title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Discourse Level Factors for Sentence Deletion in Text Simplification
| null |
This paper presents a data-driven study focusing on analyzing and predicting sentence deletion — a prevalent but understudied phenomenon in document simplification — on a large English text simplification corpus. We inspect various document and discourse factors associated with sentence deletion, using a new manually annotated sentence alignment corpus we collected. We reveal that professional editors utilize different strategies to meet readability standards of elementary and middle schools. To predict whether a sentence will be deleted during simplification to a certain level, we harness automatically aligned data to train a classification model. Evaluated on our manually annotated data, our best models reached F1 scores of 65.2 and 59.7 for this task at the levels of elementary and middle school, respectively. We find that discourse level factors contribute to the challenging task of predicting sentence deletion for simplification.
|
Yang Zhong, Chao Jiang, Wei Xu, Junyi Jessy Li
| null | null | 2,020 |
aaai
|
Reinforced Curriculum Learning on Pre-Trained Neural Machine Translation Models
| null |
The competitive performance of neural machine translation (NMT) critically relies on large amounts of training data. However, acquiring high-quality translation pairs requires expert knowledge and is costly. Therefore, how to best utilize a given dataset of samples with diverse quality and characteristics becomes an important yet understudied question in NMT. Curriculum learning methods have been introduced to NMT to optimize a model's performance by prescribing the data input order, based on heuristics such as the assessment of noise and difficulty levels. However, existing methods require training from scratch, while in practice most NMT models are pre-trained on big data already. Moreover, as heuristics, they do not generalize well. In this paper, we aim to learn a curriculum for improving a pre-trained NMT model by re-selecting influential data samples from the original training set and formulate this task as a reinforcement learning problem. Specifically, we propose a data selection framework based on Deterministic Actor-Critic, in which a critic network predicts the expected change of model performance due to a certain sample, while an actor network learns to select the best sample out of a random batch of samples presented to it. Experiments on several translation datasets show that our method can further improve the performance of NMT when original batch training reaches its ceiling, without using additional new training data, and significantly outperforms several strong baseline methods.
|
Mingjun Zhao, Haijiang Wu, Di Niu, Xiaoli Wang
| null | null | 2,020 |
aaai
|
Semantics-Aware BERT for Language Understanding
| null |
The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks.
|
Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou, Xiang Zhou
| null | null | 2,020 |
aaai
|
JEC-QA: A Legal-Domain Question Answering Dataset
| null |
We present JEC-QA, the largest question answering dataset in the legal domain, collected from the National Judicial Examination of China. The examination is a comprehensive evaluation of professional skills for legal practitioners. College students are required to pass the examination to be certified as a lawyer or a judge. The dataset is challenging for existing question answering methods, because both retrieving relevant materials and answering questions require the ability of logic reasoning. Due to the high demand of multiple reasoning abilities to answer legal questions, the state-of-the-art models can only achieve about 28% accuracy on JEC-QA, while skilled humans and unskilled humans can reach 81% and 64% accuracy respectively, which indicates a huge gap between humans and machines on this task. We will release JEC-QA and our baselines to help improve the reasoning ability of machine comprehension models. You can access the dataset from http://jecqa.thunlp.org/.
|
Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, Maosong Sun
| null | null | 2,020 |
aaai
|
Weakly-Supervised Opinion Summarization by Leveraging External Information
| null |
Opinion summarization from online product reviews is a challenging task, which involves identifying opinions related to various aspects of the product being reviewed. While previous works require additional human effort to identify relevant aspects, we instead apply domain knowledge from external sources to automatically achieve the same goal. This work proposes AspMem, a generative method that contains an array of memory cells to store aspect-related knowledge. This explicit memory can help obtain a better opinion representation and infer the aspect information more precisely. We evaluate this method on both aspect identification and opinion summarization tasks. Our experiments show that AspMem outperforms the state-of-the-art methods even though, unlike the baselines, it does not rely on human supervision which is carefully handcrafted for the given tasks.
|
Chao Zhao, Snigdha Chaturvedi
| null | null | 2,020 |
aaai
|
Multimodal Summarization with Guidance of Multimodal Reference
| null |
Multimodal summarization with multimodal output (MSMO) is to generate a multimodal summary for a multimodal news report, which has been proven to effectively improve users' satisfaction. The existing MSMO methods are trained by the target of text modality, leading to the modality-bias problem that ignores the quality of model-selected image during training. To alleviate this problem, we propose a multimodal objective function with the guidance of multimodal reference to use the loss from the summary generation and the image selection. Due to the lack of multimodal reference data, we present two strategies, i.e., ROUGE-ranking and Order-ranking, to construct the multimodal reference by extending the text reference. Meanwhile, to better evaluate multimodal outputs, we propose a novel evaluation metric based on joint multimodal representation, projecting the model output and multimodal reference into a joint semantic space during evaluation. Experimental results have shown that our proposed model achieves the new state-of-the-art on both automatic and manual evaluation metrics. Besides, our proposed evaluation method can effectively improve the correlation with human judgments.
|
Junnan Zhu, Yu Zhou, Jiajun Zhang, Haoran Li, Chengqing Zong, Changliang Li
| null | null | 2,020 |
aaai
|
Balancing Quality and Human Involvement: An Effective Approach to Interactive Neural Machine Translation
| null |
Conventional interactive machine translation typically requires a human translator to validate every generated target word, even though most of them are correct in the advanced neural machine translation (NMT) scenario. Previous studies have exploited confidence approaches to address the intensive human involvement issue, which request human guidance only for a few number of words with low confidences. However, such approaches do not take the history of human involvement into account, and optimize the models only for the translation quality while ignoring the cost of human involvement. In response to these pitfalls, we propose a novel interactive NMT model, which explicitly accounts the history of human involvements and particularly is optimized towards two objectives corresponding to the translation quality and the cost of human involvement, respectively. Specifically, the model jointly predicts a target word and a decision on whether to request human guidance, which is based on both the partial translation and the history of human involvements. Since there is no explicit signals on the decisions of requesting human guidance in the bilingual corpus, we optimize the model with the reinforcement learning technique which enables our model to accurately predict when to request human guidance. Simulated and real experiments show that the proposed model can achieve higher translation quality with similar or less human involvement over the confidence-based baseline.
|
Tianxiang Zhao, Lemao Liu, Guoping Huang, Huayang Li, Yingling Liu, Liu GuiQuan, Shuming Shi
| null | null | 2,020 |
aaai
|
Learning to Compare for Better Training and Evaluation of Open Domain Natural Language Generation Models
| null |
Automated evaluation of open domain natural language generation (NLG) models remains a challenge and widely used metrics such as BLEU and Perplexity can be misleading in some cases. In our paper, we propose to evaluate natural language generation models by learning to compare a pair of generated sentences by fine-tuning BERT, which has been shown to have good natural language understanding ability. We also propose to evaluate the model-level quality of NLG models with sample-level comparison results with skill rating system. While able to be trained in a fully self-supervised fashion, our model can be further fine-tuned with a little amount of human preference annotation to better imitate human judgment. In addition to evaluating trained models, we propose to apply our model as a performance indicator during training for better hyperparameter tuning and early-stopping. We evaluate our approach on both story generation and chit-chat dialogue response generation. Experimental results show that our model correlates better with human preference compared with previous automated evaluation approaches. Training with the proposed metric yields better performance in human evaluation, which further demonstrates the effectiveness of the proposed model.
|
Wangchunshu Zhou, Ke Xu
| null | null | 2,020 |
aaai
|
A Pre-Training Based Personalized Dialogue Generation Model with Persona-Sparse Data
| null |
Endowing dialogue systems with personas is essential to deliver more human-like conversations. However, this problem is still far from well explored due to the difficulties of both embodying personalities in natural languages and the persona sparsity issue observed in most dialogue corpora. This paper proposes a pre-training based personalized dialogue model that can generate coherent responses using persona-sparse dialogue data. In this method, a pre-trained language model is used to initialize an encoder and decoder, and personal attribute embeddings are devised to model richer dialogue contexts by encoding speakers' personas together with dialogue histories. Further, to incorporate the target persona in the decoding process and to balance its contribution, an attention routing structure is devised in the decoder to merge features extracted from the target persona and dialogue contexts using dynamically predicted weights. Our model can utilize persona-sparse dialogues in a unified manner during the training process, and can also control the amount of persona-related features to exhibit during the inference process. Both automatic and manual evaluation demonstrates that the proposed model outperforms state-of-the-art methods for generating more coherent and persona consistent responses with persona-sparse data.
|
Yinhe Zheng, Rongsheng Zhang, Minlie Huang, Xiaoxi Mao
| null | null | 2,020 |
aaai
|
Evaluating Commonsense in Pre-Trained Language Models
| null |
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models' commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
|
Xuhui Zhou, Yue Zhang, Leyang Cui, Dandan Huang
| null | null | 2,020 |
aaai
|
Who Did They Respond to? Conversation Structure Modeling Using Masked Hierarchical Transformer
| null |
Conversation structure is useful for both understanding the nature of conversation dynamics and for providing features for many downstream applications such as summarization of conversations. In this work, we define the problem of conversation structure modeling as identifying the parent utterance(s) to which each utterance in the conversation responds to. Previous work usually took a pair of utterances to decide whether one utterance is the parent of the other. We believe the entire ancestral history is a very important information source to make accurate prediction. Therefore, we design a novel masking mechanism to guide the ancestor flow, and leverage the transformer model to aggregate all ancestors to predict parent utterances. Our experiments are performed on the Reddit dataset (Zhang, Culbertson, and Paritosh 2017) and the Ubuntu IRC dataset (Kummerfeld et al. 2019). In addition, we also report experiments on a new larger corpus from the Reddit platform and release this dataset. We show that the proposed model, that takes into account the ancestral history of the conversation, significantly outperforms several strong baselines including the BERT model on all datasets.
|
Henghui Zhu, Feng Nan, Zhiguo Wang, Ramesh Nallapati, Bing Xiang
| null | null | 2,020 |
aaai
|
Dynamic Reward-Based Dueling Deep Dyna-Q: Robust Policy Learning in Noisy Environments
| null |
Task-oriented dialogue systems provide a convenient interface to help users complete tasks. An important consideration for task-oriented dialogue systems is the ability to against the noise commonly existed in the real-world conversation. Both rule-based strategies and statistical modeling techniques can solve noise problems, but they are costly. In this paper, we propose a new approach, called Dynamic Reward-based Dueling Deep Dyna-Q (DR-D3Q). The DR-D3Q can learn policies in noise robustly, and it is easy to implement by combining dynamic reward and the Dueling Deep Q-Network (Dueling DQN) into Deep Dyna-Q (DDQ) framework. The Dueling DQN can mitigate the negative impact of noise on learning policies, but it is inapplicable to dialogue domain due to different reward mechanisms. Unlike typical dialogue reward function, we integrate dynamic reward that provides reward in real-time for agent to make Dueling DQN adapt to dialogue domain. For the purpose of supplementing the limited amount of real user experiences, we take the DDQ framework as the basic framework. Experiments using simulation and human evaluation show that the DR-D3Q significantly improve the performance of policy learning tasks in noisy environments.1
|
Yangyang Zhao, Zhenyu Wang, Kai Yin, Rui Zhang, Zhenhua Huang, Pei Wang
| null | null | 2,020 |
aaai
|
Co-Attention Hierarchical Network: Generating Coherent Long Distractors for Reading Comprehension
| null |
In reading comprehension, generating sentence-level distractors is a significant task, which requires a deep understanding of the article and question. The traditional entity-centered methods can only generate word-level or phrase-level distractors. Although recently proposed neural-based methods like sequence-to-sequence (Seq2Seq) model show great potential in generating creative text, the previous neural methods for distractor generation ignore two important aspects. First, they didn't model the interactions between the article and question, making the generated distractors tend to be too general or not relevant to question context. Second, they didn't emphasize the relationship between the distractor and article, making the generated distractors not semantically relevant to the article and thus fail to form a set of meaningful options. To solve the first problem, we propose a co-attention enhanced hierarchical architecture to better capture the interactions between the article and question, thus guide the decoder to generate more coherent distractors. To alleviate the second problem, we add an additional semantic similarity loss to push the generated distractors more relevant to the article. Experimental results show that our model outperforms several strong baselines on automatic metrics, achieving state-of-the-art performance. Further human evaluation indicates that our generated distractors are more coherent and more educative compared with those distractors generated by baselines.
|
Xiaorui Zhou, Senlin Luo, Yunfang Wu
| null | null | 2,020 |
aaai
|
MixPoet: Diverse Poetry Generation via Learning Controllable Mixed Latent Space
| null |
As an essential step towards computer creativity, automatic poetry generation has gained increasing attention these years. Though recent neural models make prominent progress in some criteria of poetry quality, generated poems still suffer from the problem of poor diversity. Related literature researches show that different factors, such as life experience, historical background, etc., would influence composition styles of poets, which considerably contributes to the high diversity of human-authored poetry. Inspired by this, we propose MixPoet, a novel model that absorbs multiple factors to create various styles and promote diversity. Based on a semi-supervised variational autoencoder, our model disentangles the latent space into some subspaces, with each conditioned on one influence factor by adversarial training. In this way, the model learns a controllable latent variable to capture and mix generalized factor-related properties. Different factor mixtures lead to diverse styles and hence further differentiate generated poems from each other. Experiment results on Chinese poetry demonstrate that MixPoet improves both diversity and quality against three state-of-the-art models.
|
Xiaoyuan Yi, Ruoyu Li, Cheng Yang, Wenhao Li, Maosong Sun
| null | null | 2,020 |
aaai
|
Meta-CoTGAN: A Meta Cooperative Training Paradigm for Improving Adversarial Text Generation
| null |
Training generative models that can generate high-quality text with sufficient diversity is an important open problem for Natural Language Generation (NLG) community. Recently, generative adversarial models have been applied extensively on text generation tasks, where the adversarially trained generators alleviate the exposure bias experienced by conventional maximum likelihood approaches and result in promising generation quality. However, due to the notorious defect of mode collapse for adversarial training, the adversarially trained generators face a quality-diversity trade-off, i.e., the generator models tend to sacrifice generation diversity severely for increasing generation quality. In this paper, we propose a novel approach which aims to improve the performance of adversarial text generation via efficiently decelerating mode collapse of the adversarial training. To this end, we introduce a cooperative training paradigm, where a language model is cooperatively trained with the generator and we utilize the language model to efficiently shape the data distribution of the generator against mode collapse. Moreover, instead of engaging the cooperative update for the generator in a principled way, we formulate a meta learning mechanism, where the cooperative update to the generator serves as a high level meta task, with an intuition of ensuring the parameters of the generator after the adversarial update would stay resistant against mode collapse. In the experiment, we demonstrate our proposed approach can efficiently slow down the pace of mode collapse for the adversarial text generators. Overall, our proposed method is able to outperform the baseline approaches with significant margins in terms of both generation quality and diversity in the testified domains.
|
Haiyan Yin, Dingcheng Li, Xu Li, Ping Li
| null | null | 2,020 |
aaai
|
Automatic Generation of Headlines for Online Math Questions
| null |
Mathematical equations are an important part of dissemination and communication of scientific information. Students, however, often feel challenged in reading and understanding math content and equations. With the development of the Web, students are posting their math questions online. Nevertheless, constructing a concise math headline that gives a good description of the posted detailed math question is nontrivial. In this study, we explore a novel summarization task denoted as geNerating A concise Math hEadline from a detailed math question (NAME). Compared to conventional summarization tasks, this task has two extra and essential constraints: 1) Detailed math questions consist of text and math equations which require a unified framework to jointly model textual and mathematical information; 2) Unlike text, math equations contain semantic and structural features, and both of them should be captured together. To address these issues, we propose MathSum, a novel summarization model which utilizes a pointer mechanism combined with a multi-head attention mechanism for mathematical representation augmentation. The pointer mechanism can either copy textual tokens or math tokens from source questions in order to generate math headlines. The multi-head attention mechanism is designed to enrich the representation of math equations by modeling and integrating both its semantic and structural features. For evaluation, we collect and make available two sets of real-world detailed math questions along with human-written math headlines, namely EXEQ-300k and OFEQ-10k. Experimental results demonstrate that our model (MathSum) significantly outperforms state-of-the-art models for both the EXEQ-300k and OFEQ-10k datasets.
|
Ke Yuan, Dafang He, Zhuoren Jiang, Liangcai Gao, Zhi Tang, C. Lee Giles
| null | null | 2,020 |
aaai
|
CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning
| null |
Joint extraction of entities and relations has received significant attention due to its potential of providing higher performance for both tasks. Among existing methods, CopyRE is effective and novel, which uses a sequence-to-sequence framework and copy mechanism to directly generate the relation triplets. However, it suffers from two fatal problems. The model is extremely weak at differing the head and tail entity, resulting in inaccurate entity extraction. It also cannot predict multi-token entities (e.g. Steven Jobs). To address these problems, we give a detailed analysis of the reasons behind the inaccurate entity extraction problem, and then propose a simple but extremely effective model structure to solve this problem. In addition, we propose a multi-task learning framework equipped with copy mechanism, called CopyMTL, to allow the model to predict multi-token entities. Experiments reveal the problems of CopyRE and show that our model achieves significant improvement over the current state-of-the-art method by 9% in NYT and 16% in WebNLG (F1 score). Our code is available at https://github.com/WindChimeRan/CopyMTL
|
Daojian Zeng, Haoran Zhang, Qianying Liu
| null | null | 2,020 |
aaai
|
PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network
| null |
Time-frequency (T-F) domain masking is a mainstream approach for single-channel speech enhancement. Recently, focuses have been put to phase prediction in addition to amplitude prediction. In this paper, we propose a phase-and-harmonics-aware deep neural network (DNN), named PHASEN, for this task. Unlike previous methods which directly use a complex ideal ratio mask to supervise the DNN learning, we design a two-stream network, where amplitude stream and phase stream are dedicated to amplitude and phase prediction. We discover that the two streams should communicate with each other, and this is crucial to phase prediction. In addition, we propose frequency transformation blocks to catch long-range correlations along the frequency axis. Visualization shows that the learned transformation matrix implicitly captures the harmonic correlation, which has been proven to be helpful for T-F spectrogram reconstruction. With these two innovations, PHASEN acquires the ability to handle detailed phase patterns and to utilize harmonic patterns, getting 1.76dB SDR improvement on AVSpeech + AudioSet dataset. It also achieves significant gains over Google's network on this dataset. On Voice Bank + DEMAND dataset, PHASEN outperforms previous methods by a large margin on four metrics.
|
Dacheng Yin, Chong Luo, Zhiwei Xiong, Wenjun Zeng
| null | null | 2,020 |
aaai
|
Improving Context-Aware Neural Machine Translation Using Self-Attentive Sentence Embedding
| null |
Fully Attentional Networks (FAN) like Transformer (Vaswani et al. 2017) has shown superior results in Neural Machine Translation (NMT) tasks and has become a solid baseline for translation tasks. More recent studies also have reported experimental results that additional contextual sentences improve translation qualities of NMT models (Voita et al. 2018; Müller et al. 2018; Zhang et al. 2018). However, those studies have exploited multiple context sentences as a single long concatenated sentence, that may cause the models to suffer from inefficient computational complexities and long-range dependencies. In this paper, we propose Hierarchical Context Encoder (HCE) that is able to exploit multiple context sentences separately using the hierarchical FAN structure. Our proposed encoder first abstracts sentence-level information from preceding sentences in a self-attentive way, and then hierarchically encodes context-level information. Through extensive experiments, we observe that our HCE records the best performance measured in BLEU score on English-German, English-Turkish, and English-Korean corpus. In addition, we observe that our HCE records the best performance in a crowd-sourced test set which is designed to evaluate how well an encoder can exploit contextual information. Finally, evaluation on English-Korean pronoun resolution test suite also shows that our HCE can properly exploit contextual information.
|
Hyeongu Yun, Yongkeun Hwang, Kyomin Jung
| null | null | 2,020 |
aaai
|
Span Model for Open Information Extraction on Accurate Corpus
| null |
Open Information Extraction (Open IE) is a challenging task especially due to its brittle data basis. Most of Open IE systems have to be trained on automatically built corpus and evaluated on inaccurate test set. In this work, we first alleviate this difficulty from both sides of training and test sets. For the former, we propose an improved model design to more sufficiently exploit training dataset. For the latter, we present our accurately re-annotated benchmark test set (Re-OIE2016) according to a series of linguistic observation and analysis. Then, we introduce a span model instead of previous adopted sequence labeling formulization for n-ary Open IE. Our newly introduced model achieves new state-of-the-art performance on both benchmark evaluation datasets.
|
Junlang Zhan, Hai Zhao
| null | null | 2,020 |
aaai
|
Enhancing Pointer Network for Sentence Ordering with Pairwise Ordering Predictions
| null |
Dominant sentence ordering models use a pointer network decoder to generate ordering sequences in a left-to-right fashion. However, such a decoder only exploits the noisy left-side encoded context, which is insufficient to ensure correct sentence ordering. To address this deficiency, we propose to enhance the pointer network decoder by using two pairwise ordering prediction modules: The FUTURE module predicts the relative orientations of other unordered sentences with respect to the candidate sentence, and the HISTORY module measures the local coherence between several (e.g., 2) previously ordered sentences and the candidate sentence, without the influence of noisy left-side context. Using the pointer mechanism, we then incorporate this dynamically generated information into the decoder as a supplement to the left-side context for better predictions. On several commonly-used datasets, our model significantly outperforms other baselines, achieving the state-of-the-art performance. Further analyses verify that pairwise ordering predictions indeed provide extra useful context as expected, leading to better sentence ordering. We also evaluate our sentence ordering models on a downstream task, multi-document summarization, and the summaries reordered by our model achieve the best coherence scores. Our code is available at https://github.com/DeepLearnXMU/Pairwise.git.
|
Yongjing Yin, Fandong Meng, Jinsong Su, Yubin Ge, Lingeng Song, Jie Zhou, Jiebo Luo
| null | null | 2,020 |
aaai
|
Exploiting Cross-Lingual Subword Similarities in Low-Resource Document Classification
| null |
Text classification must sometimes be applied in a low-resource language with no labeled training data. However, training data may be available in a related language. We investigate whether character-level knowledge transfer from a related language helps text classification. We present a cross-lingual document classification framework (caco) that exploits cross-lingual subword similarity by jointly training a character-based embedder and a word-based classifier. The embedder derives vector representations for input words from their written forms, and the classifier makes predictions based on the word vectors. We use a joint character representation for both the source language and the target language, which allows the embedder to generalize knowledge about source language words to target language words with similar forms. We propose a multi-task objective that can further improve the model if additional cross-lingual or monolingual resources are available. Experiments confirm that character-level knowledge transfer is more data-efficient than word-level transfer between related languages.
|
Mozhi Zhang, Yoshinari Fujinuma, Jordan Boyd-Graber
| null | null | 2,020 |
aaai
|
Neural Simile Recognition with Cyclic Multitask Learning and Local Attention
| null |
Simile recognition is to detect simile sentences and to extract simile components, i.e., tenors and vehicles. It involves two subtasks: simile sentence classification and simile component extraction. Recent work has shown that standard multitask learning is effective for Chinese simile recognition, but it is still uncertain whether the mutual effects between the subtasks have been well captured by simple parameter sharing. We propose a novel cyclic multitask learning framework for neural simile recognition, which stacks the subtasks and makes them into a loop by connecting the last to the first. It iteratively performs each subtask, taking the outputs of the previous subtask as additional inputs to the current one, so that the interdependence between the subtasks can be better explored. Extensive experiments show that our framework significantly outperforms the current state-of-the-art model and our carefully designed baselines, and the gains are still remarkable using BERT. Source Code of this paper are available on https://github.com/DeepLearnXMU/Cyclic.
|
Jiali Zeng, Linfeng Song, Jinsong Su, Jun Xie, Wei Song, Jiebo Luo
| null | null | 2,020 |
aaai
|
DCMN+: Dual Co-Matching Network for Multi-Choice Reading Comprehension
| null |
Multi-choice reading comprehension is a challenging task to select an answer from a set of candidate options when given passage and question. Previous approaches usually only calculate question-aware passage representation and ignore passage-aware question representation when modeling the relationship between passage and question, which cannot effectively capture the relationship between passage and question. In this work, we propose dual co-matching network (DCMN) which models the relationship among passage, question and answer options bidirectionally. Besides, inspired by how humans solve multi-choice questions, we integrate two reading strategies into our model: (i) passage sentence selection that finds the most salient supporting sentences to answer the question, (ii) answer option interaction that encodes the comparison information between answer options. DCMN equipped with the two strategies (DCMN+) obtains state-of-the-art results on five multi-choice reading comprehension datasets from different domains: RACE, SemEval-2018 Task 11, ROCStories, COIN, MCTest.
|
Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng Zhang, Xi Zhou, Xiang Zhou
| null | null | 2,020 |
aaai
|
Learning Conceptual-Contextual Embeddings for Medical Text
| null |
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks in a similar fashion to pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
|
Xiao Zhang, Dejing Dou, Ji Wu
| null | null | 2,020 |
aaai
|
Graph LSTM with Context-Gated Mechanism for Spoken Language Understanding
| null |
Much research in recent years has focused on spoken language understanding (SLU), which usually involves two tasks: intent detection and slot filling. Since Yao et al.(2013), almost all SLU systems are RNN-based, which have been shown to suffer various limitations due to their sequential nature. In this paper, we propose to tackle this task with Graph LSTM, which first converts text into a graph and then utilizes the message passing mechanism to learn the node representation. Not only the Graph LSTM addresses the limitations of sequential models, but it can also help to utilize the semantic correlation between slot and intent. We further propose a context-gated mechanism to make better use of context information for slot filling. Our extensive evaluation shows that the proposed model outperforms the state-of-the-art results by a large margin.
|
Linhao Zhang, Dehong Ma, Xiaodong Zhang, Xiaohui Yan, Houfeng Wang
| null | null | 2,020 |
aaai
|
Learning Long- and Short-Term User Literal-Preference with Multimodal Hierarchical Transformer Network for Personalized Image Caption
| null |
Personalized image caption, a natural extension of the standard image caption task, requires to generate brief image descriptions tailored for users' writing style and traits, and is more practical to meet users' real demands. Only a few recent studies shed light on this crucial task and learn static user representations to capture their long-term literal-preference. However, it is insufficient to achieve satisfactory performance due to the intrinsic existence of not only long-term user literal-preference, but also short-term literal-preference which is associated with users' recent states. To bridge this gap, we develop a novel multimodal hierarchical transformer network (MHTN) for personalized image caption in this paper. It learns short-term user literal-preference based on users' recent captions through a short-term user encoder at the low level. And at the high level, the multimodal encoder integrates target image representations with short-term literal-preference, as well as long-term literal-preference learned from user IDs. These two encoders enjoy the advantages of the powerful transformer networks. Extensive experiments on two real datasets show the effectiveness of considering two types of user literal-preference simultaneously and better performance over the state-of-the-art models.
|
Wei Zhang, Yue Ying, Pan Lu, Hongyuan Zha
| null | null | 2,020 |
aaai
|
Multi-Point Semantic Representation for Intent Classification
| null |
Detecting user intents from utterances is the basis of natural language understanding (NLU) task. To understand the meaning of utterances, some work focuses on fully representing utterances via semantic parsing in which annotation cost is labor-intentsive. While some researchers simply view this as intent classification or frequently asked questions (FAQs) retrieval, they do not leverage the shared utterances among different intents. We propose a simple and novel multi-point semantic representation framework with relatively low annotation cost to leverage the fine-grained factor information, decomposing queries into four factors, i.e., topic, predicate, object/condition, query type. Besides, we propose a compositional intent bi-attention model under multi-task learning with three kinds of attention mechanisms among queries, labels and factors, which jointly combines coarse-grained intent and fine-grained factor information. Extensive experiments show that our framework and model significantly outperform several state-of-the-art approaches with an improvement of 1.35%-2.47% in terms of accuracy.
|
Jinghan Zhang, Yuxiao Ye, Yue Zhang, Likun Qiu, Bin Fu, Yang Li, Zhenglu Yang, Jian Sun
| null | null | 2,020 |
aaai
|
Structure Learning for Headline Generation
| null |
Headline generation is an important problem in natural language processing, which aims to describe a document by a compact and informative headline. Some recent successes on this task have been achieved by advanced graph-based neural models, which marry the representational power of deep neural networks with the structural modeling ability of the relational sentence graphs. The advantages of graph-based neural models over traditional Seq2Seq models lie in that they can encode long-distance relationship between sentences beyond the surface linear structure. However, since documents are typically weakly-structured data, modern graph-based neural models usually rely on manually designed rules or some heuristics to construct the sentence graph a prior. This may largely limit the power and increase the cost of the graph-based methods. In this paper, therefore, we propose to incorporate structure learning into the graph-based neural models for headline generation. That is, we want to automatically learn the sentence graph using a data-driven way, so that we can unveil the document structure flexibly without prior heuristics or rules. To achieve this goal, we employ a deep & wide network to encode rich relational information between sentences for the sentence graph learning. For the deep component, we leverage neural matching models, either representation-focused or interaction-focused model, to learn semantic similarity between sentences. For the wide component, we encode a variety of discourse relations between sentences. A Graph Convolutional Network (GCN) is then applied over the sentence graph to generate high-level relational representations for headline generation. The whole model could be optimized end-to-end so that the structure and representation could be learned jointly. Empirical studies show that our model can significantly outperform the state-of-the-art headline generation models.
|
Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Xueqi Cheng
| null | null | 2,020 |
aaai
|
CFGNN: Cross Flow Graph Neural Networks for Question Answering on Complex Tables
| null |
Question answering on complex tables is a challenging task for machines. In the Spider, a large-scale complex table dataset, relationships between tables and columns can be easily modeled as graph. But most of graph neural networks (GNNs) ignore the relationship of sibling nodes and use summation as aggregation function to model the relationship of parent-child nodes. It may cause nodes with less degrees, like column nodes in schema graph, to obtain little information. And the context information is important for natural language. To leverage more context information flow comprehensively, we propose novel cross flow graph neural networks in this paper. The information flows of parent-child and sibling nodes cross with history states between different layers. Besides, we use hierarchical encoding layer to obtain contextualized representation in tables. Experiments on the Spider show that our approach achieves substantial performance improvement comparing with previous GNN models and their variants.
|
Xuanyu Zhang
| null | null | 2,020 |
aaai
|
A Dataset for Low-Resource Stylized Sequence-to-Sequence Generation
| null |
Low-resource stylized sequence-to-sequence (S2S) generation is in high demand. However, its development is hindered by the datasets which have limitations on scale and automatic evaluation methods. We construct two large-scale, multiple-reference datasets for low-resource stylized S2S, the Machine Translation Formality Corpus (MTFC) that is easy to evaluate and the Twitter Conversation Formality Corpus (TCFC) that tackles an important problem in chatbots. These datasets contain context to source style parallel data, source style to target parallel data, and non-parallel sentences in the target style to enable the semi-supervised learning. We provide three baselines, the pivot-based method, the teacher-student method, and the back-translation method. We find that the pivot-based method is the worst, and the other two methods achieve the best score on different metrics.
|
Yu Wu, Yunli Wang, Shujie Liu
| null | null | 2,020 |
aaai
|
Copy or Rewrite: Hybrid Summarization with Hierarchical Reinforcement Learning
| null |
Jointly using the extractive and abstractive summarization methods can combine their complementary advantages, generating both informative and concise summary. Existing methods that adopt an extract-then-abstract strategy have achieved impressive results, yet they suffer from the information loss in the abstraction step because they compress all the selected sentences without distinguish. Especially when the whole sentence is summary-worthy, salient content would be lost by compression. To address this problem, we propose HySum, a hybrid framework for summarization that can flexibly switch between copying sentence and rewriting sentence according to the degree of redundancy. In this way, our approach can effectively combine the advantages of two branches of summarization, juggling informativity and conciseness. Moreover, we based on Hierarchical Reinforcement Learning, propose an end-to-end reinforcing method to bridge together the extraction module and rewriting module, which can enhance the cooperation between them. Automatic evaluation shows that our approach significantly outperforms the state-of-the-arts on the CNN/DailyMail corpus. Human evaluation also demonstrates that our generated summaries are more informative and concise than popular models.
|
Liqiang Xiao, Lu Wang, Hao He, Yaohui Jin
| null | null | 2,020 |
aaai
|
Hashing Based Answer Selection
| null |
Answer selection is an important subtask of question answering (QA), in which deep models usually achieve better performance than non-deep models. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance.
|
Dong Xu, Wu-Jun Li
| null | null | 2,020 |
aaai
|
Attentive User-Engaged Adversarial Neural Network for Community Question Answering
| null |
We study the community question answering (CQA) problem that emerges with the advent of numerous community forums in the recent past. The task of finding appropriate answers to questions from informative but noisy crowdsourced answers is important yet challenging in practice. We present an Attentive User-engaged Adversarial Neural Network (AUANN), which interactively learns the context information of questions and answers, and enhances user engagement with the CQA task. A novel attentive mechanism is incorporated to model the semantic internal and external relations among questions, answers and user contexts. To handle the noise issue caused by introducing user context, we design a two-step denoise mechanism, including a coarse-grained selection process by similarity measurement, and a fine-grained selection process by applying an adversarial training module. We evaluate the proposed method on large-scale real-world datasets SemEval-2016 and SemEval-2017. Experimental results verify the benefits of incorporating user information, and show that our proposed model significantly outperforms the state-of-the-art methods.
|
Yuexiang Xie, Ying Shen, Yaliang Li, Min Yang, Kai Lei
| null | null | 2,020 |
aaai
|
Joint Entity and Relation Extraction with a Hybrid Transformer and Reinforcement Learning Based Model
| null |
Joint extraction of entities and relations is a task that extracts the entity mentions and semantic relations between entities from the unstructured texts with one single model. Existing entity and relation extraction datasets usually rely on distant supervision methods which cannot identify the corresponding relations between a relation and the sentence, thus suffers from noisy labeling problem. We propose a hybrid deep neural network model to jointly extract the entities and relations, and the model is also capable of filtering noisy data. The hybrid model contains a transformer-based encoding layer, an LSTM entity detection module and a reinforcement learning-based relation classification module. The output of the transformer encoder and the entity embedding generated from the entity detection module are combined as the input state of the reinforcement learning module to improve the relation classification and noisy data filtering. We conduct experiments on the public dataset produced by the distant supervision method to verify the effectiveness of our proposed model. Different experimental results show that our model gains better performance on entity and relation extraction than the compared methods and also has the ability to filter noisy sentences.
|
Ya Xiao, Chengxiang Tan, Zhijie Fan, Qian Xu, Wenye Zhu
| null | null | 2,020 |
aaai
|
The Value of Paraphrase for Knowledge Base Predicates
| null |
Paraphrase, i.e., differing textual realizations of the same meaning, has proven useful for many natural language processing (NLP) applications. Collecting paraphrase for predicates in knowledge bases (KBs) is the key to comprehend the RDF triples in KBs. Existing works have published some paraphrase datasets automatically extracted from large corpora, but have too many redundant pairs or don't cover enough predicates, which cannot be improved by computer only and need the help of human beings. This paper shows a full process of collecting large-scale and high-quality paraphrase dictionaries for predicates in knowledge bases, which takes advantage of existing datasets and combines the technologies of machine mining and crowdsourcing. Our dataset comprises 2284 distinct predicates in DBpedia and 31130 paraphrase pairs in total, the quality of which is a great leap over previous works. Then it is demonstrated that such good paraphrase dictionaries can do great help to natural language processing tasks such as question answering and language generation. We also publish our own dictionary for further research.
|
Bingcong Xue, Sen Hu, Lei Zou, Jiashu Cheng
| null | null | 2,020 |
aaai
|
Task-Oriented Dialog Systems That Consider Multiple Appropriate Responses under the Same Context
| null |
Conversations have an intrinsic one-to-many property, which means that multiple responses can be appropriate for the same dialog context. In task-oriented dialogs, this property leads to different valid dialog policies towards task completion. However, none of the existing task-oriented dialog generation approaches takes this property into account. We propose a Multi-Action Data Augmentation (MADA) framework to utilize the one-to-many property to generate diverse appropriate dialog responses. Specifically, we first use dialog states to summarize the dialog history, and then discover all possible mappings from every dialog state to its different valid system actions. During dialog system training, we enable the current dialog state to map to all valid system actions discovered in the previous process to create additional state-action pairs. By incorporating these additional pairs, the dialog policy learns a balanced action distribution, which further guides the dialog model to generate diverse responses. Experimental results show that the proposed framework consistently improves dialog policy diversity, and results in improved response diversity and appropriateness. Our model obtains state-of-the-art results on MultiWOZ.
|
Yichi Zhang, Zhijian Ou, Zhou Yu
| null | null | 2,020 |
aaai
|
Filling Conversation Ellipsis for Better Social Dialog Understanding
| null |
The phenomenon of ellipsis is prevalent in social conversations. Ellipsis increases the difficulty of a series of downstream language understanding tasks, such as dialog act prediction and semantic role labeling. We propose to resolve ellipsis through automatic sentence completion to improve language understanding. However, automatic ellipsis completion can result in output which does not accurately reflect user intent. To address this issue, we propose a method which considers both the original utterance that has ellipsis and the automatically completed utterance in dialog act and semantic role labeling tasks. Specifically, we first complete user utterances to resolve ellipsis using an end-to-end pointer network model. We then train a prediction model using both utterances containing ellipsis and our automatically completed utterances. Finally, we combine the prediction results from these two utterances using a selection model that is guided by expert knowledge. Our approach improves dialog act prediction and semantic role labeling by 1.3% and 2.5% in F1 score respectively in social conversations. We also present an open-domain human-machine conversation dataset with manually completed user utterances and annotated semantic role labeling after manual completion.
|
Xiyuan Zhang, Chengxi Li, Dian Yu, Samuel Davidson, Zhou Yu
| null | null | 2,020 |
aaai
|
Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction
| null |
Target-oriented opinion words extraction (TOWE) is a new subtask of ABSA, which aims to extract the corresponding opinion words for a given opinion target in a sentence. Recently, neural network methods have been applied to this task and achieve promising results. However, the difficulty of annotation causes the datasets of TOWE to be insufficient, which heavily limits the performance of neural models. By contrast, abundant review sentiment classification data are easily available at online review sites. These reviews contain substantial latent opinions information and semantic patterns. In this paper, we propose a novel model to transfer these opinions knowledge from resource-rich review sentiment classification datasets to low-resource task TOWE. To address the challenges in the transfer process, we design an effective transformation method to obtain latent opinions, then integrate them into TOWE. Extensive experimental results show that our model achieves better performance compared to other state-of-the-art methods and significantly outperforms the base model without transferring opinions knowledge. Further analysis validates the effectiveness of our model.
|
Zhen Wu, Fei Zhao, Xin-Yu Dai, Shujian Huang, Jiajun Chen
| null | null | 2,020 |
aaai
|
Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment
| null |
Existing entity alignment methods mainly vary on the choices of encoding the knowledge graph, but they typically use the same decoding method, which independently chooses the local optimal match for each source entity. This decoding method may not only cause the “many-to-one” problem but also neglect the coordinated nature of this task, that is, each alignment decision may highly correlate to the other decisions. In this paper, we introduce two coordinated reasoning methods, i.e., the Easy-to-Hard decoding strategy and joint entity alignment algorithm. Specifically, the Easy-to-Hard strategy first retrieves the model-confident alignments from the predicted results and then incorporates them as additional knowledge to resolve the remaining model-uncertain alignments. To achieve this, we further propose an enhanced alignment model that is built on the current state-of-the-art baseline. In addition, to address the many-to-one problem, we propose to jointly predict entity alignments so that the one-to-one constraint can be naturally incorporated into the alignment prediction. Experimental results show that our model achieves the state-of-the-art performance and our reasoning methods can also significantly improve existing baselines.
|
Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu
| null | null | 2,020 |
aaai
|
Knowledge Graph Grounded Goal Planning for Open-Domain Conversation Generation
| null |
Previous neural models on open-domain conversation generation have no effective mechanisms to manage chatting topics, and tend to produce less coherent dialogs. Inspired by the strategies in human-human dialogs, we divide the task of multi-turn open-domain conversation generation into two sub-tasks: explicit goal (chatting about a topic) sequence planning and goal completion by topic elaboration. To this end, we propose a three-layer Knowledge aware Hierarchical Reinforcement Learning based Model (KnowHRL). Specifically, for the first sub-task, the upper-layer policy learns to traverse a knowledge graph (KG) in order to plan a high-level goal sequence towards a good balance between dialog coherence and topic consistency with user interests. For the second sub-task, the middle-layer policy and the lower-layer one work together to produce an in-depth multi-turn conversation about a single topic with a goal-driven generation mechanism. The capability of goal-sequence planning enables chatbots to conduct proactive open-domain conversations towards recommended topics, which has many practical applications. Experiments demonstrate that our model outperforms state of the art baselines in terms of user-interest consistency, dialog coherence, and knowledge accuracy.
|
Jun Xu, Haifeng Wang, Zhengyu Niu, Hua Wu, Wanxiang Che
| null | null | 2,020 |
aaai
|
Knowledge and Cross-Pair Pattern Guided Semantic Matching for Question Answering
| null |
Semantic matching is a basic problem in natural language processing, but it is far from solved because of the differences between the pairs for matching. In question answering (QA), answer selection (AS) is a popular semantic matching task, usually reformulated as a paraphrase identification (PI) problem. However, QA is different from PI because the question and the answer are not synonymous sentences and not strictly comparable. In this work, a novel knowledge and cross-pair pattern guided semantic matching system (KCG) is proposed, which considers both knowledge and pattern conditions for QA. We apply explicit cross-pair matching based on Graph Convolutional Network (GCN) to help KCG recognize general domain-independent Q-to-A patterns better. And with the incorporation of domain-specific information from knowledge bases (KB), KCG is able to capture and explore various relations within Q-A pairs. Experiments show that KCG is robust against the diversity of Q-A pairs and outperforms the state-of-the-art systems on different answer selection tasks.
|
Zihan Xu, Hai-Tao Zheng, Shaopeng Zhai, Dong Wang
| null | null | 2,020 |
aaai
|
Visual Agreement Regularized Training for Multi-Modal Machine Translation
| null |
Multi-modal machine translation aims at translating the source sentence into a different language in the presence of the paired image. Previous work suggests that additional visual information only provides dispensable help to translation, which is needed in several very special cases such as translating ambiguous words. To make better use of visual information, this work presents visual agreement regularized training. The proposed approach jointly trains the source-to-target and target-to-source translation models and encourages them to share the same focus on the visual information when generating semantically equivalent visual words (e.g. “ball” in English and “ballon” in French). Besides, a simple yet effective multi-head co-attention model is also introduced to capture interactions between visual and textual features. The results show that our approaches can outperform competitive baselines by a large margin on the Multi30k dataset. Further analysis demonstrates that the proposed regularized training can effectively improve the agreement of attention on the image, leading to better use of visual information.
|
Pengcheng Yang, Boxing Chen, Pei Zhang, Xu Sun
| null | null | 2,020 |
aaai
|
Alternating Language Modeling for Cross-Lingual Pre-Training
| null |
Language model pre-training has achieved success in many natural language processing tasks. Existing methods for cross-lingual pre-training adopt Translation Language Model to predict masked words with the concatenation of the source sentence and its target equivalent. In this work, we introduce a novel cross-lingual pre-training method, called Alternating Language Modeling (ALM). It code-switches sentences of different languages rather than simple concatenation, hoping to capture the rich cross-lingual context of words and phrases. More specifically, we randomly substitute source phrases with target translations to create code-switched sentences. Then, we use these code-switched data to train ALM model to learn to predict words of different languages. We evaluate our pre-training ALM on the downstream tasks of machine translation and cross-lingual classification. Experiments show that ALM can outperform the previous pre-training methods on three benchmarks.1
|
Jian Yang, Shuming Ma, Dongdong Zhang, ShuangZhi Wu, Zhoujun Li, Ming Zhou
| null | null | 2,020 |
aaai
|
Improving Domain-Adapted Sentiment Classification by Deep Adversarial Mutual Learning
| null |
Domain-adapted sentiment classification refers to training on a labeled source domain to well infer document-level sentiment on an unlabeled target domain. Most existing relevant models involve a feature extractor and a sentiment classifier, where the feature extractor works towards learning domain-invariant features from both domains, and the sentiment classifier is trained only on the source domain to guide the feature extractor. As such, they lack a mechanism to use sentiment polarity lying in the target domain. To improve domain-adapted sentiment classification by learning sentiment from the target domain as well, we devise a novel deep adversarial mutual learning approach involving two groups of feature extractors, domain discriminators, sentiment classifiers, and label probers. The domain discriminators enable the feature extractors to obtain domain-invariant features. Meanwhile, the label prober in each group explores document sentiment polarity of the target domain through the sentiment prediction generated by the classifier in the peer group, and guides the learning of the feature extractor in its own group. The proposed approach achieves the mutual learning of the two groups in an end-to-end manner. Experiments on multiple public datasets indicate our method obtains the state-of-the-art performance, validating the effectiveness of mutual learning through label probers.
|
Qianming Xue, Wei Zhang, Hongyuan Zha
| null | null | 2,020 |
aaai
|
End-to-End Bootstrapping Neural Network for Entity Set Expansion
| null |
Bootstrapping for entity set expansion (ESE) has long been modeled as a multi-step pipelined process. Such a paradigm, unfortunately, often suffers from two main challenges: 1) the entities are expanded in multiple separate steps, which tends to introduce noisy entities and results in the semantic drift problem; 2) it is hard to exploit the high-order entity-pattern relations for entity set expansion. In this paper, we propose an end-to-end bootstrapping neural network for entity set expansion, named BootstrapNet, which models the bootstrapping in an encoder-decoder architecture. In the encoding stage, a graph attention network is used to capture both the first- and the high-order relations between entities and patterns, and encode useful information into their representations. In the decoding stage, the entities are sequentially expanded through a recurrent neural network, which outputs entities at each stage, and its hidden state vectors, representing the target category, are updated at each expansion step. Experimental results demonstrate substantial improvement of our model over previous ESE approaches.
|
Lingyong Yan, Xianpei Han, Ben He, Le Sun
| null | null | 2,020 |
aaai
|
Generalize Sentence Representation with Self-Inference
| null |
In this paper, we propose Self Inference Neural Network (SINN), a simple yet efficient sentence encoder which leverages knowledge from recurrent and convolutional neural networks. SINN gathers semantic evidence in an interaction space which is subsequently fused by a shared vector gate to determine the most relevant mixture of contextual information. We evaluate the proposed method on four benchmarks among three NLP tasks. Experimental results demonstrate that our model sets a new state-of-the-art on MultiNLI, Scitail and is competitive on the remaining two datasets over all sentence encoding methods. The encoding and inference process in our model is highly interpretable. Through visualizations of the fusion component, we open the black box of our network and explore the applicability of the base encoding methods case by case.
|
Kai-Chou Yang, Hung-Yu Kao
| null | null | 2,020 |
aaai
|
Be Relevant, Non-Redundant, and Timely: Deep Reinforcement Learning for Real-Time Event Summarization
| null |
Real-time event summarization is an essential task in natural language processing and information retrieval areas. Despite the progress of previous work, generating relevant, non-redundant, and timely event summaries remains challenging in practice. In this paper, we propose a Deep Reinforcement learning framework for real-time Event Summarization (DRES), which shows promising performance for resolving all three challenges (i.e., relevance, non-redundancy, timeliness) in a unified framework. Specifically, we (i) devise a hierarchical cross-attention network with intra- and inter-document attentions to integrate important semantic features within and between the query and input document for better text matching. In addition, relevance prediction is leveraged as an auxiliary task to strengthen the document modeling and help to extract relevant documents; (ii) propose a multi-topic dynamic memory network to capture the sequential patterns of different topics belonging to the event of interest and temporally memorize the input facts from the evolving document stream, avoiding extracting redundant information at each time step; (iii) consider both historical dependencies and future uncertainty of the document stream for generating relevant and timely summaries by exploiting the reinforcement learning technique. Experimental results on two real-world datasets have demonstrated the advantages of DRES model with significant improvement in generating relevant, non-redundant, and timely event summaries against the state-of-the-arts.
|
Min Yang, Chengming Li, Fei Sun, Zhou Zhao, Ying Shen, Chenglin Wu
| null | null | 2,020 |
aaai
|
A Causal Inference Method for Reducing Gender Bias in Word Embedding Relations
| null |
Word embedding has become essential for natural language processing as it boosts empirical performances of various tasks. However, recent research discovers that gender bias is incorporated in neural word embeddings, and downstream tasks that rely on these biased word vectors also produce gender-biased results. While some word-embedding gender-debiasing methods have been developed, these methods mainly focus on reducing gender bias associated with gender direction and fail to reduce the gender bias presented in word embedding relations. In this paper, we design a causal and simple approach for mitigating gender bias in word vector relation by utilizing the statistical dependency between gender-definition word embeddings and gender-biased word embeddings. Our method attains state-of-the-art results on gender-debiasing tasks, lexical- and sentence-level evaluation tasks, and downstream coreference resolution tasks.
|
Zekun Yang, Juan Feng
| null | null | 2,020 |
aaai
|
Unsupervised Neural Dialect Translation with Commonality and Diversity Modeling
| null |
As a special machine translation task, dialect translation has two main characteristics: 1) lack of parallel training corpus; and 2) possessing similar grammar between two sides of the translation. In this paper, we investigate how to exploit the commonality and diversity between dialects thus to build unsupervised translation models merely accessing to monolingual data. Specifically, we leverage pivot-private embedding, layer coordination, as well as parameter sharing to sufficiently model commonality and diversity among source and target, ranging from lexical, through syntactic, to semantic levels. In order to examine the effectiveness of the proposed models, we collect 20 million monolingual corpus for each of Mandarin and Cantonese, which are official language and the most widely used dialect in China. Experimental results reveal that our methods outperform rule-based simplified and traditional Chinese conversion and conventional unsupervised translation models over 12 BLEU scores.
|
Yu Wan, Baosong Yang, Derek F. Wong, Lidia S. Chao, Haihua Du, Ben C.H. Ao
| null | null | 2,020 |
aaai
|
Integrating Relation Constraints with Neural Relation Extractors
| null |
Recent years have seen rapid progress in identifying predefined relationship between entity pairs using neural networks (NNs). However, such models often make predictions for each entity pair individually, thus often fail to solve the inconsistency among different predictions, which can be characterized by discrete relation constraints. These constraints are often defined over combinations of entity-relation-entity triples, since there often lack of explicitly well-defined type and cardinality requirements for the relations. In this paper, we propose a unified framework to integrate relation constraints with NNs by introducing a new loss term, Constraint Loss. Particularly, we develop two efficient methods to capture how well the local predictions from multiple instance pairs satisfy the relation constraints. Experiments on both English and Chinese datasets show that our approach can help NNs learn from discrete relation constraints to reduce inconsistency among local predictions, and outperform popular neural relation extraction (NRE) models even enhanced with extra post-processing. Our source code and datasets will be released at https://github.com/PKUYeYuan/Constraint-Loss-AAAI-2020.
|
Yuan Ye, Yansong Feng, Bingfeng Luo, Yuxuan Lai, Dongyan Zhao
| null | null | 2,020 |
aaai
|
Neural Question Generation with Answer Pivot
| null |
Neural question generation (NQG) is the task of generating questions from the given context with deep neural networks. Previous answer-aware NQG methods suffer from the problem that the generated answers are focusing on entity and most of the questions are trivial to be answered. The answer-agnostic NQG methods reduce the bias towards named entities and increasing the model's degrees of freedom, but sometimes result in generating unanswerable questions which are not valuable for the subsequent machine reading comprehension system. In this paper, we treat the answers as the hidden pivot for question generation and combine the question generation and answer selection process in a joint model. We achieve the state-of-the-art result on the SQuAD dataset according to automatic metric and human evaluation.
|
Bingning Wang, Xiaochuan Wang, Ting Tao, Qi Zhang, Jingfang Xu
| null | null | 2,020 |
aaai
|
Neural Machine Translation with Byte-Level Subwords
| null |
Almost all existing machine translation models are built on top of character-based vocabularies: characters, subwords or words. Rare characters from noisy text or character-rich languages such as Japanese and Chinese however can unnecessarily take up vocabulary slots and limit its compactness. Representing text at the level of bytes and using the 256 byte set as vocabulary is a potential solution to this issue. High computational cost has however prevented it from being widely deployed or used in practice. In this paper, we investigate byte-level subwords, specifically byte-level BPE (BBPE), which is compacter than character vocabulary and has no out-of-vocabulary tokens, but is more efficient than using pure bytes only is. We claim that contextualizing BBPE embeddings is necessary, which can be implemented by a convolutional or recurrent layer. Our experiments show that BBPE has comparable performance to BPE while its size is only 1/8 of that for BPE. In the multilingual setting, BBPE maximizes vocabulary sharing across many languages and achieves better translation quality. Moreover, we show that BBPE enables transferring models between languages with non-overlapping character sets.
|
Changhan Wang, Kyunghyun Cho, Jiatao Gu
| null | null | 2,020 |
aaai
|
ReCO: A Large Scale Chinese Reading Comprehension Dataset on Opinion
| null |
This paper presents the ReCO, a human-curated Chinese Reading Comprehension dataset on Opinion. The questions in ReCO are opinion based queries issued to commercial search engine. The passages are provided by the crowdworkers who extract the support snippet from the retrieved documents. Finally, an abstractive yes/no/uncertain answer was given by the crowdworkers. The release of ReCO consists of 300k questions that to our knowledge is the largest in Chinese reading comprehension. A prominent characteristic of ReCO is that in addition to the original context paragraph, we also provided the support evidence that could be directly used to answer the question. Quality analysis demonstrates the challenge of ReCO that it requires various types of reasoning skills such as causal inference, logical reasoning, etc. Current QA models that perform very well on many question answering problems, such as BERT (Devlin et al. 2018), only achieves 77% accuracy on this dataset, a large margin behind humans nearly 92% performance, indicating ReCO present a good challenge for machine reading comprehension. The codes, dataset and leaderboard will be freely available at https://github.com/benywon/ReCO.
|
Bingning Wang, Ting Yao, Qi Zhang, Jingfang Xu, Xiaochuan Wang
| null | null | 2,020 |
aaai
|
Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation
| null |
End-to-end speech translation, a hot topic in recent years, aims to translate a segment of audio into a specific language with an end-to-end model. Conventional approaches employ multi-task learning and pre-training methods for this task, but they suffer from the huge gap between pre-training and fine-tuning. To address these issues, we propose a Tandem Connectionist Encoding Network (TCEN) which bridges the gap by reusing all subnets in fine-tuning, keeping the roles of subnets consistent, and pre-training the attention module. Furthermore, we propose two simple but effective methods to guarantee the speech encoder outputs and the MT encoder inputs are consistent in terms of semantic representation and sequence length. Experimental results show that our model leads to significant improvements in En-De and En-Fr translation irrespective of the backbones.
|
Chengyi Wang, Yu Wu, Shujie Liu, Zhenglu Yang, Ming Zhou
| null | null | 2,020 |
aaai
|
Probing Brain Activation Patterns by Dissociating Semantics and Syntax in Sentences
| null |
The relation between semantics and syntax and where they are represented in the neural level has been extensively debated in neurosciences. Existing methods use manually designed stimuli to distinguish semantic and syntactic information in a sentence that may not generalize beyond the experimental setting. This paper proposes an alternative framework to study the brain representation of semantics and syntax. Specifically, we embed the highly-controlled stimuli as objective functions in learning sentence representations and propose a disentangled feature representation model (DFRM) to extract semantic and syntactic information in sentences. This model can generate one semantic and one syntactic vector for each sentence. Then we associate these disentangled feature vectors with brain imaging data to explore brain representation of semantics and syntax. Results have shown that semantic feature is represented more robustly than syntactic feature across the brain including the default-mode, frontoparietal, visual networks, etc.. The brain representations of semantics and syntax are largely overlapped, but there are brain regions only sensitive to one of them. For instance, several frontal and temporal regions are specific to the semantic feature; parts of the right superior frontal and right inferior parietal gyrus are specific to the syntactic feature.
|
Shaonan Wang, Jiajun Zhang, Nan Lin, Chengqing Zong
| null | null | 2,020 |
aaai
|
Sentiment Classification in Customer Service Dialogue with Topic-Aware Multi-Task Learning
| null |
Sentiment analysis in dialogues plays a critical role in dialogue data analysis. However, previous studies on sentiment classification in dialogues largely ignore topic information, which is important for capturing overall information in some types of dialogues. In this study, we focus on the sentiment classification task in an important type of dialogue, namely customer service dialogue, and propose a novel approach which captures overall information to enhance the classification performance. Specifically, we propose a topic-aware multi-task learning (TML) approach which learns topic-enriched utterance representations in customer service dialogue by capturing various kinds of topic information. In the experiment, we propose a large-scale and high-quality annotated corpus for the sentiment classification task in customer service dialogue and empirical studies on the proposed corpus show that our approach significantly outperforms several strong baselines.
|
Jiancheng Wang, Jingjing Wang, Changlong Sun, Shoushan Li, Xiaozhong Liu, Luo Si, Min Zhang, Guodong Zhou
| null | null | 2,020 |
aaai
|
Improving Knowledge-Aware Dialogue Generation via Knowledge Base Question Answering
| null |
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.
|
Jian Wang, Junhao Liu, Wei Bi, Xiaojiang Liu, Kejing He, Ruifeng Xu, Min Yang
| null | null | 2,020 |
aaai
|
Storytelling from an Image Stream Using Scene Graphs
| null |
Visual storytelling aims at generating a story from an image stream. Most existing methods tend to represent images directly with the extracted high-level features, which is not intuitive and difficult to interpret. We argue that translating each image into a graph-based semantic representation, i.e., scene graph, which explicitly encodes the objects and relationships detected within image, would benefit representing and describing images. To this end, we propose a novel graph-based architecture for visual storytelling by modeling the two-level relationships on scene graphs. In particular, on the within-image level, we employ a Graph Convolution Network (GCN) to enrich local fine-grained region representations of objects on scene graphs. To further model the interaction among images, on the cross-images level, a Temporal Convolution Network (TCN) is utilized to refine the region representations along the temporal dimension. Then the relation-aware representations are fed into the Gated Recurrent Unit (GRU) with attention mechanism for story generation. Experiments are conducted on the public visual storytelling dataset. Automatic and human evaluation results indicate that our method achieves state-of-the-art.
|
Ruize Wang, Zhongyu Wei, Piji Li, Qi Zhang, Xuanjing Huang
| null | null | 2,020 |
aaai
|
Masking Orchestration: Multi-Task Pretraining for Multi-Role Dialogue Representation Learning
| null |
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive. In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks where the training objectives are given naturally according to the nature of the utterance and the structure of the multi-role conversation. Meanwhile, in order to locate essential information for dialogue summarization/extraction, the pretraining process enables external knowledge integration. The proposed fine-tuned pretraining mechanism is comprehensively evaluated via three different dialogue datasets along with a number of downstream dialogue-mining tasks. Result shows that the proposed pretraining mechanism significantly contributes to all the downstream tasks without discrimination to different encoders.
|
Tianyi Wang, Yating Zhang, Xiaozhong Liu, Changlong Sun, Qiong Zhang
| null | null | 2,020 |
aaai
|
Multi-Task Self-Supervised Learning for Disfluency Detection
| null |
Most existing approaches to disfluency detection heavily rely on human-annotated data, which is expensive to obtain in practice. To tackle the training data bottleneck, we investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled news data, and propose two self-supervised pre-training tasks: (i) tagging task to detect the added noisy words. (ii) sentence classification to distinguish original sentences from grammatically-incorrect sentences. We then combine these two tasks to jointly train a network. The pre-trained network is then fine-tuned using human-annotated disfluency detection training data. Experimental results on the commonly used English Switchboard test set show that our approach can achieve competitive performance compared to the previous systems (trained using the full dataset) by using less than 1% (1000 sentences) of the training data. Our method trained on the full dataset significantly outperforms previous methods, reducing the error by 21% on English Switchboard.
|
Shaolei Wang, Wangxiang Che, Qi Liu, Pengda Qin, Ting Liu, William Yang Wang
| null | null | 2,020 |
aaai
|
Go From the General to the Particular: Multi-Domain Translation with Domain Transformation Networks
| null |
The key challenge of multi-domain translation lies in simultaneously encoding both the general knowledge shared across domains and the particular knowledge distinctive to each domain in a unified model. Previous work shows that the standard neural machine translation (NMT) model, trained on mixed-domain data, generally captures the general knowledge, but misses the domain-specific knowledge. In response to this problem, we augment NMT model with additional domain transformation networks to transform the general representations to domain-specific representations, which are subsequently fed to the NMT decoder. To guarantee the knowledge transformation, we also propose two complementary supervision signals by leveraging the power of knowledge distillation and adversarial learning. Experimental results on several language pairs, covering both balanced and unbalanced multi-domain translation, demonstrate the effectiveness and universality of the proposed approach. Encouragingly, the proposed unified model achieves comparable results with the fine-tuning approach that requires multiple models to preserve the particular knowledge. Further analyses reveal that the domain transformation networks successfully capture the domain-specific knowledge as expected.1
|
Yong Wang, Longyue Wang, Shuming Shi, Victor O.K. Li, Zhaopeng Tu
| null | null | 2,020 |
aaai
|
Multi-Level Head-Wise Match and Aggregation in Transformer for Textual Sequence Matching
| null |
Transformer has been successfully applied to many natural language processing tasks. However, for textual sequence matching, simple matching between the representation of a pair of sequences might bring in unnecessary noise. In this paper, we propose a new approach to sequence pair matching with Transformer, by learning head-wise matching representations on multiple levels. Experiments show that our proposed approach can achieve new state-of-the-art performance on multiple tasks that rely only on pre-computed sequence-vector-representation, such as SNLI, MNLI-match, MNLI-mismatch, QQP, and SQuAD-binary.
|
Shuohang Wang, Yunshi Lan, Yi Tay, Jing Jiang, Jingjing Liu
| null | null | 2,020 |
aaai
|
Importance-Aware Learning for Neural Headline Editing
| null |
Many social media news writers are not professionally trained. Therefore, social media platforms have to hire professional editors to adjust amateur headlines to attract more readers. We propose to automate this headline editing process through neural network models to provide more immediate writing support for these social media news writers. To train such a neural headline editing model, we collected a dataset which contains articles with original headlines and professionally edited headlines. However, it is expensive to collect a large number of professionally edited headlines. To solve this low-resource problem, we design an encoder-decoder model which leverages large scale pre-trained language models. We further improve the pre-trained model's quality by introducing a headline generation task as an intermediate task before the headline editing task. Also, we propose Self Importance-Aware (SIA) loss to address the different levels of editing in the dataset by down-weighting the importance of easily classified tokens and sentences. With the help of Pre-training, Adaptation, and SIA, the model learns to generate headlines in the professional editor's style. Experimental results show that our method significantly improves the quality of headline editing comparing against previous methods.
|
Qingyang Wu, Lei Li, Hao Zhou, Ying Zeng, Zhou Yu
| null | null | 2,020 |
aaai
|
Multi-Label Patent Categorization with Non-Local Attention-Based Graph Convolutional Network
| null |
Patent categorization, which is to assign multiple International Patent Classification (IPC) codes to a patent document, relies heavily on expert efforts, as it requires substantial domain knowledge. When formulated as a multi-label text classification (MTC) problem, it draws two challenges to existing models: one is to learn effective document representations from text content; the other is to model the cross-section behavior of label set. In this work, we propose a label attention model based on graph convolutional network. It jointly learns the document-word associations and word-word co-occurrences to generate rich semantic embeddings of documents. It employs a non-local attention mechanism to learn label representations in the same space of document representations for multi-label classification. On a large CIRCA patent database, we evaluate the performance of our model and as many as seven competitive baselines. We find that our model outperforms all those prior state of the art by a large margin and achieves high performance on P@k and nDCG@k.
|
Pingjie Tang, Meng Jiang, Bryan (Ning) Xia, Jed W. Pitera, Jeffrey Welser, Nitesh V. Chawla
| null | null | 2,020 |
aaai
|
Generating Diverse Translation by Manipulating Multi-Head Attention
| null |
Transformer model (Vaswani et al. 2017) has been widely used in machine translation tasks and obtained state-of-the-art results. In this paper, we report an interesting phenomenon in its encoder-decoder multi-head attention: different attention heads of the final decoder layer align to different word translation candidates. We empirically verify this discovery and propose a method to generate diverse translations by manipulating heads. Furthermore, we make use of these diverse translations with the back-translation technique for better data augmentation. Experiment results show that our method generates diverse translations without a severe drop in translation quality. Experiments also show that back-translation with these diverse translations could bring a significant improvement in performance on translation tasks. An auxiliary experiment of conversation response generation task proves the effect of diversity as well.
|
Zewei Sun, Shujian Huang, Hao-Ran Wei, Xin-yu Dai, Jiajun Chen
| null | null | 2,020 |
aaai
|
TextNAS: A Neural Architecture Search Space Tailored for Text Representation
| null |
Learning text representation is crucial for text classification and other language related tasks. There are a diverse set of text representation networks in the literature, and how to find the optimal one is a non-trivial problem. Recently, the emerging Neural Architecture Search (NAS) techniques have demonstrated good potential to solve the problem. Nevertheless, most of the existing works of NAS focus on the search algorithms and pay little attention to the search space. In this paper, we argue that the search space is also an important human prior to the success of NAS in different applications. Thus, we propose a novel search space tailored for text representation. Through automatic search, the discovered network architecture outperforms state-of-the-art models on various public datasets on text classification and natural language inference tasks. Furthermore, some of the design principles found in the automatic network agree well with human intuition.
|
Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao Yang, Lidong Zhou
| null | null | 2,020 |
aaai
|
GRET: Global Representation Enhanced Transformer
| null |
Transformer, based on the encoder-decoder framework, has achieved state-of-the-art performance on several natural language generation tasks. The encoder maps the words in the input sentence into a sequence of hidden states, which are then fed into the decoder to generate the output sentence. These hidden states usually correspond to the input words and focus on capturing local information. However, the global (sentence level) information is seldom explored, leaving room for the improvement of generation quality. In this paper, we propose a novel global representation enhanced Transformer (GRET) to explicitly model global representation in the Transformer network. Specifically, in the proposed model, an external state is generated for the global representation from the encoder. The global representation is then fused into the decoder during the decoding process to improve generation quality. We conduct experiments in two text generation tasks: machine translation and text summarization. Experimental results on four WMT machine translation tasks and LCSTS text summarization task demonstrate the effectiveness of the proposed approach on natural language generation1.
|
Rongxiang Weng, Haoran Wei, Shujian Huang, Heng Yu, Lidong Bing, Weihua Luo, Jiajun Chen
| null | null | 2,020 |
aaai
|
Distributed Representations for Arithmetic Word Problems
| null |
We consider the task of learning distributed representations for arithmetic word problems. We outline the characteristics of the domain of arithmetic word problems that make generic text embedding methods inadequate, necessitating a specialized representation learning method to facilitate the task of retrieval across a wide range of use cases within online learning platforms. Our contribution is two-fold; first, we propose several 'operators' that distil knowledge of the domain of arithmetic word problems and schemas into word problem transformations. Second, we propose a novel neural architecture that combines LSTMs with graph convolutional networks to leverage word problems and their operator-transformed versions to learn distributed representations for word problems. While our target is to ensure that the distributed representations are schema-aligned, we do not make use of schema labels in the learning process, thus yielding an unsupervised representation learning method. Through an evaluation on retrieval over a publicly available corpus of word problems, we illustrate that our framework is able to consistently improve upon contemporary generic text embeddings in terms of schema-alignment.
|
Sowmya S Sundaram, Deepak P, Savitha Sam Abraham
| null | null | 2,020 |
aaai
|
Learning Multi-Level Dependencies for Robust Word Recognition
| null |
Robust language processing systems are becoming increasingly important given the recent awareness of dangerous situations where brittle machine learning models can be easily broken with the presence of noises. In this paper, we introduce a robust word recognition framework that captures multi-level sequential dependencies in noised sentences. The proposed framework employs a sequence-to-sequence model over characters of each word, whose output is given to a word-level bi-directional recurrent neural network. We conduct extensive experiments to verify the effectiveness of the framework. The results show that the proposed framework outperforms state-of-the-art methods by a large margin and they also suggest that character-level dependencies can play an important role in word recognition. The code of the proposed framework and the major experiments are publicly available1.
|
Zhiwei Wang, Hui Liu, Jiliang Tang, Songfan Yang, Gale Yan Huang, Zitao Liu
| null | null | 2,020 |
aaai
|
Learning Relationships between Text, Audio, and Video via Deep Canonical Correlation for Multimodal Language Analysis
| null |
Multimodal language analysis often considers relationships between features based on text and those based on acoustical and visual properties. Text features typically outperform non-text features in sentiment analysis or emotion recognition tasks in part because the text features are derived from advanced language models or word embeddings trained on massive data sources while audio and video features are human-engineered and comparatively underdeveloped. Given that the text, audio, and video are describing the same utterance in different ways, we hypothesize that the multimodal sentiment analysis and emotion recognition can be improved by learning (hidden) correlations between features extracted from the outer product of text and audio (we call this text-based audio) and analogous text-based video. This paper proposes a novel model, the Interaction Canonical Correlation Network (ICCN), to learn such multimodal embeddings. ICCN learns correlations between all three modes via deep canonical correlation analysis (DCCA) and the proposed embeddings are then tested on several benchmark datasets and against other state-of-the-art multimodal embedding algorithms. Empirical results and ablation studies confirm the effectiveness of ICCN in capturing useful information from all three views.
|
Zhongkai Sun, Prathusha Sarma, William Sethares, Yingyu Liang
| null | null | 2,020 |
aaai
|
ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding
| null |
Recently pre-trained models have achieved state-of-the-art results in various language understanding tasks. Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring information, there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entities, semantic closeness and discourse relations. In order to extract the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0 which incrementally builds pre-training tasks and then learn pre-trained models on these constructed tasks via continual multi-task learning. Based on this framework, we construct several tasks and train the ERNIE 2.0 model to capture lexical, syntactic and semantic aspects of information in the training data. Experimental results demonstrate that ERNIE 2.0 model outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several similar tasks in Chinese. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.
|
Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang
| null | null | 2,020 |
aaai
|
Enhanced Meta-Learning for Cross-Lingual Named Entity Recognition with Minimal Resources
| null |
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.
|
Qianhui Wu, Zijia Lin, Guoxin Wang, Hui Chen, Börje F. Karlsson, Biqing Huang, Chin-Yew Lin
| null | null | 2,020 |
aaai
|
Image Enhanced Event Detection in News Articles
| null |
Event detection is a crucial and challenging sub-task of event extraction, which suffers from a severe ambiguity issue of trigger words. Existing works mainly focus on using textual context information, while there naturally exist many images accompanied by news articles that are yet to be explored. We believe that images not only reflect the core events of the text, but are also helpful for the disambiguation of trigger words. In this paper, we first contribute an image dataset supplement to ED benchmarks (i.e., ACE2005) for training and evaluation. We then propose a novel Dual Recurrent Multimodal Model, DRMM, to conduct deep interactions between images and sentences for modality features aggregation. DRMM utilizes pre-trained BERT and ResNet to encode sentences and images, and employs an alternating dual attention to select informative features for mutual enhancements. Our superior performance compared to six state-of-art baselines as well as further ablation studies demonstrate the significance of image modality and effectiveness of the proposed architecture. The code and image dataset are avaliable at https://github.com/shuaiwa16/image-enhanced-event-extraction.
|
Meihan Tong, Shuai Wang, Yixin Cao, Bin Xu, Juanzi Li, Lei Hou, Tat-Seng Chua
| null | null | 2,020 |
aaai
|
Acquiring Knowledge from Pre-Trained Model to Neural Machine Translation
| null |
Pre-training and fine-tuning have achieved great success in natural language process field. The standard paradigm of exploiting them includes two steps: first, pre-training a model, e.g. BERT, with a large scale unlabeled monolingual data. Then, fine-tuning the pre-trained model with labeled data from downstream tasks. However, in neural machine translation (NMT), we address the problem that the training objective of the bilingual task is far different from the monolingual pre-trained model. This gap leads that only using fine-tuning in NMT can not fully utilize prior language knowledge. In this paper, we propose an Apt framework for acquiring knowledge from pre-trained model to NMT. The proposed approach includes two modules: 1). a dynamic fusion mechanism to fuse task-specific features adapted from general knowledge into NMT network, 2). a knowledge distillation paradigm to learn language knowledge continuously during the NMT training process. The proposed approach could integrate suitable knowledge from pre-trained models to improve the NMT. Experimental results on WMT English to German, German to English and Chinese to English machine translation tasks show that our model outperforms strong baselines and the fine-tuning counterparts.
|
Rongxiang Weng, Heng Yu, Shujian Huang, Shanbo Cheng, Weihua Luo
| null | null | 2,020 |
aaai
|
Capturing Sentence Relations for Answer Sentence Selection with Multi-Perspective Graph Encoding
| null |
This paper focuses on the answer sentence selection task. Unlike previous work, which only models the relation between the question and each candidate sentence, we propose Multi-Perspective Graph Encoder (MPGE) to take the relations among the candidate sentences into account and capture the relations from multiple perspectives. By utilizing MPGE as a module, we construct two answer sentence selection models which are based on traditional representation and pre-trained representation, respectively. We conduct extensive experiments on two datasets, WikiQA and SQuAD. The results show that the proposed MPGE is effective for both types of representation. Moreover, the overall performance of our proposed model surpasses the state-of-the-art on both datasets. Additionally, we further validate the robustness of our method by the adversarial examples of AddSent and AddOneSent.
|
Zhixing Tian, Yuanzhe Zhang, Xinwei Feng, Wenbin Jiang, Yajuan Lyu, Kang Liu, Jun Zhao
| null | null | 2,020 |
aaai
|
Boundary Enhanced Neural Span Classification for Nested Named Entity Recognition
| null |
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is usually difficult to detect entities with nested structures. The span-based method that can easily detect nested entities in different subsequences is naturally suitable for the nested NER problem. However, previous span-based methods have two main issues. First, classifying all subsequences is computationally expensive and very inefficient at inference. Second, the span-based methods mainly focus on learning span representations but lack of explicit boundary supervision. To tackle the above two issues, we propose a boundary enhanced neural span classification model. In addition to classifying the span, we propose incorporating an additional boundary detection task to predict those words that are boundaries of entities. The two tasks are jointly trained under a multitask learning framework, which enhances the span representation with additional boundary supervision. In addition, the boundary detection model has the ability to generate high-quality candidate spans, which greatly reduces the time complexity during inference. Experiments show that our approach outperforms all existing methods and achieves 85.3, 83.9, and 78.3 scores in terms of F1 on the ACE2004, ACE2005, and GENIA datasets, respectively.
|
Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang, Fei Huang
| null | null | 2,020 |
aaai
|
Capturing Greater Context for Question Generation
| null |
Automatic question generation can benefit many applications ranging from dialogue systems to reading comprehension. While questions are often asked with respect to long documents, there are many challenges with modeling such long documents. Many existing techniques generate questions by effectively looking at one sentence at a time, leading to questions that are easy and not reflective of the human process of question generation. Our goal is to incorporate interactions across multiple sentences to generate realistic questions for long documents. In order to link a broad document context to the target answer, we represent the relevant context via a multi-stage attention mechanism, which forms the foundation of a sequence to sequence model. We outperform state-of-the-art methods on question generation on three question-answering datasets - SQuAD, MS MARCO and NewsQA. 1
|
Luu Anh Tuan, Darsh Shah, Regina Barzilay
| null | null | 2,020 |
aaai
|
Sentence Generation for Entity Description with Content-Plan Attention
| null |
We study neural data-to-text generation. Specifically, we consider a target entity that is associated with a set of attributes. We aim to generate a sentence to describe the target entity. Previous studies use encoder-decoder frameworks where the encoder treats the input as a linear sequence and uses LSTM to encode the sequence. However, linearizing a set of attributes may not yield the proper order of the attributes, and hence leads the encoder to produce an improper context to generate a description. To handle disordered input, recent studies propose two-stage neural models that use pointer networks to generate a content-plan (i.e., content-planner) and use the content-plan as input for an encoder-decoder model (i.e., text generator). However, in two-stage models, the content-planner may yield an incomplete content-plan, due to missing one or more salient attributes in the generated content-plan. This will in turn cause the text generator to generate an incomplete description. To address these problems, we propose a novel attention model that exploits content-plan to highlight salient attributes in a proper order. The challenge of integrating a content-plan in the attention model of an encoder-decoder framework is to align the content-plan and the generated description. We handle this problem by devising a coverage mechanism to track the extent to which the content-plan is exposed in the previous decoding time-step, and hence it helps our proposed attention model select the attributes to be mentioned in the description in a proper order. Experimental results show that our model outperforms state-of-the-art baselines by up to 3% and 5% in terms of BLEU score on two real-world datasets, respectively.
|
Bayu Trisedya, Jianzhong Qi, Rui Zhang
| null | null | 2,020 |
aaai
|
Select, Answer and Explain: Interpretable Multi-Hop Reading Comprehension over Multiple Documents
| null |
Interpretable multi-hop reading comprehension (RC) over multiple documents is a challenging problem because it demands reasoning over multiple information sources and explaining the answer prediction by providing supporting evidences. In this paper, we propose an effective and interpretable Select, Answer and Explain (SAE) system to solve the multi-document RC problem. Our system first filters out answer-unrelated documents and thus reduce the amount of distraction information. This is achieved by a document classifier trained with a novel pairwise learning-to-rank loss. The selected answer-related documents are then input to a model to jointly predict the answer and supporting sentences. The model is optimized with a multi-task learning objective on both token level for answer prediction and sentence level for supporting sentences prediction, together with an attention-based interaction between these two tasks. Evaluated on HotpotQA, a challenging multi-hop RC data set, the proposed SAE system achieves top competitive performance in distractor setting compared to other existing systems on the leaderboard.
|
Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang, Xiaodong He, Bowen Zhou
| null | null | 2,020 |
aaai
|
Fine-Grained Argument Unit Recognition and Classification
| null |
Prior work has commonly defined argument retrieval from heterogeneous document collections as a sentence-level classification task. Consequently, argument retrieval suffers both from low recall and from sentence segmentation errors making it difficult for humans and machines to consume the arguments. In this work, we argue that the task should be performed on a more fine-grained level of sequence labeling. For this, we define the task as Argument Unit Recognition and Classification (AURC). We present a dataset of arguments from heterogeneous sources annotated as spans of tokens within a sentence, as well as with a corresponding stance. We show that and how such difficult argument annotations can be effectively collected through crowdsourcing with high inter-annotator agreement. The new benchmark, AURC-8, contains up to 15% more arguments per topic as compared to annotations on the sentence level. We identify a number of methods targeted at AURC sequence labeling, achieving close to human performance on known domains. Further analysis also reveals that, contrary to previous approaches, our methods are more robust against sentence segmentation errors. We publicly release our code and the AURC-8 dataset.1
|
Dietrich Trautmann, Johannes Daxenberger, Christian Stab, Hinrich Schütze, Iryna Gurevych
| null | null | 2,020 |
aaai
|
A Comparison of Architectures and Pretraining Methods for Contextualized Multilingual Word Embeddings
| null |
The lack of annotated data in many languages is a well-known challenge within the field of multilingual natural language processing (NLP). Therefore, many recent studies focus on zero-shot transfer learning and joint training across languages to overcome data scarcity for low-resource languages. In this work we (i) perform a comprehensive comparison of state-of-the-art multilingual word and sentence encoders on the tasks of named entity recognition (NER) and part of speech (POS) tagging; and (ii) propose a new method for creating multilingual contextualized word embeddings, compare it to multiple baselines and show that it performs at or above state-of-the-art level in zero-shot transfer settings. Finally, we show that our method allows for better knowledge sharing across languages in a joint training setting.
|
Niels van der Heijden, Samira Abnar, Ekaterina Shutova
| null | null | 2,020 |
aaai
|
Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis
| null |
Aspect-based sentiment analysis (ABSA) aims to detect the targets (which are composed by continuous words), aspects and sentiment polarities in text. Published datasets from SemEval-2015 and SemEval-2016 reveal that a sentiment polarity depends on both the target and the aspect. However, most of the existing methods consider predicting sentiment polarities from either targets or aspects but not from both, thus they easily make wrong predictions on sentiment polarities. In particular, where the target is implicit, i.e., it does not appear in the given text, the methods predicting sentiment polarities from targets do not work. To tackle these limitations in ABSA, this paper proposes a novel method for target-aspect-sentiment joint detection. It relies on a pre-trained language model and can capture the dependence on both targets and aspects for sentiment prediction. Experimental results on the SemEval-2015 and SemEval-2016 restaurant datasets show that the proposed method achieves a high performance in detecting target-aspect-sentiment triples even for the implicit target cases; moreover, it even outperforms the state-of-the-art methods for those subtasks of target-aspect-sentiment detection that they are competent to.
|
Hai Wan, Yufei Yang, Jianfeng Du, Yanan Liu, Kunxun Qi, Jeff Z. Pan
| null | null | 2,020 |
aaai
|
Multi-View Consistency for Relation Extraction via Mutual Information and Structure Prediction
| null |
Relation Extraction (RE) is one of the fundamental tasks in Information Extraction. The goal of this task is to find the semantic relations between entity mentions in text. It has been shown in many previous work that the structure of the sentences (i.e., dependency trees) can provide important information/features for the RE models. However, the common limitation of the previous work on RE is the reliance on some external parsers to obtain the syntactic trees for the sentence structures. On the one hand, it is not guaranteed that the independent external parsers can offer the optimal sentence structures for RE and the customized structures for RE might help to further improve the performance. On the other hand, the quality of the external parsers might suffer when applied to different domains, thus also affecting the performance of the RE models on such domains. In order to overcome this issue, we introduce a novel method for RE that simultaneously induces the structures and predicts the relations for the input sentences, thus avoiding the external parsers and potentially leading to better sentence structures for RE. Our general strategy to learn the RE-specific structures is to apply two different methods to infer the structures for the input sentences (i.e., two views). We then introduce several mechanisms to encourage the structure and semantic consistencies between these two views so the effective structure and semantic representations for RE can emerge. We perform extensive experiments on the ACE 2005 and SemEval 2010 datasets to demonstrate the advantages of the proposed method, leading to the state-of-the-art performance on such datasets.
|
Amir Veyseh, Franck Dernoncourt, My Thai, Dejing Dou, Thien Nguyen
| null | null | 2,020 |
aaai
|
An Annotated Corpus of Reference Resolution for Interpreting Common Grounding
| null |
Common grounding is the process of creating, repairing and updating mutual understandings, which is a fundamental aspect of natural language conversation. However, interpreting the process of common grounding is a challenging task, especially under continuous and partially-observable context where complex ambiguity, uncertainty, partial understandings and misunderstandings are introduced. Interpretation becomes even more challenging when we deal with dialogue systems which still have limited capability of natural language understanding and generation. To address this problem, we consider reference resolution as the central subtask of common grounding and propose a new resource to study its intermediate process. Based on a simple and general annotation schema, we collected a total of 40,172 referring expressions in 5,191 dialogues curated from an existing corpus, along with multiple judgements of referent interpretations. We show that our annotation is highly reliable, captures the complexity of common grounding through a natural degree of reasonable disagreements, and allows for more detailed and quantitative analyses of common grounding strategies. Finally, we demonstrate the advantages of our annotation for interpreting, analyzing and improving common grounding in baseline dialogue systems.
|
Takuma Udagawa, Akiko Aizawa
| null | null | 2,020 |
aaai
|
On the Generation of Medical Question-Answer Pairs
| null |
Question answering (QA) has achieved promising progress recently. However, answering a question in real-world scenarios like the medical domain is still challenging, due to the requirement of external knowledge and the insufficient quantity of high-quality training data. In the light of these challenges, we study the task of generating medical QA pairs in this paper. With the insight that each medical question can be considered as a sample from the latent distribution of questions given answers, we propose an automated medical QA pair generation framework, consisting of an unsupervised key phrase detector that explores unstructured material for validity, and a generator that involves a multi-pass decoder to integrate structural knowledge for diversity. A series of experiments have been conducted on a real-world dataset collected from the National Medical Licensing Examination of China. Both automatic evaluation and human annotation demonstrate the effectiveness of the proposed method. Further investigation shows that, by incorporating the generated QA pairs for training, significant improvement in terms of accuracy can be achieved for the examination QA system. 1
|
Sheng Shen, Yaliang Li, Nan Du, Xian Wu, Yusheng Xie, Shen Ge, Tao Yang, Kai Wang, Xingzheng Liang, Wei Fan
| null | null | 2,020 |
aaai
|
IntroVNMT: An Introspective Model for Variational Neural Machine Translation
| null |
We propose a novel introspective model for variational neural machine translation (IntroVNMT) in this paper, inspired by the recent successful application of introspective variational autoencoder (IntroVAE) in high quality image synthesis. Different from the vanilla variational NMT model, IntroVNMT is capable of improving itself introspectively by evaluating the quality of the generated target sentences according to the high-level latent variables of the real and generated target sentences. As a consequence of introspective training, the proposed model is able to discriminate between the generated and real sentences of the target language via the latent variables generated by the encoder of the model. In this way, IntroVNMT is able to generate more realistic target sentences in practice. In the meantime, IntroVNMT inherits the advantages of the variational autoencoders (VAEs), and the model training process is more stable than the generative adversarial network (GAN) based models. Experimental results on different translation tasks demonstrate that the proposed model can achieve significant improvements over the vanilla variational NMT model.
|
Xin Sheng, Linli Xu, Junliang Guo, Jingchang Liu, Ruoyu Zhao, Yinlong Xu
| null | null | 2,020 |
aaai
|
Graph-Based Transformer with Cross-Candidate Verification for Semantic Parsing
| null |
In this paper, we present a graph-based Transformer for semantic parsing. We separate the semantic parsing task into two steps: 1) Use a sequence-to-sequence model to generate the logical form candidates. 2) Design a graph-based Transformer to rerank the candidates. To handle the structure of logical forms, we incorporate graph information to Transformer, and design a cross-candidate verification mechanism to consider all the candidates in the ranking process. Furthermore, we integrate BERT into our model and jointly train the graph-based Transformer and BERT. We conduct experiments on 3 semantic parsing benchmarks, ATIS, JOBS and Task Oriented semantic Parsing dataset (TOP). Experiments show that our graph-based reranking model achieves results comparable to state-of-the-art models on the ATIS and JOBS datasets. And on the TOP dataset, our model achieves a new state-of-the-art result.
|
Bo Shao, Yeyun Gong, Weizhen Qi, Guihong Cao, Jianshu Ji, Xiaola Lin
| null | null | 2,020 |
aaai
|
Low Resource Sequence Tagging with Weak Labels
| null |
Current methods for sequence tagging depend on large quantities of domain-specific training data, limiting their use in new, user-defined tasks with few or no annotations. While crowdsourcing can be a cheap source of labels, it often introduces errors that degrade the performance of models trained on such crowdsourced data. Another solution is to use transfer learning to tackle low resource sequence labelling, but current approaches rely heavily on similar high resource datasets in different languages. In this paper, we propose a domain adaptation method using Bayesian sequence combination to exploit pre-trained models and unreliable crowdsourced data that does not require high resource data in a different language. Our method boosts performance by learning the relationship between each labeller and the target task and trains a sequence labeller on the target domain with little or no gold-standard data. We apply our approach to labelling diagnostic classes in medical and educational case studies, showing that the model achieves strong performance though zero-shot transfer learning and is more effective than alternative ensemble methods. Using NER and information extraction tasks, we show how our approach can train a model directly from crowdsourced labels, outperforming pipeline approaches that first aggregate the crowdsourced data, then train on the aggregated labels.
|
Edwin Simpson, Jonas Pfeiffer, Iryna Gurevych
| null | null | 2,020 |
aaai
|
A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency
| null |
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions). The extensive experiments on three benchmark datasets demonstrate the effectiveness of our approach.1
|
Amir Veyseh, Franck Dernoncourt, Dejing Dou, Thien Nguyen
| null | null | 2,020 |
aaai
|
Assessing the Benchmarking Capacity of Machine Reading Comprehension Datasets
| null |
Existing analysis work in machine reading comprehension (MRC) is largely concerned with evaluating the capabilities of systems. However, the capabilities of datasets are not assessed for benchmarking language understanding precisely. We propose a semi-automated, ablation-based methodology for this challenge; By checking whether questions can be solved even after removing features associated with a skill requisite for language understanding, we evaluate to what degree the questions do not require the skill. Experiments on 10 datasets (e.g., CoQA, SQuAD v2.0, and RACE) with a strong baseline model show that, for example, the relative scores of the baseline model provided with content words only and with shuffled sentence words in the context are on average 89.2% and 78.5% of the original scores, respectively. These results suggest that most of the questions already answered correctly by the model do not necessarily require grammatical and complex reasoning. For precise benchmarking, MRC datasets will need to take extra care in their design to ensure that questions can correctly evaluate the intended skills.
|
Saku Sugawara, Pontus Stenetorp, Kentaro Inui, Akiko Aizawa
| null | null | 2,020 |
aaai
|
Understanding Medical Conversations with Scattered Keyword Attention and Weak Supervision from Responses
| null |
In this work, we consider the medical slot filling problem, i.e., the problem of converting medical queries into structured representations which is a challenging task. We analyze the effectiveness of two points: scattered keywords in user utterances and weak supervision with responses. We approach the medical slot filling as a multi-label classification problem with label-embedding attentive model to pay more attention to scattered medical keywords and learn the classification models by weak-supervision from responses. To evaluate the approaches, we annotate a medical slot filling data and collect a large scale unlabeled data. The experiments demonstrate that these two points are promising to improve the task.
|
Xiaoming Shi, Haifeng Hu, Wanxiang Che, Zhongqian Sun, Ting Liu, Junzhou Huang
| null | null | 2,020 |
aaai
|
Latent-Variable Non-Autoregressive Neural Machine Translation with Deterministic Inference Using a Delta Posterior
| null |
Although neural machine translation models reached high translation quality, the autoregressive nature makes inference difficult to parallelize and leads to high translation latency. Inspired by recent refinement-based approaches, we propose LaNMT, a latent-variable non-autoregressive model with continuous latent variables and deterministic inference procedure. In contrast to existing approaches, we use a deterministic inference algorithm to find the target sequence that maximizes the lowerbound to the log-probability. During inference, the length of translation automatically adapts itself. Our experiments show that the lowerbound can be greatly increased by running the inference algorithm, resulting in significantly improved translation quality. Our proposed model closes the performance gap between non-autoregressive and autoregressive approaches on ASPEC Ja-En dataset with 8.6x faster decoding. On WMT'14 En-De dataset, our model narrows the gap with autoregressive baseline to 2.0 BLEU points with 12.5x speedup. By decoding multiple initial latent variables in parallel and rescore using a teacher model, the proposed model further brings the gap down to 1.0 BLEU point on WMT'14 En-De task with 6.8x speedup.
|
Raphael Shu, Jason Lee, Hideki Nakayama, Kyunghyun Cho
| null | null | 2,020 |
aaai
|
Joint Parsing and Generation for Abstractive Summarization
| null |
Sentences produced by abstractive summarization systems can be ungrammatical and fail to preserve the original meanings, despite being locally fluent. In this paper we propose to remedy this problem by jointly generating a sentence and its syntactic dependency parse while performing abstraction. If generating a word can introduce an erroneous relation to the summary, the behavior must be discouraged. The proposed method thus holds promise for producing grammatical sentences and encouraging the summary to stay true-to-original. Our contributions of this work are twofold. First, we present a novel neural architecture for abstractive summarization that combines a sequential decoder with a tree-based decoder in a synchronized manner to generate a summary sentence and its syntactic parse. Secondly, we describe a novel human evaluation protocol to assess if, and to what extent, a summary remains true to its original meanings. We evaluate our method on a number of summarization datasets and demonstrate competitive results against strong baselines.
|
Kaiqiang Song, Logan Lebanoff, Qipeng Guo, Xipeng Qiu, Xiangyang Xue, Chen Li, Dong Yu, Fei Liu
| null | null | 2,020 |
aaai
|
Controlling the Amount of Verbatim Copying in Abstractive Summarization
| null |
An abstract must not change the meaning of the original text. A single most effective way to achieve that is to increase the amount of copying while still allowing for text abstraction. Human editors can usually exercise control over copying, resulting in summaries that are more extractive than abstractive, or vice versa. However, it remains poorly understood whether modern neural abstractive summarizers can provide the same flexibility, i.e., learning from single reference summaries to generate multiple summary hypotheses with varying degrees of copying. In this paper, we present a neural summarization model that, by learning from single human abstracts, can produce a broad spectrum of summaries ranging from purely extractive to highly generative ones. We frame the task of summarization as language modeling and exploit alternative mechanisms to generate summary hypotheses. Our method allows for control over copying during both training and decoding stages of a neural summarization model. Through extensive experiments we illustrate the significance of our proposed method on controlling the amount of verbatim copying and achieve competitive results over strong baselines. Our analysis further reveals interesting and unobvious facts.
|
Kaiqiang Song, Bingqing Wang, Zhe Feng, Ren Liu, Fei Liu
| null | null | 2,020 |
aaai
|
Modelling Form-Meaning Systematicity with Linguistic and Visual Features
| null |
Several studies in linguistics and natural language processing (NLP) pointed out systematic correspondences between word form and meaning in language. A prominent example of such systematicity is iconicity, which occurs when the form of a word is motivated by some perceptual (e.g. visual) aspect of its referent. However, the existing data-driven approaches to form-meaning systematicity modelled word meanings relying on information extracted from textual data alone. In this paper, we investigate to what extent our visual experience explains some of the form-meaning systematicity found in language. We construct word meaning representations from linguistic as well as visual data and analyze the structure and significance of form-meaning systematicity found in English using these models. Our findings corroborate the existence of form-meaning systematicity and show that this systematicity is concentrated in localized clusters. Furthermore, applying a multimodal approach allows us to identify new patterns of systematicity that have not been previously identified with the text-based models.
|
Arie Soeteman, Dario Gutierrez, Elia Bruni, Ekaterina Shutova
| null | null | 2,020 |
aaai
|
Evaluating the Cross-Lingual Effectiveness of Massively Multilingual Neural Machine Translation
| null |
The recently proposed massively multilingual neural machine translation (NMT) system has been shown to be capable of translating over 100 languages to and from English within a single model (Aharoni, Johnson, and Firat 2019). Its improved translation performance on low resource languages hints at potential cross-lingual transfer capability for downstream tasks. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of a massively multilingual NMT model on 5 downstream classification and sequence labeling tasks covering a diverse set of over 50 languages. We compare against a strong baseline, multilingual BERT (mBERT) (Devlin et al. 2018), in different cross-lingual transfer learning scenarios and show gains in zero-shot transfer in 4 out of these 5 tasks.
|
Aditya Siddhant, Melvin Johnson, Henry Tsai, Naveen Ari, Jason Riesa, Ankur Bapna, Orhan Firat, Karthik Raman
| null | null | 2,020 |
aaai
|
Generating Persona Consistent Dialogues by Exploiting Natural Language Inference
| null |
Consistency is one of the major challenges faced by dialogue agents. A human-like dialogue agent should not only respond naturally, but also maintain a consistent persona. In this paper, we exploit the advantages of natural language inference (NLI) technique to address the issue of generating persona consistent dialogues. Different from existing work that re-ranks the retrieved responses through an NLI model, we cast the task as a reinforcement learning problem and propose to exploit the NLI signals from response-persona pairs as rewards for the process of dialogue generation. Specifically, our generator employs an attention-based encoder-decoder to generate persona-based responses. Our evaluator consists of two components: an adversarially trained naturalness module and an NLI based consistency module. Moreover, we use another well-performed NLI model in the evaluation of persona-consistency. Experimental results on both human and automatic metrics, including the model-based consistency evaluation, demonstrate that the proposed approach outperforms strong generative baselines, especially in the persona-consistency of generated responses.
|
Haoyu Song, Wei-Nan Zhang, Jingwen Hu, Ting Liu
| null | null | 2,020 |
aaai
|
Alignment-Enhanced Transformer for Constraining NMT with Pre-Specified Translations
| null |
We investigate the task of constraining NMT with pre-specified translations, which has practical significance for a number of research and industrial applications. Existing works impose pre-specified translations as lexical constraints during decoding, which are based on word alignments derived from target-to-source attention weights. However, multiple recent studies have found that word alignment derived from generic attention heads in the Transformer is unreliable. We address this problem by introducing a dedicated head in the multi-head Transformer architecture to capture external supervision signals. Results on five language pairs show that our method is highly effective in constraining NMT with pre-specified translations, consistently outperforming previous methods in translation quality.
|
Kai Song, Kun Wang, Heng Yu, Yue Zhang, Zhongqiang Huang, Weihua Luo, Xiangyu Duan, Min Zhang
| null | null | 2,020 |
aaai
|
Attractive or Faithful? Popularity-Reinforced Learning for Inspired Headline Generation
| null |
With the rapid proliferation of online media sources and published news, headlines have become increasingly important for attracting readers to news articles, since users may be overwhelmed with the massive information. In this paper, we generate inspired headlines that preserve the nature of news articles and catch the eye of the reader simultaneously. The task of inspired headline generation can be viewed as a specific form of Headline Generation (HG) task, with the emphasis on creating an attractive headline from a given news article. To generate inspired headlines, we propose a novel framework called POpularity-Reinforced Learning for inspired Headline Generation (PORL-HG). PORL-HG exploits the extractive-abstractive architecture with 1) Popular Topic Attention (PTA) for guiding the extractor to select the attractive sentence from the article and 2) a popularity predictor for guiding the abstractor to rewrite the attractive sentence. Moreover, since the sentence selection of the extractor is not differentiable, techniques of reinforcement learning (RL) are utilized to bridge the gap with rewards obtained from a popularity score predictor. Through quantitative and qualitative experiments, we show that the proposed PORL-HG significantly outperforms the state-of-the-art headline generation models in terms of attractiveness evaluated by both human (71.03%) and the predictor (at least 27.60%), while the faithfulness of PORL-HG is also comparable to the state-of-the-art generation model.
|
Yun-Zhu Song, Hong-Han Shuai, Sung-Lin Yeh, Yi-Lun Wu, Lun-Wei Ku, Wen-Chih Peng
| null | null | 2,020 |
aaai
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.