
null
2,020
aaai
One Homonym per Translation
null
The study of homonymy is vital to resolving fundamental problems in lexical semantics. In this paper, we propose four hypotheses that characterize the unique behavior of homonyms in the context of translations, discourses, collocations, and sense clusters. We present a new annotated homonym resource that allows us to test our hypotheses on existing WSD resources. The results of the experiments provide strong empirical evidence for the hypotheses. This study represents a step towards a computational method for distinguishing between homonymy and polysemy, and constructing a definitive inventory of coarse-grained senses.
Bradley Hauer, Grzegorz Kondrak
null
null
2,020
aaai
Emu: Enhancing Multilingual Sentence Embeddings with Semantic Specialization
null
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
Wataru Hirota, Yoshihiko Suhara, Behzad Golshan, Wang-Chiew Tan
null
null
2,020
aaai
Knowledge-Graph Augmented Word Representations for Named Entity Recognition
null
By modeling the context information, ELMo and BERT have successfully improved the state-of-the-art of word representation, and demonstrated their effectiveness on the Named Entity Recognition task. In this paper, in addition to such context modeling, we propose to encode the prior knowledge of entities from an external knowledge base into the representation, and introduce a Knowledge-Graph Augmented Word Representation or KAWR for named entity recognition. Basically, KAWR provides a kind of knowledge-aware representation for words by 1) encoding entity information from a pre-trained KG embedding model with a new recurrent unit (GERU), and 2) strengthening context modeling from knowledge wise by providing a relation attention scheme based on the entity relations defined in KG. We demonstrate that KAWR, as an augmented version of the existing linguistic word representations, promotes F1 scores on 5 datasets in various domains by +0.46∼+2.07. Better generalization is also observed for KAWR on new entities that cannot be found in the training sets.
Qizhen He, Liang Wu, Yida Yin, Heming Cai
null
null
2,020
aaai
Unsupervised Interlingual Semantic Representations from Sentence Embeddings for Zero-Shot Cross-Lingual Transfer
null
As numerous modern NLP models demonstrate high-performance in various tasks when trained with resource-rich language data sets such as those of English, there has been a shift in attention to the idea of applying such learning to low-resource languages via zero-shot or few-shot cross-lingual transfer. While the most prominent efforts made previously on achieving this feat entails the use of parallel corpora for sentence alignment training, we seek to generalize further by assuming plausible scenarios in which such parallel data sets are unavailable. In this work, we present a novel architecture for training interlingual semantic representations on top of sentence embeddings in a completely unsupervised manner, and demonstrate its effectiveness in zero-shot cross-lingual transfer in natural language inference task. Furthermore, we showcase a method of leveraging this framework in a few-shot scenario, and finally analyze the distributional and permutational alignment across languages of these interlingual semantic representations.
Channy Hong, Jaeyeon Lee, Jungkwon Lee
null
null
2,020
aaai
What Makes A Good Story? Designing Composite Rewards for Visual Storytelling
null
Previous storytelling approaches mostly focused on optimizing traditional metrics such as BLEU, ROUGE and CIDEr. In this paper, we re-examine this problem from a different angle, by looking deep into what defines a natural and topically-coherent story. To this end, we propose three assessment criteria: relevance, coherence and expressiveness, which we observe through empirical analysis could constitute a “high-quality” story to the human eye. We further propose a reinforcement learning framework, ReCo-RL, with reward functions designed to capture the essence of these quality criteria. Experiments on the Visual Storytelling Dataset (VIST) with both automatic and human evaluation demonstrate that our ReCo-RL model achieves better performance than state-of-the-art baselines on both traditional metrics and the proposed new criteria.
Junjie Hu, Yu Cheng, Zhe Gan, Jingjing Liu, Jianfeng Gao, Graham Neubig
null
null
2,020
aaai