title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
A new order theory of set systems and better quasi-orderings
math.CO cs.LG
By reformulating a learning process of a set system L as a game between Teacher (presenter of data) and Learner (updater of the abstract independent set), we define the order type dim L of L to be the order type of the game tree. The theory of this new order type and continuous, monotone function between set systems corresponds to the theory of well quasi-orderings (WQOs). As Nash-Williams developed the theory of WQOs to the theory of better quasi-orderings (BQOs), we introduce a set system that has order type and corresponds to a BQO. We prove that the class of set systems corresponding to BQOs is closed by any monotone function. In (Shinohara and Arimura. "Inductive inference of unbounded unions of pattern languages from positive data." Theoretical Computer Science, pp. 191-209, 2000), for any set system L, they considered the class of arbitrary (finite) unions of members of L. From viewpoint of WQOs and BQOs, we characterize the set systems L such that the class of arbitrary (finite) unions of members of L has order type. The characterization shows that the order structure of the set system L with respect to the set-inclusion is not important for the resulting set system having order type. We point out continuous, monotone function of set systems is similar to positive reduction to Jockusch-Owings' weakly semirecursive sets.
Yohji Akama
null
1112.2801
null
null
Analysis and Extension of Arc-Cosine Kernels for Large Margin Classification
cs.LG
We investigate a recently proposed family of positive-definite kernels that mimic the computation in large neural networks. We examine the properties of these kernels using tools from differential geometry; specifically, we analyze the geometry of surfaces in Hilbert space that are induced by these kernels. When this geometry is described by a Riemannian manifold, we derive results for the metric, curvature, and volume element. Interestingly, though, we find that the simplest kernel in this family does not admit such an interpretation. We explore two variations of these kernels that mimic computation in neural networks with different activation functions. We experiment with these new kernels on several data sets and highlight their general trends in performance for classification.
Youngmin Cho and Lawrence K. Saul
null
1112.3712
null
null
Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction
cs.LG
We show how to incorporate information from labeled examples into nonnegative matrix factorization (NMF), a popular unsupervised learning algorithm for dimensionality reduction. In addition to mapping the data into a space of lower dimensionality, our approach aims to preserve the nonnegative components of the data that are important for classification. We identify these components from the support vectors of large-margin classifiers and derive iterative updates to preserve them in a semi-supervised version of NMF. These updates have a simple multiplicative form like their unsupervised counterparts; they are also guaranteed at each iteration to decrease their loss function---a weighted sum of I-divergences that captures the trade-off between unsupervised and supervised learning. We evaluate these updates for dimensionality reduction when they are used as a precursor to linear classification. In this role, we find that they yield much better performance than their unsupervised counterparts. We also find one unexpected benefit of the low dimensional representations discovered by our approach: often they yield more accurate classifiers than both ordinary and transductive SVMs trained in the original input space.
Youngmin Cho and Lawrence K. Saul
null
1112.3714
null
null
Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis
cs.IT cs.LG math.IT
The common task in matrix completion (MC) and robust principle component analysis (RPCA) is to recover a low-rank matrix from a given data matrix. These problems gained great attention from various areas in applied sciences recently, especially after the publication of the pioneering works of Cand`es et al.. One fundamental result in MC and RPCA is that nuclear norm based convex optimizations lead to the exact low-rank matrix recovery under suitable conditions. In this paper, we extend this result by showing that strongly convex optimizations can guarantee the exact low-rank matrix recovery as well. The result in this paper not only provides sufficient conditions under which the strongly convex models lead to the exact low-rank matrix recovery, but also guides us on how to choose suitable parameters in practical algorithms.
Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu
null
1112.3946
null
null
Clustering and Latent Semantic Indexing Aspects of the Nonnegative Matrix Factorization
cs.LG
This paper provides a theoretical support for clustering aspect of the nonnegative matrix factorization (NMF). By utilizing the Karush-Kuhn-Tucker optimality conditions, we show that NMF objective is equivalent to graph clustering objective, so clustering aspect of the NMF has a solid justification. Different from previous approaches which usually discard the nonnegativity constraints, our approach guarantees the stationary point being used in deriving the equivalence is located on the feasible region in the nonnegative orthant. Additionally, since clustering capability of a matrix decomposition technique can sometimes imply its latent semantic indexing (LSI) aspect, we will also evaluate LSI aspect of the NMF by showing its capability in solving the synonymy and polysemy problems in synthetic datasets. And more extensive evaluation will be conducted by comparing LSI performances of the NMF and the singular value decomposition (SVD), the standard LSI method, using some standard datasets.
Andri Mirzal
null
1112.4020
null
null
epsilon-Samples of Kernels
cs.CG cs.DS cs.LG
We study the worst case error of kernel density estimates via subset approximation. A kernel density estimate of a distribution is the convolution of that distribution with a fixed kernel (e.g. Gaussian kernel). Given a subset (i.e. a point set) of the input distribution, we can compare the kernel density estimates of the input distribution with that of the subset and bound the worst case error. If the maximum error is eps, then this subset can be thought of as an eps-sample (aka an eps-approximation) of the range space defined with the input distribution as the ground set and the fixed kernel representing the family of ranges. Interestingly, in this case the ranges are not binary, but have a continuous range (for simplicity we focus on kernels with range of [0,1]); these allow for smoother notions of range spaces. It turns out, the use of this smoother family of range spaces has an added benefit of greatly decreasing the size required for eps-samples. For instance, in the plane the size is O((1/eps^{4/3}) log^{2/3}(1/eps)) for disks (based on VC-dimension arguments) but is only O((1/eps) sqrt{log (1/eps)}) for Gaussian kernels and for kernels with bounded slope that only affect a bounded domain. These bounds are accomplished by studying the discrepancy of these "kernel" range spaces, and here the improvement in bounds are even more pronounced. In the plane, we show the discrepancy is O(sqrt{log n}) for these kernels, whereas for balls there is a lower bound of Omega(n^{1/4}).
Jeff M. Phillips
null
1112.4105
null
null
Evaluation of Performance Measures for Classifiers Comparison
cs.LG
The selection of the best classification algorithm for a given dataset is a very widespread problem, occuring each time one has to choose a classifier to solve a real-world problem. It is also a complex task with many important methodological decisions to make. Among those, one of the most crucial is the choice of an appropriate measure in order to properly assess the classification performance and rank the algorithms. In this article, we focus on this specific task. We present the most popular measures and compare their behavior through discrimination plots. We then discuss their properties from a more theoretical perspective. It turns out several of them are equivalent for classifiers comparison purposes. Futhermore. they can also lead to interpretation problems. Among the numerous measures proposed over the years, it appears that the classical overall success rate and marginal rates are the more suitable for classifier comparison task.
Vincent Labatut, Hocine Cherifi (Le2i)
null
1112.4133
null
null
Online Learning for Classification of Low-rank Representation Features and Its Applications in Audio Segment Classification
cs.LG cs.MM
In this paper, a novel framework based on trace norm minimization for audio segment is proposed. In this framework, both the feature extraction and classification are obtained by solving corresponding convex optimization problem with trace norm regularization. For feature extraction, robust principle component analysis (robust PCA) via minimization a combination of the nuclear norm and the $\ell_1$-norm is used to extract low-rank features which are robust to white noise and gross corruption for audio segments. These low-rank features are fed to a linear classifier where the weight and bias are learned by solving similar trace norm constrained problems. For this classifier, most methods find the weight and bias in batch-mode learning, which makes them inefficient for large-scale problems. In this paper, we propose an online framework using accelerated proximal gradient method. This framework has a main advantage in memory cost. In addition, as a result of the regularization formulation of matrix classification, the Lipschitz constant was given explicitly, and hence the step size estimation of general proximal gradient method was omitted in our approach. Experiments on real data sets for laugh/non-laugh and applause/non-applause classification indicate that this novel framework is effective and noise robust.
Ziqiang Shi and Jiqing Han and Tieran Zheng and Shiwen Deng
null
1112.4243
null
null
A geometric analysis of subspace clustering with outliers
cs.IT cs.LG math.IT math.ST stat.ML stat.TH
This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower-dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 (2009) 2790-2797. IEEE], which significantly broadens the range of problems where it is provably effective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretical analysis and demonstrates the effectiveness of these methods.
Mahdi Soltanolkotabi, Emmanuel J. Cand\'es
10.1214/12-AOS1034
1112.4258
null
null
Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data
cs.LG cs.CE cs.DB
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.
T.Chandrasekhar, K.Thangavel and E.Elayaraja
null
1112.4261
null
null
A Scalable Multiclass Algorithm for Node Classification
cs.LG cs.GT
We introduce a scalable algorithm, MUCCA, for multiclass node classification in weighted graphs. Unlike previously proposed methods for the same task, MUCCA works in time linear in the number of nodes. Our approach is based on a game-theoretic formulation of the problem in which the test labels are expressed as a Nash Equilibrium of a certain game. However, in order to achieve scalability, we find the equilibrium on a spanning tree of the original graph. Experiments on real-world data reveal that MUCCA is much faster than its competitors while achieving a similar predictive performance.
Giovanni Zappella
null
1112.4344
null
null
Additive Gaussian Processes
stat.ML cs.LG
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.
David Duvenaud, Hannes Nickisch, Carl Edward Rasmussen
null
1112.4394
null
null
Alignment Based Kernel Learning with a Continuous Set of Base Kernels
cs.LG stat.ML
The success of kernel-based learning methods depend on the choice of kernel. Recently, kernel learning methods have been proposed that use data to select the most appropriate kernel, usually by combining a set of base kernels. We introduce a new algorithm for kernel learning that combines a {\em continuous set of base kernels}, without the common step of discretizing the space of base kernels. We demonstrate that our new method achieves state-of-the-art performance across a variety of real-world datasets. Furthermore, we explicitly demonstrate the importance of combining the right dictionary of kernels, which is problematic for methods based on a finite set of base kernels chosen a priori. Our method is not the first approach to work with continuously parameterized kernels. However, we show that our method requires substantially less computation than previous such approaches, and so is more amenable to multiple dimensional parameterizations of base kernels, which we demonstrate.
Arash Afkanpour and Csaba Szepesvari and Michael Bowling
null
1112.4607
null
null
Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction
cs.NE cs.AI cs.LG
Nowadays, computer scientists have shown the interest in the study of social insect's behaviour in neural networks area for solving different combinatorial and statistical problems. Chief among these is the Artificial Bee Colony (ABC) algorithm. This paper investigates the use of ABC algorithm that simulates the intelligent foraging behaviour of a honey bee swarm. Multilayer Perceptron (MLP) trained with the standard back propagation algorithm normally utilises computationally intensive training algorithms. One of the crucial problems with the backpropagation (BP) algorithm is that it can sometimes yield the networks with suboptimal weights because of the presence of many local optima in the solution space. To overcome ABC algorithm used in this work to train MLP learning the complex behaviour of earthquake time series data trained by BP, the performance of MLP-ABC is benchmarked against MLP training with the standard BP. The experimental result shows that MLP-ABC performance is better than MLP-BP for time series data.
Habib Shah, Rozaida Ghazali, and Nazri Mohd Nawi
null
1112.4628
null
null
Modeling transition dynamics in MDPs with RKHS embeddings of conditional distributions
cs.LG
We propose a new, nonparametric approach to estimating the value function in reinforcement learning. This approach makes use of a recently developed representation of conditional distributions as functions in a reproducing kernel Hilbert space. Such representations bypass the need for estimating transition probabilities, and apply to any domain on which kernels can be defined. Our approach avoids the need to approximate intractable integrals since expectations are represented as RKHS inner products whose computation has linear complexity in the sample size. Thus, we can efficiently perform value function estimation in a wide variety of settings, including finite state spaces, continuous states spaces, and partially observable tasks where only sensor measurements are available. A second advantage of the approach is that we learn the conditional distribution representation from a training sample, and do not require an exhaustive exploration of the state space. We prove convergence of our approach either to the optimal policy, or to the closest projection of the optimal policy in our model class, under reasonable assumptions. In experiments, we demonstrate the performance of our algorithm on a learning task in a continuous state space (the under-actuated pendulum), and on a navigation problem where only images from a sensor are observed. We compare with least-squares policy iteration where a Gaussian process is used for value function estimation. Our algorithm achieves better performance in both tasks.
Steffen Gr\"unew\"alder, Luca Baldassarre, Massimiliano Pontil, Arthur Gretton, Guy Lever
null
1112.4722
null
null
Combining One-Class Classifiers via Meta-Learning
cs.LG
Selecting the best classifier among the available ones is a difficult task, especially when only instances of one class exist. In this work we examine the notion of combining one-class classifiers as an alternative for selecting the best classifier. In particular, we propose two new one-class classification performance measures to weigh classifiers and show that a simple ensemble that implements these measures can outperform the most popular one-class ensembles. Furthermore, we propose a new one-class ensemble scheme, TUPSO, which uses meta-learning to combine one-class classifiers. Our experiments demonstrate the superiority of TUPSO over all other tested ensembles and show that the TUPSO performance is statistically indistinguishable from that of the hypothetical best classifier.
Eitan Menahem, Lior Rokach and Yuval Elovici
null
1112.5246
null
null
POWERPLAY: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem
cs.AI cs.LG
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. The novel algorithmic framework POWERPLAY (2011) continually searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Wow-effects are achieved by continually making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. POWERPLAY's search orders candidate pairs of tasks and solver modifications by their conditional computational (time & space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. The computational costs of validating new tasks need not grow with task repertoire size. POWERPLAY's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Goedel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. POWERPLAY may be viewed as a greedy but practical implementation of basic principles of creativity. A first experimental analysis can be found in separate papers [53,54].
J\"urgen Schmidhuber
null
1112.5309
null
null
Similarity-based Learning via Data Driven Embeddings
cs.LG stat.ML
We consider the problem of classification using similarity/distance functions over data. Specifically, we propose a framework for defining the goodness of a (dis)similarity function with respect to a given learning task and propose algorithms that have guaranteed generalization properties when working with such good functions. Our framework unifies and generalizes the frameworks proposed by [Balcan-Blum ICML 2006] and [Wang et al ICML 2007]. An attractive feature of our framework is its adaptability to data - we do not promote a fixed notion of goodness but rather let data dictate it. We show, by giving theoretical guarantees that the goodness criterion best suited to a problem can itself be learned which makes our approach applicable to a variety of domains and problems. We propose a landmarking-based approach to obtaining a classifier from such learned goodness criteria. We then provide a novel diversity based heuristic to perform task-driven selection of landmark points instead of random selection. We demonstrate the effectiveness of our goodness criteria learning method as well as the landmark selection heuristic on a variety of similarity-based learning datasets and benchmark UCI datasets on which our method consistently outperforms existing approaches by a significant margin.
Purushottam Kar and Prateek Jain
null
1112.5404
null
null
Finding Density Functionals with Machine Learning
physics.comp-ph cs.LG physics.chem-ph stat.ML
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. Challenges for application of our method to real electronic structure problems are discussed.
John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert M\"uller, and Kieron Burke
10.1103/PhysRevLett.108.253002
1112.5441
null
null
A Study on Using Uncertain Time Series Matching Algorithms in MapReduce Applications
cs.DC cs.AI cs.LG cs.PF
In this paper, we study CPU utilization time patterns of several Map-Reduce applications. After extracting running patterns of several applications, the patterns with their statistical information are saved in a reference database to be later used to tweak system parameters to efficiently execute unknown applications in future. To achieve this goal, CPU utilization patterns of new applications along with its statistical information are compared with the already known ones in the reference database to find/predict their most probable execution patterns. Because of different patterns lengths, the Dynamic Time Warping (DTW) is utilized for such comparison; a statistical analysis is then applied to DTWs' outcomes to select the most suitable candidates. Moreover, under a hypothesis, another algorithm is proposed to classify applications under similar CPU utilization patterns. Three widely used text processing applications (WordCount, Distributed Grep, and Terasort) and another application (Exim Mainlog parsing) are used to evaluate our hypothesis in tweaking system parameters in executing similar applications. Results were very promising and showed effectiveness of our approach on 5-node Map-Reduce platform
Nikzad Babaii Rizvandi, Javid Taheri, Albert Y. Zomaya, Reza Moraveji
null
1112.5505
null
null
Minimax Rates for Homology Inference
stat.ML cs.LG
Often, high dimensional data lie close to a low-dimensional submanifold and it is of interest to understand the geometry of these submanifolds. The homology groups of a manifold are important topological invariants that provide an algebraic summary of the manifold. These groups contain rich topological information, for instance, about the connected components, holes, tunnels and sometimes the dimension of the manifold. In this paper, we consider the statistical problem of estimating the homology of a manifold from noisy samples under several different noise models. We derive upper and lower bounds on the minimax risk for this problem. Our upper bounds are based on estimators which are constructed from a union of balls of appropriate radius around carefully selected points. In each case we establish complementary lower bounds using Le Cam's lemma.
Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry Wasserman
null
1112.5627
null
null
High-Rank Matrix Completion and Subspace Clustering with Missing Data
cs.IT cs.LG math.IT stat.ML
This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also be viewed as a missing-data version of the subspace clustering problem. Let X be an n x N matrix whose (complete) columns lie in a union of at most k subspaces, each of rank <= r < n, and assume N >> kn. The main result of the paper shows that under mild assumptions each column of X can be perfectly recovered with high probability from an incomplete version so long as at least CrNlog^2(n) entries of X are observed uniformly at random, with C>1 a constant depending on the usual incoherence conditions, the geometrical arrangement of subspaces, and the distribution of columns over the subspaces. The result is illustrated with numerical experiments and an application to Internet distance matrix completion and topology identification.
Brian Eriksson and Laura Balzano and Robert Nowak
null
1112.5629
null
null
Bayesian Active Learning for Classification and Preference Learning
stat.ML cs.LG
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.
Neil Houlsby, Ferenc Husz\'ar, Zoubin Ghahramani, M\'at\'e Lengyel
null
1112.5745
null
null
Building high-level features using large scale unsupervised learning
cs.LG
We consider the problem of building high-level, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not. Control experiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art.
Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff Dean, Andrew Y. Ng
null
1112.6209
null
null
Sparse Recovery from Nonlinear Measurements with Applications in Bad Data Detection for Power Networks
cs.IT cs.LG cs.SY math.IT
In this paper, we consider the problem of sparse recovery from nonlinear measurements, which has applications in state estimation and bad data detection for power networks. An iterative mixed $\ell_1$ and $\ell_2$ convex program is used to estimate the true state by locally linearizing the nonlinear measurements. When the measurements are linear, through using the almost Euclidean property for a linear subspace, we derive a new performance bound for the state estimation error under sparse bad data and additive observation noise. As a byproduct, in this paper we provide sharp bounds on the almost Euclidean property of a linear subspace, using the "escape-through-the-mesh" theorem from geometric functional analysis. When the measurements are nonlinear, we give conditions under which the solution of the iterative algorithm converges to the true state even though the locally linearized measurements may not be the actual nonlinear measurements. We numerically evaluate our iterative convex programming approach to perform bad data detections in nonlinear electrical power networks problems. We are able to use semidefinite programming to verify the conditions for convergence of the proposed iterative sparse recovery algorithms from nonlinear measurements.
Weiyu Xu, Meng Wang, Jianfeng Cai and Ao Tang
null
1112.6234
null
null
Two-Manifold Problems
cs.LG
Recently, there has been much interest in spectral approaches to learning manifolds---so-called kernel eigenmap methods. These methods have had some successes, but their applicability is limited because they are not robust to noise. To address this limitation, we look at two-manifold problems, in which we simultaneously reconstruct two related manifolds, each representing a different view of the same data. By solving these interconnected learning problems together and allowing information to flow between them, two-manifold algorithms are able to succeed where a non-integrated approach would fail: each view allows us to suppress noise in the other, reducing bias in the same way that an instrumental variable allows us to remove bias in a {linear} dimensionality reduction problem. We propose a class of algorithms for two-manifold problems, based on spectral decomposition of cross-covariance operators in Hilbert space. Finally, we discuss situations where two-manifold problems are useful, and demonstrate that solving a two-manifold problem can aid in learning a nonlinear dynamical system from limited data.
Byron Boots and Geoffrey J. Gordon
null
1112.6399
null
null
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods
cs.LG math.ST stat.ML stat.TH
In this paper we consider the task of estimating the non-zero pattern of the sparse inverse covariance matrix of a zero-mean Gaussian random vector from a set of iid samples. Note that this is also equivalent to recovering the underlying graph structure of a sparse Gaussian Markov Random Field (GMRF). We present two novel greedy approaches to solving this problem. The first estimates the non-zero covariates of the overall inverse covariance matrix using a series of global forward and backward greedy steps. The second estimates the neighborhood of each node in the graph separately, again using greedy forward and backward steps, and combines the intermediate neighborhoods to form an overall estimate. The principal contribution of this paper is a rigorous analysis of the sparsistency, or consistency in recovering the sparsity pattern of the inverse covariance matrix. Surprisingly, we show that both the local and global greedy methods learn the full structure of the model with high probability given just $O(d\log(p))$ samples, which is a \emph{significant} improvement over state of the art $\ell_1$-regularized Gaussian MLE (Graphical Lasso) that requires $O(d^2\log(p))$ samples. Moreover, the restricted eigenvalue and smoothness conditions imposed by our greedy methods are much weaker than the strong irrepresentable conditions required by the $\ell_1$-regularization based methods. We corroborate our results with extensive simulations and examples, comparing our local and global greedy methods to the $\ell_1$-regularized Gaussian MLE as well as the Neighborhood Greedy method to that of nodewise $\ell_1$-regularized linear regression (Neighborhood Lasso).
Christopher C. Johnson, Ali Jalali and Pradeep Ravikumar
null
1112.6411
null
null
T-Learning
cs.LG
Traditional Reinforcement Learning (RL) has focused on problems involving many states and few actions, such as simple grid worlds. Most real world problems, however, are of the opposite type, Involving Few relevant states and many actions. For example, to return home from a conference, humans identify only few subgoal states such as lobby, taxi, airport etc. Each valid behavior connecting two such states can be viewed as an action, and there are trillions of them. Assuming the subgoal identification problem is already solved, the quality of any RL method---in real-world settings---depends less on how well it scales with the number of states than on how well it scales with the number of actions. This is where our new method T-Learning excels, by evaluating the relatively few possible transits from one state to another in a policy-independent way, rather than a huge number of state-action pairs, or states in traditional policy-dependent ways. Illustrative experiments demonstrate that performance improvements of T-Learning over Q-learning can be arbitrarily large.
Vincent Graziano, Faustino Gomez, Mark Ring, Juergen Schmidhuber
null
1201.0292
null
null
Collaborative Filtering via Group-Structured Dictionary Learning
math.OC cs.LG math.ST stat.ML stat.TH
Structured sparse coding and the related structured dictionary learning problems are novel research areas in machine learning. In this paper we present a new application of structured dictionary learning for collaborative filtering based recommender systems. Our extensive numerical experiments demonstrate that the presented technique outperforms its state-of-the-art competitors and has several advantages over approaches that do not put structured constraints on the dictionary elements.
Zoltan Szabo, Barnabas Poczos, Andras Lorincz
10.1007/978-3-642-28551-6_31
1201.0341
null
null
Scikit-learn: Machine Learning in Python
cs.LG cs.MS
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.org.
Fabian Pedregosa, Ga\"el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas M\"uller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, \'Edouard Duchesnay
null
1201.0490
null
null
Random Forests for Metric Learning with Implicit Pairwise Position Dependence
stat.ML cs.LG
Metric learning makes it plausible to learn distances for complex distributions of data from labeled data. However, to date, most metric learning methods are based on a single Mahalanobis metric, which cannot handle heterogeneous data well. Those that learn multiple metrics throughout the space have demonstrated superior accuracy, but at the cost of computational efficiency. Here, we take a new angle to the metric learning problem and learn a single metric that is able to implicitly adapt its distance function throughout the feature space. This metric adaptation is accomplished by using a random forest-based classifier to underpin the distance function and incorporate both absolute pairwise position and standard relative position into the representation. We have implemented and tested our method against state of the art global and multi-metric methods on a variety of data sets. Overall, the proposed method outperforms both types of methods in terms of accuracy (consistently ranked first) and is an order of magnitude faster than state of the art multi-metric methods (16x faster in the worst case).
Caiming Xiong, David Johnson, Ran Xu and Jason J. Corso
null
1201.0610
null
null
Sparse Nonparametric Graphical Models
stat.ML cs.LG stat.ME
We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distributional assumptions that are often unrealistic. We discuss two approaches to building more flexible graphical models. One allows arbitrary graphs and a nonparametric extension of the Gaussian; the other uses kernel density estimation and restricts the graphs to trees and forests. Examples of both methods are presented. We also discuss possible future research directions for nonparametric graphical modeling.
John Lafferty, Han Liu, Larry Wasserman
10.1214/12-STS391
1201.0794
null
null
A Topic Modeling Toolbox Using Belief Propagation
cs.LG
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. This paper introduces a topic modeling toolbox (TMBP) based on the belief propagation (BP) algorithms. TMBP toolbox is implemented by MEX C++/Matlab/Octave for either Windows 7 or Linux. Compared with existing topic modeling packages, the novelty of this toolbox lies in the BP algorithms for learning LDA-based topic models. The current version includes BP algorithms for latent Dirichlet allocation (LDA), author-topic models (ATM), relational topic models (RTM), and labeled LDA (LaLDA). This toolbox is an ongoing project and more BP-based algorithms for various topic models will be added in the near future. Interested users may also extend BP algorithms for learning more complicated topic models. The source codes are freely available under the GNU General Public Licence, Version 1.0 at https://mloss.org/software/view/399/.
Jia Zeng
null
1201.0838
null
null
Constrained variable clustering and the best basis problem in functional data analysis
stat.ML cs.LG
Functional data analysis involves data described by regular functions rather than by a finite number of real valued variables. While some robust data analysis methods can be applied directly to the very high dimensional vectors obtained from a fine grid sampling of functional data, all methods benefit from a prior simplification of the functions that reduces the redundancy induced by the regularity. In this paper we propose to use a clustering approach that targets variables rather than individual to design a piecewise constant representation of a set of functions. The contiguity constraint induced by the functional nature of the variables allows a polynomial complexity algorithm to give the optimal solution.
Fabrice Rossi (LTCI), Yves Lechevallier (INRIA Rocquencourt / INRIA Sophia Antipolis)
10.1007/978-3-642-13312-1_46
1201.0959
null
null
Clustering Dynamic Web Usage Data
stat.ML cs.LG
Most classification methods are based on the assumption that data conforms to a stationary distribution. The machine learning domain currently suffers from a lack of classification techniques that are able to detect the occurrence of a change in the underlying data distribution. Ignoring possible changes in the underlying concept, also known as concept drift, may degrade the performance of the classification model. Often these changes make the model inconsistent and regular updatings become necessary. Taking the temporal dimension into account during the analysis of Web usage data is a necessity, since the way a site is visited may indeed evolve due to modifications in the structure and content of the site, or even due to changes in the behavior of certain user groups. One solution to this problem, proposed in this article, is to update models using summaries obtained by means of an evolutionary approach based on an intelligent clustering approach. We carry out various clustering strategies that are applied on time sub-periods. To validate our approach we apply two external evaluation criteria which compare different partitions from the same data set. Our experiments show that the proposed approach is efficient to detect the occurrence of changes.
Alzennyr Da Silva (INRIA Rocquencourt / INRIA Sophia Antipolis), Yves Lechevallier (INRIA Rocquencourt / INRIA Sophia Antipolis), Fabrice Rossi (INRIA Rocquencourt / INRIA Sophia Antipolis), Francisco De A. T. De Carvahlo (CIn)
10.1007/978-3-540-88045-5
1201.0963
null
null
A Thermodynamical Approach for Probability Estimation
cs.LG physics.data-an stat.ME
The issue of discrete probability estimation for samples of small size is addressed in this study. The maximum likelihood method often suffers over-fitting when insufficient data is available. Although the Bayesian approach can avoid over-fitting by using prior distributions, it still has problems with objective analysis. In response to these drawbacks, a new theoretical framework based on thermodynamics, where energy and temperature are introduced, was developed. Entropy and likelihood are placed at the center of this method. The key principle of inference for probability mass functions is the minimum free energy, which is shown to unify the two principles of maximum likelihood and maximum entropy. Our method can robustly estimate probability functions from small size data.
Takashi Isozaki
null
1201.1384
null
null
The Interaction of Entropy-Based Discretization and Sample Size: An Empirical Study
stat.ML cs.LG
An empirical investigation of the interaction of sample size and discretization - in this case the entropy-based method CAIM (Class-Attribute Interdependence Maximization) - was undertaken to evaluate the impact and potential bias introduced into data mining performance metrics due to variation in sample size as it impacts the discretization process. Of particular interest was the effect of discretizing within cross-validation folds averse to outside discretization folds. Previous publications have suggested that discretizing externally can bias performance results; however, a thorough review of the literature found no empirical evidence to support such an assertion. This investigation involved construction of over 117,000 models on seven distinct datasets from the UCI (University of California-Irvine) Machine Learning Library and multiple modeling methods across a variety of configurations of sample size and discretization, with each unique "setup" being independently replicated ten times. The analysis revealed a significant optimistic bias as sample sizes decreased and discretization was employed. The study also revealed that there may be a relationship between the interaction that produces such bias and the numbers and types of predictor attributes, extending the "curse of dimensionality" concept from feature selection into the discretization realm. Directions for further exploration are laid out, as well some general guidelines about the proper application of discretization in light of these results.
Casey Bennett
null
1201.1450
null
null
Feature Selection via Regularized Trees
cs.LG stat.ME stat.ML
We propose a tree regularization framework, which enables many tree models to perform feature selection efficiently. The key idea of the regularization framework is to penalize selecting a new feature for splitting when its gain (e.g. information gain) is similar to the features used in previous splits. The regularization framework is applied on random forest and boosted trees here, and can be easily applied to other tree models. Experimental studies show that the regularized trees can select high-quality feature subsets with regard to both strong and weak classifiers. Because tree models can naturally deal with categorical and numerical variables, missing values, different scales between variables, interactions and nonlinearities etc., the tree regularization framework provides an effective and efficient feature selection solution for many practical problems.
Houtao Deng and George Runger
null
1201.1587
null
null
Customers Behavior Modeling by Semi-Supervised Learning in Customer Relationship Management
cs.LG
Leveraging the power of increasing amounts of data to analyze customer base for attracting and retaining the most valuable customers is a major problem facing companies in this information age. Data mining technologies extract hidden information and knowledge from large data stored in databases or data warehouses, thereby supporting the corporate decision making process. CRM uses data mining (one of the elements of CRM) techniques to interact with customers. This study investigates the use of a technique, semi-supervised learning, for the management and analysis of customer-related data warehouse and information. The idea of semi-supervised learning is to learn not only from the labeled training data, but to exploit also the structural information in additionally available unlabeled data. The proposed semi-supervised method is a model by means of a feed-forward neural network trained by a back propagation algorithm (multi-layer perceptron) in order to predict the category of an unknown customer (potential customers). In addition, this technique can be used with Rapid Miner tools for both labeled and unlabeled data.
Siavash Emtiyaz, MohammadReza Keyvanpour
10.4156/AISS.vol3.issue9.31
1201.1670
null
null
Adaptive Context Tree Weighting
cs.IT cs.LG math.IT
We describe an adaptive context tree weighting (ACTW) algorithm, as an extension to the standard context tree weighting (CTW) algorithm. Unlike the standard CTW algorithm, which weights all observations equally regardless of the depth, ACTW gives increasing weight to more recent observations, aiming to improve performance in cases where the input sequence is from a non-stationary distribution. Data compression results show ACTW variants improving over CTW on merged files from standard compression benchmark tests while never being significantly worse on any individual file.
Alexander O'Neill and Marcus Hutter and Wen Shao and Peter Sunehag
null
1201.2056
null
null
Automatic Detection of Diabetes Diagnosis using Feature Weighted Support Vector Machines based on Mutual Information and Modified Cuckoo Search
cs.LG
Diabetes is a major health problem in both developing and developed countries and its incidence is rising dramatically. In this study, we investigate a novel automatic approach to diagnose Diabetes disease based on Feature Weighted Support Vector Machines (FW-SVMs) and Modified Cuckoo Search (MCS). The proposed model consists of three stages: Firstly, PCA is applied to select an optimal subset of features out of set of all the features. Secondly, Mutual Information is employed to construct the FWSVM by weighting different features based on their degree of importance. Finally, since parameter selection plays a vital role in classification accuracy of SVMs, MCS is applied to select the best parameter values. The proposed MI-MCS-FWSVM method obtains 93.58% accuracy on UCI dataset. The experimental results demonstrate that our method outperforms the previous methods by not only giving more accurate results but also significantly speeding up the classification procedure.
Davar Giveki, Hamid Salimi, GholamReza Bahmanyar, Younes Khademian
null
1201.2173
null
null
Stochastic Low-Rank Kernel Learning for Regression
cs.LG
We present a novel approach to learn a kernel-based regression function. It is based on the useof conical combinations of data-based parameterized kernels and on a new stochastic convex optimization procedure of which we establish convergence guarantees. The overall learning procedure has the nice properties that a) the learned conical combination is automatically designed to perform the regression task at hand and b) the updates implicated by the optimization procedure are quite inexpensive. In order to shed light on the appositeness of our learning strategy, we present empirical results from experiments conducted on various benchmark datasets.
Pierre Machart (LIF), Thomas Peel (LIF, LATP), Liva Ralaivola (LIF), Sandrine Anthoine (LATP), Herv\'e Glotin (LSIS)
null
1201.2416
null
null
Sparse Reward Processes
cs.LG stat.ML
We introduce a class of learning problems where the agent is presented with a series of tasks. Intuitively, if there is relation among those tasks, then the information gained during execution of one task has value for the execution of another task. Consequently, the agent is intrinsically motivated to explore its environment beyond the degree necessary to solve the current task it has at hand. We develop a decision theoretic setting that generalises standard reinforcement learning tasks and captures this intuition. More precisely, we consider a multi-stage stochastic game between a learning agent and an opponent. We posit that the setting is a good model for the problem of life-long learning in uncertain environments, where while resources must be spent learning about currently important tasks, there is also the need to allocate effort towards learning about aspects of the world which are not relevant at the moment. This is due to the fact that unpredictable future events may lead to a change of priorities for the decision maker. Thus, in some sense, the model "explains" the necessity of curiosity. Apart from introducing the general formalism, the paper provides algorithms. These are evaluated experimentally in some exemplary domains. In addition, performance bounds are proven for some cases of this problem.
Christos Dimitrakakis
null
1201.2555
null
null
Joint Approximation of Information and Distributed Link-Scheduling Decisions in Wireless Networks
cs.LG cs.NI
For a large multi-hop wireless network, nodes are preferable to make distributed and localized link-scheduling decisions with only interactions among a small number of neighbors. However, for a slowly decaying channel and densely populated interferers, a small size neighborhood often results in nontrivial link outages and is thus insufficient for making optimal scheduling decisions. A question arises how to deal with the information outside a neighborhood in distributed link-scheduling. In this work, we develop joint approximation of information and distributed link scheduling. We first apply machine learning approaches to model distributed link-scheduling with complete information. We then characterize the information outside a neighborhood in form of residual interference as a random loss variable. The loss variable is further characterized by either a Mean Field approximation or a normal distribution based on the Lyapunov central limit theorem. The approximated information outside a neighborhood is incorporated in a factor graph. This results in joint approximation and distributed link-scheduling in an iterative fashion. Link-scheduling decisions are first made at each individual node based on the approximated loss variables. Loss variables are then updated and used for next link-scheduling decisions. The algorithm repeats between these two phases until convergence. Interactive iterations among these variables are implemented with a message-passing algorithm over a factor graph. Simulation results show that using learned information outside a neighborhood jointly with distributed link-scheduling reduces the outage probability close to zero even for a small neighborhood.
Sung-eok Jeon, and Chuanyi Ji
null
1201.2575
null
null
Autonomous Cleaning of Corrupted Scanned Documents - A Generative Modeling Approach
cs.CV cs.LG
We study the task of cleaning scanned text documents that are strongly corrupted by dirt such as manual line strokes, spilled ink etc. We aim at autonomously removing dirt from a single letter-size page based only on the information the page contains. Our approach, therefore, has to learn character representations without supervision and requires a mechanism to distinguish learned representations from irregular patterns. To learn character representations, we use a probabilistic generative model parameterizing pattern features, feature variances, the features' planar arrangements, and pattern frequencies. The latent variables of the model describe pattern class, pattern position, and the presence or absence of individual pattern features. The model parameters are optimized using a novel variational EM approximation. After learning, the parameters represent, independently of their absolute position, planar feature arrangements and their variances. A quality measure defined based on the learned representation then allows for an autonomous discrimination between regular character patterns and the irregular patterns making up the dirt. The irregular patterns can thus be removed to clean the document. For a full Latin alphabet we found that a single page does not contain sufficiently many character examples. However, even if heavily corrupted by dirt, we show that a page containing a lower number of character types can efficiently and autonomously be cleaned solely based on the structural regularity of the characters it contains. In different examples using characters from different alphabets, we demonstrate generality of the approach and discuss its implications for future developments.
Zhenwen Dai and J\"org L\"ucke
10.1109/TPAMI.2014.2313126
1201.2605
null
null
Acoustical Quality Assessment of the Classroom Environment
cs.LG
Teaching is one of the most important factors affecting any education system. Many research efforts have been conducted to facilitate the presentation modes used by instructors in classrooms as well as provide means for students to review lectures through web browsers. Other studies have been made to provide acoustical design recommendations for classrooms like room size and reverberation times. However, using acoustical features of classrooms as a way to provide education systems with feedback about the learning process was not thoroughly investigated in any of these studies. We propose a system that extracts different sound features of students and instructors, and then uses machine learning techniques to evaluate the acoustical quality of any learning environment. We infer conclusions about the students' satisfaction with the quality of lectures. Using classifiers instead of surveys and other subjective ways of measures can facilitate and speed such experiments which enables us to perform them continuously. We believe our system enables education systems to continuously review and improve their teaching strategies and acoustical quality of classrooms.
Marian George, Moustafa Youssef
null
1201.2902
null
null
Combining Heterogeneous Classifiers for Relational Databases
cs.LG cs.DB
Most enterprise data is distributed in multiple relational databases with expert-designed schema. Using traditional single-table machine learning techniques over such data not only incur a computational penalty for converting to a 'flat' form (mega-join), even the human-specified semantic information present in the relations is lost. In this paper, we present a practical, two-phase hierarchical meta-classification algorithm for relational databases with a semantic divide and conquer approach. We propose a recursive, prediction aggregation technique over heterogeneous classifiers applied on individual database tables. The proposed algorithm was evaluated on three diverse datasets, namely TPCH, PKDD and UCI benchmarks and showed considerable reduction in classification time without any loss of prediction accuracy.
Geetha Manjunatha, M Narasimha Murty, Dinkar Sitaram
null
1201.2925
null
null
A Spiking Neural Learning Classifier System
cs.NE cs.LG cs.RO
Learning Classifier Systems (LCS) are population-based reinforcement learners used in a wide variety of applications. This paper presents a LCS where each traditional rule is represented by a spiking neural network, a type of network with dynamic internal state. We employ a constructivist model of growth of both neurons and dendrites that realise flexible learning by evolving structures of sufficient complexity to solve a well-known problem involving continuous, real-valued inputs. Additionally, we extend the system to enable temporal state decomposition. By allowing our LCS to chain together sequences of heterogeneous actions into macro-actions, it is shown to perform optimally in a problem where traditional methods can fail to find a solution in a reasonable amount of time. Our final system is tested on a simulated robotics platform.
Gerard Howard and Larry Bull and Pier-Luca Lanzi
null
1201.3249
null
null
Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery
stat.ML cs.LG
We consider the problem of using a factor model we call {\em spike-and-slab sparse coding} (S3C) to learn features for a classification task. The S3C model resembles both the spike-and-slab RBM and sparse coding. Since exact inference in this model is intractable, we derive a structured variational inference procedure and employ a variational EM training algorithm. Prior work on approximate inference for this model has not prioritized the ability to exploit parallel architectures and scale to enormous problem sizes. We present an inference procedure appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the ssRBM on the CIFAR-10 dataset. We evaluate our approach's potential for semi-supervised learning on subsets of CIFAR-10. We demonstrate state-of-the art self-taught learning performance on the STL-10 dataset and use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models' Transfer Learning Challenge.
Ian J. Goodfellow and Aaron Courville and Yoshua Bengio
null
1201.3382
null
null
On the Lagrangian Biduality of Sparsity Minimization Problems
cs.CV cs.LG stat.ML
Recent results in Compressive Sensing have shown that, under certain conditions, the solution to an underdetermined system of linear equations with sparsity-based regularization can be accurately recovered by solving convex relaxations of the original problem. In this work, we present a novel primal-dual analysis on a class of sparsity minimization problems. We show that the Lagrangian bidual (i.e., the Lagrangian dual of the Lagrangian dual) of the sparsity minimization problems can be used to derive interesting convex relaxations: the bidual of the $\ell_0$-minimization problem is the $\ell_1$-minimization problem; and the bidual of the $\ell_{0,1}$-minimization problem for enforcing group sparsity on structured data is the $\ell_{1,\infty}$-minimization problem. The analysis provides a means to compute per-instance non-trivial lower bounds on the (group) sparsity of the desired solutions. In a real-world application, the bidual relaxation improves the performance of a sparsity-based classification framework applied to robust face recognition.
Dheeraj Singaraju, Ehsan Elhamifar, Roberto Tron, Allen Y. Yang, S. Shankar Sastry
null
1201.3674
null
null
Adaptive Policies for Sequential Sampling under Incomplete Information and a Cost Constraint
stat.ML cs.LG math.OC
We consider the problem of sequential sampling from a finite number of independent statistical populations to maximize the expected infinite horizon average outcome per period, under a constraint that the expected average sampling cost does not exceed an upper bound. The outcome distributions are not known. We construct a class of consistent adaptive policies, under which the average outcome converges with probability 1 to the true value under complete information for all distributions with finite means. We also compare the rate of convergence for various policies in this class using simulation.
Apostolos Burnetas and Odysseas Kanavetas
null
1201.4002
null
null
A metric learning perspective of SVM: on the relation of SVM and LMNN
cs.LG stat.ML
Support Vector Machines, SVMs, and the Large Margin Nearest Neighbor algorithm, LMNN, are two very popular learning algorithms with quite different learning biases. In this paper we bring them into a unified view and show that they have a much stronger relation than what is commonly thought. We analyze SVMs from a metric learning perspective and cast them as a metric learning problem, a view which helps us uncover the relations of the two algorithms. We show that LMNN can be seen as learning a set of local SVM-like models in a quadratic space. Along the way and inspired by the metric-based interpretation of SVM s we derive a novel variant of SVMs, epsilon-SVM, to which LMNN is even more similar. We give a unified view of LMNN and the different SVM variants. Finally we provide some preliminary experiments on a number of benchmark datasets in which show that epsilon-SVM compares favorably both with respect to LMNN and SVM.
Huyen Do, Alexandros Kalousis, Jun Wang and Adam Woznica
null
1201.4714
null
null
A probabilistic methodology for multilabel classification
cs.AI cs.LG
Multilabel classification is a relatively recent subfield of machine learning. Unlike to the classical approach, where instances are labeled with only one category, in multilabel classification, an arbitrary number of categories is chosen to label an instance. Due to the problem complexity (the solution is one among an exponential number of alternatives), a very common solution (the binary method) is frequently used, learning a binary classifier for every category, and combining them all afterwards. The assumption taken in this solution is not realistic, and in this work we give examples where the decisions for all the labels are not taken independently, and thus, a supervised approach should learn those existing relationships among categories to make a better classification. Therefore, we show here a generic methodology that can improve the results obtained by a set of independent probabilistic binary classifiers, by using a combination procedure with a classifier trained on the co-occurrences of the labels. We show an exhaustive experimentation in three different standard corpora of labeled documents (Reuters-21578, Ohsumed-23 and RCV1), which present noticeable improvements in all of them, when using our methodology, in three probabilistic base classifiers.
Alfonso E. Romero, Luis M. de Campos
null
1201.4777
null
null
Adaptive Shortest-Path Routing under Unknown and Stochastically Varying Link States
cs.NI cs.LG
We consider the adaptive shortest-path routing problem in wireless networks under unknown and stochastically varying link states. In this problem, we aim to optimize the quality of communication between a source and a destination through adaptive path selection. Due to the randomness and uncertainties in the network dynamics, the quality of each link varies over time according to a stochastic process with unknown distributions. After a path is selected for communication, the aggregated quality of all links on this path (e.g., total path delay) is observed. The quality of each individual link is not observable. We formulate this problem as a multi-armed bandit with dependent arms. We show that by exploiting arm dependencies, a regret polynomial with network size can be achieved while maintaining the optimal logarithmic order with time. This is in sharp contrast with the exponential regret order with network size offered by a direct application of the classic MAB policies that ignore arm dependencies. Furthermore, our results are obtained under a general model of link-quality distributions (including heavy-tailed distributions) and find applications in cognitive radio and ad hoc networks with unknown and dynamic communication environments.
Keqin Liu, Qing Zhao
null
1201.4906
null
null
Unsupervised Classification Using Immune Algorithm
cs.LG cs.AI
Unsupervised classification algorithm based on clonal selection principle named Unsupervised Clonal Selection Classification (UCSC) is proposed in this paper. The new proposed algorithm is data driven and self-adaptive, it adjusts its parameters to the data to make the classification operation as fast as possible. The performance of UCSC is evaluated by comparing it with the well known K-means algorithm using several artificial and real-life data sets. The experiments show that the proposed UCSC algorithm is more reliable and has high classification precision comparing to traditional classification methods such as K-means.
M. T. Al-Muallim, R. El-Kouatly
10.5120/677-952
1201.5217
null
null
An Efficient Primal-Dual Prox Method for Non-Smooth Optimization
cs.LG
We study the non-smooth optimization problems in machine learning, where both the loss function and the regularizer are non-smooth functions. Previous studies on efficient empirical loss minimization assume either a smooth loss function or a strongly convex regularizer, making them unsuitable for non-smooth optimization. We develop a simple yet efficient method for a family of non-smooth optimization problems where the dual form of the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization problem into a minimax optimization problem, and develop a primal dual prox method that solves the minimax optimization problem at a rate of $O(1/T)$ {assuming that the proximal step can be efficiently solved}, significantly faster than a standard subgradient descent method that has an $O(1/\sqrt{T})$ convergence rate. Our empirical study verifies the efficiency of the proposed method for various non-smooth optimization problems that arise ubiquitously in machine learning by comparing it to the state-of-the-art first order methods.
Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Shenghuo Zhu
null
1201.5283
null
null
On Constrained Spectral Clustering and Its Applications
cs.LG stat.ML
Constrained clustering has been well-studied for algorithms such as $K$-means and hierarchical clustering. However, how to satisfy many constraints in these algorithmic settings has been shown to be intractable. One alternative to encode many constraints is to use spectral clustering, which remains a developing area. In this paper, we propose a flexible framework for constrained spectral clustering. In contrast to some previous efforts that implicitly encode Must-Link and Cannot-Link constraints by modifying the graph Laplacian or constraining the underlying eigenspace, we present a more natural and principled formulation, which explicitly encodes the constraints as part of a constrained optimization problem. Our method offers several practical advantages: it can encode the degree of belief in Must-Link and Cannot-Link constraints; it guarantees to lower-bound how well the given constraints are satisfied using a user-specified threshold; it can be solved deterministically in polynomial time through generalized eigendecomposition. Furthermore, by inheriting the objective function from spectral clustering and encoding the constraints explicitly, much of the existing analysis of unconstrained spectral clustering techniques remains valid for our formulation. We validate the effectiveness of our approach by empirical results on both artificial and real datasets. We also demonstrate an innovative use of encoding large number of constraints: transfer learning via constraints.
Xiang Wang, Buyue Qian, Ian Davidson
10.1007/s10618-012-0291-9
1201.5338
null
null
Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system
cs.AI cs.LG cs.NE cs.SY math.OC
A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems.
Richard J. Preen and Larry Bull
10.1007/s00500-013-1044-4
1201.5604
null
null
A Comparison Between Data Mining Prediction Algorithms for Fault Detection(Case study: Ahanpishegan co.)
cs.LG
In the current competitive world, industrial companies seek to manufacture products of higher quality which can be achieved by increasing reliability, maintainability and thus the availability of products. On the other hand, improvement in products lifecycle is necessary for achieving high reliability. Typically, maintenance activities are aimed to reduce failures of industrial machinery and minimize the consequences of such failures. So the industrial companies try to improve their efficiency by using different fault detection techniques. One strategy is to process and analyze previous generated data to predict future failures. The purpose of this paper is to detect wasted parts using different data mining algorithms and compare the accuracy of these algorithms. A combination of thermal and physical characteristics has been used and the algorithms were implemented on Ahanpishegan's current data to estimate the availability of its produced parts. Keywords: Data Mining, Fault Detection, Availability, Prediction Algorithms.
Golriz Amooee, Behrouz Minaei-Bidgoli, Malihe Bagheri-Dehnavi
null
1201.6053
null
null
Real-time jam-session support system
cs.HC cs.LG cs.SD
We propose a method for the problem of real time chord accompaniment of improvised music. Our implementation can learn an underlying structure of the musical performance and predict next chord. The system uses Hidden Markov Model to find the most probable chord sequence for the played melody and then a Variable Order Markov Model is used to a) learn the structure (if any) and b) predict next chord. We implemented our system in Java and MAX/Msp and compared and evaluated using objective (prediction accuracy) and subjective (questionnaire) evaluation methods.
Panagiotis Tigas
null
1201.6251
null
null
Active Learning of Custering with Side Information Using $\eps$-Smooth Relative Regret Approximations
cs.LG
Clustering is considered a non-supervised learning setting, in which the goal is to partition a collection of data points into disjoint clusters. Often a bound $k$ on the number of clusters is given or assumed by the practitioner. Many versions of this problem have been defined, most notably $k$-means and $k$-median. An underlying problem with the unsupervised nature of clustering it that of determining a similarity function. One approach for alleviating this difficulty is known as clustering with side information, alternatively, semi-supervised clustering. Here, the practitioner incorporates side information in the form of "must be clustered" or "must be separated" labels for data point pairs. Each such piece of information comes at a "query cost" (often involving human response solicitation). The collection of labels is then incorporated in the usual clustering algorithm as either strict or as soft constraints, possibly adding a pairwise constraint penalty function to the chosen clustering objective. Our work is mostly related to clustering with side information. We ask how to choose the pairs of data points. Our analysis gives rise to a method provably better than simply choosing them uniformly at random. Roughly speaking, we show that the distribution must be biased so as more weight is placed on pairs incident to elements in smaller clusters in some optimal solution. Of course we do not know the optimal solution, hence we don't know the bias. Using the recently introduced method of $\eps$-smooth relative regret approximations of Ailon, Begleiter and Ezra, we can show an iterative process that improves both the clustering and the bias in tandem. The process provably converges to the optimal solution faster (in terms of query cost) than an algorithm selecting pairs uniformly.
Nir Ailon and Ron Begleiter
null
1201.6462
null
null
Random Feature Maps for Dot Product Kernels
cs.LG cs.CG math.FA stat.ML
Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic analysis characterizing all dot product kernels and use it to define randomized feature maps into explicit low dimensional Euclidean spaces in which the native dot product provides an approximation to the dot product kernel with high confidence.
Purushottam Kar and Harish Karnick
null
1201.6530
null
null
Empowerment for Continuous Agent-Environment Systems
cs.AI cs.LG
This paper develops generalizations of empowerment to continuous states. Empowerment is a recently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-driven learning. Empowemerment measures, for agent-environment systems with stochastic transitions, how much influence an agent has on its environment, but only that influence that can be sensed by the agent sensors. It is an information-theoretic generalization of joint controllability (influence on environment) and observability (measurement by sensors) of the environment by the agent, both controllability and observability being usually defined in control theory as the dimensionality of the control/observation spaces. Earlier work has shown that empowerment has various interesting and relevant properties, e.g., it allows us to identify salient states using only the dynamics, and it can act as intrinsic reward without requiring an external reward. However, in this previous work empowerment was limited to the case of small-scale and discrete domains and furthermore state transition probabilities were assumed to be known. The goal of this paper is to extend empowerment to the significantly more important and relevant case of continuous vector-valued state spaces and initially unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo approximation; the unknown transitions are addressed by model learning and prediction for which we apply Gaussian processes regression with iterated forecasting. In a number of well-known continuous control tasks we examine the dynamics induced by empowerment and include an application to exploration and online model learning.
Tobias Jung and Daniel Polani and Peter Stone
null
1201.6583
null
null
Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-like Exploration
cs.AI cs.LG
We present an implementation of model-based online reinforcement learning (RL) for continuous domains with deterministic transitions that is specifically designed to achieve low sample complexity. To achieve low sample complexity, since the environment is unknown, an agent must intelligently balance exploration and exploitation, and must be able to rapidly generalize from observations. While in the past a number of related sample efficient RL algorithms have been proposed, to allow theoretical analysis, mainly model-learners with weak generalization capabilities were considered. Here, we separate function approximation in the model learner (which does require samples) from the interpolation in the planner (which does not require samples). For model-learning we apply Gaussian processes regression (GP) which is able to automatically adjust itself to the complexity of the problem (via Bayesian hyperparameter selection) and, in practice, often able to learn a highly accurate model from very little data. In addition, a GP provides a natural way to determine the uncertainty of its predictions, which allows us to implement the "optimism in the face of uncertainty" principle used to efficiently control exploration. Our method is evaluated on four common benchmark domains.
Tobias Jung and Peter Stone
null
1201.6604
null
null
Feature Selection for Value Function Approximation Using Bayesian Model Selection
cs.AI cs.LG
Feature selection in reinforcement learning (RL), i.e. choosing basis functions such that useful approximations of the unkown value function can be obtained, is one of the main challenges in scaling RL to real-world applications. Here we consider the Gaussian process based framework GPTD for approximate policy evaluation, and propose feature selection through marginal likelihood optimization of the associated hyperparameters. Our approach has two appealing benefits: (1) given just sample transitions, we can solve the policy evaluation problem fully automatically (without looking at the learning task, and, in theory, independent of the dimensionality of the state space), and (2) model selection allows us to consider more sophisticated kernels, which in turn enable us to identify relevant subspaces and eliminate irrelevant state variables such that we can achieve substantial computational savings and improved prediction performance.
Tobias Jung and Peter Stone
null
1201.6615
null
null
Learning RoboCup-Keepaway with Kernels
cs.AI cs.LG cs.MA
We apply kernel-based methods to solve the difficult reinforcement learning problem of 3vs2 keepaway in RoboCup simulated soccer. Key challenges in keepaway are the high-dimensionality of the state space (rendering conventional discretization-based function approximation like tilecoding infeasible), the stochasticity due to noise and multiple learning agents needing to cooperate (meaning that the exact dynamics of the environment are unknown) and real-time learning (meaning that an efficient online implementation is required). We employ the general framework of approximate policy iteration with least-squares-based policy evaluation. As underlying function approximator we consider the family of regularization networks with subset of regressors approximation. The core of our proposed solution is an efficient recursive implementation with automatic supervised selection of relevant basis functions. Simulation results indicate that the behavior learned through our approach clearly outperforms the best results obtained earlier with tilecoding by Stone et al. (2005).
Tobias Jung and Daniel Polani
null
1201.6626
null
null
Kernels on Sample Sets via Nonparametric Divergence Estimates
cs.LG stat.ML
Most machine learning algorithms, such as classification or regression, treat the individual data point as the object of interest. Here we consider extending machine learning algorithms to operate on groups of data points. We suggest treating a group of data points as an i.i.d. sample set from an underlying feature distribution for that group. Our approach employs kernel machines with a kernel on i.i.d. sample sets of vectors. We define certain kernel functions on pairs of distributions, and then use a nonparametric estimator to consistently estimate those functions based on sample sets. The projection of the estimated Gram matrix to the cone of symmetric positive semi-definite matrices enables us to use kernel machines for classification, regression, anomaly detection, and low-dimensional embedding in the space of distributions. We present several numerical experiments both on real and simulated datasets to demonstrate the advantages of our new approach.
Danica J. Sutherland, Liang Xiong, Barnab\'as P\'oczos, and Jeff Schneider
null
1202.0302
null
null
Minimax Rates of Estimation for Sparse PCA in High Dimensions
stat.ML cs.LG math.ST stat.TH
We study sparse principal components analysis in the high-dimensional setting, where $p$ (the number of variables) can be much larger than $n$ (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an $\ell_q$ ball for $q \in [0,1]$. Our bounds are sharp in $p$ and $n$ for all $q \in [0, 1]$ over a wide class of distributions. The upper bound is obtained by analyzing the performance of $\ell_q$-constrained PCA. In particular, our results provide convergence rates for $\ell_1$-constrained PCA.
Vincent Q. Vu and Jing Lei
null
1202.0786
null
null
A Reconstruction Error Formulation for Semi-Supervised Multi-task and Multi-view Learning
cs.LG stat.ML
A significant challenge to make learning techniques more suitable for general purpose use is to move beyond i) complete supervision, ii) low dimensional data, iii) a single task and single view per instance. Solving these challenges allows working with "Big Data" problems that are typically high dimensional with multiple (but possibly incomplete) labelings and views. While other work has addressed each of these problems separately, in this paper we show how to address them together, namely semi-supervised dimension reduction for multi-task and multi-view learning (SSDR-MML), which performs optimization for dimension reduction and label inference in semi-supervised setting. The proposed framework is designed to handle both multi-task and multi-view learning settings, and can be easily adapted to many useful applications. Information obtained from all tasks and views is combined via reconstruction errors in a linear fashion that can be efficiently solved using an alternating optimization scheme. Our formulation has a number of advantages. We explicitly model the information combining mechanism as a data structure (a weight/nearest-neighbor matrix) which allows investigating fundamental questions in multi-task and multi-view learning. We address one such question by presenting a general measure to quantify the success of simultaneous learning of multiple tasks or from multiple views. We show that our SSDR-MML approach can outperform many state-of-the-art baseline methods and demonstrate the effectiveness of connecting dimension reduction and learning.
Buyue Qian, Xiang Wang and Ian Davidson
null
1202.0855
null
null
Cramer Rao-Type Bounds for Sparse Bayesian Learning
cs.LG stat.ML
In this paper, we derive Hybrid, Bayesian and Marginalized Cram\'{e}r-Rao lower bounds (HCRB, BCRB and MCRB) for the single and multiple measurement vector Sparse Bayesian Learning (SBL) problem of estimating compressible vectors and their prior distribution parameters. We assume the unknown vector to be drawn from a compressible Student-t prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We extend the MCRB to the case where the compressible vector is distributed according to a general compressible prior distribution, of which the generalized Pareto distribution is a special case. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error (MSE) in the estimates. Further, we illustrate the tightness and utility of the bounds through simulations, by comparing them with the MSE performance of two popular SBL-based estimators. It is found that the MCRB is generally the tightest among the bounds derived and that the MSE performance of the Expectation-Maximization (EM) algorithm coincides with the MCRB for the compressible vector. Through simulations, we demonstrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector for several values of the number of observations and at different signal powers.
Ranjitha Prasad and Chandra R. Murthy
10.1109/TSP.2012.2226165
1202.1119
null
null
rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning
cs.LG stat.ML
In this paper I present an extended implementation of the Random ferns algorithm contained in the R package rFerns. It differs from the original by the ability of consuming categorical and numerical attributes instead of only binary ones. Also, instead of using simple attribute subspace ensemble it employs bagging and thus produce error approximation and variable importance measure modelled after Random forest algorithm. I also present benchmarks' results which show that although Random ferns' accuracy is mostly smaller than achieved by Random forest, its speed and good quality of importance measure it provides make rFerns a reasonable choice for a specific applications.
Miron B. Kursa
null
1202.1121
null
null
Contextual Bandit Learning with Predictable Rewards
cs.LG
Contextual bandit learning is a reinforcement learning problem where the learner repeatedly receives a set of features (context), takes an action and receives a reward based on the action and context. We consider this problem under a realizability assumption: there exists a function in a (known) function class, always capable of predicting the expected reward, given the action and context. Under this assumption, we show three things. We present a new algorithm---Regressor Elimination--- with a regret similar to the agnostic setting (i.e. in the absence of realizability assumption). We prove a new lower bound showing no algorithm can achieve superior performance in the worst case even with the realizability assumption. However, we do show that for any set of policies (mapping contexts to actions), there is a distribution over rewards (given context) such that our new algorithm has constant regret unlike the previous approaches.
Alekh Agarwal and Miroslav Dud\'ik and Satyen Kale and John Langford and Robert E. Schapire
null
1202.1334
null
null
Information Forests
cs.LG stat.ML
We describe Information Forests, an approach to classification that generalizes Random Forests by replacing the splitting criterion of non-leaf nodes from a discriminative one -- based on the entropy of the label distribution -- to a generative one -- based on maximizing the information divergence between the class-conditional distributions in the resulting partitions. The basic idea consists of deferring classification until a measure of "classification confidence" is sufficiently high, and instead breaking down the data so as to maximize this measure. In an alternative interpretation, Information Forests attempt to partition the data into subsets that are "as informative as possible" for the purpose of the task, which is to classify the data. Classification confidence, or informative content of the subsets, is quantified by the Information Divergence. Our approach relates to active learning, semi-supervised learning, mixed generative/discriminative learning.
Zhao Yi, Stefano Soatto, Maneesh Dewan, Yiqiang Zhan
null
1202.1523
null
null
On the Performance of Maximum Likelihood Inverse Reinforcement Learning
cs.LG
Inverse reinforcement learning (IRL) addresses the problem of recovering a task description given a demonstration of the optimal policy used to solve such a task. The optimal policy is usually provided by an expert or teacher, making IRL specially suitable for the problem of apprenticeship learning. The task description is encoded in the form of a reward function of a Markov decision process (MDP). Several algorithms have been proposed to find the reward function corresponding to a set of demonstrations. One of the algorithms that has provided best results in different applications is a gradient method to optimize a policy squared error criterion. On a parallel line of research, other authors have presented recently a gradient approximation of the maximum likelihood estimate of the reward signal. In general, both approaches approximate the gradient estimate and the criteria at different stages to make the algorithm tractable and efficient. In this work, we provide a detailed description of the different methods to highlight differences in terms of reward estimation, policy similarity and computational costs. We also provide experimental results to evaluate the differences in performance of the methods.
H\'ector Ratia and Luis Montesano and Ruben Martinez-Cantin
null
1202.1558
null
null
Predicting Contextual Sequences via Submodular Function Maximization
cs.AI cs.LG cs.RO
Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each "slot" in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: manipulator trajectory prediction and mobile robot path planning.
Debadeepta Dey, Tian Yu Liu, Martial Hebert, J. Andrew Bagnell
null
1202.2112
null
null
Active Bayesian Optimization: Minimizing Minimizer Entropy
stat.ME cs.LG stat.ML
The ultimate goal of optimization is to find the minimizer of a target function.However, typical criteria for active optimization often ignore the uncertainty about the minimizer. We propose a novel criterion for global optimization and an associated sequential active learning strategy using Gaussian processes.Our criterion is the reduction of uncertainty in the posterior distribution of the function minimizer. It can also flexibly incorporate multiple global minimizers. We implement a tractable approximation of the criterion and demonstrate that it obtains the global minimizer accurately compared to conventional Bayesian optimization criteria.
Il Memming Park, Marcel Nassar, Mijung Park
null
1202.2143
null
null
Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers
cs.CV cs.LG
Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a set of dense feature vectors is computed which encodes regions of multiple sizes centered on each pixel. The feature extractor is a multiscale convolutional network trained from raw pixels. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment will contain a single object. The convolutional network feature extractor is trained end-to-end from raw pixels, alleviating the need for engineered features. After training, the system is parameter free. The system yields record accuracies on the Stanford Background Dataset (8 classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170 classes) while being an order of magnitude faster than competing approaches, producing a 320 \times 240 image labeling in less than 1 second.
Cl\'ement Farabet and Camille Couprie and Laurent Najman and Yann LeCun
null
1202.2160
null
null
Craniofacial reconstruction as a prediction problem using a Latent Root Regression model
cs.LG q-bio.TO
In this paper, we present a computer-assisted method for facial reconstruction. This method provides an estimation of the facial shape associated with unidentified skeletal remains. Current computer-assisted methods using a statistical framework rely on a common set of extracted points located on the bone and soft-tissue surfaces. Most of the facial reconstruction methods then consist of predicting the position of the soft-tissue surface points, when the positions of the bone surface points are known. We propose to use Latent Root Regression for prediction. The results obtained are then compared to those given by Principal Components Analysis linear models. In conjunction, we have evaluated the influence of the number of skull landmarks used. Anatomical skull landmarks are completed iteratively by points located upon geodesics which link these anatomical landmarks, thus enabling us to artificially increase the number of skull points. Facial points are obtained using a mesh-matching algorithm between a common reference mesh and individual soft-tissue surface meshes. The proposed method is validated in term of accuracy, based on a leave-one-out cross-validation test applied to a homogeneous database. Accuracy measures are obtained by computing the distance between the original face surface and its reconstruction. Finally, these results are discussed referring to current computer-assisted reconstruction facial techniques.
Maxime Berar (LITIS), Fran\c{c}oise Tilotta, Joan Alexis Glaun\`es (MAP5), Yves Rozenholc (MAP5)
10.1016/j.forsciint.2011.03.010
1202.2703
null
null
Towards minimax policies for online linear optimization with bandit feedback
cs.LG stat.ML
We address the online linear optimization problem with bandit feedback. Our contribution is twofold. First, we provide an algorithm (based on exponential weights) with a regret of order $\sqrt{d n \log N}$ for any finite action set with $N$ actions, under the assumption that the instantaneous loss is bounded by 1. This shaves off an extraneous $\sqrt{d}$ factor compared to previous works, and gives a regret bound of order $d \sqrt{n \log n}$ for any compact set of actions. Without further assumptions on the action set, this last bound is minimax optimal up to a logarithmic factor. Interestingly, our result also shows that the minimax regret for bandit linear optimization with expert advice in $d$ dimension is the same as for the basic $d$-armed bandit with expert advice. Our second contribution is to show how to use the Mirror Descent algorithm to obtain computationally efficient strategies with minimax optimal regret bounds in specific examples. More precisely we study two canonical action sets: the hypercube and the Euclidean ball. In the former case, we obtain the first computationally efficient algorithm with a $d \sqrt{n}$ regret, thus improving by a factor $\sqrt{d \log n}$ over the best known result for a computationally efficient algorithm. In the latter case, our approach gives the first algorithm with a $\sqrt{d n \log n}$ regret, again shaving off an extraneous $\sqrt{d}$ compared to previous works.
S\'ebastien Bubeck, Nicol\`o Cesa-Bianchi, Sham M. Kakade
null
1202.3079
null
null
Mirror Descent Meets Fixed Share (and feels no regret)
cs.LG stat.ML
Mirror descent with an entropic regularizer is known to achieve shifting regret bounds that are logarithmic in the dimension. This is done using either a carefully designed projection or by a weight sharing technique. Via a novel unified analysis, we show that these two approaches deliver essentially equivalent bounds on a notion of regret generalizing shifting, adaptive, discounted, and other related regrets. Our analysis also captures and extends the generalized weight sharing technique of Bousquet and Warmuth, and can be refined in several ways, including improvements for small losses and adaptive tuning of parameters.
Nicol\`o Cesa-Bianchi, Pierre Gaillard (INRIA Paris - Rocquencourt, DMA), Gabor Lugosi (ICREA), Gilles Stoltz (INRIA Paris - Rocquencourt, DMA, GREGH)
null
1202.3323
null
null
An efficient high-quality hierarchical clustering algorithm for automatic inference of software architecture from the source code of a software system
cs.AI cs.LG cs.SE
It is a high-quality algorithm for hierarchical clustering of large software source code. This effectively allows to break the complexity of tens of millions lines of source code, so that a human software engineer can comprehend a software system at high level by means of looking at its architectural diagram that is reconstructed automatically from the source code of the software system. The architectural diagram shows a tree of subsystems having OOP classes in its leaves (in the other words, a nested software decomposition). The tool reconstructs the missing (inconsistent/incomplete/inexistent) architectural documentation for a software system from its source code. This facilitates software maintenance: change requests can be performed substantially faster. Simply speaking, this unique tool allows to lift the comprehensible grain of object-oriented software systems from OOP class-level to subsystem-level. It is estimated that a commercial tool, developed on the basis of this work, will reduce software maintenance expenses 10 times on the current needs, and will allow to implement next-generation software systems which are currently too complex to be within the range of human comprehension, therefore can't yet be designed or implemented. Implemented prototype in Open Source: http://sourceforge.net/p/insoar/code-0/1/tree/
Sarge Rogatch
null
1202.3335
null
null
Near-optimal Coresets For Least-Squares Regression
cs.DS cs.LG
We study (constrained) least-squares regression as well as multiple response least-squares regression and ask the question of whether a subset of the data, a coreset, suffices to compute a good approximate solution to the regression. We give deterministic, low order polynomial-time algorithms to construct such coresets with approximation guarantees, together with lower bounds indicating that there is not much room for improvement upon our results.
Christos Boutsidis, Petros Drineas, Malik Magdon-Ismail
10.1109/TIT.2013.2272457
1202.3505
null
null
Finding a most biased coin with fewest flips
cs.DS cs.LG
We study the problem of learning a most biased coin among a set of coins by tossing the coins adaptively. The goal is to minimize the number of tosses until we identify a coin i* whose posterior probability of being most biased is at least 1-delta for a given delta. Under a particular probabilistic model, we give an optimal algorithm, i.e., an algorithm that minimizes the expected number of future tosses. The problem is closely related to finding the best arm in the multi-armed bandit problem using adaptive strategies. Our algorithm employs an optimal adaptive strategy -- a strategy that performs the best possible action at each step after observing the outcomes of all previous coin tosses. Consequently, our algorithm is also optimal for any starting history of outcomes. To our knowledge, this is the first algorithm that employs an optimal adaptive strategy under a Bayesian setting for this problem. Our proof of optimality employs tools from the field of Markov games.
Karthekeyan Chandrasekaran and Richard Karp
null
1202.3639
null
null
Guaranteed clustering and biclustering via semidefinite programming
math.OC cs.LG
Identifying clusters of similar objects in data plays a significant role in a wide range of applications. As a model problem for clustering, we consider the densest k-disjoint-clique problem, whose goal is to identify the collection of k disjoint cliques of a given weighted complete graph maximizing the sum of the densities of the complete subgraphs induced by these cliques. In this paper, we establish conditions ensuring exact recovery of the densest k cliques of a given graph from the optimal solution of a particular semidefinite program. In particular, the semidefinite relaxation is exact for input graphs corresponding to data consisting of k large, distinct clusters and a smaller number of outliers. This approach also yields a semidefinite relaxation for the biclustering problem with similar recovery guarantees. Given a set of objects and a set of features exhibited by these objects, biclustering seeks to simultaneously group the objects and features according to their expression levels. This problem may be posed as partitioning the nodes of a weighted bipartite complete graph such that the sum of the densities of the resulting bipartite complete subgraphs is maximized. As in our analysis of the densest k-disjoint-clique problem, we show that the correct partition of the objects and features can be recovered from the optimal solution of a semidefinite program in the case that the given data consists of several disjoint sets of objects exhibiting similar features. Empirical evidence from numerical experiments supporting these theoretical guarantees is also provided.
Brendan P. W. Ames
10.1007/s10107-013-0729-x
1202.3663
null
null
Active Diagnosis via AUC Maximization: An Efficient Approach for Multiple Fault Identification in Large Scale, Noisy Networks
cs.LG cs.AI stat.ML
The problem of active diagnosis arises in several applications such as disease diagnosis, and fault diagnosis in computer networks, where the goal is to rapidly identify the binary states of a set of objects (e.g., faulty or working) by sequentially selecting, and observing, (noisy) responses to binary valued queries. Current algorithms in this area rely on loopy belief propagation for active query selection. These algorithms have an exponential time complexity, making them slow and even intractable in large networks. We propose a rank-based greedy algorithm that sequentially chooses queries such that the area under the ROC curve of the rank-based output is maximized. The AUC criterion allows us to make a simplifying assumption that significantly reduces the complexity of active query selection (from exponential to near quadratic), with little or no compromise on the performance quality.
Gowtham Bellala, Jason Stanley, Clayton Scott, Suresh K. Bhavnani
null
1202.3701
null
null
Semi-supervised Learning with Density Based Distances
cs.LG stat.ML
We present a simple, yet effective, approach to Semi-Supervised Learning. Our approach is based on estimating density-based distances (DBD) using a shortest path calculation on a graph. These Graph-DBD estimates can then be used in any distance-based supervised learning method, such as Nearest Neighbor methods and SVMs with RBF kernels. In order to apply the method to very large data sets, we also present a novel algorithm which integrates nearest neighbor computations into the shortest path search and can find exact shortest paths even in extremely large dense graphs. Significant runtime improvement over the commonly used Laplacian regularization method is then shown on a large scale dataset.
Avleen S. Bijral, Nathan Ratliff, Nathan Srebro
null
1202.3702
null
null
Near-Optimal Target Learning With Stochastic Binary Signals
cs.LG stat.ML
We study learning in a noisy bisection model: specifically, Bayesian algorithms to learn a target value V given access only to noisy realizations of whether V is less than or greater than a threshold theta. At step t = 0, 1, 2, ..., the learner sets threshold theta t and observes a noisy realization of sign(V - theta t). After T steps, the goal is to output an estimate V^ which is within an eta-tolerance of V . This problem has been studied, predominantly in environments with a fixed error probability q < 1/2 for the noisy realization of sign(V - theta t). In practice, it is often the case that q can approach 1/2, especially as theta -> V, and there is little known when this happens. We give a pseudo-Bayesian algorithm which provably converges to V. When the true prior matches our algorithm's Gaussian prior, we show near-optimal expected performance. Our methods extend to the general multiple-threshold setting where the observation noisily indicates which of k >= 2 regions V belongs to.
Mithun Chakraborty, Sanmay Das, Malik Magdon-Ismail
null
1202.3704
null
null
Smoothing Proximal Gradient Method for General Structured Sparse Learning
cs.LG stat.ML
We study the problem of learning high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping group lasso penalty, based on the l1/l2 mixed-norm penalty, and 2) graph-guided fusion penalty. For both types of penalties, due to their non-separability, developing an efficient optimization method has remained a challenging problem. In this paper, we propose a general optimization approach, called smoothing proximal gradient method, which can solve the structured sparse regression problems with a smooth convex loss and a wide spectrum of structured-sparsity-inducing penalties. Our approach is based on a general smoothing technique of Nesterov. It achieves a convergence rate faster than the standard first-order method, subgradient method, and is much more scalable than the most widely used interior-point method. Numerical results are reported to demonstrate the efficiency and scalability of the proposed method.
Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing
null
1202.3708
null
null
Ensembles of Kernel Predictors
cs.LG stat.ML
This paper examines the problem of learning with a finite and possibly large set of p base kernels. It presents a theoretical and empirical analysis of an approach addressing this problem based on ensembles of kernel predictors. This includes novel theoretical guarantees based on the Rademacher complexity of the corresponding hypothesis sets, the introduction and analysis of a learning algorithm based on these hypothesis sets, and a series of experiments using ensembles of kernel predictors with several data sets. Both convex combinations of kernel-based hypotheses and more general Lq-regularized nonnegative combinations are analyzed. These theoretical, algorithmic, and empirical results are compared with those achieved by using learning kernel techniques, which can be viewed as another approach for solving the same problem.
Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh
null
1202.3712
null
null
Active Learning for Developing Personalized Treatment
cs.LG stat.ML
The personalization of treatment via bio-markers and other risk categories has drawn increasing interest among clinical scientists. Personalized treatment strategies can be learned using data from clinical trials, but such trials are very costly to run. This paper explores the use of active learning techniques to design more efficient trials, addressing issues such as whom to recruit, at what point in the trial, and which treatment to assign, throughout the duration of the trial. We propose a minimax bandit model with two different optimization criteria, and discuss the computational challenges and issues pertaining to this approach. We evaluate our active learning policies using both simulated data, and data modeled after a clinical trial for treating depressed individuals, and contrast our methods with other plausible active learning policies.
Kun Deng, Joelle Pineau, Susan A. Murphy
null
1202.3714
null
null
Boosting as a Product of Experts
cs.LG stat.ML
In this paper, we derive a novel probabilistic model of boosting as a Product of Experts. We re-derive the boosting algorithm as a greedy incremental model selection procedure which ensures that addition of new experts to the ensemble does not decrease the likelihood of the data. These learning rules lead to a generic boosting algorithm - POE- Boost which turns out to be similar to the AdaBoost algorithm under certain assumptions on the expert probabilities. The paper then extends the POEBoost algorithm to POEBoost.CS which handles hypothesis that produce probabilistic predictions. This new algorithm is shown to have better generalization performance compared to other state of the art algorithms.
Narayanan U. Edakunni, Gary Brown, Tim Kovacs
null
1202.3716
null
null
PAC-Bayesian Policy Evaluation for Reinforcement Learning
cs.LG stat.ML
Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, largely depends on accuracy and correctness of these priors. PAC-Bayesian methods overcome this problem by providing bounds that hold regardless of the correctness of the prior distribution. This paper introduces the first PAC-Bayesian bound for the batch reinforcement learning problem with function approximation. We show how this bound can be used to perform model-selection in a transfer learning scenario. Our empirical results confirm that PAC-Bayesian policy evaluation is able to leverage prior distributions when they are informative and, unlike standard Bayesian RL approaches, ignore them when they are misleading.
Mahdi MIlani Fard, Joelle Pineau, Csaba Szepesvari
null
1202.3717
null
null
Hierarchical Affinity Propagation
cs.LG cs.AI stat.ML
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographical location and strain subtypes. Finally we report results on using the method for the analysis of mass spectra, showing it performs favorably compared to state-of-the-art methods.
Inmar Givoni, Clement Chung, Brendan J. Frey
null
1202.3722
null
null
Generalized Fisher Score for Feature Selection
cs.LG stat.ML
Fisher score is one of the most widely used supervised feature selection methods. However, it selects each feature independently according to their scores under the Fisher criterion, which leads to a suboptimal subset of features. In this paper, we present a generalized Fisher score to jointly select features. It aims at finding an subset of features, which maximize the lower bound of traditional Fisher score. The resulting feature selection problem is a mixed integer programming, which can be reformulated as a quadratically constrained linear programming (QCLP). It is solved by cutting plane algorithm, in each iteration of which a multiple kernel learning problem is solved alternatively by multivariate ridge regression and projected gradient descent. Experiments on benchmark data sets indicate that the proposed method outperforms Fisher score as well as many other state-of-the-art feature selection methods.
Quanquan Gu, Zhenhui Li, Jiawei Han
null
1202.3725
null
null
Active Semi-Supervised Learning using Submodular Functions
cs.LG stat.ML
We consider active, semi-supervised learning in an offline transductive setting. We show that a previously proposed error bound for active learning on undirected weighted graphs can be generalized by replacing graph cut with an arbitrary symmetric submodular function. Arbitrary non-symmetric submodular functions can be used via symmetrization. Different choices of submodular functions give different versions of the error bound that are appropriate for different kinds of problems. Moreover, the bound is deterministic and holds for adversarially chosen labels. We show exactly minimizing this error bound is NP-complete. However, we also introduce for any submodular function an associated active semi-supervised learning method that approximately minimizes the corresponding error bound. We show that the error bound is tight in the sense that there is no other bound of the same form which is better. Our theoretical results are supported by experiments on real data.
Andrew Guillory, Jeff A. Bilmes
null
1202.3726
null
null
Bregman divergence as general framework to estimate unnormalized statistical models
cs.LG stat.ML
We show that the Bregman divergence provides a rich framework to estimate unnormalized statistical models for continuous or discrete random variables, that is, models which do not integrate or sum to one, respectively. We prove that recent estimation methods such as noise-contrastive estimation, ratio matching, and score matching belong to the proposed framework, and explain their interconnection based on supervised learning. Further, we discuss the role of boosting in unsupervised learning.
Michael Gutmann, Jun-ichiro Hirayama
null
1202.3727
null
null
Sequential Inference for Latent Force Models
cs.LG stat.ML
Latent force models (LFMs) are hybrid models combining mechanistic principles with non-parametric components. In this article, we shall show how LFMs can be equivalently formulated and solved using the state variable approach. We shall also show how the Gaussian process prior used in LFMs can be equivalently formulated as a linear statespace model driven by a white noise process and how inference on the resulting model can be efficiently implemented using Kalman filter and smoother. Then we shall show how the recently proposed switching LFM can be reformulated using the state variable approach, and how we can construct a probabilistic model for the switches by formulating a similar switching LFM as a switching linear dynamic system (SLDS). We illustrate the performance of the proposed methodology in simulated scenarios and apply it to inferring the switching points in GPS data collected from car movement data in urban environment.
Jouni Hartikainen, Simo Sarkka
null
1202.3730
null
null
What Cannot be Learned with Bethe Approximations
cs.LG stat.ML
We address the problem of learning the parameters in graphical models when inference is intractable. A common strategy in this case is to replace the partition function with its Bethe approximation. We show that there exists a regime of empirical marginals where such Bethe learning will fail. By failure we mean that the empirical marginals cannot be recovered from the approximated maximum likelihood parameters (i.e., moment matching is not achieved). We provide several conditions on empirical marginals that yield outer and inner bounds on the set of Bethe learnable marginals. An interesting implication of our results is that there exists a large class of marginals that cannot be obtained as stable fixed points of belief propagation. Taken together our results provide a novel approach to analyzing learning with Bethe approximations and highlight when it can be expected to work or fail.
Uri Heinemann, Amir Globerson
null
1202.3731
null
null
Sum-Product Networks: A New Deep Architecture
cs.LG cs.AI stat.ML
The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sum-product networks (SPNs). SPNs are directed acyclic graphs with variables as leaves, sums and products as internal nodes, and weighted edges. We show that if an SPN is complete and consistent it represents the partition function and all marginals of some graphical model, and give semantics to its nodes. Essentially all tractable graphical models can be cast as SPNs, but SPNs are also strictly more general. We then propose learning algorithms for SPNs, based on backpropagation and EM. Experiments show that inference and learning with SPNs can be both faster and more accurate than with standard deep networks. For example, SPNs perform image completion better than state-of-the-art deep networks for this task. SPNs also have intriguing potential connections to the architecture of the cortex.
Hoifung Poon, Pedro Domingos
null
1202.3732
null
null
Lipschitz Parametrization of Probabilistic Graphical Models
cs.LG stat.ML
We show that the log-likelihood of several probabilistic graphical models is Lipschitz continuous with respect to the lp-norm of the parameters. We discuss several implications of Lipschitz parametrization. We present an upper bound of the Kullback-Leibler divergence that allows understanding methods that penalize the lp-norm of differences of parameters as the minimization of that upper bound. The expected log-likelihood is lower bounded by the negative lp-norm, which allows understanding the generalization ability of probabilistic models. The exponential of the negative lp-norm is involved in the lower bound of the Bayes error rate, which shows that it is reasonable to use parameters as features in algorithms that rely on metric spaces (e.g. classification, dimensionality reduction, clustering). Our results do not rely on specific algorithms for learning the structure or parameters. We show preliminary results for activity recognition and temporal segmentation.
Jean Honorio
null
1202.3733
null
null