Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/bool.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-constant-conversion %s
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-constant-conversion \
// RUN: -Wno-deprecated -Wdeprecated-increment-bool %s
// Bool literals can be enum values.
enum {
ReadWrite = false,
ReadOnly = true
};
// bool cannot be decremented, and gives a warning on increment
void test(bool b)
{
++b; // expected-warning {{incrementing expression of type bool is deprecated}}
b++; // expected-warning {{incrementing expression of type bool is deprecated}}
--b; // expected-error {{cannot decrement expression of type bool}}
b--; // expected-error {{cannot decrement expression of type bool}}
bool *b1 = (int *)0; // expected-error{{cannot initialize}}
}
// static_assert_arg_is_bool(x) compiles only if x is a bool.
template <typename T>
void static_assert_arg_is_bool(T x) {
bool* p = &x;
}
void test2() {
int n = 2;
static_assert_arg_is_bool(n && 4); // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
static_assert_arg_is_bool(n || 5); // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/lambda-expressions.cpp
|
// RUN: %clang_cc1 -std=c++11 -Wno-unused-value -fsyntax-only -verify -fblocks %s
// RUN: %clang_cc1 -std=c++1y -Wno-unused-value -fsyntax-only -verify -fblocks %s
namespace std { class type_info; };
namespace ExplicitCapture {
class C {
int Member;
static void Overload(int);
void Overload();
virtual C& Overload(float);
void ImplicitThisCapture() {
[](){(void)Member;}; // expected-error {{'this' cannot be implicitly captured in this context}}
[&](){(void)Member;};
[this](){(void)Member;};
[this]{[this]{};};
[]{[this]{};};// expected-error {{'this' cannot be implicitly captured in this context}}
[]{Overload(3);};
[]{Overload();}; // expected-error {{'this' cannot be implicitly captured in this context}}
[]{(void)typeid(Overload());};
[]{(void)typeid(Overload(.5f));};// expected-error {{'this' cannot be implicitly captured in this context}}
}
};
void f() {
[this] () {}; // expected-error {{'this' cannot be captured in this context}}
}
}
namespace ReturnDeduction {
void test() {
[](){ return 1; };
[](){ return 1; };
[](){ return ({return 1; 1;}); };
[](){ return ({return 'c'; 1;}); }; // expected-error {{must match previous return type}}
[]()->int{ return 'c'; return 1; };
[](){ return 'c'; return 1; }; // expected-error {{must match previous return type}}
[]() { return; return (void)0; };
[](){ return 1; return 1; };
}
}
namespace ImplicitCapture {
void test() {
int a = 0; // expected-note 5 {{declared}}
[]() { return a; }; // expected-error {{variable 'a' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note {{begins here}}
[&]() { return a; };
[=]() { return a; };
[=]() { int* b = &a; }; // expected-error {{cannot initialize a variable of type 'int *' with an rvalue of type 'const int *'}}
[=]() { return [&]() { return a; }; };
[]() { return [&]() { return a; }; }; // expected-error {{variable 'a' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note {{lambda expression begins here}}
[]() { return ^{ return a; }; };// expected-error {{variable 'a' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note {{lambda expression begins here}}
[]() { return [&a] { return a; }; }; // expected-error 2 {{variable 'a' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note 2 {{lambda expression begins here}}
[=]() { return [&a] { return a; }; }; //
const int b = 2;
[]() { return b; };
union { // expected-note {{declared}}
int c;
float d;
};
d = 3;
[=]() { return c; }; // expected-error {{unnamed variable cannot be implicitly captured in a lambda expression}}
__block int e; // expected-note 3 {{declared}}
[&]() { return e; }; // expected-error {{__block variable 'e' cannot be captured in a lambda expression}}
[&e]() { return e; }; // expected-error 2 {{__block variable 'e' cannot be captured in a lambda expression}}
int f[10]; // expected-note {{declared}}
[&]() { return f[2]; };
(void) ^{ return []() { return f[2]; }; }; // expected-error {{variable 'f' cannot be implicitly captured in a lambda with no capture-default specified}} \
// expected-note{{lambda expression begins here}}
struct G { G(); G(G&); int a; }; // expected-note 6 {{not viable}}
G g;
[=]() { const G* gg = &g; return gg->a; };
[=]() { return [=]{ const G* gg = &g; return gg->a; }(); }; // expected-error {{no matching constructor for initialization of 'G'}}
(void)^{ return [=]{ const G* gg = &g; return gg->a; }(); }; // expected-error 2 {{no matching constructor for initialization of 'const G'}}
const int h = a; // expected-note {{declared}}
[]() { return h; }; // expected-error {{variable 'h' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note {{lambda expression begins here}}
// References can appear in constant expressions if they are initialized by
// reference constant expressions.
int i;
int &ref_i = i; // expected-note {{declared}}
[] { return ref_i; }; // expected-error {{variable 'ref_i' cannot be implicitly captured in a lambda with no capture-default specified}} expected-note {{lambda expression begins here}}
static int j;
int &ref_j = j;
[] { return ref_j; }; // ok
}
}
namespace PR12031 {
struct X {
template<typename T>
X(const T&);
~X();
};
void f(int i, X x);
void g() {
const int v = 10;
f(v, [](){});
}
}
namespace Array {
int &f(int *p);
char &f(...);
void g() {
int n = -1;
[=] {
int arr[n]; // VLA
} ();
const int m = -1;
[] {
int arr[m]; // expected-error{{negative size}}
} ();
[&] {
int arr[m]; // expected-error{{negative size}}
} ();
[=] {
int arr[m]; // expected-error{{negative size}}
} ();
[m] {
int arr[m]; // expected-error{{negative size}}
} ();
}
}
void PR12248()
{
unsigned int result = 0;
auto l = [&]() { ++result; };
}
namespace ModifyingCapture {
void test() {
int n = 0;
[=] {
n = 1; // expected-error {{cannot assign to a variable captured by copy in a non-mutable lambda}}
};
}
}
namespace VariadicPackExpansion {
template<typename T, typename U> using Fst = T;
template<typename...Ts> bool g(Fst<bool, Ts> ...bools);
template<typename...Ts> bool f(Ts &&...ts) {
return g<Ts...>([&ts] {
if (!ts)
return false;
--ts;
return true;
} () ...);
}
void h() {
int a = 5, b = 2, c = 3;
while (f(a, b, c)) {
}
}
struct sink {
template<typename...Ts> sink(Ts &&...) {}
};
template<typename...Ts> void local_class() {
sink {
[] (Ts t) {
struct S : Ts {
void f(Ts t) {
Ts &that = *this;
that = t;
}
Ts g() { return *this; };
};
S s;
s.f(t);
return s;
} (Ts()).g() ...
};
};
struct X {}; struct Y {};
template void local_class<X, Y>();
template<typename...Ts> void nested(Ts ...ts) {
f(
// Each expansion of this lambda implicitly captures all of 'ts', because
// the inner lambda also expands 'ts'.
[&] {
return ts + [&] { return f(ts...); } ();
} () ...
);
}
template void nested(int, int, int);
template<typename...Ts> void nested2(Ts ...ts) { // expected-note 2{{here}}
// Capture all 'ts', use only one.
f([&ts...] { return ts; } ()...);
// Capture each 'ts', use it.
f([&ts] { return ts; } ()...);
// Capture all 'ts', use all of them.
f([&ts...] { return (int)f(ts...); } ());
// Capture each 'ts', use all of them. Ill-formed. In more detail:
//
// We instantiate two lambdas here; the first captures ts$0, the second
// captures ts$1. Both of them reference both ts parameters, so both are
// ill-formed because ts can't be implicitly captured.
//
// FIXME: This diagnostic does not explain what's happening. We should
// specify which 'ts' we're referring to in its diagnostic name. We should
// also say which slice of the pack expansion is being performed in the
// instantiation backtrace.
f([&ts] { return (int)f(ts...); } ()...); // \
// expected-error 2{{'ts' cannot be implicitly captured}} \
// expected-note 2{{lambda expression begins here}}
}
template void nested2(int); // ok
template void nested2(int, int); // expected-note {{in instantiation of}}
}
namespace PR13860 {
void foo() {
auto x = PR13860UndeclaredIdentifier(); // expected-error {{use of undeclared identifier 'PR13860UndeclaredIdentifier'}}
auto y = [x]() { };
static_assert(sizeof(y), "");
}
}
namespace PR13854 {
auto l = [](void){};
}
namespace PR14518 {
auto f = [](void) { return __func__; }; // no-warning
}
namespace PR16708 {
auto L = []() {
auto ret = 0;
return ret;
return 0;
};
}
namespace TypeDeduction {
struct S {};
void f() {
const S s {};
S &&t = [&] { return s; } ();
#if __cplusplus > 201103L
S &&u = [&] () -> auto { return s; } ();
#endif
}
}
namespace lambdas_in_NSDMIs {
template<class T>
struct L {
T t{};
T t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
};
L<int> l;
namespace non_template {
struct L {
int t = 0;
int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
};
L l;
}
}
// PR18477: don't try to capture 'this' from an NSDMI encountered while parsing
// a lambda.
namespace NSDMIs_in_lambdas {
template<typename T> struct S { int a = 0; int b = a; };
void f() { []() { S<int> s; }; }
auto x = []{ struct S { int n, m = n; }; };
auto y = [&]{ struct S { int n, m = n; }; }; // expected-error {{non-local lambda expression cannot have a capture-default}}
void g() { auto z = [&]{ struct S { int n, m = n; }; }; }
}
namespace CaptureIncomplete {
struct Incomplete; // expected-note 2{{forward decl}}
void g(const Incomplete &a);
void f(Incomplete &a) {
(void) [a] {}; // expected-error {{incomplete}}
(void) [&a] {};
(void) [=] { g(a); }; // expected-error {{incomplete}}
(void) [&] { f(a); };
}
}
namespace CaptureAbstract {
struct S {
virtual void f() = 0; // expected-note {{unimplemented}}
int n = 0;
};
struct T : S {
constexpr T() {}
void f();
};
void f() {
constexpr T t = T();
S &s = const_cast<T&>(t);
// FIXME: Once we properly compute odr-use per DR712, this should be
// accepted (and should not capture 's').
[=] { return s.n; }; // expected-error {{abstract}}
}
}
namespace PR18128 {
auto l = [=]{}; // expected-error {{non-local lambda expression cannot have a capture-default}}
struct S {
int n;
int (*f())[true ? 1 : ([=]{ return n; }(), 0)];
// expected-error@-1 {{non-local lambda expression cannot have a capture-default}}
// expected-error@-2 {{invalid use of non-static data member 'n'}}
// expected-error@-3 {{a lambda expression may not appear inside of a constant expression}}
int g(int k = ([=]{ return n; }(), 0));
// expected-error@-1 {{non-local lambda expression cannot have a capture-default}}
// expected-error@-2 {{invalid use of non-static data member 'n'}}
int a = [=]{ return n; }(); // ok
int b = [=]{ return [=]{ return n; }(); }(); // ok
int c = []{ int k = 0; return [=]{ return k; }(); }(); // ok
int d = []{ return [=]{ return n; }(); }(); // expected-error {{'this' cannot be implicitly captured in this context}}
};
}
namespace PR18473 {
template<typename T> void f() {
T t(0);
(void) [=]{ int n = t; }; // expected-error {{deleted}}
}
template void f<int>();
struct NoCopy {
NoCopy(int);
NoCopy(const NoCopy &) = delete; // expected-note {{deleted}}
operator int() const;
};
template void f<NoCopy>(); // expected-note {{instantiation}}
}
void PR19249() {
auto x = [&x]{}; // expected-error {{cannot appear in its own init}}
}
namespace PR20731 {
template <class L, int X = sizeof(L)>
void Job(L l);
template <typename... Args>
void Logger(Args &&... args) {
auto len = Invalid_Function((args)...);
// expected-error@-1 {{use of undeclared identifier 'Invalid_Function'}}
Job([len]() {});
}
void GetMethod() {
Logger();
// expected-note@-1 {{in instantiation of function template specialization 'PR20731::Logger<>' requested here}}
}
template <typename T>
struct A {
T t;
// expected-error@-1 {{field has incomplete type 'void'}}
};
template <typename F>
void g(F f) {
auto a = A<decltype(f())>{};
// expected-note@-1 {{in instantiation of template class 'PR20731::A<void>' requested here}}
auto xf = [a, f]() {};
int x = sizeof(xf);
};
void f() {
g([] {});
// expected-note-re@-1 {{in instantiation of function template specialization 'PR20731::g<(lambda at {{.*}}>' requested here}}
}
template <class _Rp> struct function {
template <class _Fp>
function(_Fp) {
static_assert(sizeof(_Fp) > 0, "Type must be complete.");
}
};
template <typename T> void p(T t) {
auto l = some_undefined_function(t);
// expected-error@-1 {{use of undeclared identifier 'some_undefined_function'}}
function<void()>(([l]() {}));
}
void q() { p(0); }
// expected-note@-1 {{in instantiation of function template specialization 'PR20731::p<int>' requested here}}
}
namespace lambda_in_default_mem_init {
template<typename T> void f() {
struct S { int n = []{ return 0; }(); };
}
template void f<int>();
template<typename T> void g() {
struct S { int n = [](int n){ return n; }(0); };
}
template void g<int>();
}
namespace error_in_transform_prototype {
template<class T>
void f(T t) {
// expected-error@+2 {{type 'int' cannot be used prior to '::' because it has no members}}
// expected-error@+1 {{no member named 'ns' in 'error_in_transform_prototype::S'}}
auto x = [](typename T::ns::type &k) {};
}
class S {};
void foo() {
f(5); // expected-note {{requested here}}
f(S()); // expected-note {{requested here}}
}
}
namespace PR21857 {
template<typename Fn> struct fun : Fn {
fun() = default;
using Fn::operator();
};
template<typename Fn> fun<Fn> wrap(Fn fn);
auto x = wrap([](){});
}
namespace PR13987 {
class Enclosing {
void Method(char c = []()->char {
int d = []()->int {
struct LocalClass {
int Method() { return 0; }
};
return 0;
}();
return d; }()
);
};
}
namespace PR23860 {
template <class> struct A {
void f(int x = []() {
struct B {
void g() {}
};
return 0;
}());
};
int main() {
}
A<int> a;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/devirtualize-vtable-marking.cpp
|
// RUN: %clang_cc1 -verify -std=c++11 %s
// expected-no-diagnostics
template <typename T> struct OwnPtr {
T *p;
~OwnPtr() {
static_assert(sizeof(T) > 0, "incomplete T");
delete p;
}
};
namespace use_vtable_for_vcall {
struct Incomplete;
struct A {
virtual ~A() {}
virtual void m() {}
};
struct B : A {
B();
virtual void m() { }
virtual void m2() { static_cast<A *>(this)->m(); }
OwnPtr<Incomplete> m_sqlError;
};
void f() {
// Since B's constructor is declared out of line, nothing in this file
// references a vtable, so the destructor doesn't get built.
A *b = new B();
b->m();
delete b;
}
}
namespace dont_mark_qualified_vcall {
struct Incomplete;
struct A {
virtual ~A() {}
virtual void m() {}
};
struct B : A {
B();
// Previously we would mark B's vtable referenced to devirtualize this call to
// A::m, even though it's not a virtual call.
virtual void m() { A::m(); }
OwnPtr<Incomplete> m_sqlError;
};
B *f() {
return new B();
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/uninit-variables-conditional.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wconditional-uninitialized -fsyntax-only %s -verify
class Foo {
public:
Foo();
~Foo();
operator bool();
};
int bar();
int baz();
int init(double *);
// This case flags a false positive under -Wconditional-uninitialized because
// the destructor in Foo fouls about the minor bit of path-sensitivity in
// -Wuninitialized.
double test() {
double x; // expected-note{{initialize the variable 'x' to silence this warning}}
if (bar() || baz() || Foo() || init(&x))
return 1.0;
return x; // expected-warning {{variable 'x' may be uninitialized when used here}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-tautological-compare.cpp
|
// Force x86-64 because some of our heuristics are actually based
// on integer sizes.
// RUN: %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -verify -std=c++11 %s
namespace RuntimeBehavior {
// Avoid emitting tautological compare warnings when the code already has
// compile time checks on variable sizes.
const int kintmax = 2147483647;
void test0(short x) {
if (sizeof(x) < sizeof(int) || x < kintmax) {}
if (x < kintmax) {}
// expected-warning@-1{{comparison of constant 2147483647 with expression of type 'short' is always true}}
}
void test1(short x) {
if (x < kintmax) {}
// expected-warning@-1{{comparison of constant 2147483647 with expression of type 'short' is always true}}
if (sizeof(x) < sizeof(int))
return;
if (x < kintmax) {}
}
}
namespace ArrayCompare {
#define GetValue(ptr) ((ptr != 0) ? ptr[0] : 0)
extern int a[] __attribute__((weak));
int b[] = {8,13,21};
struct {
int x[10];
} c;
const char str[] = "text";
void ignore() {
if (a == 0) {}
if (a != 0) {}
(void)GetValue(b);
}
void test() {
if (b == 0) {}
// expected-warning@-1{{comparison of array 'b' equal to a null pointer is always false}}
if (b != 0) {}
// expected-warning@-1{{comparison of array 'b' not equal to a null pointer is always true}}
if (0 == b) {}
// expected-warning@-1{{comparison of array 'b' equal to a null pointer is always false}}
if (0 != b) {}
// expected-warning@-1{{comparison of array 'b' not equal to a null pointer is always true}}
if (c.x == 0) {}
// expected-warning@-1{{comparison of array 'c.x' equal to a null pointer is always false}}
if (c.x != 0) {}
// expected-warning@-1{{comparison of array 'c.x' not equal to a null pointer is always true}}
if (str == 0) {}
// expected-warning@-1{{comparison of array 'str' equal to a null pointer is always false}}
if (str != 0) {}
// expected-warning@-1{{comparison of array 'str' not equal to a null pointer is always true}}
}
}
namespace FunctionCompare {
#define CallFunction(f) ((f != 0) ? f() : 0)
extern void a() __attribute__((weak));
void fun1();
int fun2();
int* fun3();
int* fun4(int);
class S {
public:
static int foo();
};
void ignore() {
if (a == 0) {}
if (0 != a) {}
(void)CallFunction(fun2);
}
void test() {
if (fun1 == 0) {}
// expected-warning@-1{{comparison of function 'fun1' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
if (fun2 == 0) {}
// expected-warning@-1{{comparison of function 'fun2' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
// expected-note@-3{{suffix with parentheses to turn this into a function call}}
if (fun3 == 0) {}
// expected-warning@-1{{comparison of function 'fun3' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
// expected-note@-3{{suffix with parentheses to turn this into a function call}}
if (fun4 == 0) {}
// expected-warning@-1{{comparison of function 'fun4' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
if (nullptr != fun1) {}
// expected-warning@-1{{comparison of function 'fun1' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
if (nullptr != fun2) {}
// expected-warning@-1{{comparison of function 'fun2' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
if (nullptr != fun3) {}
// expected-warning@-1{{comparison of function 'fun3' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
// expected-note@-3{{suffix with parentheses to turn this into a function call}}
if (nullptr != fun4) {}
// expected-warning@-1{{comparison of function 'fun4' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
if (S::foo == 0) {}
// expected-warning@-1{{comparison of function 'S::foo' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
// expected-note@-3{{suffix with parentheses to turn this into a function call}}
}
}
namespace PointerCompare {
extern int a __attribute__((weak));
int b;
static int c;
class S {
public:
static int a;
int b;
};
void ignored() {
if (&a == 0) {}
}
void test() {
S s;
if (&b == 0) {}
// expected-warning@-1{{comparison of address of 'b' equal to a null pointer is always false}}
if (&c == 0) {}
// expected-warning@-1{{comparison of address of 'c' equal to a null pointer is always false}}
if (&s.a == 0) {}
// expected-warning@-1{{comparison of address of 's.a' equal to a null pointer is always false}}
if (&s.b == 0) {}
// expected-warning@-1{{comparison of address of 's.b' equal to a null pointer is always false}}
if (&S::a == 0) {}
// expected-warning@-1{{comparison of address of 'S::a' equal to a null pointer is always false}}
}
}
namespace macros {
#define assert(x) if (x) {}
int array[5];
void fun();
int x;
void test() {
assert(array == 0);
// expected-warning@-1{{comparison of array 'array' equal to a null pointer is always false}}
assert(array != 0);
// expected-warning@-1{{comparison of array 'array' not equal to a null pointer is always true}}
assert(array == 0 && "expecting null pointer");
// expected-warning@-1{{comparison of array 'array' equal to a null pointer is always false}}
assert(array != 0 && "expecting non-null pointer");
// expected-warning@-1{{comparison of array 'array' not equal to a null pointer is always true}}
assert(fun == 0);
// expected-warning@-1{{comparison of function 'fun' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
assert(fun != 0);
// expected-warning@-1{{comparison of function 'fun' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
assert(fun == 0 && "expecting null pointer");
// expected-warning@-1{{comparison of function 'fun' equal to a null pointer is always false}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
assert(fun != 0 && "expecting non-null pointer");
// expected-warning@-1{{comparison of function 'fun' not equal to a null pointer is always true}}
// expected-note@-2{{prefix with the address-of operator to silence this warning}}
assert(&x == 0);
// expected-warning@-1{{comparison of address of 'x' equal to a null pointer is always false}}
assert(&x != 0);
// expected-warning@-1{{comparison of address of 'x' not equal to a null pointer is always true}}
assert(&x == 0 && "expecting null pointer");
// expected-warning@-1{{comparison of address of 'x' equal to a null pointer is always false}}
assert(&x != 0 && "expecting non-null pointer");
// expected-warning@-1{{comparison of address of 'x' not equal to a null pointer is always true}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx11-thread-local.cpp
|
// RUN: %clang_cc1 -std=c++11 -triple=x86_64-linux-gnu -verify %s
struct S {
static thread_local int a;
static int b; // expected-note {{here}}
thread_local int c; // expected-error {{'thread_local' is only allowed on variable declarations}}
static thread_local int d; // expected-note {{here}}
};
thread_local int S::a;
thread_local int S::b; // expected-error {{thread-local declaration of 'b' follows non-thread-local declaration}}
thread_local int S::c; // expected-error {{non-static data member defined out-of-line}}
int S::d; // expected-error {{non-thread-local declaration of 'd' follows thread-local declaration}}
thread_local int x[3];
thread_local int y[3];
thread_local int z[3]; // expected-note {{previous}}
void f() {
thread_local int x;
static thread_local int y;
extern thread_local int z; // expected-error {{redeclaration of 'z' with a different type}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/copy-constructor-error.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
struct S {
S (S); // expected-error {{copy constructor must pass its first argument by reference}}
};
S f();
void g() {
S a( f() );
}
class foo {
foo(foo&, int); // expected-note {{previous}}
foo(int); // expected-note {{previous}}
foo(const foo&); // expected-note {{previous}}
};
foo::foo(foo&, int = 0) { } // expected-error {{makes this constructor a copy constructor}}
foo::foo(int = 0) { } // expected-error {{makes this constructor a default constructor}}
foo::foo(const foo& = 0) { } //expected-error {{makes this constructor a default constructor}}
namespace PR6064 {
struct A {
A() { }
inline A(A&, int); // expected-note {{previous}}
};
A::A(A&, int = 0) { } // expected-error {{makes this constructor a copy constructor}}
void f() {
A const a;
A b(a);
}
}
namespace PR10618 {
struct A {
A(int, int, int); // expected-note {{previous}}
};
A::A(int a = 0, // expected-error {{makes this constructor a default constructor}}
int b = 0,
int c = 0) {}
struct B {
B(int);
B(const B&, int); // expected-note {{previous}}
};
B::B(const B& = B(0), // expected-error {{makes this constructor a default constructor}}
int = 0) {
}
struct C {
C(const C&, int); // expected-note {{previous}}
};
C::C(const C&,
int = 0) { // expected-error {{makes this constructor a copy constructor}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/typo-correction-delayed.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-c++11-extensions %s
struct A {};
struct B {};
struct D {
A fizbin; // expected-note 2 {{declared here}}
A foobar; // expected-note 2 {{declared here}}
B roxbin; // expected-note 2 {{declared here}}
B toobad; // expected-note 2 {{declared here}}
void BooHoo();
void FoxBox();
};
void something(A, B);
void test() {
D obj;
something(obj.fixbin, // expected-error {{did you mean 'fizbin'?}}
obj.toobat); // expected-error {{did you mean 'toobad'?}}
something(obj.toobat, // expected-error {{did you mean 'foobar'?}}
obj.fixbin); // expected-error {{did you mean 'roxbin'?}}
something(obj.fixbin, // expected-error {{did you mean 'fizbin'?}}
obj.fixbin); // expected-error {{did you mean 'roxbin'?}}
something(obj.toobat, // expected-error {{did you mean 'foobar'?}}
obj.toobat); // expected-error {{did you mean 'toobad'?}}
// Both members could be corrected to methods, but that isn't valid.
something(obj.boohoo, // expected-error-re {{no member named 'boohoo' in 'D'{{$}}}}
obj.foxbox); // expected-error-re {{no member named 'foxbox' in 'D'{{$}}}}
// The first argument has a usable correction but the second doesn't.
something(obj.boobar, // expected-error-re {{no member named 'boobar' in 'D'{{$}}}}
obj.foxbox); // expected-error-re {{no member named 'foxbox' in 'D'{{$}}}}
}
// Ensure the delayed typo correction does the right thing when trying to
// recover using a seemingly-valid correction for which a valid expression to
// replace the TypoExpr cannot be created (but which does have a second
// correction candidate that would be a valid and usable correction).
class Foo {
public:
template <> void testIt(); // expected-error {{no function template matches}}
void textIt(); // expected-note {{'textIt' declared here}}
};
void testMemberExpr(Foo *f) {
f->TestIt(); // expected-error {{no member named 'TestIt' in 'Foo'; did you mean 'textIt'?}}
}
void callee(double, double);
void testNoCandidates() {
callee(xxxxxx, // expected-error-re {{use of undeclared identifier 'xxxxxx'{{$}}}}
zzzzzz); // expected-error-re {{use of undeclared identifier 'zzzzzz'{{$}}}}
}
class string {};
struct Item {
void Nest();
string text();
Item* next(); // expected-note {{'next' declared here}}
};
void testExprFilter(Item *i) {
Item *j;
j = i->Next(); // expected-error {{no member named 'Next' in 'Item'; did you mean 'next'?}}
}
// Test that initializer expressions are handled correctly and that the type
// being initialized is taken into account when choosing a correction.
namespace initializerCorrections {
struct Node {
string text() const;
// Node* Next() is not implemented yet
};
void f(Node *node) {
// text is only an edit distance of 1 from Next, but would trigger type
// conversion errors if used in this initialization expression.
Node *next = node->Next(); // expected-error-re {{no member named 'Next' in 'initializerCorrections::Node'{{$}}}}
}
struct LinkedNode {
LinkedNode* next(); // expected-note {{'next' declared here}}
string text() const;
};
void f(LinkedNode *node) {
// text and next are equidistant from Next, but only one results in a valid
// initialization expression.
LinkedNode *next = node->Next(); // expected-error {{no member named 'Next' in 'initializerCorrections::LinkedNode'; did you mean 'next'?}}
}
struct NestedNode {
NestedNode* Nest();
NestedNode* next();
string text() const;
};
void f(NestedNode *node) {
// There are two equidistant, usable corrections for Next: next and Nest
NestedNode *next = node->Next(); // expected-error-re {{no member named 'Next' in 'initializerCorrections::NestedNode'{{$}}}}
}
}
namespace PR21669 {
void f(int *i) {
// Check that arguments to a builtin with custom type checking are corrected
// properly, since calls to such builtins bypass much of the normal code path
// for building and checking the call.
__atomic_load(i, i, something_something); // expected-error-re {{use of undeclared identifier 'something_something'{{$}}}}
}
}
const int DefaultArg = 9; // expected-note {{'DefaultArg' declared here}}
template <int I = defaultArg> struct S {}; // expected-error {{use of undeclared identifier 'defaultArg'; did you mean 'DefaultArg'?}}
S<1> s;
namespace foo {}
void test_paren_suffix() {
foo::bar({5, 6}); // expected-error-re {{no member named 'bar' in namespace 'foo'{{$}}}} \
// expected-error {{expected expression}}
}
const int kNum = 10; // expected-note {{'kNum' declared here}}
class SomeClass {
int Kind;
public:
explicit SomeClass() : Kind(kSum) {} // expected-error {{use of undeclared identifier 'kSum'; did you mean 'kNum'?}}
};
// There used to be an issue with typo resolution inside overloads.
struct AssertionResult { ~AssertionResult(); };
AssertionResult Overload(const char *a);
AssertionResult Overload(int a);
void UseOverload() {
// expected-note@+1 {{'result' declared here}}
const char *result;
// expected-error@+1 {{use of undeclared identifier 'resulta'; did you mean 'result'?}}
Overload(resulta);
}
namespace PR21925 {
struct X {
int get() { return 7; } // expected-note {{'get' declared here}}
};
void test() {
X variable; // expected-note {{'variable' declared here}}
// expected-error@+2 {{use of undeclared identifier 'variableX'; did you mean 'variable'?}}
// expected-error@+1 {{no member named 'getX' in 'PR21925::X'; did you mean 'get'?}}
int x = variableX.getX();
}
}
namespace PR21905 {
int (*a) () = (void)Z; // expected-error-re {{use of undeclared identifier 'Z'{{$}}}}
}
namespace PR21947 {
int blue; // expected-note {{'blue' declared here}}
__typeof blur y; // expected-error {{use of undeclared identifier 'blur'; did you mean 'blue'?}}
}
namespace PR22092 {
a = b ? : 0; // expected-error {{C++ requires a type specifier for all declarations}} \
// expected-error-re {{use of undeclared identifier 'b'{{$}}}}
}
extern long clock (void);
struct Pointer {
void set_xpos(int);
void set_ypos(int);
};
void MovePointer(Pointer &Click, int x, int y) { // expected-note 2 {{'Click' declared here}}
click.set_xpos(x); // expected-error {{use of undeclared identifier 'click'; did you mean 'Click'?}}
click.set_ypos(x); // expected-error {{use of undeclared identifier 'click'; did you mean 'Click'?}}
}
namespace PR22250 {
// expected-error@+4 {{use of undeclared identifier 'size_t'; did you mean 'sizeof'?}}
// expected-error-re@+3 {{use of undeclared identifier 'y'{{$}}}}
// expected-error-re@+2 {{use of undeclared identifier 'z'{{$}}}}
// expected-error@+1 {{expected ';' after top level declarator}}
int getenv_s(size_t *y, char(&z)) {}
}
namespace PR22291 {
template <unsigned I> void f() {
unsigned *prio_bits_array; // expected-note {{'prio_bits_array' declared here}}
// expected-error@+1 {{use of undeclared identifier 'prio_op_array'; did you mean 'prio_bits_array'?}}
__atomic_store_n(prio_op_array + I, false, __ATOMIC_RELAXED);
}
}
namespace PR22297 {
double pow(double x, double y);
struct TimeTicks {
static void Now(); // expected-note {{'Now' declared here}}
};
void f() {
TimeTicks::now(); // expected-error {{no member named 'now' in 'PR22297::TimeTicks'; did you mean 'Now'?}}
}
}
namespace PR23005 {
void f() { int a = Unknown::b(c); } // expected-error {{use of undeclared identifier 'Unknown'}}
// expected-error@-1 {{use of undeclared identifier 'c'}}
}
namespace PR23350 {
int z = 1 ? N : ; // expected-error {{expected expression}}
// expected-error-re@-1 {{use of undeclared identifier 'N'{{$}}}}
}
// PR 23285. This test must be at the end of the file to avoid additional,
// unwanted diagnostics.
// expected-error-re@+2 {{use of undeclared identifier 'uintmax_t'{{$}}}}
// expected-error@+1 {{expected ';' after top level declarator}}
unsigned int a = 0(uintmax_t
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/delete.cpp
|
// Test without PCH
// RUN: %clang_cc1 -fsyntax-only -include %S/delete-mismatch.h -fdiagnostics-parseable-fixits -std=c++11 %s 2>&1 | FileCheck %s
// Test with PCH
// RUN: %clang_cc1 -x c++-header -std=c++11 -emit-pch -o %t %S/delete-mismatch.h
// RUN: %clang_cc1 -std=c++11 -include-pch %t -DWITH_PCH -fsyntax-only -verify %s -ast-dump
void f(int a[10][20]) {
delete a; // expected-warning {{'delete' applied to a pointer-to-array type}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:9-[[@LINE-1]]:9}:"[]"
}
namespace MemberCheck {
struct S {
int *a = new int[5]; // expected-note4 {{allocated with 'new[]' here}}
int *b;
int *c;
static int *d;
S();
S(int);
~S() {
delete a; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete b; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete[] c; // expected-warning {{'delete[]' applied to a pointer that was allocated with 'new'; did you mean 'delete'?}}
}
void f();
};
void S::f()
{
delete a; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete b; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
}
S::S()
: b(new int[1]), c(new int) {} // expected-note3 {{allocated with 'new[]' here}}
// expected-note@-1 {{allocated with 'new' here}}
S::S(int i)
: b(new int[i]), c(new int) {} // expected-note3 {{allocated with 'new[]' here}}
// expected-note@-1 {{allocated with 'new' here}}
struct S2 : S {
~S2() {
delete a; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
}
};
int *S::d = new int[42]; // expected-note {{allocated with 'new[]' here}}
void f(S *s) {
int *a = new int[1]; // expected-note {{allocated with 'new[]' here}}
delete a; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete s->a; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete s->b; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete s->c;
delete s->d;
delete S::d; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
}
// At least one constructor initializes field with matching form of 'new'.
struct MatchingNewIsOK {
int *p;
bool is_array_;
MatchingNewIsOK() : p{new int}, is_array_(false) {}
explicit MatchingNewIsOK(unsigned c) : p{new int[c]}, is_array_(true) {}
~MatchingNewIsOK() {
if (is_array_)
delete[] p;
else
delete p;
}
};
// At least one constructor's body is missing; no proof of mismatch.
struct CantProve_MissingCtorDefinition {
int *p;
CantProve_MissingCtorDefinition();
CantProve_MissingCtorDefinition(int);
~CantProve_MissingCtorDefinition();
};
CantProve_MissingCtorDefinition::CantProve_MissingCtorDefinition()
: p(new int)
{ }
CantProve_MissingCtorDefinition::~CantProve_MissingCtorDefinition()
{
delete[] p;
}
struct base {};
struct derived : base {};
struct InitList {
base *p, *p2 = nullptr, *p3{nullptr}, *p4;
InitList(unsigned c) : p(new derived[c]), p4(nullptr) {} // expected-note {{allocated with 'new[]' here}}
InitList(unsigned c, unsigned) : p{new derived[c]}, p4{nullptr} {} // expected-note {{allocated with 'new[]' here}}
~InitList() {
delete p; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
delete [] p;
delete p2;
delete [] p3;
delete p4;
}
};
}
namespace NonMemberCheck {
#define DELETE_ARRAY(x) delete[] (x)
#define DELETE(x) delete (x)
void f() {
int *a = new int(5); // expected-note2 {{allocated with 'new' here}}
delete[] a; // expected-warning {{'delete[]' applied to a pointer that was allocated with 'new'; did you mean 'delete'?}}
int *b = new int;
delete b;
int *c{new int}; // expected-note {{allocated with 'new' here}}
int *d{new int[1]}; // expected-note2 {{allocated with 'new[]' here}}
delete [ ] c; // expected-warning {{'delete[]' applied to a pointer that was allocated with 'new'; did you mean 'delete'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:9-[[@LINE-1]]:17}:""
delete d; // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-1]]:9-[[@LINE-1]]:9}:"[]"
DELETE_ARRAY(a); // expected-warning {{'delete[]' applied to a pointer that was allocated with 'new'; did you mean 'delete'?}}
DELETE(d); // expected-warning {{'delete' applied to a pointer that was allocated with 'new[]'; did you mean 'delete[]'?}}
}
}
#ifndef WITH_PCH
pch_test::X::X()
: a(new int[1]) // expected-note{{allocated with 'new[]' here}}
{ }
pch_test::X::X(int i)
: a(new int[i]) // expected-note{{allocated with 'new[]' here}}
{ }
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-c++11-extensions.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++98 -Wc++11-extensions -verify %s
long long ll1 = // expected-warning {{'long long' is a C++11 extension}}
-42LL; // expected-warning {{'long long' is a C++11 extension}}
unsigned long long ull1 = // expected-warning {{'long long' is a C++11 extension}}
42ULL; // expected-warning {{'long long' is a C++11 extension}}
enum struct E1 { A, B }; // expected-warning {{scoped enumerations are a C++11 extension}}
enum class E2 { C, D }; // expected-warning {{scoped enumerations are a C++11 extension}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/err_typecheck_assign_const.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
const int global = 5; // expected-note{{variable 'global' declared const here}}
void test1() {
global = 2; // expected-error{{cannot assign to variable 'global' with const-qualified type 'const int'}}
}
void test2 () {
const int local = 5; // expected-note{{variable 'local' declared const here}}
local = 0; // expected-error{{cannot assign to variable 'local' with const-qualified type 'const int'}}
}
void test2 (const int parameter) { // expected-note{{variable 'parameter' declared const here}}
parameter = 2; // expected-error{{cannot assign to variable 'parameter' with const-qualified type 'const int'}}
}
class test3 {
int field;
const int const_field = 1; // expected-note 2{{non-static data member 'const_field' declared const here}}
static const int static_const_field = 1; // expected-note 2{{variable 'static_const_field' declared const here}}
void test() {
const_field = 4; // expected-error{{cannot assign to non-static data member 'const_field' with const-qualified type 'const int'}}
static_const_field = 4; // expected-error{{cannot assign to variable 'static_const_field' with const-qualified type 'const int'}}
}
void test_const() const { // expected-note 2{{member function 'test3::test_const' is declared const here}}
field = 4; // expected-error{{cannot assign to non-static data member within const member function 'test_const'}}
const_field = 4 ; // expected-error{{cannot assign to non-static data member 'const_field' with const-qualified type 'const int'}}
static_const_field = 4; // expected-error{{cannot assign to variable 'static_const_field' with const-qualified type 'const int'}}
}
};
const int &return_const_ref(); // expected-note{{function 'return_const_ref' which returns const-qualified type 'const int &' declared here}}
void test4() {
return_const_ref() = 10; // expected-error{{cannot assign to return value because function 'return_const_ref' returns a const value}}
}
struct S5 {
int field;
const int const_field = 4; // expected-note {{non-static data member 'const_field' declared const here}}
};
void test5() {
S5 s5;
s5.field = 5;
s5.const_field = 5; // expected-error{{cannot assign to non-static data member 'const_field' with const-qualified type 'const int'}}
}
struct U1 {
int a = 5;
};
struct U2 {
U1 u1;
};
struct U3 {
const U2 u2 = U2(); // expected-note{{non-static data member 'u2' declared const here}}
};
struct U4 {
U3 u3;
};
void test6() {
U4 u4;
u4.u3.u2.u1.a = 5; // expected-error{{cannot assign to non-static data member 'u2' with const-qualified type 'const U2'}}
}
struct A {
int z;
};
struct B {
A a;
};
struct C {
B b;
C();
};
const C &getc(); // expected-note{{function 'getc' which returns const-qualified type 'const C &' declared here}}
void test7() {
const C c; // expected-note{{variable 'c' declared const here}}
c.b.a.z = 5; // expected-error{{cannot assign to variable 'c' with const-qualified type 'const C'}}
getc().b.a.z = 5; // expected-error{{cannot assign to return value because function 'getc' returns a const value}}
}
struct D { const int n; }; // expected-note 2{{non-static data member 'n' declared const here}}
struct E { D *const d = 0; };
void test8() {
extern D *const d;
d->n = 0; // expected-error{{cannot assign to non-static data member 'n' with const-qualified type 'const int'}}
E e;
e.d->n = 0; // expected-error{{cannot assign to non-static data member 'n' with const-qualified type 'const int'}}
}
struct F { int n; };
struct G { const F *f; }; // expected-note{{non-static data member 'f' declared const here}}
void test10() {
const F *f; // expected-note{{variable 'f' declared const here}}
f->n = 0; // expected-error{{cannot assign to variable 'f' with const-qualified type 'const F *'}}
G g;
g.f->n = 0; // expected-error{{cannot assign to non-static data member 'f' with const-qualified type 'const F *'}}
}
void test11(
const int x, // expected-note{{variable 'x' declared const here}}
const int& y // expected-note{{variable 'y' declared const here}}
) {
x = 5; // expected-error{{cannot assign to variable 'x' with const-qualified type 'const int'}}
y = 5; // expected-error{{cannot assign to variable 'y' with const-qualified type 'const int &'}}
}
struct H {
const int a = 0; // expected-note{{non-static data member 'a' declared const here}}
const int &b = a; // expected-note{{non-static data member 'b' declared const here}}
};
void test12(H h) {
h.a = 1; // expected-error {{cannot assign to non-static data member 'a' with const-qualified type 'const int'}}
h.b = 2; // expected-error {{cannot assign to non-static data member 'b' with const-qualified type 'const int &'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/reinterpret-cast.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -ffreestanding -Wundefined-reinterpret-cast -Wno-unused-volatile-lvalue %s
#include <stdint.h>
enum test { testval = 1 };
struct structure { int m; };
typedef void (*fnptr)();
// Test the conversion to self.
void self_conversion()
{
// T->T is allowed per [expr.reinterpret.cast]p2 so long as it doesn't
// cast away constness, and is integral, enumeration, pointer or
// pointer-to-member.
int i = 0;
(void)reinterpret_cast<int>(i);
test e = testval;
(void)reinterpret_cast<test>(e);
// T*->T* is allowed
int *pi = 0;
(void)reinterpret_cast<int*>(pi);
const int structure::*psi = 0;
(void)reinterpret_cast<const int structure::*>(psi);
structure s;
(void)reinterpret_cast<structure>(s); // expected-error {{reinterpret_cast from 'structure' to 'structure' is not allowed}}
float f = 0.0f;
(void)reinterpret_cast<float>(f); // expected-error {{reinterpret_cast from 'float' to 'float' is not allowed}}
}
// Test conversion between pointer and integral types, as in /3 and /4.
void integral_conversion()
{
void *vp = reinterpret_cast<void*>(testval);
intptr_t i = reinterpret_cast<intptr_t>(vp);
(void)reinterpret_cast<float*>(i);
fnptr fnp = reinterpret_cast<fnptr>(i);
(void)reinterpret_cast<char>(fnp); // expected-error {{cast from pointer to smaller type 'char' loses information}}
(void)reinterpret_cast<intptr_t>(fnp);
}
void pointer_conversion()
{
int *p1 = 0;
float *p2 = reinterpret_cast<float*>(p1);
structure *p3 = reinterpret_cast<structure*>(p2);
typedef int **ppint;
ppint *deep = reinterpret_cast<ppint*>(p3);
(void)reinterpret_cast<fnptr*>(deep);
}
void constness()
{
int ***const ipppc = 0;
// Valid: T1* -> T2 const*
int const *icp = reinterpret_cast<int const*>(ipppc);
// Invalid: T1 const* -> T2*
(void)reinterpret_cast<int*>(icp); // expected-error {{reinterpret_cast from 'const int *' to 'int *' casts away qualifiers}}
// Invalid: T1*** -> T2 const* const**
int const *const **icpcpp = reinterpret_cast<int const* const**>(ipppc); // expected-error {{reinterpret_cast from 'int ***' to 'const int *const **' casts away qualifiers}}
// Valid: T1* -> T2*
int *ip = reinterpret_cast<int*>(icpcpp);
// Valid: T* -> T const*
(void)reinterpret_cast<int const*>(ip);
// Valid: T*** -> T2 const* const* const*
(void)reinterpret_cast<int const* const* const*>(ipppc);
}
void fnptrs()
{
typedef int (*fnptr2)(int);
fnptr fp = 0;
(void)reinterpret_cast<fnptr2>(fp);
void *vp = reinterpret_cast<void*>(fp);
(void)reinterpret_cast<fnptr>(vp);
}
void refs()
{
long l = 0;
char &c = reinterpret_cast<char&>(l);
// Bad: from rvalue
(void)reinterpret_cast<int&>(&c); // expected-error {{reinterpret_cast from rvalue to reference type 'int &'}}
}
void memptrs()
{
const int structure::*psi = 0;
(void)reinterpret_cast<const float structure::*>(psi);
(void)reinterpret_cast<int structure::*>(psi); // expected-error {{reinterpret_cast from 'const int structure::*' to 'int structure::*' casts away qualifiers}}
void (structure::*psf)() = 0;
(void)reinterpret_cast<int (structure::*)()>(psf);
(void)reinterpret_cast<void (structure::*)()>(psi); // expected-error-re {{reinterpret_cast from 'const int structure::*' to 'void (structure::*)(){{( __attribute__\(\(thiscall\)\))?}}' is not allowed}}
(void)reinterpret_cast<int structure::*>(psf); // expected-error-re {{reinterpret_cast from 'void (structure::*)(){{( __attribute__\(\(thiscall\)\))?}}' to 'int structure::*' is not allowed}}
// Cannot cast from integers to member pointers, not even the null pointer
// literal.
(void)reinterpret_cast<void (structure::*)()>(0); // expected-error-re {{reinterpret_cast from 'int' to 'void (structure::*)(){{( __attribute__\(\(thiscall\)\))?}}' is not allowed}}
(void)reinterpret_cast<int structure::*>(0); // expected-error {{reinterpret_cast from 'int' to 'int structure::*' is not allowed}}
}
namespace PR5545 {
// PR5545
class A;
class B;
void (A::*a)();
void (B::*b)() = reinterpret_cast<void (B::*)()>(a);
}
// <rdar://problem/8018292>
void const_arrays() {
typedef char STRING[10];
const STRING *s;
const char *c;
(void)reinterpret_cast<char *>(s); // expected-error {{reinterpret_cast from 'const STRING *' (aka 'char const (*)[10]') to 'char *' casts away qualifiers}}
(void)reinterpret_cast<const STRING *>(c);
}
namespace PR9564 {
struct a { int a : 10; }; a x;
int *y = &reinterpret_cast<int&>(x.a); // expected-error {{not allowed}}
__attribute((ext_vector_type(4))) typedef float v4;
float& w(v4 &a) { return reinterpret_cast<float&>(a[1]); } // expected-error {{not allowed}}
}
void dereference_reinterpret_cast() {
struct A {};
typedef A A2;
class B {};
typedef B B2;
A a;
B b;
A2 a2;
B2 b2;
long l;
double d;
float f;
char c;
unsigned char uc;
void* v_ptr;
(void)reinterpret_cast<double&>(l); // expected-warning {{reinterpret_cast from 'long' to 'double &' has undefined behavior}}
(void)*reinterpret_cast<double*>(&l); // expected-warning {{dereference of type 'double *' that was reinterpret_cast from type 'long *' has undefined behavior}}
(void)reinterpret_cast<double&>(f); // expected-warning {{reinterpret_cast from 'float' to 'double &' has undefined behavior}}
(void)*reinterpret_cast<double*>(&f); // expected-warning {{dereference of type 'double *' that was reinterpret_cast from type 'float *' has undefined behavior}}
(void)reinterpret_cast<float&>(l); // expected-warning {{reinterpret_cast from 'long' to 'float &' has undefined behavior}}
(void)*reinterpret_cast<float*>(&l); // expected-warning {{dereference of type 'float *' that was reinterpret_cast from type 'long *' has undefined behavior}}
(void)reinterpret_cast<float&>(d); // expected-warning {{reinterpret_cast from 'double' to 'float &' has undefined behavior}}
(void)*reinterpret_cast<float*>(&d); // expected-warning {{dereference of type 'float *' that was reinterpret_cast from type 'double *' has undefined behavior}}
// TODO: add warning for tag types
(void)reinterpret_cast<A&>(b);
(void)*reinterpret_cast<A*>(&b);
(void)reinterpret_cast<B&>(a);
(void)*reinterpret_cast<B*>(&a);
(void)reinterpret_cast<A2&>(b2);
(void)*reinterpret_cast<A2*>(&b2);
(void)reinterpret_cast<B2&>(a2);
(void)*reinterpret_cast<B2*>(&a2);
// Casting to itself is allowed
(void)reinterpret_cast<A&>(a);
(void)*reinterpret_cast<A*>(&a);
(void)reinterpret_cast<B&>(b);
(void)*reinterpret_cast<B*>(&b);
(void)reinterpret_cast<long&>(l);
(void)*reinterpret_cast<long*>(&l);
(void)reinterpret_cast<double&>(d);
(void)*reinterpret_cast<double*>(&d);
(void)reinterpret_cast<char&>(c);
(void)*reinterpret_cast<char*>(&c);
// Casting to and from chars are allowable
(void)reinterpret_cast<A&>(c);
(void)*reinterpret_cast<A*>(&c);
(void)reinterpret_cast<B&>(c);
(void)*reinterpret_cast<B*>(&c);
(void)reinterpret_cast<long&>(c);
(void)*reinterpret_cast<long*>(&c);
(void)reinterpret_cast<double&>(c);
(void)*reinterpret_cast<double*>(&c);
(void)reinterpret_cast<char&>(l);
(void)*reinterpret_cast<char*>(&l);
(void)reinterpret_cast<char&>(d);
(void)*reinterpret_cast<char*>(&d);
(void)reinterpret_cast<char&>(f);
(void)*reinterpret_cast<char*>(&f);
// Casting from void pointer.
(void)*reinterpret_cast<A*>(v_ptr);
(void)*reinterpret_cast<B*>(v_ptr);
(void)*reinterpret_cast<long*>(v_ptr);
(void)*reinterpret_cast<double*>(v_ptr);
(void)*reinterpret_cast<float*>(v_ptr);
// Casting to void pointer
(void)*reinterpret_cast<void*>(&a); // expected-warning {{ISO C++ does not allow}}
(void)*reinterpret_cast<void*>(&b); // expected-warning {{ISO C++ does not allow}}
(void)*reinterpret_cast<void*>(&l); // expected-warning {{ISO C++ does not allow}}
(void)*reinterpret_cast<void*>(&d); // expected-warning {{ISO C++ does not allow}}
(void)*reinterpret_cast<void*>(&f); // expected-warning {{ISO C++ does not allow}}
}
void reinterpret_cast_whitelist () {
// the dynamic type of the object
int a;
float b;
(void)reinterpret_cast<int&>(a);
(void)*reinterpret_cast<int*>(&a);
(void)reinterpret_cast<float&>(b);
(void)*reinterpret_cast<float*>(&b);
// a cv-qualified version of the dynamic object
(void)reinterpret_cast<const int&>(a);
(void)*reinterpret_cast<const int*>(&a);
(void)reinterpret_cast<volatile int&>(a);
(void)*reinterpret_cast<volatile int*>(&a);
(void)reinterpret_cast<const volatile int&>(a);
(void)*reinterpret_cast<const volatile int*>(&a);
(void)reinterpret_cast<const float&>(b);
(void)*reinterpret_cast<const float*>(&b);
(void)reinterpret_cast<volatile float&>(b);
(void)*reinterpret_cast<volatile float*>(&b);
(void)reinterpret_cast<const volatile float&>(b);
(void)*reinterpret_cast<const volatile float*>(&b);
// a type that is the signed or unsigned type corresponding to the dynamic
// type of the object
signed d;
unsigned e;
(void)reinterpret_cast<signed&>(d);
(void)*reinterpret_cast<signed*>(&d);
(void)reinterpret_cast<signed&>(e);
(void)*reinterpret_cast<signed*>(&e);
(void)reinterpret_cast<unsigned&>(d);
(void)*reinterpret_cast<unsigned*>(&d);
(void)reinterpret_cast<unsigned&>(e);
(void)*reinterpret_cast<unsigned*>(&e);
// a type that is the signed or unsigned type corresponding a cv-qualified
// version of the dynamic type the object
(void)reinterpret_cast<const signed&>(d);
(void)*reinterpret_cast<const signed*>(&d);
(void)reinterpret_cast<const signed&>(e);
(void)*reinterpret_cast<const signed*>(&e);
(void)reinterpret_cast<const unsigned&>(d);
(void)*reinterpret_cast<const unsigned*>(&d);
(void)reinterpret_cast<const unsigned&>(e);
(void)*reinterpret_cast<const unsigned*>(&e);
(void)reinterpret_cast<volatile signed&>(d);
(void)*reinterpret_cast<volatile signed*>(&d);
(void)reinterpret_cast<volatile signed&>(e);
(void)*reinterpret_cast<volatile signed*>(&e);
(void)reinterpret_cast<volatile unsigned&>(d);
(void)*reinterpret_cast<volatile unsigned*>(&d);
(void)reinterpret_cast<volatile unsigned&>(e);
(void)*reinterpret_cast<volatile unsigned*>(&e);
(void)reinterpret_cast<const volatile signed&>(d);
(void)*reinterpret_cast<const volatile signed*>(&d);
(void)reinterpret_cast<const volatile signed&>(e);
(void)*reinterpret_cast<const volatile signed*>(&e);
(void)reinterpret_cast<const volatile unsigned&>(d);
(void)*reinterpret_cast<const volatile unsigned*>(&d);
(void)reinterpret_cast<const volatile unsigned&>(e);
(void)*reinterpret_cast<const volatile unsigned*>(&e);
// an aggregate or union type that includes one of the aforementioned types
// among its members (including, recursively, a member of a subaggregate or
// contained union)
// TODO: checking is not implemented for tag types
// a type that is a (possible cv-qualified) base class type of the dynamic
// type of the object
// TODO: checking is not implemented for tag types
// a char or unsigned char type
(void)reinterpret_cast<char&>(a);
(void)*reinterpret_cast<char*>(&a);
(void)reinterpret_cast<unsigned char&>(a);
(void)*reinterpret_cast<unsigned char*>(&a);
(void)reinterpret_cast<char&>(b);
(void)*reinterpret_cast<char*>(&b);
(void)reinterpret_cast<unsigned char&>(b);
(void)*reinterpret_cast<unsigned char*>(&b);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx11-user-defined-literals-unused.cpp
|
// RUN: %clang_cc1 -std=c++11 -verify %s -Wunused
namespace {
double operator"" _x(long double value) { return double(value); }
int operator"" _ii(long double value) { return int(value); } // expected-warning {{not needed and will not be emitted}}
}
namespace rdar13589856 {
template<class T> double value() { return 3.2_x; }
template<class T> int valuei() { return 3.2_ii; }
double get_value() { return value<double>(); }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-literal-conversion.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wliteral-conversion -verify %s
void foo(int y);
// Warn when a literal float or double is assigned or bound to an integer.
void test0() {
// Float
int y0 = 1.2222F; // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2222 to 1}}
int y1 = (1.2222F); // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2222 to 1}}
int y2 = (((1.2222F))); // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2222 to 1}}
int y3 = 12E-1F; // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2 to 1}}
int y4 = 1.23E1F; // expected-warning {{implicit conversion from 'float' to 'int' changes value from 12.3 to 12}}
// Double
int y5 = 1.2222; // expected-warning {{implicit conversion from 'double' to 'int' changes value from 1.2222 to 1}}
int y6 = 12E-1; // expected-warning {{implicit conversion from 'double' to 'int' changes value from 1.2 to 1}}
int y7 = 1.23E1; // expected-warning {{implicit conversion from 'double' to 'int' changes value from 12.3 to 12}}
int y8 = (1.23E1); // expected-warning {{implicit conversion from 'double' to 'int' changes value from 12.3 to 12}}
// Test assignment to an existing variable.
y8 = 2.22F; // expected-warning {{implicit conversion from 'float' to 'int' changes value from 2.22 to 2}}
// Test direct initialization.
int y9(1.23F); // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.23 to 1}}
// Test passing a literal floating-point value to a function that takes an integer.
foo(1.2F); // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2 to 1}}
int y10 = -1.2F; // expected-warning {{implicit conversion from 'float' to 'int' changes value from 1.2 to 1}}
// -Wliteral-conversion does NOT catch const values.
// (-Wconversion DOES catch them.)
static const float sales_tax_rate = .095F;
int z = sales_tax_rate;
foo(sales_tax_rate);
// Expressions, such as those that indicate rounding-down, should NOT produce warnings.
int x = 24 * 0.5;
int y = (24*60*60) * 0.25;
int pennies = 123.45 * 100;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/libstdcxx_is_pod_hack.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// This is a test for an egregious hack in Clang that works around
// issues with GCC's evolution. libstdc++ 4.2.x uses __is_pod as an
// identifier (to declare a struct template like the one below), while
// GCC 4.3 and newer make __is_pod a keyword. Clang treats __is_pod as
// a keyword *unless* it is introduced following the struct keyword.
template<typename T>
struct __is_pod { // expected-warning {{keyword '__is_pod' will be made available as an identifier}}
__is_pod() {}
};
__is_pod<int> ipi;
// Ditto for __is_same.
template<typename T>
struct __is_same { // expected-warning {{keyword '__is_same' will be made available as an identifier}}
};
__is_same<int> isi;
// Another, similar egregious hack for __is_signed, which is a type
// trait in Embarcadero's compiler but is used as an identifier in
// libstdc++.
struct test_is_signed {
static const bool __is_signed = true; // expected-warning {{keyword '__is_signed' will be made available as an identifier}}
};
bool check_signed = test_is_signed::__is_signed;
template<bool B> struct must_be_true {};
template<> struct must_be_true<false>;
void foo() {
bool b = __is_pod(int);
must_be_true<__is_pod(int)> mbt;
}
// expected-warning@+1 {{declaration does not declare anything}}
struct // expected-error {{declaration of anonymous struct must be a definition}}
#pragma pack(pop)
S {
};
#if !__has_feature(is_pod)
# error __is_pod should still be available.
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/bitfield.cpp
|
// RUN: %clang_cc1 %s -verify
// expected-no-diagnostics
namespace PromotionVersusMutation {
typedef unsigned Unsigned;
typedef signed Signed;
struct T { unsigned n : 2; } t;
typedef __typeof__(t.n) Unsigned; // Bitfield is unsigned
typedef __typeof__(+t.n) Signed; // ... but promotes to signed.
typedef __typeof__(t.n + 0) Signed; // Arithmetic promotes.
typedef __typeof__(t.n = 0) Unsigned; // Assignment produces an lvalue...
typedef __typeof__(t.n += 0) Unsigned;
typedef __typeof__(t.n *= 0) Unsigned;
typedef __typeof__(+(t.n = 0)) Signed; // ... which is a bit-field.
typedef __typeof__(+(t.n += 0)) Signed;
typedef __typeof__(+(t.n *= 0)) Signed;
typedef __typeof__(++t.n) Unsigned; // Increment is equivalent to compound-assignment.
typedef __typeof__(--t.n) Unsigned;
typedef __typeof__(+(++t.n)) Signed;
typedef __typeof__(+(--t.n)) Signed;
typedef __typeof__(t.n++) Unsigned; // Post-increment's result has the type
typedef __typeof__(t.n--) Unsigned; // of the operand...
typedef __typeof__(+(t.n++)) Unsigned; // ... and is not a bit-field (because
typedef __typeof__(+(t.n--)) Unsigned; // it's not a glvalue).
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/prefetch-enum.cpp
|
// RUN: %clang_cc1 -fsyntax-only %s -verify
// expected-no-diagnostics
// PR5679
enum X { A = 3 };
void Test() {
char ch;
__builtin_prefetch(&ch, 0, A);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/using-decl-templates.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
template<typename T> struct A {
void f() { }
struct N { }; // expected-note{{target of using declaration}}
};
template<typename T> struct B : A<T> {
using A<T>::f;
using A<T>::N; // expected-error{{dependent using declaration resolved to type without 'typename'}}
using A<T>::foo; // expected-error{{no member named 'foo'}}
using A<double>::f; // expected-error{{using declaration refers into 'A<double>::', which is not a base class of 'B<int>'}}
};
B<int> a; // expected-note{{in instantiation of template class 'B<int>' requested here}}
template<typename T> struct C : A<T> {
using A<T>::f;
void f() { };
};
template <typename T> struct D : A<T> {
using A<T>::f;
void f();
};
template<typename T> void D<T>::f() { }
template<typename T> struct E : A<T> {
using A<T>::f;
void g() { f(); }
};
namespace test0 {
struct Base {
int foo;
};
template<typename T> struct E : Base {
using Base::foo;
};
template struct E<int>;
}
// PR7896
namespace PR7896 {
template <class T> struct Foo {
int k (float);
};
struct Baz {
int k (int);
};
template <class T> struct Bar : public Foo<T>, Baz {
using Foo<T>::k;
using Baz::k;
int foo() {
return k (1.0f);
}
};
template int Bar<int>::foo();
}
// PR10883
namespace PR10883 {
template <typename T>
class Base {
public:
typedef long Container;
};
template <typename T>
class Derived : public Base<T> {
public:
using Base<T>::Container;
void foo(const Container& current); // expected-error {{unknown type name 'Container'}}
};
}
template<typename T> class UsingTypenameNNS {
using typename T::X;
typename X::X x;
};
namespace aliastemplateinst {
template<typename T> struct A { };
template<typename T> using APtr = A<T*>; // expected-note{{previous use is here}}
template struct APtr<int>; // expected-error{{elaborated type refers to a non-tag type}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/undefined-internal.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wbind-to-temporary-copy %s
// Make sure we don't produce invalid IR.
// RUN: %clang_cc1 -emit-llvm-only %s
namespace test1 {
static void foo(); // expected-warning {{function 'test1::foo' has internal linkage but is not defined}}
template <class T> static void bar(); // expected-warning {{function 'test1::bar<int>' has internal linkage but is not defined}}
void test() {
foo(); // expected-note {{used here}}
bar<int>(); // expected-note {{used here}}
}
}
namespace test2 {
namespace {
void foo(); // expected-warning {{function 'test2::(anonymous namespace)::foo' has internal linkage but is not defined}}
extern int var; // expected-warning {{variable 'test2::(anonymous namespace)::var' has internal linkage but is not defined}}
template <class T> void bar(); // expected-warning {{function 'test2::(anonymous namespace)::bar<int>' has internal linkage but is not defined}}
}
void test() {
foo(); // expected-note {{used here}}
var = 0; // expected-note {{used here}}
bar<int>(); // expected-note {{used here}}
}
}
namespace test3 {
namespace {
void foo();
extern int var;
template <class T> void bar();
}
void test() {
foo();
var = 0;
bar<int>();
}
namespace {
void foo() {}
int var = 0;
template <class T> void bar() {}
}
}
namespace test4 {
namespace {
struct A {
A(); // expected-warning {{function 'test4::(anonymous namespace)::A::A' has internal linkage but is not defined}}
~A();// expected-warning {{function 'test4::(anonymous namespace)::A::~A' has internal linkage but is not defined}}
virtual void foo(); // expected-warning {{function 'test4::(anonymous namespace)::A::foo' has internal linkage but is not defined}}
virtual void bar() = 0;
virtual void baz(); // expected-warning {{function 'test4::(anonymous namespace)::A::baz' has internal linkage but is not defined}}
};
}
void test(A &a) {
a.foo(); // expected-note {{used here}}
a.bar();
a.baz(); // expected-note {{used here}}
}
struct Test : A {
Test() {} // expected-note 2 {{used here}}
};
}
// rdar://problem/9014651
namespace test5 {
namespace {
struct A {};
}
template <class N> struct B {
static int var; // expected-warning {{variable 'test5::B<test5::(anonymous namespace)::A>::var' has internal linkage but is not defined}}
static void foo(); // expected-warning {{function 'test5::B<test5::(anonymous namespace)::A>::foo' has internal linkage but is not defined}}
};
void test() {
B<A>::var = 0; // expected-note {{used here}}
B<A>::foo(); // expected-note {{used here}}
}
}
namespace test6 {
template <class T> struct A {
static const int zero = 0;
static const int one = 1;
static const int two = 2;
int value;
A() : value(zero) {
value = one;
}
};
namespace { struct Internal; }
void test() {
A<Internal> a;
a.value = A<Internal>::two;
}
}
// We support (as an extension) private, undefined copy constructors when
// a temporary is bound to a reference even in C++98. Similarly, we shouldn't
// warn about this copy constructor being used without a definition.
namespace PR9323 {
namespace {
struct Uncopyable {
Uncopyable() {}
private:
Uncopyable(const Uncopyable&); // expected-note {{declared private here}}
};
}
void f(const Uncopyable&) {}
void test() {
f(Uncopyable()); // expected-warning {{C++98 requires an accessible copy constructor}}
};
}
namespace std { class type_info; };
namespace cxx11_odr_rules {
// Note: the way this test is written isn't really ideal, but there really
// isn't any other way to check that the odr-used logic for constants
// is working without working implicit capture in lambda-expressions.
// (The more accurate used-but-not-defined warning is the only other visible
// effect of accurate odr-used computation.)
//
// Note that the warning in question can trigger in cases some people would
// consider false positives; hopefully that happens rarely in practice.
//
// FIXME: Suppressing this test while I figure out how to fix a bug in the
// odr-use marking code.
namespace {
struct A {
static const int unused = 10;
static const int used1 = 20; // xpected-warning {{internal linkage}}
static const int used2 = 20; // xpected-warning {{internal linkage}}
virtual ~A() {}
};
}
void a(int,int);
A& p(const int&) { static A a; return a; }
// Check handling of default arguments
void b(int = A::unused);
void tests() {
// Basic test
a(A::unused, A::unused);
// Check that nesting an unevaluated or constant-evaluated context does
// the right thing.
a(A::unused, sizeof(int[10]));
// Check that the checks work with unevaluated contexts
(void)sizeof(p(A::used1));
(void)typeid(p(A::used1)); // expected-warning {{expression with side effects will be evaluated despite being used as an operand to 'typeid'}} xpected-note {{used here}}
// Misc other testing
a(A::unused, 1 ? A::used2 : A::used2); // xpected-note {{used here}}
b();
}
}
namespace OverloadUse {
namespace {
void f();
void f(int); // expected-warning {{function 'OverloadUse::(anonymous namespace)::f' has internal linkage but is not defined}}
}
template<void x()> void t(int*) { x(); }
template<void x(int)> void t(long*) { x(10); } // expected-note {{used here}}
void g() { long a; t<f>(&a); }
}
namespace test7 {
typedef struct {
void bar();
void foo() {
bar();
}
} A;
}
namespace test8 {
typedef struct {
void bar(); // expected-warning {{function 'test8::(anonymous struct)::bar' has internal linkage but is not defined}}
void foo() {
bar(); // expected-note {{used here}}
}
} *A;
}
namespace test9 {
namespace {
struct X {
virtual void notused() = 0;
virtual void used() = 0; // expected-warning {{function 'test9::(anonymous namespace)::X::used' has internal linkage but is not defined}}
};
}
void test(X &x) {
x.notused();
x.X::used(); // expected-note {{used here}}
}
}
namespace test10 {
namespace {
struct X {
virtual void notused() = 0;
virtual void used() = 0; // expected-warning {{function 'test10::(anonymous namespace)::X::used' has internal linkage but is not defined}}
void test() {
notused();
(void)&X::notused;
(this->*&X::notused)();
X::used(); // expected-note {{used here}}
}
};
struct Y : X {
using X::notused;
};
}
}
namespace test11 {
namespace {
struct A {
virtual bool operator()() const = 0;
virtual void operator!() const = 0;
virtual bool operator+(const A&) const = 0;
virtual int operator[](int) const = 0;
virtual const A* operator->() const = 0;
int member;
};
struct B {
bool operator()() const; // expected-warning {{function 'test11::(anonymous namespace)::B::operator()' has internal linkage but is not defined}}
void operator!() const; // expected-warning {{function 'test11::(anonymous namespace)::B::operator!' has internal linkage but is not defined}}
bool operator+(const B&) const; // expected-warning {{function 'test11::(anonymous namespace)::B::operator+' has internal linkage but is not defined}}
int operator[](int) const; // expected-warning {{function 'test11::(anonymous namespace)::B::operator[]' has internal linkage but is not defined}}
const B* operator->() const; // expected-warning {{function 'test11::(anonymous namespace)::B::operator->' has internal linkage but is not defined}}
int member;
};
}
void test1(A &a1, A &a2) {
a1();
!a1;
a1 + a2;
a1[0];
(void)a1->member;
}
void test2(B &b1, B &b2) {
b1(); // expected-note {{used here}}
!b1; // expected-note {{used here}}
b1 + b2; // expected-note {{used here}}
b1[0]; // expected-note {{used here}}
(void)b1->member; // expected-note {{used here}}
}
}
namespace test12 {
class T1 {}; class T2 {}; class T3 {}; class T4 {}; class T5 {}; class T6 {};
class T7 {};
namespace {
struct Cls {
virtual void f(int) = 0;
virtual void f(int, double) = 0;
void g(int); // expected-warning {{function 'test12::(anonymous namespace)::Cls::g' has internal linkage but is not defined}}
void g(int, double);
virtual operator T1() = 0;
virtual operator T2() = 0;
virtual operator T3&() = 0;
operator T4(); // expected-warning {{function 'test12::(anonymous namespace)::Cls::operator T4' has internal linkage but is not defined}}
operator T5(); // expected-warning {{function 'test12::(anonymous namespace)::Cls::operator T5' has internal linkage but is not defined}}
operator T6&(); // expected-warning {{function 'test12::(anonymous namespace)::Cls::operator test12::T6 &' has internal linkage but is not defined}}
};
struct Cls2 {
Cls2(T7); // expected-warning {{function 'test12::(anonymous namespace)::Cls2::Cls2' has internal linkage but is not defined}}
};
}
void test(Cls &c) {
c.f(7);
c.g(7); // expected-note {{used here}}
(void)static_cast<T1>(c);
T2 t2 = c;
T3 &t3 = c;
(void)static_cast<T4>(c); // expected-note {{used here}}
T5 t5 = c; // expected-note {{used here}}
T6 &t6 = c; // expected-note {{used here}}
Cls2 obj1((T7())); // expected-note {{used here}}
}
}
namespace test13 {
namespace {
struct X {
virtual void f() { }
};
struct Y : public X {
virtual void f() = 0;
virtual void g() {
X::f();
}
};
}
}
namespace test14 {
extern "C" const int foo;
int f() {
return foo;
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/overloaded-name.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
int ovl(int); // expected-note 3{{possible target for call}}
float ovl(float); // expected-note 3{{possible target for call}}
template<typename T> T ovl(T); // expected-note 3{{possible target for call}}
void test(bool b) {
(void)((void)0, ovl); // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
// PR7863
(void)(b? ovl : &ovl); // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
(void)(b? ovl<float> : &ovl); // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
(void)(b? ovl<float> : ovl<float>);
}
namespace rdar9623945 {
void f(...) {
}
class X {
public:
const char* text(void);
void g(void) {
f(text());
f(text); // expected-error {{reference to non-static member function must be called; did you mean to call it with no arguments?}}
f(text());
f(text); // expected-error {{reference to non-static member function must be called; did you mean to call it with no arguments?}}
}
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/new-delete-predefined-decl-2.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: %clang_cc1 -DQUALIFIED -fsyntax-only -verify %s
// expected-no-diagnostics
// PR5904
void f0(int *ptr) {
#ifndef QUALIFIED
operator delete(ptr);
#endif
}
void f1(int *ptr) {
::operator delete[](ptr);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/string-plus-int.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-array-bounds %s -fpascal-strings
// RUN: %clang_cc1 -fdiagnostics-parseable-fixits -x c++ %s 2>&1 -Wno-array-bounds -fpascal-strings | FileCheck %s
void consume(const char* c) {}
void consume(const unsigned char* c) {}
void consume(const wchar_t* c) {}
void consumeChar(char c) {}
enum MyEnum {
kMySmallEnum = 1,
kMyEnum = 5
};
enum OperatorOverloadEnum {
kMyOperatorOverloadedEnum = 5
};
const char* operator+(const char* c, OperatorOverloadEnum e) {
return "yo";
}
const char* operator+(OperatorOverloadEnum e, const char* c) {
return "yo";
}
void f(int index) {
// Should warn.
// CHECK: fix-it:"{{.*}}":{31:11-31:11}:"&"
// CHECK: fix-it:"{{.*}}":{31:17-31:18}:"["
// CHECK: fix-it:"{{.*}}":{31:20-31:20}:"]"
consume("foo" + 5); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume("foo" + index); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume("foo" + kMyEnum); // expected-warning {{adding 'MyEnum' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume(5 + "foo"); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume(index + "foo"); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume(kMyEnum + "foo"); // expected-warning {{adding 'MyEnum' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
// FIXME: suggest replacing with "foo"[5]
consumeChar(*("foo" + 5)); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consumeChar(*(5 + "foo")); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
consume(L"foo" + 5); // expected-warning {{adding 'int' to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
// Should not warn.
consume(&("foo"[3]));
consume(&("foo"[index]));
consume(&("foo"[kMyEnum]));
consume("foo" + kMySmallEnum);
consume(kMySmallEnum + "foo");
consume(L"foo" + 2);
consume("foo" + 3); // Points at the \0
consume("foo" + 4); // Points 1 past the \0, which is legal too.
consume("\pfoo" + 4); // Pascal strings don't have a trailing \0, but they
// have a leading length byte, so this is fine too.
consume("foo" + kMyOperatorOverloadedEnum);
consume(kMyOperatorOverloadedEnum + "foo");
#define A "foo"
#define B "bar"
consume(A B + sizeof(A) - 1);
}
template <typename T>
void PR21848() {
(void)(sizeof(T) + ""); // expected-warning {{to a string does not append to the string}} expected-note {{use array indexing to silence this warning}}
}
template void PR21848<int>(); // expected-note {{in instantiation of function template specialization 'PR21848<int>' requested here}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/overloaded-builtin-operators-0x.cpp
|
// RUN: %clang_cc1 -fsyntax-only -fshow-overloads=best -std=c++11 -verify %s
// expected-no-diagnostics
template <class T>
struct X
{
operator T() const {return T();}
};
void test_char16t(X<char16_t> x) {
bool b = x == char16_t();
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-float-conversion.cpp
|
// RUN: %clang_cc1 -verify -fsyntax-only %s -Wfloat-conversion
bool ReturnBool(float f) {
return f; //expected-warning{{conversion}}
}
char ReturnChar(float f) {
return f; //expected-warning{{conversion}}
}
int ReturnInt(float f) {
return f; //expected-warning{{conversion}}
}
long ReturnLong(float f) {
return f; //expected-warning{{conversion}}
}
void Convert(float f, double d, long double ld) {
bool b;
char c;
int i;
long l;
b = f; //expected-warning{{conversion}}
b = d; //expected-warning{{conversion}}
b = ld; //expected-warning{{conversion}}
c = f; //expected-warning{{conversion}}
c = d; //expected-warning{{conversion}}
c = ld; //expected-warning{{conversion}}
i = f; //expected-warning{{conversion}}
i = d; //expected-warning{{conversion}}
i = ld; //expected-warning{{conversion}}
l = f; //expected-warning{{conversion}}
l = d; //expected-warning{{conversion}}
l = ld; //expected-warning{{conversion}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/offsetof-0x.cpp
|
// RUN: %clang_cc1 -triple x86_64-apple-darwin10.0.0 -fsyntax-only -std=c++11 -verify %s -Winvalid-offsetof
struct NonPOD {
virtual void f();
int m;
};
struct P {
NonPOD fieldThatPointsToANonPODType;
};
void f() {
int i = __builtin_offsetof(P, fieldThatPointsToANonPODType.m); // expected-warning{{offset of on non-standard-layout type 'P'}}
}
struct StandardLayout {
int x;
StandardLayout() {}
};
int o = __builtin_offsetof(StandardLayout, x); // no-warning
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/dependent-noexcept-unevaluated.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++11 %s
template <class T>
T&&
declval() noexcept;
template <class T>
struct some_trait
{
static const bool value = false;
};
template <class T>
void swap(T& x, T& y) noexcept(some_trait<T>::value)
{
T tmp(static_cast<T&&>(x));
x = static_cast<T&&>(y);
y = static_cast<T&&>(tmp);
}
template <class T, unsigned N>
struct array
{
T data[N];
void swap(array& a) noexcept(noexcept(::swap(declval<T&>(), declval<T&>())));
};
struct DefaultOnly
{
DefaultOnly() = default;
DefaultOnly(const DefaultOnly&) = delete;
DefaultOnly& operator=(const DefaultOnly&) = delete;
~DefaultOnly() = default;
};
int main()
{
array<DefaultOnly, 1> a, b;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/blocks-1.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -fblocks -std=c++1y
extern "C" int exit(int);
typedef struct {
unsigned long ps[30];
int qs[30];
} BobTheStruct;
int main (int argc, const char * argv[]) {
BobTheStruct inny;
BobTheStruct outty;
BobTheStruct (^copyStruct)(BobTheStruct);
int i;
for(i=0; i<30; i++) {
inny.ps[i] = i * i * i;
inny.qs[i] = -i * i * i;
}
copyStruct = ^(BobTheStruct aBigStruct){ return aBigStruct; }; // pass-by-value intrinsically copies the argument
outty = copyStruct(inny);
if ( &inny == &outty ) {
exit(1);
}
for(i=0; i<30; i++) {
if ( (inny.ps[i] != outty.ps[i]) || (inny.qs[i] != outty.qs[i]) ) {
exit(1);
}
}
return 0;
}
namespace rdar8134521 {
void foo() {
int (^P)(int) = reinterpret_cast<int(^)(int)>(1);
P = (int(^)(int))(1);
P = reinterpret_cast<int(^)(int)>((void*)1);
P = (int(^)(int))((void*)1);
}
}
namespace rdar11055105 {
struct A {
void foo();
};
template <class T> void foo(T &x) noexcept(noexcept(x.foo()));
void (^block)() = ^{
A a;
foo(a);
};
}
namespace LocalDecls {
void f() {
(void) ^{
extern int a; // expected-note {{previous}}
extern int b(); // expected-note {{previous}}
};
}
void g() {
(void) ^{
extern float a; // expected-error {{different type}}
extern float b(); // expected-error {{cannot be overloaded}}
};
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/dllexport.cpp
|
// RUN: %clang_cc1 -triple i686-win32 -fsyntax-only -fms-extensions -verify -std=c++11 -Wunsupported-dll-base-class-template -DMS %s
// RUN: %clang_cc1 -triple x86_64-win32 -fsyntax-only -fms-extensions -verify -std=c++1y -Wunsupported-dll-base-class-template -DMS %s
// RUN: %clang_cc1 -triple i686-mingw32 -fsyntax-only -fms-extensions -verify -std=c++1y -Wunsupported-dll-base-class-template %s
// RUN: %clang_cc1 -triple x86_64-mingw32 -fsyntax-only -fms-extensions -verify -std=c++11 -Wunsupported-dll-base-class-template %s
// Helper structs to make templates more expressive.
struct ImplicitInst_Exported {};
struct ExplicitDecl_Exported {};
struct ExplicitInst_Exported {};
struct ExplicitSpec_Exported {};
struct ExplicitSpec_Def_Exported {};
struct ExplicitSpec_InlineDef_Exported {};
struct ExplicitSpec_NotExported {};
namespace { struct Internal {}; }
struct External { int v; };
// Invalid usage.
__declspec(dllexport) typedef int typedef1; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
typedef __declspec(dllexport) int typedef2; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
typedef int __declspec(dllexport) typedef3; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
typedef __declspec(dllexport) void (*FunTy)(); // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
enum __declspec(dllexport) Enum {}; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
#if __has_feature(cxx_strong_enums)
enum class __declspec(dllexport) EnumClass {}; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
#endif
//===----------------------------------------------------------------------===//
// Globals
//===----------------------------------------------------------------------===//
// Export declaration.
__declspec(dllexport) extern int ExternGlobalDecl;
// dllexport implies a definition.
__declspec(dllexport) int GlobalDef;
// Export definition.
__declspec(dllexport) int GlobalInit1 = 1;
int __declspec(dllexport) GlobalInit2 = 1;
// Declare, then export definition.
__declspec(dllexport) extern int GlobalDeclInit;
int GlobalDeclInit = 1;
// Redeclarations
__declspec(dllexport) extern int GlobalRedecl1;
__declspec(dllexport) int GlobalRedecl1;
__declspec(dllexport) extern int GlobalRedecl2;
int GlobalRedecl2;
extern int GlobalRedecl3; // expected-note{{previous declaration is here}}
__declspec(dllexport) extern int GlobalRedecl3; // expected-warning{{redeclaration of 'GlobalRedecl3' should not add 'dllexport' attribute}}
extern "C" {
extern int GlobalRedecl4; // expected-note{{previous declaration is here}}
__declspec(dllexport) extern int GlobalRedecl4; // expected-warning{{redeclaration of 'GlobalRedecl4' should not add 'dllexport' attribute}}
}
// External linkage is required.
__declspec(dllexport) static int StaticGlobal; // expected-error{{'StaticGlobal' must have external linkage when declared 'dllexport'}}
__declspec(dllexport) Internal InternalTypeGlobal; // expected-error{{'InternalTypeGlobal' must have external linkage when declared 'dllexport'}}
namespace { __declspec(dllexport) int InternalGlobal; } // expected-error{{'(anonymous namespace)::InternalGlobal' must have external linkage when declared 'dllexport'}}
namespace ns { __declspec(dllexport) int ExternalGlobal; }
__declspec(dllexport) auto InternalAutoTypeGlobal = Internal(); // expected-error{{'InternalAutoTypeGlobal' must have external linkage when declared 'dllexport'}}
__declspec(dllexport) auto ExternalAutoTypeGlobal = External();
// Thread local variables are invalid.
__declspec(dllexport) __thread int ThreadLocalGlobal; // expected-error{{'ThreadLocalGlobal' cannot be thread local when declared 'dllexport'}}
// Export in local scope.
void functionScope() {
__declspec(dllexport) int LocalVarDecl; // expected-error{{'LocalVarDecl' must have external linkage when declared 'dllexport'}}
__declspec(dllexport) int LocalVarDef = 1; // expected-error{{'LocalVarDef' must have external linkage when declared 'dllexport'}}
__declspec(dllexport) extern int ExternLocalVarDecl;
__declspec(dllexport) static int StaticLocalVar; // expected-error{{'StaticLocalVar' must have external linkage when declared 'dllexport'}}
}
//===----------------------------------------------------------------------===//
// Variable templates
//===----------------------------------------------------------------------===//
#if __has_feature(cxx_variable_templates)
// Export declaration.
template<typename T> __declspec(dllexport) extern int ExternVarTmplDecl;
// dllexport implies a definition.
template<typename T> __declspec(dllexport) int VarTmplDef;
// Export definition.
template<typename T> __declspec(dllexport) int VarTmplInit1 = 1;
template<typename T> int __declspec(dllexport) VarTmplInit2 = 1;
// Declare, then export definition.
template<typename T> __declspec(dllexport) extern int VarTmplDeclInit;
template<typename T> int VarTmplDeclInit = 1;
// Redeclarations
template<typename T> __declspec(dllexport) extern int VarTmplRedecl1;
template<typename T> __declspec(dllexport) int VarTmplRedecl1 = 1;
template<typename T> __declspec(dllexport) extern int VarTmplRedecl2;
template<typename T> int VarTmplRedecl2 = 1;
template<typename T> extern int VarTmplRedecl3; // expected-note{{previous declaration is here}}
template<typename T> __declspec(dllexport) extern int VarTmplRedecl3; // expected-error{{redeclaration of 'VarTmplRedecl3' cannot add 'dllexport' attribute}}
// External linkage is required.
template<typename T> __declspec(dllexport) static int StaticVarTmpl; // expected-error{{'StaticVarTmpl' must have external linkage when declared 'dllexport'}}
template<typename T> __declspec(dllexport) Internal InternalTypeVarTmpl; // expected-error{{'InternalTypeVarTmpl' must have external linkage when declared 'dllexport'}}
namespace { template<typename T> __declspec(dllexport) int InternalVarTmpl; } // expected-error{{'(anonymous namespace)::InternalVarTmpl' must have external linkage when declared 'dllexport'}}
namespace ns { template<typename T> __declspec(dllexport) int ExternalVarTmpl = 1; }
template<typename T> __declspec(dllexport) auto InternalAutoTypeVarTmpl = Internal(); // expected-error{{'InternalAutoTypeVarTmpl' must have external linkage when declared 'dllexport'}}
template<typename T> __declspec(dllexport) auto ExternalAutoTypeVarTmpl = External();
template External ExternalAutoTypeVarTmpl<ExplicitInst_Exported>;
template<typename T> int VarTmpl = 1;
template<typename T> __declspec(dllexport) int ExportedVarTmpl = 1;
// Export implicit instantiation of an exported variable template.
int useVarTmpl() { return ExportedVarTmpl<ImplicitInst_Exported>; }
// Export explicit instantiation declaration of an exported variable template.
extern template int ExportedVarTmpl<ExplicitDecl_Exported>;
template int ExportedVarTmpl<ExplicitDecl_Exported>;
// Export explicit instantiation definition of an exported variable template.
template __declspec(dllexport) int ExportedVarTmpl<ExplicitInst_Exported>;
// Export specialization of an exported variable template.
template<> __declspec(dllexport) int ExportedVarTmpl<ExplicitSpec_Exported>;
template<> __declspec(dllexport) int ExportedVarTmpl<ExplicitSpec_Def_Exported> = 1;
// Not exporting specialization of an exported variable template without
// explicit dllexport.
template<> int ExportedVarTmpl<ExplicitSpec_NotExported>;
// Export explicit instantiation declaration of a non-exported variable template.
extern template __declspec(dllexport) int VarTmpl<ExplicitDecl_Exported>;
template __declspec(dllexport) int VarTmpl<ExplicitDecl_Exported>;
// Export explicit instantiation definition of a non-exported variable template.
template __declspec(dllexport) int VarTmpl<ExplicitInst_Exported>;
// Export specialization of a non-exported variable template.
template<> __declspec(dllexport) int VarTmpl<ExplicitSpec_Exported>;
template<> __declspec(dllexport) int VarTmpl<ExplicitSpec_Def_Exported> = 1;
#endif // __has_feature(cxx_variable_templates)
//===----------------------------------------------------------------------===//
// Functions
//===----------------------------------------------------------------------===//
// Export function declaration. Check different placements.
__attribute__((dllexport)) void decl1A(); // Sanity check with __attribute__
__declspec(dllexport) void decl1B();
void __attribute__((dllexport)) decl2A();
void __declspec(dllexport) decl2B();
// Export function definition.
__declspec(dllexport) void def() {}
// extern "C"
extern "C" __declspec(dllexport) void externC() {}
// Export inline function.
__declspec(dllexport) inline void inlineFunc1() {}
inline void __attribute__((dllexport)) inlineFunc2() {}
__declspec(dllexport) inline void inlineDecl();
void inlineDecl() {}
__declspec(dllexport) void inlineDef();
inline void inlineDef() {}
// Redeclarations
__declspec(dllexport) void redecl1();
__declspec(dllexport) void redecl1() {}
__declspec(dllexport) void redecl2();
void redecl2() {}
void redecl3(); // expected-note{{previous declaration is here}}
__declspec(dllexport) void redecl3(); // expected-warning{{redeclaration of 'redecl3' should not add 'dllexport' attribute}}
extern "C" {
void redecl4(); // expected-note{{previous declaration is here}}
__declspec(dllexport) void redecl4(); // expected-warning{{redeclaration of 'redecl4' should not add 'dllexport' attribute}}
}
void redecl5(); // expected-note{{previous declaration is here}}
__declspec(dllexport) inline void redecl5() {} // expected-warning{{redeclaration of 'redecl5' should not add 'dllexport' attribute}}
// Friend functions
struct FuncFriend {
friend __declspec(dllexport) void friend1();
friend __declspec(dllexport) void friend2();
friend void friend3(); // expected-note{{previous declaration is here}}
friend void friend4(); // expected-note{{previous declaration is here}}
};
__declspec(dllexport) void friend1() {}
void friend2() {}
__declspec(dllexport) void friend3() {} // expected-warning{{redeclaration of 'friend3' should not add 'dllexport' attribute}}
__declspec(dllexport) inline void friend4() {} // expected-warning{{redeclaration of 'friend4' should not add 'dllexport' attribute}}
// Implicit declarations can be redeclared with dllexport.
__declspec(dllexport) void* operator new(__SIZE_TYPE__ n);
// External linkage is required.
__declspec(dllexport) static int staticFunc(); // expected-error{{'staticFunc' must have external linkage when declared 'dllexport'}}
__declspec(dllexport) Internal internalRetFunc(); // expected-error{{'internalRetFunc' must have external linkage when declared 'dllexport'}}
namespace { __declspec(dllexport) void internalFunc() {} } // expected-error{{'(anonymous namespace)::internalFunc' must have external linkage when declared 'dllexport'}}
namespace ns { __declspec(dllexport) void externalFunc() {} }
// Export deleted function.
__declspec(dllexport) void deletedFunc() = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) inline void deletedInlineFunc() = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
//===----------------------------------------------------------------------===//
// Function templates
//===----------------------------------------------------------------------===//
// Export function template declaration. Check different placements.
template<typename T> __declspec(dllexport) void funcTmplDecl1();
template<typename T> void __declspec(dllexport) funcTmplDecl2();
// Export function template definition.
template<typename T> __declspec(dllexport) void funcTmplDef() {}
// Export inline function template.
template<typename T> __declspec(dllexport) inline void inlineFuncTmpl1() {}
template<typename T> inline void __attribute__((dllexport)) inlineFuncTmpl2() {}
template<typename T> __declspec(dllexport) inline void inlineFuncTmplDecl();
template<typename T> void inlineFuncTmplDecl() {}
template<typename T> __declspec(dllexport) void inlineFuncTmplDef();
template<typename T> inline void inlineFuncTmplDef() {}
// Redeclarations
template<typename T> __declspec(dllexport) void funcTmplRedecl1();
template<typename T> __declspec(dllexport) void funcTmplRedecl1() {}
template<typename T> __declspec(dllexport) void funcTmplRedecl2();
template<typename T> void funcTmplRedecl2() {}
template<typename T> void funcTmplRedecl3(); // expected-note{{previous declaration is here}}
template<typename T> __declspec(dllexport) void funcTmplRedecl3(); // expected-error{{redeclaration of 'funcTmplRedecl3' cannot add 'dllexport' attribute}}
template<typename T> void funcTmplRedecl4(); // expected-note{{previous declaration is here}}
template<typename T> __declspec(dllexport) inline void funcTmplRedecl4() {} // expected-error{{redeclaration of 'funcTmplRedecl4' cannot add 'dllexport' attribute}}
// Function template friends
struct FuncTmplFriend {
template<typename T> friend __declspec(dllexport) void funcTmplFriend1();
template<typename T> friend __declspec(dllexport) void funcTmplFriend2();
template<typename T> friend void funcTmplFriend3(); // expected-note{{previous declaration is here}}
template<typename T> friend void funcTmplFriend4(); // expected-note{{previous declaration is here}}
};
template<typename T> __declspec(dllexport) void funcTmplFriend1() {}
template<typename T> void funcTmplFriend2() {}
template<typename T> __declspec(dllexport) void funcTmplFriend3() {} // expected-error{{redeclaration of 'funcTmplFriend3' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void funcTmplFriend4() {} // expected-error{{redeclaration of 'funcTmplFriend4' cannot add 'dllexport' attribute}}
// External linkage is required.
template<typename T> __declspec(dllexport) static int staticFuncTmpl(); // expected-error{{'staticFuncTmpl' must have external linkage when declared 'dllexport'}}
template<typename T> __declspec(dllexport) Internal internalRetFuncTmpl(); // expected-error{{'internalRetFuncTmpl' must have external linkage when declared 'dllexport'}}
namespace { template<typename T> __declspec(dllexport) void internalFuncTmpl(); } // expected-error{{'(anonymous namespace)::internalFuncTmpl' must have external linkage when declared 'dllexport'}}
namespace ns { template<typename T> __declspec(dllexport) void externalFuncTmpl(); }
template<typename T> void funcTmpl() {}
template<typename T> __declspec(dllexport) void exportedFuncTmplDecl();
template<typename T> __declspec(dllexport) void exportedFuncTmpl() {}
// Export implicit instantiation of an exported function template.
void useFunTmplDecl() { exportedFuncTmplDecl<ImplicitInst_Exported>(); }
void useFunTmplDef() { exportedFuncTmpl<ImplicitInst_Exported>(); }
// Export explicit instantiation declaration of an exported function template.
extern template void exportedFuncTmpl<ExplicitDecl_Exported>();
template void exportedFuncTmpl<ExplicitDecl_Exported>();
// Export explicit instantiation definition of an exported function template.
template void exportedFuncTmpl<ExplicitInst_Exported>();
// Export specialization of an exported function template.
template<> __declspec(dllexport) void exportedFuncTmpl<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void exportedFuncTmpl<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void exportedFuncTmpl<ExplicitSpec_InlineDef_Exported>() {}
// Not exporting specialization of an exported function template without
// explicit dllexport.
template<> void exportedFuncTmpl<ExplicitSpec_NotExported>() {}
// Export explicit instantiation declaration of a non-exported function template.
extern template __declspec(dllexport) void funcTmpl<ExplicitDecl_Exported>();
template __declspec(dllexport) void funcTmpl<ExplicitDecl_Exported>();
// Export explicit instantiation definition of a non-exported function template.
template __declspec(dllexport) void funcTmpl<ExplicitInst_Exported>();
// Export specialization of a non-exported function template.
template<> __declspec(dllexport) void funcTmpl<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void funcTmpl<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void funcTmpl<ExplicitSpec_InlineDef_Exported>() {}
//===----------------------------------------------------------------------===//
// Classes
//===----------------------------------------------------------------------===//
namespace {
struct __declspec(dllexport) AnonymousClass {}; // expected-error{{(anonymous namespace)::AnonymousClass' must have external linkage when declared 'dllexport'}}
}
class __declspec(dllexport) ClassDecl;
class __declspec(dllexport) ClassDef {};
#ifdef MS
// expected-warning@+3{{'dllexport' attribute ignored}}
#endif
template <typename T> struct PartiallySpecializedClassTemplate {};
template <typename T> struct __declspec(dllexport) PartiallySpecializedClassTemplate<T*> { void f() {} };
template <typename T> struct ExpliciallySpecializedClassTemplate {};
template <> struct __declspec(dllexport) ExpliciallySpecializedClassTemplate<int> { void f() {} };
// Don't instantiate class members of implicitly instantiated templates, even if they are exported.
struct IncompleteType;
template <typename T> struct __declspec(dllexport) ImplicitlyInstantiatedExportedTemplate {
int f() { return sizeof(T); } // no-error
};
ImplicitlyInstantiatedExportedTemplate<IncompleteType> implicitlyInstantiatedExportedTemplate;
// Don't instantiate class members of templates with explicit instantiation declarations, even if they are exported.
struct IncompleteType2;
template <typename T> struct __declspec(dllexport) ExportedTemplateWithExplicitInstantiationDecl { // expected-note{{attribute is here}}
int f() { return sizeof(T); } // no-error
};
extern template struct ExportedTemplateWithExplicitInstantiationDecl<IncompleteType2>; // expected-warning{{explicit instantiation declaration should not be 'dllexport'}}
// Instantiate class members for explicitly instantiated exported templates.
struct IncompleteType3; // expected-note{{forward declaration of 'IncompleteType3'}}
template <typename T> struct __declspec(dllexport) ExplicitlyInstantiatedExportedTemplate {
int f() { return sizeof(T); } // expected-error{{invalid application of 'sizeof' to an incomplete type 'IncompleteType3'}}
};
template struct ExplicitlyInstantiatedExportedTemplate<IncompleteType3>; // expected-note{{in instantiation of member function 'ExplicitlyInstantiatedExportedTemplate<IncompleteType3>::f' requested here}}
// In MS mode, instantiate members of class templates that are base classes of exported classes.
#ifdef MS
// expected-note@+3{{forward declaration of 'IncompleteType4'}}
// expected-note@+3{{in instantiation of member function 'BaseClassTemplateOfExportedClass<IncompleteType4>::f' requested here}}
#endif
struct IncompleteType4;
template <typename T> struct BaseClassTemplateOfExportedClass {
#ifdef MS
// expected-error@+2{{invalid application of 'sizeof' to an incomplete type 'IncompleteType4'}}
#endif
int f() { return sizeof(T); };
};
struct __declspec(dllexport) ExportedBaseClass : public BaseClassTemplateOfExportedClass<IncompleteType4> {};
// Don't instantiate members of explicitly exported class templates that are base classes of exported classes.
struct IncompleteType5;
template <typename T> struct __declspec(dllexport) ExportedBaseClassTemplateOfExportedClass {
int f() { return sizeof(T); }; // no-error
};
struct __declspec(dllexport) ExportedBaseClass2 : public ExportedBaseClassTemplateOfExportedClass<IncompleteType5> {};
// Warn about explicit instantiation declarations of dllexport classes.
template <typename T> struct ExplicitInstantiationDeclTemplate {};
extern template struct __declspec(dllexport) ExplicitInstantiationDeclTemplate<int>; // expected-warning{{explicit instantiation declaration should not be 'dllexport'}} expected-note{{attribute is here}}
template <typename T> struct __declspec(dllexport) ExplicitInstantiationDeclExportedTemplate {}; // expected-note{{attribute is here}}
extern template struct ExplicitInstantiationDeclExportedTemplate<int>; // expected-warning{{explicit instantiation declaration should not be 'dllexport'}}
namespace { struct InternalLinkageType {}; }
struct __declspec(dllexport) PR23308 {
void f(InternalLinkageType*);
};
void PR23308::f(InternalLinkageType*) {} // No error; we don't try to export f because it has internal linkage.
//===----------------------------------------------------------------------===//
// Classes with template base classes
//===----------------------------------------------------------------------===//
template <typename T> class ClassTemplate {};
template <typename T> class __declspec(dllexport) ExportedClassTemplate {};
template <typename T> class __declspec(dllimport) ImportedClassTemplate {};
template <typename T> struct ExplicitlySpecializedTemplate { void func() {} };
#ifdef MS
// expected-note@+2{{class template 'ExplicitlySpecializedTemplate<int>' was explicitly specialized here}}
#endif
template <> struct ExplicitlySpecializedTemplate<int> { void func() {} };
template <typename T> struct ExplicitlyExportSpecializedTemplate { void func() {} };
template <> struct __declspec(dllexport) ExplicitlyExportSpecializedTemplate<int> { void func() {} };
template <typename T> struct ExplicitlyImportSpecializedTemplate { void func() {} };
template <> struct __declspec(dllimport) ExplicitlyImportSpecializedTemplate<int> { void func() {} };
template <typename T> struct ExplicitlyInstantiatedTemplate { void func() {} };
#ifdef MS
// expected-note@+2{{class template 'ExplicitlyInstantiatedTemplate<int>' was instantiated here}}
#endif
template struct ExplicitlyInstantiatedTemplate<int>;
template <typename T> struct ExplicitlyExportInstantiatedTemplate { void func() {} };
template struct __declspec(dllexport) ExplicitlyExportInstantiatedTemplate<int>;
template <typename T> struct ExplicitlyImportInstantiatedTemplate { void func() {} };
template struct __declspec(dllimport) ExplicitlyImportInstantiatedTemplate<int>;
// ClassTemplate<int> gets exported.
class __declspec(dllexport) DerivedFromTemplate : public ClassTemplate<int> {};
// ClassTemplate<int> is already exported.
class __declspec(dllexport) DerivedFromTemplate2 : public ClassTemplate<int> {};
// ExportedTemplate is explicitly exported.
class __declspec(dllexport) DerivedFromExportedTemplate : public ExportedClassTemplate<int> {};
// ImportedTemplate is explicitly imported.
class __declspec(dllexport) DerivedFromImportedTemplate : public ImportedClassTemplate<int> {};
class DerivedFromTemplateD : public ClassTemplate<double> {};
// Base class previously implicitly instantiated without attribute; it will get propagated.
class __declspec(dllexport) DerivedFromTemplateD2 : public ClassTemplate<double> {};
// Base class has explicit instantiation declaration; the attribute will get propagated.
extern template class ClassTemplate<float>;
class __declspec(dllexport) DerivedFromTemplateF : public ClassTemplate<float> {};
class __declspec(dllexport) DerivedFromTemplateB : public ClassTemplate<bool> {};
// The second derived class doesn't change anything, the attribute that was propagated first wins.
class __declspec(dllimport) DerivedFromTemplateB2 : public ClassTemplate<bool> {};
#ifdef MS
// expected-warning@+3{{propagating dll attribute to explicitly specialized base class template without dll attribute is not supported}}
// expected-note@+2{{attribute is here}}
#endif
struct __declspec(dllexport) DerivedFromExplicitlySpecializedTemplate : public ExplicitlySpecializedTemplate<int> {};
// Base class alredy specialized with export attribute.
struct __declspec(dllexport) DerivedFromExplicitlyExportSpecializedTemplate : public ExplicitlyExportSpecializedTemplate<int> {};
// Base class already specialized with import attribute.
struct __declspec(dllexport) DerivedFromExplicitlyImportSpecializedTemplate : public ExplicitlyImportSpecializedTemplate<int> {};
#ifdef MS
// expected-warning@+3{{propagating dll attribute to already instantiated base class template without dll attribute is not supported}}
// expected-note@+2{{attribute is here}}
#endif
struct __declspec(dllexport) DerivedFromExplicitlyInstantiatedTemplate : public ExplicitlyInstantiatedTemplate<int> {};
// Base class already instantiated with export attribute.
struct __declspec(dllexport) DerivedFromExplicitlyExportInstantiatedTemplate : public ExplicitlyExportInstantiatedTemplate<int> {};
// Base class already instantiated with import attribute.
struct __declspec(dllexport) DerivedFromExplicitlyImportInstantiatedTemplate : public ExplicitlyImportInstantiatedTemplate<int> {};
template <typename T> struct ExplicitInstantiationDeclTemplateBase { void func() {} };
extern template struct ExplicitInstantiationDeclTemplateBase<int>;
struct __declspec(dllexport) DerivedFromExplicitInstantiationDeclTemplateBase : public ExplicitInstantiationDeclTemplateBase<int> {};
//===----------------------------------------------------------------------===//
// Precedence
//===----------------------------------------------------------------------===//
// dllexport takes precedence over dllimport if both are specified.
__attribute__((dllimport, dllexport)) extern int PrecedenceExternGlobal1A; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllimport) __declspec(dllexport) extern int PrecedenceExternGlobal1B; // expected-warning{{'dllimport' attribute ignored}}
__attribute__((dllexport, dllimport)) extern int PrecedenceExternGlobal2A; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllexport) __declspec(dllimport) extern int PrecedenceExternGlobal2B; // expected-warning{{'dllimport' attribute ignored}}
__attribute__((dllimport, dllexport)) int PrecedenceGlobal1A; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllimport) __declspec(dllexport) int PrecedenceGlobal1B; // expected-warning{{'dllimport' attribute ignored}}
__attribute__((dllexport, dllimport)) int PrecedenceGlobal2A; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllexport) __declspec(dllimport) int PrecedenceGlobal2B; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllexport) extern int PrecedenceExternGlobalRedecl1;
__declspec(dllimport) extern int PrecedenceExternGlobalRedecl1; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllimport) extern int PrecedenceExternGlobalRedecl2; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllexport) extern int PrecedenceExternGlobalRedecl2;
__declspec(dllexport) extern int PrecedenceGlobalRedecl1;
__declspec(dllimport) int PrecedenceGlobalRedecl1; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllimport) extern int PrecedenceGlobalRedecl2; // expected-warning{{'dllimport' attribute ignored}}
__declspec(dllexport) int PrecedenceGlobalRedecl2;
void __attribute__((dllimport, dllexport)) precedence1A() {} // expected-warning{{'dllimport' attribute ignored}}
void __declspec(dllimport) __declspec(dllexport) precedence1B() {} // expected-warning{{'dllimport' attribute ignored}}
void __attribute__((dllexport, dllimport)) precedence2A() {} // expected-warning{{'dllimport' attribute ignored}}
void __declspec(dllexport) __declspec(dllimport) precedence2B() {} // expected-warning{{'dllimport' attribute ignored}}
void __declspec(dllimport) precedenceRedecl1(); // expected-warning{{'dllimport' attribute ignored}}
void __declspec(dllexport) precedenceRedecl1() {}
void __declspec(dllexport) precedenceRedecl2();
void __declspec(dllimport) precedenceRedecl2() {} // expected-warning{{'dllimport' attribute ignored}}
//===----------------------------------------------------------------------===//
// Class members
//===----------------------------------------------------------------------===//
// Export individual members of a class.
struct ExportMembers {
struct Nested {
__declspec(dllexport) void normalDef();
};
__declspec(dllexport) void normalDecl();
__declspec(dllexport) void normalDef();
__declspec(dllexport) void normalInclass() {}
__declspec(dllexport) void normalInlineDef();
__declspec(dllexport) inline void normalInlineDecl();
__declspec(dllexport) virtual void virtualDecl();
__declspec(dllexport) virtual void virtualDef();
__declspec(dllexport) virtual void virtualInclass() {}
__declspec(dllexport) virtual void virtualInlineDef();
__declspec(dllexport) virtual inline void virtualInlineDecl();
__declspec(dllexport) static void staticDecl();
__declspec(dllexport) static void staticDef();
__declspec(dllexport) static void staticInclass() {}
__declspec(dllexport) static void staticInlineDef();
__declspec(dllexport) static inline void staticInlineDecl();
protected:
__declspec(dllexport) void protectedDef();
private:
__declspec(dllexport) void privateDef();
public:
__declspec(dllexport) int Field; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
__declspec(dllexport) static int StaticField;
__declspec(dllexport) static int StaticFieldDef;
__declspec(dllexport) static const int StaticConstField;
__declspec(dllexport) static const int StaticConstFieldDef;
__declspec(dllexport) static const int StaticConstFieldEqualInit = 1;
__declspec(dllexport) static const int StaticConstFieldBraceInit{1};
__declspec(dllexport) constexpr static int ConstexprField = 1;
__declspec(dllexport) constexpr static int ConstexprFieldDef = 1;
};
void ExportMembers::Nested::normalDef() {}
void ExportMembers::normalDef() {}
inline void ExportMembers::normalInlineDef() {}
void ExportMembers::normalInlineDecl() {}
void ExportMembers::virtualDef() {}
inline void ExportMembers::virtualInlineDef() {}
void ExportMembers::virtualInlineDecl() {}
void ExportMembers::staticDef() {}
inline void ExportMembers::staticInlineDef() {}
void ExportMembers::staticInlineDecl() {}
void ExportMembers::protectedDef() {}
void ExportMembers::privateDef() {}
int ExportMembers::StaticFieldDef;
const int ExportMembers::StaticConstFieldDef = 1;
constexpr int ExportMembers::ConstexprFieldDef;
// Export on member definitions.
struct ExportMemberDefs {
__declspec(dllexport) void normalDef();
__declspec(dllexport) void normalInlineDef();
__declspec(dllexport) inline void normalInlineDecl();
__declspec(dllexport) virtual void virtualDef();
__declspec(dllexport) virtual void virtualInlineDef();
__declspec(dllexport) virtual inline void virtualInlineDecl();
__declspec(dllexport) static void staticDef();
__declspec(dllexport) static void staticInlineDef();
__declspec(dllexport) static inline void staticInlineDecl();
__declspec(dllexport) static int StaticField;
__declspec(dllexport) static const int StaticConstField;
__declspec(dllexport) constexpr static int ConstexprField = 1;
};
__declspec(dllexport) void ExportMemberDefs::normalDef() {}
__declspec(dllexport) inline void ExportMemberDefs::normalInlineDef() {}
__declspec(dllexport) void ExportMemberDefs::normalInlineDecl() {}
__declspec(dllexport) void ExportMemberDefs::virtualDef() {}
__declspec(dllexport) inline void ExportMemberDefs::virtualInlineDef() {}
__declspec(dllexport) void ExportMemberDefs::virtualInlineDecl() {}
__declspec(dllexport) void ExportMemberDefs::staticDef() {}
__declspec(dllexport) inline void ExportMemberDefs::staticInlineDef() {}
__declspec(dllexport) void ExportMemberDefs::staticInlineDecl() {}
__declspec(dllexport) int ExportMemberDefs::StaticField;
__declspec(dllexport) const int ExportMemberDefs::StaticConstField = 1;
__declspec(dllexport) constexpr int ExportMemberDefs::ConstexprField;
// Export special member functions.
struct ExportSpecials {
__declspec(dllexport) ExportSpecials() {}
__declspec(dllexport) ~ExportSpecials();
__declspec(dllexport) inline ExportSpecials(const ExportSpecials&);
__declspec(dllexport) ExportSpecials& operator=(const ExportSpecials&);
__declspec(dllexport) ExportSpecials(ExportSpecials&&);
__declspec(dllexport) ExportSpecials& operator=(ExportSpecials&&);
};
ExportSpecials::~ExportSpecials() {}
ExportSpecials::ExportSpecials(const ExportSpecials&) {}
inline ExportSpecials& ExportSpecials::operator=(const ExportSpecials&) { return *this; }
ExportSpecials::ExportSpecials(ExportSpecials&&) {}
ExportSpecials& ExportSpecials::operator=(ExportSpecials&&) { return *this; }
// Export allocation functions.
extern "C" void* malloc(__SIZE_TYPE__ size);
extern "C" void free(void* p);
struct ExportAlloc {
__declspec(dllexport) void* operator new(__SIZE_TYPE__);
__declspec(dllexport) void* operator new[](__SIZE_TYPE__);
__declspec(dllexport) void operator delete(void*);
__declspec(dllexport) void operator delete[](void*);
};
void* ExportAlloc::operator new(__SIZE_TYPE__ n) { return malloc(n); }
void* ExportAlloc::operator new[](__SIZE_TYPE__ n) { return malloc(n); }
void ExportAlloc::operator delete(void* p) { free(p); }
void ExportAlloc::operator delete[](void* p) { free(p); }
// Export deleted member functions.
struct ExportDeleted {
__declspec(dllexport) ExportDeleted() = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) ~ExportDeleted() = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) ExportDeleted(const ExportDeleted&) = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) ExportDeleted& operator=(const ExportDeleted&) = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) ExportDeleted(ExportDeleted&&) = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) ExportDeleted& operator=(ExportDeleted&&) = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
__declspec(dllexport) void deleted() = delete; // expected-error{{attribute 'dllexport' cannot be applied to a deleted function}}
};
// Export defaulted member functions.
struct ExportDefaulted {
__declspec(dllexport) ExportDefaulted() = default;
__declspec(dllexport) ~ExportDefaulted() = default;
__declspec(dllexport) ExportDefaulted(const ExportDefaulted&) = default;
__declspec(dllexport) ExportDefaulted& operator=(const ExportDefaulted&) = default;
__declspec(dllexport) ExportDefaulted(ExportDefaulted&&) = default;
__declspec(dllexport) ExportDefaulted& operator=(ExportDefaulted&&) = default;
};
// Export defaulted member function definitions.
struct ExportDefaultedDefs {
__declspec(dllexport) ExportDefaultedDefs();
__declspec(dllexport) ~ExportDefaultedDefs();
__declspec(dllexport) inline ExportDefaultedDefs(const ExportDefaultedDefs&);
__declspec(dllexport) ExportDefaultedDefs& operator=(const ExportDefaultedDefs&);
__declspec(dllexport) ExportDefaultedDefs(ExportDefaultedDefs&&);
__declspec(dllexport) ExportDefaultedDefs& operator=(ExportDefaultedDefs&&);
};
// Export definitions.
__declspec(dllexport) ExportDefaultedDefs::ExportDefaultedDefs() = default;
ExportDefaultedDefs::~ExportDefaultedDefs() = default;
// Export inline declaration and definition.
__declspec(dllexport) ExportDefaultedDefs::ExportDefaultedDefs(const ExportDefaultedDefs&) = default;
inline ExportDefaultedDefs& ExportDefaultedDefs::operator=(const ExportDefaultedDefs&) = default;
__declspec(dllexport) ExportDefaultedDefs::ExportDefaultedDefs(ExportDefaultedDefs&&) = default;
ExportDefaultedDefs& ExportDefaultedDefs::operator=(ExportDefaultedDefs&&) = default;
// Redeclarations cannot add dllexport.
struct MemberRedecl {
void normalDef(); // expected-note{{previous declaration is here}}
void normalInlineDef(); // expected-note{{previous declaration is here}}
inline void normalInlineDecl(); // expected-note{{previous declaration is here}}
virtual void virtualDef(); // expected-note{{previous declaration is here}}
virtual void virtualInlineDef(); // expected-note{{previous declaration is here}}
virtual inline void virtualInlineDecl(); // expected-note{{previous declaration is here}}
static void staticDef(); // expected-note{{previous declaration is here}}
static void staticInlineDef(); // expected-note{{previous declaration is here}}
static inline void staticInlineDecl(); // expected-note{{previous declaration is here}}
static int StaticField; // expected-note{{previous declaration is here}}
static const int StaticConstField; // expected-note{{previous declaration is here}}
constexpr static int ConstexprField = 1; // expected-note{{previous declaration is here}}
};
__declspec(dllexport) void MemberRedecl::normalDef() {} // expected-error{{redeclaration of 'MemberRedecl::normalDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) inline void MemberRedecl::normalInlineDef() {} // expected-error{{redeclaration of 'MemberRedecl::normalInlineDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) void MemberRedecl::normalInlineDecl() {} // expected-error{{redeclaration of 'MemberRedecl::normalInlineDecl' cannot add 'dllexport' attribute}}
__declspec(dllexport) void MemberRedecl::virtualDef() {} // expected-error{{redeclaration of 'MemberRedecl::virtualDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) inline void MemberRedecl::virtualInlineDef() {} // expected-error{{redeclaration of 'MemberRedecl::virtualInlineDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) void MemberRedecl::virtualInlineDecl() {} // expected-error{{redeclaration of 'MemberRedecl::virtualInlineDecl' cannot add 'dllexport' attribute}}
__declspec(dllexport) void MemberRedecl::staticDef() {} // expected-error{{redeclaration of 'MemberRedecl::staticDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) inline void MemberRedecl::staticInlineDef() {} // expected-error{{redeclaration of 'MemberRedecl::staticInlineDef' cannot add 'dllexport' attribute}}
__declspec(dllexport) void MemberRedecl::staticInlineDecl() {} // expected-error{{redeclaration of 'MemberRedecl::staticInlineDecl' cannot add 'dllexport' attribute}}
__declspec(dllexport) int MemberRedecl::StaticField = 1; // expected-error{{redeclaration of 'MemberRedecl::StaticField' cannot add 'dllexport' attribute}}
__declspec(dllexport) const int MemberRedecl::StaticConstField = 1; // expected-error{{redeclaration of 'MemberRedecl::StaticConstField' cannot add 'dllexport' attribute}}
__declspec(dllexport) constexpr int MemberRedecl::ConstexprField; // expected-error{{redeclaration of 'MemberRedecl::ConstexprField' cannot add 'dllexport' attribute}}
//===----------------------------------------------------------------------===//
// Class member templates
//===----------------------------------------------------------------------===//
struct ExportMemberTmpl {
template<typename T> __declspec(dllexport) void normalDecl();
template<typename T> __declspec(dllexport) void normalDef();
template<typename T> __declspec(dllexport) void normalInclass() {}
template<typename T> __declspec(dllexport) void normalInlineDef();
template<typename T> __declspec(dllexport) inline void normalInlineDecl();
template<typename T> __declspec(dllexport) static void staticDecl();
template<typename T> __declspec(dllexport) static void staticDef();
template<typename T> __declspec(dllexport) static void staticInclass() {}
template<typename T> __declspec(dllexport) static void staticInlineDef();
template<typename T> __declspec(dllexport) static inline void staticInlineDecl();
#if __has_feature(cxx_variable_templates)
template<typename T> __declspec(dllexport) static int StaticField;
template<typename T> __declspec(dllexport) static int StaticFieldDef;
template<typename T> __declspec(dllexport) static const int StaticConstField;
template<typename T> __declspec(dllexport) static const int StaticConstFieldDef;
template<typename T> __declspec(dllexport) static const int StaticConstFieldEqualInit = 1;
template<typename T> __declspec(dllexport) static const int StaticConstFieldBraceInit{1};
template<typename T> __declspec(dllexport) constexpr static int ConstexprField = 1;
template<typename T> __declspec(dllexport) constexpr static int ConstexprFieldDef = 1;
#endif // __has_feature(cxx_variable_templates)
};
template<typename T> void ExportMemberTmpl::normalDef() {}
template<typename T> inline void ExportMemberTmpl::normalInlineDef() {}
template<typename T> void ExportMemberTmpl::normalInlineDecl() {}
template<typename T> void ExportMemberTmpl::staticDef() {}
template<typename T> inline void ExportMemberTmpl::staticInlineDef() {}
template<typename T> void ExportMemberTmpl::staticInlineDecl() {}
#if __has_feature(cxx_variable_templates)
template<typename T> int ExportMemberTmpl::StaticFieldDef;
template<typename T> const int ExportMemberTmpl::StaticConstFieldDef = 1;
template<typename T> constexpr int ExportMemberTmpl::ConstexprFieldDef;
#endif // __has_feature(cxx_variable_templates)
// Redeclarations cannot add dllexport.
struct MemTmplRedecl {
template<typename T> void normalDef(); // expected-note{{previous declaration is here}}
template<typename T> void normalInlineDef(); // expected-note{{previous declaration is here}}
template<typename T> inline void normalInlineDecl(); // expected-note{{previous declaration is here}}
template<typename T> static void staticDef(); // expected-note{{previous declaration is here}}
template<typename T> static void staticInlineDef(); // expected-note{{previous declaration is here}}
template<typename T> static inline void staticInlineDecl(); // expected-note{{previous declaration is here}}
#if __has_feature(cxx_variable_templates)
template<typename T> static int StaticField; // expected-note{{previous declaration is here}}
template<typename T> static const int StaticConstField; // expected-note{{previous declaration is here}}
template<typename T> constexpr static int ConstexprField = 1; // expected-note{{previous declaration is here}}
#endif // __has_feature(cxx_variable_templates)
};
template<typename T> __declspec(dllexport) void MemTmplRedecl::normalDef() {} // expected-error{{redeclaration of 'MemTmplRedecl::normalDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void MemTmplRedecl::normalInlineDef() {} // expected-error{{redeclaration of 'MemTmplRedecl::normalInlineDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void MemTmplRedecl::normalInlineDecl() {} // expected-error{{redeclaration of 'MemTmplRedecl::normalInlineDecl' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void MemTmplRedecl::staticDef() {} // expected-error{{redeclaration of 'MemTmplRedecl::staticDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void MemTmplRedecl::staticInlineDef() {} // expected-error{{redeclaration of 'MemTmplRedecl::staticInlineDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void MemTmplRedecl::staticInlineDecl() {} // expected-error{{redeclaration of 'MemTmplRedecl::staticInlineDecl' cannot add 'dllexport' attribute}}
#if __has_feature(cxx_variable_templates)
template<typename T> __declspec(dllexport) int MemTmplRedecl::StaticField = 1; // expected-error{{redeclaration of 'MemTmplRedecl::StaticField' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) const int MemTmplRedecl::StaticConstField = 1; // expected-error{{redeclaration of 'MemTmplRedecl::StaticConstField' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) constexpr int MemTmplRedecl::ConstexprField; // expected-error{{redeclaration of 'MemTmplRedecl::ConstexprField' cannot add 'dllexport' attribute}}
#endif // __has_feature(cxx_variable_templates)
struct MemFunTmpl {
template<typename T> void normalDef() {}
template<typename T> __declspec(dllexport) void exportedNormal() {}
template<typename T> static void staticDef() {}
template<typename T> __declspec(dllexport) static void exportedStatic() {}
};
// Export implicit instantiation of an exported member function template.
void useMemFunTmpl() {
MemFunTmpl().exportedNormal<ImplicitInst_Exported>();
MemFunTmpl().exportedStatic<ImplicitInst_Exported>();
}
// Export explicit instantiation declaration of an exported member function
// template.
extern template void MemFunTmpl::exportedNormal<ExplicitDecl_Exported>();
template void MemFunTmpl::exportedNormal<ExplicitDecl_Exported>();
extern template void MemFunTmpl::exportedStatic<ExplicitDecl_Exported>();
template void MemFunTmpl::exportedStatic<ExplicitDecl_Exported>();
// Export explicit instantiation definition of an exported member function
// template.
template void MemFunTmpl::exportedNormal<ExplicitInst_Exported>();
template void MemFunTmpl::exportedStatic<ExplicitInst_Exported>();
// Export specialization of an exported member function template.
template<> __declspec(dllexport) void MemFunTmpl::exportedNormal<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void MemFunTmpl::exportedNormal<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void MemFunTmpl::exportedNormal<ExplicitSpec_InlineDef_Exported>() {}
template<> __declspec(dllexport) void MemFunTmpl::exportedStatic<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void MemFunTmpl::exportedStatic<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void MemFunTmpl::exportedStatic<ExplicitSpec_InlineDef_Exported>() {}
// Not exporting specialization of an exported member function template without
// explicit dllexport.
template<> void MemFunTmpl::exportedNormal<ExplicitSpec_NotExported>() {}
template<> void MemFunTmpl::exportedStatic<ExplicitSpec_NotExported>() {}
// Export explicit instantiation declaration of a non-exported member function
// template.
extern template __declspec(dllexport) void MemFunTmpl::normalDef<ExplicitDecl_Exported>();
template __declspec(dllexport) void MemFunTmpl::normalDef<ExplicitDecl_Exported>();
extern template __declspec(dllexport) void MemFunTmpl::staticDef<ExplicitDecl_Exported>();
template __declspec(dllexport) void MemFunTmpl::staticDef<ExplicitDecl_Exported>();
// Export explicit instantiation definition of a non-exported member function
// template.
template __declspec(dllexport) void MemFunTmpl::normalDef<ExplicitInst_Exported>();
template __declspec(dllexport) void MemFunTmpl::staticDef<ExplicitInst_Exported>();
// Export specialization of a non-exported member function template.
template<> __declspec(dllexport) void MemFunTmpl::normalDef<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void MemFunTmpl::normalDef<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void MemFunTmpl::normalDef<ExplicitSpec_InlineDef_Exported>() {}
template<> __declspec(dllexport) void MemFunTmpl::staticDef<ExplicitSpec_Exported>();
template<> __declspec(dllexport) void MemFunTmpl::staticDef<ExplicitSpec_Def_Exported>() {}
template<> __declspec(dllexport) inline void MemFunTmpl::staticDef<ExplicitSpec_InlineDef_Exported>() {}
#if __has_feature(cxx_variable_templates)
struct MemVarTmpl {
template<typename T> static const int StaticVar = 1;
template<typename T> __declspec(dllexport) static const int ExportedStaticVar = 1;
};
template<typename T> const int MemVarTmpl::StaticVar;
template<typename T> const int MemVarTmpl::ExportedStaticVar;
// Export implicit instantiation of an exported member variable template.
int useMemVarTmpl() { return MemVarTmpl::ExportedStaticVar<ImplicitInst_Exported>; }
// Export explicit instantiation declaration of an exported member variable
// template.
extern template const int MemVarTmpl::ExportedStaticVar<ExplicitDecl_Exported>;
template const int MemVarTmpl::ExportedStaticVar<ExplicitDecl_Exported>;
// Export explicit instantiation definition of an exported member variable
// template.
template const int MemVarTmpl::ExportedStaticVar<ExplicitInst_Exported>;
// Export specialization of an exported member variable template.
template<> __declspec(dllexport) const int MemVarTmpl::ExportedStaticVar<ExplicitSpec_Exported>;
template<> __declspec(dllexport) const int MemVarTmpl::ExportedStaticVar<ExplicitSpec_Def_Exported> = 1;
// Not exporting specialization of an exported member variable template without
// explicit dllexport.
template<> const int MemVarTmpl::ExportedStaticVar<ExplicitSpec_NotExported>;
// Export explicit instantiation declaration of a non-exported member variable
// template.
extern template __declspec(dllexport) const int MemVarTmpl::StaticVar<ExplicitDecl_Exported>;
template __declspec(dllexport) const int MemVarTmpl::StaticVar<ExplicitDecl_Exported>;
// Export explicit instantiation definition of a non-exported member variable
// template.
template __declspec(dllexport) const int MemVarTmpl::StaticVar<ExplicitInst_Exported>;
// Export specialization of a non-exported member variable template.
template<> __declspec(dllexport) const int MemVarTmpl::StaticVar<ExplicitSpec_Exported>;
template<> __declspec(dllexport) const int MemVarTmpl::StaticVar<ExplicitSpec_Def_Exported> = 1;
#endif // __has_feature(cxx_variable_templates)
//===----------------------------------------------------------------------===//
// Class template members
//===----------------------------------------------------------------------===//
// Export individual members of a class template.
template<typename T>
struct ExportClassTmplMembers {
__declspec(dllexport) void normalDecl();
__declspec(dllexport) void normalDef();
__declspec(dllexport) void normalInclass() {}
__declspec(dllexport) void normalInlineDef();
__declspec(dllexport) inline void normalInlineDecl();
__declspec(dllexport) virtual void virtualDecl();
__declspec(dllexport) virtual void virtualDef();
__declspec(dllexport) virtual void virtualInclass() {}
__declspec(dllexport) virtual void virtualInlineDef();
__declspec(dllexport) virtual inline void virtualInlineDecl();
__declspec(dllexport) static void staticDecl();
__declspec(dllexport) static void staticDef();
__declspec(dllexport) static void staticInclass() {}
__declspec(dllexport) static void staticInlineDef();
__declspec(dllexport) static inline void staticInlineDecl();
protected:
__declspec(dllexport) void protectedDef();
private:
__declspec(dllexport) void privateDef();
public:
__declspec(dllexport) int Field; // expected-warning{{'dllexport' attribute only applies to variables, functions and classes}}
__declspec(dllexport) static int StaticField;
__declspec(dllexport) static int StaticFieldDef;
__declspec(dllexport) static const int StaticConstField;
__declspec(dllexport) static const int StaticConstFieldDef;
__declspec(dllexport) static const int StaticConstFieldEqualInit = 1;
__declspec(dllexport) static const int StaticConstFieldBraceInit{1};
__declspec(dllexport) constexpr static int ConstexprField = 1;
__declspec(dllexport) constexpr static int ConstexprFieldDef = 1;
};
template<typename T> void ExportClassTmplMembers<T>::normalDef() {}
template<typename T> inline void ExportClassTmplMembers<T>::normalInlineDef() {}
template<typename T> void ExportClassTmplMembers<T>::normalInlineDecl() {}
template<typename T> void ExportClassTmplMembers<T>::virtualDef() {}
template<typename T> inline void ExportClassTmplMembers<T>::virtualInlineDef() {}
template<typename T> void ExportClassTmplMembers<T>::virtualInlineDecl() {}
template<typename T> void ExportClassTmplMembers<T>::staticDef() {}
template<typename T> inline void ExportClassTmplMembers<T>::staticInlineDef() {}
template<typename T> void ExportClassTmplMembers<T>::staticInlineDecl() {}
template<typename T> void ExportClassTmplMembers<T>::protectedDef() {}
template<typename T> void ExportClassTmplMembers<T>::privateDef() {}
template<typename T> int ExportClassTmplMembers<T>::StaticFieldDef;
template<typename T> const int ExportClassTmplMembers<T>::StaticConstFieldDef = 1;
template<typename T> constexpr int ExportClassTmplMembers<T>::ConstexprFieldDef;
template struct ExportClassTmplMembers<ImplicitInst_Exported>;
// Redeclarations cannot add dllexport.
template<typename T>
struct CTMR /*ClassTmplMemberRedecl*/ {
void normalDef(); // expected-note{{previous declaration is here}}
void normalInlineDef(); // expected-note{{previous declaration is here}}
inline void normalInlineDecl(); // expected-note{{previous declaration is here}}
virtual void virtualDef(); // expected-note{{previous declaration is here}}
virtual void virtualInlineDef(); // expected-note{{previous declaration is here}}
virtual inline void virtualInlineDecl(); // expected-note{{previous declaration is here}}
static void staticDef(); // expected-note{{previous declaration is here}}
static void staticInlineDef(); // expected-note{{previous declaration is here}}
static inline void staticInlineDecl(); // expected-note{{previous declaration is here}}
static int StaticField; // expected-note{{previous declaration is here}}
static const int StaticConstField; // expected-note{{previous declaration is here}}
constexpr static int ConstexprField = 1; // expected-note{{previous declaration is here}}
};
template<typename T> __declspec(dllexport) void CTMR<T>::normalDef() {} // expected-error{{redeclaration of 'CTMR::normalDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void CTMR<T>::normalInlineDef() {} // expected-error{{redeclaration of 'CTMR::normalInlineDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void CTMR<T>::normalInlineDecl() {} // expected-error{{redeclaration of 'CTMR::normalInlineDecl' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void CTMR<T>::virtualDef() {} // expected-error{{redeclaration of 'CTMR::virtualDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void CTMR<T>::virtualInlineDef() {} // expected-error{{redeclaration of 'CTMR::virtualInlineDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void CTMR<T>::virtualInlineDecl() {} // expected-error{{redeclaration of 'CTMR::virtualInlineDecl' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void CTMR<T>::staticDef() {} // expected-error{{redeclaration of 'CTMR::staticDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) inline void CTMR<T>::staticInlineDef() {} // expected-error{{redeclaration of 'CTMR::staticInlineDef' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) void CTMR<T>::staticInlineDecl() {} // expected-error{{redeclaration of 'CTMR::staticInlineDecl' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) int CTMR<T>::StaticField = 1; // expected-error{{redeclaration of 'CTMR::StaticField' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) const int CTMR<T>::StaticConstField = 1; // expected-error{{redeclaration of 'CTMR::StaticConstField' cannot add 'dllexport' attribute}}
template<typename T> __declspec(dllexport) constexpr int CTMR<T>::ConstexprField; // expected-error{{redeclaration of 'CTMR::ConstexprField' cannot add 'dllexport' attribute}}
//===----------------------------------------------------------------------===//
// Class template member templates
//===----------------------------------------------------------------------===//
template<typename T>
struct ExportClsTmplMemTmpl {
template<typename U> __declspec(dllexport) void normalDecl();
template<typename U> __declspec(dllexport) void normalDef();
template<typename U> __declspec(dllexport) void normalInclass() {}
template<typename U> __declspec(dllexport) void normalInlineDef();
template<typename U> __declspec(dllexport) inline void normalInlineDecl();
template<typename U> __declspec(dllexport) static void staticDecl();
template<typename U> __declspec(dllexport) static void staticDef();
template<typename U> __declspec(dllexport) static void staticInclass() {}
template<typename U> __declspec(dllexport) static void staticInlineDef();
template<typename U> __declspec(dllexport) static inline void staticInlineDecl();
#if __has_feature(cxx_variable_templates)
template<typename U> __declspec(dllexport) static int StaticField;
template<typename U> __declspec(dllexport) static int StaticFieldDef;
template<typename U> __declspec(dllexport) static const int StaticConstField;
template<typename U> __declspec(dllexport) static const int StaticConstFieldDef;
template<typename U> __declspec(dllexport) static const int StaticConstFieldEqualInit = 1;
template<typename U> __declspec(dllexport) static const int StaticConstFieldBraceInit{1};
template<typename U> __declspec(dllexport) constexpr static int ConstexprField = 1;
template<typename U> __declspec(dllexport) constexpr static int ConstexprFieldDef = 1;
#endif // __has_feature(cxx_variable_templates)
};
template<typename T> template<typename U> void ExportClsTmplMemTmpl<T>::normalDef() {}
template<typename T> template<typename U> inline void ExportClsTmplMemTmpl<T>::normalInlineDef() {}
template<typename T> template<typename U> void ExportClsTmplMemTmpl<T>::normalInlineDecl() {}
template<typename T> template<typename U> void ExportClsTmplMemTmpl<T>::staticDef() {}
template<typename T> template<typename U> inline void ExportClsTmplMemTmpl<T>::staticInlineDef() {}
template<typename T> template<typename U> void ExportClsTmplMemTmpl<T>::staticInlineDecl() {}
#if __has_feature(cxx_variable_templates)
template<typename T> template<typename U> int ExportClsTmplMemTmpl<T>::StaticFieldDef;
template<typename T> template<typename U> const int ExportClsTmplMemTmpl<T>::StaticConstFieldDef = 1;
template<typename T> template<typename U> constexpr int ExportClsTmplMemTmpl<T>::ConstexprFieldDef;
#endif // __has_feature(cxx_variable_templates)
// Redeclarations cannot add dllexport.
template<typename T>
struct CTMTR /*ClassTmplMemberTmplRedecl*/ {
template<typename U> void normalDef(); // expected-note{{previous declaration is here}}
template<typename U> void normalInlineDef(); // expected-note{{previous declaration is here}}
template<typename U> inline void normalInlineDecl(); // expected-note{{previous declaration is here}}
template<typename U> static void staticDef(); // expected-note{{previous declaration is here}}
template<typename U> static void staticInlineDef(); // expected-note{{previous declaration is here}}
template<typename U> static inline void staticInlineDecl(); // expected-note{{previous declaration is here}}
#if __has_feature(cxx_variable_templates)
template<typename U> static int StaticField; // expected-note{{previous declaration is here}}
template<typename U> static const int StaticConstField; // expected-note{{previous declaration is here}}
template<typename U> constexpr static int ConstexprField = 1; // expected-note{{previous declaration is here}}
#endif // __has_feature(cxx_variable_templates)
};
template<typename T> template<typename U> __declspec(dllexport) void CTMTR<T>::normalDef() {} // expected-error{{redeclaration of 'CTMTR::normalDef' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) inline void CTMTR<T>::normalInlineDef() {} // expected-error{{redeclaration of 'CTMTR::normalInlineDef' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) void CTMTR<T>::normalInlineDecl() {} // expected-error{{redeclaration of 'CTMTR::normalInlineDecl' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) void CTMTR<T>::staticDef() {} // expected-error{{redeclaration of 'CTMTR::staticDef' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) inline void CTMTR<T>::staticInlineDef() {} // expected-error{{redeclaration of 'CTMTR::staticInlineDef' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) void CTMTR<T>::staticInlineDecl() {} // expected-error{{redeclaration of 'CTMTR::staticInlineDecl' cannot add 'dllexport' attribute}}
#if __has_feature(cxx_variable_templates)
template<typename T> template<typename U> __declspec(dllexport) int CTMTR<T>::StaticField = 1; // expected-error{{redeclaration of 'CTMTR::StaticField' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) const int CTMTR<T>::StaticConstField = 1; // expected-error{{redeclaration of 'CTMTR::StaticConstField' cannot add 'dllexport' attribute}}
template<typename T> template<typename U> __declspec(dllexport) constexpr int CTMTR<T>::ConstexprField; // expected-error{{redeclaration of 'CTMTR::ConstexprField' cannot add 'dllexport' attribute}}
#endif // __has_feature(cxx_variable_templates)
// FIXME: Precedence rules seem to be different for classes.
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/function-extern-c.cpp
|
// RUN: %clang_cc1 -Wreturn-type -fsyntax-only -std=c++11 -verify %s
class A {
public:
A(const A&);
};
struct S {
int i;
double d;
virtual void B() {}
};
union U {
struct {
int i;
virtual void B() {} // Can only do this in C++11
} t;
};
struct S2 {
int i;
double d;
};
extern "C" U f3( void ); // expected-warning {{'f3' has C-linkage specified, but returns user-defined type 'U' which is incompatible with C}}
extern "C" S f0(void); // expected-warning {{'f0' has C-linkage specified, but returns user-defined type 'S' which is incompatible with C}}
extern "C" A f4( void ); // expected-warning {{'f4' has C-linkage specified, but returns user-defined type 'A' which is incompatible with C}}
// These should all be fine
extern "C" S2 f5( void );
extern "C" void f2( A x );
extern "C" void f6( S s );
extern "C" void f7( U u );
extern "C" double f8(void);
extern "C" long long f11( void );
extern "C" A *f10( void );
extern "C" struct mypodstruct f12(); // expected-warning {{'f12' has C-linkage specified, but returns incomplete type 'struct mypodstruct' which could be incompatible with C}}
namespace test2 {
// FIXME: we should probably suppress the first warning as the second one
// is more precise.
// For now this tests that a second 'extern "C"' is not necessary to trigger
// the warning.
struct A;
extern "C" A f(void); // expected-warning {{'f' has C-linkage specified, but returns incomplete type 'test2::A' which could be incompatible with C}}
struct A {
A(const A&);
};
A f(void); // no warning. warning is already issued on first declaration.
}
namespace test3 {
struct A {
A(const A&);
};
extern "C" {
// Don't warn for static functions.
static A f(void);
}
}
// rdar://13364028
namespace rdar13364028 {
class A {
public:
virtual int x();
};
extern "C" {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
A xyzzy();
#pragma clang diagnostic pop
A bbb(); // expected-warning {{'bbb' has C-linkage specified, but returns user-defined type 'rdar13364028::A' which is incompatible with C}}
A ccc() { // expected-warning {{'ccc' has C-linkage specified, but returns user-defined type 'rdar13364028::A' which is incompatible with C}}
return A();
};
}
A xyzzy();
A xyzzy()
{
return A();
}
A bbb()
{
return A();
}
A bbb();
A ccc();
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/for-range-dereference.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
struct Data { };
struct T {
Data *begin();
Data *end();
};
struct NoBegin {
Data *end();
};
struct DeletedEnd : public T {
Data *begin();
Data *end() = delete; //expected-note {{'end' has been explicitly marked deleted here}}
};
struct DeletedADLBegin { };
int* begin(DeletedADLBegin) = delete; //expected-note {{candidate function has been explicitly deleted}} \
expected-note 5 {{candidate function not viable: no known conversion}}
struct PrivateEnd {
Data *begin();
private:
Data *end(); // expected-note 2 {{declared private here}}
};
struct ADLNoEnd { };
Data * begin(ADLNoEnd); // expected-note 6 {{candidate function not viable: no known conversion}}
struct OverloadedStar {
T operator*();
};
void f() {
T t;
for (auto i : t) { }
T *pt;
for (auto i : pt) { } // expected-error{{invalid range expression of type 'T *'; did you mean to dereference it with '*'?}}
int arr[10];
for (auto i : arr) { }
int (*parr)[10];
for (auto i : parr) { }// expected-error{{invalid range expression of type 'int (*)[10]'; did you mean to dereference it with '*'?}}
NoBegin NB;
for (auto i : NB) { }// expected-error{{range type 'NoBegin' has 'end' member but no 'begin' member}}
NoBegin *pNB;
for (auto i : pNB) { }// expected-error{{invalid range expression of type 'NoBegin *'; no viable 'begin' function available}}
NoBegin **ppNB;
for (auto i : ppNB) { }// expected-error{{invalid range expression of type 'NoBegin **'; no viable 'begin' function available}}
NoBegin *****pppppNB;
for (auto i : pppppNB) { }// expected-error{{invalid range expression of type 'NoBegin *****'; no viable 'begin' function available}}
ADLNoEnd ANE;
for (auto i : ANE) { } // expected-error{{invalid range expression of type 'ADLNoEnd'; no viable 'end' function available}}
ADLNoEnd *pANE;
for (auto i : pANE) { } // expected-error{{invalid range expression of type 'ADLNoEnd *'; no viable 'begin' function available}}
DeletedEnd DE;
for (auto i : DE) { } // expected-error{{attempt to use a deleted function}} \
expected-note {{when looking up 'end' function for range expression of type 'DeletedEnd'}}
DeletedEnd *pDE;
for (auto i : pDE) { } // expected-error {{invalid range expression of type 'DeletedEnd *'; no viable 'begin' function available}}
PrivateEnd PE;
// FIXME: This diagnostic should be improved, as it does not specify that
// the range is invalid.
for (auto i : PE) { } // expected-error{{'end' is a private member of 'PrivateEnd'}}
PrivateEnd *pPE;
for (auto i : pPE) { }// expected-error {{invalid range expression of type 'PrivateEnd *'}}
// expected-error@-1 {{'end' is a private member of 'PrivateEnd'}}
DeletedADLBegin DAB;
for (auto i : DAB) { } // expected-error {{call to deleted function 'begin'}}\
expected-note {{when looking up 'begin' function for range expression of type 'DeletedADLBegin'}}
OverloadedStar OS;
for (auto i : *OS) { }
for (auto i : OS) { } // expected-error {{invalid range expression of type 'OverloadedStar'; did you mean to dereference it with '*'?}}
for (Data *p : pt) { } // expected-error {{invalid range expression of type 'T *'; did you mean to dereference it with '*'?}}
// expected-error@-1 {{no viable conversion from 'Data' to 'Data *'}}
// expected-note@4 {{selected 'begin' function with iterator type 'Data *'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-memset-bad-sizeof.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-sizeof-array-argument %s
//
extern "C" void *memset(void *, int, unsigned);
extern "C" void *memmove(void *s1, const void *s2, unsigned n);
extern "C" void *memcpy(void *s1, const void *s2, unsigned n);
extern "C" void *memcmp(void *s1, const void *s2, unsigned n);
struct S {int a, b, c, d;};
typedef S* PS;
struct Foo {};
typedef const Foo& CFooRef;
typedef const Foo CFoo;
typedef volatile Foo VFoo;
typedef const volatile Foo CVFoo;
typedef double Mat[4][4];
template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
// http://www.lysator.liu.se/c/c-faq/c-2.html#2-6
void f(Mat m, const Foo& const_foo, char *buffer) {
S s;
S* ps = &s;
PS ps2 = &s;
char arr[5];
char* parr[5];
Foo foo;
char* heap_buffer = new char[42];
/* Should warn */
memset(&s, 0, sizeof(&s)); // \
// expected-warning {{'memset' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to remove the addressof in the argument to 'sizeof' (and multiply it by the number of elements)?}}
memset(ps, 0, sizeof(ps)); // \
// expected-warning {{'memset' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to dereference the argument to 'sizeof' (and multiply it by the number of elements)?}}
memset(ps2, 0, sizeof(ps2)); // \
// expected-warning {{'memset' call operates on objects of type 'S' while the size is based on a different type 'PS' (aka 'S *')}} expected-note{{did you mean to dereference the argument to 'sizeof' (and multiply it by the number of elements)?}}
memset(ps2, 0, sizeof(typeof(ps2))); // \
// expected-warning {{argument to 'sizeof' in 'memset' call is the same pointer type}}
memset(ps2, 0, sizeof(PS)); // \
// expected-warning {{argument to 'sizeof' in 'memset' call is the same pointer type}}
memset(heap_buffer, 0, sizeof(heap_buffer)); // \
// expected-warning {{'memset' call operates on objects of type 'char' while the size is based on a different type 'char *'}} expected-note{{did you mean to provide an explicit length?}}
memcpy(&s, 0, sizeof(&s)); // \
// expected-warning {{'memcpy' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to remove the addressof in the argument to 'sizeof' (and multiply it by the number of elements)?}}
memcpy(0, &s, sizeof(&s)); // \
// expected-warning {{'memcpy' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to remove the addressof in the argument to 'sizeof' (and multiply it by the number of elements)?}}
memmove(ps, 0, sizeof(ps)); // \
// expected-warning {{'memmove' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to dereference the argument to 'sizeof' (and multiply it by the number of elements)?}}
memcmp(ps, 0, sizeof(ps)); // \
// expected-warning {{'memcmp' call operates on objects of type 'S' while the size is based on a different type 'S *'}} expected-note{{did you mean to dereference the argument to 'sizeof' (and multiply it by the number of elements)?}}
/* Shouldn't warn */
memset((void*)&s, 0, sizeof(&s));
memset(&s, 0, sizeof(s));
memset(&s, 0, sizeof(S));
memset(&s, 0, sizeof(const S));
memset(&s, 0, sizeof(volatile S));
memset(&s, 0, sizeof(volatile const S));
memset(&foo, 0, sizeof(CFoo));
memset(&foo, 0, sizeof(VFoo));
memset(&foo, 0, sizeof(CVFoo));
memset(ps, 0, sizeof(*ps));
memset(ps2, 0, sizeof(*ps2));
memset(ps2, 0, sizeof(typeof(*ps2)));
memset(arr, 0, sizeof(arr));
memset(parr, 0, sizeof(parr));
memcpy(&foo, &const_foo, sizeof(Foo));
memcpy((void*)&s, 0, sizeof(&s));
memcpy(0, (void*)&s, sizeof(&s));
char *cptr;
memcpy(&cptr, buffer, sizeof(cptr));
memcpy((char*)&cptr, buffer, sizeof(cptr));
CFooRef cfoo = foo;
memcpy(&foo, &cfoo, sizeof(Foo));
memcpy(0, &arr, sizeof(arr));
typedef char Buff[8];
memcpy(0, &arr, sizeof(Buff));
unsigned char* puc;
bit_cast<char*>(puc);
float* pf;
bit_cast<int*>(pf);
int iarr[14];
memset(&iarr[0], 0, sizeof iarr);
memset(iarr, 0, sizeof iarr);
int* iparr[14];
memset(&iparr[0], 0, sizeof iparr);
memset(iparr, 0, sizeof iparr);
memset(m, 0, sizeof(Mat));
// Copy to raw buffer shouldn't warn either
memcpy(&foo, &arr, sizeof(Foo));
memcpy(&arr, &foo, sizeof(Foo));
// Shouldn't warn, and shouldn't crash either.
memset(({
if (0) {}
while (0) {}
for (;;) {}
&s;
}), 0, sizeof(s));
}
namespace ns {
void memset(void* s, char c, int n);
void f(int* i) {
memset(i, 0, sizeof(i));
}
}
extern "C" int strncmp(const char *s1, const char *s2, unsigned n);
extern "C" int strncasecmp(const char *s1, const char *s2, unsigned n);
extern "C" char *strncpy(char *det, const char *src, unsigned n);
extern "C" char *strncat(char *dst, const char *src, unsigned n);
extern "C" char *strndup(const char *src, unsigned n);
void strcpy_and_friends() {
const char* FOO = "<- should be an array instead";
const char* BAR = "<- this, too";
strncmp(FOO, BAR, sizeof(FOO)); // \
// expected-warning {{'strncmp' call operates on objects of type 'const char' while the size is based on a different type 'const char *'}} expected-note{{did you mean to provide an explicit length?}}
strncasecmp(FOO, BAR, sizeof(FOO)); // \
// expected-warning {{'strncasecmp' call operates on objects of type 'const char' while the size is based on a different type 'const char *'}} expected-note{{did you mean to provide an explicit length?}}
char buff[80];
strncpy(buff, BAR, sizeof(BAR)); // \
// expected-warning {{'strncpy' call operates on objects of type 'const char' while the size is based on a different type 'const char *'}} expected-note{{did you mean to provide an explicit length?}}
strndup(FOO, sizeof(FOO)); // \
// expected-warning {{'strndup' call operates on objects of type 'const char' while the size is based on a different type 'const char *'}} expected-note{{did you mean to provide an explicit length?}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/trivial-destructor.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
// expected-no-diagnostics
struct T1 {
};
static_assert(__has_trivial_destructor(T1), "T1 has trivial destructor!");
struct T2 {
~T2();
};
static_assert(!__has_trivial_destructor(T2), "T2 has a user-declared destructor!");
struct T3 {
virtual void f();
};
static_assert(__has_trivial_destructor(T3), "T3 has a virtual function (but still a trivial destructor)!");
struct T4 : virtual T3 {
};
static_assert(__has_trivial_destructor(T4), "T4 has a virtual base class! (but still a trivial destructor)!");
struct T5 : T1 {
};
static_assert(__has_trivial_destructor(T5), "All the direct base classes of T5 have trivial destructors!");
struct T6 {
T5 t5;
T1 t1[2][2];
static T2 t2;
};
static_assert(__has_trivial_destructor(T6), "All nonstatic data members of T6 have trivial destructors!");
struct T7 {
T2 t2;
};
static_assert(!__has_trivial_destructor(T7), "t2 does not have a trivial destructor!");
struct T8 : T2 {
};
static_assert(!__has_trivial_destructor(T8), "The base class T2 does not have a trivial destructor!");
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/ms-interface.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -verify -fms-extensions -Wno-microsoft -std=c++11
__interface I1 {
// expected-error@+1 {{user-declared constructor is not permitted within an interface type}}
I1();
// expected-error@+1 {{user-declared destructor is not permitted within an interface type}}
~I1();
virtual void fn1() const;
// expected-error@+1 {{operator 'operator!' is not permitted within an interface type}}
bool operator!();
// expected-error@+1 {{operator 'operator int' is not permitted within an interface type}}
operator int();
// expected-error@+1 {{nested class I1::(anonymous) is not permitted within an interface type}}
struct { int a; };
void fn2() {
struct A { }; // should be ignored: not a nested class
}
protected: // expected-error {{interface types cannot specify 'protected' access}}
typedef void void_t;
using int_t = int;
private: // expected-error {{interface types cannot specify 'private' access}}
static_assert(true, "oops");
};
__interface I2 {
// expected-error@+1 {{data member 'i' is not permitted within an interface type}}
int i;
// expected-error@+1 {{static member function 'fn1' is not permitted within an interface type}}
static int fn1();
private: // expected-error {{interface types cannot specify 'private' access}}
// expected-error@+1 {{non-public member function 'fn2' is not permitted within an interface type}}
void fn2();
protected: // expected-error {{interface types cannot specify 'protected' access}}
// expected-error@+1 {{non-public member function 'fn3' is not permitted within an interface type}}
void fn3();
public:
void fn4();
};
// expected-error@+1 {{'final' keyword not permitted with interface types}}
__interface I3 final {
};
__interface I4 : I1, I2 {
void fn1() const override;
// expected-error@+1 {{'final' keyword not permitted with interface types}}
void fn2() final;
};
// expected-error@+1 {{interface type cannot inherit from non-public 'interface I1'}}
__interface I5 : private I1 {
};
template <typename X>
__interface I6 : X {
};
struct S { };
class C { };
__interface I { };
static_assert(!__is_interface_class(S), "oops");
static_assert(!__is_interface_class(C), "oops");
static_assert(__is_interface_class(I), "oops");
// expected-error@55 {{interface type cannot inherit from 'struct S'}}
// expected-note@+1 {{in instantiation of template class 'I6<S>' requested here}}
struct S1 : I6<S> {
};
// expected-error@55 {{interface type cannot inherit from 'class C'}}
// expected-note@+1 {{in instantiation of template class 'I6<C>' requested here}}
class C1 : I6<C> {
};
class C2 : I6<I> {
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unsequenced.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wno-unused %s
int f(int, int = 0);
struct A {
int x, y;
};
struct S {
S(int, int);
int n;
};
void test() {
int a;
int xs[10];
++a = 0; // ok
a + ++a; // expected-warning {{unsequenced modification and access to 'a'}}
a = ++a; // ok
a + a++; // expected-warning {{unsequenced modification and access to 'a'}}
a = a++; // expected-warning {{multiple unsequenced modifications to 'a'}}
++ ++a; // ok
(a++, a++); // ok
++a + ++a; // expected-warning {{multiple unsequenced modifications to 'a'}}
a++ + a++; // expected-warning {{multiple unsequenced modifications}}
(a++, a) = 0; // ok, increment is sequenced before value computation of LHS
a = xs[++a]; // ok
a = xs[a++]; // expected-warning {{multiple unsequenced modifications}}
(a ? xs[0] : xs[1]) = ++a; // expected-warning {{unsequenced modification and access}}
a = (++a, ++a); // ok
a = (a++, ++a); // ok
a = (a++, a++); // expected-warning {{multiple unsequenced modifications}}
f(a, a); // ok
f(a = 0, a); // expected-warning {{unsequenced modification and access}}
f(a, a += 0); // expected-warning {{unsequenced modification and access}}
f(a = 0, a = 0); // expected-warning {{multiple unsequenced modifications}}
a = f(++a); // ok
a = f(a++); // ok
a = f(++a, a++); // expected-warning {{multiple unsequenced modifications}}
// Compound assignment "A OP= B" is equivalent to "A = A OP B" except that A
// is evaluated only once.
(++a, a) = 1; // ok
(++a, a) += 1; // ok
a = ++a; // ok
a += ++a; // expected-warning {{unsequenced modification and access}}
A agg1 = { a++, a++ }; // ok
A agg2 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}}
S str1(a++, a++); // expected-warning {{multiple unsequenced modifications}}
S str2 = { a++, a++ }; // ok
S str3 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}}
struct Z { A a; S s; } z = { { ++a, ++a }, { ++a, ++a } }; // ok
a = S { ++a, a++ }.n; // ok
A { ++a, a++ }.x; // ok
a = A { ++a, a++ }.x; // expected-warning {{unsequenced modifications}}
A { ++a, a++ }.x + A { ++a, a++ }.y; // expected-warning {{unsequenced modifications}}
(xs[2] && (a = 0)) + a; // ok
(0 && (a = 0)) + a; // ok
(1 && (a = 0)) + a; // expected-warning {{unsequenced modification and access}}
(xs[3] || (a = 0)) + a; // ok
(0 || (a = 0)) + a; // expected-warning {{unsequenced modification and access}}
(1 || (a = 0)) + a; // ok
(xs[4] ? a : ++a) + a; // ok
(0 ? a : ++a) + a; // expected-warning {{unsequenced modification and access}}
(1 ? a : ++a) + a; // ok
(0 ? a : a++) + a; // expected-warning {{unsequenced modification and access}}
(1 ? a : a++) + a; // ok
(xs[5] ? ++a : ++a) + a; // FIXME: warn here
(++a, xs[6] ? ++a : 0) + a; // expected-warning {{unsequenced modification and access}}
// Here, the read of the fourth 'a' might happen before or after the write to
// the second 'a'.
a += (a++, a) + a; // expected-warning {{unsequenced modification and access}}
int *p = xs;
a = *(a++, p); // ok
a = a++ && a; // ok
A *q = &agg1;
(q = &agg2)->y = q->x; // expected-warning {{unsequenced modification and access to 'q'}}
// This has undefined behavior if a == 0; otherwise, the side-effect of the
// increment is sequenced before the value computation of 'f(a, a)', which is
// sequenced before the value computation of the '&&', which is sequenced
// before the assignment. We treat the sequencing in '&&' as being
// unconditional.
a = a++ && f(a, a);
// This has undefined behavior if a != 0. FIXME: We should diagnose this.
(a && a++) + a;
(xs[7] && ++a) * (!xs[7] && ++a); // ok
xs[0] = (a = 1, a); // ok
(a -= 128) &= 128; // ok
++a += 1; // ok
xs[8] ? ++a + a++ : 0; // expected-warning {{multiple unsequenced modifications}}
xs[8] ? 0 : ++a + a++; // expected-warning {{multiple unsequenced modifications}}
xs[8] ? ++a : a++; // ok
xs[8] && (++a + a++); // expected-warning {{multiple unsequenced modifications}}
xs[8] || (++a + a++); // expected-warning {{multiple unsequenced modifications}}
(__builtin_classify_type(++a) ? 1 : 0) + ++a; // ok
(__builtin_constant_p(++a) ? 1 : 0) + ++a; // ok
(__builtin_object_size(&(++a, a), 0) ? 1 : 0) + ++a; // ok
(__builtin_expect(++a, 0) ? 1 : 0) + ++a; // expected-warning {{multiple unsequenced modifications}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/conversion-delete-expr.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// Test1
struct B {
operator char *(); // expected-note {{conversion to pointer type}}
};
struct D : B {
operator int *(); // expected-note {{conversion to pointer type}}
};
void f (D d)
{
delete d; // expected-error {{ambiguous conversion of delete expression of type 'D' to a pointer}}
}
// Test2
struct B1 {
operator int *();
};
struct D1 : B1 {
operator int *();
};
void f1 (D1 d)
{
delete d;
}
// Test3
struct B2 {
operator const int *(); // expected-note {{conversion to pointer type}}
};
struct D2 : B2 {
operator int *(); // expected-note {{conversion to pointer type}}
};
void f2 (D2 d)
{
delete d; // expected-error {{ambiguous conversion of delete expression of type 'D2' to a pointer}}
}
// Test4
struct B3 {
operator const int *(); // expected-note {{conversion to pointer type}}
};
struct A3 {
operator const int *(); // expected-note {{conversion to pointer type}}
};
struct D3 : A3, B3 {
};
void f3 (D3 d)
{
delete d; // expected-error {{ambiguous conversion of delete expression of type 'D3' to a pointer}}
}
// Test5
struct X {
operator int();
operator int*();
};
void f4(X x) { delete x; delete x; }
// Test6
struct X1 {
operator int();
operator int*();
template<typename T> operator T*() const; // converts to any pointer!
};
void f5(X1 x) { delete x; } // OK. In selecting a conversion to pointer function, template convesions are skipped.
// Test7
struct Base {
operator int*();
};
struct Derived : Base {
// not the same function as Base's non-const operator int()
operator int*() const;
};
void foo6(const Derived cd, Derived d) {
// overload resolution selects Derived::operator int*() const;
delete cd;
delete d;
}
// Test8
struct BB {
template<typename T> operator T*() const;
};
struct DD : BB {
template<typename T> operator T*() const; // hides base conversion
operator int *() const;
};
void foo7 (DD d)
{
// OK. In selecting a conversion to pointer function, template convesions are skipped.
delete d;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/ms-exception-spec.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -verify -fms-extensions
// expected-no-diagnostics
void f() throw(...) { }
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/captured-statements.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s -fblocks
void test_nest_lambda() {
int x;
int y;
[&,y]() {
int z;
#pragma clang __debug captured
{
x = y; // OK
y = z; // expected-error{{cannot assign to a variable captured by copy in a non-mutable lambda}}
z = y; // OK
}
}();
int a;
#pragma clang __debug captured
{
int b;
int c;
[&,c]() {
a = b; // OK
b = c; // OK
c = a; // expected-error{{cannot assign to a variable captured by copy in a non-mutable lambda}}
}();
}
}
class test_obj_capture {
int a;
void b();
static void test() {
test_obj_capture c;
#pragma clang __debug captured
{ (void)c.a; } // OK
#pragma clang __debug captured
{ c.b(); } // OK
}
};
class test_this_capture {
int a;
void b();
void test() {
#pragma clang __debug captured
{ (void)this; } // OK
#pragma clang __debug captured
{ (void)a; } // OK
#pragma clang __debug captured
{ b(); } // OK
}
};
template <typename T>
void template_capture_var() {
T x; // expected-error{{declaration of reference variable 'x' requires an initializer}}
#pragma clang _debug captured
{
(void)x;
}
}
template <typename T>
class Val {
T v;
public:
void set(const T &v0) {
#pragma clang __debug captured
{
v = v0;
}
}
};
void test_capture_var() {
template_capture_var<int>(); // OK
template_capture_var<int&>(); // expected-note{{in instantiation of function template specialization 'template_capture_var<int &>' requested here}}
Val<float> Obj;
Obj.set(0.0f); // OK
}
template <typename S, typename T>
S template_capture_var(S x, T y) { // expected-note{{variable 'y' declared const here}}
#pragma clang _debug captured
{
x++;
y++; // expected-error{{cannot assign to variable 'y' with const-qualified type 'const int'}}
}
return x;
}
// Check if can recover from a template error.
void test_capture_var_error() {
template_capture_var<int, int>(0, 1); // OK
template_capture_var<int, const int>(0, 1); // expected-note{{in instantiation of function template specialization 'template_capture_var<int, const int>' requested here}}
template_capture_var<int, int>(0, 1); // OK
}
template <typename T>
void template_capture_in_lambda() {
T x, y;
[=, &y]() {
#pragma clang __debug captured
{
y += x;
}
}();
}
void test_lambda() {
template_capture_in_lambda<int>(); // OK
}
struct Foo {
void foo() { }
static void bar() { }
};
template <typename T>
void template_capture_func(T &t) {
#pragma clang __debug captured
{
t.foo();
}
#pragma clang __debug captured
{
T::bar();
}
}
void test_template_capture_func() {
Foo Obj;
template_capture_func(Obj);
}
template <typename T>
T captured_sum(const T &a, const T &b) {
T result;
#pragma clang __debug captured
{
result = a + b;
}
return result;
}
template <typename T, typename... Args>
T captured_sum(const T &a, const Args&... args) {
T result;
#pragma clang __debug captured
{
result = a + captured_sum(args...);
}
return result;
}
void test_capture_variadic() {
(void)captured_sum(1, 2, 3); // OK
(void)captured_sum(1, 2, 3, 4, 5); // OK
}
void test_capture_with_attributes() {
[[]] // expected-error {{an attribute list cannot appear here}}
#pragma clang __debug captured
{
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decltype-overloaded-functions.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
void f(); // expected-note{{possible target for call}}
void f(int); // expected-note{{possible target for call}}
decltype(f) a; // expected-error{{reference to overloaded function could not be resolved; did you mean to call it with no arguments?}} expected-error {{variable has incomplete type 'decltype(f())' (aka 'void')}}
template<typename T> struct S {
decltype(T::f) * f; // expected-error {{call to non-static member function without an object argument}}
};
struct K {
void f();
void f(int);
};
S<K> b; // expected-note{{in instantiation of template class 'S<K>' requested here}}
namespace PR13978 {
template<typename T> struct S { decltype(1) f(); };
template<typename T> decltype(1) S<T>::f() { return 1; }
// This case is ill-formed (no diagnostic required) because the decltype
// expressions are functionally equivalent but not equivalent. It would
// be acceptable for us to reject this case.
template<typename T> struct U { struct A {}; decltype(A{}) f(); };
template<typename T> decltype(typename U<T>::A{}) U<T>::f() {}
// This case is valid.
template<typename T> struct V { struct A {}; decltype(typename V<T>::A{}) f(); };
template<typename T> decltype(typename V<T>::A{}) V<T>::f() {}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/virtual-override-x86.cpp
|
// RUN: %clang_cc1 -triple=i686-pc-win32 -fsyntax-only -verify %s -std=c++11
namespace PR14339 {
class A {
public:
virtual void __attribute__((thiscall)) f(); // expected-note{{overridden virtual function is here}}
};
class B : public A {
public:
void __attribute__((cdecl)) f(); // expected-error{{virtual function 'f' has different calling convention attributes ('void () __attribute__((cdecl))') than the function it overrides (which has calling convention 'void () __attribute__((thiscall))'}}
};
class C : public A {
public:
void __attribute__((thiscall)) f(); // This override is correct
};
class D : public A {
public:
void f(); // This override is correct because thiscall is the default calling convention for class members
};
class E {
public:
virtual void __attribute__((stdcall)) g(); // expected-note{{overridden virtual function is here}}
};
class F : public E {
public:
void g(); // expected-error{{virtual function 'g' has different calling convention attributes ('void () __attribute__((thiscall))') than the function it overrides (which has calling convention 'void () __attribute__((stdcall))'}}
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/overload-call.cpp
|
// RUN: %clang_cc1 -pedantic -verify %s
int* f(int) { return 0; }
float* f(float) { return 0; }
void f();
void test_f(int iv, float fv) {
float* fp = f(fv);
int* ip = f(iv);
}
int* g(int, float, int); // expected-note {{candidate function}}
float* g(int, int, int); // expected-note {{candidate function}}
double* g(int, float, float); // expected-note {{candidate function}}
char* g(int, float, ...); // expected-note {{candidate function}}
void g();
void test_g(int iv, float fv) {
int* ip1 = g(iv, fv, 0);
float* fp1 = g(iv, iv, 0);
double* dp1 = g(iv, fv, fv);
char* cp1 = g(0, 0);
char* cp2 = g(0, 0, 0, iv, fv);
double* dp2 = g(0, fv, 1.5); // expected-error {{call to 'g' is ambiguous}}
}
double* h(double f);
int* h(int);
void test_h(float fv, unsigned char cv) {
double* dp = h(fv);
int* ip = h(cv);
}
int* i(int);
double* i(long);
void test_i(short sv, int iv, long lv, unsigned char ucv) {
int* ip1 = i(sv);
int* ip2 = i(iv);
int* ip3 = i(ucv);
double* dp1 = i(lv);
}
int* j(void*);
double* j(bool);
void test_j(int* ip) {
int* ip1 = j(ip);
}
int* k(char*);
double* k(bool);
void test_k() {
int* ip1 = k("foo"); // expected-warning{{conversion from string literal to 'char *' is deprecated}}
int* ip2 = k(("foo")); // expected-warning{{conversion from string literal to 'char *' is deprecated}}
double* dp1 = k(L"foo");
}
int* l(wchar_t*);
double* l(bool);
void test_l() {
int* ip1 = l(L"foo"); // expected-warning{{conversion from string literal to 'wchar_t *' is deprecated}}
double* dp1 = l("foo");
}
int* m(const char*);
double* m(char*);
void test_m() {
int* ip = m("foo");
}
int* n(char*);
double* n(void*);
class E;
void test_n(E* e) {
char ca[7];
int* ip1 = n(ca);
int* ip2 = n("foo"); // expected-warning{{conversion from string literal to 'char *' is deprecated}}
float fa[7];
double* dp1 = n(fa);
double* dp2 = n(e);
}
enum PromotesToInt {
PromotesToIntValue = -1
};
enum PromotesToUnsignedInt {
PromotesToUnsignedIntValue = __INT_MAX__ * 2U
};
int* o(int);
double* o(unsigned int);
float* o(long);
void test_o() {
int* ip1 = o(PromotesToIntValue);
double* dp1 = o(PromotesToUnsignedIntValue);
}
int* p(int);
double* p(double);
void test_p() {
int* ip = p((short)1);
double* dp = p(1.0f);
}
struct Bits {
signed short int_bitfield : 5;
unsigned int uint_bitfield : 8;
};
int* bitfields(int, int);
float* bitfields(unsigned int, int);
void test_bitfield(Bits bits, int x) {
int* ip = bitfields(bits.int_bitfield, 0);
float* fp = bitfields(bits.uint_bitfield, 0u);
}
int* multiparm(long, int, long); // expected-note {{candidate function}}
float* multiparm(int, int, int); // expected-note {{candidate function}}
double* multiparm(int, int, short); // expected-note {{candidate function}}
void test_multiparm(long lv, short sv, int iv) {
int* ip1 = multiparm(lv, iv, lv);
int* ip2 = multiparm(lv, sv, lv);
float* fp1 = multiparm(iv, iv, iv);
float* fp2 = multiparm(sv, iv, iv);
double* dp1 = multiparm(sv, sv, sv);
double* dp2 = multiparm(iv, sv, sv);
multiparm(sv, sv, lv); // expected-error {{call to 'multiparm' is ambiguous}}
}
// Test overloading based on qualification vs. no qualification
// conversion.
int* quals1(int const * p);
char* quals1(int * p);
int* quals2(int const * const * pp);
char* quals2(int * * pp);
int* quals3(int const * * const * ppp);
char* quals3(int *** ppp);
void test_quals(int * p, int * * pp, int * * * ppp) {
char* q1 = quals1(p);
char* q2 = quals2(pp);
char* q3 = quals3(ppp);
}
// Test overloading based on qualification ranking (C++ 13.3.2)p3.
int* quals_rank1(int const * p);
float* quals_rank1(int const volatile *p);
char* quals_rank1(char*);
double* quals_rank1(const char*);
int* quals_rank2(int const * const * pp);
float* quals_rank2(int * const * pp);
void quals_rank3(int const * const * const volatile * p); // expected-note{{candidate function}}
void quals_rank3(int const * const volatile * const * p); // expected-note{{candidate function}}
void quals_rank3(int const *); // expected-note{{candidate function}}
void quals_rank3(int volatile *); // expected-note{{candidate function}}
void test_quals_ranking(int * p, int volatile *pq, int * * pp, int * * * ppp) {
int* q1 = quals_rank1(p);
float* q2 = quals_rank1(pq);
double* q3 = quals_rank1("string literal");
char a[17];
const char* ap = a;
char* q4 = quals_rank1(a);
double* q5 = quals_rank1(ap);
float* q6 = quals_rank2(pp);
quals_rank3(ppp); // expected-error {{call to 'quals_rank3' is ambiguous}}
quals_rank3(p); // expected-error {{call to 'quals_rank3' is ambiguous}}
quals_rank3(pq);
}
// Test overloading based on derived-to-base conversions
class A { };
class B : public A { };
class C : public B { };
class D : public C { };
int* derived1(A*);
char* derived1(const A*);
float* derived1(void*);
int* derived2(A*);
float* derived2(B*);
int* derived3(A*);
float* derived3(const B*);
char* derived3(C*);
void test_derived(B* b, B const* bc, C* c, const C* cc, void* v, D* d) {
int* d1 = derived1(b);
char* d2 = derived1(bc);
int* d3 = derived1(c);
char* d4 = derived1(cc);
float* d5 = derived1(v);
float* d6 = derived2(b);
float* d7 = derived2(c);
char* d8 = derived3(d);
}
void derived4(C*); // expected-note{{candidate function not viable: cannot convert from base class pointer 'A *' to derived class pointer 'C *' for 1st argument}}
void test_base(A* a) {
derived4(a); // expected-error{{no matching function for call to 'derived4}}
}
// Test overloading of references.
// (FIXME: tests binding to determine candidate sets, not overload
// resolution per se).
int* intref(int&);
float* intref(const int&);
void intref_test() {
float* ir1 = intref(5);
float* ir2 = intref(5.5); // expected-warning{{implicit conversion from 'double' to 'int' changes value from 5.5 to 5}}
}
void derived5(C&); // expected-note{{candidate function not viable: cannot bind base class object of type 'A' to derived class reference 'C &' for 1st argument}}
void test_base(A& a) {
derived5(a); // expected-error{{no matching function for call to 'derived5}}
}
// Test reference binding vs. standard conversions.
int& bind_vs_conv(const double&);
float& bind_vs_conv(int);
void bind_vs_conv_test()
{
int& i1 = bind_vs_conv(1.0f);
float& f1 = bind_vs_conv((short)1);
}
// Test that cv-qualifiers get subsumed in the reference binding.
struct X { };
struct Y { };
struct Z : X, Y { };
int& cvqual_subsume(X&); // expected-note{{candidate function}}
float& cvqual_subsume(const Y&); // expected-note{{candidate function}}
int& cvqual_subsume2(X&); // expected-note{{candidate function}}
float& cvqual_subsume2(volatile Y&); // expected-note{{candidate function}}
void cvqual_subsume_test(Z z) {
cvqual_subsume(z); // expected-error{{call to 'cvqual_subsume' is ambiguous}}
cvqual_subsume2(z); // expected-error{{call to 'cvqual_subsume2' is ambiguous}}
}
// Test overloading with cv-qualification differences in reference
// binding.
int& cvqual_diff(X&);
float& cvqual_diff(const X&);
void cvqual_diff_test(X x, Z z) {
int& i1 = cvqual_diff(x);
int& i2 = cvqual_diff(z);
}
// Test overloading with derived-to-base differences in reference
// binding.
struct Z2 : Z { };
int& db_rebind(X&);
long& db_rebind(Y&);
float& db_rebind(Z&);
void db_rebind_test(Z2 z2) {
float& f1 = db_rebind(z2);
}
class string { };
class opt : public string { };
struct SR {
SR(const string&);
};
void f(SR) { }
void g(opt o) {
f(o);
}
namespace PR5756 {
int &a(void*, int);
float &a(void*, float);
void b() {
int &ir = a(0,0);
(void)ir;
}
}
// Tests the exact text used to note the candidates
namespace test1 {
template <class T> void foo(T t, unsigned N); // expected-note {{candidate function [with T = int] not viable: no known conversion from 'const char [6]' to 'unsigned int' for 2nd argument}}
void foo(int n, char N); // expected-note {{candidate function not viable: no known conversion from 'const char [6]' to 'char' for 2nd argument}}
void foo(int n, const char *s, int t); // expected-note {{candidate function not viable: requires 3 arguments, but 2 were provided}}
void foo(int n, const char *s, int t, ...); // expected-note {{candidate function not viable: requires at least 3 arguments, but 2 were provided}}
void foo(int n, const char *s, int t, int u = 0); // expected-note {{candidate function not viable: requires at least 3 arguments, but 2 were provided}}
// PR 11857
void foo(int n); // expected-note {{candidate function not viable: requires single argument 'n', but 2 arguments were provided}}
void foo(unsigned n = 10); // expected-note {{candidate function not viable: allows at most single argument 'n', but 2 arguments were provided}}
void bar(int n, int u = 0); // expected-note {{candidate function not viable: requires at least argument 'n', but no arguments were provided}}
void baz(int n = 0, int u = 0); // expected-note {{candidate function not viable: requires at most 2 arguments, but 3 were provided}}
void test() {
foo(4, "hello"); //expected-error {{no matching function for call to 'foo'}}
bar(); //expected-error {{no matching function for call to 'bar'}}
baz(3, 4, 5); // expected-error {{no matching function for call to 'baz'}}
}
}
// PR 6014
namespace test2 {
struct QFixed {
QFixed(int i);
QFixed(long i);
};
bool operator==(const QFixed &f, int i);
class qrgb666 {
inline operator unsigned int () const;
inline bool operator==(const qrgb666 &v) const;
inline bool operator!=(const qrgb666 &v) const { return !(*this == v); }
};
}
// PR 6117
namespace test3 {
struct Base {};
struct Incomplete;
void foo(Base *); // expected-note 2 {{cannot convert argument of incomplete type}}
void foo(Base &); // expected-note 2 {{cannot convert argument of incomplete type}}
void test(Incomplete *P) {
foo(P); // expected-error {{no matching function for call to 'foo'}}
foo(*P); // expected-error {{no matching function for call to 'foo'}}
}
}
namespace DerivedToBaseVsVoid {
struct A { };
struct B : A { };
float &f(void *);
int &f(const A*);
void g(B *b) {
int &ir = f(b);
}
}
// PR 6398 + PR 6421
namespace test4 {
class A;
class B {
static void foo(); // expected-note {{not viable}}
static void foo(int*); // expected-note {{not viable}}
static void foo(long*); // expected-note {{not viable}}
void bar(A *a) {
foo(a); // expected-error {{no matching function for call}}
}
};
}
namespace DerivedToBase {
struct A { };
struct B : A { };
struct C : B { };
int &f0(const A&);
float &f0(B);
void g() {
float &fr = f0(C());
}
}
namespace PR6483 {
struct X0 {
operator const unsigned int & () const;
};
struct X1 {
operator unsigned int & () const;
};
void f0(const bool &);
void f1(bool &); // expected-note 2{{not viable}}
void g(X0 x0, X1 x1) {
f0(x0);
f1(x0); // expected-error{{no matching function for call}}
f0(x1);
f1(x1); // expected-error{{no matching function for call}}
}
}
namespace PR6078 {
struct A {
A(short); // expected-note{{candidate constructor}}
A(long); // expected-note{{candidate constructor}}
};
struct S {
typedef void ft(A);
operator ft*();
};
void f() {
S()(0); // expected-error{{conversion from 'int' to 'PR6078::A' is ambiguous}}
}
}
namespace PR6177 {
struct String { String(char const*); };
void f(bool const volatile&);
int &f(String);
void g() { int &r = f(""); }
}
namespace PR7095 {
struct X { };
struct Y {
operator const X*();
private:
operator X*();
};
void f(const X *);
void g(Y y) { f(y); }
}
namespace PR7224 {
class A {};
class B : public A {};
int &foo(A *const d);
float &foo(const A *const d);
void bar()
{
B *const d = 0;
B const *const d2 = 0;
int &ir = foo(d);
float &fr = foo(d2);
}
}
namespace NontrivialSubsequence {
struct X0;
class A {
operator X0 *();
public:
operator const X0 *();
};
A a;
void foo( void const * );
void g() {
foo(a);
}
}
// rdar://rdar8499524
namespace rdar8499524 {
struct W {};
struct S {
S(...);
};
void g(const S&);
void f() {
g(W());
}
}
namespace rdar9173984 {
template <typename T, unsigned long N> int &f(const T (&)[N]);
template <typename T> float &f(const T *);
void test() {
int arr[2] = {0, 0};
int *arrp = arr;
int &ir = f(arr);
float &fr = f(arrp);
}
}
namespace PR9507 {
void f(int * const&); // expected-note{{candidate function}}
void f(int const(&)[1]); // expected-note{{candidate function}}
int main() {
int n[1];
f(n); // expected-error{{call to 'f' is ambiguous}}
}
}
namespace rdar9803316 {
void foo(float);
int &foo(int);
void bar() {
int &ir = (&foo)(0);
}
}
namespace IncompleteArg {
// Ensure that overload resolution attempts to complete argument types when
// performing ADL.
template<typename T> struct S {
friend int f(const S&);
};
extern S<int> s;
int k = f(s);
template<typename T> struct Op {
friend bool operator==(const Op &, const Op &);
};
extern Op<char> op;
bool b = op == op;
// ... and not in other cases! Nothing here requires U<int()> to be complete.
// (Note that instantiating U<int()> will fail.)
template<typename T> struct U {
T t;
};
struct Consumer {
template<typename T>
int operator()(const U<T> &);
};
template<typename T> U<T> &make();
Consumer c;
int n = sizeof(c(make<int()>()));
}
namespace PR12142 {
void fun(int (*x)[10]); // expected-note{{candidate function not viable: 1st argument ('const int (*)[10]') would lose const qualifier}}
void g() { fun((const int(*)[10])0); } // expected-error{{no matching function for call to 'fun'}}
}
// DR1152: Take 'volatile' into account when handling reference bindings in
// overload resolution.
namespace PR12931 {
void f(const int &, ...);
void f(const volatile int &, int);
void g() { f(0, 0); }
}
void test5() {
struct {
typedef void F1(int);
typedef void F2(double);
operator F1*(); // expected-note{{conversion candidate}}
operator F2*(); // expected-note{{conversion candidate}}
} callable;
callable(); // expected-error{{no matching function for call}}
}
namespace PR20218 {
void f(void (*const &)()); // expected-note 2{{candidate}}
void f(void (&&)()) = delete; // expected-note 2{{candidate}} expected-warning 2{{extension}}
void g(void (&&)()) = delete; // expected-note 2{{candidate}} expected-warning 2{{extension}}
void g(void (*const &)()); // expected-note 2{{candidate}}
void x();
typedef void (&fr)();
struct Y { operator fr(); } y;
void h() {
f(x); // expected-error {{ambiguous}}
g(x); // expected-error {{ambiguous}}
f(y); // expected-error {{ambiguous}}
g(y); // expected-error {{ambiguous}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-weak.cpp
|
// RUN: %clang_cc1 -triple x86_64-pc-linux-gnu -fsyntax-only -verify -std=c++11 %s
static int test0 __attribute__((weak)); // expected-error {{weak declaration cannot have internal linkage}}
static void test1() __attribute__((weak)); // expected-error {{weak declaration cannot have internal linkage}}
namespace test2 __attribute__((weak)) { // expected-warning {{'weak' attribute only applies to variables, functions and classes}}
}
namespace {
int test3 __attribute__((weak)); // expected-error {{weak declaration cannot have internal linkage}}
void test4() __attribute__((weak)); // expected-error {{weak declaration cannot have internal linkage}}
}
struct Test5 {
static void test5() __attribute__((weak)); // no error
};
namespace {
struct Test6 {
static void test6() __attribute__((weak)); // expected-error {{weak declaration cannot have internal linkage}}
};
}
// GCC rejects the instantiation with the internal type, but some existing
// code expects it. It is also not that different from giving hidden visibility
// to parts of a template that have explicit default visibility, so we accept
// this.
template <class T> struct Test7 {
void test7() __attribute__((weak)) {}
static int var __attribute__((weak));
};
template <class T>
int Test7<T>::var;
namespace { class Internal {}; }
template struct Test7<Internal>;
template struct Test7<int>;
class __attribute__((weak)) Test8 {}; // OK
__attribute__((weak)) auto Test9 = Internal(); // expected-error {{weak declaration cannot have internal linkage}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx0x-type-convert-construct.cpp
|
// RUN: %clang_cc1 -std=gnu++11 -fsyntax-only -verify %s
void f() {
char *u8str;
u8str = u8"a UTF-8 string"; // expected-error {{assigning to 'char *' from incompatible type 'const char [15]'}}
char16_t *ustr;
ustr = u"a UTF-16 string"; // expected-error {{assigning to 'char16_t *' from incompatible type 'const char16_t [16]'}}
char32_t *Ustr;
Ustr = U"a UTF-32 string"; // expected-error {{assigning to 'char32_t *' from incompatible type 'const char32_t [16]'}}
char *Rstr;
Rstr = R"foo(a raw string)foo"; // expected-warning{{ISO C++11 does not allow conversion from string literal to 'char *'}}
wchar_t *LRstr;
LRstr = LR"foo(a wide raw string)foo"; // expected-warning{{ISO C++11 does not allow conversion from string literal to 'wchar_t *'}}
char *u8Rstr;
u8Rstr = u8R"foo(a UTF-8 raw string)foo"; // expected-error {{assigning to 'char *' from incompatible type 'const char [19]'}}
char16_t *uRstr;
uRstr = uR"foo(a UTF-16 raw string)foo"; // expected-error {{assigning to 'char16_t *' from incompatible type 'const char16_t [20]'}}
char32_t *URstr;
URstr = UR"foo(a UTF-32 raw string)foo"; // expected-error {{assigning to 'char32_t *' from incompatible type 'const char32_t [20]'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/member-name-lookup.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
struct A {
int a; // expected-note 4{{member found by ambiguous name lookup}}
static int b;
static int c; // expected-note 2{{member found by ambiguous name lookup}}
enum E { enumerator };
typedef int type;
static void f(int);
void f(float); // expected-note 2{{member found by ambiguous name lookup}}
static void static_f(int);
static void static_f(double);
};
struct B : A {
int d; // expected-note 2{{member found by ambiguous name lookup}}
enum E2 { enumerator2 };
enum E3 { enumerator3 }; // expected-note 2{{member found by ambiguous name lookup}}
};
struct C : A {
int c; // expected-note 2{{member found by ambiguous name lookup}}
int d; // expected-note 2{{member found by ambiguous name lookup}}
enum E3 { enumerator3_2 }; // expected-note 2{{member found by ambiguous name lookup}}
};
struct D : B, C {
void test_lookup();
};
void test_lookup(D d) {
d.a; // expected-error{{non-static member 'a' found in multiple base-class subobjects of type 'A':}}
(void)d.b; // okay
d.c; // expected-error{{member 'c' found in multiple base classes of different types}}
d.d; // expected-error{{member 'd' found in multiple base classes of different types}}
d.f(0); // expected-error{{non-static member 'f' found in multiple base-class subobjects of type 'A':}}
d.static_f(0); // okay
D::E e = D::enumerator; // okay
D::type t = 0; // okay
D::E2 e2 = D::enumerator2; // okay
D::E3 e3; // expected-error{{multiple base classes}}
}
void D::test_lookup() {
a; // expected-error{{non-static member 'a' found in multiple base-class subobjects of type 'A':}}
(void)b; // okay
c; // expected-error{{member 'c' found in multiple base classes of different types}}
d; // expected-error{{member 'd' found in multiple base classes of different types}}
f(0); // expected-error{{non-static member 'f' found in multiple base-class subobjects of type 'A':}}
static_f(0); // okay
E e = enumerator; // okay
type t = 0; // okay
E2 e2 = enumerator2; // okay
E3 e3; // expected-error{{member 'E3' found in multiple base classes of different types}}
}
struct B2 : virtual A {
int d; // expected-note 2{{member found by ambiguous name lookup}}
enum E2 { enumerator2 };
enum E3 { enumerator3 }; // expected-note 2 {{member found by ambiguous name lookup}}
};
struct C2 : virtual A {
int c;
int d; // expected-note 2{{member found by ambiguous name lookup}}
enum E3 { enumerator3_2 }; // expected-note 2{{member found by ambiguous name lookup}}
};
struct D2 : B2, C2 {
void test_virtual_lookup();
};
struct F : A { };
struct G : F, D2 {
void test_virtual_lookup();
};
void test_virtual_lookup(D2 d2, G g) {
(void)d2.a;
(void)d2.b;
(void)d2.c; // okay
d2.d; // expected-error{{member 'd' found in multiple base classes of different types}}
d2.f(0); // okay
d2.static_f(0); // okay
D2::E e = D2::enumerator; // okay
D2::type t = 0; // okay
D2::E2 e2 = D2::enumerator2; // okay
D2::E3 e3; // expected-error{{member 'E3' found in multiple base classes of different types}}
g.a; // expected-error{{non-static member 'a' found in multiple base-class subobjects of type 'A':}}
g.static_f(0); // okay
}
void D2::test_virtual_lookup() {
(void)a;
(void)b;
(void)c; // okay
d; // expected-error{{member 'd' found in multiple base classes of different types}}
f(0); // okay
static_f(0); // okay
E e = enumerator; // okay
type t = 0; // okay
E2 e2 = enumerator2; // okay
E3 e3; // expected-error{{member 'E3' found in multiple base classes of different types}}
}
void G::test_virtual_lookup() {
a; // expected-error{{non-static member 'a' found in multiple base-class subobjects of type 'A':}}
static_f(0); // okay
}
struct HasMemberType1 {
struct type { }; // expected-note{{member found by ambiguous name lookup}}
};
struct HasMemberType2 {
struct type { }; // expected-note{{member found by ambiguous name lookup}}
};
struct HasAnotherMemberType : HasMemberType1, HasMemberType2 {
struct type { };
};
struct UsesAmbigMemberType : HasMemberType1, HasMemberType2 {
type t; // expected-error{{member 'type' found in multiple base classes of different types}}
};
struct X0 {
struct Inner {
static const int m;
};
static const int n = 17;
};
const int X0::Inner::m = n;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unused-local-typedef-x86asm.cpp
|
// REQUIRES: x86-registered-target
// RUN: %clang_cc1 -triple x86_64-unknown-unknown -fsyntax-only -std=c++11 -Wunused-local-typedef -verify -fasm-blocks %s
// expected-no-diagnostics
void use_in_asm() {
typedef struct {
int a;
int b;
} A;
__asm mov eax, [eax].A.b
using Alias = struct {
int a;
int b;
};
__asm mov eax, [eax].Alias.b
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/long-virtual-inheritance-chain.cpp
|
// RUN: %clang_cc1 -fsyntax-only %s
class test0 { virtual void f(); };
class test1 : virtual test0 { virtual void f(); };
class test2 : virtual test1 { virtual void f(); };
class test3 : virtual test2 { virtual void f(); };
class test4 : virtual test3 { virtual void f(); };
class test5 : virtual test4 { virtual void f(); };
class test6 : virtual test5 { virtual void f(); };
class test7 : virtual test6 { virtual void f(); };
class test8 : virtual test7 { virtual void f(); };
class test9 : virtual test8 { virtual void f(); };
class test10 : virtual test9 { virtual void f(); };
class test11 : virtual test10 { virtual void f(); };
class test12 : virtual test11 { virtual void f(); };
class test13 : virtual test12 { virtual void f(); };
class test14 : virtual test13 { virtual void f(); };
class test15 : virtual test14 { virtual void f(); };
class test16 : virtual test15 { virtual void f(); };
class test17 : virtual test16 { virtual void f(); };
class test18 : virtual test17 { virtual void f(); };
class test19 : virtual test18 { virtual void f(); };
class test20 : virtual test19 { virtual void f(); };
class test21 : virtual test20 { virtual void f(); };
class test22 : virtual test21 { virtual void f(); };
class test23 : virtual test22 { virtual void f(); };
class test24 : virtual test23 { virtual void f(); };
class test25 : virtual test24 { virtual void f(); };
class test26 : virtual test25 { virtual void f(); };
class test27 : virtual test26 { virtual void f(); };
class test28 : virtual test27 { virtual void f(); };
class test29 : virtual test28 { virtual void f(); };
class test30 : virtual test29 { virtual void f(); };
class test31 : virtual test30 { virtual void f(); };
class test32 : virtual test31 { virtual void f(); };
class test33 : virtual test32 { virtual void f(); };
class test34 : virtual test33 { virtual void f(); };
class test35 : virtual test34 { virtual void f(); };
class test36 : virtual test35 { virtual void f(); };
class test37 : virtual test36 { virtual void f(); };
class test38 : virtual test37 { virtual void f(); };
class test39 : virtual test38 { virtual void f(); };
class test40 : virtual test39 { virtual void f(); };
class test41 : virtual test40 { virtual void f(); };
class test42 : virtual test41 { virtual void f(); };
class test43 : virtual test42 { virtual void f(); };
class test44 : virtual test43 { virtual void f(); };
class test45 : virtual test44 { virtual void f(); };
class test46 : virtual test45 { virtual void f(); };
class test47 : virtual test46 { virtual void f(); };
class test48 : virtual test47 { virtual void f(); };
class test49 : virtual test48 { virtual void f(); };
class test50 : virtual test49 { virtual void f(); };
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-unused.cpp
|
// RUN: %clang_cc1 -verify -Wunused -Wused-but-marked-unused -fsyntax-only %s
namespace ns_unused { typedef int Int_unused __attribute__((unused)); }
namespace ns_not_unused { typedef int Int_not_unused; }
void f() {
ns_not_unused::Int_not_unused i1; // expected-warning {{unused variable}}
ns_unused::Int_unused i0; // expected-warning {{'Int_unused' was marked unused but was used}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/complex-init-list.cpp
|
// RUN: %clang_cc1 %s -verify -fsyntax-only -pedantic
// expected-no-diagnostics
// This file tests the clang extension which allows initializing the components
// of a complex number individually using an initialization list. Basically,
// if you have an explicit init list for a complex number that contains two
// initializers, this extension kicks in to turn it into component-wise
// initialization.
//
// See also the testcase for the C version of this extension in
// test/Sema/complex-init-list.c.
// Basic testcase
// (No pedantic warning is necessary because _Complex is not part of C++.)
_Complex float valid1 = { 1.0f, 2.0f };
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx1y-user-defined-literals.cpp
|
// RUN: %clang_cc1 -std=c++1y %s -include %s -verify
#ifndef INCLUDED
#define INCLUDED
#pragma clang system_header
namespace std {
using size_t = decltype(sizeof(0));
struct duration {};
duration operator""ns(unsigned long long);
duration operator""us(unsigned long long);
duration operator""ms(unsigned long long);
duration operator""s(unsigned long long);
duration operator""min(unsigned long long);
duration operator""h(unsigned long long);
struct string {};
string operator""s(const char*, size_t);
template<typename T> struct complex {};
complex<float> operator""if(long double);
complex<float> operator""if(unsigned long long);
complex<double> operator""i(long double);
complex<double> operator""i(unsigned long long);
complex<long double> operator""il(long double);
complex<long double> operator""il(unsigned long long);
}
#else
using namespace std;
duration a = 1ns, b = 1us, c = 1ms, d = 1s, e = 1min, f = 1h;
string s = "foo"s;
char error = 'x's; // expected-error {{invalid suffix}} expected-error {{expected ';'}}
int _1z = 1z; // expected-error {{invalid suffix}}
int _1b = 1b; // expected-error {{invalid digit}}
complex<float> cf1 = 1if, cf2 = 2.if, cf3 = 0x3if;
complex<double> cd1 = 1i, cd2 = 2.i, cd3 = 0b0110101i;
complex<long double> cld1 = 1il, cld2 = 2.il, cld3 = 0047il;
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/expression-traits.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -fcxx-exceptions %s
//
// Tests for "expression traits" intrinsics such as __is_lvalue_expr.
//
// For the time being, these tests are written against the 2003 C++
// standard (ISO/IEC 14882:2003 -- see draft at
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2001/n1316/).
//
// C++0x has its own, more-refined, idea of lvalues and rvalues.
// If/when we need to support those, we'll need to track both
// standard documents.
#if !__has_feature(cxx_static_assert)
# define CONCAT_(X_, Y_) CONCAT1_(X_, Y_)
# define CONCAT1_(X_, Y_) X_ ## Y_
// This emulation can be used multiple times on one line (and thus in
// a macro), except at class scope
# define static_assert(b_, m_) \
typedef int CONCAT_(sa_, __LINE__)[b_ ? 1 : -1]
#endif
// Tests are broken down according to section of the C++03 standard
// (ISO/IEC 14882:2003(E))
// Assertion macros encoding the following two paragraphs
//
// basic.lval/1 Every expression is either an lvalue or an rvalue.
//
// expr.prim/5 A parenthesized expression is a primary expression whose type
// and value are identical to those of the enclosed expression. The
// presence of parentheses does not affect whether the expression is
// an lvalue.
//
// Note: these asserts cannot be made at class scope in C++03. Put
// them in a member function instead.
#define ASSERT_LVALUE(expr) \
static_assert(__is_lvalue_expr(expr), "should be an lvalue"); \
static_assert(__is_lvalue_expr((expr)), \
"the presence of parentheses should have" \
" no effect on lvalueness (expr.prim/5)"); \
static_assert(!__is_rvalue_expr(expr), "should be an lvalue"); \
static_assert(!__is_rvalue_expr((expr)), \
"the presence of parentheses should have" \
" no effect on lvalueness (expr.prim/5)")
#define ASSERT_RVALUE(expr); \
static_assert(__is_rvalue_expr(expr), "should be an rvalue"); \
static_assert(__is_rvalue_expr((expr)), \
"the presence of parentheses should have" \
" no effect on lvalueness (expr.prim/5)"); \
static_assert(!__is_lvalue_expr(expr), "should be an rvalue"); \
static_assert(!__is_lvalue_expr((expr)), \
"the presence of parentheses should have" \
" no effect on lvalueness (expr.prim/5)")
enum Enum { Enumerator };
int ReturnInt();
void ReturnVoid();
Enum ReturnEnum();
void basic_lval_5()
{
// basic.lval/5: The result of calling a function that does not return
// a reference is an rvalue.
ASSERT_RVALUE(ReturnInt());
ASSERT_RVALUE(ReturnVoid());
ASSERT_RVALUE(ReturnEnum());
}
int& ReturnIntReference();
extern Enum& ReturnEnumReference();
void basic_lval_6()
{
// basic.lval/6: An expression which holds a temporary object resulting
// from a cast to a nonreference type is an rvalue (this includes
// the explicit creation of an object using functional notation
struct IntClass
{
explicit IntClass(int = 0);
IntClass(char const*);
operator int() const;
};
struct ConvertibleToIntClass
{
operator IntClass() const;
};
ConvertibleToIntClass b;
// Make sure even trivial conversions are not detected as lvalues
int intLvalue = 0;
ASSERT_RVALUE((int)intLvalue);
ASSERT_RVALUE((short)intLvalue);
ASSERT_RVALUE((long)intLvalue);
// Same tests with function-call notation
ASSERT_RVALUE(int(intLvalue));
ASSERT_RVALUE(short(intLvalue));
ASSERT_RVALUE(long(intLvalue));
char charLValue = 'x';
ASSERT_RVALUE((signed char)charLValue);
ASSERT_RVALUE((unsigned char)charLValue);
ASSERT_RVALUE(static_cast<int>(IntClass()));
IntClass intClassLValue;
ASSERT_RVALUE(static_cast<int>(intClassLValue));
ASSERT_RVALUE(static_cast<IntClass>(ConvertibleToIntClass()));
ConvertibleToIntClass convertibleToIntClassLValue;
ASSERT_RVALUE(static_cast<IntClass>(convertibleToIntClassLValue));
typedef signed char signed_char;
typedef unsigned char unsigned_char;
ASSERT_RVALUE(signed_char(charLValue));
ASSERT_RVALUE(unsigned_char(charLValue));
ASSERT_RVALUE(int(IntClass()));
ASSERT_RVALUE(int(intClassLValue));
ASSERT_RVALUE(IntClass(ConvertibleToIntClass()));
ASSERT_RVALUE(IntClass(convertibleToIntClassLValue));
}
void conv_ptr_1()
{
// conv.ptr/1: A null pointer constant is an integral constant
// expression (5.19) rvalue of integer type that evaluates to
// zero.
ASSERT_RVALUE(0);
}
void expr_6()
{
// expr/6: If an expression initially has the type "reference to T"
// (8.3.2, 8.5.3), ... the expression is an lvalue.
int x = 0;
int& referenceToInt = x;
ASSERT_LVALUE(referenceToInt);
ASSERT_LVALUE(ReturnIntReference());
}
void expr_prim_2()
{
// 5.1/2 A string literal is an lvalue; all other
// literals are rvalues.
ASSERT_LVALUE("foo");
ASSERT_RVALUE(1);
ASSERT_RVALUE(1.2);
ASSERT_RVALUE(10UL);
}
void expr_prim_3()
{
// 5.1/3: The keyword "this" names a pointer to the object for
// which a nonstatic member function (9.3.2) is invoked. ...The
// expression is an rvalue.
struct ThisTest
{
void f() { ASSERT_RVALUE(this); }
};
}
extern int variable;
void Function();
struct BaseClass
{
virtual ~BaseClass();
int BaseNonstaticMemberFunction();
static int BaseStaticMemberFunction();
int baseDataMember;
};
struct Class : BaseClass
{
static void function();
static int variable;
template <class T>
struct NestedClassTemplate {};
template <class T>
static int& NestedFuncTemplate() { return variable; } // expected-note{{possible target for call}}
template <class T>
int& NestedMemfunTemplate() { return variable; } // expected-note{{possible target for call}}
int operator*() const;
template <class T>
int operator+(T) const; // expected-note{{possible target for call}}
int NonstaticMemberFunction();
static int StaticMemberFunction();
int dataMember;
int& referenceDataMember;
static int& staticReferenceDataMember;
static int staticNonreferenceDataMember;
enum Enum { Enumerator };
operator long() const;
Class();
Class(int,int);
void expr_prim_4()
{
// 5.1/4: The operator :: followed by an identifier, a
// qualified-id, or an operator-function-id is a primary-
// expression. ...The result is an lvalue if the entity is
// a function or variable.
ASSERT_LVALUE(::Function); // identifier: function
ASSERT_LVALUE(::variable); // identifier: variable
// the only qualified-id form that can start without "::" (and thus
// be legal after "::" ) is
//
// ::<sub>opt</sub> nested-name-specifier template<sub>opt</sub> unqualified-id
ASSERT_LVALUE(::Class::function); // qualified-id: function
ASSERT_LVALUE(::Class::variable); // qualified-id: variable
// The standard doesn't give a clear answer about whether these
// should really be lvalues or rvalues without some surrounding
// context that forces them to be interpreted as naming a
// particular function template specialization (that situation
// doesn't come up in legal pure C++ programs). This language
// extension simply rejects them as requiring additional context
__is_lvalue_expr(::Class::NestedFuncTemplate); // qualified-id: template \
// expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
__is_lvalue_expr(::Class::NestedMemfunTemplate); // qualified-id: template \
// expected-error{{reference to non-static member function must be called}}
__is_lvalue_expr(::Class::operator+); // operator-function-id: template \
// expected-error{{reference to non-static member function must be called}}
//ASSERT_RVALUE(::Class::operator*); // operator-function-id: member function
}
void expr_prim_7()
{
// expr.prim/7 An identifier is an id-expression provided it has been
// suitably declared (clause 7). [Note: ... ] The type of the
// expression is the type of the identifier. The result is the
// entity denoted by the identifier. The result is an lvalue if
// the entity is a function, variable, or data member... (cont'd)
ASSERT_LVALUE(Function); // identifier: function
ASSERT_LVALUE(StaticMemberFunction); // identifier: function
ASSERT_LVALUE(variable); // identifier: variable
ASSERT_LVALUE(dataMember); // identifier: data member
//ASSERT_RVALUE(NonstaticMemberFunction); // identifier: member function
// (cont'd)...A nested-name-specifier that names a class,
// optionally followed by the keyword template (14.2), and then
// followed by the name of a member of either that class (9.2) or
// one of its base classes... is a qualified-id... The result is
// the member. The type of the result is the type of the
// member. The result is an lvalue if the member is a static
// member function or a data member.
ASSERT_LVALUE(Class::dataMember);
ASSERT_LVALUE(Class::StaticMemberFunction);
//ASSERT_RVALUE(Class::NonstaticMemberFunction); // identifier: member function
ASSERT_LVALUE(Class::baseDataMember);
ASSERT_LVALUE(Class::BaseStaticMemberFunction);
//ASSERT_RVALUE(Class::BaseNonstaticMemberFunction); // identifier: member function
}
};
void expr_call_10()
{
// expr.call/10: A function call is an lvalue if and only if the
// result type is a reference. This statement is partially
// redundant with basic.lval/5
basic_lval_5();
ASSERT_LVALUE(ReturnIntReference());
ASSERT_LVALUE(ReturnEnumReference());
}
namespace Namespace
{
int x;
void function();
}
void expr_prim_8()
{
// expr.prim/8 A nested-name-specifier that names a namespace
// (7.3), followed by the name of a member of that namespace (or
// the name of a member of a namespace made visible by a
// using-directive ) is a qualified-id; 3.4.3.2 describes name
// lookup for namespace members that appear in qualified-ids. The
// result is the member. The type of the result is the type of the
// member. The result is an lvalue if the member is a function or
// a variable.
ASSERT_LVALUE(Namespace::x);
ASSERT_LVALUE(Namespace::function);
}
void expr_sub_1(int* pointer)
{
// expr.sub/1 A postfix expression followed by an expression in
// square brackets is a postfix expression. One of the expressions
// shall have the type "pointer to T" and the other shall have
// enumeration or integral type. The result is an lvalue of type
// "T."
ASSERT_LVALUE(pointer[1]);
// The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
ASSERT_LVALUE(*(pointer+1));
}
void expr_type_conv_1()
{
// expr.type.conv/1 A simple-type-specifier (7.1.5) followed by a
// parenthesized expression-list constructs a value of the specified
// type given the expression list. ... If the expression list
// specifies more than a single value, the type shall be a class with
// a suitably declared constructor (8.5, 12.1), and the expression
// T(x1, x2, ...) is equivalent in effect to the declaration T t(x1,
// x2, ...); for some invented temporary variable t, with the result
// being the value of t as an rvalue.
ASSERT_RVALUE(Class(2,2));
}
void expr_type_conv_2()
{
// expr.type.conv/2 The expression T(), where T is a
// simple-type-specifier (7.1.5.2) for a non-array complete object
// type or the (possibly cv-qualified) void type, creates an
// rvalue of the specified type,
ASSERT_RVALUE(int());
ASSERT_RVALUE(Class());
ASSERT_RVALUE(void());
}
void expr_ref_4()
{
// Applies to expressions of the form E1.E2
// If E2 is declared to have type "reference to T", then E1.E2 is
// an lvalue;.... Otherwise, one of the following rules applies.
ASSERT_LVALUE(Class().staticReferenceDataMember);
ASSERT_LVALUE(Class().referenceDataMember);
// - If E2 is a static data member, and the type of E2 is T, then
// E1.E2 is an lvalue; ...
ASSERT_LVALUE(Class().staticNonreferenceDataMember);
ASSERT_LVALUE(Class().staticReferenceDataMember);
// - If E2 is a non-static data member, ... If E1 is an lvalue,
// then E1.E2 is an lvalue...
Class lvalue;
ASSERT_LVALUE(lvalue.dataMember);
ASSERT_RVALUE(Class().dataMember);
// - If E1.E2 refers to a static member function, ... then E1.E2
// is an lvalue
ASSERT_LVALUE(Class().StaticMemberFunction);
// - Otherwise, if E1.E2 refers to a non-static member function,
// then E1.E2 is not an lvalue.
//ASSERT_RVALUE(Class().NonstaticMemberFunction);
// - If E2 is a member enumerator, and the type of E2 is T, the
// expression E1.E2 is not an lvalue. The type of E1.E2 is T.
ASSERT_RVALUE(Class().Enumerator);
ASSERT_RVALUE(lvalue.Enumerator);
}
void expr_post_incr_1(int x)
{
// expr.post.incr/1 The value obtained by applying a postfix ++ is
// the value that the operand had before applying the
// operator... The result is an rvalue.
ASSERT_RVALUE(x++);
}
void expr_dynamic_cast_2()
{
// expr.dynamic.cast/2: If T is a pointer type, v shall be an
// rvalue of a pointer to complete class type, and the result is
// an rvalue of type T.
Class instance;
ASSERT_RVALUE(dynamic_cast<Class*>(&instance));
// If T is a reference type, v shall be an
// lvalue of a complete class type, and the result is an lvalue of
// the type referred to by T.
ASSERT_LVALUE(dynamic_cast<Class&>(instance));
}
void expr_dynamic_cast_5()
{
// expr.dynamic.cast/5: If T is "reference to cv1 B" and v has type
// "cv2 D" such that B is a base class of D, the result is an
// lvalue for the unique B sub-object of the D object referred
// to by v.
typedef BaseClass B;
typedef Class D;
D object;
ASSERT_LVALUE(dynamic_cast<B&>(object));
}
// expr.dynamic.cast/8: The run-time check logically executes as follows:
//
// - If, in the most derived object pointed (referred) to by v, v
// points (refers) to a public base class subobject of a T object, and
// if only one object of type T is derived from the sub-object pointed
// (referred) to by v, the result is a pointer (an lvalue referring)
// to that T object.
//
// - Otherwise, if v points (refers) to a public base class sub-object
// of the most derived object, and the type of the most derived object
// has a base class, of type T, that is unambiguous and public, the
// result is a pointer (an lvalue referring) to the T sub-object of
// the most derived object.
//
// The mention of "lvalue" in the text above appears to be a
// defect that is being corrected by the response to UK65 (see
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2841.html).
#if 0
void expr_typeid_1()
{
// expr.typeid/1: The result of a typeid expression is an lvalue...
ASSERT_LVALUE(typeid(1));
}
#endif
void expr_static_cast_1(int x)
{
// expr.static.cast/1: The result of the expression
// static_cast<T>(v) is the result of converting the expression v
// to type T. If T is a reference type, the result is an lvalue;
// otherwise, the result is an rvalue.
ASSERT_LVALUE(static_cast<int&>(x));
ASSERT_RVALUE(static_cast<int>(x));
}
void expr_reinterpret_cast_1()
{
// expr.reinterpret.cast/1: The result of the expression
// reinterpret_cast<T>(v) is the result of converting the
// expression v to type T. If T is a reference type, the result is
// an lvalue; otherwise, the result is an rvalue
ASSERT_RVALUE(reinterpret_cast<int*>(0));
char const v = 0;
ASSERT_LVALUE(reinterpret_cast<char const&>(v));
}
void expr_unary_op_1(int* pointer, struct incomplete* pointerToIncompleteType)
{
// expr.unary.op/1: The unary * operator performs indirection: the
// expression to which it is applied shall be a pointer to an
// object type, or a pointer to a function type and the result is
// an lvalue referring to the object or function to which the
// expression points.
ASSERT_LVALUE(*pointer);
ASSERT_LVALUE(*Function);
// [Note: a pointer to an incomplete type
// (other than cv void ) can be dereferenced. ]
ASSERT_LVALUE(*pointerToIncompleteType);
}
void expr_pre_incr_1(int operand)
{
// expr.pre.incr/1: The operand of prefix ++ ... shall be a
// modifiable lvalue.... The value is the new value of the
// operand; it is an lvalue.
ASSERT_LVALUE(++operand);
}
void expr_cast_1(int x)
{
// expr.cast/1: The result of the expression (T) cast-expression
// is of type T. The result is an lvalue if T is a reference type,
// otherwise the result is an rvalue.
ASSERT_LVALUE((void(&)())expr_cast_1);
ASSERT_LVALUE((int&)x);
ASSERT_RVALUE((void(*)())expr_cast_1);
ASSERT_RVALUE((int)x);
}
void expr_mptr_oper()
{
// expr.mptr.oper/6: The result of a .* expression is an lvalue
// only if its first operand is an lvalue and its second operand
// is a pointer to data member... (cont'd)
typedef Class MakeRValue;
ASSERT_RVALUE(MakeRValue().*(&Class::dataMember));
//ASSERT_RVALUE(MakeRValue().*(&Class::NonstaticMemberFunction));
Class lvalue;
ASSERT_LVALUE(lvalue.*(&Class::dataMember));
//ASSERT_RVALUE(lvalue.*(&Class::NonstaticMemberFunction));
// (cont'd)...The result of an ->* expression is an lvalue only
// if its second operand is a pointer to data member. If the
// second operand is the null pointer to member value (4.11), the
// behavior is undefined.
ASSERT_LVALUE((&lvalue)->*(&Class::dataMember));
//ASSERT_RVALUE((&lvalue)->*(&Class::NonstaticMemberFunction));
}
void expr_cond(bool cond)
{
// 5.16 Conditional operator [expr.cond]
//
// 2 If either the second or the third operand has type (possibly
// cv-qualified) void, one of the following shall hold:
//
// - The second or the third operand (but not both) is a
// (possibly parenthesized) throw-expression (15.1); the result
// is of the type and value category of the other.
Class classLvalue;
ASSERT_RVALUE(cond ? throw 1 : (void)0);
ASSERT_RVALUE(cond ? (void)0 : throw 1);
ASSERT_RVALUE(cond ? throw 1 : 0);
ASSERT_RVALUE(cond ? 0 : throw 1);
ASSERT_LVALUE(cond ? throw 1 : classLvalue);
ASSERT_LVALUE(cond ? classLvalue : throw 1);
// - Both the second and the third operands have type void; the result
// is of type void and is an rvalue. [Note: this includes the case
// where both operands are throw-expressions. ]
ASSERT_RVALUE(cond ? (void)1 : (void)0);
ASSERT_RVALUE(cond ? throw 1 : throw 0);
// expr.cond/4: If the second and third operands are lvalues and
// have the same type, the result is of that type and is an
// lvalue.
ASSERT_LVALUE(cond ? classLvalue : classLvalue);
int intLvalue = 0;
ASSERT_LVALUE(cond ? intLvalue : intLvalue);
// expr.cond/5:Otherwise, the result is an rvalue.
typedef Class MakeRValue;
ASSERT_RVALUE(cond ? MakeRValue() : classLvalue);
ASSERT_RVALUE(cond ? classLvalue : MakeRValue());
ASSERT_RVALUE(cond ? MakeRValue() : MakeRValue());
ASSERT_RVALUE(cond ? classLvalue : intLvalue);
ASSERT_RVALUE(cond ? intLvalue : int());
}
void expr_ass_1(int x)
{
// expr.ass/1: There are several assignment operators, all of
// which group right-to-left. All require a modifiable lvalue as
// their left operand, and the type of an assignment expression is
// that of its left operand. The result of the assignment
// operation is the value stored in the left operand after the
// assignment has taken place; the result is an lvalue.
ASSERT_LVALUE(x = 1);
ASSERT_LVALUE(x += 1);
ASSERT_LVALUE(x -= 1);
ASSERT_LVALUE(x *= 1);
ASSERT_LVALUE(x /= 1);
ASSERT_LVALUE(x %= 1);
ASSERT_LVALUE(x ^= 1);
ASSERT_LVALUE(x &= 1);
ASSERT_LVALUE(x |= 1);
}
void expr_comma(int x)
{
// expr.comma: A pair of expressions separated by a comma is
// evaluated left-to-right and the value of the left expression is
// discarded... result is an lvalue if its right operand is.
// Can't use the ASSERT_XXXX macros without adding parens around
// the comma expression.
static_assert(__is_lvalue_expr(x,x), "expected an lvalue");
static_assert(__is_rvalue_expr(x,1), "expected an rvalue");
static_assert(__is_lvalue_expr(1,x), "expected an lvalue");
static_assert(__is_rvalue_expr(1,1), "expected an rvalue");
}
#if 0
template<typename T> void f();
// FIXME These currently fail
void expr_fun_lvalue()
{
ASSERT_LVALUE(&f<int>);
}
void expr_fun_rvalue()
{
ASSERT_RVALUE(f<int>);
}
#endif
template <int NonTypeNonReferenceParameter, int& NonTypeReferenceParameter>
void check_temp_param_6()
{
ASSERT_RVALUE(NonTypeNonReferenceParameter);
ASSERT_LVALUE(NonTypeReferenceParameter);
}
int AnInt = 0;
void temp_param_6()
{
check_temp_param_6<3,AnInt>();
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/templated-friend-decl.cpp
|
// RUN: %clang_cc1 %s
template <typename T>
struct Foo {
template <typename U>
struct Bar {};
// The templated declaration for class Bar should not be instantiated when
// Foo<int> is. This is to protect against PR5848; for now, this "parses" but
// requires a rewrite of the templated friend code to be properly fixed.
template <typename U>
friend struct Bar;
};
Foo<int> x;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unused-comparison.cpp
|
// RUN: %clang_cc1 -fsyntax-only -fcxx-exceptions -verify -Wno-unused -Wunused-comparison %s
struct A {
bool operator==(const A&);
bool operator!=(const A&);
bool operator<(const A&);
bool operator>(const A&);
bool operator<=(const A&);
bool operator>=(const A&);
A operator|=(const A&);
operator bool();
};
void test() {
int x, *p;
A a, b;
x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
x != 7; // expected-warning {{inequality comparison result unused}} \
// expected-note {{use '|=' to turn this inequality comparison into an or-assignment}}
x < 7; // expected-warning {{relational comparison result unused}}
x > 7; // expected-warning {{relational comparison result unused}}
x <= 7; // expected-warning {{relational comparison result unused}}
x >= 7; // expected-warning {{relational comparison result unused}}
7 == x; // expected-warning {{equality comparison result unused}}
p == p; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}} \
// expected-warning {{self-comparison always evaluates to true}}
a == a; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
a == b; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
a != b; // expected-warning {{inequality comparison result unused}} \
// expected-note {{use '|=' to turn this inequality comparison into an or-assignment}}
a < b; // expected-warning {{relational comparison result unused}}
a > b; // expected-warning {{relational comparison result unused}}
a <= b; // expected-warning {{relational comparison result unused}}
a >= b; // expected-warning {{relational comparison result unused}}
A() == b; // expected-warning {{equality comparison result unused}}
if (42) x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
else if (42) x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
else x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
do x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
while (false);
while (false) x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
for (x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
x == 7; // No warning -- result is used
x == 7) // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
switch (42) default: x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
switch (42) case 42: x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
switch (42) {
case 1:
case 2:
default:
case 3:
case 4:
x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
}
(void)(x == 7);
(void)(p == p); // expected-warning {{self-comparison always evaluates to true}}
{ bool b = x == 7; }
{ bool b = ({ x == 7; // expected-warning {{equality comparison result unused}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}}
x == 7; }); } // no warning on the second, its result is used!
#define EQ(x,y) (x) == (y)
EQ(x, 5);
#undef EQ
(void)sizeof(1 < 2, true); // No warning; unevaluated context.
}
namespace PR10291 {
template<typename T>
class X
{
public:
X() : i(0) { }
void foo()
{
throw
i == 0u ?
5 : 6;
}
private:
int i;
};
X<int> x;
}
namespace PR19724 {
class stream {
} cout, cin;
stream &operator<(stream &s, int);
bool operator<(stream &s, stream &s2);
void test() {
cout < 5; // no warning, operator returns a reference
cout < cin; // expected-warning {{relational comparison result unused}}
}
}
namespace PR19791 {
struct S {
void operator!=(int);
int operator==(int);
};
void test() {
S s;
s != 1;
s == 1; // expected-warning{{equality comparison result unused}}
// expected-note@-1{{use '=' to turn this equality comparison into an assignment}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constexpr-printing.cpp
|
// RUN: %clang_cc1 %s -std=c++11 -fsyntax-only -verify -triple x86_64-linux-gnu
struct S;
constexpr int extract(const S &s);
struct S {
constexpr S() : n(extract(*this)), m(0) {} // expected-note {{in call to 'extract(s1)'}}
constexpr S(int k) : n(k), m(extract(*this)) {}
int n, m;
};
constexpr int extract(const S &s) { return s.n; } // expected-note {{read of object outside its lifetime is not allowed in a constant expression}}
constexpr S s1; // ok
void f() {
constexpr S s1; // expected-error {{constant expression}} expected-note {{in call to 'S()'}}
constexpr S s2(10);
}
typedef __attribute__((vector_size(16))) int vector_int;
struct T {
constexpr T() : arr() {}
int arr[4];
};
struct U : T {
constexpr U(const int *p) : T(), another(), p(p) {}
constexpr U(const U &u) : T(), another(), p(u.p) {}
T another;
const int *p;
};
constexpr U u1(&u1.arr[2]);
constexpr int test_printing(int a, float b, _Complex int c, _Complex float d,
int *e, int &f, vector_int g, U h) {
return *e; // expected-note {{read of non-constexpr variable 'u2'}}
}
U u2(0); // expected-note {{here}}
static_assert(test_printing(12, 39.762, 3 + 4i, 12.9 + 3.6i, &u2.arr[4], u2.another.arr[2], (vector_int){5, 1, 2, 3}, u1) == 0, ""); // \
expected-error {{constant expression}} \
expected-note {{in call to 'test_printing(12, 3.976200e+01, 3+4i, 1.290000e+01+3.600000e+00i, &u2.T::arr[4], u2.another.arr[2], {5, 1, 2, 3}, {{{}}, {{}}, &u1.T::arr[2]})'}}
struct V {
// FIXME: when we can generate these as constexpr constructors, remove the
// explicit definitions.
constexpr V() : arr{[255] = 42} {}
constexpr V(const V &v) : arr{[255] = 42} {}
int arr[256];
};
constexpr V v;
constexpr int get(const int *p) { return *p; } // expected-note {{read of dereferenced one-past-the-end pointer}}
constexpr int passLargeArray(V v) { return get(v.arr+256); } // expected-note {{in call to 'get(&v.arr[256])'}}
static_assert(passLargeArray(v) == 0, ""); // expected-error {{constant expression}} expected-note {{in call to 'passLargeArray({{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}})'}}
union Union {
constexpr Union(int n) : b(n) {}
constexpr Union(const Union &u) : b(u.b) {}
int a, b;
};
constexpr Union myUnion = 76;
constexpr int badness(Union u) { return u.a + u.b; } // expected-note {{read of member 'a' of union with active member 'b'}}
static_assert(badness(myUnion), ""); // expected-error {{constant expression}} \
expected-note {{in call to 'badness({.b = 76})'}}
struct MemPtrTest {
int n;
void f();
};
MemPtrTest mpt; // expected-note {{here}}
constexpr int MemPtr(int (MemPtrTest::*a), void (MemPtrTest::*b)(), int &c) {
return c; // expected-note {{read of non-constexpr variable 'mpt'}}
}
static_assert(MemPtr(&MemPtrTest::n, &MemPtrTest::f, mpt.*&MemPtrTest::n), ""); // expected-error {{constant expression}} \
expected-note {{in call to 'MemPtr(&MemPtrTest::n, &MemPtrTest::f, mpt.n)'}}
template<typename CharT>
constexpr CharT get(const CharT *p) { return p[-1]; } // expected-note 5{{}}
constexpr char c = get("test\0\\\"\t\a\b\234"); // \
expected-error {{}} expected-note {{"test\000\\\"\t\a\b\234"}}
constexpr char c8 = get(u8"test\0\\\"\t\a\b\234"); // \
expected-error {{}} expected-note {{u8"test\000\\\"\t\a\b\234"}}
constexpr char16_t c16 = get(u"test\0\\\"\t\a\b\234\u1234"); // \
expected-error {{}} expected-note {{u"test\000\\\"\t\a\b\234\u1234"}}
constexpr char32_t c32 = get(U"test\0\\\"\t\a\b\234\u1234\U0010ffff"); // \
expected-error {{}} expected-note {{U"test\000\\\"\t\a\b\234\u1234\U0010FFFF"}}
constexpr wchar_t wc = get(L"test\0\\\"\t\a\b\234\u1234\xffffffff"); // \
expected-error {{}} expected-note {{L"test\000\\\"\t\a\b\234\x1234\xFFFFFFFF"}}
constexpr char32_t c32_err = get(U"\U00110000"); // expected-error {{invalid universal character}}
typedef decltype(sizeof(int)) LabelDiffTy;
constexpr LabelDiffTy mulBy3(LabelDiffTy x) { return x * 3; } // expected-note {{subexpression}}
void LabelDiffTest() {
static_assert(mulBy3((LabelDiffTy)&&a-(LabelDiffTy)&&b) == 3, ""); // expected-error {{constant expression}} expected-note {{call to 'mulBy3(&&a - &&b)'}}
a:b:return;
}
constexpr bool test_bool_printing(bool b) { return 1 / !(2*b | !(2*b)); } // expected-note 2{{division by zero}}
constexpr bool test_bool_0 = test_bool_printing(false); // expected-error {{constant expr}} expected-note {{in call to 'test_bool_printing(false)'}}
constexpr bool test_bool_1 = test_bool_printing(true); // expected-error {{constant expr}} expected-note {{in call to 'test_bool_printing(true)'}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/c99-variable-length-array-cxx11.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wvla-extension %s
struct StillPOD {
StillPOD() = default;
};
struct StillPOD2 {
StillPOD np;
};
struct NonPOD {
NonPOD(int) {}
};
struct POD {
int x;
int y;
};
// We allow VLAs of POD types, only.
void vla(int N) {
int array1[N]; // expected-warning{{variable length arrays are a C99 feature}}
POD array2[N]; // expected-warning{{variable length arrays are a C99 feature}}
StillPOD array3[N]; // expected-warning{{variable length arrays are a C99 feature}}
StillPOD2 array4[N][3]; // expected-warning{{variable length arrays are a C99 feature}}
NonPOD array5[N]; // expected-error{{variable length array of non-POD element type 'NonPOD'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/unknown-anytype.cpp
|
// RUN: %clang_cc1 -funknown-anytype -fsyntax-only -verify %s
namespace test0 {
extern __unknown_anytype test0;
extern __unknown_anytype test1();
extern __unknown_anytype test2(int);
}
namespace test1 {
extern __unknown_anytype foo;
int test() {
// TODO: it would be great if the 'cannot initialize' errors
// turned into something more interesting. It's just a matter of
// making sure that these locations check for placeholder types
// properly.
int x = foo; // expected-error {{'foo' has unknown type}}
int y = 0 + foo; // expected-error {{'foo' has unknown type}}
return foo; // expected-error {{'foo' has unknown type}}
}
}
namespace test2 {
extern __unknown_anytype foo();
void test() {
foo(); // expected-error {{'foo' has unknown return type}}
}
}
namespace test3 {
extern __unknown_anytype foo;
void test() {
foo(); // expected-error {{call to unsupported expression with unknown type}}
((void(void)) foo)(); // expected-error {{variable 'foo' with unknown type cannot be given a function type}}
}
}
// rdar://problem/9899447
namespace test4 {
extern __unknown_anytype test0(...);
extern __unknown_anytype test1(...);
void test() {
void (*fn)(int) = (void(*)(int)) test0;
int x = (int) test1; // expected-error {{function 'test1' with unknown type must be given a function type}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/template-implicit-vars.cpp
|
// RUN: %clang_cc1 -fsyntax-only %s -std=c++11 -ast-dump | FileCheck %s
template<typename T>
void f(T t) {
T a[] = {t};
for (auto x : a) {}
}
void g() {
f(1);
}
// CHECK: VarDecl {{.*}} implicit used __range
// CHECK: VarDecl {{.*}} implicit used __range
// CHECK: VarDecl {{.*}} implicit used __begin
// CHECK: VarDecl {{.*}} implicit used __end
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx-member-pointer-op.cpp
|
// RUN: %clang_cc1 -fsyntax-only -pedantic -verify %s
struct C {
static int (C::* a);
};
typedef void (C::*pmfc)();
void g(pmfc) {
C *c;
c->*pmfc(); // expected-error {{invalid use of pointer to member type after ->*}}
C c1;
c1.*pmfc(); // expected-error {{invalid use of pointer to member type after .*}}
c->*(pmfc()); // expected-error {{invalid use of pointer to member type after ->*}}
c1.*((pmfc())); // expected-error {{invalid use of pointer to member type after .*}}
}
int a(C* x) {
return x->*C::a;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx1y-generic-lambdas-variadics.cpp
|
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks %s
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing %s -DDELAYED_TEMPLATE_PARSING
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fms-extensions %s -DMS_EXTENSIONS
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing -fms-extensions %s -DMS_EXTENSIONS -DDELAYED_TEMPLATE_PARSING
namespace explicit_argument_variadics {
template<class ... Ts> void print(Ts ... ) { }
struct X { };
struct Y { };
struct Z { };
int test() {
{
auto L = [](auto ... as) { };
L.operator()<bool>(true);
}
{
auto L = [](auto a) { };
L.operator()<bool>(false);
}
{
auto L = [](auto a, auto b) { };
L.operator()<bool>(false, 'a');
}
{
auto L = [](auto a, auto b) { };
L.operator()<bool, char>(false, 'a');
}
{
auto L = [](auto a, auto b, auto ... cs) { };
L.operator()<bool, char>(false, 'a');
L.operator()<bool, char, const char*>(false, 'a', "jim");
}
{
auto L = [](auto ... As) {
};
L.operator()<bool, double>(false, 3.14, "abc");
}
{
auto L = [](auto A, auto B, auto ... As) {
};
L.operator()<bool>(false, 3.14, "abc");
L.operator()<bool, char>(false, 3.14, "abc"); //expected-warning{{implicit conversion}}
L.operator()<X, Y, bool, Z>(X{}, Y{}, 3.14, Z{}, X{}); //expected-warning{{implicit conversion}}
}
{
auto L = [](auto ... As) {
print("\nL::As = ", As ...);
return [](decltype(As) ... as, auto ... Bs) {
print("\nL::Inner::as = ", as ...);
print("\nL::Inner::Bs = ", Bs ...);
return 4;
};
};
auto M = L.operator()<bool, double>(false, 3.14, "abc");
M(false, 6.26, "jim", true);
M.operator()<bool>(true, 6.26, "jim", false, 3.14);
}
{
auto L = [](auto A, auto ... As) {
print("\nL::As = ", As ...);
return [](decltype(As) ... as, decltype(A) a, auto ... Bs) {
print("\nL::Inner::as = ", as ...);
print("\nL::Inner::Bs = ", Bs ...);
return 4;
};
};
auto M = L.operator()<bool, double>(false, 3.14, "abc");
M(6.26, "jim", true);
M.operator()<X>(6.26, "jim", false, X{}, Y{}, Z{});
}
return 0;
}
int run = test();
} // end ns explicit_argument_extension
#ifdef PR18499_FIXED
namespace variadic_expansion {
void f(int &, char &);
template <typename ... T> void g(T &... t) {
f([&a(t)]()->decltype(auto) {
return a;
}() ...);
f([&a(f([&b(t)]()->decltype(auto) { return b; }()...), t)]()->decltype(auto) {
return a;
}()...);
}
void h(int i, char c) { g(i, c); }
}
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-aligned.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// expected-no-diagnostics
typedef struct S1 { char c; } S1 __attribute__((aligned(8)));
static_assert(alignof(S1) == 8, "attribute ignored");
static_assert(alignof(struct S1) == 1, "attribute applied to original type");
typedef struct __attribute__((aligned(8))) S2 { char c; } AS;
static_assert(alignof(S2) == 8, "attribute not propagated");
static_assert(alignof(struct S2) == 8, "attribute ignored");
typedef struct __attribute__((aligned(4))) S3 {
char c;
} S3 __attribute__((aligned(8)));
static_assert(alignof(S3) == 8, "attribute ignored");
static_assert(alignof(struct S3) == 4, "attribute clobbered");
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-new-overaligned-2.cpp
|
// RUN: %clang_cc1 -triple=x86_64-pc-linux-gnu -Wover-aligned -verify %s
// expected-no-diagnostics
// This test verifies that we don't warn when the global operator new is
// overridden. That's why we can't merge this with the other test file.
void* operator new(unsigned long);
void* operator new[](unsigned long);
struct Test {
template <typename T>
struct SeparateCacheLines {
T data;
} __attribute__((aligned(256)));
SeparateCacheLines<int> high_contention_data[10];
};
void helper() {
Test t;
new Test;
new Test[10];
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/using-directive.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
namespace A {
short i; // expected-note 2{{candidate found by name lookup is 'A::i'}}
namespace B {
long i; // expected-note{{candidate found by name lookup is 'A::B::i'}}
void f() {} // expected-note{{candidate function}}
int k;
namespace E {} // \
expected-note{{candidate found by name lookup is 'A::B::E'}}
}
namespace E {} // expected-note{{candidate found by name lookup is 'A::E'}}
namespace C {
using namespace B;
namespace E {} // \
expected-note{{candidate found by name lookup is 'A::C::E'}}
}
void f() {} // expected-note{{candidate function}}
class K1 {
void foo();
};
void local_i() {
char i;
using namespace A;
using namespace B;
int a[sizeof(i) == sizeof(char)? 1 : -1]; // okay
}
namespace B {
int j;
}
void ambig_i() {
using namespace A;
using namespace A::B;
(void) i; // expected-error{{reference to 'i' is ambiguous}}
f(); // expected-error{{call to 'f' is ambiguous}}
(void) j; // okay
using namespace C;
(void) k; // okay
using namespace E; // expected-error{{reference to 'E' is ambiguous}}
}
struct K2 {}; // expected-note 2{{candidate found by name lookup is 'A::K2'}}
}
struct K2 {}; // expected-note 2{{candidate found by name lookup is 'K2'}}
using namespace A;
void K1::foo() {} // okay
struct K2 *k2; // expected-error{{reference to 'K2' is ambiguous}}
K2 *k3; // expected-error{{reference to 'K2' is ambiguous}}
class X { // expected-note{{candidate found by name lookup is 'X'}}
// FIXME: produce a suitable error message for this
using namespace A; // expected-error{{not allowed}}
};
namespace N {
struct K2;
struct K2 { };
}
namespace Ni {
int i(); // expected-note{{candidate found by name lookup is 'Ni::i'}}
}
namespace NiTest {
using namespace A;
using namespace Ni;
int test() {
return i; // expected-error{{reference to 'i' is ambiguous}}
}
}
namespace OneTag {
struct X; // expected-note{{candidate found by name lookup is 'OneTag::X'}}
}
namespace OneFunction {
void X(); // expected-note{{candidate found by name lookup is 'OneFunction::X'}}
}
namespace TwoTag {
struct X; // expected-note{{candidate found by name lookup is 'TwoTag::X'}}
}
namespace FuncHidesTagAmbiguity {
using namespace OneTag;
using namespace OneFunction;
using namespace TwoTag;
void test() {
(void)X(); // expected-error{{reference to 'X' is ambiguous}}
}
}
// PR5479
namespace Aliased {
void inAliased();
}
namespace Alias = Aliased;
using namespace Alias;
void testAlias() {
inAliased();
}
namespace N { void f2(int); }
extern "C++" {
using namespace N;
void f3() { f2(1); }
}
void f4() { f2(1); }
// PR7517
using namespace std; // expected-warning{{using directive refers to implicitly-defined namespace 'std'}}
using namespace ::std; // expected-warning{{using directive refers to implicitly-defined namespace 'std'}}
namespace test1 {
namespace ns { typedef int test1; }
template <class T> using namespace ns; // expected-error {{cannot template a using directive}}
// Test that we recovered okay.
test1 x;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constexpr-value-init.cpp
|
// RUN: %clang_cc1 %s -Wno-uninitialized -std=c++11 -fsyntax-only -verify
struct A {
constexpr A() : a(b + 1), b(a + 1) {} // expected-note {{outside its lifetime}}
int a;
int b;
};
struct B {
A a;
};
constexpr A a; // ok, zero initialization precedes static initialization
void f() {
constexpr A a; // expected-error {{constant expression}} expected-note {{in call to 'A()'}}
}
constexpr B b1; // expected-error {{without a user-provided default constructor}}
constexpr B b2 = B(); // ok
static_assert(b2.a.a == 1, "");
static_assert(b2.a.b == 2, "");
struct C {
int c;
};
struct D : C { int d; };
constexpr C c1; // expected-error {{without a user-provided default constructor}}
constexpr C c2 = C(); // ok
constexpr D d1; // expected-error {{without a user-provided default constructor}}
constexpr D d2 = D(); // ok with DR1452
static_assert(D().c == 0, "");
static_assert(D().d == 0, "");
struct V : virtual C {};
template<typename T> struct Z : T {
constexpr Z() : V() {}
};
constexpr int n = Z<V>().c; // expected-error {{constant expression}} expected-note {{virtual base class}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/runtimediag-ppe.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-unused-value %s
// Make sure diagnostics that we don't print based on runtime control
// flow are delayed correctly in cases where we can't immediately tell whether
// the context is unevaluated.
namespace std {
class type_info;
}
int& NP(int);
void test1() { (void)typeid(NP(1 << 32)); }
class Poly { virtual ~Poly(); };
Poly& P(int);
void test2() { (void)typeid(P(1 << 32)); } // expected-warning {{shift count >= width of type}}
void test3() { 1 ? (void)0 : (void)typeid(P(1 << 32)); }
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/increment-decrement.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
volatile int i;
const int &inc = i++;
const int &dec = i--;
const int &incfail = ++i; // expected-error {{drops 'volatile' qualifier}}
const int &decfail = --i; // expected-error {{drops 'volatile' qualifier}}
// PR7794
void f0(int e) {
++(int&)e;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/builtins-arm.cpp
|
// RUN: %clang_cc1 -triple armv7 -fsyntax-only -verify %s
// va_list on ARM AAPCS is struct { void* __ap }.
int test1(const __builtin_va_list &ap) {
return __builtin_va_arg(ap, int); // expected-error {{binding value of type 'const __builtin_va_list' to reference to type '__builtin_va_list' drops 'const' qualifier}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/value-dependent-exprs.cpp
|
// RUN: %clang_cc1 -verify %s
// expected-no-diagnostics
template <unsigned I>
class C0 {
static const int iv0 = 1 << I;
enum {
A = I,
B = I + 1
};
struct s0 {
int a : I;
int b[I];
};
// FIXME: I'm unclear where the right place to handle this is.
#if 0
void f0(int *p) {
if (p == I) {
}
}
#endif
#if 0
// FIXME: Not sure whether we care about these.
void f1(int *a)
__attribute__((nonnull(1 + I)))
__attribute__((constructor(1 + I)))
__attribute__((destructor(1 + I)))
__attribute__((sentinel(1 + I, 2 + I))),
__attribute__((reqd_work_group_size(1 + I, 2 + I, 3 + I))),
__attribute__((format_arg(1 + I))),
__attribute__((aligned(1 + I))),
__attribute__((regparm(1 + I)));
typedef int int_a0 __attribute__((address_space(1 + B)));
#endif
#if 0
// FIXME: This doesn't work. PR4996.
int f2() {
return __builtin_choose_expr(I, 1, 2);
}
#endif
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/blocks.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s -fblocks
void tovoid(void*);
void tovoid_test(int (^f)(int, int)) {
tovoid(f);
}
void reference_lvalue_test(int& (^f)()) {
f() = 10;
}
// PR 7165
namespace test1 {
void g(void (^)());
struct Foo {
void foo();
void test() {
(void) ^{ foo(); };
}
};
}
namespace test2 {
int repeat(int value, int (^block)(int), unsigned n) {
while (n--) value = block(value);
return value;
}
class Power {
int base;
public:
Power(int base) : base(base) {}
int calculate(unsigned n) {
return repeat(1, ^(int v) { return v * base; }, n);
}
};
int test() {
return Power(2).calculate(10);
}
}
// rdar: // 8382559
namespace radar8382559 {
void func(bool& outHasProperty);
int test3() {
__attribute__((__blocks__(byref))) bool hasProperty = false;
bool has = true;
bool (^b)() = ^ {
func(hasProperty);
if (hasProperty)
hasProperty = 0;
if (has)
hasProperty = 1;
return hasProperty;
};
func(hasProperty);
func(has);
b();
if (hasProperty)
hasProperty = 1;
if (has)
has = 2;
return hasProperty = 1;
}
}
// Move __block variables to the heap when possible.
class MoveOnly {
public:
MoveOnly();
MoveOnly(const MoveOnly&) = delete;
MoveOnly(MoveOnly&&);
};
void move_block() {
__block MoveOnly mo;
}
// Don't crash after failing to build a block due to a capture of an
// invalid declaration.
namespace test5 {
struct B { // expected-note 2 {{candidate constructor}}
void *p;
B(int); // expected-note {{candidate constructor}}
};
void use_block(void (^)());
void use_block_2(void (^)(), const B &a);
void test() {
B x; // expected-error {{no matching constructor for initialization}}
use_block(^{
int y;
use_block_2(^{ (void) y; }, x);
});
}
}
// rdar://16356628
//
// Ensure that we can end function bodies while parsing an
// expression that requires an explicitly-tracked cleanup object
// (i.e. a block literal).
// The nested function body in this test case is a template
// instantiation. The template function has to be constexpr because
// we'll otherwise delay its instantiation to the end of the
// translation unit.
namespace test6a {
template <class T> constexpr int func() { return 0; }
void run(void (^)(), int);
void test() {
int aCapturedVar = 0;
run(^{ (void) aCapturedVar; }, func<int>());
}
}
// The nested function body in this test case is a method of a local
// class.
namespace test6b {
void run(void (^)(), void (^)());
void test() {
int aCapturedVar = 0;
run(^{ (void) aCapturedVar; },
^{ struct A { static void foo() {} };
A::foo(); });
}
}
// The nested function body in this test case is a lambda invocation
// function.
namespace test6c {
void run(void (^)(), void (^)());
void test() {
int aCapturedVar = 0;
run(^{ (void) aCapturedVar; },
^{ struct A { static void foo() {} };
A::foo(); });
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx11-user-defined-literals.cpp
|
// RUN: %clang_cc1 -std=c++11 -verify %s -fms-extensions -triple x86_64-apple-darwin9.0.0
using size_t = decltype(sizeof(int));
enum class LitKind {
Char, WideChar, Char16, Char32,
CharStr, WideStr, Char16Str, Char32Str,
Integer, Floating, Raw, Template
};
constexpr LitKind operator"" _kind(char p) { return LitKind::Char; }
constexpr LitKind operator"" _kind(wchar_t p) { return LitKind::WideChar; }
constexpr LitKind operator"" _kind(char16_t p) { return LitKind::Char16; }
constexpr LitKind operator"" _kind(char32_t p) { return LitKind::Char32; }
constexpr LitKind operator"" _kind(const char *p, size_t n) { return LitKind::CharStr; }
constexpr LitKind operator"" _kind(const wchar_t *p, size_t n) { return LitKind::WideStr; }
constexpr LitKind operator"" _kind(const char16_t *p, size_t n) { return LitKind::Char16Str; }
constexpr LitKind operator"" _kind(const char32_t *p, size_t n) { return LitKind::Char32Str; }
constexpr LitKind operator"" _kind(unsigned long long n) { return LitKind::Integer; }
constexpr LitKind operator"" _kind(long double n) { return LitKind::Floating; }
constexpr LitKind operator"" _kind2(const char *p) { return LitKind::Raw; }
template<char ...Cs> constexpr LitKind operator"" _kind3() { return LitKind::Template; }
static_assert('x'_kind == LitKind::Char, "");
static_assert(L'x'_kind == LitKind::WideChar, "");
static_assert(u'x'_kind == LitKind::Char16, "");
static_assert(U'x'_kind == LitKind::Char32, "");
static_assert("foo"_kind == LitKind::CharStr, "");
static_assert(u8"foo"_kind == LitKind::CharStr, "");
static_assert(L"foo"_kind == LitKind::WideStr, "");
static_assert(u"foo"_kind == LitKind::Char16Str, "");
static_assert(U"foo"_kind == LitKind::Char32Str, "");
static_assert(194_kind == LitKind::Integer, "");
static_assert(0377_kind == LitKind::Integer, "");
static_assert(0x5ffc_kind == LitKind::Integer, "");
static_assert(.5954_kind == LitKind::Floating, "");
static_assert(1._kind == LitKind::Floating, "");
static_assert(1.e-2_kind == LitKind::Floating, "");
static_assert(4e6_kind == LitKind::Floating, "");
static_assert(4e6_kind2 == LitKind::Raw, "");
static_assert(4e6_kind3 == LitKind::Template, "");
constexpr const char *fractional_digits_impl(const char *p) {
return *p == '.' ? p + 1 : *p ? fractional_digits_impl(p + 1) : 0;
}
constexpr const char *operator"" _fractional_digits(const char *p) {
return fractional_digits_impl(p) ?: p;
}
constexpr bool streq(const char *p, const char *q) {
return *p == *q && (!*p || streq(p+1, q+1));
}
static_assert(streq(143.97_fractional_digits, "97"), "");
static_assert(streq(0x786_fractional_digits, "0x786"), "");
static_assert(streq(.4_fractional_digits, "4"), "");
static_assert(streq(4._fractional_digits, ""), "");
static_assert(streq(1e+97_fractional_digits, "1e+97"), "");
static_assert(streq(0377_fractional_digits, "0377"), "");
static_assert(streq(0377.5_fractional_digits, "5"), "");
int operator"" _ambiguous(char); // expected-note {{candidate}}
namespace N {
void *operator"" _ambiguous(char); // expected-note {{candidate}}
}
using namespace N;
int k = 'x'_ambiguous; // expected-error {{ambiguous}}
int operator"" _deleted(unsigned long long) = delete; // expected-note {{here}}
int m = 42_deleted; // expected-error {{attempt to use a deleted}}
namespace Using {
namespace M {
int operator"" _using(char);
}
int k1 = 'x'_using; // expected-error {{no matching literal operator for call to 'operator "" _using'}}
using M::operator "" _using;
int k2 = 'x'_using;
}
namespace AmbiguousRawTemplate {
int operator"" _ambig1(const char *); // expected-note {{candidate}}
template<char...> int operator"" _ambig1(); // expected-note {{candidate}}
int k1 = 123_ambig1; // expected-error {{call to 'operator "" _ambig1' is ambiguous}}
namespace Inner {
template<char...> int operator"" _ambig2(); // expected-note 3{{candidate}}
}
int operator"" _ambig2(const char *); // expected-note 3{{candidate}}
using Inner::operator"" _ambig2;
int k2 = 123_ambig2; // expected-error {{call to 'operator "" _ambig2' is ambiguous}}
namespace N {
using Inner::operator"" _ambig2;
int k3 = 123_ambig2; // ok
using AmbiguousRawTemplate::operator"" _ambig2;
int k4 = 123_ambig2; // expected-error {{ambiguous}}
namespace M {
template<char...> int operator"" _ambig2();
int k5 = 123_ambig2; // ok
}
int operator"" _ambig2(unsigned long long);
int k6 = 123_ambig2; // ok
int k7 = 123._ambig2; // expected-error {{ambiguous}}
}
}
constexpr unsigned mash(unsigned a) {
return 0x93ae27b5 * ((a >> 13) | a << 19);
}
template<typename=void> constexpr unsigned hash(unsigned a) { return a; }
template<char C, char...Cs> constexpr unsigned hash(unsigned a) {
return hash<Cs...>(mash(a ^ mash(C)));
}
template<typename T, T v> struct constant { constexpr static T value = v; };
template<char...Cs> constexpr unsigned operator"" _hash() {
return constant<unsigned, hash<Cs...>(0)>::value;
}
static_assert(0x1234_hash == 0x103eff5e, "");
static_assert(hash<'0', 'x', '1', '2', '3', '4'>(0) == 0x103eff5e, "");
// Functions and literal suffixes go in separate namespaces.
namespace Namespace {
template<char...> int operator"" _x();
int k = _x(); // expected-error {{undeclared identifier '_x'}}
int _y(unsigned long long);
int k2 = 123_y; // expected-error {{no matching literal operator for call to 'operator "" _y'}}
}
namespace PR14950 {
template<...> // expected-error {{expected template parameter}}
int operator"" _b(); // expected-error {{no function template matches function template specialization}}
int main() { return 0_b; } // expected-error {{no matching literal operator for call to 'operator "" _b'}}
}
namespace bad_names {
template<char...> int operator""_x();
template<typename T> void f() {
class T:: // expected-error {{anonymous class}} expected-warning {{does not declare anything}}
operator // expected-error {{expected identifier}}
""_q<'a'>;
T::template operator""_q<'a'>(); // expected-error {{non-namespace scope 'T::' cannot have a literal operator member}} expected-error +{{}}
T::template operator""_q<'a'>::X; // expected-error {{non-namespace scope 'T::' cannot have a literal operator member}} expected-error +{{}}
T::operator""_q<'a'>(); // expected-error {{non-namespace scope 'T::' cannot have a literal operator member}} expected-error +{{}}
typename T::template operator""_q<'a'> a; // expected-error {{non-namespace scope 'T::' cannot have a literal operator member}} expected-error +{{}}
typename T::operator""_q(""); // expected-error +{{}} expected-note {{to match}}
T::operator""_q(""); // expected-error {{non-namespace scope 'T::' cannot have a literal operator member}}
bad_names::operator""_x<'a', 'b', 'c'>();
};
struct S {};
void g() {
S::operator""_q(); // expected-error {{non-namespace scope 'S::' cannot have a literal operator member}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/return.cpp
|
// RUN: %clang_cc1 %s -std=c++11 -fcxx-exceptions -fexceptions -fsyntax-only -Wignored-qualifiers -verify
int test1() {
throw;
}
// PR5071
template<typename T> T f() { }
template<typename T>
void g(T t) {
return t * 2; // okay
}
template<typename T>
T h() {
return 17;
}
// Don't warn on cv-qualified class return types, only scalar return types.
namespace ignored_quals {
struct S {};
const S class_c();
const volatile S class_cv();
const int scalar_c(); // expected-warning{{'const' type qualifier on return type has no effect}}
int const scalar_c2(); // expected-warning{{'const' type qualifier on return type has no effect}}
const
char*
const // expected-warning{{'const' type qualifier on return type has no effect}}
f();
char
const*
const // expected-warning{{'const' type qualifier on return type has no effect}}
g();
char* const h(); // expected-warning{{'const' type qualifier on return type has no effect}}
char* volatile i(); // expected-warning{{'volatile' type qualifier on return type has no effect}}
char*
volatile // expected-warning{{'const volatile' type qualifiers on return type have no effect}}
const
j();
const volatile int scalar_cv(); // expected-warning{{'const volatile' type qualifiers on return type have no effect}}
// FIXME: Maintain enough information that we can point the diagnostic at the 'volatile' keyword.
const
int S::*
volatile
mixed_ret(); // expected-warning {{'volatile' type qualifier on return type has no effect}}
const int volatile // expected-warning {{'const volatile' type qualifiers on return type have no effect}}
(((parens())));
_Atomic(int) atomic();
_Atomic // expected-warning {{'_Atomic' type qualifier on return type has no effect}}
int
atomic();
auto
trailing_return_type() -> // expected-warning {{'const' type qualifier on return type has no effect}}
const int;
const int ret_array()[4]; // expected-error {{cannot return array}}
}
namespace PR9328 {
typedef char *PCHAR;
class Test
{
const PCHAR GetName() { return 0; } // expected-warning{{'const' type qualifier on return type has no effect}}
};
}
class foo {
operator const int ();
operator int * const ();
};
namespace PR10057 {
struct S {
~S();
};
template <class VarType>
void Test(const VarType& value) {
return S() = value;
}
}
namespace return_has_expr {
struct S {
S() {
return 42; // expected-error {{constructor 'S' should not return a value}}
}
~S() {
return 42; // expected-error {{destructor '~S' should not return a value}}
}
};
}
// rdar://15366494
// pr17759
namespace ctor_returns_void {
void f() {}
struct S {
S() { return f(); }; // expected-error {{constructor 'S' must not return void expression}}
~S() { return f(); } // expected-error {{destructor '~S' must not return void expression}}
};
}
void cxx_unresolved_expr() {
// The use of an undeclared variable tricks clang into building a
// CXXUnresolvedConstructExpr, and the missing ')' gives it an invalid source
// location for its rparen. Check that emitting a diag on the range of the
// expr doesn't assert.
return int(undeclared, 4; // expected-error {{expected ')'}} expected-note{{to match this '('}} expected-error {{void function 'cxx_unresolved_expr' should not return a value}} expected-error {{use of undeclared identifier 'undeclared'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx1y-variable-templates_in_class.cpp
|
// RUN: %clang_cc1 -verify -fsyntax-only %s -Wno-c++11-extensions -Wno-c++1y-extensions -DPRECXX11
// RUN: %clang_cc1 -std=c++11 -verify -fsyntax-only -Wno-c++1y-extensions %s
// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only %s
#define CONST const
#ifdef PRECXX11
#define static_assert(expr, msg) typedef int static_assert[(expr) ? 1 : -1];
#endif
class A {
template<typename T> CONST T wrong; // expected-error {{member 'wrong' declared as a template}}
template<typename T> CONST T wrong_init = 5; // expected-error {{member 'wrong_init' declared as a template}}
template<typename T, typename T0> static CONST T right = T(100);
template<typename T> static CONST T right<T,int> = 5;
template<typename T> CONST int right<int,T>; // expected-error {{member 'right' declared as a template}}
template<typename T> CONST float right<float,T> = 5; // expected-error {{member 'right' declared as a template}}
template<> static CONST int right<int,int> = 7; // expected-error {{explicit specialization of 'right' in class scope}}
template<> static CONST float right<float,int>; // expected-error {{explicit specialization of 'right' in class scope}}
template static CONST int right<int,int>; // expected-error {{template specialization requires 'template<>'}} \
// expected-error {{explicit specialization of 'right' in class scope}}
};
namespace out_of_line {
class B0 {
template<typename T, typename T0> static CONST T right = T(100);
template<typename T> static CONST T right<T,int> = T(5);
};
template<> CONST int B0::right<int,int> = 7;
template CONST int B0::right<int,int>;
template<> CONST int B0::right<int,float>;
template CONST int B0::right<int,float>;
class B1 {
template<typename T, typename T0> static CONST T right;
template<typename T> static CONST T right<T,int>;
};
template<typename T, typename T0> CONST T B1::right = T(100);
template<typename T> CONST T B1::right<T,int> = T(5);
class B2 {
template<typename T, typename T0> static CONST T right = T(100); // expected-note {{previous initialization is here}}
template<typename T> static CONST T right<T,int> = T(5); // expected-note {{previous initialization is here}}
};
template<typename T, typename T0> CONST T B2::right = T(100); // expected-error {{static data member 'right' already has an initializer}}
template<typename T> CONST T B2::right<T,int> = T(5); // expected-error {{static data member 'right' already has an initializer}}
class B3 {
template<typename T, typename T0> static CONST T right = T(100);
template<typename T> static CONST T right<T,int> = T(5);
};
template<typename T, typename T0> CONST T B3::right;
template<typename T> CONST T B3::right<T,int>;
class B4 {
template<typename T, typename T0> static CONST T a;
template<typename T> static CONST T a<T,int> = T(100);
template<typename T, typename T0> static CONST T b = T(100);
template<typename T> static CONST T b<T,int>;
};
template<typename T, typename T0> CONST T B4::a; // expected-error {{default initialization of an object of const type 'const int'}}
template<typename T> CONST T B4::a<T,int>;
template CONST int B4::a<int,char>; // expected-note {{in instantiation of}}
template CONST int B4::a<int,int>;
template<typename T, typename T0> CONST T B4::b;
template<typename T> CONST T B4::b<T,int>; // expected-error {{default initialization of an object of const type 'const int'}}
template CONST int B4::b<int,char>;
template CONST int B4::b<int,int>; // expected-note {{in instantiation of}}
}
namespace non_const_init {
class A {
template<typename T> static T wrong_inst_undefined = T(10); // expected-note {{refers here}}
template<typename T> static T wrong_inst_defined = T(10); // expected-error {{non-const static data member must be initialized out of line}}
template<typename T> static T wrong_inst_out_of_line;
};
template const int A::wrong_inst_undefined<const int>; // expected-error {{undefined}}
template<typename T> T A::wrong_inst_defined;
template const int A::wrong_inst_defined<const int>;
template int A::wrong_inst_defined<int>; // expected-note {{in instantiation of static data member 'non_const_init::A::wrong_inst_defined<int>' requested here}}
template<typename T> T A::wrong_inst_out_of_line = T(10);
template int A::wrong_inst_out_of_line<int>;
class B {
template<typename T> static T wrong_inst; // expected-note {{refers here}}
template<typename T> static T wrong_inst<T*> = T(100); // expected-error {{non-const static data member must be initialized out of line}} expected-note {{refers here}}
template<typename T> static T wrong_inst_fixed;
template<typename T> static T wrong_inst_fixed<T*>;
};
template int B::wrong_inst<int>; // expected-error {{undefined}}
// FIXME: It'd be better to produce the 'explicit instantiation of undefined
// template' diagnostic here, not the 'must be initialized out of line'
// diagnostic.
template int B::wrong_inst<int*>; // expected-note {{in instantiation of static data member 'non_const_init::B::wrong_inst<int *>' requested here}}
template const int B::wrong_inst<const int*>; // expected-error {{undefined}}
template<typename T> T B::wrong_inst_fixed = T(100);
template int B::wrong_inst_fixed<int>;
class C {
template<typename T> static CONST T right_inst = T(10); // expected-note {{here}}
template<typename T> static CONST T right_inst<T*> = T(100); // expected-note {{here}}
};
template CONST int C::right_inst<int>; // expected-error {{undefined variable template}}
template CONST int C::right_inst<int*>; // expected-error {{undefined variable template}}
namespace pointers {
struct C0 {
template<typename U> static U Data;
template<typename U> static CONST U Data<U*> = U(); // expected-note {{here}}
template<typename U> static U Data2;
template<typename U> static CONST U Data2<U*> = U();
};
const int c0_test = C0::Data<int*>;
static_assert(c0_test == 0, "");
template const int C0::Data<int*>; // expected-error {{undefined}}
template<typename U> const U C0::Data2<U*>;
template const int C0::Data2<int*>;
struct C1a {
template<typename U> static U Data;
template<typename U> static U* Data<U*>; // Okay, with out-of-line definition
};
template<typename T> T* C1a::Data<T*> = new T();
template int* C1a::Data<int*>;
struct C1b {
template<typename U> static U Data;
template<typename U> static CONST U* Data<U*>; // Okay, with out-of-line definition
};
template<typename T> CONST T* C1b::Data<T*> = (T*)(0);
template CONST int* C1b::Data<int*>;
struct C2a {
template<typename U> static int Data;
template<typename U> static U* Data<U*> = new U(); // expected-error {{non-const static data member must be initialized out of line}}
};
template int* C2a::Data<int*>; // expected-note {{in instantiation of static data member 'non_const_init::pointers::C2a::Data<int *>' requested here}}
struct C2b {
template<typename U> static int Data;
template<typename U> static U *const Data<U*> = (U*)(0); // expected-error {{static data member of type 'int *const'}}
};
template<typename U> U *const C2b::Data<U*>;
template int *const C2b::Data<int*>; // expected-note {{in instantiation of static data member 'non_const_init::pointers::C2b::Data<int *>' requested here}}
}
}
#ifndef PRECXX11
namespace constexpred {
class A {
template<typename T> constexpr T wrong; // expected-error {{member 'wrong' declared as a template}} \
// expected-error {{non-static data member cannot be constexpr; did you intend to make it const?}}
template<typename T> constexpr T wrong_init = 5; // expected-error {{non-static data member cannot be constexpr; did you intend to make it static?}}
template<typename T, typename T0> static constexpr T right = T(100);
template<typename T> static constexpr T right<T,int> = 5;
template<typename T> constexpr int right<int,T>; // expected-error {{member 'right' declared as a template}} \
// expected-error {{non-static data member cannot be constexpr; did you intend to make it const?}}
template<typename T> constexpr float right<float,T> = 5; // expected-error {{non-static data member cannot be constexpr; did you intend to make it static?}}
template<> static constexpr int right<int,int> = 7; // expected-error {{explicit specialization of 'right' in class scope}}
template<> static constexpr float right<float,int>; // expected-error {{explicit specialization of 'right' in class scope}}
template static constexpr int right<int,int>; // expected-error {{template specialization requires 'template<>'}} \
// expected-error {{explicit specialization of 'right' in class scope}}
};
}
#endif
namespace in_class_template {
template<typename T>
class D0 {
template<typename U> static U Data; // expected-note {{here}}
template<typename U> static CONST U Data<U*> = U();
};
template CONST int D0<float>::Data<int*>;
template int D0<float>::Data<int>; // expected-error {{undefined}}
template<typename T> template<typename U> const U D0<T>::Data<U*>;
template<typename T>
class D1 {
template<typename U> static U Data;
template<typename U> static U* Data<U*>;
};
template<typename T>
template<typename U> U* D1<T>::Data<U*> = (U*)(0);
template int* D1<float>::Data<int*>; // expected-note {{previous}}
template int* D1<float>::Data<int*>; // expected-error {{duplicate explicit instantiation}}
template<typename T>
class D2 {
template<typename U> static U Data;
template<typename U> static U* Data<U*>;
};
template<>
template<typename U> U* D2<float>::Data<U*> = (U*)(0) + 1;
template int* D2<float>::Data<int*>; // expected-note {{previous}}
template int* D2<float>::Data<int*>; // expected-error {{duplicate explicit instantiation}}
template<typename T>
struct D3 {
template<typename U> static CONST U Data = U(100); // expected-note {{here}}
};
static_assert(D3<float>::Data<int> == 100, "");
template const char D3<float>::Data<char>; // expected-error {{undefined}}
namespace bug_files {
template<typename T>
class D0a {
template<typename U> static U Data;
template<typename U> static CONST U Data<U*> = U(10); // expected-note {{previous declaration is here}}
};
template<>
template<typename U> U D0a<float>::Data<U*> = U(100); // expected-error {{redefinition of 'Data'}}
// FIXME: We should accept this, and the corresponding case for class
// templates.
//
// [temp.class.spec.mfunc]/2: If the primary member template is explicitly
// specialized for a given specialization of the enclosing class template,
// the partial specializations of the member template are ignored
template<typename T>
class D1 {
template<typename U> static U Data;
template<typename U> static CONST U Data<U*> = U(10); // expected-note {{previous declaration is here}}
};
template<>
template<typename U> U D1<float>::Data = U(10);
template<>
template<typename U> U D1<float>::Data<U*> = U(100); // expected-error{{redefinition of 'Data'}}
}
namespace definition_after_outer_instantiation {
template<typename A> struct S {
template<typename B> static const int V1;
template<typename B> static const int V2;
};
template struct S<int>;
template<typename A> template<typename B> const int S<A>::V1 = 123;
template<typename A> template<typename B> const int S<A>::V2<B*> = 456;
static_assert(S<int>::V1<int> == 123, "");
// FIXME: The first and third case below possibly should be accepted. We're
// not picking up partial specializations added after the primary template
// is instantiated. This is kind of implied by [temp.class.spec.mfunc]/2,
// and matches our behavior for member class templates, but it's not clear
// that this is intentional. See PR17294 and core-24030.
static_assert(S<int>::V2<int*> == 456, ""); // FIXME expected-error {{}}
static_assert(S<int>::V2<int&> == 789, ""); // expected-error {{}}
template<typename A> template<typename B> const int S<A>::V2<B&> = 789;
static_assert(S<int>::V2<int&> == 789, ""); // FIXME expected-error {{}}
// All is OK if the partial specialization is declared before the implicit
// instantiation of the class template specialization.
static_assert(S<char>::V1<int> == 123, "");
static_assert(S<char>::V2<int*> == 456, "");
static_assert(S<char>::V2<int&> == 789, "");
}
namespace incomplete_array {
template<typename T> extern T var[];
template<typename T> T var[] = { 1, 2, 3 };
template<> char var<char>[] = "hello";
template<typename T> char var<T*>[] = "pointer";
static_assert(sizeof(var<int>) == 12, "");
static_assert(sizeof(var<char>) == 6, "");
static_assert(sizeof(var<void*>) == 8, "");
template<typename...> struct tuple;
template<typename T> struct A {
template<typename U> static T x[];
template<typename U> static T y[];
template<typename...U> static T y<tuple<U...> >[];
};
int *use_before_definition = A<int>::x<char>;
template<typename T> template<typename U> T A<T>::x[sizeof(U)];
static_assert(sizeof(A<int>::x<char>) == 4, "");
template<typename T> template<typename...U> T A<T>::y<tuple<U...> >[] = { U()... };
static_assert(sizeof(A<int>::y<tuple<char, char, char> >) == 12, "");
}
namespace bad_reference {
struct S {
template<typename T> static int A; // expected-note 4{{here}}
};
template<typename T> void f() {
typename T::template A<int> a; // expected-error {{template name refers to non-type template 'S::A'}}
}
template<typename T> void g() {
T::template A<int>::B = 0; // expected-error {{template name refers to non-type template 'S::A'}}
}
template<typename T> void h() {
class T::template A<int> c; // expected-error {{template name refers to non-type template 'S::A'}}
}
template<typename T>
struct X : T::template A<int> {}; // expected-error {{template name refers to non-type template 'S::A'}}
template void f<S>(); // expected-note {{in instantiation of}}
template void g<S>(); // expected-note {{in instantiation of}}
template void h<S>(); // expected-note {{in instantiation of}}
template struct X<S>; // expected-note {{in instantiation of}}
}
}
namespace in_nested_classes {
// TODO:
}
namespace bitfield {
struct S {
template <int I>
static int f : I; // expected-error {{static member 'f' cannot be a bit-field}}
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/microsoft-varargs-diagnostics.cpp
|
// RUN: %clang_cc1 -triple thumbv7-windows -fms-compatibility -fsyntax-only %s -verify
extern "C" {
typedef char * va_list;
}
void test_no_arguments(int i, ...) {
__va_start(); // expected-error{{too few arguments to function call, expected at least 3, have 0}}
}
void test_one_argument(int i, ...) {
va_list ap;
__va_start(&ap); // expected-error{{too few arguments to function call, expected at least 3, have 1}}
}
void test_two_arguments(int i, ...) {
va_list ap;
__va_start(&ap, &i); // expected-error{{too few arguments to function call, expected at least 3, have 2}}
}
void test_non_last_argument(int i, int j, ...) {
va_list ap;
__va_start(&ap, &i, 4);
// expected-error@-1{{passing 'int *' to parameter of incompatible type 'const char *': type mismatch at 2nd parameter ('int *' vs 'const char *')}}
// expected-error@-2{{passing 'int' to parameter of incompatible type 'unsigned int': type mismatch at 3rd parameter ('int' vs 'unsigned int')}}
}
void test_stack_allocated(int i, ...) {
va_list ap;
int j;
__va_start(&ap, &j, 4);
// expected-error@-1{{passing 'int *' to parameter of incompatible type 'const char *': type mismatch at 2nd parameter ('int *' vs 'const char *')}}
// expected-error@-2{{passing 'int' to parameter of incompatible type 'unsigned int': type mismatch at 3rd parameter ('int' vs 'unsigned int')}}
}
void test_non_pointer_addressof(int i, ...) {
va_list ap;
__va_start(&ap, 1, 4);
// expected-error@-1{{passing 'int' to parameter of incompatible type 'const char *': type mismatch at 2nd parameter ('int' vs 'const char *')}}
// expected-error@-2{{passing 'int' to parameter of incompatible type 'unsigned int': type mismatch at 3rd parameter ('int' vs 'unsigned int')}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/exceptions.cpp
|
// RUN: %clang_cc1 -fcxx-exceptions -fexceptions -fsyntax-only -verify %s
struct A; // expected-note 4 {{forward declaration of 'A'}}
struct Abstract { virtual void f() = 0; }; // expected-note {{unimplemented pure virtual method 'f'}}
void trys() {
try {
} catch(int i) { // expected-note {{previous definition}}
int j = i;
int i; // expected-error {{redefinition of 'i'}}
} catch(float i) {
} catch(void v) { // expected-error {{cannot catch incomplete type 'void'}}
} catch(A a) { // expected-error {{cannot catch incomplete type 'A'}}
} catch(A *a) { // expected-error {{cannot catch pointer to incomplete type 'A'}}
} catch(A &a) { // expected-error {{cannot catch reference to incomplete type 'A'}}
} catch(Abstract) { // expected-error {{variable type 'Abstract' is an abstract class}}
} catch(...) {
int j = i; // expected-error {{use of undeclared identifier 'i'}}
}
try {
} catch(...) { // expected-error {{catch-all handler must come last}}
} catch(int) {
}
}
void throws() {
throw;
throw 0;
throw throw; // expected-error {{cannot throw object of incomplete type 'void'}}
throw (A*)0; // expected-error {{cannot throw pointer to object of incomplete type 'A'}}
}
void jumps() {
l1:
goto l5;
goto l4; // expected-error {{cannot jump}}
goto l3; // expected-error {{cannot jump}}
goto l2; // expected-error {{cannot jump}}
goto l1;
try { // expected-note 4 {{jump bypasses initialization of try block}}
l2:
goto l5;
goto l4; // expected-error {{cannot jump}}
goto l3; // expected-error {{cannot jump}}
goto l2;
goto l1;
} catch(int) { // expected-note 4 {{jump bypasses initialization of catch block}}
l3:
goto l5;
goto l4; // expected-error {{cannot jump}}
goto l3;
goto l2; // expected-error {{cannot jump}}
goto l1;
} catch(...) { // expected-note 4 {{jump bypasses initialization of catch block}}
l4:
goto l5;
goto l4;
goto l3; // expected-error {{cannot jump}}
goto l2; // expected-error {{cannot jump}}
goto l1;
}
l5:
goto l5;
goto l4; // expected-error {{cannot jump}}
goto l3; // expected-error {{cannot jump}}
goto l2; // expected-error {{cannot jump}}
goto l1;
}
struct BadReturn {
BadReturn() try {
} catch(...) {
// Try to hide
try {
} catch(...) {
{
if (0)
return; // expected-error {{return in the catch of a function try block of a constructor is illegal}}
}
}
}
BadReturn(int);
};
BadReturn::BadReturn(int) try {
} catch(...) {
// Try to hide
try {
} catch(int) {
return; // expected-error {{return in the catch of a function try block of a constructor is illegal}}
} catch(...) {
{
if (0)
return; // expected-error {{return in the catch of a function try block of a constructor is illegal}}
}
}
}
// Cannot throw an abstract type.
class foo {
public:
foo() {}
void bar () {
throw *this; // expected-error{{cannot throw an object of abstract type 'foo'}}
}
virtual void test () = 0; // expected-note{{unimplemented pure virtual method 'test'}}
};
namespace PR6831 {
namespace NA { struct S; }
namespace NB { struct S; }
void f() {
using namespace NA;
using namespace NB;
try {
} catch (int S) {
}
}
}
namespace Decay {
struct A {
void f() throw (A[10]);
};
template<typename T> struct B {
void f() throw (B[10]);
};
template struct B<int>;
void f() throw (int[10], int(*)());
void f() throw (int*, int());
template<typename T> struct C {
void f() throw (T); // expected-error {{pointer to incomplete type 'Decay::E' is not allowed in exception specification}}
};
struct D {
C<D[10]> c;
};
struct E; // expected-note {{forward declaration}}
C<E[10]> e; // expected-note {{in instantiation of}}
}
void rval_ref() throw (int &&); // expected-error {{rvalue reference type 'int &&' is not allowed in exception specification}} expected-warning {{C++11}}
namespace HandlerInversion {
struct B {};
struct D : B {};
struct D2 : D {};
void f1() {
try {
} catch (B &b) { // expected-note {{for type 'HandlerInversion::B &'}}
} catch (D &d) { // expected-warning {{exception of type 'HandlerInversion::D &' will be caught by earlier handler}}
}
}
void f2() {
try {
} catch (B *b) { // expected-note {{for type 'HandlerInversion::B *'}}
} catch (D *d) { // expected-warning {{exception of type 'HandlerInversion::D *' will be caught by earlier handler}}
}
}
void f3() {
try {
} catch (D &d) { // Ok
} catch (B &b) {
}
}
void f4() {
try {
} catch (B &b) { // Ok
}
}
void f5() {
try {
} catch (int) {
} catch (float) {
}
}
void f6() {
try {
} catch (B &b) { // expected-note {{for type 'HandlerInversion::B &'}}
} catch (D2 &d) { // expected-warning {{exception of type 'HandlerInversion::D2 &' will be caught by earlier handler}}
}
}
void f7() {
try {
} catch (B *b) { // Ok
} catch (D &d) { // Ok
}
try {
} catch (B b) { // Ok
} catch (D *d) { // Ok
}
}
void f8() {
try {
} catch (const B &b) { // expected-note {{for type 'const HandlerInversion::B &'}}
} catch (D2 &d) { // expected-warning {{exception of type 'HandlerInversion::D2 &' will be caught by earlier handler}}
}
try {
} catch (B &b) { // expected-note {{for type 'HandlerInversion::B &'}}
} catch (const D2 &d) { // expected-warning {{exception of type 'const HandlerInversion::D2 &' will be caught by earlier handler}}
}
try {
} catch (B b) { // expected-note {{for type 'HandlerInversion::B'}}
} catch (D &d) { // expected-warning {{exception of type 'HandlerInversion::D &' will be caught by earlier handler}}
}
}
}
namespace ConstVolatileThrow {
struct S {
S() {} // expected-note{{candidate constructor not viable}}
S(const S &s); // expected-note{{candidate constructor not viable}}
};
typedef const volatile S CVS;
void f() {
throw CVS(); // expected-error{{no matching constructor for initialization}}
}
}
namespace ConstVolatileCatch {
struct S {
S() {}
S(const volatile S &s);
private:
S(const S &s); // expected-note {{declared private here}}
};
void f();
void g() {
try {
f();
} catch (volatile S s) { // expected-error {{calling a private constructor}}
}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decl-expr-ambiguity.cpp
|
// RUN: %clang_cc1 -Wno-int-to-pointer-cast -fsyntax-only -verify -pedantic-errors %s
// RUN: %clang_cc1 -Wno-int-to-pointer-cast -fsyntax-only -verify -pedantic-errors -x objective-c++ %s
void f() {
int a;
struct S { int m; };
typedef S *T;
// Expressions.
T(a)->m = 7;
int(a)++; // expected-error {{assignment to cast is illegal}}
__extension__ int(a)++; // expected-error {{assignment to cast is illegal}}
__typeof(int)(a,5)<<a; // expected-error {{excess elements in scalar initializer}}
void(a), ++a;
if (int(a)+1) {}
for (int(a)+1;;) {} // expected-warning {{expression result unused}}
a = sizeof(int()+1);
a = sizeof(int(1));
typeof(int()+1) a2; // expected-error {{extension used}}
(int(1)); // expected-warning {{expression result unused}}
// type-id
(int())1; // expected-error {{C-style cast from 'int' to 'int ()' is not allowed}}
// Declarations.
int fd(T(a)); // expected-warning {{disambiguated as a function declaration}} expected-note{{add a pair of parentheses}}
T(*d)(int(p)); // expected-note {{previous}}
typedef T td(int(p));
extern T tp(int(p));
T d3(); // expected-warning {{empty parentheses interpreted as a function declaration}} expected-note {{replace parentheses with an initializer}}
T d3v(void);
typedef T d3t();
extern T f3();
__typeof(*T()) f4(); // expected-warning {{empty parentheses interpreted as a function declaration}} expected-note {{replace parentheses with an initializer}}
typedef void *V;
__typeof(*V()) f5(); // expected-error {{ISO C++ does not allow indirection on operand of type 'V' (aka 'void *')}}
T multi1,
multi2(); // expected-warning {{empty parentheses interpreted as a function declaration}} expected-note {{replace parentheses with an initializer}}
T(d)[5]; // expected-error {{redefinition of 'd'}}
typeof(int[])(f) = { 1, 2 }; // expected-error {{extension used}}
void(b)(int);
int(d2) __attribute__(());
if (int(a)=1) {}
int(d3(int()));
}
struct RAII {
RAII();
~RAII();
};
void func();
void func2(short);
namespace N {
struct S;
void emptyParens() {
RAII raii(); // expected-warning {{function declaration}} expected-note {{remove parentheses to declare a variable}}
int a, b, c, d, e, // expected-note {{change this ',' to a ';' to call 'func'}}
func(); // expected-warning {{function declaration}} expected-note {{replace parentheses with an initializer}}
S s(); // expected-warning {{function declaration}}
}
void nonEmptyParens() {
int f = 0, // g = 0; expected-note {{change this ',' to a ';' to call 'func2'}}
func2(short(f)); // expected-warning {{function declaration}} expected-note {{add a pair of parentheses}}
}
}
class C { };
void fn(int(C)) { } // void fn(int(*fp)(C c)) { } expected-note{{candidate function}}
// not: void fn(int C);
int g(C);
void foo() {
fn(1); // expected-error {{no matching function}}
fn(g); // OK
}
namespace PR11874 {
void foo(); // expected-note 3 {{class 'foo' is hidden by a non-type declaration of 'foo' here}}
class foo {};
class bar {
bar() {
const foo* f1 = 0; // expected-error {{must use 'class' tag to refer to type 'foo' in this scope}}
foo* f2 = 0; // expected-error {{must use 'class' tag to refer to type 'foo' in this scope}}
foo f3; // expected-error {{must use 'class' tag to refer to type 'foo' in this scope}}
}
};
int baz; // expected-note 2 {{class 'baz' is hidden by a non-type declaration of 'baz' here}}
class baz {};
void fizbin() {
const baz* b1 = 0; // expected-error {{must use 'class' tag to refer to type 'baz' in this scope}}
baz* b2; // expected-error {{use of undeclared identifier 'b2'}}
baz b3; // expected-error {{must use 'class' tag to refer to type 'baz' in this scope}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/issue547.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// expected-no-diagnostics
template<typename T>
struct classify_function {
static const unsigned value = 0;
};
template<typename R, typename ...Args>
struct classify_function<R(Args...)> {
static const unsigned value = 1;
};
template<typename R, typename ...Args>
struct classify_function<R(Args...) const> {
static const unsigned value = 2;
};
template<typename R, typename ...Args>
struct classify_function<R(Args...) volatile> {
static const unsigned value = 3;
};
template<typename R, typename ...Args>
struct classify_function<R(Args...) const volatile> {
static const unsigned value = 4;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...)> {
static const unsigned value = 5;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...) const> {
static const unsigned value = 6;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...) volatile> {
static const unsigned value = 7;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...) const volatile> {
static const unsigned value = 8;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...) &&> {
static const unsigned value = 9;
};
template<typename R, typename ...Args>
struct classify_function<R(Args..., ...) const &> {
static const unsigned value = 10;
};
typedef void f0(int) const;
typedef void f1(int, float...) const volatile;
typedef void f2(int, double, ...) &&;
typedef void f3(int, double, ...) const &;
int check0[classify_function<f0>::value == 2? 1 : -1];
int check1[classify_function<f1>::value == 8? 1 : -1];
int check2[classify_function<f2>::value == 9? 1 : -1];
int check3[classify_function<f3>::value == 10? 1 : -1];
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-char-subscripts.cpp
|
// RUN: %clang_cc1 -Wchar-subscripts -fsyntax-only -verify %s
template<typename T>
void t1() {
int array[1] = { 0 };
T subscript = 0;
int val = array[subscript]; // expected-warning{{array subscript is of type 'char'}}
}
template<typename T>
void t2() {
int array[1] = { 0 };
T subscript = 0;
int val = subscript[array]; // expected-warning{{array subscript is of type 'char'}}
}
void test() {
t1<char>(); // expected-note {{in instantiation of function template specialization 't1<char>' requested here}}
t2<char>(); // expected-note {{in instantiation of function template specialization 't2<char>' requested here}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/indirect-goto.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// expected-no-diagnostics
namespace test1 {
// Make sure this doesn't crash.
struct A { ~A(); };
void a() { goto *(A(), &&L); L: return; }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/do-while-scope.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// expected-no-diagnostics
void test() {
int x;
do
int x;
while (1);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pr13353.cpp
|
// RUN: %clang_cc1 -fsyntax-only %s
struct foo {
virtual void bar() ;
};
template<typename T>
class zed : public foo {
};
template<typename T>
class bah : public zed<T> {
void f() {
const_cast<foo *>(this->g())->bar();
}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unused-local-typedef-serialize.cpp
|
// XFAIL: hexagon
// RUN: %clang -x c++-header -c -Wunused-local-typedef %s -o %t.gch -Werror
// RUN: %clang -DBE_THE_SOURCE -c -Wunused-local-typedef -include %t %s -o /dev/null 2>&1 | FileCheck %s
// RUN: %clang -DBE_THE_SOURCE -c -Wunused-local-typedef -include %t %s -o /dev/null 2>&1 | FileCheck %s
#ifndef BE_THE_SOURCE
inline void myfun() {
// The warning should fire every time the pch file is used, not when it's built.
// CHECK: warning: unused typedef
typedef int a;
}
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pragma-init_seg.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -fms-extensions %s -triple x86_64-pc-win32
// RUN: %clang_cc1 -fsyntax-only -verify -fms-extensions %s -triple i386-apple-darwin13.3.0
#ifndef __APPLE__
#pragma init_seg(L".my_seg") // expected-warning {{expected 'compiler', 'lib', 'user', or a string literal}}
#pragma init_seg( // expected-warning {{expected 'compiler', 'lib', 'user', or a string literal}}
#pragma init_seg asdf // expected-warning {{missing '('}}
#pragma init_seg) // expected-warning {{missing '('}}
#pragma init_seg("a" "b") // no warning
#pragma init_seg("a", "b") // expected-warning {{missing ')'}}
#pragma init_seg("a") asdf // expected-warning {{extra tokens at end of '#pragma init_seg'}}
#pragma init_seg("\x") // expected-error {{\x used with no following hex digits}}
#pragma init_seg("a" L"b") // expected-warning {{expected non-wide string literal in '#pragma init_seg'}}
#pragma init_seg(compiler)
#else
#pragma init_seg(compiler) // expected-warning {{'#pragma init_seg' is only supported when targeting a Microsoft environment}}
#endif
int f();
int __declspec(thread) x = f(); // expected-error {{initializer for thread-local variable must be a constant expression}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-flatten.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
int i __attribute__((flatten)); // expected-error {{'flatten' attribute only applies to functions}}
void f1() __attribute__((flatten));
void f2() __attribute__((flatten(1))); // expected-error {{'flatten' attribute takes no arguments}}
template <typename T>
void tf1() __attribute__((flatten));
int f3(int __attribute__((flatten)), int); // expected-error{{'flatten' attribute only applies to functions}}
struct A {
int f __attribute__((flatten)); // expected-error{{'flatten' attribute only applies to functions}}
void mf1() __attribute__((flatten));
static void mf2() __attribute__((flatten));
};
int ci [[gnu::flatten]]; // expected-error {{'flatten' attribute only applies to functions}}
[[gnu::flatten]] void cf1();
[[gnu::flatten(1)]] void cf2(); // expected-error {{'flatten' attribute takes no arguments}}
template <typename T>
[[gnu::flatten]]
void ctf1();
int cf3(int c[[gnu::flatten]], int); // expected-error{{'flatten' attribute only applies to functions}}
struct CA {
int f [[gnu::flatten]]; // expected-error{{'flatten' attribute only applies to functions}}
[[gnu::flatten]] void mf1();
[[gnu::flatten]] static void mf2();
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/array-bounds.cpp
|
// RUN: %clang_cc1 -verify %s
int foo() {
int x[2]; // expected-note 4 {{array 'x' declared here}}
int y[2]; // expected-note 2 {{array 'y' declared here}}
int z[1]; // expected-note {{array 'z' declared here}}
int w[1][1]; // expected-note {{array 'w' declared here}}
int v[1][1][1]; // expected-note {{array 'v' declared here}}
int *p = &y[2]; // no-warning
(void) sizeof(x[2]); // no-warning
y[2] = 2; // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
z[1] = 'x'; // expected-warning {{array index 1 is past the end of the array (which contains 1 element)}}
w[0][2] = 0; // expected-warning {{array index 2 is past the end of the array (which contains 1 element)}}
v[0][0][2] = 0; // expected-warning {{array index 2 is past the end of the array (which contains 1 element)}}
return x[2] + // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
y[-1] + // expected-warning {{array index -1 is before the beginning of the array}}
x[sizeof(x)] + // expected-warning {{array index 8 is past the end of the array (which contains 2 elements)}}
x[sizeof(x) / sizeof(x[0])] + // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
x[sizeof(x) / sizeof(x[0]) - 1] + // no-warning
x[sizeof(x[2])]; // expected-warning {{array index 4 is past the end of the array (which contains 2 elements)}}
}
// This code example tests that -Warray-bounds works with arrays that
// are template parameters.
template <char *sz> class Qux {
bool test() { return sz[0] == 'a'; }
};
void f1(int a[1]) {
int val = a[3]; // no warning for function argumnet
}
void f2(const int (&a)[2]) { // expected-note {{declared here}}
int val = a[3]; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
}
void test() {
struct {
int a[0];
} s2;
s2.a[3] = 0; // no warning for 0-sized array
union {
short a[2]; // expected-note 4 {{declared here}}
char c[4];
} u;
u.a[3] = 1; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
u.c[3] = 1; // no warning
short *p = &u.a[2]; // no warning
p = &u.a[3]; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
*(&u.a[2]) = 1; // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
*(&u.a[3]) = 1; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
*(&u.c[3]) = 1; // no warning
const int const_subscript = 3;
int array[2]; // expected-note {{declared here}}
array[const_subscript] = 0; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
int *ptr;
ptr[3] = 0; // no warning for pointer references
int array2[] = { 0, 1, 2 }; // expected-note 2 {{declared here}}
array2[3] = 0; // expected-warning {{array index 3 is past the end of the array (which contains 3 elements)}}
array2[2+2] = 0; // expected-warning {{array index 4 is past the end of the array (which contains 3 elements)}}
const char *str1 = "foo";
char c1 = str1[5]; // no warning for pointers
const char str2[] = "foo"; // expected-note {{declared here}}
char c2 = str2[5]; // expected-warning {{array index 5 is past the end of the array (which contains 4 elements)}}
int (*array_ptr)[2];
(*array_ptr)[3] = 1; // expected-warning {{array index 3 is past the end of the array (which contains 2 elements)}}
}
template <int I> struct S {
char arr[I]; // expected-note 3 {{declared here}}
};
template <int I> void f() {
S<3> s;
s.arr[4] = 0; // expected-warning 2 {{array index 4 is past the end of the array (which contains 3 elements)}}
s.arr[I] = 0; // expected-warning {{array index 5 is past the end of the array (which contains 3 elements)}}
}
void test_templates() {
f<5>(); // expected-note {{in instantiation}}
}
#define SIZE 10
#define ARR_IN_MACRO(flag, arr, idx) flag ? arr[idx] : 1
int test_no_warn_macro_unreachable() {
int arr[SIZE]; // expected-note {{array 'arr' declared here}}
return ARR_IN_MACRO(0, arr, SIZE) + // no-warning
ARR_IN_MACRO(1, arr, SIZE); // expected-warning{{array index 10 is past the end of the array (which contains 10 elements)}}
}
// This exhibited an assertion failure for a 32-bit build of Clang.
int test_pr9240() {
short array[100]; // expected-note {{array 'array' declared here}}
return array[(unsigned long long) 100]; // expected-warning {{array index 100 is past the end of the array (which contains 100 elements)}}
}
// PR 9284 - a template parameter can cause an array bounds access to be
// infeasible.
template <bool extendArray>
void pr9284() {
int arr[3 + (extendArray ? 1 : 0)];
if (extendArray)
arr[3] = 42; // no-warning
}
template <bool extendArray>
void pr9284b() {
int arr[3 + (extendArray ? 1 : 0)]; // expected-note {{array 'arr' declared here}}
if (!extendArray)
arr[3] = 42; // expected-warning{{array index 3 is past the end of the array (which contains 3 elements)}}
}
void test_pr9284() {
pr9284<true>();
pr9284<false>();
pr9284b<true>();
pr9284b<false>(); // expected-note{{in instantiation of function template specialization 'pr9284b<false>' requested here}}
}
int test_pr9296() {
int array[2];
return array[true]; // no-warning
}
int test_sizeof_as_condition(int flag) {
int arr[2] = { 0, 0 }; // expected-note {{array 'arr' declared here}}
if (flag)
return sizeof(char) != sizeof(char) ? arr[2] : arr[1];
return sizeof(char) == sizeof(char) ? arr[2] : arr[1]; // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
}
void test_switch() {
switch (4) {
case 1: {
int arr[2];
arr[2] = 1; // no-warning
break;
}
case 4: {
int arr[2]; // expected-note {{array 'arr' declared here}}
arr[2] = 1; // expected-warning {{array index 2 is past the end of the array (which contains 2 elements)}}
break;
}
default: {
int arr[2];
arr[2] = 1; // no-warning
break;
}
}
}
// Test nested switch statements.
enum enumA { enumA_A, enumA_B, enumA_C, enumA_D, enumA_E };
enum enumB { enumB_X, enumB_Y, enumB_Z };
static enum enumB myVal = enumB_X;
void test_nested_switch() {
switch (enumA_E) { // expected-warning {{no case matching constant}}
switch (myVal) { // expected-warning {{enumeration values 'enumB_X' and 'enumB_Z' not handled in switch}}
case enumB_Y: ;
}
}
}
// Test that if all the values of an enum covered, that the 'default' branch
// is unreachable.
enum Values { A, B, C, D };
void test_all_enums_covered(enum Values v) {
int x[2];
switch (v) {
case A: return;
case B: return;
case C: return;
case D: return;
}
x[2] = 0; // no-warning
}
namespace tailpad {
struct foo {
char c1[1]; // expected-note {{declared here}}
int x;
char c2[1];
};
class baz {
public:
char c1[1]; // expected-note {{declared here}}
int x;
char c2[1];
};
char bar(struct foo *F, baz *B) {
return F->c1[3] + // expected-warning {{array index 3 is past the end of the array (which contains 1 element)}}
F->c2[3] + // no warning, foo could have tail padding allocated.
B->c1[3] + // expected-warning {{array index 3 is past the end of the array (which contains 1 element)}}
B->c2[3]; // no warning, baz could have tail padding allocated.
}
}
namespace metaprogramming {
#define ONE 1
struct foo { char c[ONE]; }; // expected-note {{declared here}}
template <int N> struct bar { char c[N]; }; // expected-note {{declared here}}
char test(foo *F, bar<1> *B) {
return F->c[3] + // expected-warning {{array index 3 is past the end of the array (which contains 1 element)}}
B->c[3]; // expected-warning {{array index 3 is past the end of the array (which contains 1 element)}}
}
}
void bar(int x) {}
int test_more() {
int foo[5]; // expected-note 5 {{array 'foo' declared here}}
bar(foo[5]); // expected-warning {{array index 5 is past the end of the array (which contains 5 elements)}}
++foo[5]; // expected-warning {{array index 5 is past the end of the array (which contains 5 elements)}}
if (foo[6]) // expected-warning {{array index 6 is past the end of the array (which contains 5 elements)}}
return --foo[6]; // expected-warning {{array index 6 is past the end of the array (which contains 5 elements)}}
else
return foo[5]; // expected-warning {{array index 5 is past the end of the array (which contains 5 elements)}}
}
void test_pr10771() {
double foo[4096]; // expected-note {{array 'foo' declared here}}
((char*)foo)[sizeof(foo) - 1] = '\0'; // no-warning
*(((char*)foo) + sizeof(foo) - 1) = '\0'; // no-warning
((char*)foo)[sizeof(foo)] = '\0'; // expected-warning {{array index 32768 is past the end of the array (which contains 32768 elements)}}
// TODO: This should probably warn, too.
*(((char*)foo) + sizeof(foo)) = '\0'; // no-warning
}
int test_pr11007_aux(const char * restrict, ...);
// Test checking with varargs.
void test_pr11007() {
double a[5]; // expected-note {{array 'a' declared here}}
test_pr11007_aux("foo", a[1000]); // expected-warning {{array index 1000 is past the end of the array}}
}
void test_rdar10916006(void)
{
int a[128]; // expected-note {{array 'a' declared here}}
a[(unsigned char)'\xA1'] = 1; // expected-warning {{array index 161 is past the end of the array}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/format-strings-0x-nopedantic.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wformat -std=c++11 %s
// expected-no-diagnostics
extern "C" {
extern int scanf(const char *restrict, ...);
extern int printf(const char *restrict, ...);
}
void f(char *c) {
printf("%p", c);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/underlying_type.cpp
|
// RUN: %clang_cc1 -ffreestanding -fsyntax-only -verify -std=c++11 %s
#include "limits.h"
template<typename T, typename U>
struct is_same_type {
static const bool value = false;
};
template <typename T>
struct is_same_type<T, T> {
static const bool value = true;
};
__underlying_type(int) a; // expected-error {{only enumeration types}}
__underlying_type(struct b) c; // expected-error {{only enumeration types}}
enum class f : char;
static_assert(is_same_type<char, __underlying_type(f)>::value,
"f has the wrong underlying type");
enum g {d = INT_MIN };
static_assert(is_same_type<int, __underlying_type(g)>::value,
"g has the wrong underlying type");
__underlying_type(f) h;
static_assert(is_same_type<char, decltype(h)>::value,
"h has the wrong type");
template <typename T>
struct underlying_type {
typedef __underlying_type(T) type; // expected-error {{only enumeration types}}
};
static_assert(is_same_type<underlying_type<f>::type, char>::value,
"f has the wrong underlying type in the template");
underlying_type<int>::type e; // expected-note {{requested here}}
using uint = unsigned;
enum class foo : uint { bar };
static_assert(is_same_type<underlying_type<foo>::type, unsigned>::value,
"foo has the wrong underlying type");
namespace PR19966 {
void PR19966(enum Invalid) { // expected-note 2{{forward declaration of}}
// expected-error@-1 {{ISO C++ forbids forward references to 'enum'}}
// expected-error@-2 {{variable has incomplete type}}
__underlying_type(Invalid) dont_crash;
// expected-error@-1 {{cannot determine underlying type of incomplete enumeration type 'PR19966::Invalid'}}
}
enum E { // expected-note {{forward declaration of 'E'}}
a = (__underlying_type(E)){}
// expected-error@-1 {{cannot determine underlying type of incomplete enumeration type 'PR19966::E'}}
// expected-error@-2 {{constant expression}}
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-absolute-value.cpp
|
// RUN: %clang_cc1 -triple i686-pc-linux-gnu -fsyntax-only -verify %s -Wabsolute-value -std=c++11
// RUN: %clang_cc1 -triple i686-pc-linux-gnu -fsyntax-only %s -Wabsolute-value -fdiagnostics-parseable-fixits -std=c++11 2>&1 | FileCheck %s
extern "C" {
int abs(int);
long int labs(long int);
long long int llabs(long long int);
float fabsf(float);
double fabs(double);
long double fabsl(long double);
float cabsf(float _Complex);
double cabs(double _Complex);
long double cabsl(long double _Complex);
}
namespace std {
inline namespace __1 {
int abs(int);
long int abs(long int);
long long int abs(long long int);
}
float abs(float);
double abs(double);
long double abs(long double);
template <typename T>
double abs(T);
}
void test_int(int x) {
(void)std::abs(x);
(void)abs(x);
(void)labs(x);
(void)llabs(x);
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x);
(void)__builtin_labs(x);
(void)__builtin_llabs(x);
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_long(long x) {
(void)std::abs(x);
(void)abs(x); // no warning - int and long are same length for this target
(void)labs(x);
(void)llabs(x);
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x); // no warning - int and long are same length for
// this target
(void)__builtin_labs(x);
(void)__builtin_llabs(x);
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_long_long(long long x) {
(void)std::abs(x);
(void)abs(x);
// expected-warning@-1{{absolute value function 'abs' given an argument of type 'long long' but has parameter of type 'int' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"std::abs"
(void)labs(x);
// expected-warning@-1{{absolute value function 'labs' given an argument of type 'long long' but has parameter of type 'long' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)llabs(x);
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x);
// expected-warning@-1{{absolute value function '__builtin_abs' given an argument of type 'long long' but has parameter of type 'int' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"std::abs"
(void)__builtin_labs(x);
// expected-warning@-1{{absolute value function '__builtin_labs' given an argument of type 'long long' but has parameter of type 'long' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_llabs(x);
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of integer type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_float(float x) {
(void)std::abs(x);
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"std::abs"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabsf(x);
(void)fabs(x);
(void)fabsl(x);
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"std::abs"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabsf(x);
(void)__builtin_fabs(x);
(void)__builtin_fabsl(x);
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_double(double x) {
(void)std::abs(x);
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"std::abs"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabsf(x);
// expected-warning@-1{{absolute value function 'fabsf' given an argument of type 'double' but has parameter of type 'float' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabs(x);
(void)fabsl(x);
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"std::abs"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabsf(x);
// expected-warning@-1{{absolute value function '__builtin_fabsf' given an argument of type 'double' but has parameter of type 'float' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabs(x);
(void)__builtin_fabsl(x);
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_long_double(long double x) {
(void)std::abs(x);
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"std::abs"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabsf(x);
// expected-warning@-1{{absolute value function 'fabsf' given an argument of type 'long double' but has parameter of type 'float' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)fabs(x);
// expected-warning@-1{{absolute value function 'fabs' given an argument of type 'long double' but has parameter of type 'double' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)fabsl(x);
(void)cabsf(x);
// expected-warning@-1 {{using complex absolute value function 'cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)cabs(x);
// expected-warning@-1 {{using complex absolute value function 'cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"std::abs"
(void)cabsl(x);
// expected-warning@-1 {{using complex absolute value function 'cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"std::abs"
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"std::abs"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabsf(x);
// expected-warning@-1{{absolute value function '__builtin_fabsf' given an argument of type 'long double' but has parameter of type 'float' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_fabs(x);
// expected-warning@-1{{absolute value function '__builtin_fabs' given an argument of type 'long double' but has parameter of type 'double' which may cause truncation of value}}
// expected-note@-2{{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_fabsl(x);
(void)__builtin_cabsf(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsf' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
(void)__builtin_cabs(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabs' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"std::abs"
(void)__builtin_cabsl(x);
// expected-warning@-1 {{using complex absolute value function '__builtin_cabsl' when argument is of floating point type}}
// expected-note@-2 {{use function 'std::abs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"std::abs"
}
void test_complex_float(_Complex float x) {
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"cabsf"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabsf"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsf"
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsf"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabsf"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsf"
(void)cabsf(x);
(void)cabs(x);
(void)cabsl(x);
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"__builtin_cabsf"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabsf"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsf"
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsf"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabsf"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsf' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsf"
(void)__builtin_cabsf(x);
(void)__builtin_cabs(x);
(void)__builtin_cabsl(x);
}
void test_complex_double(_Complex double x) {
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"cabs"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabs"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabs"
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabs"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabs"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of complex type}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabs"
(void)cabsf(x);
// expected-warning@-1 {{absolute value function 'cabsf' given an argument of type '_Complex double' but has parameter of type '_Complex float' which may cause truncation of value}}
// expected-note@-2 {{use function 'cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabs"
(void)cabs(x);
(void)cabsl(x);
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"__builtin_cabs"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabs"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabs"
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabs"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabs"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabs"
(void)__builtin_cabsf(x);
// expected-warning@-1 {{absolute value function '__builtin_cabsf' given an argument of type '_Complex double' but has parameter of type '_Complex float' which may cause truncation of value}}
// expected-note@-2 {{use function '__builtin_cabs' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabs"
(void)__builtin_cabs(x);
(void)__builtin_cabsl(x);
}
void test_complex_long_double(_Complex long double x) {
(void)abs(x);
// expected-warning@-1 {{using integer absolute value function 'abs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:"cabsl"
(void)labs(x);
// expected-warning@-1 {{using integer absolute value function 'labs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabsl"
(void)llabs(x);
// expected-warning@-1 {{using integer absolute value function 'llabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsl"
(void)fabsf(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsf' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsl"
(void)fabs(x);
// expected-warning@-1 {{using floating point absolute value function 'fabs' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabsl"
(void)fabsl(x);
// expected-warning@-1 {{using floating point absolute value function 'fabsl' when argument is of complex type}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsl"
(void)cabsf(x);
// expected-warning@-1 {{absolute value function 'cabsf' given an argument of type '_Complex long double' but has parameter of type '_Complex float' which may cause truncation of value}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:"cabsl"
(void)cabs(x);
// expected-warning@-1 {{absolute value function 'cabs' given an argument of type '_Complex long double' but has parameter of type '_Complex double' which may cause truncation of value}}
// expected-note@-2 {{use function 'cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:"cabsl"
(void)cabsl(x);
(void)__builtin_abs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_abs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:"__builtin_cabsl"
(void)__builtin_labs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_labs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabsl"
(void)__builtin_llabs(x);
// expected-warning@-1 {{using integer absolute value function '__builtin_llabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsl"
(void)__builtin_fabsf(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsf' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsl"
(void)__builtin_fabs(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabs' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabsl"
(void)__builtin_fabsl(x);
// expected-warning@-1 {{using floating point absolute value function '__builtin_fabsl' when argument is of complex type}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsl"
(void)__builtin_cabsf(x);
// expected-warning@-1 {{absolute value function '__builtin_cabsf' given an argument of type '_Complex long double' but has parameter of type '_Complex float' which may cause truncation of value}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:"__builtin_cabsl"
(void)__builtin_cabs(x);
// expected-warning@-1 {{absolute value function '__builtin_cabs' given an argument of type '_Complex long double' but has parameter of type '_Complex double' which may cause truncation of value}}
// expected-note@-2 {{use function '__builtin_cabsl' instead}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:"__builtin_cabsl"
(void)__builtin_cabsl(x);
}
void test_unsigned_int(unsigned int x) {
(void)std::abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'std::abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:17}:""
(void)abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:""
(void)labs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'labs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)llabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'llabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)fabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'fabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)fabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'fabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)fabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'fabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)cabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'cabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)cabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'cabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)cabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to 'cabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)__builtin_abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:""
(void)__builtin_labs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_labs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_llabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_llabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_fabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_fabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_fabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_cabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_cabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_cabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned int' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
}
void test_unsigned_long(unsigned long x) {
(void)std::abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'std::abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:17}:""
(void)abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:12}:""
(void)labs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'labs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)llabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'llabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)fabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'fabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)fabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'fabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)fabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'fabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)cabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'cabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)cabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'cabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:13}:""
(void)cabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to 'cabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:14}:""
(void)__builtin_abs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_abs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:22}:""
(void)__builtin_labs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_labs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_llabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_llabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_fabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_fabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_fabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_fabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_cabsf(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabsf' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
(void)__builtin_cabs(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabs' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:23}:""
(void)__builtin_cabsl(x);
// expected-warning@-1 {{taking the absolute value of unsigned type 'unsigned long' has no effect}}
// expected-note@-2 {{remove the call to '__builtin_cabsl' since unsigned values cannot be negative}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:9-[[@LINE-3]]:24}:""
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-reorder-ctor-initialization.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wreorder -verify %s
struct BB {};
struct BB1 {};
class complex : public BB, BB1 {
public:
complex()
: s2(1), // expected-warning {{field 's2' will be initialized after field 's1'}}
s1(1),
s3(3), // expected-warning {{field 's3' will be initialized after base 'BB1'}}
BB1(), // expected-warning {{base class 'BB1' will be initialized after base 'BB'}}
BB()
{}
int s1;
int s2;
int s3;
};
// testing virtual bases.
struct V {
V();
};
struct A : public virtual V {
A();
};
struct B : public virtual V {
B();
};
struct Diamond : public A, public B {
Diamond() : A(), B() {}
};
struct C : public A, public B, private virtual V {
C() { }
};
struct D : public A, public B {
D() : A(), V() { } // expected-warning {{base class 'A' will be initialized after base 'V'}}
};
struct E : public A, public B, private virtual V {
E() : A(), V() { } // expected-warning {{base class 'A' will be initialized after base 'V'}}
};
struct A1 {
A1();
};
struct B1 {
B1();
};
struct F : public A1, public B1, private virtual V {
F() : A1(), V() { } // expected-warning {{base class 'A1' will be initialized after base 'V'}}
};
struct X : public virtual A, virtual V, public virtual B {
X(): A(), V(), B() {} // expected-warning {{base class 'A' will be initialized after base 'V'}}
};
class Anon {
int c; union {int a,b;}; int d;
Anon() : c(10), b(1), d(2) {}
};
class Anon2 {
int c; union {int a,b;}; int d;
Anon2() : c(2),
d(10), // expected-warning {{field 'd' will be initialized after field 'b'}}
b(1) {}
};
class Anon3 {
union {int a,b;};
Anon3() : b(1) {}
};
namespace T1 {
struct S1 { };
struct S2: virtual S1 { };
struct S3 { };
struct S4: virtual S3, S2 {
S4() : S2(), // expected-warning {{base class 'T1::S2' will be initialized after base 'T1::S3'}}
S3() { };
};
}
namespace test2 {
struct Foo { Foo(); };
class A {
template <class T> A(T *t) :
y(), // expected-warning {{field 'y' will be initialized after field 'x'}}
x()
{}
Foo x;
Foo y;
};
}
// PR6575: this should not crash
namespace test3 {
struct MyClass {
MyClass() : m_int(0) {}
union {
struct {
int m_int;
};
};
};
}
namespace PR7179 {
struct X
{
struct Y
{
template <class T> Y(T x) : X(x) { }
};
};
}
namespace test3 {
struct foo {
struct {
int a;
int b;
};
foo() : b(), a() { // expected-warning {{field 'b' will be initialized after field 'a'}}
}
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/PR8385.cpp
|
// RUN: not %clang_cc1 -fsyntax-only %s
// don't crash on this, but don't constrain our diagnostics here as they're
// currently rather poor (we even accept things like "template struct {}").
// Other, explicit tests, should verify the relevant behavior of template
// instantiation.
struct{template struct{
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/access-control-check.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
class M {
int iM;
};
class P {
int iP; // expected-note {{declared private here}}
int PPR(); // expected-note {{declared private here}}
};
class N : M,P {
N() {}
int PR() { return iP + PPR(); } // expected-error 2 {{private member of 'P'}}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx11-thread-unsupported.cpp
|
// RUN: %clang_cc1 -std=c++11 -triple=x86_64-apple-macosx10.6 -verify %s
void f() {
thread_local int x; // expected-error {{thread-local storage is not supported for the current target}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/member-expr-static.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// expected-no-diagnostics
typedef void (*thread_continue_t)();
extern "C" {
extern void kernel_thread_start(thread_continue_t continuation);
extern void pure_c(void);
}
class _IOConfigThread {
public:
static void main( void );
};
void foo( void ) {
kernel_thread_start(&_IOConfigThread::main);
kernel_thread_start((thread_continue_t)&_IOConfigThread::main);
kernel_thread_start(&pure_c);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx-deprecated.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++1z %s
namespace [[deprecated]] {} // expected-warning {{'deprecated' attribute on anonymous namespace ignored}}
namespace [[deprecated]] N { // expected-note 4{{'N' has been explicitly marked deprecated here}}
int X;
int Y = X; // Ok
int f();
}
int N::f() { // Ok
return Y; // Ok
}
void f() {
int Y = N::f(); // expected-warning {{'N' is deprecated}}
using N::X; // expected-warning {{'N' is deprecated}}
int Z = X; //Ok
}
void g() {
using namespace N; // expected-warning {{'N' is deprecated}}
int Z = Y; // Ok
}
namespace M = N; // expected-warning {{'N' is deprecated}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/exceptions-seh.cpp
|
// RUN: %clang_cc1 -std=c++03 -fblocks -triple x86_64-windows-msvc -fms-extensions -fsyntax-only -fexceptions -fcxx-exceptions -verify %s
// RUN: %clang_cc1 -std=c++11 -fblocks -triple x86_64-windows-msvc -fms-extensions -fsyntax-only -fexceptions -fcxx-exceptions -verify %s
// Basic usage should work.
int safe_div(int n, int d) {
int r;
__try {
r = n / d;
} __except(_exception_code() == 0xC0000094) {
r = 0;
}
return r;
}
void might_crash();
// Diagnose obvious builtin mis-usage.
void bad_builtin_scope() {
__try {
might_crash();
} __except(1) {
}
_exception_code(); // expected-error {{'_exception_code' only allowed in __except block or filter expression}}
_exception_info(); // expected-error {{'_exception_info' only allowed in __except filter expression}}
}
// Diagnose obvious builtin misusage in a template.
template <void FN()>
void bad_builtin_scope_template() {
__try {
FN();
} __except(1) {
}
_exception_code(); // expected-error {{'_exception_code' only allowed in __except block or filter expression}}
_exception_info(); // expected-error {{'_exception_info' only allowed in __except filter expression}}
}
void instantiate_bad_scope_tmpl() {
bad_builtin_scope_template<might_crash>();
}
#if __cplusplus < 201103L
// FIXME: Diagnose this case. For now we produce undef in codegen.
template <typename T, T FN()>
T func_template() {
return FN();
}
void inject_builtins() {
func_template<void *, __exception_info>();
func_template<unsigned long, __exception_code>();
}
#endif
void use_seh_after_cxx() {
try { // expected-note {{conflicting 'try' here}}
might_crash();
} catch (int) {
}
__try { // expected-error {{cannot use C++ 'try' in the same function as SEH '__try'}}
might_crash();
} __except(1) {
}
}
void use_cxx_after_seh() {
__try { // expected-note {{conflicting '__try' here}}
might_crash();
} __except(1) {
}
try { // expected-error {{cannot use C++ 'try' in the same function as SEH '__try'}}
might_crash();
} catch (int) {
}
}
#if __cplusplus >= 201103L
void use_seh_in_lambda() {
([]() {
__try {
might_crash();
} __except(1) {
}
})();
try {
might_crash();
} catch (int) {
}
}
#endif
void use_seh_in_block() {
void (^b)() = ^{
__try { // expected-error {{cannot use SEH '__try' in blocks, captured regions, or Obj-C method decls}}
might_crash();
} __except(1) {
}
};
try {
b();
} catch (int) {
}
}
void (^use_seh_in_global_block)() = ^{
__try { // expected-error {{cannot use SEH '__try' in blocks, captured regions, or Obj-C method decls}}
might_crash();
} __except(1) {
}
};
void (^use_cxx_in_global_block)() = ^{
try {
might_crash();
} catch(int) {
}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/array-bounds-system-header.h
|
// "System header" for testing that -Warray-bounds is properly suppressed in
// certain cases.
#define BAD_MACRO_1 \
int i[3]; \
i[3] = 5
#define BAD_MACRO_2(_b, _i) \
(_b)[(_i)] = 5
#define QUESTIONABLE_MACRO(_a) \
sizeof(_a) > 3 ? (_a)[3] = 5 : 5
#define NOP(x) (x)
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/malloc.h
|
extern "C" {
extern void *malloc (__SIZE_TYPE__ __size) throw () __attribute__ ((__malloc__)) ;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/override-system-header.h
|
// override-system-header.h to test out 'override' warning.
// rdar://18295240
#define END_COM_MAP virtual unsigned AddRef(void) = 0;
#define STDMETHOD(method) virtual void method
#define IFACEMETHOD(method) STDMETHOD(method)
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/header-with-pragma-optimize-off.h
|
// Open an "off" region in this header.
#pragma clang optimize off
// Let the "off" region fall through to anything including this header.
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/register.h
|
#pragma GCC system_header
#pragma once
inline void f() { register int k; }
#define to_int(x) ({ register int n = (x); n; })
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/warn-new-overaligned-3.h
|
#pragma GCC system_header
// This header file pretends to be <new> from the system library, for the
// purpose of the over-aligned warnings test.
void* operator new(unsigned long) {
return 0;
}
void* operator new[](unsigned long) {
return 0;
}
void* operator new(unsigned long, void *) {
return 0;
}
void* operator new[](unsigned long, void *) {
return 0;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/Inputs/warn-unused-variables.h
|
// Verify that we don't warn about variables of internal-linkage type in
// headers, as the use may be in another TU.
namespace PR15558 {
namespace {
class A {};
}
class B {
static A a;
static A b;
static const int x = sizeof(b);
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/CodeGenHLSL/Readme.md
|
Files in this directory are used by tests implemented in CompilerTest.cpp
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/CodeGenHLSL/lib_no_alloca.h
|
float2 test(float2 a) {
float2 b = a;
b.y = sin(a.y);
return b;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.