Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/vla.cpp
|
// RUN: %clang_cc1 -verify %s
// PR11925
int n;
int (&f())[n]; // expected-error {{function declaration cannot have variably modified type}}
namespace PR18581 {
template<typename T> struct pod {};
template<typename T> struct error {
typename T::error e; // expected-error {{cannot be used prior to '::'}}
};
struct incomplete; // expected-note {{forward declaration}}
void f(int n) {
pod<int> a[n];
error<int> b[n]; // expected-note {{instantiation}}
incomplete c[n]; // expected-error {{incomplete}}
}
}
void pr23151(int (&)[*]) { // expected-error {{variable length array must be bound in function definition}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/type-convert-construct.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
void f() {
float v1 = float(1);
int v2 = typeof(int)(1,2); // expected-error {{excess elements in scalar initializer}}
typedef int arr[];
int v3 = arr(); // expected-error {{array types cannot be value-initialized}}
int v4 = int();
int v5 = int; // expected-error {{expected '(' for function-style cast or type construction}}
typedef int T;
int *p;
bool v6 = T(0) == p;
char *str;
str = "a string"; // expected-warning{{conversion from string literal to 'char *' is deprecated}}
wchar_t *wstr;
wstr = L"a wide string"; // expected-warning{{conversion from string literal to 'wchar_t *' is deprecated}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/PR10447.cpp
|
// RUN: %clang_cc1 -verify %s
// expected-no-diagnostics
// PR12223
namespace test1 {
namespace N {
extern "C" void f_test1(struct S*);
void g(S*);
}
namespace N {
void f(struct S *s) {
g(s);
}
}
}
// PR10447
namespace test2 {
extern "C" {
void f_test2(struct Bar*) { }
test2::Bar *ptr;
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/libstdcxx_explicit_init_list_hack.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify -Wsystem-headers %s
// libstdc++4.6 in debug mode has explicit default constructors.
// stlport has this for all containers.
#ifdef BE_THE_HEADER
#pragma clang system_header
namespace std {
namespace __debug {
template <class T>
class vector {
public:
explicit vector() {} // expected-warning{{should not be explicit}}
};
}
}
#else
#define BE_THE_HEADER
#include __FILE__
struct { int a, b; std::__debug::vector<int> c; } e[] = { {1, 1} }; // expected-note{{used in initialization here}}
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-redundant-move.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wredundant-move -std=c++11 -verify %s
// RUN: %clang_cc1 -fsyntax-only -Wredundant-move -std=c++11 -fdiagnostics-parseable-fixits %s 2>&1 | FileCheck %s
// RUN: %clang_cc1 -fsyntax-only -std=c++11 %s -ast-dump | FileCheck %s --check-prefix=CHECK-AST
// definitions for std::move
namespace std {
inline namespace foo {
template <class T> struct remove_reference { typedef T type; };
template <class T> struct remove_reference<T&> { typedef T type; };
template <class T> struct remove_reference<T&&> { typedef T type; };
template <class T> typename remove_reference<T>::type &&move(T &&t);
}
}
// test1 and test2 should not warn until after implementation of DR1579.
struct A {};
struct B : public A {};
A test1(B b1) {
B b2;
return b1;
return b2;
return std::move(b1);
return std::move(b2);
}
struct C {
C() {}
C(A) {}
};
C test2(A a1, B b1) {
A a2;
B b2;
return a1;
return a2;
return b1;
return b2;
return std::move(a1);
return std::move(a2);
return std::move(b1);
return std::move(b2);
}
// Copy of tests above with types changed to reference types.
A test3(B& b1) {
B& b2 = b1;
return b1;
return b2;
return std::move(b1);
return std::move(b2);
}
C test4(A& a1, B& b1) {
A& a2 = a1;
B& b2 = b1;
return a1;
return a2;
return b1;
return b2;
return std::move(a1);
return std::move(a2);
return std::move(b1);
return std::move(b2);
}
// PR23819, case 2
struct D {};
D test5(D d) {
return d;
// Verify the implicit move from the AST dump
// CHECK-AST: ReturnStmt{{.*}}line:[[@LINE-2]]
// CHECK-AST-NEXT: CXXConstructExpr{{.*}}struct D{{.*}}void (struct D &&)
// CHECK-AST-NEXT: ImplicitCastExpr
// CHECK-AST-NEXT: DeclRefExpr{{.*}}ParmVar{{.*}}'d'
return std::move(d);
// expected-warning@-1{{redundant move in return statement}}
// expected-note@-2{{remove std::move call here}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:10-[[@LINE-3]]:20}:""
// CHECK: fix-it:"{{.*}}":{[[@LINE-4]]:21-[[@LINE-4]]:22}:""
}
namespace templates {
struct A {};
struct B { B(A); };
// Warn once here since the type is not dependent.
template <typename T>
A test1(A a) {
return std::move(a);
// expected-warning@-1{{redundant move in return statement}}
// expected-note@-2{{remove std::move call here}}
// CHECK: fix-it:"{{.*}}":{[[@LINE-3]]:12-[[@LINE-3]]:22}:""
// CHECK: fix-it:"{{.*}}":{[[@LINE-4]]:23-[[@LINE-4]]:24}:""
}
void run_test1() {
test1<A>(A());
test1<B>(A());
}
// T1 and T2 may not be the same, the warning may not always apply.
template <typename T1, typename T2>
T1 test2(T2 t) {
return std::move(t);
}
void run_test2() {
test2<A, A>(A());
test2<B, A>(A());
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-cxx0x.cpp
|
// RUN: %clang_cc1 -fsyntax-only -fcxx-exceptions -verify -pedantic -std=c++11 %s
int align_illegal alignas(3); //expected-error {{requested alignment is not a power of 2}}
char align_big alignas(int);
int align_small alignas(1); // expected-error {{requested alignment is less than minimum}}
int align_multiple alignas(1) alignas(8) alignas(1);
alignas(4) int align_before;
struct align_member {
int member alignas(8);
int bitfield alignas(1) : 1; // expected-error {{}}
};
void f(alignas(1) char c) { // expected-error {{'alignas' attribute cannot be applied to a function parameter}}
alignas(1) register char k; // expected-error {{'alignas' attribute cannot be applied to a variable with 'register' storage class}} expected-warning {{deprecated}}
try {
} catch (alignas(4) int n) { // expected-error {{'alignas' attribute cannot be applied to a 'catch' variable}}
}
}
template <unsigned A> struct alignas(A) align_class_template {};
template <typename... T> struct alignas(T...) align_class_temp_pack_type {};
template <unsigned... A> struct alignas(A...) align_class_temp_pack_expr {};
struct alignas(int...) alignas_expansion_no_packs {}; // expected-error {{pack expansion does not contain any unexpanded parameter packs}}
template <typename... A> struct outer {
template <typename... B> struct alignas(alignof(A) * alignof(B)...) inner {};
// expected-error@-1 {{pack expansion contains parameter packs 'A' and 'B' that have different lengths (1 vs. 2)}}
};
outer<int>::inner<short, double> mismatched_packs; // expected-note {{in instantiation of}}
typedef char align_typedef alignas(8); // expected-error {{'alignas' attribute only applies to variables, data members and tag types}}
template<typename T> using align_alias_template = align_typedef alignas(8); // expected-error {{'alignas' attribute cannot be applied to types}}
static_assert(alignof(align_big) == alignof(int), "k's alignment is wrong"); // expected-warning{{'alignof' applied to an expression is a GNU extension}}
static_assert(alignof(align_small) == 1, "j's alignment is wrong"); // expected-warning{{'alignof' applied to an expression is a GNU extension}}
static_assert(alignof(align_multiple) == 8, "l's alignment is wrong"); // expected-warning{{'alignof' applied to an expression is a GNU extension}}
static_assert(alignof(align_member) == 8, "quuux's alignment is wrong");
static_assert(sizeof(align_member) == 8, "quuux's size is wrong");
static_assert(alignof(align_class_template<8>) == 8, "template's alignment is wrong");
static_assert(alignof(align_class_template<16>) == 16, "template's alignment is wrong");
static_assert(alignof(align_class_temp_pack_type<short, int, long>) == alignof(long), "template's alignment is wrong");
static_assert(alignof(align_class_temp_pack_expr<8, 16, 32>) == 32, "template's alignment is wrong");
static_assert(alignof(outer<int,char>::inner<double,short>) == alignof(int) * alignof(double), "template's alignment is wrong");
static_assert(alignof(int(int)) >= 1, "alignof(function) not positive"); // expected-error{{invalid application of 'alignof' to a function type}}
[[__carries_dependency__]] // expected-warning{{unknown attribute '__carries_dependency__' ignored}}
void func(void);
alignas(4) auto PR19252 = 0;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/vector-no-lax.cpp
|
// RUN: %clang_cc1 -triple x86_64-apple-darwin10 -fsyntax-only -fno-lax-vector-conversions -verify %s
typedef unsigned int __attribute__((vector_size (16))) vUInt32;
typedef int __attribute__((vector_size (16))) vSInt32;
vSInt32 foo (vUInt32 a) {
vSInt32 b = { 0, 0, 0, 0 };
b += a; // expected-error{{can't convert between vector values}}
return b;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/dependent-auto.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
template<typename T>
struct only {
only(T);
template<typename U> only(U) = delete; // expected-note {{here}}
};
template<typename ...T>
void f(T ...t) {
auto x(t...); // expected-error {{is empty}} expected-error {{contains multiple expressions}}
only<int> check = x;
}
void g() {
f(); // expected-note {{here}}
f(0);
f(0, 1); // expected-note {{here}}
}
template<typename T>
bool h(T t) {
auto a = t;
decltype(a) b;
a = a + b;
auto p = new auto(t);
only<double*> test = p; // expected-error {{conversion function from 'char *' to 'only<double *>'}}
return p;
}
bool b = h('x'); // expected-note {{here}}
// PR 9276 - Make sure we check auto types deduce the same
// in the case of a dependent initializer
namespace PR9276 {
template<typename T>
void f() {
auto i = T(), j = 0; // expected-error {{deduced as 'long' in declaration of 'i' and deduced as 'int' in declaration of 'j'}}
}
void g() {
f<long>(); // expected-note {{here}}
f<int>();
}
}
namespace NoRepeatedDiagnostic {
template<typename T>
void f() {
auto a = 0, b = 0.0, c = T(); // expected-error {{deduced as 'int' in declaration of 'a' and deduced as 'double' in declaration of 'b'}}
}
// We've already diagnosed an issue. No extra diagnostics is needed for these.
template void f<int>();
template void f<double>();
template void f<char>();
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decl-init-ref.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s -Wno-uninitialized
struct A {};
struct BASE {
operator A(); // expected-note {{candidate function}}
};
struct BASE1 {
operator A(); // expected-note {{candidate function}}
};
class B : public BASE , public BASE1
{
public:
B();
} b;
extern B f();
const int& ri = (void)0; // expected-error {{reference to type 'const int' could not bind to an rvalue of type 'void'}}
int main() {
const A& rca = f(); // expected-error {{reference initialization of type 'const A &' with initializer of type 'B' is ambiguous}}
A& ra = f(); // expected-error {{non-const lvalue reference to type 'A' cannot bind to a temporary of type 'B'}}
}
struct PR6139 { A (&x)[1]; };
PR6139 x = {{A()}}; // expected-error{{non-const lvalue reference to type 'A [1]' cannot bind to an initializer list temporary}}
struct PR6139b { A (&x)[1]; };
PR6139b y = {A()}; // expected-error{{non-const lvalue reference to type 'A [1]' cannot bind to a temporary of type 'A'}}
namespace PR16502 {
struct A { int &&temporary; int x, y; };
int f();
const A &c = { 10, ++c.temporary };
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/gnu-flags.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -DNONE -Wno-gnu
// RUN: %clang_cc1 -fsyntax-only -verify %s -DALL -Wgnu
// RUN: %clang_cc1 -fsyntax-only -verify %s -DALL -Wno-gnu \
// RUN: -Wgnu-anonymous-struct -Wredeclared-class-member \
// RUN: -Wgnu-flexible-array-union-member -Wgnu-folding-constant \
// RUN: -Wgnu-empty-struct
// RUN: %clang_cc1 -fsyntax-only -verify %s -DNONE -Wgnu \
// RUN: -Wno-gnu-anonymous-struct -Wno-redeclared-class-member \
// RUN: -Wno-gnu-flexible-array-union-member -Wno-gnu-folding-constant \
// RUN: -Wno-gnu-empty-struct
// Additional disabled tests:
// %clang_cc1 -fsyntax-only -verify %s -DANONYMOUSSTRUCT -Wno-gnu -Wgnu-anonymous-struct
// %clang_cc1 -fsyntax-only -verify %s -DREDECLAREDCLASSMEMBER -Wno-gnu -Wredeclared-class-member
// %clang_cc1 -fsyntax-only -verify %s -DFLEXIBLEARRAYUNIONMEMBER -Wno-gnu -Wgnu-flexible-array-union-member
// %clang_cc1 -fsyntax-only -verify %s -DFOLDINGCONSTANT -Wno-gnu -Wgnu-folding-constant
// %clang_cc1 -fsyntax-only -verify %s -DEMPTYSTRUCT -Wno-gnu -Wgnu-empty-struct
#if NONE
// expected-no-diagnostics
#endif
#if ALL || ANONYMOUSSTRUCT
// expected-warning@+5 {{anonymous structs are a GNU extension}}
#endif
struct as {
int x;
struct {
int a;
float b;
};
};
#if ALL || REDECLAREDCLASSMEMBER
// expected-note@+6 {{previous declaration is here}}
// expected-warning@+6 {{class member cannot be redeclared}}
#endif
namespace rcm {
class A {
class X;
class X;
class X {};
};
}
#if ALL || FLEXIBLEARRAYUNIONMEMBER
// expected-warning@+6 {{flexible array member 'c1' in a union is a GNU extension}}
#endif
struct faum {
int l;
union {
int c1[];
};
};
#if ALL || FOLDINGCONSTANT
// expected-warning@+4 {{in-class initializer for static data member is not a constant expression; folding it to a constant is a GNU extension}}
#endif
struct fic {
static const int B = int(0.75 * 1000 * 1000);
};
#if ALL || EMPTYSTRUCT
// expected-warning@+3 {{flexible array member 'a' in otherwise empty struct is a GNU extension}}
#endif
struct ofam {int a[];};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/predefined-expr.cpp
|
// RUN: %clang_cc1 -x c++ -std=c++1y -fblocks -fsyntax-only -triple %itanium_abi_triple -verify %s
// PR16946
// expected-no-diagnostics
auto foo() {
static_assert(sizeof(__func__) == 4, "foo");
static_assert(sizeof(__FUNCTION__) == 4, "foo");
static_assert(sizeof(__PRETTY_FUNCTION__) == 11, "auto foo()");
return 0;
}
auto bar() -> decltype(42) {
static_assert(sizeof(__func__) == 4, "bar");
static_assert(sizeof(__FUNCTION__) == 4, "bar");
static_assert(sizeof(__PRETTY_FUNCTION__) == 10, "int bar()");
return 0;
}
// Within templates.
template <typename T>
int baz() {
static_assert(sizeof(__func__) == 4, "baz");
static_assert(sizeof(__FUNCTION__) == 4, "baz");
static_assert(sizeof(__PRETTY_FUNCTION__) == 20, "int baz() [T = int]");
[]() {
static_assert(sizeof(__func__) == 11, "operator()");
static_assert(sizeof(__FUNCTION__) == 11, "operator()");
static_assert(sizeof(__PRETTY_FUNCTION__) == 50,
"auto baz()::<anonymous class>::operator()() const");
return 0;
}
();
^{
static_assert(sizeof(__func__) == 27, "___Z3bazIiEiv_block_invoke");
static_assert(sizeof(__FUNCTION__) == 27, "___Z3bazIiEiv_block_invoke");
static_assert(sizeof(__PRETTY_FUNCTION__) == 27, "___Z3bazIiEiv_block_invoke");
}
();
#pragma clang __debug captured
{
static_assert(sizeof(__func__) == 4, "baz");
static_assert(sizeof(__FUNCTION__) == 4, "baz");
static_assert(sizeof(__PRETTY_FUNCTION__) == 20, "int baz() [T = int]");
}
return 0;
}
int main() {
static_assert(sizeof(__func__) == 5, "main");
static_assert(sizeof(__FUNCTION__) == 5, "main");
static_assert(sizeof(__PRETTY_FUNCTION__) == 11, "int main()");
[]() {
static_assert(sizeof(__func__) == 11, "operator()");
static_assert(sizeof(__FUNCTION__) == 11, "operator()");
static_assert(sizeof(__PRETTY_FUNCTION__) == 51,
"auto main()::<anonymous class>::operator()() const");
return 0;
}
();
^{
static_assert(sizeof(__func__) == 20, "__main_block_invoke");
static_assert(sizeof(__FUNCTION__) == 20, "__main_block_invoke");
static_assert(sizeof(__PRETTY_FUNCTION__) == 20, "__main_block_invoke");
}
();
#pragma clang __debug captured
{
static_assert(sizeof(__func__) == 5, "main");
static_assert(sizeof(__FUNCTION__) == 5, "main");
static_assert(sizeof(__PRETTY_FUNCTION__) == 11, "int main()");
#pragma clang __debug captured
{
static_assert(sizeof(__func__) == 5, "main");
static_assert(sizeof(__FUNCTION__) == 5, "main");
static_assert(sizeof(__PRETTY_FUNCTION__) == 11, "int main()");
}
}
[]() {
#pragma clang __debug captured
{
static_assert(sizeof(__func__) == 11, "operator()");
static_assert(sizeof(__FUNCTION__) == 11, "operator()");
static_assert(sizeof(__PRETTY_FUNCTION__) == 51,
"auto main()::<anonymous class>::operator()() const");
}
}
();
baz<int>();
return 0;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/no-wchar.cpp
|
// RUN: %clang_cc1 -triple i386-pc-win32 -fsyntax-only -fno-wchar -verify %s
wchar_t x; // expected-error {{unknown type name 'wchar_t'}}
typedef unsigned short wchar_t;
void foo(const wchar_t* x);
void bar() {
foo(L"wide string literal");
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-no-sanitize-address.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
#define NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address))
#if !__has_attribute(no_sanitize_address)
#error "Should support no_sanitize_address"
#endif
void noanal_fun() NO_SANITIZE_ADDRESS;
void noanal_fun_args() __attribute__((no_sanitize_address(1))); // \
// expected-error {{'no_sanitize_address' attribute takes no arguments}}
int noanal_testfn(int y) NO_SANITIZE_ADDRESS;
int noanal_testfn(int y) {
int x NO_SANITIZE_ADDRESS = y; // \
// expected-error {{'no_sanitize_address' attribute only applies to functions}}
return x;
}
int noanal_test_var NO_SANITIZE_ADDRESS; // \
// expected-error {{'no_sanitize_address' attribute only applies to functions}}
class NoanalFoo {
private:
int test_field NO_SANITIZE_ADDRESS; // \
// expected-error {{'no_sanitize_address' attribute only applies to functions}}
void test_method() NO_SANITIZE_ADDRESS;
};
class NO_SANITIZE_ADDRESS NoanalTestClass { // \
// expected-error {{'no_sanitize_address' attribute only applies to functions}}
};
void noanal_fun_params(int lvar NO_SANITIZE_ADDRESS); // \
// expected-error {{'no_sanitize_address' attribute only applies to functions}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/typeid.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
void f()
{
(void)typeid(int); // expected-error {{you need to include <typeinfo> before using the 'typeid' operator}}
}
namespace std {
class type_info;
}
void g()
{
(void)typeid(int);
}
struct X; // expected-note 3{{forward declaration}}
void g1(X &x) {
(void)typeid(X); // expected-error{{'typeid' of incomplete type 'X'}}
(void)typeid(X&); // expected-error{{'typeid' of incomplete type 'X'}}
(void)typeid(x); // expected-error{{'typeid' of incomplete type 'X'}}
}
void h(int i) {
char V[i];
typeid(V); // expected-error{{'typeid' of variably modified type 'char [i]'}}
typeid(char [i]); // expected-error{{'typeid' of variably modified type 'char [i]'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-consumed-analysis.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wconsumed -fcxx-exceptions -std=c++11 %s
// TODO: Switch to using macros for the expected warnings.
#define CALLABLE_WHEN(...) __attribute__ ((callable_when(__VA_ARGS__)))
#define CONSUMABLE(state) __attribute__ ((consumable(state)))
#define PARAM_TYPESTATE(state) __attribute__ ((param_typestate(state)))
#define RETURN_TYPESTATE(state) __attribute__ ((return_typestate(state)))
#define SET_TYPESTATE(state) __attribute__ ((set_typestate(state)))
#define TEST_TYPESTATE(state) __attribute__ ((test_typestate(state)))
typedef decltype(nullptr) nullptr_t;
template <typename T>
class CONSUMABLE(unconsumed) ConsumableClass {
T var;
public:
ConsumableClass();
ConsumableClass(nullptr_t p) RETURN_TYPESTATE(consumed);
ConsumableClass(T val) RETURN_TYPESTATE(unconsumed);
ConsumableClass(ConsumableClass<T> &other);
ConsumableClass(ConsumableClass<T> &&other);
ConsumableClass<T>& operator=(ConsumableClass<T> &other);
ConsumableClass<T>& operator=(ConsumableClass<T> &&other);
ConsumableClass<T>& operator=(nullptr_t) SET_TYPESTATE(consumed);
template <typename U>
ConsumableClass<T>& operator=(ConsumableClass<U> &other);
template <typename U>
ConsumableClass<T>& operator=(ConsumableClass<U> &&other);
void operator()(int a) SET_TYPESTATE(consumed);
void operator*() const CALLABLE_WHEN("unconsumed");
void unconsumedCall() const CALLABLE_WHEN("unconsumed");
void callableWhenUnknown() const CALLABLE_WHEN("unconsumed", "unknown");
bool isValid() const TEST_TYPESTATE(unconsumed);
operator bool() const TEST_TYPESTATE(unconsumed);
bool operator!=(nullptr_t) const TEST_TYPESTATE(unconsumed);
bool operator==(nullptr_t) const TEST_TYPESTATE(consumed);
void constCall() const;
void nonconstCall();
void consume() SET_TYPESTATE(consumed);
void unconsume() SET_TYPESTATE(unconsumed);
};
class CONSUMABLE(unconsumed) DestructorTester {
public:
DestructorTester();
DestructorTester(int);
void operator*() CALLABLE_WHEN("unconsumed");
~DestructorTester() CALLABLE_WHEN("consumed");
};
void baf0(const ConsumableClass<int> var);
void baf1(const ConsumableClass<int> &var);
void baf2(const ConsumableClass<int> *var);
void baf3(ConsumableClass<int> var);
void baf4(ConsumableClass<int> &var);
void baf5(ConsumableClass<int> *var);
void baf6(ConsumableClass<int> &&var);
ConsumableClass<int> returnsUnconsumed() {
return ConsumableClass<int>(); // expected-warning {{return value not in expected state; expected 'unconsumed', observed 'consumed'}}
}
ConsumableClass<int> returnsConsumed() RETURN_TYPESTATE(consumed);
ConsumableClass<int> returnsConsumed() {
return ConsumableClass<int>();
}
ConsumableClass<int> returnsUnknown() RETURN_TYPESTATE(unknown);
void testInitialization() {
ConsumableClass<int> var0;
ConsumableClass<int> var1 = ConsumableClass<int>();
ConsumableClass<int> var2(42);
ConsumableClass<int> var3(var2); // copy constructor
ConsumableClass<int> var4(var0); // copy consumed value
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
*var2;
*var3;
*var4; // expected-warning {{invalid invocation of method 'operator*' on object 'var4' while it is in the 'consumed' state}}
var0 = ConsumableClass<int>(42);
*var0;
var0 = var1;
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
if (var0.isValid()) {
*var0;
*var1;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
}
}
void testDestruction() {
DestructorTester D0(42), D1(42), D2;
*D0;
*D1;
*D2; // expected-warning {{invalid invocation of method 'operator*' on object 'D2' while it is in the 'consumed' state}}
D0.~DestructorTester(); // expected-warning {{invalid invocation of method '~DestructorTester' on object 'D0' while it is in the 'unconsumed' state}}
return; // expected-warning {{invalid invocation of method '~DestructorTester' on object 'D0' while it is in the 'unconsumed' state}} \
expected-warning {{invalid invocation of method '~DestructorTester' on object 'D1' while it is in the 'unconsumed' state}}
}
void testTempValue() {
*ConsumableClass<int>(); // expected-warning {{invalid invocation of method 'operator*' on a temporary object while it is in the 'consumed' state}}
}
void testSimpleRValueRefs() {
ConsumableClass<int> var0;
ConsumableClass<int> var1(42);
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1;
var0 = static_cast<ConsumableClass<int>&&>(var1);
*var0;
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
void testIfStmt() {
ConsumableClass<int> var;
if (var.isValid()) {
*var;
} else {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
if (!var.isValid()) {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
} else {
*var;
}
if (var) {
// Empty
} else {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
if (var != nullptr) {
// Empty
} else {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
if (var == nullptr) {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
} else {
// Empty
}
}
void testComplexConditionals0() {
ConsumableClass<int> var0, var1, var2;
if (var0 && var1) {
*var0;
*var1;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
if (var0 || var1) {
*var0;
*var1;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
if (var0 && !var1) {
*var0;
*var1;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
if (var0 || !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0;
*var1;
}
if (!var0 && !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0;
*var1;
}
if (!var0 || !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0;
*var1;
}
if (!(var0 && var1)) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0;
*var1;
}
if (!(var0 || var1)) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0;
*var1;
}
if (var0 && var1 && var2) {
*var0;
*var1;
*var2;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
*var2; // expected-warning {{invalid invocation of method 'operator*' on object 'var2' while it is in the 'consumed' state}}
}
#if 0
// FIXME: Get this test to pass.
if (var0 || var1 || var2) {
*var0;
*var1;
*var2;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
*var2; // expected-warning {{invalid invocation of method 'operator*' on object 'var2' while it is in the 'consumed' state}}
}
#endif
}
void testComplexConditionals1() {
ConsumableClass<int> var0, var1, var2;
// Coerce all variables into the unknown state.
baf4(var0);
baf4(var1);
baf4(var2);
if (var0 && var1) {
*var0;
*var1;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
}
if (var0 || var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
if (var0 && !var1) {
*var0;
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
}
if (var0 || !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1;
}
if (!var0 && !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
}
if (!(var0 || var1)) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
}
if (!var0 || !var1) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
} else {
*var0;
*var1;
}
if (!(var0 && var1)) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
} else {
*var0;
*var1;
}
if (var0 && var1 && var2) {
*var0;
*var1;
*var2;
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
*var2; // expected-warning {{invalid invocation of method 'operator*' on object 'var2' while it is in the 'unknown' state}}
}
#if 0
// FIXME: Get this test to pass.
if (var0 || var1 || var2) {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'unknown' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'unknown' state}}
*var2; // expected-warning {{invalid invocation of method 'operator*' on object 'var2' while it is in the 'unknown' state}}
} else {
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
*var2; // expected-warning {{invalid invocation of method 'operator*' on object 'var2' while it is in the 'consumed' state}}
}
#endif
}
void testStateChangeInBranch() {
ConsumableClass<int> var;
// Make var enter the 'unknown' state.
baf4(var);
if (!var) {
var = ConsumableClass<int>(42);
}
*var;
}
void testFunctionParam(ConsumableClass<int> param) {
if (param.isValid()) {
*param;
} else {
*param;
}
param = nullptr;
*param; // expected-warning {{invocation of method 'operator*' on object 'param' while it is in the 'consumed' state}}
}
void testParamReturnTypestateCallee(bool cond, ConsumableClass<int> &Param RETURN_TYPESTATE(unconsumed)) { // expected-warning {{parameter 'Param' not in expected state when the function returns: expected 'unconsumed', observed 'consumed'}}
if (cond) {
Param.consume();
return; // expected-warning {{parameter 'Param' not in expected state when the function returns: expected 'unconsumed', observed 'consumed'}}
}
Param.consume();
}
void testParamReturnTypestateCaller() {
ConsumableClass<int> var;
testParamReturnTypestateCallee(true, var);
*var;
}
void testParamTypestateCallee(ConsumableClass<int> Param0 PARAM_TYPESTATE(consumed),
ConsumableClass<int> &Param1 PARAM_TYPESTATE(consumed)) {
*Param0; // expected-warning {{invalid invocation of method 'operator*' on object 'Param0' while it is in the 'consumed' state}}
*Param1; // expected-warning {{invalid invocation of method 'operator*' on object 'Param1' while it is in the 'consumed' state}}
}
void testParamTypestateCaller() {
ConsumableClass<int> Var0, Var1(42);
testParamTypestateCallee(Var0, Var1); // expected-warning {{argument not in expected state; expected 'consumed', observed 'unconsumed'}}
}
void consumeFunc(ConsumableClass<int> P PARAM_TYPESTATE(unconsumed));
struct ParamTest {
static void consumeFuncStatic(ConsumableClass<int> P PARAM_TYPESTATE(unconsumed));
void consumeFuncMeth(ConsumableClass<int> P PARAM_TYPESTATE(unconsumed));
void operator<<(ConsumableClass<int> P PARAM_TYPESTATE(unconsumed));
};
void operator>>(ParamTest& pt, ConsumableClass<int> P PARAM_TYPESTATE(unconsumed));
void testFunctionParams() {
// Make sure we handle the different kinds of functions.
ConsumableClass<int> P;
consumeFunc(P); // expected-warning {{argument not in expected state; expected 'unconsumed', observed 'consumed'}}
ParamTest::consumeFuncStatic(P); // expected-warning {{argument not in expected state; expected 'unconsumed', observed 'consumed'}}
ParamTest pt;
pt.consumeFuncMeth(P); // expected-warning {{argument not in expected state; expected 'unconsumed', observed 'consumed'}}
pt << P; // expected-warning {{argument not in expected state; expected 'unconsumed', observed 'consumed'}}
pt >> P; // expected-warning {{argument not in expected state; expected 'unconsumed', observed 'consumed'}}
}
void baf3(ConsumableClass<int> var) {
*var;
}
void baf4(ConsumableClass<int> &var) {
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'unknown' state}}
}
void baf6(ConsumableClass<int> &&var) {
*var;
}
void testCallingConventions() {
ConsumableClass<int> var(42);
baf0(var);
*var;
baf1(var);
*var;
baf2(&var);
*var;
baf4(var);
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'unknown' state}}
var = ConsumableClass<int>(42);
baf5(&var);
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'unknown' state}}
var = ConsumableClass<int>(42);
baf6(static_cast<ConsumableClass<int>&&>(var));
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
void testConstAndNonConstMemberFunctions() {
ConsumableClass<int> var(42);
var.constCall();
*var;
var.nonconstCall();
*var;
}
void testFunctionParam0(ConsumableClass<int> param) {
*param;
}
void testFunctionParam1(ConsumableClass<int> ¶m) {
*param; // expected-warning {{invalid invocation of method 'operator*' on object 'param' while it is in the 'unknown' state}}
}
void testReturnStates() {
ConsumableClass<int> var;
var = returnsUnconsumed();
*var;
var = returnsConsumed();
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
void testCallableWhen() {
ConsumableClass<int> var(42);
*var;
baf4(var);
var.callableWhenUnknown();
}
void testMoveAsignmentish() {
ConsumableClass<int> var0;
ConsumableClass<long> var1(42);
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1;
var0 = static_cast<ConsumableClass<long>&&>(var1);
*var0;
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
var1 = ConsumableClass<long>(42);
var1 = nullptr;
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
void testConditionalMerge() {
ConsumableClass<int> var;
if (var.isValid()) {
// Empty
}
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
if (var.isValid()) {
// Empty
} else {
// Empty
}
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
void testSetTypestate() {
ConsumableClass<int> var(42);
*var;
var.consume();
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
var.unconsume();
*var;
}
void testConsumes0() {
ConsumableClass<int> var(nullptr);
*var; // expected-warning {{invalid invocation of method 'operator*' on object 'var' while it is in the 'consumed' state}}
}
void testConsumes1() {
ConsumableClass<int> var(42);
var.unconsumedCall();
var(6);
var.unconsumedCall(); // expected-warning {{invalid invocation of method 'unconsumedCall' on object 'var' while it is in the 'consumed' state}}
}
void testUnreachableBlock() {
ConsumableClass<int> var(42);
if (var) {
*var;
} else {
*var;
}
*var;
}
void testForLoop1() {
ConsumableClass<int> var0, var1(42);
for (int i = 0; i < 10; ++i) { // expected-warning {{state of variable 'var1' must match at the entry and exit of loop}}
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1;
var1.consume();
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
}
void testWhileLoop1() {
int i = 10;
ConsumableClass<int> var0, var1(42);
while (i-- > 0) { // expected-warning {{state of variable 'var1' must match at the entry and exit of loop}}
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
*var1;
var1.consume();
*var1; // expected-warning {{invalid invocation of method 'operator*' on object 'var1' while it is in the 'consumed' state}}
}
*var0; // expected-warning {{invalid invocation of method 'operator*' on object 'var0' while it is in the 'consumed' state}}
}
// Tests if state information is correctly discarded for certain shapes of CFGs.
void testSwitchGOTO(void) {
int a;
LABEL0:
switch (a)
case 0:
goto LABEL0;
goto LABEL0;
}
typedef const int*& IntegerPointerReference;
void testIsRValueRefishAndCanonicalType(IntegerPointerReference a) {}
namespace ContinueICETest {
bool cond1();
bool cond2();
static void foo1() {
while (cond1()) {
if (cond2())
continue;
}
}
static void foo2() {
while (true) {
if (false)
continue;
}
}
class runtime_error
{
public:
virtual ~runtime_error();
};
void read(bool sf) {
while (sf) {
if(sf) throw runtime_error();
}
}
} // end namespace ContinueICETest
namespace StatusUseCaseTests {
class CONSUMABLE(unconsumed)
__attribute__((consumable_auto_cast_state))
__attribute__((consumable_set_state_on_read))
Status {
int code;
public:
static Status OK;
Status() RETURN_TYPESTATE(consumed);
Status(int c) RETURN_TYPESTATE(unconsumed);
Status(const Status &other);
Status(Status &&other);
Status& operator=(const Status &other) CALLABLE_WHEN("unknown", "consumed");
Status& operator=(Status &&other) CALLABLE_WHEN("unknown", "consumed");
bool operator==(const Status &other) const SET_TYPESTATE(consumed);
bool check() const SET_TYPESTATE(consumed);
void ignore() const SET_TYPESTATE(consumed);
// Status& markAsChecked() { return *this; }
void clear() CALLABLE_WHEN("unknown", "consumed") SET_TYPESTATE(consumed);
~Status() CALLABLE_WHEN("unknown", "consumed");
operator bool() const; // Will not consume the object.
};
bool cond();
Status doSomething();
void handleStatus(const Status& s RETURN_TYPESTATE(consumed));
void handleStatusRef(Status& s);
void handleStatusPtr(Status* s);
void handleStatusUnmarked(const Status& s);
void log(const char* msg);
void fail() __attribute__((noreturn));
void checkStat(const Status& s);
void testSimpleTemporaries0() {
doSomething(); // expected-warning {{invalid invocation of method '~Status' on a temporary object while it is in the 'unconsumed' state}}
}
void testSimpleTemporaries1() {
doSomething().ignore();
}
void testSimpleTemporaries2() {
handleStatus(doSomething());
}
void testSimpleTemporaries3() {
Status s = doSomething();
} // expected-warning {{invalid invocation of method '~Status' on object 's' while it is in the 'unconsumed' state}}
void testTemporariesWithControlFlow(bool a) {
bool b = false || doSomething(); // expected-warning {{invalid invocation of method '~Status' on a temporary object while it is in the 'unconsumed' state}}
}
Status testSimpleTemporariesReturn0() {
return doSomething();
}
Status testSimpleTemporariesReturn1() {
Status s = doSomething();
return s;
}
void testSimpleTemporaries4() {
Status s = doSomething();
s.check();
}
void testSimpleTemporaries5() {
Status s = doSomething();
s.clear(); // expected-warning {{invalid invocation of method 'clear' on object 's' while it is in the 'unconsumed' state}}
}
void testSimpleTemporaries6() {
Status s1 = doSomething();
handleStatus(s1);
Status s2 = doSomething();
handleStatusRef(s2);
Status s3 = doSomething();
handleStatusPtr(&s3);
Status s4 = doSomething();
handleStatusUnmarked(s4);
}
void testSimpleTemporaries7() {
Status s;
s = doSomething();
} // expected-warning {{invalid invocation of method '~Status' on object 's' while it is in the 'unconsumed' state}}
void testTemporariesWithConditionals0() {
int a;
Status s = doSomething();
if (cond()) a = 0;
else a = 1;
} // expected-warning {{invalid invocation of method '~Status' on object 's' while it is in the 'unconsumed' state}}
void testTemporariesWithConditionals1() {
int a;
Status s = doSomething();
if (cond()) a = 0;
else a = 1;
s.ignore();
}
void testTemporariesWithConditionals2() {
int a;
Status s = doSomething();
s.ignore();
if (cond()) a = 0;
else a = 1;
}
void testTemporariesWithConditionals3() {
Status s = doSomething();
if (cond()) {
s.check();
}
}
void testTemporariesAndConstructors0() {
Status s(doSomething()); // Test the copy constructor.
s.check();
}
void testTemporariesAndConstructors1F() {
Status s1 = doSomething(); // Test the copy constructor.
Status s2 = s1;
} // expected-warning {{invalid invocation of method '~Status' on object 's2' while it is in the 'unconsumed' state}}
void testTemporariesAndConstructors1S() {
Status s1 = doSomething(); // Test the copy constructor.
Status s2(s1);
s2.check();
}
void testTemporariesAndConstructors2F() {
// Test the move constructor.
Status s1 = doSomething();
Status s2 = static_cast<Status&&>(s1);
} // expected-warning {{invalid invocation of method '~Status' on object 's2' while it is in the 'unconsumed' state}}
void testTemporariesAndConstructors2S() {
// Test the move constructor.
Status s1 = doSomething();
Status s2 = static_cast<Status&&>(s1);
s2.check();
}
void testTemporariesAndOperators0F() {
// Test the assignment operator.
Status s1 = doSomething();
Status s2;
s2 = s1;
} // expected-warning {{invalid invocation of method '~Status' on object 's2' while it is in the 'unconsumed' state}}
void testTemporariesAndOperators0S() {
// Test the assignment operator.
Status s1 = doSomething();
Status s2;
s2 = s1;
s2.check();
}
void testTemporariesAndOperators1F() {
// Test the move assignment operator.
Status s1 = doSomething();
Status s2;
s2 = static_cast<Status&&>(s1);
} // expected-warning {{invalid invocation of method '~Status' on object 's2' while it is in the 'unconsumed' state}}
void testTemporariesAndOperators1S() {
// Test the move assignment operator.
Status s1 = doSomething();
Status s2;
s2 = static_cast<Status&&>(s1);
s2.check();
}
void testTemporariesAndOperators2() {
Status s1 = doSomething();
Status s2 = doSomething();
s1 = s2; // expected-warning {{invalid invocation of method 'operator=' on object 's1' while it is in the 'unconsumed' state}}
s1.check();
s2.check();
}
Status testReturnAutocast() {
Status s = doSomething();
s.check(); // consume s
return s; // should autocast back to unconsumed
}
namespace TestParens {
void test3() {
checkStat((doSomething()));
}
void test4() {
Status s = (doSomething());
s.check();
}
void test5() {
(doSomething()).check();
}
void test6() {
if ((doSomething()) == Status::OK)
return;
}
} // end namespace TestParens
} // end namespace InitializerAssertionFailTest
namespace std {
void move();
template<class T>
void move(T&&);
namespace __1 {
void move();
template<class T>
void move(T&&);
}
}
namespace PR18260 {
class X {
public:
void move();
} x;
void test() {
x.move();
std::move();
std::move(x);
std::__1::move();
std::__1::move(x);
}
} // end namespace PR18260
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pr9812.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
int test(int, char**)
{
bool signed; // expected-error {{'bool' cannot be signed or unsigned}} expected-warning {{declaration does not declare anything}}
return 0;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/overload-0x.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
// RUN: %clang_cc1 -fsyntax-only -verify %s
namespace test0 {
struct A { // expected-note {{candidate function (the implicit copy assignment operator) not viable: 'this' argument has type 'const test0::A', but method is not marked const}}
#if __cplusplus >= 201103L
// expected-note@-2 {{candidate function (the implicit move assignment operator) not viable: 'this' argument has type 'const test0::A', but method is not marked const}}
#endif
A &operator=(void*); // expected-note {{candidate function not viable: 'this' argument has type 'const test0::A', but method is not marked const}}
};
void test(const A &a) {
a = "help"; // expected-error {{no viable overloaded '='}}
}
}
namespace PR16314 {
void f(char*);
int &f(...);
void x()
{
int &n = f("foo");
#if __cplusplus < 201103L
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
// expected-error@-3 {{non-const lvalue reference to type 'int' cannot bind to a temporary of type 'void'}}
#endif
}
}
namespace warn_if_best {
int f(char *);
void f(double);
void x()
{
int n = f("foo");
#if __cplusplus < 201103L
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
#else
// expected-warning@-4 {{ISO C++11 does not allow conversion from string literal to 'char *'}}
#endif
}
}
namespace userdefined_vs_illformed {
struct X { X(const char *); };
void *f(char *p); // best for C++03
double f(X x); // best for C++11
void g()
{
double d = f("foo");
#if __cplusplus < 201103L
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
// expected-error@-3 {{cannot initialize a variable of type 'double' with an rvalue of type 'void *'}}
#endif
}
}
namespace sfinae_test {
int f(int, char*);
template<int T>
struct S { typedef int type; };
template<>
struct S<sizeof(int)> { typedef void type; };
// C++11: SFINAE failure
// C++03: ok
template<typename T> int cxx11_ignored(T, typename S<sizeof(f(T(), "foo"))>::type *);
#if __cplusplus < 201103L
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
#else
// expected-note@-4 {{candidate template ignored: substitution failure}}
#endif
// C++11: better than latter
// C++03: worse than latter
template<typename T> void g(T, ...);
template<typename T> int g(T, typename S<sizeof(f(T(), "foo"))>::type *);
#if __cplusplus < 201103L
// expected-warning@-2 {{conversion from string literal to 'char *' is deprecated}}
#endif
int a = cxx11_ignored(0, 0);
int b = g(0, 0);
#if __cplusplus >= 201103L
// expected-error@-3 {{no matching function for call to 'cxx11_ignored'}}
// expected-error@-3 {{cannot initialize a variable of type 'int' with an rvalue of type 'void'}}
#endif
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constexpr-factorial.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only %s
constexpr unsigned oddfac(unsigned n) {
return n == 1 ? 1 : n * oddfac(n-2);
}
constexpr unsigned k = oddfac(123);
using A = int[k % 256];
using A = int[43];
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/functional-cast.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// REQUIRES: LP64
// ------------ not interpreted as C-style cast ------------
struct SimpleValueInit {
int i;
};
struct InitViaConstructor {
InitViaConstructor(int i = 7);
};
struct NoValueInit { // expected-note 2 {{candidate constructor (the implicit copy constructor)}} expected-note 2 {{candidate constructor (the implicit move constructor)}}
NoValueInit(int i, int j); // expected-note 2 {{candidate constructor}}
};
void test_cxx_functional_value_init() {
(void)SimpleValueInit();
(void)InitViaConstructor();
(void)NoValueInit(); // expected-error{{no matching constructor for initialization}}
}
void test_cxx_function_cast_multi() {
(void)NoValueInit(0, 0);
(void)NoValueInit(0, 0, 0); // expected-error{{no matching constructor for initialization}}
(void)int(1, 2); // expected-error{{excess elements in scalar initializer}}
(void)int({}, 2); // expected-error{{excess elements in scalar initializer}}
}
// ------------------ everything else --------------------
struct A {};
// ----------- const_cast --------------
typedef char c;
typedef c *cp;
typedef cp *cpp;
typedef cpp *cppp;
typedef cppp &cpppr;
typedef const cppp &cpppcr;
typedef const char cc;
typedef cc *ccp;
typedef volatile ccp ccvp;
typedef ccvp *ccvpp;
typedef const volatile ccvpp ccvpcvp;
typedef ccvpcvp *ccvpcvpp;
typedef int iar[100];
typedef iar &iarr;
typedef int (*f)(int);
void t_cc()
{
ccvpcvpp var = 0;
// Cast away deep consts and volatiles.
char ***var2 = cppp(var);
char ***const &var3 = var2;
// Const reference to reference.
char ***&var4 = cpppr(var3);
// Drop reference. Intentionally without qualifier change.
char *** var5 = cppp(var4);
const int ar[100] = {0};
// Array decay. Intentionally without qualifier change.
typedef int *intp;
int *pi = intp(ar);
f fp = 0;
// Don't misidentify fn** as a function pointer.
typedef f *fp_t;
f *fpp = fp_t(&fp);
int const A::* const A::*icapcap = 0;
typedef int A::* A::*iapap_t;
iapap_t iapap = iapap_t(icapcap);
}
// ----------- static_cast -------------
struct B : public A {}; // Single public base.
struct C1 : public virtual B {}; // Single virtual base.
struct C2 : public virtual B {};
struct D : public C1, public C2 {}; // Diamond
struct E : private A {}; // Single private base.
struct F : public C1 {}; // Single path to B with virtual.
struct G1 : public B {};
struct G2 : public B {};
struct H : public G1, public G2 {}; // Ambiguous path to B.
enum Enum { En1, En2 };
enum Onom { On1, On2 };
struct Co1 { operator int(); };
struct Co2 { Co2(int); };
struct Co3 { };
struct Co4 { Co4(Co3); operator Co3(); };
// Explicit implicits
void t_529_2()
{
int i = 1;
(void)float(i);
double d = 1.0;
(void)float(d);
(void)int(d);
(void)char(i);
typedef unsigned long ulong;
(void)ulong(i);
(void)int(En1);
(void)double(En1);
typedef int &intr;
(void)intr(i);
typedef const int &cintr;
(void)cintr(i);
int ar[1];
typedef const int *cintp;
(void)cintp(ar);
typedef void (*pfvv)();
(void)pfvv(t_529_2);
typedef void *voidp;
(void)voidp(0);
(void)voidp((int*)0);
typedef volatile const void *vcvoidp;
(void)vcvoidp((const int*)0);
typedef A *Ap;
(void)Ap((B*)0);
typedef A &Ar;
(void)Ar(*((B*)0));
typedef const B *cBp;
(void)cBp((C1*)0);
typedef B &Br;
(void)Br(*((C1*)0));
(void)Ap((D*)0);
typedef const A &cAr;
(void)cAr(*((D*)0));
typedef int B::*Bmp;
(void)Bmp((int A::*)0);
typedef void (B::*Bmfp)();
(void)Bmfp((void (A::*)())0);
(void)Ap((E*)0); // functional-style cast ignores access control
(void)voidp((const int*)0); // const_cast appended
(void)int(Co1());
(void)Co2(1);
(void)Co3((Co4)(Co3()));
// Bad code below
//(void)(A*)((H*)0); // {{static_cast from 'struct H *' to 'struct A *' is not allowed}}
}
// Anything to void
void t_529_4()
{
void(1);
(void(t_529_4));
}
// Static downcasts
void t_529_5_8()
{
typedef B *Bp;
(void)Bp((A*)0);
typedef B &Br;
(void)Br(*((A*)0));
typedef const G1 *cG1p;
(void)cG1p((A*)0);
typedef const G1 &cG1r;
(void)cG1r(*((A*)0));
(void)Bp((const A*)0); // const_cast appended
(void)Br(*((const A*)0)); // const_cast appended
typedef E *Ep;
(void)Ep((A*)0); // access control ignored
typedef E &Er;
(void)Er(*((A*)0)); // access control ignored
// Bad code below
typedef C1 *C1p;
(void)C1p((A*)0); // expected-error {{cannot cast 'A *' to 'C1p' (aka 'C1 *') via virtual base 'B'}}
typedef C1 &C1r;
(void)C1r(*((A*)0)); // expected-error {{cannot cast 'A' to 'C1r' (aka 'C1 &') via virtual base 'B'}}
typedef D *Dp;
(void)Dp((A*)0); // expected-error {{cannot cast 'A *' to 'Dp' (aka 'D *') via virtual base 'B'}}
typedef D &Dr;
(void)Dr(*((A*)0)); // expected-error {{cannot cast 'A' to 'Dr' (aka 'D &') via virtual base 'B'}}
typedef H *Hp;
(void)Hp((A*)0); // expected-error {{ambiguous cast from base 'A' to derived 'H':\n struct A -> struct B -> struct G1 -> struct H\n struct A -> struct B -> struct G2 -> struct H}}
typedef H &Hr;
(void)Hr(*((A*)0)); // expected-error {{ambiguous cast from base 'A' to derived 'H':\n struct A -> struct B -> struct G1 -> struct H\n struct A -> struct B -> struct G2 -> struct H}}
// TODO: Test DR427. This requires user-defined conversions, though.
}
// Enum conversions
void t_529_7()
{
(void)Enum(1);
(void)Enum(1.0);
(void)Onom(En1);
// Bad code below
(void)Enum((int*)0); // expected-error {{functional-style cast from 'int *' to 'Enum' is not allowed}}
}
// Void pointer to object pointer
void t_529_10()
{
typedef int *intp;
(void)intp((void*)0);
typedef const A *cAp;
(void)cAp((void*)0);
(void)intp((const void*)0); // const_cast appended
}
// Member pointer upcast.
void t_529_9()
{
typedef int A::*Amp;
(void)Amp((int B::*)0);
// Bad code below
(void)Amp((int H::*)0); // expected-error {{ambiguous conversion from pointer to member of derived class 'H' to pointer to member of base class 'A':}}
(void)Amp((int F::*)0); // expected-error {{conversion from pointer to member of class 'F' to pointer to member of class 'A' via virtual base 'B' is not allowed}}
}
// -------- reinterpret_cast -----------
enum test { testval = 1 };
struct structure { int m; };
typedef void (*fnptr)();
// Test conversion between pointer and integral types, as in p3 and p4.
void integral_conversion()
{
typedef void *voidp;
void *vp = voidp(testval);
long l = long(vp);
typedef float *floatp;
(void)floatp(l);
fnptr fnp = fnptr(l);
(void)char(fnp); // expected-error {{cast from pointer to smaller type 'char' loses information}}
(void)long(fnp);
}
void pointer_conversion()
{
int *p1 = 0;
typedef float *floatp;
float *p2 = floatp(p1);
typedef structure *structurep;
structure *p3 = structurep(p2);
typedef int **ppint;
typedef ppint *pppint;
ppint *deep = pppint(p3);
typedef fnptr fnptrp;
(void)fnptrp(deep);
}
void constness()
{
int ***const ipppc = 0;
typedef int const *icp_t;
int const *icp = icp_t(ipppc);
typedef int *intp;
(void)intp(icp); // const_cast appended
typedef int const *const ** intcpcpp;
intcpcpp icpcpp = intcpcpp(ipppc); // const_cast appended
int *ip = intp(icpcpp);
(void)icp_t(ip);
typedef int const *const *const *intcpcpcp;
(void)intcpcpcp(ipppc);
}
void fnptrs()
{
typedef int (*fnptr2)(int);
fnptr fp = 0;
(void)fnptr2(fp);
typedef void *voidp;
void *vp = voidp(fp);
(void)fnptr(vp);
}
void refs()
{
long l = 0;
typedef char &charr;
char &c = charr(l);
// Bad: from rvalue
typedef int &intr;
(void)intr(&c); // expected-error {{functional-style cast from rvalue to reference type 'intr' (aka 'int &')}}
}
void memptrs()
{
const int structure::*psi = 0;
typedef const float structure::*structurecfmp;
(void)structurecfmp(psi);
typedef int structure::*structureimp;
(void)structureimp(psi); // const_cast appended
void (structure::*psf)() = 0;
typedef int (structure::*structureimfp)();
(void)structureimfp(psf);
typedef void (structure::*structurevmfp)();
(void)structurevmfp(psi); // expected-error-re {{functional-style cast from 'const int structure::*' to 'structurevmfp' (aka 'void (structure::*)(){{( __attribute__\(\(thiscall\)\))?}}') is not allowed}}
(void)structureimp(psf); // expected-error-re {{functional-style cast from 'void (structure::*)(){{( __attribute__\(\(thiscall\)\))?}}' to 'structureimp' (aka 'int structure::*') is not allowed}}
}
// ---------------- misc ------------------
void crash_on_invalid_1()
{
typedef itn Typo; // expected-error {{unknown type name 'itn'}}
(void)Typo(1); // used to crash
typedef int &int_ref;
(void)int_ref(); // expected-error {{reference to type 'int' requires an initializer}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/builtin_objc_msgSend.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -verify
// expected-no-diagnostics
// rdar://8686888
typedef struct objc_selector *SEL;
typedef struct objc_object *id;
extern "C" __attribute__((visibility("default"))) id objc_msgSend(id self, SEL op, ...)
__attribute__((visibility("default")));
inline void TCFReleaseGC(void * object)
{
static SEL SEL_release;
objc_msgSend((id)object, SEL_release);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-div-or-rem-by-zero.cpp
|
// RUN: %clang_cc1 -verify %s
// RUN: %clang_cc1 -std=c++11 -verify %s
// RUN: %clang_cc1 -std=c++1y -verify %s
void div() {
(void)(42 / 0); // expected-warning{{division by zero is undefined}}
(void)(42 / false); // expected-warning{{division by zero is undefined}}
(void)(42 / !1); // expected-warning{{division by zero is undefined}}
(void)(42 / (1 - 1)); // expected-warning{{division by zero is undefined}}
(void)(42 / !(1 + 1)); // expected-warning{{division by zero is undefined}}
(void)(42 / (int)(0.0)); // expected-warning{{division by zero is undefined}}
}
void rem() {
(void)(42 % 0); // expected-warning{{remainder by zero is undefined}}
(void)(42 % false); // expected-warning{{remainder by zero is undefined}}
(void)(42 % !1); // expected-warning{{remainder by zero is undefined}}
(void)(42 % (1 - 1)); // expected-warning{{remainder by zero is undefined}}
(void)(42 % !(1 + 1)); // expected-warning{{remainder by zero is undefined}}
(void)(42 % (int)(0.0)); // expected-warning{{remainder by zero is undefined}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/integer-overflow.cpp
|
// RUN: %clang_cc1 %s -verify -fsyntax-only -std=gnu++98
typedef unsigned long long uint64_t;
typedef unsigned long long uint32_t;
uint64_t f0(uint64_t);
uint64_t f1(uint64_t, uint32_t);
uint64_t f2(uint64_t, ...);
static const uint64_t overflow = 1 * 4608 * 1024 * 1024; // expected-warning {{overflow in expression; result is 536870912 with type 'int'}}
uint64_t check_integer_overflows(int i) { //expected-note {{declared here}}
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
uint64_t overflow = 4608 * 1024 * 1024,
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow2 = (uint64_t)(4608 * 1024 * 1024),
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow3 = (uint64_t)(4608 * 1024 * 1024 * i),
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow4 = (1ULL * ((4608) * ((1024) * (1024))) + 2ULL),
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow5 = static_cast<uint64_t>(4608 * 1024 * 1024),
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
multi_overflow = (uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow += overflow2 = overflow3 = (uint64_t)(4608 * 1024 * 1024);
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow += overflow2 = overflow3 = 4608 * 1024 * 1024;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow += overflow2 = overflow3 = static_cast<uint64_t>(4608 * 1024 * 1024);
uint64_t not_overflow = 4608 * 1024 * 1024ULL;
uint64_t not_overflow2 = (1ULL * ((uint64_t)(4608) * (1024 * 1024)) + 2ULL);
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
overflow = 4608 * 1024 * 1024 ? 4608 * 1024 * 1024 : 0;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
overflow = 0 ? 0 : 4608 * 1024 * 1024;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if (4608 * 1024 * 1024)
return 0;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if ((uint64_t)(4608 * 1024 * 1024))
return 1;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if (static_cast<uint64_t>(4608 * 1024 * 1024))
return 1;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if ((uint64_t)(4608 * 1024 * 1024))
return 2;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if ((uint64_t)(4608 * 1024 * 1024 * i))
return 3;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
if ((1ULL * ((4608) * ((1024) * (1024))) + 2ULL))
return 4;
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
if ((uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024)))
return 5;
switch (i) {
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
case 4608 * 1024 * 1024:
return 6;
// expected-warning@+1 {{overflow in expression; result is 537919488 with type 'int'}}
case (uint64_t)(4609 * 1024 * 1024):
return 7;
// expected-warning@+1 {{overflow in expression; result is 537919488 with type 'int'}}
case 1 + static_cast<uint64_t>(4609 * 1024 * 1024):
return 7;
// expected-error@+2 {{expression is not an integral constant expression}}
// expected-note@+1 {{read of non-const variable 'i' is not allowed in a constant expression}}
case ((uint64_t)(4608 * 1024 * 1024 * i)):
return 8;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
case ((1ULL * ((4608) * ((1024) * (1024))) + 2ULL)):
return 9;
// expected-warning@+2 2{{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+1 {{overflow converting case value to switch condition type (288230376151711744 to 0)}}
case ((uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024))):
return 10;
}
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while (4608 * 1024 * 1024);
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while ((uint64_t)(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while (static_cast<uint64_t>(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while ((uint64_t)(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while ((uint64_t)(4608 * 1024 * 1024 * i));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
while ((1ULL * ((4608) * ((1024) * (1024))) + 2ULL));
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
while ((uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024)));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while (4608 * 1024 * 1024);
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while ((uint64_t)(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while (static_cast<uint64_t>(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while ((uint64_t)(4608 * 1024 * 1024));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while ((uint64_t)(4608 * 1024 * 1024 * i));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
do { } while ((1ULL * ((4608) * ((1024) * (1024))) + 2ULL));
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
do { } while ((uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024)));
// expected-warning@+3 {{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+3 {{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+3 {{overflow in expression; result is 536870912 with type 'int'}}
for (uint64_t i = 4608 * 1024 * 1024;
(uint64_t)(4608 * 1024 * 1024);
i += (uint64_t)(4608 * 1024 * 1024 * i));
// expected-warning@+3 {{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+3 2{{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+3 2{{overflow in expression; result is 536870912 with type 'int'}}
for (uint64_t i = (1ULL * ((4608) * ((1024) * (1024))) + 2ULL);
((uint64_t)((uint64_t)(4608 * 1024 * 1024) * (uint64_t)(4608 * 1024 * 1024)));
i = ((4608 * 1024 * 1024) + ((uint64_t)(4608 * 1024 * 1024))));
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
_Complex long long x = 4608 * 1024 * 1024;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
(__real__ x) = 4608 * 1024 * 1024;
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
(__imag__ x) = 4608 * 1024 * 1024;
// expected-warning@+4 {{overflow in expression; result is 536870912 with type 'int'}}
// expected-warning@+3 {{array index 536870912 is past the end of the array (which contains 10 elements)}}
// expected-note@+1 {{array 'a' declared here}}
uint64_t a[10];
a[4608 * 1024 * 1024] = 1i;
// expected-warning@+1 2{{overflow in expression; result is 536870912 with type 'int'}}
return ((4608 * 1024 * 1024) + ((uint64_t)(4608 * 1024 * 1024)));
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/inline.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// Check that we don't allow illegal uses of inline
// (checking C++-only constructs here)
struct c {inline int a;}; // expected-error{{'inline' can only appear on functions}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/unused-with-error.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wunused -verify %s
// Make sure 'unused' warnings are disabled when errors occurred.
static void foo(int *X) { // expected-note {{candidate}}
}
void bar(const int *Y) {
foo(Y); // expected-error {{no matching function for call}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constexpr-steps.cpp
|
// RUN: %clang_cc1 -std=c++1y -fsyntax-only -verify %s -DMAX=1234 -fconstexpr-steps 1234
// RUN: %clang_cc1 -std=c++1y -fsyntax-only -verify %s -DMAX=10 -fconstexpr-steps 10
// RUN: %clang -std=c++1y -fsyntax-only -Xclang -verify %s -DMAX=12345 -fconstexpr-steps=12345
// This takes a total of n + 4 steps according to our current rules:
// - One for the compound-statement that is the function body
// - One for the 'for' statement
// - One for the 'int k = 0;' statement
// - One for each of the n evaluations of the compound-statement in the 'for' body
// - One for the 'return' statemnet
constexpr bool steps(int n) {
for (int k = 0; k != n; ++k) {}
return true; // expected-note {{step limit}}
}
static_assert(steps((MAX - 4)), ""); // ok
static_assert(steps((MAX - 3)), ""); // expected-error {{constant}} expected-note{{call}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/complex-overload.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
char *foo(float);
void test_foo_1(float fv, double dv, float _Complex fc, double _Complex dc) {
char *cp1 = foo(fv);
char *cp2 = foo(dv);
// Note: GCC and EDG reject these two, but they are valid C99 conversions
char *cp3 = foo(fc);
char *cp4 = foo(dc);
}
int *foo(float _Complex);
void test_foo_2(float fv, double dv, float _Complex fc, double _Complex dc) {
char *cp1 = foo(fv);
char *cp2 = foo(dv);
int *ip = foo(fc);
int *lp = foo(dc);
}
long *foo(double _Complex);
void test_foo_3(float fv, double dv, float _Complex fc, double _Complex dc) {
char *cp1 = foo(fv);
char *cp2 = foo(dv);
int *ip = foo(fc);
long *lp = foo(dc);
}
char *promote_or_convert(double _Complex); // expected-note{{candidate function}}
int *promote_or_convert(long double _Complex); // expected-note{{candidate function}}
void test_promote_or_convert(float f, float _Complex fc) {
char *cp = promote_or_convert(fc);
int *ip2 = promote_or_convert(f); // expected-error{{call to 'promote_or_convert' is ambiguous}}
}
char *promote_or_convert2(float);
int *promote_or_convert2(double _Complex);
void test_promote_or_convert2(float _Complex fc) {
int *cp = promote_or_convert2(fc);
}
char *promote_or_convert3(int _Complex); // expected-note {{candidate}}
int *promote_or_convert3(long _Complex); // expected-note {{candidate}}
void test_promote_or_convert3(short _Complex sc) {
char *cp1 = promote_or_convert3(sc);
char *cp2 = promote_or_convert3(1i);
int *cp3 = promote_or_convert3(1il);
int *cp4 = promote_or_convert3(1ill); // expected-error {{ambiguous}}
}
char &convert4(short _Complex);
char &test_convert4 = convert4(1i);
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/ref-init-ambiguous.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
enum E2 { };
struct A {
operator E2&(); // expected-note 3 {{candidate function}}
};
struct B {
operator E2&(); // expected-note 3 {{candidate function}}
};
struct C : B, A {
};
void test(C c) {
const E2 &e2 = c; // expected-error {{reference initialization of type 'const E2 &' with initializer of type 'C' is ambiguous}}
}
void foo(const E2 &);// expected-note{{passing argument to parameter here}}
const E2 & re(C c) {
foo(c); // expected-error {{reference initialization of type 'const E2 &' with initializer of type 'C' is ambiguous}}
return c; // expected-error {{reference initialization of type 'const E2 &' with initializer of type 'C' is ambiguous}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx0x-return-init-list.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// Test that a very basic variation of generalized initializer returns (that
// required for libstdc++ 4.5) is supported in C++98.
int test0(int i) {
return { i }; // expected-warning{{generalized initializer lists are a C++11 extension}} expected-warning {{scalar}}
}
template<typename T, typename U>
T test1(U u) {
return { u }; // expected-warning{{generalized initializer lists are a C++11 extension}}
}
template int test1(char);
template long test1(int);
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/MicrosoftSuper.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -fms-extensions -std=c++11 -verify
struct Errors {
using __super::foo; // expected-error {{'__super' cannot be used with a using declaration}}
__super::XXX x; // expected-error {{invalid use of '__super', Errors has no base classes}} expected-error {{expected}}
void foo() {
// expected-note@+4 {{replace parentheses with an initializer to declare a variable}}
// expected-warning@+3 {{empty parentheses interpreted as a function declaration}}
// expected-error@+2 {{C++ requires a type specifier for all declarations}}
// expected-error@+1 {{use of '__super' inside a lambda is unsupported}}
auto lambda = []{ __super::foo(); };
}
};
struct Base1 {
void foo(int) {}
static void static_foo() {}
typedef int XXX;
};
struct Derived : Base1 {
__super::XXX x;
typedef __super::XXX Type;
enum E {
X = sizeof(__super::XXX)
};
void foo() {
__super::foo(1);
if (true) {
__super::foo(1);
}
return __super::foo(1);
}
static void bar() {
__super::static_foo();
}
};
struct Outer {
struct Inner : Base1 {
static const int x = sizeof(__super::XXX);
};
};
struct Base2 {
void foo(char) {}
};
struct MemberFunctionInMultipleBases : Base1, Base2 {
void foo() {
__super::foo('x');
}
};
struct Base3 {
void foo(int) {}
void foo(char) {}
};
struct OverloadedMemberFunction : Base3 {
void foo() {
__super::foo('x');
}
};
struct PointerToMember : Base1 {
template <void (Base1::*MP)(int)>
struct Wrapper {
static void bar() {}
};
void baz();
};
void PointerToMember::baz() {
Wrapper<&__super::foo>::bar();
}
template <typename T>
struct BaseTemplate {
typedef int XXX;
int foo() { return 0; }
};
struct DerivedFromKnownSpecialization : BaseTemplate<int> {
__super::XXX a;
typedef __super::XXX b;
void foo() {
__super::XXX c;
typedef __super::XXX d;
__super::foo();
}
};
template <typename T>
struct DerivedFromDependentBase : BaseTemplate<T> {
typename __super::XXX a;
typedef typename __super::XXX b;
__super::XXX c; // expected-error {{missing 'typename'}}
typedef __super::XXX d; // expected-error {{missing 'typename'}}
void foo() {
typename __super::XXX e;
typedef typename __super::XXX f;
__super::XXX g; // expected-error {{missing 'typename'}}
typedef __super::XXX h; // expected-error {{missing 'typename'}}
int x = __super::foo();
}
};
template <typename T>
struct DerivedFromTemplateParameter : T {
typename __super::XXX a;
typedef typename __super::XXX b;
__super::XXX c; // expected-error {{missing 'typename'}}
typedef __super::XXX d; // expected-error {{missing 'typename'}}
void foo() {
typename __super::XXX e;
typedef typename __super::XXX f;
__super::XXX g; // expected-error {{missing 'typename'}}
typedef __super::XXX h; // expected-error {{missing 'typename'}}
__super::foo(1);
}
};
void instantiate() {
DerivedFromDependentBase<int> d;
d.foo();
DerivedFromTemplateParameter<Base1> t;
t.foo();
}
namespace {
struct B { int a; };
template <class C>
struct A : B {
// Don't crash on dependent_type_var '->' '__super'
void f() { int a = this->__super::a; }
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decl-microsoft-call-conv.cpp
|
// RUN: %clang_cc1 -std=c++14 -triple i686-pc-win32 -fms-extensions -verify %s
// RUN: %clang_cc1 -std=c++14 -triple i686-pc-mingw32 -verify %s
// RUN: %clang_cc1 -std=c++14 -triple i686-pc-mingw32 -fms-extensions -verify %s
typedef void void_fun_t();
typedef void __cdecl cdecl_fun_t();
// Pointers to free functions
void free_func_default(); // expected-note 2 {{previous declaration is here}}
void __cdecl free_func_cdecl(); // expected-note 2 {{previous declaration is here}}
void __stdcall free_func_stdcall(); // expected-note 2 {{previous declaration is here}}
void __fastcall free_func_fastcall(); // expected-note 2 {{previous declaration is here}}
void __vectorcall free_func_vectorcall(); // expected-note 2 {{previous declaration is here}}
void __cdecl free_func_default();
void __stdcall free_func_default(); // expected-error {{function declared 'stdcall' here was previously declared without calling convention}}
void __fastcall free_func_default(); // expected-error {{function declared 'fastcall' here was previously declared without calling convention}}
void free_func_cdecl();
void __stdcall free_func_cdecl(); // expected-error {{function declared 'stdcall' here was previously declared 'cdecl'}}
void __fastcall free_func_cdecl(); // expected-error {{function declared 'fastcall' here was previously declared 'cdecl'}}
void free_func_stdcall();
void __cdecl free_func_stdcall(); // expected-error {{function declared 'cdecl' here was previously declared 'stdcall'}}
void __fastcall free_func_stdcall(); // expected-error {{function declared 'fastcall' here was previously declared 'stdcall'}}
void __cdecl free_func_fastcall(); // expected-error {{function declared 'cdecl' here was previously declared 'fastcall'}}
void __stdcall free_func_fastcall(); // expected-error {{function declared 'stdcall' here was previously declared 'fastcall'}}
void free_func_fastcall();
void __cdecl free_func_vectorcall(); // expected-error {{function declared 'cdecl' here was previously declared 'vectorcall'}}
void __stdcall free_func_vectorcall(); // expected-error {{function declared 'stdcall' here was previously declared 'vectorcall'}}
void free_func_vectorcall();
// Overloaded functions may have different calling conventions
void __fastcall free_func_default(int);
void __cdecl free_func_default(int *);
void __thiscall free_func_cdecl(char *);
void __cdecl free_func_cdecl(double);
typedef void void_fun_t();
typedef void __cdecl cdecl_fun_t();
// Pointers to member functions
struct S {
void member_default1(); // expected-note {{previous declaration is here}}
void member_default2();
void __cdecl member_cdecl1();
void __cdecl member_cdecl2(); // expected-note {{previous declaration is here}}
void __thiscall member_thiscall1();
void __thiscall member_thiscall2(); // expected-note {{previous declaration is here}}
void __vectorcall member_vectorcall1();
void __vectorcall member_vectorcall2(); // expected-note {{previous declaration is here}}
// Typedefs carrying the __cdecl convention are adjusted to __thiscall.
void_fun_t member_typedef_default; // expected-note {{previous declaration is here}}
cdecl_fun_t member_typedef_cdecl1; // expected-note {{previous declaration is here}}
cdecl_fun_t __cdecl member_typedef_cdecl2;
void_fun_t __stdcall member_typedef_stdcall;
// Static member functions can't be __thiscall
static void static_member_default1();
static void static_member_default2();
static void static_member_default3(); // expected-note {{previous declaration is here}}
static void __cdecl static_member_cdecl1();
static void __cdecl static_member_cdecl2(); // expected-note {{previous declaration is here}}
static void __stdcall static_member_stdcall1();
static void __stdcall static_member_stdcall2();
// Variadic functions can't be other than default or __cdecl
void member_variadic_default(int x, ...);
void __cdecl member_variadic_cdecl(int x, ...);
static void static_member_variadic_default(int x, ...);
static void __cdecl static_member_variadic_cdecl(int x, ...);
};
void __cdecl S::member_default1() {} // expected-error {{function declared 'cdecl' here was previously declared without calling convention}}
void __thiscall S::member_default2() {}
void __cdecl S::member_typedef_default() {} // expected-error {{function declared 'cdecl' here was previously declared without calling convention}}
void __cdecl S::member_typedef_cdecl1() {} // expected-error {{function declared 'cdecl' here was previously declared without calling convention}}
void __cdecl S::member_typedef_cdecl2() {}
void __stdcall S::member_typedef_stdcall() {}
void S::member_cdecl1() {}
void __thiscall S::member_cdecl2() {} // expected-error {{function declared 'thiscall' here was previously declared 'cdecl'}}
void S::member_thiscall1() {}
void __cdecl S::member_thiscall2() {} // expected-error {{function declared 'cdecl' here was previously declared 'thiscall'}}
void S::member_vectorcall1() {}
void __cdecl S::member_vectorcall2() {} // expected-error {{function declared 'cdecl' here was previously declared 'vectorcall'}}
void S::static_member_default1() {}
void __cdecl S::static_member_default2() {}
void __stdcall S::static_member_default3() {} // expected-error {{function declared 'stdcall' here was previously declared without calling convention}}
void S::static_member_cdecl1() {}
void __stdcall S::static_member_cdecl2() {} // expected-error {{function declared 'stdcall' here was previously declared 'cdecl'}}
void __cdecl S::member_variadic_default(int x, ...) { (void)x; }
void S::member_variadic_cdecl(int x, ...) { (void)x; }
void __cdecl S::static_member_variadic_default(int x, ...) { (void)x; }
void S::static_member_variadic_cdecl(int x, ...) { (void)x; }
// Declare a template using a calling convention.
template <class CharT> inline int __cdecl mystrlen(const CharT *str) {
int i;
for (i = 0; str[i]; i++) { }
return i;
}
extern int sse_strlen(const char *str);
template <> inline int __cdecl mystrlen(const char *str) {
return sse_strlen(str);
}
void use_tmpl(const char *str, const int *ints) {
mystrlen(str);
mystrlen(ints);
}
struct MixedCCStaticOverload {
static void overloaded(int a);
static void __stdcall overloaded(short a);
};
void MixedCCStaticOverload::overloaded(int a) {}
void MixedCCStaticOverload::overloaded(short a) {}
// Friend function decls are cdecl by default, not thiscall. Friend method
// decls should always be redeclarations, because the class cannot be
// incomplete.
struct FriendClass {
void friend_method() {}
};
void __stdcall friend_stdcall1() {}
class MakeFriendDecls {
int x;
friend void FriendClass::friend_method();
friend void friend_default();
friend void friend_stdcall1();
friend void __stdcall friend_stdcall2();
friend void friend_stdcall3(); // expected-note {{previous declaration is here}}
};
void friend_default() {}
void __stdcall friend_stdcall3() {} // expected-error {{function declared 'stdcall' here was previously declared without calling convention}}
void __stdcall friend_stdcall2() {}
// Test functions with multiple attributes.
void __attribute__((noreturn)) __stdcall __attribute__((regparm(1))) multi_attribute(int x);
void multi_attribute(int x) { __builtin_unreachable(); }
// expected-error@+3 {{vectorcall and cdecl attributes are not compatible}}
// expected-error@+2 {{stdcall and cdecl attributes are not compatible}}
// expected-error@+1 {{fastcall and cdecl attributes are not compatible}}
void __cdecl __cdecl __stdcall __cdecl __fastcall __vectorcall multi_cc(int x);
template <typename T> void __stdcall StdcallTemplate(T) {}
template <> void StdcallTemplate<int>(int) {}
template <> void __stdcall StdcallTemplate<short>(short) {}
// FIXME: Note the template, not the implicit instantiation.
// expected-error@+2 {{function declared 'cdecl' here was previously declared 'stdcall}}
// expected-note@+1 {{previous declaration is here}}
template <> void __cdecl StdcallTemplate<long>(long) {}
struct ExactlyInt {
template <typename T> static int cast_to_int(T) {
return T::this_is_not_an_int();
}
};
template <> inline int ExactlyInt::cast_to_int<int>(int x) { return x; }
namespace test2 {
class foo {
template <typename T> void bar(T v);
};
extern template void foo::bar(const void *);
}
namespace test3 {
struct foo {
typedef void bar();
};
bool zed(foo::bar *);
void bah() {}
void baz() { zed(bah); }
}
namespace test4 {
class foo {
template <typename T> static void bar(T v);
};
extern template void foo::bar(const void *);
}
namespace test5 {
template <class T>
class valarray {
void bar();
};
extern template void valarray<int>::bar();
}
namespace test6 {
struct foo {
int bar();
};
typedef int bar_t();
void zed(bar_t foo::*) {
}
void baz() {
zed(&foo::bar);
}
}
namespace test7 {
template <typename T>
struct S {
void f(T t) {
t = 42;
}
};
template<> void S<void*>::f(void*);
void g(S<void*> s, void* p) {
s.f(p);
}
}
namespace test8 {
template <typename T>
struct S {
void f(T t) { // expected-note {{previous declaration is here}}
t = 42; // expected-error {{assigning to 'void *' from incompatible type 'int'}}
}
};
template<> void __cdecl S<void*>::f(void*); // expected-error {{function declared 'cdecl' here was previously declared without calling convention}}
void g(S<void*> s, void* p) {
s.f(p); // expected-note {{in instantiation of member function 'test8::S<void *>::f' requested here}}
}
}
namespace test9 {
// Used to fail when we forgot to make lambda call operators use __thiscall.
template <typename F>
decltype(auto) deduce(F f) {
return &decltype(f)::operator();
}
template <typename C, typename R, typename A>
decltype(auto) signaturehelper(R (C::*f)(A) const) {
return R();
}
void f() {
auto l = [](int x) { return x * 2; };
decltype(signaturehelper(deduce(l))) p;
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/function-redecl.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
int foo(int);
namespace N {
void f1() {
void foo(int); // okay
void bar(int); // expected-note 2{{previous declaration is here}}
}
void foo(int); // expected-note 2{{previous declaration is here}}
void f2() {
int foo(int); // expected-error {{functions that differ only in their return type cannot be overloaded}}
int bar(int); // expected-error {{functions that differ only in their return type cannot be overloaded}}
int baz(int); // expected-note {{previous declaration is here}}
{
int foo;
int bar;
int baz;
{
float foo(int); // expected-error {{functions that differ only in their return type cannot be overloaded}}
float bar(int); // expected-error {{functions that differ only in their return type cannot be overloaded}}
float baz(int); // expected-error {{functions that differ only in their return type cannot be overloaded}}
}
}
}
}
class A {
void typocorrection(); // expected-note {{'typocorrection' declared here}}
};
void A::Notypocorrection() { // expected-error {{out-of-line definition of 'Notypocorrection' does not match any declaration in 'A'; did you mean 'typocorrection'}}
}
namespace test0 {
void dummy() {
void Bar(); // expected-note {{'Bar' declared here}}
class A {
friend void bar(); // expected-error {{no matching function 'bar' found in local scope; did you mean 'Bar'}}
};
}
}
class B {
void typocorrection(const int); // expected-note {{'typocorrection' declared here}}
void typocorrection(double);
};
void B::Notypocorrection(int) { // expected-error {{out-of-line definition of 'Notypocorrection' does not match any declaration in 'B'; did you mean 'typocorrection'}}
}
struct X { int f(); };
struct Y : public X {};
int Y::f() { return 3; } // expected-error {{out-of-line definition of 'f' does not match any declaration in 'Y'}}
namespace test1 {
struct Foo {
class Inner { };
};
}
class Bar {
void f(test1::Foo::Inner foo) const; // expected-note {{member declaration does not match because it is const qualified}}
};
using test1::Foo;
void Bar::f(Foo::Inner foo) { // expected-error {{out-of-line definition of 'f' does not match any declaration in 'Bar'}}
(void)foo;
}
class Crash {
public:
void GetCart(int count) const;
};
// This out-of-line definition was fine...
void Crash::cart(int count) const {} // expected-error {{out-of-line definition of 'cart' does not match any declaration in 'Crash'}}
// ...while this one crashed clang
void Crash::chart(int count) const {} // expected-error {{out-of-line definition of 'chart' does not match any declaration in 'Crash'}}
class TestConst {
public:
int getit() const; // expected-note {{member declaration does not match because it is const qualified}}
void setit(int); // expected-note {{member declaration does not match because it is not const qualified}}
};
int TestConst::getit() { // expected-error {{out-of-line definition of 'getit' does not match any declaration in 'TestConst'}}
return 1;
}
void TestConst::setit(int) const { // expected-error {{out-of-line definition of 'setit' does not match any declaration in 'TestConst'}}
}
struct J { int typo() const; };
int J::typo_() { return 3; } // expected-error {{out-of-line definition of 'typo_' does not match any declaration in 'J'}}
// Ensure we correct the redecl of Foo::isGood to Bar::Foo::isGood and not
// Foo::IsGood even though Foo::IsGood is technically a closer match since it
// already has a body. Also make sure Foo::beEvil is corrected to Foo::BeEvil
// since it is a closer match than Bar::Foo::beEvil and neither have a body.
namespace redecl_typo {
namespace Foo {
bool IsGood() { return false; }
void BeEvil(); // expected-note {{'BeEvil' declared here}}
}
namespace Bar {
namespace Foo {
bool isGood(); // expected-note {{'Bar::Foo::isGood' declared here}}
void beEvil();
}
}
bool Foo::isGood() { // expected-error {{out-of-line definition of 'isGood' does not match any declaration in namespace 'redecl_typo::Foo'; did you mean 'Bar::Foo::isGood'?}}
return true;
}
void Foo::beEvil() {} // expected-error {{out-of-line definition of 'beEvil' does not match any declaration in namespace 'redecl_typo::Foo'; did you mean 'BeEvil'?}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-thread-safety-analysis.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wthread-safety -Wthread-safety-beta -Wno-thread-safety-negative -fcxx-exceptions %s
// FIXME: should also run %clang_cc1 -fsyntax-only -verify -Wthread-safety -std=c++11 -Wc++98-compat %s
// FIXME: should also run %clang_cc1 -fsyntax-only -verify -Wthread-safety %s
#define LOCKABLE __attribute__((lockable))
#define SCOPED_LOCKABLE __attribute__((scoped_lockable))
#define GUARDED_BY(x) __attribute__((guarded_by(x)))
#define GUARDED_VAR __attribute__((guarded_var))
#define PT_GUARDED_BY(x) __attribute__((pt_guarded_by(x)))
#define PT_GUARDED_VAR __attribute__((pt_guarded_var))
#define ACQUIRED_AFTER(...) __attribute__((acquired_after(__VA_ARGS__)))
#define ACQUIRED_BEFORE(...) __attribute__((acquired_before(__VA_ARGS__)))
#define EXCLUSIVE_LOCK_FUNCTION(...) __attribute__((exclusive_lock_function(__VA_ARGS__)))
#define SHARED_LOCK_FUNCTION(...) __attribute__((shared_lock_function(__VA_ARGS__)))
#define ASSERT_EXCLUSIVE_LOCK(...) __attribute__((assert_exclusive_lock(__VA_ARGS__)))
#define ASSERT_SHARED_LOCK(...) __attribute__((assert_shared_lock(__VA_ARGS__)))
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) __attribute__((exclusive_trylock_function(__VA_ARGS__)))
#define SHARED_TRYLOCK_FUNCTION(...) __attribute__((shared_trylock_function(__VA_ARGS__)))
#define UNLOCK_FUNCTION(...) __attribute__((unlock_function(__VA_ARGS__)))
#define EXCLUSIVE_UNLOCK_FUNCTION(...) __attribute__((release_capability(__VA_ARGS__)))
#define SHARED_UNLOCK_FUNCTION(...) __attribute__((release_shared_capability(__VA_ARGS__)))
#define LOCK_RETURNED(x) __attribute__((lock_returned(x)))
#define LOCKS_EXCLUDED(...) __attribute__((locks_excluded(__VA_ARGS__)))
#define EXCLUSIVE_LOCKS_REQUIRED(...) __attribute__((exclusive_locks_required(__VA_ARGS__)))
#define SHARED_LOCKS_REQUIRED(...) __attribute__((shared_locks_required(__VA_ARGS__)))
#define NO_THREAD_SAFETY_ANALYSIS __attribute__((no_thread_safety_analysis))
class LOCKABLE Mutex {
public:
void Lock() __attribute__((exclusive_lock_function));
void ReaderLock() __attribute__((shared_lock_function));
void Unlock() __attribute__((unlock_function));
bool TryLock() __attribute__((exclusive_trylock_function(true)));
bool ReaderTryLock() __attribute__((shared_trylock_function(true)));
void LockWhen(const int &cond) __attribute__((exclusive_lock_function));
// for negative capabilities
const Mutex& operator!() const { return *this; }
void AssertHeld() ASSERT_EXCLUSIVE_LOCK();
void AssertReaderHeld() ASSERT_SHARED_LOCK();
};
class SCOPED_LOCKABLE MutexLock {
public:
MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu);
MutexLock(Mutex *mu, bool adopt) EXCLUSIVE_LOCKS_REQUIRED(mu);
~MutexLock() UNLOCK_FUNCTION();
};
class SCOPED_LOCKABLE ReaderMutexLock {
public:
ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu);
ReaderMutexLock(Mutex *mu, bool adopt) SHARED_LOCKS_REQUIRED(mu);
~ReaderMutexLock() UNLOCK_FUNCTION();
};
class SCOPED_LOCKABLE ReleasableMutexLock {
public:
ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu);
~ReleasableMutexLock() UNLOCK_FUNCTION();
void Release() UNLOCK_FUNCTION();
};
class __attribute__((scoped_lockable)) DoubleMutexLock {
public:
DoubleMutexLock(Mutex *mu1, Mutex *mu2)
__attribute__((exclusive_lock_function(mu1, mu2)));
~DoubleMutexLock() __attribute__((unlock_function));
};
// The universal lock, written "*", allows checking to be selectively turned
// off for a particular piece of code.
void beginNoWarnOnReads() SHARED_LOCK_FUNCTION("*");
void endNoWarnOnReads() UNLOCK_FUNCTION("*");
void beginNoWarnOnWrites() EXCLUSIVE_LOCK_FUNCTION("*");
void endNoWarnOnWrites() UNLOCK_FUNCTION("*");
// For testing handling of smart pointers.
template<class T>
class SmartPtr {
public:
SmartPtr(T* p) : ptr_(p) { }
SmartPtr(const SmartPtr<T>& p) : ptr_(p.ptr_) { }
~SmartPtr();
T* get() const { return ptr_; }
T* operator->() const { return ptr_; }
T& operator*() const { return *ptr_; }
T& operator[](int i) const { return ptr_[i]; }
private:
T* ptr_;
};
// For testing destructor calls and cleanup.
class MyString {
public:
MyString(const char* s);
~MyString();
};
// For testing operator overloading
template <class K, class T>
class MyMap {
public:
T& operator[](const K& k);
};
// For testing handling of containers.
template <class T>
class MyContainer {
public:
MyContainer();
typedef T* iterator;
typedef const T* const_iterator;
T* begin();
T* end();
const T* cbegin();
const T* cend();
T& operator[](int i);
const T& operator[](int i) const;
private:
T* ptr_;
};
Mutex sls_mu;
Mutex sls_mu2 __attribute__((acquired_after(sls_mu)));
int sls_guard_var __attribute__((guarded_var)) = 0;
int sls_guardby_var __attribute__((guarded_by(sls_mu))) = 0;
bool getBool();
class MutexWrapper {
public:
Mutex mu;
int x __attribute__((guarded_by(mu)));
void MyLock() __attribute__((exclusive_lock_function(mu)));
};
MutexWrapper sls_mw;
void sls_fun_0() {
sls_mw.mu.Lock();
sls_mw.x = 5;
sls_mw.mu.Unlock();
}
void sls_fun_2() {
sls_mu.Lock();
int x = sls_guard_var;
sls_mu.Unlock();
}
void sls_fun_3() {
sls_mu.Lock();
sls_guard_var = 2;
sls_mu.Unlock();
}
void sls_fun_4() {
sls_mu2.Lock();
sls_guard_var = 2;
sls_mu2.Unlock();
}
void sls_fun_5() {
sls_mu.Lock();
int x = sls_guardby_var;
sls_mu.Unlock();
}
void sls_fun_6() {
sls_mu.Lock();
sls_guardby_var = 2;
sls_mu.Unlock();
}
void sls_fun_7() {
sls_mu.Lock();
sls_mu2.Lock();
sls_mu2.Unlock();
sls_mu.Unlock();
}
void sls_fun_8() {
sls_mu.Lock();
if (getBool())
sls_mu.Unlock();
else
sls_mu.Unlock();
}
void sls_fun_9() {
if (getBool())
sls_mu.Lock();
else
sls_mu.Lock();
sls_mu.Unlock();
}
void sls_fun_good_6() {
if (getBool()) {
sls_mu.Lock();
} else {
if (getBool()) {
getBool(); // EMPTY
} else {
getBool(); // EMPTY
}
sls_mu.Lock();
}
sls_mu.Unlock();
}
void sls_fun_good_7() {
sls_mu.Lock();
while (getBool()) {
sls_mu.Unlock();
if (getBool()) {
if (getBool()) {
sls_mu.Lock();
continue;
}
}
sls_mu.Lock();
}
sls_mu.Unlock();
}
void sls_fun_good_8() {
sls_mw.MyLock();
sls_mw.mu.Unlock();
}
void sls_fun_bad_1() {
sls_mu.Unlock(); // \
// expected-warning{{releasing mutex 'sls_mu' that was not held}}
}
void sls_fun_bad_2() {
sls_mu.Lock();
sls_mu.Lock(); // \
// expected-warning{{acquiring mutex 'sls_mu' that is already held}}
sls_mu.Unlock();
}
void sls_fun_bad_3() {
sls_mu.Lock(); // expected-note {{mutex acquired here}}
} // expected-warning{{mutex 'sls_mu' is still held at the end of function}}
void sls_fun_bad_4() {
if (getBool())
sls_mu.Lock(); // expected-note{{mutex acquired here}}
else
sls_mu2.Lock(); // expected-note{{mutex acquired here}}
} // expected-warning{{mutex 'sls_mu' is not held on every path through here}} \
// expected-warning{{mutex 'sls_mu2' is not held on every path through here}}
void sls_fun_bad_5() {
sls_mu.Lock(); // expected-note {{mutex acquired here}}
if (getBool())
sls_mu.Unlock();
} // expected-warning{{mutex 'sls_mu' is not held on every path through here}}
void sls_fun_bad_6() {
if (getBool()) {
sls_mu.Lock(); // expected-note {{mutex acquired here}}
} else {
if (getBool()) {
getBool(); // EMPTY
} else {
getBool(); // EMPTY
}
}
sls_mu.Unlock(); // \
expected-warning{{mutex 'sls_mu' is not held on every path through here}}\
expected-warning{{releasing mutex 'sls_mu' that was not held}}
}
void sls_fun_bad_7() {
sls_mu.Lock();
while (getBool()) {
sls_mu.Unlock();
if (getBool()) {
if (getBool()) {
continue; // \
expected-warning{{expecting mutex 'sls_mu' to be held at start of each loop}}
}
}
sls_mu.Lock(); // expected-note {{mutex acquired here}}
}
sls_mu.Unlock();
}
void sls_fun_bad_8() {
sls_mu.Lock(); // expected-note{{mutex acquired here}}
do {
sls_mu.Unlock(); // expected-warning{{expecting mutex 'sls_mu' to be held at start of each loop}}
} while (getBool());
}
void sls_fun_bad_9() {
do {
sls_mu.Lock(); // \
// expected-warning{{expecting mutex 'sls_mu' to be held at start of each loop}} \
// expected-note{{mutex acquired here}}
} while (getBool());
sls_mu.Unlock();
}
void sls_fun_bad_10() {
sls_mu.Lock(); // expected-note 2{{mutex acquired here}}
while(getBool()) { // expected-warning{{expecting mutex 'sls_mu' to be held at start of each loop}}
sls_mu.Unlock();
}
} // expected-warning{{mutex 'sls_mu' is still held at the end of function}}
void sls_fun_bad_11() {
while (getBool()) { // \
expected-warning{{expecting mutex 'sls_mu' to be held at start of each loop}}
sls_mu.Lock(); // expected-note {{mutex acquired here}}
}
sls_mu.Unlock(); // \
// expected-warning{{releasing mutex 'sls_mu' that was not held}}
}
void sls_fun_bad_12() {
sls_mu.Lock(); // expected-note {{mutex acquired here}}
while (getBool()) {
sls_mu.Unlock();
if (getBool()) {
if (getBool()) {
break; // expected-warning{{mutex 'sls_mu' is not held on every path through here}}
}
}
sls_mu.Lock();
}
sls_mu.Unlock();
}
//-----------------------------------------//
// Handling lock expressions in attribute args
// -------------------------------------------//
Mutex aa_mu;
class GlobalLocker {
public:
void globalLock() __attribute__((exclusive_lock_function(aa_mu)));
void globalUnlock() __attribute__((unlock_function(aa_mu)));
};
GlobalLocker glock;
void aa_fun_1() {
glock.globalLock();
glock.globalUnlock();
}
void aa_fun_bad_1() {
glock.globalUnlock(); // \
// expected-warning{{releasing mutex 'aa_mu' that was not held}}
}
void aa_fun_bad_2() {
glock.globalLock();
glock.globalLock(); // \
// expected-warning{{acquiring mutex 'aa_mu' that is already held}}
glock.globalUnlock();
}
void aa_fun_bad_3() {
glock.globalLock(); // expected-note{{mutex acquired here}}
} // expected-warning{{mutex 'aa_mu' is still held at the end of function}}
//--------------------------------------------------//
// Regression tests for unusual method names
//--------------------------------------------------//
Mutex wmu;
// Test diagnostics for other method names.
class WeirdMethods {
// FIXME: can't currently check inside constructors and destructors.
WeirdMethods() {
wmu.Lock(); // EXPECTED-NOTE {{mutex acquired here}}
} // EXPECTED-WARNING {{mutex 'wmu' is still held at the end of function}}
~WeirdMethods() {
wmu.Lock(); // EXPECTED-NOTE {{mutex acquired here}}
} // EXPECTED-WARNING {{mutex 'wmu' is still held at the end of function}}
void operator++() {
wmu.Lock(); // expected-note {{mutex acquired here}}
} // expected-warning {{mutex 'wmu' is still held at the end of function}}
operator int*() {
wmu.Lock(); // expected-note {{mutex acquired here}}
return 0;
} // expected-warning {{mutex 'wmu' is still held at the end of function}}
};
//-----------------------------------------------//
// Errors for guarded by or guarded var variables
// ----------------------------------------------//
int *pgb_gvar __attribute__((pt_guarded_var));
int *pgb_var __attribute__((pt_guarded_by(sls_mu)));
class PGBFoo {
public:
int x;
int *pgb_field __attribute__((guarded_by(sls_mu2)))
__attribute__((pt_guarded_by(sls_mu)));
void testFoo() {
pgb_field = &x; // \
// expected-warning {{writing variable 'pgb_field' requires holding mutex 'sls_mu2' exclusively}}
*pgb_field = x; // expected-warning {{reading variable 'pgb_field' requires holding mutex 'sls_mu2'}} \
// expected-warning {{writing the value pointed to by 'pgb_field' requires holding mutex 'sls_mu' exclusively}}
x = *pgb_field; // expected-warning {{reading variable 'pgb_field' requires holding mutex 'sls_mu2'}} \
// expected-warning {{reading the value pointed to by 'pgb_field' requires holding mutex 'sls_mu'}}
(*pgb_field)++; // expected-warning {{reading variable 'pgb_field' requires holding mutex 'sls_mu2'}} \
// expected-warning {{writing the value pointed to by 'pgb_field' requires holding mutex 'sls_mu' exclusively}}
}
};
class GBFoo {
public:
int gb_field __attribute__((guarded_by(sls_mu)));
void testFoo() {
gb_field = 0; // \
// expected-warning {{writing variable 'gb_field' requires holding mutex 'sls_mu' exclusively}}
}
void testNoAnal() __attribute__((no_thread_safety_analysis)) {
gb_field = 0;
}
};
GBFoo GlobalGBFoo __attribute__((guarded_by(sls_mu)));
void gb_fun_0() {
sls_mu.Lock();
int x = *pgb_var;
sls_mu.Unlock();
}
void gb_fun_1() {
sls_mu.Lock();
*pgb_var = 2;
sls_mu.Unlock();
}
void gb_fun_2() {
int x;
pgb_var = &x;
}
void gb_fun_3() {
int *x = pgb_var;
}
void gb_bad_0() {
sls_guard_var = 1; // \
// expected-warning{{writing variable 'sls_guard_var' requires holding any mutex exclusively}}
}
void gb_bad_1() {
int x = sls_guard_var; // \
// expected-warning{{reading variable 'sls_guard_var' requires holding any mutex}}
}
void gb_bad_2() {
sls_guardby_var = 1; // \
// expected-warning {{writing variable 'sls_guardby_var' requires holding mutex 'sls_mu' exclusively}}
}
void gb_bad_3() {
int x = sls_guardby_var; // \
// expected-warning {{reading variable 'sls_guardby_var' requires holding mutex 'sls_mu'}}
}
void gb_bad_4() {
*pgb_gvar = 1; // \
// expected-warning {{writing the value pointed to by 'pgb_gvar' requires holding any mutex exclusively}}
}
void gb_bad_5() {
int x = *pgb_gvar; // \
// expected-warning {{reading the value pointed to by 'pgb_gvar' requires holding any mutex}}
}
void gb_bad_6() {
*pgb_var = 1; // \
// expected-warning {{writing the value pointed to by 'pgb_var' requires holding mutex 'sls_mu' exclusively}}
}
void gb_bad_7() {
int x = *pgb_var; // \
// expected-warning {{reading the value pointed to by 'pgb_var' requires holding mutex 'sls_mu'}}
}
void gb_bad_8() {
GBFoo G;
G.gb_field = 0; // \
// expected-warning {{writing variable 'gb_field' requires holding mutex 'sls_mu'}}
}
void gb_bad_9() {
sls_guard_var++; // \
// expected-warning{{writing variable 'sls_guard_var' requires holding any mutex exclusively}}
sls_guard_var--; // \
// expected-warning{{writing variable 'sls_guard_var' requires holding any mutex exclusively}}
++sls_guard_var; // \
// expected-warning{{writing variable 'sls_guard_var' requires holding any mutex exclusively}}
--sls_guard_var;// \
// expected-warning{{writing variable 'sls_guard_var' requires holding any mutex exclusively}}
}
//-----------------------------------------------//
// Warnings on variables with late parsed attributes
// ----------------------------------------------//
class LateFoo {
public:
int a __attribute__((guarded_by(mu)));
int b;
void foo() __attribute__((exclusive_locks_required(mu))) { }
void test() {
a = 0; // \
// expected-warning{{writing variable 'a' requires holding mutex 'mu' exclusively}}
b = a; // \
// expected-warning {{reading variable 'a' requires holding mutex 'mu'}}
c = 0; // \
// expected-warning {{writing variable 'c' requires holding mutex 'mu' exclusively}}
}
int c __attribute__((guarded_by(mu)));
Mutex mu;
};
class LateBar {
public:
int a_ __attribute__((guarded_by(mu1_)));
int b_;
int *q __attribute__((pt_guarded_by(mu)));
Mutex mu1_;
Mutex mu;
LateFoo Foo;
LateFoo Foo2;
LateFoo *FooPointer;
};
LateBar b1, *b3;
void late_0() {
LateFoo FooA;
LateFoo FooB;
FooA.mu.Lock();
FooA.a = 5;
FooA.mu.Unlock();
}
void late_1() {
LateBar BarA;
BarA.FooPointer->mu.Lock();
BarA.FooPointer->a = 2;
BarA.FooPointer->mu.Unlock();
}
void late_bad_0() {
LateFoo fooA;
LateFoo fooB;
fooA.mu.Lock();
fooB.a = 5; // \
// expected-warning{{writing variable 'a' requires holding mutex 'fooB.mu' exclusively}} \
// expected-note{{found near match 'fooA.mu'}}
fooA.mu.Unlock();
}
void late_bad_1() {
Mutex mu;
mu.Lock();
b1.mu1_.Lock();
int res = b1.a_ + b3->b_;
b3->b_ = *b1.q; // \
// expected-warning{{reading the value pointed to by 'q' requires holding mutex 'b1.mu'}}
b1.mu1_.Unlock();
b1.b_ = res;
mu.Unlock();
}
void late_bad_2() {
LateBar BarA;
BarA.FooPointer->mu.Lock();
BarA.Foo.a = 2; // \
// expected-warning{{writing variable 'a' requires holding mutex 'BarA.Foo.mu' exclusively}} \
// expected-note{{found near match 'BarA.FooPointer->mu'}}
BarA.FooPointer->mu.Unlock();
}
void late_bad_3() {
LateBar BarA;
BarA.Foo.mu.Lock();
BarA.FooPointer->a = 2; // \
// expected-warning{{writing variable 'a' requires holding mutex 'BarA.FooPointer->mu' exclusively}} \
// expected-note{{found near match 'BarA.Foo.mu'}}
BarA.Foo.mu.Unlock();
}
void late_bad_4() {
LateBar BarA;
BarA.Foo.mu.Lock();
BarA.Foo2.a = 2; // \
// expected-warning{{writing variable 'a' requires holding mutex 'BarA.Foo2.mu' exclusively}} \
// expected-note{{found near match 'BarA.Foo.mu'}}
BarA.Foo.mu.Unlock();
}
//-----------------------------------------------//
// Extra warnings for shared vs. exclusive locks
// ----------------------------------------------//
void shared_fun_0() {
sls_mu.Lock();
do {
sls_mu.Unlock();
sls_mu.Lock();
} while (getBool());
sls_mu.Unlock();
}
void shared_fun_1() {
sls_mu.ReaderLock(); // \
// expected-warning {{mutex 'sls_mu' is acquired exclusively and shared in the same scope}}
do {
sls_mu.Unlock();
sls_mu.Lock(); // \
// expected-note {{the other acquisition of mutex 'sls_mu' is here}}
} while (getBool());
sls_mu.Unlock();
}
void shared_fun_3() {
if (getBool())
sls_mu.Lock();
else
sls_mu.Lock();
*pgb_var = 1;
sls_mu.Unlock();
}
void shared_fun_4() {
if (getBool())
sls_mu.ReaderLock();
else
sls_mu.ReaderLock();
int x = sls_guardby_var;
sls_mu.Unlock();
}
void shared_fun_8() {
if (getBool())
sls_mu.Lock(); // \
// expected-warning {{mutex 'sls_mu' is acquired exclusively and shared in the same scope}}
else
sls_mu.ReaderLock(); // \
// expected-note {{the other acquisition of mutex 'sls_mu' is here}}
sls_mu.Unlock();
}
void shared_bad_0() {
sls_mu.Lock(); // \
// expected-warning {{mutex 'sls_mu' is acquired exclusively and shared in the same scope}}
do {
sls_mu.Unlock();
sls_mu.ReaderLock(); // \
// expected-note {{the other acquisition of mutex 'sls_mu' is here}}
} while (getBool());
sls_mu.Unlock();
}
void shared_bad_1() {
if (getBool())
sls_mu.Lock(); // \
// expected-warning {{mutex 'sls_mu' is acquired exclusively and shared in the same scope}}
else
sls_mu.ReaderLock(); // \
// expected-note {{the other acquisition of mutex 'sls_mu' is here}}
*pgb_var = 1;
sls_mu.Unlock();
}
void shared_bad_2() {
if (getBool())
sls_mu.ReaderLock(); // \
// expected-warning {{mutex 'sls_mu' is acquired exclusively and shared in the same scope}}
else
sls_mu.Lock(); // \
// expected-note {{the other acquisition of mutex 'sls_mu' is here}}
*pgb_var = 1;
sls_mu.Unlock();
}
// FIXME: Add support for functions (not only methods)
class LRBar {
public:
void aa_elr_fun() __attribute__((exclusive_locks_required(aa_mu)));
void aa_elr_fun_s() __attribute__((shared_locks_required(aa_mu)));
void le_fun() __attribute__((locks_excluded(sls_mu)));
};
class LRFoo {
public:
void test() __attribute__((exclusive_locks_required(sls_mu)));
void testShared() __attribute__((shared_locks_required(sls_mu2)));
};
void elr_fun() __attribute__((exclusive_locks_required(sls_mu)));
void elr_fun() {}
LRFoo MyLRFoo;
LRBar Bar;
void es_fun_0() {
aa_mu.Lock();
Bar.aa_elr_fun();
aa_mu.Unlock();
}
void es_fun_1() {
aa_mu.Lock();
Bar.aa_elr_fun_s();
aa_mu.Unlock();
}
void es_fun_2() {
aa_mu.ReaderLock();
Bar.aa_elr_fun_s();
aa_mu.Unlock();
}
void es_fun_3() {
sls_mu.Lock();
MyLRFoo.test();
sls_mu.Unlock();
}
void es_fun_4() {
sls_mu2.Lock();
MyLRFoo.testShared();
sls_mu2.Unlock();
}
void es_fun_5() {
sls_mu2.ReaderLock();
MyLRFoo.testShared();
sls_mu2.Unlock();
}
void es_fun_6() {
Bar.le_fun();
}
void es_fun_7() {
sls_mu.Lock();
elr_fun();
sls_mu.Unlock();
}
void es_fun_8() __attribute__((no_thread_safety_analysis));
void es_fun_8() {
Bar.aa_elr_fun_s();
}
void es_fun_9() __attribute__((shared_locks_required(aa_mu)));
void es_fun_9() {
Bar.aa_elr_fun_s();
}
void es_fun_10() __attribute__((exclusive_locks_required(aa_mu)));
void es_fun_10() {
Bar.aa_elr_fun_s();
}
void es_bad_0() {
Bar.aa_elr_fun(); // \
// expected-warning {{calling function 'aa_elr_fun' requires holding mutex 'aa_mu' exclusively}}
}
void es_bad_1() {
aa_mu.ReaderLock();
Bar.aa_elr_fun(); // \
// expected-warning {{calling function 'aa_elr_fun' requires holding mutex 'aa_mu' exclusively}}
aa_mu.Unlock();
}
void es_bad_2() {
Bar.aa_elr_fun_s(); // \
// expected-warning {{calling function 'aa_elr_fun_s' requires holding mutex 'aa_mu'}}
}
void es_bad_3() {
MyLRFoo.test(); // \
// expected-warning {{calling function 'test' requires holding mutex 'sls_mu' exclusively}}
}
void es_bad_4() {
MyLRFoo.testShared(); // \
// expected-warning {{calling function 'testShared' requires holding mutex 'sls_mu2'}}
}
void es_bad_5() {
sls_mu.ReaderLock();
MyLRFoo.test(); // \
// expected-warning {{calling function 'test' requires holding mutex 'sls_mu' exclusively}}
sls_mu.Unlock();
}
void es_bad_6() {
sls_mu.Lock();
Bar.le_fun(); // \
// expected-warning {{cannot call function 'le_fun' while mutex 'sls_mu' is held}}
sls_mu.Unlock();
}
void es_bad_7() {
sls_mu.ReaderLock();
Bar.le_fun(); // \
// expected-warning {{cannot call function 'le_fun' while mutex 'sls_mu' is held}}
sls_mu.Unlock();
}
//-----------------------------------------------//
// Unparseable lock expressions
// ----------------------------------------------//
// FIXME -- derive new tests for unhandled expressions
//----------------------------------------------------------------------------//
// The following test cases are ported from the gcc thread safety implementation
// They are each wrapped inside a namespace with the test number of the gcc test
//
// FIXME: add all the gcc tests, once this analysis passes them.
//----------------------------------------------------------------------------//
//-----------------------------------------//
// Good testcases (no errors)
//-----------------------------------------//
namespace thread_annot_lock_20 {
class Bar {
public:
static int func1() EXCLUSIVE_LOCKS_REQUIRED(mu1_);
static int b_ GUARDED_BY(mu1_);
static Mutex mu1_;
static int a_ GUARDED_BY(mu1_);
};
Bar b1;
int Bar::func1()
{
int res = 5;
if (a_ == 4)
res = b_;
return res;
}
} // end namespace thread_annot_lock_20
namespace thread_annot_lock_22 {
// Test various usage of GUARDED_BY and PT_GUARDED_BY annotations, especially
// uses in class definitions.
Mutex mu;
class Bar {
public:
int a_ GUARDED_BY(mu1_);
int b_;
int *q PT_GUARDED_BY(mu);
Mutex mu1_ ACQUIRED_AFTER(mu);
};
Bar b1, *b3;
int *p GUARDED_BY(mu) PT_GUARDED_BY(mu);
int res GUARDED_BY(mu) = 5;
int func(int i)
{
int x;
mu.Lock();
b1.mu1_.Lock();
res = b1.a_ + b3->b_;
*p = i;
b1.a_ = res + b3->b_;
b3->b_ = *b1.q;
b1.mu1_.Unlock();
b1.b_ = res;
x = res;
mu.Unlock();
return x;
}
} // end namespace thread_annot_lock_22
namespace thread_annot_lock_27_modified {
// test lock annotations applied to function definitions
// Modified: applied annotations only to function declarations
Mutex mu1;
Mutex mu2 ACQUIRED_AFTER(mu1);
class Foo {
public:
int method1(int i) SHARED_LOCKS_REQUIRED(mu2) EXCLUSIVE_LOCKS_REQUIRED(mu1);
};
int Foo::method1(int i) {
return i;
}
int foo(int i) EXCLUSIVE_LOCKS_REQUIRED(mu2) SHARED_LOCKS_REQUIRED(mu1);
int foo(int i) {
return i;
}
static int bar(int i) EXCLUSIVE_LOCKS_REQUIRED(mu1);
static int bar(int i) {
return i;
}
void main() {
Foo a;
mu1.Lock();
mu2.Lock();
a.method1(1);
foo(2);
mu2.Unlock();
bar(3);
mu1.Unlock();
}
} // end namespace thread_annot_lock_27_modified
namespace thread_annot_lock_38 {
// Test the case where a template member function is annotated with lock
// attributes in a non-template class.
class Foo {
public:
void func1(int y) LOCKS_EXCLUDED(mu_);
template <typename T> void func2(T x) LOCKS_EXCLUDED(mu_);
private:
Mutex mu_;
};
Foo *foo;
void main()
{
foo->func1(5);
foo->func2(5);
}
} // end namespace thread_annot_lock_38
namespace thread_annot_lock_43 {
// Tests lock canonicalization
class Foo {
public:
Mutex *mu_;
};
class FooBar {
public:
Foo *foo_;
int GetA() EXCLUSIVE_LOCKS_REQUIRED(foo_->mu_) { return a_; }
int a_ GUARDED_BY(foo_->mu_);
};
FooBar *fb;
void main()
{
int x;
fb->foo_->mu_->Lock();
x = fb->GetA();
fb->foo_->mu_->Unlock();
}
} // end namespace thread_annot_lock_43
namespace thread_annot_lock_49 {
// Test the support for use of lock expression in the annotations
class Foo {
public:
Mutex foo_mu_;
};
class Bar {
private:
Foo *foo;
Mutex bar_mu_ ACQUIRED_AFTER(foo->foo_mu_);
public:
void Test1() {
foo->foo_mu_.Lock();
bar_mu_.Lock();
bar_mu_.Unlock();
foo->foo_mu_.Unlock();
}
};
void main() {
Bar bar;
bar.Test1();
}
} // end namespace thread_annot_lock_49
namespace thread_annot_lock_61_modified {
// Modified to fix the compiler errors
// Test the fix for a bug introduced by the support of pass-by-reference
// paramters.
struct Foo { Foo &operator<< (bool) {return *this;} };
Foo &getFoo();
struct Bar { Foo &func () {return getFoo();} };
struct Bas { void operator& (Foo &) {} };
void mumble()
{
Bas() & Bar().func() << "" << "";
Bas() & Bar().func() << "";
}
} // end namespace thread_annot_lock_61_modified
namespace thread_annot_lock_65 {
// Test the fix for a bug in the support of allowing reader locks for
// non-const, non-modifying overload functions. (We didn't handle the builtin
// properly.)
enum MyFlags {
Zero,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine
};
inline MyFlags
operator|(MyFlags a, MyFlags b)
{
return MyFlags(static_cast<int>(a) | static_cast<int>(b));
}
inline MyFlags&
operator|=(MyFlags& a, MyFlags b)
{
return a = a | b;
}
} // end namespace thread_annot_lock_65
namespace thread_annot_lock_66_modified {
// Modified: Moved annotation to function defn
// Test annotations on out-of-line definitions of member functions where the
// annotations refer to locks that are also data members in the class.
Mutex mu;
class Foo {
public:
int method1(int i) SHARED_LOCKS_REQUIRED(mu1, mu, mu2);
int data GUARDED_BY(mu1);
Mutex *mu1;
Mutex *mu2;
};
int Foo::method1(int i)
{
return data + i;
}
void main()
{
Foo a;
a.mu2->Lock();
a.mu1->Lock();
mu.Lock();
a.method1(1);
mu.Unlock();
a.mu1->Unlock();
a.mu2->Unlock();
}
} // end namespace thread_annot_lock_66_modified
namespace thread_annot_lock_68_modified {
// Test a fix to a bug in the delayed name binding with nested template
// instantiation. We use a stack to make sure a name is not resolved to an
// inner context.
template <typename T>
class Bar {
Mutex mu_;
};
template <typename T>
class Foo {
public:
void func(T x) {
mu_.Lock();
count_ = x;
mu_.Unlock();
}
private:
T count_ GUARDED_BY(mu_);
Bar<T> bar_;
Mutex mu_;
};
void main()
{
Foo<int> *foo;
foo->func(5);
}
} // end namespace thread_annot_lock_68_modified
namespace thread_annot_lock_30_modified {
// Test delay parsing of lock attribute arguments with nested classes.
// Modified: trylocks replaced with exclusive_lock_fun
int a = 0;
class Bar {
struct Foo;
public:
void MyLock() EXCLUSIVE_LOCK_FUNCTION(mu);
int func() {
MyLock();
// if (foo == 0) {
// return 0;
// }
a = 5;
mu.Unlock();
return 1;
}
class FooBar {
int x;
int y;
};
private:
Mutex mu;
};
Bar *bar;
void main()
{
bar->func();
}
} // end namespace thread_annot_lock_30_modified
namespace thread_annot_lock_47 {
// Test the support for annotations on virtual functions.
// This is a good test case. (i.e. There should be no warning emitted by the
// compiler.)
class Base {
public:
virtual void func1() EXCLUSIVE_LOCKS_REQUIRED(mu_);
virtual void func2() LOCKS_EXCLUDED(mu_);
Mutex mu_;
};
class Child : public Base {
public:
virtual void func1() EXCLUSIVE_LOCKS_REQUIRED(mu_);
virtual void func2() LOCKS_EXCLUDED(mu_);
};
void main() {
Child *c;
Base *b = c;
b->mu_.Lock();
b->func1();
b->mu_.Unlock();
b->func2();
c->mu_.Lock();
c->func1();
c->mu_.Unlock();
c->func2();
}
} // end namespace thread_annot_lock_47
//-----------------------------------------//
// Tests which produce errors
//-----------------------------------------//
namespace thread_annot_lock_13 {
Mutex mu1;
Mutex mu2;
int g GUARDED_BY(mu1);
int w GUARDED_BY(mu2);
class Foo {
public:
void bar() LOCKS_EXCLUDED(mu_, mu1);
int foo() SHARED_LOCKS_REQUIRED(mu_) EXCLUSIVE_LOCKS_REQUIRED(mu2);
private:
int a_ GUARDED_BY(mu_);
public:
Mutex mu_ ACQUIRED_AFTER(mu1);
};
int Foo::foo()
{
int res;
w = 5;
res = a_ + 5;
return res;
}
void Foo::bar()
{
int x;
mu_.Lock();
x = foo(); // expected-warning {{calling function 'foo' requires holding mutex 'mu2' exclusively}}
a_ = x + 1;
mu_.Unlock();
if (x > 5) {
mu1.Lock();
g = 2;
mu1.Unlock();
}
}
void main()
{
Foo f1, *f2;
f1.mu_.Lock();
f1.bar(); // expected-warning {{cannot call function 'bar' while mutex 'f1.mu_' is held}}
mu2.Lock();
f1.foo();
mu2.Unlock();
f1.mu_.Unlock();
f2->mu_.Lock();
f2->bar(); // expected-warning {{cannot call function 'bar' while mutex 'f2->mu_' is held}}
f2->mu_.Unlock();
mu2.Lock();
w = 2;
mu2.Unlock();
}
} // end namespace thread_annot_lock_13
namespace thread_annot_lock_18_modified {
// Modified: Trylocks removed
// Test the ability to distnguish between the same lock field of
// different objects of a class.
class Bar {
public:
bool MyLock() EXCLUSIVE_LOCK_FUNCTION(mu1_);
void MyUnlock() UNLOCK_FUNCTION(mu1_);
int a_ GUARDED_BY(mu1_);
private:
Mutex mu1_;
};
Bar *b1, *b2;
void func()
{
b1->MyLock();
b1->a_ = 5;
b2->a_ = 3; // \
// expected-warning {{writing variable 'a_' requires holding mutex 'b2->mu1_' exclusively}} \
// expected-note {{found near match 'b1->mu1_'}}
b2->MyLock();
b2->MyUnlock();
b1->MyUnlock();
}
} // end namespace thread_annot_lock_18_modified
namespace thread_annot_lock_21 {
// Test various usage of GUARDED_BY and PT_GUARDED_BY annotations, especially
// uses in class definitions.
Mutex mu;
class Bar {
public:
int a_ GUARDED_BY(mu1_);
int b_;
int *q PT_GUARDED_BY(mu);
Mutex mu1_ ACQUIRED_AFTER(mu);
};
Bar b1, *b3;
int *p GUARDED_BY(mu) PT_GUARDED_BY(mu);
int res GUARDED_BY(mu) = 5;
int func(int i)
{
int x;
b3->mu1_.Lock();
res = b1.a_ + b3->b_; // expected-warning {{reading variable 'a_' requires holding mutex 'b1.mu1_'}} \
// expected-warning {{writing variable 'res' requires holding mutex 'mu' exclusively}} \
// expected-note {{found near match 'b3->mu1_'}}
*p = i; // expected-warning {{reading variable 'p' requires holding mutex 'mu'}} \
// expected-warning {{writing the value pointed to by 'p' requires holding mutex 'mu' exclusively}}
b1.a_ = res + b3->b_; // expected-warning {{reading variable 'res' requires holding mutex 'mu'}} \
// expected-warning {{writing variable 'a_' requires holding mutex 'b1.mu1_' exclusively}} \
// expected-note {{found near match 'b3->mu1_'}}
b3->b_ = *b1.q; // expected-warning {{reading the value pointed to by 'q' requires holding mutex 'mu'}}
b3->mu1_.Unlock();
b1.b_ = res; // expected-warning {{reading variable 'res' requires holding mutex 'mu'}}
x = res; // expected-warning {{reading variable 'res' requires holding mutex 'mu'}}
return x;
}
} // end namespace thread_annot_lock_21
namespace thread_annot_lock_35_modified {
// Test the analyzer's ability to distinguish the lock field of different
// objects.
class Foo {
private:
Mutex lock_;
int a_ GUARDED_BY(lock_);
public:
void Func(Foo* child) LOCKS_EXCLUDED(lock_) {
Foo *new_foo = new Foo;
lock_.Lock();
child->Func(new_foo); // There shouldn't be any warning here as the
// acquired lock is not in child.
child->bar(7); // \
// expected-warning {{calling function 'bar' requires holding mutex 'child->lock_' exclusively}} \
// expected-note {{found near match 'lock_'}}
child->a_ = 5; // \
// expected-warning {{writing variable 'a_' requires holding mutex 'child->lock_' exclusively}} \
// expected-note {{found near match 'lock_'}}
lock_.Unlock();
}
void bar(int y) EXCLUSIVE_LOCKS_REQUIRED(lock_) {
a_ = y;
}
};
Foo *x;
void main() {
Foo *child = new Foo;
x->Func(child);
}
} // end namespace thread_annot_lock_35_modified
namespace thread_annot_lock_36_modified {
// Modified to move the annotations to function defns.
// Test the analyzer's ability to distinguish the lock field of different
// objects
class Foo {
private:
Mutex lock_;
int a_ GUARDED_BY(lock_);
public:
void Func(Foo* child) LOCKS_EXCLUDED(lock_);
void bar(int y) EXCLUSIVE_LOCKS_REQUIRED(lock_);
};
void Foo::Func(Foo* child) {
Foo *new_foo = new Foo;
lock_.Lock();
child->lock_.Lock();
child->Func(new_foo); // expected-warning {{cannot call function 'Func' while mutex 'child->lock_' is held}}
child->bar(7);
child->a_ = 5;
child->lock_.Unlock();
lock_.Unlock();
}
void Foo::bar(int y) {
a_ = y;
}
Foo *x;
void main() {
Foo *child = new Foo;
x->Func(child);
}
} // end namespace thread_annot_lock_36_modified
namespace thread_annot_lock_42 {
// Test support of multiple lock attributes of the same kind on a decl.
class Foo {
private:
Mutex mu1, mu2, mu3;
int x GUARDED_BY(mu1) GUARDED_BY(mu2);
int y GUARDED_BY(mu2);
void f2() LOCKS_EXCLUDED(mu1) LOCKS_EXCLUDED(mu2) LOCKS_EXCLUDED(mu3) {
mu2.Lock();
y = 2;
mu2.Unlock();
}
public:
void f1() EXCLUSIVE_LOCKS_REQUIRED(mu2) EXCLUSIVE_LOCKS_REQUIRED(mu1) {
x = 5;
f2(); // expected-warning {{cannot call function 'f2' while mutex 'mu1' is held}} \
// expected-warning {{cannot call function 'f2' while mutex 'mu2' is held}}
}
};
Foo *foo;
void func()
{
foo->f1(); // expected-warning {{calling function 'f1' requires holding mutex 'foo->mu2' exclusively}} \
// expected-warning {{calling function 'f1' requires holding mutex 'foo->mu1' exclusively}}
}
} // end namespace thread_annot_lock_42
namespace thread_annot_lock_46 {
// Test the support for annotations on virtual functions.
class Base {
public:
virtual void func1() EXCLUSIVE_LOCKS_REQUIRED(mu_);
virtual void func2() LOCKS_EXCLUDED(mu_);
Mutex mu_;
};
class Child : public Base {
public:
virtual void func1() EXCLUSIVE_LOCKS_REQUIRED(mu_);
virtual void func2() LOCKS_EXCLUDED(mu_);
};
void main() {
Child *c;
Base *b = c;
b->func1(); // expected-warning {{calling function 'func1' requires holding mutex 'b->mu_' exclusively}}
b->mu_.Lock();
b->func2(); // expected-warning {{cannot call function 'func2' while mutex 'b->mu_' is held}}
b->mu_.Unlock();
c->func1(); // expected-warning {{calling function 'func1' requires holding mutex 'c->mu_' exclusively}}
c->mu_.Lock();
c->func2(); // expected-warning {{cannot call function 'func2' while mutex 'c->mu_' is held}}
c->mu_.Unlock();
}
} // end namespace thread_annot_lock_46
namespace thread_annot_lock_67_modified {
// Modified: attributes on definitions moved to declarations
// Test annotations on out-of-line definitions of member functions where the
// annotations refer to locks that are also data members in the class.
Mutex mu;
Mutex mu3;
class Foo {
public:
int method1(int i) SHARED_LOCKS_REQUIRED(mu1, mu, mu2, mu3);
int data GUARDED_BY(mu1);
Mutex *mu1;
Mutex *mu2;
};
int Foo::method1(int i) {
return data + i;
}
void main()
{
Foo a;
a.method1(1); // expected-warning {{calling function 'method1' requires holding mutex 'a.mu1'}} \
// expected-warning {{calling function 'method1' requires holding mutex 'mu'}} \
// expected-warning {{calling function 'method1' requires holding mutex 'a.mu2'}} \
// expected-warning {{calling function 'method1' requires holding mutex 'mu3'}}
}
} // end namespace thread_annot_lock_67_modified
namespace substitution_test {
class MyData {
public:
Mutex mu;
void lockData() __attribute__((exclusive_lock_function(mu)));
void unlockData() __attribute__((unlock_function(mu)));
void doSomething() __attribute__((exclusive_locks_required(mu))) { }
};
class DataLocker {
public:
void lockData (MyData *d) __attribute__((exclusive_lock_function(d->mu)));
void unlockData(MyData *d) __attribute__((unlock_function(d->mu)));
};
class Foo {
public:
void foo(MyData* d) __attribute__((exclusive_locks_required(d->mu))) { }
void bar1(MyData* d) {
d->lockData();
foo(d);
d->unlockData();
}
void bar2(MyData* d) {
DataLocker dlr;
dlr.lockData(d);
foo(d);
dlr.unlockData(d);
}
void bar3(MyData* d1, MyData* d2) {
DataLocker dlr;
dlr.lockData(d1); // expected-note {{mutex acquired here}}
dlr.unlockData(d2); // \
// expected-warning {{releasing mutex 'd2->mu' that was not held}}
} // expected-warning {{mutex 'd1->mu' is still held at the end of function}}
void bar4(MyData* d1, MyData* d2) {
DataLocker dlr;
dlr.lockData(d1);
foo(d2); // \
// expected-warning {{calling function 'foo' requires holding mutex 'd2->mu' exclusively}} \
// expected-note {{found near match 'd1->mu'}}
dlr.unlockData(d1);
}
};
} // end namespace substituation_test
namespace constructor_destructor_tests {
Mutex fooMu;
int myVar GUARDED_BY(fooMu);
class Foo {
public:
Foo() __attribute__((exclusive_lock_function(fooMu))) { }
~Foo() __attribute__((unlock_function(fooMu))) { }
};
void fooTest() {
Foo foo;
myVar = 0;
}
}
namespace template_member_test {
struct S { int n; };
struct T {
Mutex m;
S *s GUARDED_BY(this->m);
};
Mutex m;
struct U {
union {
int n;
};
} *u GUARDED_BY(m);
template<typename U>
struct IndirectLock {
int DoNaughtyThings(T *t) {
u->n = 0; // expected-warning {{reading variable 'u' requires holding mutex 'm'}}
return t->s->n; // expected-warning {{reading variable 's' requires holding mutex 't->m'}}
}
};
template struct IndirectLock<int>; // expected-note {{here}}
struct V {
void f(int);
void f(double);
Mutex m;
V *p GUARDED_BY(this->m);
};
template<typename U> struct W {
V v;
void f(U u) {
v.p->f(u); // expected-warning {{reading variable 'p' requires holding mutex 'v.m'}}
}
};
template struct W<int>; // expected-note {{here}}
}
namespace test_scoped_lockable {
struct TestScopedLockable {
Mutex mu1;
Mutex mu2;
int a __attribute__((guarded_by(mu1)));
int b __attribute__((guarded_by(mu2)));
bool getBool();
void foo1() {
MutexLock mulock(&mu1);
a = 5;
}
void foo2() {
ReaderMutexLock mulock1(&mu1);
if (getBool()) {
MutexLock mulock2a(&mu2);
b = a + 1;
}
else {
MutexLock mulock2b(&mu2);
b = a + 2;
}
}
void foo3() {
MutexLock mulock_a(&mu1);
MutexLock mulock_b(&mu1); // \
// expected-warning {{acquiring mutex 'mu1' that is already held}}
}
void foo4() {
MutexLock mulock1(&mu1), mulock2(&mu2);
a = b+1;
b = a+1;
}
void foo5() {
DoubleMutexLock mulock(&mu1, &mu2);
a = b + 1;
b = a + 1;
}
};
} // end namespace test_scoped_lockable
namespace FunctionAttrTest {
class Foo {
public:
Mutex mu_;
int a GUARDED_BY(mu_);
};
Foo fooObj;
void foo() EXCLUSIVE_LOCKS_REQUIRED(fooObj.mu_);
void bar() {
foo(); // expected-warning {{calling function 'foo' requires holding mutex 'fooObj.mu_' exclusively}}
fooObj.mu_.Lock();
foo();
fooObj.mu_.Unlock();
}
}; // end namespace FunctionAttrTest
namespace TryLockTest {
struct TestTryLock {
Mutex mu;
int a GUARDED_BY(mu);
bool cond;
void foo1() {
if (mu.TryLock()) {
a = 1;
mu.Unlock();
}
}
void foo2() {
if (!mu.TryLock()) return;
a = 2;
mu.Unlock();
}
void foo3() {
bool b = mu.TryLock();
if (b) {
a = 3;
mu.Unlock();
}
}
void foo4() {
bool b = mu.TryLock();
if (!b) return;
a = 4;
mu.Unlock();
}
void foo5() {
while (mu.TryLock()) {
a = a + 1;
mu.Unlock();
}
}
void foo6() {
bool b = mu.TryLock();
b = !b;
if (b) return;
a = 6;
mu.Unlock();
}
void foo7() {
bool b1 = mu.TryLock();
bool b2 = !b1;
bool b3 = !b2;
if (b3) {
a = 7;
mu.Unlock();
}
}
// Test use-def chains: join points
void foo8() {
bool b = mu.TryLock();
bool b2 = b;
if (cond)
b = true;
if (b) { // b should be unknown at this point, because of the join point
a = 8; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
}
if (b2) { // b2 should be known at this point.
a = 8;
mu.Unlock();
}
}
// Test use-def-chains: back edges
void foo9() {
bool b = mu.TryLock();
for (int i = 0; i < 10; ++i);
if (b) { // b is still known, because the loop doesn't alter it
a = 9;
mu.Unlock();
}
}
// Test use-def chains: back edges
void foo10() {
bool b = mu.TryLock();
while (cond) {
if (b) { // b should be uknown at this point b/c of the loop
a = 10; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
}
b = !b;
}
}
// Test merge of exclusive trylock
void foo11() {
if (cond) {
if (!mu.TryLock())
return;
}
else {
mu.Lock();
}
a = 10;
mu.Unlock();
}
// Test merge of shared trylock
void foo12() {
if (cond) {
if (!mu.ReaderTryLock())
return;
}
else {
mu.ReaderLock();
}
int i = a;
mu.Unlock();
}
}; // end TestTrylock
} // end namespace TrylockTest
namespace TestTemplateAttributeInstantiation {
class Foo1 {
public:
Mutex mu_;
int a GUARDED_BY(mu_);
};
class Foo2 {
public:
int a GUARDED_BY(mu_);
Mutex mu_;
};
class Bar {
public:
// Test non-dependent expressions in attributes on template functions
template <class T>
void barND(Foo1 *foo, T *fooT) EXCLUSIVE_LOCKS_REQUIRED(foo->mu_) {
foo->a = 0;
}
// Test dependent expressions in attributes on template functions
template <class T>
void barD(Foo1 *foo, T *fooT) EXCLUSIVE_LOCKS_REQUIRED(fooT->mu_) {
fooT->a = 0;
}
};
template <class T>
class BarT {
public:
Foo1 fooBase;
T fooBaseT;
// Test non-dependent expression in ordinary method on template class
void barND() EXCLUSIVE_LOCKS_REQUIRED(fooBase.mu_) {
fooBase.a = 0;
}
// Test dependent expressions in ordinary methods on template class
void barD() EXCLUSIVE_LOCKS_REQUIRED(fooBaseT.mu_) {
fooBaseT.a = 0;
}
// Test dependent expressions in template method in template class
template <class T2>
void barTD(T2 *fooT) EXCLUSIVE_LOCKS_REQUIRED(fooBaseT.mu_, fooT->mu_) {
fooBaseT.a = 0;
fooT->a = 0;
}
};
template <class T>
class Cell {
public:
Mutex mu_;
// Test dependent guarded_by
T data GUARDED_BY(mu_);
void fooEx() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
data = 0;
}
void foo() {
mu_.Lock();
data = 0;
mu_.Unlock();
}
};
void test() {
Bar b;
BarT<Foo2> bt;
Foo1 f1;
Foo2 f2;
f1.mu_.Lock();
f2.mu_.Lock();
bt.fooBase.mu_.Lock();
bt.fooBaseT.mu_.Lock();
b.barND(&f1, &f2);
b.barD(&f1, &f2);
bt.barND();
bt.barD();
bt.barTD(&f2);
f1.mu_.Unlock();
bt.barTD(&f1); // \
// expected-warning {{calling function 'barTD' requires holding mutex 'f1.mu_' exclusively}} \
// expected-note {{found near match 'bt.fooBase.mu_'}}
bt.fooBase.mu_.Unlock();
bt.fooBaseT.mu_.Unlock();
f2.mu_.Unlock();
Cell<int> cell;
cell.data = 0; // \
// expected-warning {{writing variable 'data' requires holding mutex 'cell.mu_' exclusively}}
cell.foo();
cell.mu_.Lock();
cell.fooEx();
cell.mu_.Unlock();
}
template <class T>
class CellDelayed {
public:
// Test dependent guarded_by
T data GUARDED_BY(mu_);
static T static_data GUARDED_BY(static_mu_);
void fooEx(CellDelayed<T> *other) EXCLUSIVE_LOCKS_REQUIRED(mu_, other->mu_) {
this->data = other->data;
}
template <class T2>
void fooExT(CellDelayed<T2> *otherT) EXCLUSIVE_LOCKS_REQUIRED(mu_, otherT->mu_) {
this->data = otherT->data;
}
void foo() {
mu_.Lock();
data = 0;
mu_.Unlock();
}
Mutex mu_;
static Mutex static_mu_;
};
void testDelayed() {
CellDelayed<int> celld;
CellDelayed<int> celld2;
celld.foo();
celld.mu_.Lock();
celld2.mu_.Lock();
celld.fooEx(&celld2);
celld.fooExT(&celld2);
celld2.mu_.Unlock();
celld.mu_.Unlock();
}
}; // end namespace TestTemplateAttributeInstantiation
namespace FunctionDeclDefTest {
class Foo {
public:
Mutex mu_;
int a GUARDED_BY(mu_);
virtual void foo1(Foo *f_declared) EXCLUSIVE_LOCKS_REQUIRED(f_declared->mu_);
};
// EXCLUSIVE_LOCKS_REQUIRED should be applied, and rewritten to f_defined->mu_
void Foo::foo1(Foo *f_defined) {
f_defined->a = 0;
};
void test() {
Foo myfoo;
myfoo.foo1(&myfoo); // \
// expected-warning {{calling function 'foo1' requires holding mutex 'myfoo.mu_' exclusively}}
myfoo.mu_.Lock();
myfoo.foo1(&myfoo);
myfoo.mu_.Unlock();
}
};
namespace GoingNative {
struct __attribute__((lockable)) mutex {
void lock() __attribute__((exclusive_lock_function));
void unlock() __attribute__((unlock_function));
// ...
};
bool foo();
bool bar();
mutex m;
void test() {
m.lock();
while (foo()) {
m.unlock();
// ...
if (bar()) {
// ...
if (foo())
continue; // expected-warning {{expecting mutex 'm' to be held at start of each loop}}
//...
}
// ...
m.lock(); // expected-note {{mutex acquired here}}
}
m.unlock();
}
}
namespace FunctionDefinitionTest {
class Foo {
public:
void foo1();
void foo2();
void foo3(Foo *other);
template<class T>
void fooT1(const T& dummy1);
template<class T>
void fooT2(const T& dummy2) EXCLUSIVE_LOCKS_REQUIRED(mu_);
Mutex mu_;
int a GUARDED_BY(mu_);
};
template<class T>
class FooT {
public:
void foo();
Mutex mu_;
T a GUARDED_BY(mu_);
};
void Foo::foo1() NO_THREAD_SAFETY_ANALYSIS {
a = 1;
}
void Foo::foo2() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
a = 2;
}
void Foo::foo3(Foo *other) EXCLUSIVE_LOCKS_REQUIRED(other->mu_) {
other->a = 3;
}
template<class T>
void Foo::fooT1(const T& dummy1) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
a = dummy1;
}
/* TODO -- uncomment with template instantiation of attributes.
template<class T>
void Foo::fooT2(const T& dummy2) {
a = dummy2;
}
*/
void fooF1(Foo *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_) {
f->a = 1;
}
void fooF2(Foo *f);
void fooF2(Foo *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_) {
f->a = 2;
}
void fooF3(Foo *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_);
void fooF3(Foo *f) {
f->a = 3;
}
template<class T>
void FooT<T>::foo() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
a = 0;
}
void test() {
int dummy = 0;
Foo myFoo;
myFoo.foo2(); // \
// expected-warning {{calling function 'foo2' requires holding mutex 'myFoo.mu_' exclusively}}
myFoo.foo3(&myFoo); // \
// expected-warning {{calling function 'foo3' requires holding mutex 'myFoo.mu_' exclusively}}
myFoo.fooT1(dummy); // \
// expected-warning {{calling function 'fooT1' requires holding mutex 'myFoo.mu_' exclusively}}
myFoo.fooT2(dummy); // \
// expected-warning {{calling function 'fooT2' requires holding mutex 'myFoo.mu_' exclusively}}
fooF1(&myFoo); // \
// expected-warning {{calling function 'fooF1' requires holding mutex 'myFoo.mu_' exclusively}}
fooF2(&myFoo); // \
// expected-warning {{calling function 'fooF2' requires holding mutex 'myFoo.mu_' exclusively}}
fooF3(&myFoo); // \
// expected-warning {{calling function 'fooF3' requires holding mutex 'myFoo.mu_' exclusively}}
myFoo.mu_.Lock();
myFoo.foo2();
myFoo.foo3(&myFoo);
myFoo.fooT1(dummy);
myFoo.fooT2(dummy);
fooF1(&myFoo);
fooF2(&myFoo);
fooF3(&myFoo);
myFoo.mu_.Unlock();
FooT<int> myFooT;
myFooT.foo(); // \
// expected-warning {{calling function 'foo' requires holding mutex 'myFooT.mu_' exclusively}}
}
} // end namespace FunctionDefinitionTest
namespace SelfLockingTest {
class LOCKABLE MyLock {
public:
int foo GUARDED_BY(this);
void lock() EXCLUSIVE_LOCK_FUNCTION();
void unlock() UNLOCK_FUNCTION();
void doSomething() {
this->lock(); // allow 'this' as a lock expression
foo = 0;
doSomethingElse();
this->unlock();
}
void doSomethingElse() EXCLUSIVE_LOCKS_REQUIRED(this) {
foo = 1;
};
void test() {
foo = 2; // \
// expected-warning {{writing variable 'foo' requires holding mutex 'this' exclusively}}
}
};
class LOCKABLE MyLock2 {
public:
Mutex mu_;
int foo GUARDED_BY(this);
// don't check inside lock and unlock functions
void lock() EXCLUSIVE_LOCK_FUNCTION() { mu_.Lock(); }
void unlock() UNLOCK_FUNCTION() { mu_.Unlock(); }
// don't check inside constructors and destructors
MyLock2() { foo = 1; }
~MyLock2() { foo = 0; }
};
} // end namespace SelfLockingTest
namespace InvalidNonstatic {
// Forward decl here causes bogus "invalid use of non-static data member"
// on reference to mutex_ in guarded_by attribute.
class Foo;
class Foo {
Mutex* mutex_;
int foo __attribute__((guarded_by(mutex_)));
};
} // end namespace InvalidNonStatic
namespace NoReturnTest {
bool condition();
void fatal() __attribute__((noreturn));
Mutex mu_;
void test1() {
MutexLock lock(&mu_);
if (condition()) {
fatal();
return;
}
}
} // end namespace NoReturnTest
namespace TestMultiDecl {
class Foo {
public:
int GUARDED_BY(mu_) a;
int GUARDED_BY(mu_) b, c;
void foo() {
a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
b = 0; // \
// expected-warning {{writing variable 'b' requires holding mutex 'mu_' exclusively}}
c = 0; // \
// expected-warning {{writing variable 'c' requires holding mutex 'mu_' exclusively}}
}
private:
Mutex mu_;
};
} // end namespace TestMultiDecl
namespace WarnNoDecl {
class Foo {
void foo(int a); __attribute__(( // \
// expected-warning {{declaration does not declare anything}}
exclusive_locks_required(a))); // \
// expected-warning {{attribute exclusive_locks_required ignored}}
};
} // end namespace WarnNoDecl
namespace MoreLockExpressions {
class Foo {
public:
Mutex mu_;
int a GUARDED_BY(mu_);
};
class Bar {
public:
int b;
Foo* f;
Foo& getFoo() { return *f; }
Foo& getFoo2(int c) { return *f; }
Foo& getFoo3(int c, int d) { return *f; }
Foo& getFooey() { return *f; }
};
Foo& getBarFoo(Bar &bar, int c) { return bar.getFoo2(c); }
void test() {
Foo foo;
Foo *fooArray;
Bar bar;
int a;
int b;
int c;
bar.getFoo().mu_.Lock();
bar.getFoo().a = 0;
bar.getFoo().mu_.Unlock();
(bar.getFoo().mu_).Lock(); // test parenthesis
bar.getFoo().a = 0;
(bar.getFoo().mu_).Unlock();
bar.getFoo2(a).mu_.Lock();
bar.getFoo2(a).a = 0;
bar.getFoo2(a).mu_.Unlock();
bar.getFoo3(a, b).mu_.Lock();
bar.getFoo3(a, b).a = 0;
bar.getFoo3(a, b).mu_.Unlock();
getBarFoo(bar, a).mu_.Lock();
getBarFoo(bar, a).a = 0;
getBarFoo(bar, a).mu_.Unlock();
bar.getFoo2(10).mu_.Lock();
bar.getFoo2(10).a = 0;
bar.getFoo2(10).mu_.Unlock();
bar.getFoo2(a + 1).mu_.Lock();
bar.getFoo2(a + 1).a = 0;
bar.getFoo2(a + 1).mu_.Unlock();
(a > 0 ? fooArray[1] : fooArray[b]).mu_.Lock();
(a > 0 ? fooArray[1] : fooArray[b]).a = 0;
(a > 0 ? fooArray[1] : fooArray[b]).mu_.Unlock();
}
void test2() {
Foo *fooArray;
Bar bar;
int a;
int b;
int c;
bar.getFoo().mu_.Lock();
bar.getFooey().a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'bar.getFooey().mu_' exclusively}} \
// expected-note {{found near match 'bar.getFoo().mu_'}}
bar.getFoo().mu_.Unlock();
bar.getFoo2(a).mu_.Lock();
bar.getFoo2(b).a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'bar.getFoo2(b).mu_' exclusively}} \
// expected-note {{found near match 'bar.getFoo2(a).mu_'}}
bar.getFoo2(a).mu_.Unlock();
bar.getFoo3(a, b).mu_.Lock();
bar.getFoo3(a, c).a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'bar.getFoo3(a, c).mu_' exclusively}} \
// expected-note {{found near match 'bar.getFoo3(a, b).mu_'}}
bar.getFoo3(a, b).mu_.Unlock();
getBarFoo(bar, a).mu_.Lock();
getBarFoo(bar, b).a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'getBarFoo(bar, b).mu_' exclusively}} \
// expected-note {{found near match 'getBarFoo(bar, a).mu_'}}
getBarFoo(bar, a).mu_.Unlock();
(a > 0 ? fooArray[1] : fooArray[b]).mu_.Lock();
(a > 0 ? fooArray[b] : fooArray[c]).a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex '((0 < a) ? fooArray[b] : fooArray[c]).mu_' exclusively}} \
// expected-note {{found near match '((0 < a) ? fooArray[1] : fooArray[b]).mu_'}}
(a > 0 ? fooArray[1] : fooArray[b]).mu_.Unlock();
}
} // end namespace MoreLockExpressions
namespace TrylockJoinPoint {
class Foo {
Mutex mu;
bool c;
void foo() {
if (c) {
if (!mu.TryLock())
return;
} else {
mu.Lock();
}
mu.Unlock();
}
};
} // end namespace TrylockJoinPoint
namespace LockReturned {
class Foo {
public:
int a GUARDED_BY(mu_);
void foo() EXCLUSIVE_LOCKS_REQUIRED(mu_);
void foo2(Foo* f) EXCLUSIVE_LOCKS_REQUIRED(mu_, f->mu_);
static void sfoo(Foo* f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_);
Mutex* getMu() LOCK_RETURNED(mu_);
Mutex mu_;
static Mutex* getMu(Foo* f) LOCK_RETURNED(f->mu_);
};
// Calls getMu() directly to lock and unlock
void test1(Foo* f1, Foo* f2) {
f1->a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'f1->mu_' exclusively}}
f1->foo(); // expected-warning {{calling function 'foo' requires holding mutex 'f1->mu_' exclusively}}
f1->foo2(f2); // expected-warning {{calling function 'foo2' requires holding mutex 'f1->mu_' exclusively}} \
// expected-warning {{calling function 'foo2' requires holding mutex 'f2->mu_' exclusively}}
Foo::sfoo(f1); // expected-warning {{calling function 'sfoo' requires holding mutex 'f1->mu_' exclusively}}
f1->getMu()->Lock();
f1->a = 0;
f1->foo();
f1->foo2(f2); // \
// expected-warning {{calling function 'foo2' requires holding mutex 'f2->mu_' exclusively}} \
// expected-note {{found near match 'f1->mu_'}}
Foo::getMu(f2)->Lock();
f1->foo2(f2);
Foo::getMu(f2)->Unlock();
Foo::sfoo(f1);
f1->getMu()->Unlock();
}
Mutex* getFooMu(Foo* f) LOCK_RETURNED(Foo::getMu(f));
class Bar : public Foo {
public:
int b GUARDED_BY(getMu());
void bar() EXCLUSIVE_LOCKS_REQUIRED(getMu());
void bar2(Bar* g) EXCLUSIVE_LOCKS_REQUIRED(getMu(this), g->getMu());
static void sbar(Bar* g) EXCLUSIVE_LOCKS_REQUIRED(g->getMu());
static void sbar2(Bar* g) EXCLUSIVE_LOCKS_REQUIRED(getFooMu(g));
};
// Use getMu() within other attributes.
// This requires at lest levels of substitution, more in the case of
void test2(Bar* b1, Bar* b2) {
b1->b = 0; // expected-warning {{writing variable 'b' requires holding mutex 'b1->mu_' exclusively}}
b1->bar(); // expected-warning {{calling function 'bar' requires holding mutex 'b1->mu_' exclusively}}
b1->bar2(b2); // expected-warning {{calling function 'bar2' requires holding mutex 'b1->mu_' exclusively}} \
// expected-warning {{calling function 'bar2' requires holding mutex 'b2->mu_' exclusively}}
Bar::sbar(b1); // expected-warning {{calling function 'sbar' requires holding mutex 'b1->mu_' exclusively}}
Bar::sbar2(b1); // expected-warning {{calling function 'sbar2' requires holding mutex 'b1->mu_' exclusively}}
b1->getMu()->Lock();
b1->b = 0;
b1->bar();
b1->bar2(b2); // \
// expected-warning {{calling function 'bar2' requires holding mutex 'b2->mu_' exclusively}} \
// // expected-note {{found near match 'b1->mu_'}}
b2->getMu()->Lock();
b1->bar2(b2);
b2->getMu()->Unlock();
Bar::sbar(b1);
Bar::sbar2(b1);
b1->getMu()->Unlock();
}
// Sanity check -- lock the mutex directly, but use attributes that call getMu()
// Also lock the mutex using getFooMu, which calls a lock_returned function.
void test3(Bar* b1, Bar* b2) {
b1->mu_.Lock();
b1->b = 0;
b1->bar();
getFooMu(b2)->Lock();
b1->bar2(b2);
getFooMu(b2)->Unlock();
Bar::sbar(b1);
Bar::sbar2(b1);
b1->mu_.Unlock();
}
} // end namespace LockReturned
namespace ReleasableScopedLock {
class Foo {
Mutex mu_;
bool c;
int a GUARDED_BY(mu_);
void test1();
void test2();
void test3();
void test4();
void test5();
};
void Foo::test1() {
ReleasableMutexLock rlock(&mu_);
rlock.Release();
}
void Foo::test2() {
ReleasableMutexLock rlock(&mu_);
if (c) { // test join point -- held/not held during release
rlock.Release();
}
}
void Foo::test3() {
ReleasableMutexLock rlock(&mu_);
a = 0;
rlock.Release();
a = 1; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
}
void Foo::test4() {
ReleasableMutexLock rlock(&mu_);
rlock.Release();
rlock.Release(); // expected-warning {{releasing mutex 'mu_' that was not held}}
}
void Foo::test5() {
ReleasableMutexLock rlock(&mu_);
if (c) {
rlock.Release();
}
// no warning on join point for managed lock.
rlock.Release(); // expected-warning {{releasing mutex 'mu_' that was not held}}
}
} // end namespace ReleasableScopedLock
namespace TrylockFunctionTest {
class Foo {
public:
Mutex mu1_;
Mutex mu2_;
bool c;
bool lockBoth() EXCLUSIVE_TRYLOCK_FUNCTION(true, mu1_, mu2_);
};
bool Foo::lockBoth() {
if (!mu1_.TryLock())
return false;
mu2_.Lock();
if (!c) {
mu1_.Unlock();
mu2_.Unlock();
return false;
}
return true;
}
} // end namespace TrylockFunctionTest
namespace DoubleLockBug {
class Foo {
public:
Mutex mu_;
int a GUARDED_BY(mu_);
void foo1() EXCLUSIVE_LOCKS_REQUIRED(mu_);
int foo2() SHARED_LOCKS_REQUIRED(mu_);
};
void Foo::foo1() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
a = 0;
}
int Foo::foo2() SHARED_LOCKS_REQUIRED(mu_) {
return a;
}
}
namespace UnlockBug {
class Foo {
public:
Mutex mutex_;
void foo1() EXCLUSIVE_LOCKS_REQUIRED(mutex_) { // expected-note {{mutex acquired here}}
mutex_.Unlock();
} // expected-warning {{expecting mutex 'mutex_' to be held at the end of function}}
void foo2() SHARED_LOCKS_REQUIRED(mutex_) { // expected-note {{mutex acquired here}}
mutex_.Unlock();
} // expected-warning {{expecting mutex 'mutex_' to be held at the end of function}}
};
} // end namespace UnlockBug
namespace FoolishScopedLockableBug {
class SCOPED_LOCKABLE WTF_ScopedLockable {
public:
WTF_ScopedLockable(Mutex* mu) EXCLUSIVE_LOCK_FUNCTION(mu);
// have to call release() manually;
~WTF_ScopedLockable();
void release() UNLOCK_FUNCTION();
};
class Foo {
Mutex mu_;
int a GUARDED_BY(mu_);
bool c;
void doSomething();
void test1() {
WTF_ScopedLockable wtf(&mu_);
wtf.release();
}
void test2() {
WTF_ScopedLockable wtf(&mu_); // expected-note {{mutex acquired here}}
} // expected-warning {{mutex 'mu_' is still held at the end of function}}
void test3() {
if (c) {
WTF_ScopedLockable wtf(&mu_);
wtf.release();
}
}
void test4() {
if (c) {
doSomething();
}
else {
WTF_ScopedLockable wtf(&mu_);
wtf.release();
}
}
void test5() {
if (c) {
WTF_ScopedLockable wtf(&mu_); // expected-note {{mutex acquired here}}
}
} // expected-warning {{mutex 'mu_' is not held on every path through here}}
void test6() {
if (c) {
doSomething();
}
else {
WTF_ScopedLockable wtf(&mu_); // expected-note {{mutex acquired here}}
}
} // expected-warning {{mutex 'mu_' is not held on every path through here}}
};
} // end namespace FoolishScopedLockableBug
namespace TemporaryCleanupExpr {
class Foo {
int a GUARDED_BY(getMutexPtr().get());
SmartPtr<Mutex> getMutexPtr();
void test();
};
void Foo::test() {
{
ReaderMutexLock lock(getMutexPtr().get());
int b = a;
}
int b = a; // expected-warning {{reading variable 'a' requires holding mutex 'getMutexPtr()'}}
}
} // end namespace TemporaryCleanupExpr
namespace SmartPointerTests {
class Foo {
public:
SmartPtr<Mutex> mu_;
int a GUARDED_BY(mu_);
int b GUARDED_BY(mu_.get());
int c GUARDED_BY(*mu_);
void Lock() EXCLUSIVE_LOCK_FUNCTION(mu_);
void Unlock() UNLOCK_FUNCTION(mu_);
void test0();
void test1();
void test2();
void test3();
void test4();
void test5();
void test6();
void test7();
void test8();
};
void Foo::test0() {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
b = 0; // expected-warning {{writing variable 'b' requires holding mutex 'mu_' exclusively}}
c = 0; // expected-warning {{writing variable 'c' requires holding mutex 'mu_' exclusively}}
}
void Foo::test1() {
mu_->Lock();
a = 0;
b = 0;
c = 0;
mu_->Unlock();
}
void Foo::test2() {
(*mu_).Lock();
a = 0;
b = 0;
c = 0;
(*mu_).Unlock();
}
void Foo::test3() {
mu_.get()->Lock();
a = 0;
b = 0;
c = 0;
mu_.get()->Unlock();
}
void Foo::test4() {
MutexLock lock(mu_.get());
a = 0;
b = 0;
c = 0;
}
void Foo::test5() {
MutexLock lock(&(*mu_));
a = 0;
b = 0;
c = 0;
}
void Foo::test6() {
Lock();
a = 0;
b = 0;
c = 0;
Unlock();
}
void Foo::test7() {
{
Lock();
mu_->Unlock();
}
{
mu_->Lock();
Unlock();
}
{
mu_.get()->Lock();
mu_->Unlock();
}
{
mu_->Lock();
mu_.get()->Unlock();
}
{
mu_.get()->Lock();
(*mu_).Unlock();
}
{
(*mu_).Lock();
mu_->Unlock();
}
}
void Foo::test8() {
mu_->Lock();
mu_.get()->Lock(); // expected-warning {{acquiring mutex 'mu_' that is already held}}
(*mu_).Lock(); // expected-warning {{acquiring mutex 'mu_' that is already held}}
mu_.get()->Unlock();
Unlock(); // expected-warning {{releasing mutex 'mu_' that was not held}}
}
class Bar {
SmartPtr<Foo> foo;
void test0();
void test1();
void test2();
void test3();
};
void Bar::test0() {
foo->a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'foo->mu_' exclusively}}
(*foo).b = 0; // expected-warning {{writing variable 'b' requires holding mutex 'foo->mu_' exclusively}}
foo.get()->c = 0; // expected-warning {{writing variable 'c' requires holding mutex 'foo->mu_' exclusively}}
}
void Bar::test1() {
foo->mu_->Lock();
foo->a = 0;
(*foo).b = 0;
foo.get()->c = 0;
foo->mu_->Unlock();
}
void Bar::test2() {
(*foo).mu_->Lock();
foo->a = 0;
(*foo).b = 0;
foo.get()->c = 0;
foo.get()->mu_->Unlock();
}
void Bar::test3() {
MutexLock lock(foo->mu_.get());
foo->a = 0;
(*foo).b = 0;
foo.get()->c = 0;
}
} // end namespace SmartPointerTests
namespace DuplicateAttributeTest {
class LOCKABLE Foo {
public:
Mutex mu1_;
Mutex mu2_;
Mutex mu3_;
int a GUARDED_BY(mu1_);
int b GUARDED_BY(mu2_);
int c GUARDED_BY(mu3_);
void lock() EXCLUSIVE_LOCK_FUNCTION();
void unlock() UNLOCK_FUNCTION();
void lock1() EXCLUSIVE_LOCK_FUNCTION(mu1_);
void slock1() SHARED_LOCK_FUNCTION(mu1_);
void lock3() EXCLUSIVE_LOCK_FUNCTION(mu1_, mu2_, mu3_);
void locklots()
EXCLUSIVE_LOCK_FUNCTION(mu1_)
EXCLUSIVE_LOCK_FUNCTION(mu2_)
EXCLUSIVE_LOCK_FUNCTION(mu1_, mu2_, mu3_);
void unlock1() UNLOCK_FUNCTION(mu1_);
void unlock3() UNLOCK_FUNCTION(mu1_, mu2_, mu3_);
void unlocklots()
UNLOCK_FUNCTION(mu1_)
UNLOCK_FUNCTION(mu2_)
UNLOCK_FUNCTION(mu1_, mu2_, mu3_);
};
void Foo::lock() EXCLUSIVE_LOCK_FUNCTION() { }
void Foo::unlock() UNLOCK_FUNCTION() { }
void Foo::lock1() EXCLUSIVE_LOCK_FUNCTION(mu1_) {
mu1_.Lock();
}
void Foo::slock1() SHARED_LOCK_FUNCTION(mu1_) {
mu1_.ReaderLock();
}
void Foo::lock3() EXCLUSIVE_LOCK_FUNCTION(mu1_, mu2_, mu3_) {
mu1_.Lock();
mu2_.Lock();
mu3_.Lock();
}
void Foo::locklots()
EXCLUSIVE_LOCK_FUNCTION(mu1_, mu2_)
EXCLUSIVE_LOCK_FUNCTION(mu2_, mu3_) {
mu1_.Lock();
mu2_.Lock();
mu3_.Lock();
}
void Foo::unlock1() UNLOCK_FUNCTION(mu1_) {
mu1_.Unlock();
}
void Foo::unlock3() UNLOCK_FUNCTION(mu1_, mu2_, mu3_) {
mu1_.Unlock();
mu2_.Unlock();
mu3_.Unlock();
}
void Foo::unlocklots()
UNLOCK_FUNCTION(mu1_, mu2_)
UNLOCK_FUNCTION(mu2_, mu3_) {
mu1_.Unlock();
mu2_.Unlock();
mu3_.Unlock();
}
void test0() {
Foo foo;
foo.lock();
foo.unlock();
foo.lock();
foo.lock(); // expected-warning {{acquiring mutex 'foo' that is already held}}
foo.unlock();
foo.unlock(); // expected-warning {{releasing mutex 'foo' that was not held}}
}
void test1() {
Foo foo;
foo.lock1();
foo.a = 0;
foo.unlock1();
foo.lock1();
foo.lock1(); // expected-warning {{acquiring mutex 'foo.mu1_' that is already held}}
foo.a = 0;
foo.unlock1();
foo.unlock1(); // expected-warning {{releasing mutex 'foo.mu1_' that was not held}}
}
int test2() {
Foo foo;
foo.slock1();
int d1 = foo.a;
foo.unlock1();
foo.slock1();
foo.slock1(); // expected-warning {{acquiring mutex 'foo.mu1_' that is already held}}
int d2 = foo.a;
foo.unlock1();
foo.unlock1(); // expected-warning {{releasing mutex 'foo.mu1_' that was not held}}
return d1 + d2;
}
void test3() {
Foo foo;
foo.lock3();
foo.a = 0;
foo.b = 0;
foo.c = 0;
foo.unlock3();
foo.lock3();
foo.lock3(); // \
// expected-warning {{acquiring mutex 'foo.mu1_' that is already held}} \
// expected-warning {{acquiring mutex 'foo.mu2_' that is already held}} \
// expected-warning {{acquiring mutex 'foo.mu3_' that is already held}}
foo.a = 0;
foo.b = 0;
foo.c = 0;
foo.unlock3();
foo.unlock3(); // \
// expected-warning {{releasing mutex 'foo.mu1_' that was not held}} \
// expected-warning {{releasing mutex 'foo.mu2_' that was not held}} \
// expected-warning {{releasing mutex 'foo.mu3_' that was not held}}
}
void testlots() {
Foo foo;
foo.locklots();
foo.a = 0;
foo.b = 0;
foo.c = 0;
foo.unlocklots();
foo.locklots();
foo.locklots(); // \
// expected-warning {{acquiring mutex 'foo.mu1_' that is already held}} \
// expected-warning {{acquiring mutex 'foo.mu2_' that is already held}} \
// expected-warning {{acquiring mutex 'foo.mu3_' that is already held}}
foo.a = 0;
foo.b = 0;
foo.c = 0;
foo.unlocklots();
foo.unlocklots(); // \
// expected-warning {{releasing mutex 'foo.mu1_' that was not held}} \
// expected-warning {{releasing mutex 'foo.mu2_' that was not held}} \
// expected-warning {{releasing mutex 'foo.mu3_' that was not held}}
}
} // end namespace DuplicateAttributeTest
namespace TryLockEqTest {
class Foo {
Mutex mu_;
int a GUARDED_BY(mu_);
bool c;
int tryLockMutexI() EXCLUSIVE_TRYLOCK_FUNCTION(1, mu_);
Mutex* tryLockMutexP() EXCLUSIVE_TRYLOCK_FUNCTION(1, mu_);
void unlock() UNLOCK_FUNCTION(mu_);
void test1();
void test2();
};
void Foo::test1() {
if (tryLockMutexP() == 0) {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
return;
}
a = 0;
unlock();
if (tryLockMutexP() != 0) {
a = 0;
unlock();
}
if (0 != tryLockMutexP()) {
a = 0;
unlock();
}
if (!(tryLockMutexP() == 0)) {
a = 0;
unlock();
}
if (tryLockMutexI() == 0) {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
return;
}
a = 0;
unlock();
if (0 == tryLockMutexI()) {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
return;
}
a = 0;
unlock();
if (tryLockMutexI() == 1) {
a = 0;
unlock();
}
if (mu_.TryLock() == false) {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
return;
}
a = 0;
unlock();
if (mu_.TryLock() == true) {
a = 0;
unlock();
}
else {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
}
#if __has_feature(cxx_nullptr)
if (tryLockMutexP() == nullptr) {
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
return;
}
a = 0;
unlock();
#endif
}
} // end namespace TryLockEqTest
namespace ExistentialPatternMatching {
class Graph {
public:
Mutex mu_;
};
void LockAllGraphs() EXCLUSIVE_LOCK_FUNCTION(&Graph::mu_);
void UnlockAllGraphs() UNLOCK_FUNCTION(&Graph::mu_);
class Node {
public:
int a GUARDED_BY(&Graph::mu_);
void foo() EXCLUSIVE_LOCKS_REQUIRED(&Graph::mu_) {
a = 0;
}
void foo2() LOCKS_EXCLUDED(&Graph::mu_);
};
void test() {
Graph g1;
Graph g2;
Node n1;
n1.a = 0; // expected-warning {{writing variable 'a' requires holding mutex '&ExistentialPatternMatching::Graph::mu_' exclusively}}
n1.foo(); // expected-warning {{calling function 'foo' requires holding mutex '&ExistentialPatternMatching::Graph::mu_' exclusively}}
n1.foo2();
g1.mu_.Lock();
n1.a = 0;
n1.foo();
n1.foo2(); // expected-warning {{cannot call function 'foo2' while mutex '&ExistentialPatternMatching::Graph::mu_' is held}}
g1.mu_.Unlock();
g2.mu_.Lock();
n1.a = 0;
n1.foo();
n1.foo2(); // expected-warning {{cannot call function 'foo2' while mutex '&ExistentialPatternMatching::Graph::mu_' is held}}
g2.mu_.Unlock();
LockAllGraphs();
n1.a = 0;
n1.foo();
n1.foo2(); // expected-warning {{cannot call function 'foo2' while mutex '&ExistentialPatternMatching::Graph::mu_' is held}}
UnlockAllGraphs();
LockAllGraphs();
g1.mu_.Unlock();
LockAllGraphs();
g2.mu_.Unlock();
LockAllGraphs();
g1.mu_.Lock(); // expected-warning {{acquiring mutex 'g1.mu_' that is already held}}
g1.mu_.Unlock();
}
} // end namespace ExistentialPatternMatching
namespace StringIgnoreTest {
class Foo {
public:
Mutex mu_;
void lock() EXCLUSIVE_LOCK_FUNCTION("");
void unlock() UNLOCK_FUNCTION("");
void goober() EXCLUSIVE_LOCKS_REQUIRED("");
void roober() SHARED_LOCKS_REQUIRED("");
};
class Bar : public Foo {
public:
void bar(Foo* f) {
f->unlock();
f->goober();
f->roober();
f->lock();
};
};
} // end namespace StringIgnoreTest
namespace LockReturnedScopeFix {
class Base {
protected:
struct Inner;
bool c;
const Mutex& getLock(const Inner* i);
void lockInner (Inner* i) EXCLUSIVE_LOCK_FUNCTION(getLock(i));
void unlockInner(Inner* i) UNLOCK_FUNCTION(getLock(i));
void foo(Inner* i) EXCLUSIVE_LOCKS_REQUIRED(getLock(i));
void bar(Inner* i);
};
struct Base::Inner {
Mutex lock_;
void doSomething() EXCLUSIVE_LOCKS_REQUIRED(lock_);
};
const Mutex& Base::getLock(const Inner* i) LOCK_RETURNED(i->lock_) {
return i->lock_;
}
void Base::foo(Inner* i) {
i->doSomething();
}
void Base::bar(Inner* i) {
if (c) {
i->lock_.Lock();
unlockInner(i);
}
else {
lockInner(i);
i->lock_.Unlock();
}
}
} // end namespace LockReturnedScopeFix
namespace TrylockWithCleanups {
struct Foo {
Mutex mu_;
int a GUARDED_BY(mu_);
};
Foo* GetAndLockFoo(const MyString& s)
EXCLUSIVE_TRYLOCK_FUNCTION(true, &Foo::mu_);
static void test() {
Foo* lt = GetAndLockFoo("foo");
if (!lt) return;
int a = lt->a;
lt->mu_.Unlock();
}
} // end namespace TrylockWithCleanups
namespace UniversalLock {
class Foo {
Mutex mu_;
bool c;
int a GUARDED_BY(mu_);
void r_foo() SHARED_LOCKS_REQUIRED(mu_);
void w_foo() EXCLUSIVE_LOCKS_REQUIRED(mu_);
void test1() {
int b;
beginNoWarnOnReads();
b = a;
r_foo();
endNoWarnOnReads();
beginNoWarnOnWrites();
a = 0;
w_foo();
endNoWarnOnWrites();
}
// don't warn on joins with universal lock
void test2() {
if (c) {
beginNoWarnOnWrites();
}
a = 0; // \
// expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
endNoWarnOnWrites(); // \
// expected-warning {{releasing mutex '*' that was not held}}
}
// make sure the universal lock joins properly
void test3() {
if (c) {
mu_.Lock();
beginNoWarnOnWrites();
}
else {
beginNoWarnOnWrites();
mu_.Lock();
}
a = 0;
endNoWarnOnWrites();
mu_.Unlock();
}
// combine universal lock with other locks
void test4() {
beginNoWarnOnWrites();
mu_.Lock();
mu_.Unlock();
endNoWarnOnWrites();
mu_.Lock();
beginNoWarnOnWrites();
endNoWarnOnWrites();
mu_.Unlock();
mu_.Lock();
beginNoWarnOnWrites();
mu_.Unlock();
endNoWarnOnWrites();
}
};
} // end namespace UniversalLock
namespace TemplateLockReturned {
template<class T>
class BaseT {
public:
virtual void baseMethod() = 0;
Mutex* get_mutex() LOCK_RETURNED(mutex_) { return &mutex_; }
Mutex mutex_;
int a GUARDED_BY(mutex_);
};
class Derived : public BaseT<int> {
public:
void baseMethod() EXCLUSIVE_LOCKS_REQUIRED(get_mutex()) {
a = 0;
}
};
} // end namespace TemplateLockReturned
namespace ExprMatchingBugFix {
class Foo {
public:
Mutex mu_;
};
class Bar {
public:
bool c;
Foo* foo;
Bar(Foo* f) : foo(f) { }
struct Nested {
Foo* foo;
Nested(Foo* f) : foo(f) { }
void unlockFoo() UNLOCK_FUNCTION(&Foo::mu_);
};
void test();
};
void Bar::test() {
foo->mu_.Lock();
if (c) {
Nested *n = new Nested(foo);
n->unlockFoo();
}
else {
foo->mu_.Unlock();
}
}
}; // end namespace ExprMatchingBugfix
namespace ComplexNameTest {
class Foo {
public:
static Mutex mu_;
Foo() EXCLUSIVE_LOCKS_REQUIRED(mu_) { }
~Foo() EXCLUSIVE_LOCKS_REQUIRED(mu_) { }
int operator[](int i) EXCLUSIVE_LOCKS_REQUIRED(mu_) { return 0; }
};
class Bar {
public:
static Mutex mu_;
Bar() LOCKS_EXCLUDED(mu_) { }
~Bar() LOCKS_EXCLUDED(mu_) { }
int operator[](int i) LOCKS_EXCLUDED(mu_) { return 0; }
};
void test1() {
Foo f; // expected-warning {{calling function 'Foo' requires holding mutex 'mu_' exclusively}}
int a = f[0]; // expected-warning {{calling function 'operator[]' requires holding mutex 'mu_' exclusively}}
} // expected-warning {{calling function '~Foo' requires holding mutex 'mu_' exclusively}}
void test2() {
Bar::mu_.Lock();
{
Bar b; // expected-warning {{cannot call function 'Bar' while mutex 'mu_' is held}}
int a = b[0]; // expected-warning {{cannot call function 'operator[]' while mutex 'mu_' is held}}
} // expected-warning {{cannot call function '~Bar' while mutex 'mu_' is held}}
Bar::mu_.Unlock();
}
}; // end namespace ComplexNameTest
namespace UnreachableExitTest {
class FemmeFatale {
public:
FemmeFatale();
~FemmeFatale() __attribute__((noreturn));
};
void exitNow() __attribute__((noreturn));
void exitDestruct(const MyString& ms) __attribute__((noreturn));
Mutex fatalmu_;
void test1() EXCLUSIVE_LOCKS_REQUIRED(fatalmu_) {
exitNow();
}
void test2() EXCLUSIVE_LOCKS_REQUIRED(fatalmu_) {
FemmeFatale femme;
}
bool c;
void test3() EXCLUSIVE_LOCKS_REQUIRED(fatalmu_) {
if (c) {
exitNow();
}
else {
FemmeFatale femme;
}
}
void test4() EXCLUSIVE_LOCKS_REQUIRED(fatalmu_) {
exitDestruct("foo");
}
} // end namespace UnreachableExitTest
namespace VirtualMethodCanonicalizationTest {
class Base {
public:
virtual Mutex* getMutex() = 0;
};
class Base2 : public Base {
public:
Mutex* getMutex();
};
class Base3 : public Base2 {
public:
Mutex* getMutex();
};
class Derived : public Base3 {
public:
Mutex* getMutex(); // overrides Base::getMutex()
};
void baseFun(Base *b) EXCLUSIVE_LOCKS_REQUIRED(b->getMutex()) { }
void derivedFun(Derived *d) EXCLUSIVE_LOCKS_REQUIRED(d->getMutex()) {
baseFun(d);
}
} // end namespace VirtualMethodCanonicalizationTest
namespace TemplateFunctionParamRemapTest {
template <class T>
struct Cell {
T dummy_;
Mutex* mu_;
};
class Foo {
public:
template <class T>
void elr(Cell<T>* c) __attribute__((exclusive_locks_required(c->mu_)));
void test();
};
template<class T>
void Foo::elr(Cell<T>* c1) { }
void Foo::test() {
Cell<int> cell;
elr(&cell); // \
// expected-warning {{calling function 'elr' requires holding mutex 'cell.mu_' exclusively}}
}
template<class T>
void globalELR(Cell<T>* c) __attribute__((exclusive_locks_required(c->mu_)));
template<class T>
void globalELR(Cell<T>* c1) { }
void globalTest() {
Cell<int> cell;
globalELR(&cell); // \
// expected-warning {{calling function 'globalELR' requires holding mutex 'cell.mu_' exclusively}}
}
template<class T>
void globalELR2(Cell<T>* c) __attribute__((exclusive_locks_required(c->mu_)));
// second declaration
template<class T>
void globalELR2(Cell<T>* c2);
template<class T>
void globalELR2(Cell<T>* c3) { }
// re-declaration after definition
template<class T>
void globalELR2(Cell<T>* c4);
void globalTest2() {
Cell<int> cell;
globalELR2(&cell); // \
// expected-warning {{calling function 'globalELR2' requires holding mutex 'cell.mu_' exclusively}}
}
template<class T>
class FooT {
public:
void elr(Cell<T>* c) __attribute__((exclusive_locks_required(c->mu_)));
};
template<class T>
void FooT<T>::elr(Cell<T>* c1) { }
void testFooT() {
Cell<int> cell;
FooT<int> foo;
foo.elr(&cell); // \
// expected-warning {{calling function 'elr' requires holding mutex 'cell.mu_' exclusively}}
}
} // end namespace TemplateFunctionParamRemapTest
namespace SelfConstructorTest {
class SelfLock {
public:
SelfLock() EXCLUSIVE_LOCK_FUNCTION(mu_);
~SelfLock() UNLOCK_FUNCTION(mu_);
void foo() EXCLUSIVE_LOCKS_REQUIRED(mu_);
Mutex mu_;
};
class LOCKABLE SelfLock2 {
public:
SelfLock2() EXCLUSIVE_LOCK_FUNCTION();
~SelfLock2() UNLOCK_FUNCTION();
void foo() EXCLUSIVE_LOCKS_REQUIRED(this);
};
void test() {
SelfLock s;
s.foo();
}
void test2() {
SelfLock2 s2;
s2.foo();
}
} // end namespace SelfConstructorTest
namespace MultipleAttributeTest {
class Foo {
Mutex mu1_;
Mutex mu2_;
int a GUARDED_BY(mu1_);
int b GUARDED_BY(mu2_);
int c GUARDED_BY(mu1_) GUARDED_BY(mu2_);
int* d PT_GUARDED_BY(mu1_) PT_GUARDED_BY(mu2_);
void foo1() EXCLUSIVE_LOCKS_REQUIRED(mu1_)
EXCLUSIVE_LOCKS_REQUIRED(mu2_);
void foo2() SHARED_LOCKS_REQUIRED(mu1_)
SHARED_LOCKS_REQUIRED(mu2_);
void foo3() LOCKS_EXCLUDED(mu1_)
LOCKS_EXCLUDED(mu2_);
void lock() EXCLUSIVE_LOCK_FUNCTION(mu1_)
EXCLUSIVE_LOCK_FUNCTION(mu2_);
void readerlock() SHARED_LOCK_FUNCTION(mu1_)
SHARED_LOCK_FUNCTION(mu2_);
void unlock() UNLOCK_FUNCTION(mu1_)
UNLOCK_FUNCTION(mu2_);
bool trylock() EXCLUSIVE_TRYLOCK_FUNCTION(true, mu1_)
EXCLUSIVE_TRYLOCK_FUNCTION(true, mu2_);
bool readertrylock() SHARED_TRYLOCK_FUNCTION(true, mu1_)
SHARED_TRYLOCK_FUNCTION(true, mu2_);
void assertBoth() ASSERT_EXCLUSIVE_LOCK(mu1_)
ASSERT_EXCLUSIVE_LOCK(mu2_);
void assertShared() ASSERT_SHARED_LOCK(mu1_)
ASSERT_SHARED_LOCK(mu2_);
void test();
void testAssert();
void testAssertShared();
};
void Foo::foo1() {
a = 1;
b = 2;
}
void Foo::foo2() {
int result = a + b;
}
void Foo::foo3() { }
void Foo::lock() { mu1_.Lock(); mu2_.Lock(); }
void Foo::readerlock() { mu1_.ReaderLock(); mu2_.ReaderLock(); }
void Foo::unlock() { mu1_.Unlock(); mu2_.Unlock(); }
bool Foo::trylock() { return true; }
bool Foo::readertrylock() { return true; }
void Foo::test() {
mu1_.Lock();
foo1(); // expected-warning {{}}
c = 0; // expected-warning {{}}
*d = 0; // expected-warning {{}}
mu1_.Unlock();
mu1_.ReaderLock();
foo2(); // expected-warning {{}}
int x = c; // expected-warning {{}}
int y = *d; // expected-warning {{}}
mu1_.Unlock();
mu2_.Lock();
foo3(); // expected-warning {{}}
mu2_.Unlock();
lock();
a = 0;
b = 0;
unlock();
readerlock();
int z = a + b;
unlock();
if (trylock()) {
a = 0;
b = 0;
unlock();
}
if (readertrylock()) {
int zz = a + b;
unlock();
}
}
// Force duplication of attributes
void Foo::assertBoth() { }
void Foo::assertShared() { }
void Foo::testAssert() {
assertBoth();
a = 0;
b = 0;
}
void Foo::testAssertShared() {
assertShared();
int zz = a + b;
}
} // end namespace MultipleAttributeTest
namespace GuardedNonPrimitiveTypeTest {
class Data {
public:
Data(int i) : dat(i) { }
int getValue() const { return dat; }
void setValue(int i) { dat = i; }
int operator[](int i) const { return dat; }
int& operator[](int i) { return dat; }
void operator()() { }
private:
int dat;
};
class DataCell {
public:
DataCell(const Data& d) : dat(d) { }
private:
Data dat;
};
void showDataCell(const DataCell& dc);
class Foo {
public:
// method call tests
void test() {
data_.setValue(0); // FIXME -- should be writing \
// expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
int a = data_.getValue(); // \
// expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
datap1_->setValue(0); // FIXME -- should be writing \
// expected-warning {{reading variable 'datap1_' requires holding mutex 'mu_'}}
a = datap1_->getValue(); // \
// expected-warning {{reading variable 'datap1_' requires holding mutex 'mu_'}}
datap2_->setValue(0); // FIXME -- should be writing \
// expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
a = datap2_->getValue(); // \
// expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
(*datap2_).setValue(0); // FIXME -- should be writing \
// expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
a = (*datap2_).getValue(); // \
// expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
mu_.Lock();
data_.setValue(1);
datap1_->setValue(1);
datap2_->setValue(1);
mu_.Unlock();
mu_.ReaderLock();
a = data_.getValue();
datap1_->setValue(0); // reads datap1_, writes *datap1_
a = datap1_->getValue();
a = datap2_->getValue();
mu_.Unlock();
}
// operator tests
void test2() {
data_ = Data(1); // expected-warning {{writing variable 'data_' requires holding mutex 'mu_' exclusively}}
*datap1_ = data_; // expected-warning {{reading variable 'datap1_' requires holding mutex 'mu_'}} \
// expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
*datap2_ = data_; // expected-warning {{writing the value pointed to by 'datap2_' requires holding mutex 'mu_' exclusively}} \
// expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
data_ = *datap1_; // expected-warning {{writing variable 'data_' requires holding mutex 'mu_' exclusively}} \
// expected-warning {{reading variable 'datap1_' requires holding mutex 'mu_'}}
data_ = *datap2_; // expected-warning {{writing variable 'data_' requires holding mutex 'mu_' exclusively}} \
// expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
data_[0] = 0; // expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
(*datap2_)[0] = 0; // expected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
data_(); // expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
}
// const operator tests
void test3() const {
Data mydat(data_); // expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
//FIXME
//showDataCell(data_); // xpected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
//showDataCell(*datap2_); // xpected-warning {{reading the value pointed to by 'datap2_' requires holding mutex 'mu_'}}
int a = data_[0]; // expected-warning {{reading variable 'data_' requires holding mutex 'mu_'}}
}
private:
Mutex mu_;
Data data_ GUARDED_BY(mu_);
Data* datap1_ GUARDED_BY(mu_);
Data* datap2_ PT_GUARDED_BY(mu_);
};
} // end namespace GuardedNonPrimitiveTypeTest
namespace GuardedNonPrimitive_MemberAccess {
class Cell {
public:
Cell(int i);
void cellMethod();
int a;
};
class Foo {
public:
int a;
Cell c GUARDED_BY(cell_mu_);
Cell* cp PT_GUARDED_BY(cell_mu_);
void myMethod();
Mutex cell_mu_;
};
class Bar {
private:
Mutex mu_;
Foo foo GUARDED_BY(mu_);
Foo* foop PT_GUARDED_BY(mu_);
void test() {
foo.myMethod(); // expected-warning {{reading variable 'foo' requires holding mutex 'mu_'}}
int fa = foo.a; // expected-warning {{reading variable 'foo' requires holding mutex 'mu_'}}
foo.a = fa; // expected-warning {{writing variable 'foo' requires holding mutex 'mu_' exclusively}}
fa = foop->a; // expected-warning {{reading the value pointed to by 'foop' requires holding mutex 'mu_'}}
foop->a = fa; // expected-warning {{writing the value pointed to by 'foop' requires holding mutex 'mu_' exclusively}}
fa = (*foop).a; // expected-warning {{reading the value pointed to by 'foop' requires holding mutex 'mu_'}}
(*foop).a = fa; // expected-warning {{writing the value pointed to by 'foop' requires holding mutex 'mu_' exclusively}}
foo.c = Cell(0); // expected-warning {{writing variable 'foo' requires holding mutex 'mu_'}} \
// expected-warning {{writing variable 'c' requires holding mutex 'foo.cell_mu_' exclusively}}
foo.c.cellMethod(); // expected-warning {{reading variable 'foo' requires holding mutex 'mu_'}} \
// expected-warning {{reading variable 'c' requires holding mutex 'foo.cell_mu_'}}
foop->c = Cell(0); // expected-warning {{writing the value pointed to by 'foop' requires holding mutex 'mu_'}} \
// expected-warning {{writing variable 'c' requires holding mutex 'foop->cell_mu_' exclusively}}
foop->c.cellMethod(); // expected-warning {{reading the value pointed to by 'foop' requires holding mutex 'mu_'}} \
// expected-warning {{reading variable 'c' requires holding mutex 'foop->cell_mu_'}}
(*foop).c = Cell(0); // expected-warning {{writing the value pointed to by 'foop' requires holding mutex 'mu_'}} \
// expected-warning {{writing variable 'c' requires holding mutex 'foop->cell_mu_' exclusively}}
(*foop).c.cellMethod(); // expected-warning {{reading the value pointed to by 'foop' requires holding mutex 'mu_'}} \
// expected-warning {{reading variable 'c' requires holding mutex 'foop->cell_mu_'}}
};
};
} // namespace GuardedNonPrimitive_MemberAccess
namespace TestThrowExpr {
class Foo {
Mutex mu_;
bool hasError();
void test() {
mu_.Lock();
if (hasError()) {
throw "ugly";
}
mu_.Unlock();
}
};
} // end namespace TestThrowExpr
namespace UnevaluatedContextTest {
// parse attribute expressions in an unevaluated context.
static inline Mutex* getMutex1();
static inline Mutex* getMutex2();
void bar() EXCLUSIVE_LOCKS_REQUIRED(getMutex1());
void bar2() EXCLUSIVE_LOCKS_REQUIRED(getMutex1(), getMutex2());
} // end namespace UnevaluatedContextTest
namespace LockUnlockFunctionTest {
// Check built-in lock functions
class LOCKABLE MyLockable {
public:
void lock() EXCLUSIVE_LOCK_FUNCTION() { mu_.Lock(); }
void readerLock() SHARED_LOCK_FUNCTION() { mu_.ReaderLock(); }
void unlock() UNLOCK_FUNCTION() { mu_.Unlock(); }
private:
Mutex mu_;
};
class Foo {
public:
// Correct lock/unlock functions
void lock() EXCLUSIVE_LOCK_FUNCTION(mu_) {
mu_.Lock();
}
void readerLock() SHARED_LOCK_FUNCTION(mu_) {
mu_.ReaderLock();
}
void unlock() UNLOCK_FUNCTION(mu_) {
mu_.Unlock();
}
// Check failure to lock.
void lockBad() EXCLUSIVE_LOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.Lock();
mu2_.Unlock();
} // expected-warning {{expecting mutex 'mu_' to be held at the end of function}}
void readerLockBad() SHARED_LOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.Lock();
mu2_.Unlock();
} // expected-warning {{expecting mutex 'mu_' to be held at the end of function}}
void unlockBad() UNLOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.Lock();
mu2_.Unlock();
} // expected-warning {{mutex 'mu_' is still held at the end of function}}
// Check locking the wrong thing.
void lockBad2() EXCLUSIVE_LOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.Lock(); // expected-note {{mutex acquired here}}
} // expected-warning {{expecting mutex 'mu_' to be held at the end of function}} \
// expected-warning {{mutex 'mu2_' is still held at the end of function}}
void readerLockBad2() SHARED_LOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.ReaderLock(); // expected-note {{mutex acquired here}}
} // expected-warning {{expecting mutex 'mu_' to be held at the end of function}} \
// expected-warning {{mutex 'mu2_' is still held at the end of function}}
void unlockBad2() UNLOCK_FUNCTION(mu_) { // expected-note {{mutex acquired here}}
mu2_.Unlock(); // expected-warning {{releasing mutex 'mu2_' that was not held}}
} // expected-warning {{mutex 'mu_' is still held at the end of function}}
private:
Mutex mu_;
Mutex mu2_;
};
} // end namespace LockUnlockFunctionTest
namespace AssertHeldTest {
class Foo {
public:
int c;
int a GUARDED_BY(mu_);
Mutex mu_;
void test1() {
mu_.AssertHeld();
int b = a;
a = 0;
}
void test2() {
mu_.AssertReaderHeld();
int b = a;
a = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu_' exclusively}}
}
void test3() {
if (c) {
mu_.AssertHeld();
}
else {
mu_.AssertHeld();
}
int b = a;
a = 0;
}
void test4() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
mu_.AssertHeld();
int b = a;
a = 0;
}
void test5() UNLOCK_FUNCTION(mu_) {
mu_.AssertHeld();
mu_.Unlock();
}
void test6() {
mu_.AssertHeld();
mu_.Unlock();
} // should this be a warning?
void test7() {
if (c) {
mu_.AssertHeld();
}
else {
mu_.Lock();
}
int b = a;
a = 0;
mu_.Unlock();
}
void test8() {
if (c) {
mu_.Lock();
}
else {
mu_.AssertHeld();
}
int b = a;
a = 0;
mu_.Unlock();
}
void test9() {
if (c) {
mu_.AssertHeld();
}
else {
mu_.Lock(); // expected-note {{mutex acquired here}}
}
} // expected-warning {{mutex 'mu_' is still held at the end of function}}
void test10() {
if (c) {
mu_.Lock(); // expected-note {{mutex acquired here}}
}
else {
mu_.AssertHeld();
}
} // expected-warning {{mutex 'mu_' is still held at the end of function}}
void assertMu() ASSERT_EXCLUSIVE_LOCK(mu_);
void test11() {
assertMu();
int b = a;
a = 0;
}
};
} // end namespace AssertHeldTest
namespace LogicalConditionalTryLock {
class Foo {
public:
Mutex mu;
int a GUARDED_BY(mu);
bool c;
bool newc();
void test1() {
if (c && mu.TryLock()) {
a = 0;
mu.Unlock();
}
}
void test2() {
bool b = mu.TryLock();
if (c && b) {
a = 0;
mu.Unlock();
}
}
void test3() {
if (c || !mu.TryLock())
return;
a = 0;
mu.Unlock();
}
void test4() {
while (c && mu.TryLock()) {
a = 0;
c = newc();
mu.Unlock();
}
}
void test5() {
while (c) {
if (newc() || !mu.TryLock())
break;
a = 0;
mu.Unlock();
}
}
void test6() {
mu.Lock();
do {
a = 0;
mu.Unlock();
} while (newc() && mu.TryLock());
}
void test7() {
for (bool b = mu.TryLock(); c && b;) {
a = 0;
mu.Unlock();
}
}
void test8() {
if (c && newc() && mu.TryLock()) {
a = 0;
mu.Unlock();
}
}
void test9() {
if (!(c && newc() && mu.TryLock()))
return;
a = 0;
mu.Unlock();
}
void test10() {
if (!(c || !mu.TryLock())) {
a = 0;
mu.Unlock();
}
}
};
} // end namespace LogicalConditionalTryLock
namespace PtGuardedByTest {
void doSomething();
class Cell {
public:
int a;
};
// This mainly duplicates earlier tests, but just to make sure...
class PtGuardedBySanityTest {
Mutex mu1;
Mutex mu2;
int* a GUARDED_BY(mu1) PT_GUARDED_BY(mu2);
Cell* c GUARDED_BY(mu1) PT_GUARDED_BY(mu2);
int sa[10] GUARDED_BY(mu1);
Cell sc[10] GUARDED_BY(mu1);
void test1() {
mu1.Lock();
if (a == 0) doSomething(); // OK, we don't dereference.
a = 0;
c = 0;
if (sa[0] == 42) doSomething();
sa[0] = 57;
if (sc[0].a == 42) doSomething();
sc[0].a = 57;
mu1.Unlock();
}
void test2() {
mu1.ReaderLock();
if (*a == 0) doSomething(); // expected-warning {{reading the value pointed to by 'a' requires holding mutex 'mu2'}}
*a = 0; // expected-warning {{writing the value pointed to by 'a' requires holding mutex 'mu2' exclusively}}
if (c->a == 0) doSomething(); // expected-warning {{reading the value pointed to by 'c' requires holding mutex 'mu2'}}
c->a = 0; // expected-warning {{writing the value pointed to by 'c' requires holding mutex 'mu2' exclusively}}
if ((*c).a == 0) doSomething(); // expected-warning {{reading the value pointed to by 'c' requires holding mutex 'mu2'}}
(*c).a = 0; // expected-warning {{writing the value pointed to by 'c' requires holding mutex 'mu2' exclusively}}
if (a[0] == 42) doSomething(); // expected-warning {{reading the value pointed to by 'a' requires holding mutex 'mu2'}}
a[0] = 57; // expected-warning {{writing the value pointed to by 'a' requires holding mutex 'mu2' exclusively}}
if (c[0].a == 42) doSomething(); // expected-warning {{reading the value pointed to by 'c' requires holding mutex 'mu2'}}
c[0].a = 57; // expected-warning {{writing the value pointed to by 'c' requires holding mutex 'mu2' exclusively}}
mu1.Unlock();
}
void test3() {
mu2.Lock();
if (*a == 0) doSomething(); // expected-warning {{reading variable 'a' requires holding mutex 'mu1'}}
*a = 0; // expected-warning {{reading variable 'a' requires holding mutex 'mu1'}}
if (c->a == 0) doSomething(); // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
c->a = 0; // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
if ((*c).a == 0) doSomething(); // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
(*c).a = 0; // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
if (a[0] == 42) doSomething(); // expected-warning {{reading variable 'a' requires holding mutex 'mu1'}}
a[0] = 57; // expected-warning {{reading variable 'a' requires holding mutex 'mu1'}}
if (c[0].a == 42) doSomething(); // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
c[0].a = 57; // expected-warning {{reading variable 'c' requires holding mutex 'mu1'}}
mu2.Unlock();
}
void test4() { // Literal arrays
if (sa[0] == 42) doSomething(); // expected-warning {{reading variable 'sa' requires holding mutex 'mu1'}}
sa[0] = 57; // expected-warning {{writing variable 'sa' requires holding mutex 'mu1' exclusively}}
if (sc[0].a == 42) doSomething(); // expected-warning {{reading variable 'sc' requires holding mutex 'mu1'}}
sc[0].a = 57; // expected-warning {{writing variable 'sc' requires holding mutex 'mu1' exclusively}}
if (*sa == 42) doSomething(); // expected-warning {{reading variable 'sa' requires holding mutex 'mu1'}}
*sa = 57; // expected-warning {{writing variable 'sa' requires holding mutex 'mu1' exclusively}}
if ((*sc).a == 42) doSomething(); // expected-warning {{reading variable 'sc' requires holding mutex 'mu1'}}
(*sc).a = 57; // expected-warning {{writing variable 'sc' requires holding mutex 'mu1' exclusively}}
if (sc->a == 42) doSomething(); // expected-warning {{reading variable 'sc' requires holding mutex 'mu1'}}
sc->a = 57; // expected-warning {{writing variable 'sc' requires holding mutex 'mu1' exclusively}}
}
void test5() {
mu1.ReaderLock(); // OK -- correct use.
mu2.Lock();
if (*a == 0) doSomething();
*a = 0;
if (c->a == 0) doSomething();
c->a = 0;
if ((*c).a == 0) doSomething();
(*c).a = 0;
mu2.Unlock();
mu1.Unlock();
}
};
class SmartPtr_PtGuardedBy_Test {
Mutex mu1;
Mutex mu2;
SmartPtr<int> sp GUARDED_BY(mu1) PT_GUARDED_BY(mu2);
SmartPtr<Cell> sq GUARDED_BY(mu1) PT_GUARDED_BY(mu2);
void test1() {
mu1.ReaderLock();
mu2.Lock();
sp.get();
if (*sp == 0) doSomething();
*sp = 0;
sq->a = 0;
if (sp[0] == 0) doSomething();
sp[0] = 0;
mu2.Unlock();
mu1.Unlock();
}
void test2() {
mu2.Lock();
sp.get(); // expected-warning {{reading variable 'sp' requires holding mutex 'mu1'}}
if (*sp == 0) doSomething(); // expected-warning {{reading variable 'sp' requires holding mutex 'mu1'}}
*sp = 0; // expected-warning {{reading variable 'sp' requires holding mutex 'mu1'}}
sq->a = 0; // expected-warning {{reading variable 'sq' requires holding mutex 'mu1'}}
if (sp[0] == 0) doSomething(); // expected-warning {{reading variable 'sp' requires holding mutex 'mu1'}}
sp[0] = 0; // expected-warning {{reading variable 'sp' requires holding mutex 'mu1'}}
if (sq[0].a == 0) doSomething(); // expected-warning {{reading variable 'sq' requires holding mutex 'mu1'}}
sq[0].a = 0; // expected-warning {{reading variable 'sq' requires holding mutex 'mu1'}}
mu2.Unlock();
}
void test3() {
mu1.Lock();
sp.get();
if (*sp == 0) doSomething(); // expected-warning {{reading the value pointed to by 'sp' requires holding mutex 'mu2'}}
*sp = 0; // expected-warning {{reading the value pointed to by 'sp' requires holding mutex 'mu2'}}
sq->a = 0; // expected-warning {{reading the value pointed to by 'sq' requires holding mutex 'mu2'}}
if (sp[0] == 0) doSomething(); // expected-warning {{reading the value pointed to by 'sp' requires holding mutex 'mu2'}}
sp[0] = 0; // expected-warning {{reading the value pointed to by 'sp' requires holding mutex 'mu2'}}
if (sq[0].a == 0) doSomething(); // expected-warning {{reading the value pointed to by 'sq' requires holding mutex 'mu2'}}
sq[0].a = 0; // expected-warning {{reading the value pointed to by 'sq' requires holding mutex 'mu2'}}
mu1.Unlock();
}
};
} // end namespace PtGuardedByTest
namespace NonMemberCalleeICETest {
class A {
void Run() {
(RunHelper)(); // expected-warning {{calling function 'RunHelper' requires holding mutex 'M' exclusively}}
}
void RunHelper() __attribute__((exclusive_locks_required(M)));
Mutex M;
};
} // end namespace NonMemberCalleeICETest
namespace pt_guard_attribute_type {
int i PT_GUARDED_BY(sls_mu); // expected-warning {{'pt_guarded_by' only applies to pointer types; type here is 'int'}}
int j PT_GUARDED_VAR; // expected-warning {{'pt_guarded_var' only applies to pointer types; type here is 'int'}}
void test() {
int i PT_GUARDED_BY(sls_mu); // expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
int j PT_GUARDED_VAR; // expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
typedef int PT_GUARDED_BY(sls_mu) bad1; // expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
typedef int PT_GUARDED_VAR bad2; // expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
}
} // end namespace pt_guard_attribute_type
namespace ThreadAttributesOnLambdas {
class Foo {
Mutex mu_;
void LockedFunction() EXCLUSIVE_LOCKS_REQUIRED(mu_);
void test() {
auto func1 = [this]() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
LockedFunction();
};
auto func2 = [this]() NO_THREAD_SAFETY_ANALYSIS {
LockedFunction();
};
auto func3 = [this]() EXCLUSIVE_LOCK_FUNCTION(mu_) {
mu_.Lock();
};
func1(); // expected-warning {{calling function 'operator()' requires holding mutex 'mu_' exclusively}}
func2();
func3();
mu_.Unlock();
}
};
} // end namespace ThreadAttributesOnLambdas
namespace AttributeExpressionCornerCases {
class Foo {
int a GUARDED_BY(getMu());
Mutex* getMu() LOCK_RETURNED("");
Mutex* getUniv() LOCK_RETURNED("*");
void test1() {
a = 0;
}
void test2() EXCLUSIVE_LOCKS_REQUIRED(getUniv()) {
a = 0;
}
void foo(Mutex* mu) EXCLUSIVE_LOCKS_REQUIRED(mu);
void test3() {
foo(nullptr);
}
};
class MapTest {
struct MuCell { Mutex* mu; };
MyMap<MyString, Mutex*> map;
MyMap<MyString, MuCell> mapCell;
int a GUARDED_BY(map["foo"]);
int b GUARDED_BY(mapCell["foo"].mu);
void test() {
map["foo"]->Lock();
a = 0;
map["foo"]->Unlock();
}
void test2() {
mapCell["foo"].mu->Lock();
b = 0;
mapCell["foo"].mu->Unlock();
}
};
class PreciseSmartPtr {
SmartPtr<Mutex> mu;
int val GUARDED_BY(mu);
static bool compare(PreciseSmartPtr& a, PreciseSmartPtr &b) {
a.mu->Lock();
bool result = (a.val == b.val); // expected-warning {{reading variable 'val' requires holding mutex 'b.mu'}} \
// expected-note {{found near match 'a.mu'}}
a.mu->Unlock();
return result;
}
};
class SmartRedeclare {
SmartPtr<Mutex> mu;
int val GUARDED_BY(mu);
void test() EXCLUSIVE_LOCKS_REQUIRED(mu);
void test2() EXCLUSIVE_LOCKS_REQUIRED(mu.get());
void test3() EXCLUSIVE_LOCKS_REQUIRED(mu.get());
};
void SmartRedeclare::test() EXCLUSIVE_LOCKS_REQUIRED(mu.get()) {
val = 0;
}
void SmartRedeclare::test2() EXCLUSIVE_LOCKS_REQUIRED(mu) {
val = 0;
}
void SmartRedeclare::test3() {
val = 0;
}
namespace CustomMutex {
class LOCKABLE BaseMutex { };
class DerivedMutex : public BaseMutex { };
void customLock(const BaseMutex *m) EXCLUSIVE_LOCK_FUNCTION(m);
void customUnlock(const BaseMutex *m) UNLOCK_FUNCTION(m);
static struct DerivedMutex custMu;
static void doSomethingRequiringLock() EXCLUSIVE_LOCKS_REQUIRED(custMu) { }
void customTest() {
customLock(reinterpret_cast<BaseMutex*>(&custMu)); // ignore casts
doSomethingRequiringLock();
customUnlock(reinterpret_cast<BaseMutex*>(&custMu));
}
} // end namespace CustomMutex
} // end AttributeExpressionCornerCases
namespace ScopedLockReturnedInvalid {
class Opaque;
Mutex* getMutex(Opaque* o) LOCK_RETURNED("");
void test(Opaque* o) {
MutexLock lock(getMutex(o));
}
} // end namespace ScopedLockReturnedInvalid
namespace NegativeRequirements {
class Bar {
Mutex mu;
int a GUARDED_BY(mu);
public:
void baz() EXCLUSIVE_LOCKS_REQUIRED(!mu) {
mu.Lock();
a = 0;
mu.Unlock();
}
};
class Foo {
Mutex mu;
int a GUARDED_BY(mu);
public:
void foo() {
mu.Lock(); // warning? needs !mu?
baz(); // expected-warning {{cannot call function 'baz' while mutex 'mu' is held}}
bar();
mu.Unlock();
}
void bar() {
bar2(); // expected-warning {{calling function 'bar2' requires holding '!mu'}}
}
void bar2() EXCLUSIVE_LOCKS_REQUIRED(!mu) {
baz();
}
void baz() EXCLUSIVE_LOCKS_REQUIRED(!mu) {
mu.Lock();
a = 0;
mu.Unlock();
}
void test() {
Bar b;
b.baz(); // no warning -- in different class.
}
};
} // end namespace NegativeRequirements
namespace NegativeThreadRoles {
typedef int __attribute__((capability("role"))) ThreadRole;
void acquire(ThreadRole R) __attribute__((exclusive_lock_function(R))) __attribute__((no_thread_safety_analysis)) {}
void release(ThreadRole R) __attribute__((unlock_function(R))) __attribute__((no_thread_safety_analysis)) {}
ThreadRole FlightControl, Logger;
extern void enque_log_msg(const char *msg);
void log_msg(const char *msg) {
enque_log_msg(msg);
}
void dispatch_log(const char *msg) __attribute__((requires_capability(!FlightControl))) {}
void dispatch_log2(const char *msg) __attribute__((requires_capability(Logger))) {}
void flight_control_entry(void) __attribute__((requires_capability(FlightControl))) {
dispatch_log("wrong"); /* expected-warning {{cannot call function 'dispatch_log' while mutex 'FlightControl' is held}} */
dispatch_log2("also wrong"); /* expected-warning {{calling function 'dispatch_log2' requires holding role 'Logger' exclusively}} */
}
void spawn_fake_flight_control_thread(void) {
acquire(FlightControl);
flight_control_entry();
release(FlightControl);
}
extern const char *deque_log_msg(void) __attribute__((requires_capability(Logger)));
void logger_entry(void) __attribute__((requires_capability(Logger))) {
const char *msg;
while ((msg = deque_log_msg())) {
dispatch_log(msg);
}
}
void spawn_fake_logger_thread(void) {
acquire(Logger);
logger_entry();
release(Logger);
}
int main(void) {
spawn_fake_flight_control_thread();
spawn_fake_logger_thread();
for (;;)
; /* Pretend to dispatch things. */
return 0;
}
} // end namespace NegativeThreadRoles
namespace AssertSharedExclusive {
void doSomething();
class Foo {
Mutex mu;
int a GUARDED_BY(mu);
void test() SHARED_LOCKS_REQUIRED(mu) {
mu.AssertHeld();
if (a > 0)
doSomething();
}
};
} // end namespace AssertSharedExclusive
namespace RangeBasedForAndReferences {
class Foo {
struct MyStruct {
int a;
};
Mutex mu;
int a GUARDED_BY(mu);
MyContainer<int> cntr GUARDED_BY(mu);
MyStruct s GUARDED_BY(mu);
int arr[10] GUARDED_BY(mu);
void nonref_test() {
int b = a; // expected-warning {{reading variable 'a' requires holding mutex 'mu'}}
b = 0; // no warning
}
void auto_test() {
auto b = a; // expected-warning {{reading variable 'a' requires holding mutex 'mu'}}
b = 0; // no warning
auto &c = a; // no warning
c = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
}
void ref_test() {
int &b = a;
int &c = b;
int &d = c;
b = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
c = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
d = 0; // expected-warning {{writing variable 'a' requires holding mutex 'mu' exclusively}}
MyStruct &rs = s;
rs.a = 0; // expected-warning {{writing variable 's' requires holding mutex 'mu' exclusively}}
int (&rarr)[10] = arr;
rarr[2] = 0; // expected-warning {{writing variable 'arr' requires holding mutex 'mu' exclusively}}
}
void ptr_test() {
int *b = &a;
*b = 0; // no expected warning yet
}
void for_test() {
int total = 0;
for (int i : cntr) { // expected-warning2 {{reading variable 'cntr' requires holding mutex 'mu'}}
total += i;
}
}
};
} // end namespace RangeBasedForAndReferences
namespace PassByRefTest {
class Foo {
public:
Foo() : a(0), b(0) { }
int a;
int b;
void operator+(const Foo& f);
void operator[](const Foo& g);
};
template<class T>
T&& mymove(T& f);
// test top-level functions
void copy(Foo f);
void write1(Foo& f);
void write2(int a, Foo& f);
void read1(const Foo& f);
void read2(int a, const Foo& f);
void destroy(Foo&& f);
void operator/(const Foo& f, const Foo& g);
void operator*(const Foo& f, const Foo& g);
class Bar {
public:
Mutex mu;
Foo foo GUARDED_BY(mu);
Foo foo2 GUARDED_BY(mu);
Foo* foop PT_GUARDED_BY(mu);
SmartPtr<Foo> foosp PT_GUARDED_BY(mu);
// test methods.
void mwrite1(Foo& f);
void mwrite2(int a, Foo& f);
void mread1(const Foo& f);
void mread2(int a, const Foo& f);
// static methods
static void smwrite1(Foo& f);
static void smwrite2(int a, Foo& f);
static void smread1(const Foo& f);
static void smread2(int a, const Foo& f);
void operator<<(const Foo& f);
void test1() {
copy(foo); // expected-warning {{reading variable 'foo' requires holding mutex 'mu'}}
write1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
write2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
read1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
read2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
destroy(mymove(foo)); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
mwrite1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
mwrite2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
mread1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
mread2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
smwrite1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
smwrite2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
smread1(foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
smread2(10, foo); // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
foo + foo2; // expected-warning {{reading variable 'foo' requires holding mutex 'mu'}} \
// expected-warning {{passing variable 'foo2' by reference requires holding mutex 'mu'}}
foo / foo2; // expected-warning {{reading variable 'foo' requires holding mutex 'mu'}} \
// expected-warning {{passing variable 'foo2' by reference requires holding mutex 'mu'}}
foo * foo2; // expected-warning {{reading variable 'foo' requires holding mutex 'mu'}} \
// expected-warning {{passing variable 'foo2' by reference requires holding mutex 'mu'}}
foo[foo2]; // expected-warning {{reading variable 'foo' requires holding mutex 'mu'}} \
// expected-warning {{passing variable 'foo2' by reference requires holding mutex 'mu'}}
(*this) << foo; // expected-warning {{passing variable 'foo' by reference requires holding mutex 'mu'}}
copy(*foop); // expected-warning {{reading the value pointed to by 'foop' requires holding mutex 'mu'}}
write1(*foop); // expected-warning {{passing the value that 'foop' points to by reference requires holding mutex 'mu'}}
write2(10, *foop); // expected-warning {{passing the value that 'foop' points to by reference requires holding mutex 'mu'}}
read1(*foop); // expected-warning {{passing the value that 'foop' points to by reference requires holding mutex 'mu'}}
read2(10, *foop); // expected-warning {{passing the value that 'foop' points to by reference requires holding mutex 'mu'}}
destroy(mymove(*foop)); // expected-warning {{passing the value that 'foop' points to by reference requires holding mutex 'mu'}}
copy(*foosp); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
write1(*foosp); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
write2(10, *foosp); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
read1(*foosp); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
read2(10, *foosp); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
destroy(mymove(*foosp)); // expected-warning {{reading the value pointed to by 'foosp' requires holding mutex 'mu'}}
// TODO -- these require better smart pointer handling.
copy(*foosp.get());
write1(*foosp.get());
write2(10, *foosp.get());
read1(*foosp.get());
read2(10, *foosp.get());
destroy(mymove(*foosp.get()));
}
};
} // end namespace PassByRefTest
namespace AcquiredBeforeAfterText {
class Foo {
Mutex mu1 ACQUIRED_BEFORE(mu2, mu3);
Mutex mu2;
Mutex mu3;
void test1() {
mu1.Lock();
mu2.Lock();
mu3.Lock();
mu3.Unlock();
mu2.Unlock();
mu1.Unlock();
}
void test2() {
mu2.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu2'}}
mu1.Unlock();
mu2.Unlock();
}
void test3() {
mu3.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu3'}}
mu1.Unlock();
mu3.Unlock();
}
void test4() EXCLUSIVE_LOCKS_REQUIRED(mu1) {
mu2.Lock();
mu2.Unlock();
}
void test5() EXCLUSIVE_LOCKS_REQUIRED(mu2) {
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu2'}}
mu1.Unlock();
}
void test6() EXCLUSIVE_LOCKS_REQUIRED(mu2) {
mu1.AssertHeld();
}
void test7() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2, mu3) { }
void test8() EXCLUSIVE_LOCKS_REQUIRED(mu3, mu2, mu1) { }
};
class Foo2 {
Mutex mu1;
Mutex mu2 ACQUIRED_AFTER(mu1);
Mutex mu3 ACQUIRED_AFTER(mu1);
void test1() {
mu1.Lock();
mu2.Lock();
mu3.Lock();
mu3.Unlock();
mu2.Unlock();
mu1.Unlock();
}
void test2() {
mu2.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu2'}}
mu1.Unlock();
mu2.Unlock();
}
void test3() {
mu3.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu3'}}
mu1.Unlock();
mu3.Unlock();
}
};
class Foo3 {
Mutex mu1 ACQUIRED_BEFORE(mu2);
Mutex mu2;
Mutex mu3 ACQUIRED_AFTER(mu2) ACQUIRED_BEFORE(mu4);
Mutex mu4;
void test1() {
mu1.Lock();
mu2.Lock();
mu3.Lock();
mu4.Lock();
mu4.Unlock();
mu3.Unlock();
mu2.Unlock();
mu1.Unlock();
}
void test2() {
mu4.Lock();
mu2.Lock(); // expected-warning {{mutex 'mu2' must be acquired before 'mu4'}}
mu2.Unlock();
mu4.Unlock();
}
void test3() {
mu4.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu4'}}
mu1.Unlock();
mu4.Unlock();
}
void test4() {
mu3.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu3'}}
mu1.Unlock();
mu3.Unlock();
}
};
// Test transitive DAG traversal with AFTER
class Foo4 {
Mutex mu1;
Mutex mu2 ACQUIRED_AFTER(mu1);
Mutex mu3 ACQUIRED_AFTER(mu1);
Mutex mu4 ACQUIRED_AFTER(mu2, mu3);
Mutex mu5 ACQUIRED_AFTER(mu4);
Mutex mu6 ACQUIRED_AFTER(mu4);
Mutex mu7 ACQUIRED_AFTER(mu5, mu6);
Mutex mu8 ACQUIRED_AFTER(mu7);
void test() {
mu8.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu8'}}
mu1.Unlock();
mu8.Unlock();
}
};
// Test transitive DAG traversal with BEFORE
class Foo5 {
Mutex mu1 ACQUIRED_BEFORE(mu2, mu3);
Mutex mu2 ACQUIRED_BEFORE(mu4);
Mutex mu3 ACQUIRED_BEFORE(mu4);
Mutex mu4 ACQUIRED_BEFORE(mu5, mu6);
Mutex mu5 ACQUIRED_BEFORE(mu7);
Mutex mu6 ACQUIRED_BEFORE(mu7);
Mutex mu7 ACQUIRED_BEFORE(mu8);
Mutex mu8;
void test() {
mu8.Lock();
mu1.Lock(); // expected-warning {{mutex 'mu1' must be acquired before 'mu8'}}
mu1.Unlock();
mu8.Unlock();
}
};
class Foo6 {
Mutex mu1 ACQUIRED_AFTER(mu3); // expected-warning {{Cycle in acquired_before/after dependencies, starting with 'mu1'}}
Mutex mu2 ACQUIRED_AFTER(mu1); // expected-warning {{Cycle in acquired_before/after dependencies, starting with 'mu2'}}
Mutex mu3 ACQUIRED_AFTER(mu2); // expected-warning {{Cycle in acquired_before/after dependencies, starting with 'mu3'}}
Mutex mu_b ACQUIRED_BEFORE(mu_b); // expected-warning {{Cycle in acquired_before/after dependencies, starting with 'mu_b'}}
Mutex mu_a ACQUIRED_AFTER(mu_a); // expected-warning {{Cycle in acquired_before/after dependencies, starting with 'mu_a'}}
void test0() {
mu_a.Lock();
mu_b.Lock();
mu_b.Unlock();
mu_a.Unlock();
}
void test1a() {
mu1.Lock();
mu1.Unlock();
}
void test1b() {
mu1.Lock();
mu_a.Lock();
mu_b.Lock();
mu_b.Unlock();
mu_a.Unlock();
mu1.Unlock();
}
void test() {
mu2.Lock();
mu2.Unlock();
}
void test3() {
mu3.Lock();
mu3.Unlock();
}
};
} // end namespace AcquiredBeforeAfterTest
namespace ScopedAdoptTest {
class Foo {
Mutex mu;
int a GUARDED_BY(mu);
int b;
void test1() EXCLUSIVE_UNLOCK_FUNCTION(mu) {
MutexLock slock(&mu, true);
a = 0;
}
void test2() SHARED_UNLOCK_FUNCTION(mu) {
ReaderMutexLock slock(&mu, true);
b = a;
}
void test3() EXCLUSIVE_LOCKS_REQUIRED(mu) { // expected-note {{mutex acquired here}}
MutexLock slock(&mu, true);
a = 0;
} // expected-warning {{expecting mutex 'mu' to be held at the end of function}}
void test4() SHARED_LOCKS_REQUIRED(mu) { // expected-note {{mutex acquired here}}
ReaderMutexLock slock(&mu, true);
b = a;
} // expected-warning {{expecting mutex 'mu' to be held at the end of function}}
};
} // end namespace ScopedAdoptTest
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/vararg-class.cpp
|
// RUN: %clang_cc1 -verify -Wclass-varargs -std=c++98 %s
// RUN: %clang_cc1 -verify -Wclass-varargs -std=c++11 %s
struct A {};
struct B { ~B(); };
class C { char *c_str(); };
struct D { char *c_str(); };
struct E { E(); };
struct F { F(); char *c_str(); };
void v(...);
void w(const char*, ...) __attribute__((format(printf, 1, 2)));
void test(A a, B b, C c, D d, E e, F f) {
v(a); // expected-warning-re {{passing object of class type 'A' through variadic function{{$}}}}
v(b); // expected-error-re {{cannot pass object of non-{{POD|trivial}} type 'B' through variadic function; call will abort at runtime}}
v(c); // expected-warning {{passing object of class type 'C' through variadic function; did you mean to call '.c_str()'?}}
v(d); // expected-warning {{passing object of class type 'D' through variadic function; did you mean to call '.c_str()'?}}
v(e);
v(f);
#if __cplusplus < 201103L
// expected-error@-3 {{cannot pass object of non-POD type 'E' through variadic function; call will abort at runtime}}
// expected-error@-3 {{cannot pass object of non-POD type 'F' through variadic function; call will abort at runtime}}
#else
// expected-warning-re@-6 {{passing object of class type 'E' through variadic function{{$}}}}
// expected-warning@-6 {{passing object of class type 'F' through variadic function; did you mean to call '.c_str()'?}}
#endif
v(d.c_str());
v(f.c_str());
v(0);
v('x');
w("%s", a); // expected-warning {{format specifies type 'char *' but the argument has type 'A'}}
w("%s", b); // expected-error-re {{cannot pass non-{{POD|trivial}} object of type 'B' to variadic function; expected type from format string was 'char *'}}
w("%s", c); // expected-warning {{format specifies type 'char *' but the argument has type 'C'}}
w("%s", d); // expected-warning {{format specifies type 'char *' but the argument has type 'D'}}
w("%s", e);
w("%s", f);
#if __cplusplus < 201103L
// expected-error@-3 {{cannot pass non-POD object of type 'E' to variadic function; expected type from format string was 'char *'}}
// expected-error@-3 {{cannot pass non-POD object of type 'F' to variadic function; expected type from format string was 'char *'}}
// expected-note@-4 {{did you mean to call the c_str() method?}}
#else
// expected-warning@-7 {{format specifies type 'char *' but the argument has type 'E'}}
// expected-warning@-7 {{format specifies type 'char *' but the argument has type 'F'}}
#endif
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx0x-initializer-aggregates.cpp
|
// RUN: %clang_cc1 -std=c++0x -fsyntax-only -verify %s
struct one { char c[1]; };
struct two { char c[2]; };
namespace aggregate {
struct S {
int ar[2];
struct T {
int i1;
int i2;
} t;
struct U {
int i1;
} u[2];
struct V {
int var[2];
} v;
};
void bracing() {
S s1 = { 1, 2, 3 ,4, 5, 6, 7, 8 };
S s2{ {1, 2}, {3, 4}, { {5}, {6} }, { {7, 8} } };
S s3{ 1, 2, 3, 4, 5, 6 };
S s4{ {1, 2}, {3, 4}, {5, 6}, { {7, 8} } };
S s5{ {1, 2}, {3, 4}, { {5}, {6} }, {7, 8} };
}
void bracing_new() {
new S{ {1, 2}, {3, 4}, { {5}, {6} }, { {7, 8} } };
new S{ 1, 2, 3, 4, 5, 6 };
new S{ {1, 2}, {3, 4}, {5, 6}, { {7, 8} } };
new S{ {1, 2}, {3, 4}, { {5}, {6} }, {7, 8} };
}
void bracing_construct() {
(void) S{ {1, 2}, {3, 4}, { {5}, {6} }, { {7, 8} } };
(void) S{ 1, 2, 3, 4, 5, 6 };
(void) S{ {1, 2}, {3, 4}, {5, 6}, { {7, 8} } };
(void) S{ {1, 2}, {3, 4}, { {5}, {6} }, {7, 8} };
}
struct String {
String(const char*);
};
struct A {
int m1;
int m2;
};
void function_call() {
void takes_A(A);
takes_A({1, 2});
}
struct B {
int m1;
String m2;
};
void overloaded_call() {
one overloaded(A);
two overloaded(B);
static_assert(sizeof(overloaded({1, 2})) == sizeof(one), "bad overload");
static_assert(sizeof(overloaded({1, "two"})) == sizeof(two),
"bad overload");
// String is not default-constructible
static_assert(sizeof(overloaded({1})) == sizeof(one), "bad overload");
}
struct C { int a[2]; C():a({1, 2}) { } }; // expected-error {{parenthesized initialization of a member array is a GNU extension}}
}
namespace array_explicit_conversion {
typedef int test1[2];
typedef int test2[];
template<int x> struct A { int a[x]; }; // expected-error {{'a' declared as an array with a negative size}}
typedef A<1> test3[];
typedef A<-1> test4[];
void f() {
(void)test1{1};
(void)test2{1};
(void)test3{{{1}}};
(void)test4{{{1}}}; // expected-note {{in instantiation of template class 'array_explicit_conversion::A<-1>' requested here}}
}
}
namespace sub_constructor {
struct DefaultConstructor { // expected-note 2 {{not viable}}
DefaultConstructor(); // expected-note {{not viable}}
int x;
};
struct NoDefaultConstructor1 { // expected-note 2 {{not viable}}
NoDefaultConstructor1(int); // expected-note {{not viable}}
int x;
};
struct NoDefaultConstructor2 { // expected-note 4 {{not viable}}
NoDefaultConstructor2(int,int); // expected-note 2 {{not viable}}
int x;
};
struct Aggr {
DefaultConstructor a;
NoDefaultConstructor1 b;
NoDefaultConstructor2 c;
};
Aggr ok1 { {}, {0} , {0,0} };
Aggr ok2 = { {}, {0} , {0,0} };
Aggr too_many { {0} , {0} , {0,0} }; // expected-error {{no matching constructor for initialization}}
Aggr too_few { {} , {0} , {0} }; // expected-error {{no matching constructor for initialization}}
Aggr invalid { {} , {&ok1} , {0,0} }; // expected-error {{no matching constructor for initialization}}
NoDefaultConstructor2 array_ok[] = { {0,0} , {0,1} };
NoDefaultConstructor2 array_error[] = { {0,0} , {0} }; // expected-error {{no matching constructor for initialization}}
}
namespace multidimensional_array {
void g(const int (&)[2][2]) {}
void g(const int (&)[2][2][2]) = delete;
void h() {
g({{1,2},{3,4}});
}
}
namespace array_addressof {
using T = int[5];
T *p = &T{1,2,3,4,5}; // expected-error {{taking the address of a temporary object of type 'T' (aka 'int [5]')}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/using-decl-pr4450.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// expected-no-diagnostics
namespace A {
void g();
}
namespace X {
using A::g;
}
void h()
{
A::g();
X::g();
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/microsoft-cxx0x.cpp
|
// RUN: %clang_cc1 %s -triple i686-pc-win32 -fsyntax-only -Wc++11-narrowing -Wmicrosoft -verify -fms-extensions -std=c++11
// RUN: %clang_cc1 %s -triple i686-pc-win32 -fsyntax-only -Wc++11-narrowing -Wmicrosoft -verify -fms-extensions -std=c++11 -fms-compatibility -DMS_COMPAT
struct A {
unsigned int a;
};
int b = 3;
A var = { b }; // expected-warning {{ cannot be narrowed }} expected-note {{insert an explicit cast to silence this issue}}
namespace PR13433 {
struct S;
S make();
template<typename F> auto x(F f) -> decltype(f(make()));
#ifndef MS_COMPAT
// expected-error@-2{{calling 'make' with incomplete return type 'PR13433::S'}}
// expected-note@-5{{'make' declared here}}
// expected-note@-7{{forward declaration of 'PR13433::S'}}
#endif
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cast-lvalue-to-rvalue-reference.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
// expected-no-diagnostics
struct S {};
int x;
S&& y1 = (S&&)x;
S&& y2 = reinterpret_cast<S&&>(x);
S& z1 = (S&)x;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unused-value.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wunused-value %s
// PR4806
namespace test0 {
class Box {
public:
int i;
volatile int j;
};
void doit() {
// pointer to volatile has side effect (thus no warning)
Box* box = new Box;
box->i; // expected-warning {{expression result unused}}
box->j; // expected-warning {{expression result unused}}
}
}
namespace test1 {
struct Foo {
int i;
bool operator==(const Foo& rhs) {
return i == rhs.i;
}
};
#define NOP(x) (x)
void b(Foo f1, Foo f2) {
NOP(f1 == f2); // expected-warning {{expression result unused}}
}
#undef NOP
}
namespace test2 {
extern "C++" {
namespace std {
template<typename T> struct basic_string {
struct X {};
void method() const {
X* x;
&x[0]; // expected-warning {{expression result unused}}
}
};
typedef basic_string<char> string;
void func(const std::string& str) {
str.method(); // expected-note {{in instantiation of member function}}
}
}
}
}
namespace test3 {
struct Used {
Used();
Used(int);
Used(int, int);
};
struct __attribute__((warn_unused)) Unused {
Unused();
Unused(int);
Unused(int, int);
};
void f() {
Used();
Used(1);
Used(1, 1);
Unused(); // expected-warning {{expression result unused}}
Unused(1); // expected-warning {{expression result unused}}
Unused(1, 1); // expected-warning {{expression result unused}}
}
}
namespace std {
struct type_info {};
}
namespace test4 {
struct Good { Good &f(); };
struct Bad { virtual Bad& f(); };
void f() {
int i = 0;
(void)typeid(++i); // expected-warning {{expression with side effects has no effect in an unevaluated context}}
Good g;
(void)typeid(g.f()); // Ok; not a polymorphic use of a glvalue.
// This is a polymorphic use of a glvalue, which results in the typeid being
// evaluated instead of unevaluated.
Bad b;
(void)typeid(b.f()); // expected-warning {{expression with side effects will be evaluated despite being used as an operand to 'typeid'}}
// A dereference of a volatile pointer is a side effecting operation, however
// since it is idiomatic code, and the alternatives induce higher maintenance
// costs, it is allowed.
int * volatile x;
(void)sizeof(*x); // Ok
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/new-delete-cxx0x.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11 -triple=i686-pc-linux-gnu
void ugly_news(int *ip) {
// These are ill-formed according to one reading of C++98, and at the least
// have undefined behavior.
// FIXME: They're ill-formed in C++11.
(void)new int[-1]; // expected-warning {{array size is negative}}
(void)new int[2000000000]; // expected-warning {{array is too large}}
}
struct S {
S(int);
S();
~S();
};
struct T { // expected-note 2 {{not viable}}
T(int); // expected-note {{not viable}}
};
void fn() {
(void) new int[2] {1, 2};
(void) new S[2] {1, 2};
// C++11 [expr.new]p19:
// If the new-expression creates an object or an array of objects of class
// type, access and ambiguity control are done for the allocation function,
// the deallocation function (12.5), and the constructor (12.1).
//
// Note that this happens even if the array bound is constant and the
// initializer initializes every array element.
(void) new T[2] {1, 2}; // expected-error {{no matching constructor}} expected-note {{in implicit initialization of array element 2}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/type-traits-incomplete.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
struct S; // expected-note 2 {{forward declaration of 'S'}}
void f() {
__is_pod(S); // expected-error{{incomplete type 'S' used in type trait expression}}
__is_pod(S[]); // expected-error{{incomplete type 'S' used in type trait expression}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/PR6618.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
class bar; // expected-note {{forward declaration of 'bar'}}
struct zed {
bar g; // expected-error {{field has incomplete type}}
};
class baz {
zed h;
};
void f() {
enum {
e = sizeof(baz)
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constructor-initializer.cpp
|
// RUN: %clang_cc1 -Wreorder -fsyntax-only -verify %s
class A {
int m;
public:
A() : A::m(17) { } // expected-error {{member initializer 'm' does not name a non-static data member or base class}}
A(int);
};
class B : public A {
public:
B() : A(), m(1), n(3.14) { }
private:
int m;
float n;
};
class C : public virtual B {
public:
C() : B() { }
};
class D : public C {
public:
D() : B(), C() { }
};
class E : public D, public B { // expected-warning{{direct base 'B' is inaccessible due to ambiguity:\n class E -> class D -> class C -> class B\n class E -> class B}}
public:
E() : B(), D() { } // expected-error{{base class initializer 'B' names both a direct base class and an inherited virtual base class}}
};
typedef int INT;
class F : public B {
public:
int B;
F() : B(17),
m(17), // expected-error{{member initializer 'm' does not name a non-static data member or base class}}
INT(17) // expected-error{{constructor initializer 'INT' (aka 'int') does not name a class}}
{
}
};
class G : A {
G() : A(10); // expected-error{{expected '{'}}
};
void f() : a(242) { } // expected-error{{only constructors take base initializers}}
class H : A {
H();
};
H::H() : A(10) { }
class X {};
class Y {};
struct S : Y, virtual X {
S ();
};
struct Z : S {
Z() : X(), S(), E() {} // expected-error {{type 'E' is not a direct or virtual base of 'Z'}}
};
class U {
union { int a; char* p; };
union { int b; double d; };
U() : a(1), // expected-note {{previous initialization is here}}
p(0), // expected-error {{initializing multiple members of union}}
d(1.0) {}
};
struct V {};
struct Base {};
struct Base1 {};
struct Derived : Base, Base1, virtual V {
Derived ();
};
struct Current : Derived {
int Derived;
Current() : Derived(1), ::Derived(), // expected-warning {{field 'Derived' will be initialized after base '::Derived'}} \
// expected-warning {{base class '::Derived' will be initialized after base 'Derived::V'}}
::Derived::Base(), // expected-error {{type '::Derived::Base' is not a direct or virtual base of 'Current'}}
Derived::Base1(), // expected-error {{type 'Derived::Base1' is not a direct or virtual base of 'Current'}}
Derived::V(),
::NonExisting(), // expected-error {{member initializer 'NonExisting' does not name a non-static data member or}}
INT::NonExisting() {} // expected-error {{'INT' (aka 'int') is not a class, namespace, or enumeration}} \
// expected-error {{member initializer 'NonExisting' does not name a non-static data member or}}
};
struct M { // expected-note 2 {{candidate constructor (the implicit copy constructor)}} \
// expected-note {{declared here}} \
// expected-note {{declared here}}
M(int i, int j); // expected-note 2 {{candidate constructor}}
};
struct N : M {
N() : M(1), // expected-error {{no matching constructor for initialization of 'M'}}
m1(100) { } // expected-error {{no matching constructor for initialization of 'M'}}
M m1;
};
struct P : M {
P() { } // expected-error {{constructor for 'P' must explicitly initialize the base class 'M' which does not have a default constructor}} \
// expected-error {{member 'm'}}
M m; // expected-note {{member is declared here}}
};
struct Q {
Q() : f1(1,2), // expected-error {{excess elements in scalar initializer}}
pf(0.0) { } // expected-error {{cannot initialize a member subobject of type 'float *' with an rvalue of type 'double'}}
float f1;
float *pf;
};
// A silly class used to demonstrate field-is-uninitialized in constructors with
// multiple params.
int IntParam(int i) { return 0; };
class TwoInOne { public: TwoInOne(TwoInOne a, TwoInOne b) {} };
class InitializeUsingSelfTest {
bool A;
char* B;
int C;
TwoInOne D;
int E;
InitializeUsingSelfTest(int F)
: A(A), // expected-warning {{field 'A' is uninitialized when used here}}
B((((B)))), // expected-warning {{field 'B' is uninitialized when used here}}
C(A && InitializeUsingSelfTest::C), // expected-warning {{field 'C' is uninitialized when used here}}
D(D, // expected-warning {{field 'D' is uninitialized when used here}}
D), // expected-warning {{field 'D' is uninitialized when used here}}
E(IntParam(E)) {} // expected-warning {{field 'E' is uninitialized when used here}}
};
int IntWrapper(int &i) { return 0; };
class InitializeUsingSelfExceptions {
int A;
int B;
int C;
void *P;
InitializeUsingSelfExceptions(int B)
: A(IntWrapper(A)), // Due to a conservative implementation, we do not report warnings inside function/ctor calls even though it is possible to do so.
B(B), // Not a warning; B is a local variable.
C(sizeof(C)), // sizeof doesn't reference contents, do not warn
P(&P) {} // address-of doesn't reference contents (the pointer may be dereferenced in the same expression but it would be rare; and weird)
};
class CopyConstructorTest {
bool A, B, C;
CopyConstructorTest(const CopyConstructorTest& rhs)
: A(rhs.A),
B(B), // expected-warning {{field 'B' is uninitialized when used here}}
C(rhs.C || C) { } // expected-warning {{field 'C' is uninitialized when used here}}
};
// Make sure we aren't marking default constructors when we shouldn't be.
template<typename T>
struct NDC {
T &ref;
NDC() { }
NDC(T &ref) : ref(ref) { }
};
struct X0 : NDC<int> {
X0(int &ref) : NDC<int>(ref), ndc(ref) { }
NDC<int> ndc;
};
namespace Test0 {
struct A { A(); };
struct B {
B() { }
const A a;
};
}
namespace Test1 {
struct A {
enum Kind { Foo } Kind;
A() : Kind(Foo) {}
};
}
namespace Test2 {
struct A {
A(const A&);
};
struct B : virtual A { };
struct C : A, B { }; // expected-warning{{direct base 'Test2::A' is inaccessible due to ambiguity:\n struct Test2::C -> struct Test2::A\n struct Test2::C -> struct Test2::B -> struct Test2::A}}
C f(C c) {
return c;
}
}
// Don't build implicit initializers for anonymous union fields when we already
// have an explicit initializer for another field in the union.
namespace PR7402 {
struct S {
union {
void* ptr_;
struct { int i_; };
};
template <typename T> S(T) : ptr_(0) { }
};
void f() {
S s(3);
}
}
// <rdar://problem/8308215>: don't crash.
// Lots of questionable recovery here; errors can change.
namespace test3 {
class A : public std::exception {}; // expected-error {{undeclared identifier}} expected-error {{expected class name}} expected-note 2 {{candidate}}
class B : public A {
public:
B(const String& s, int e=0) // expected-error {{unknown type name}}
: A(e), m_String(s) , m_ErrorStr(__null) {} // expected-error {{no matching constructor}} expected-error {{does not name}}
B(const B& e)
: A(e), m_String(e.m_String), m_ErrorStr(__null) { // expected-error {{does not name}} \
// expected-error {{no member named 'm_String' in 'test3::B'}}
}
};
}
// PR8075
namespace PR8075 {
struct S1 {
enum { FOO = 42 };
static const int bar = 42;
static int baz();
S1(int);
};
const int S1::bar;
struct S2 {
S1 s1;
S2() : s1(s1.FOO) {}
};
struct S3 {
S1 s1;
S3() : s1(s1.bar) {}
};
struct S4 {
S1 s1;
S4() : s1(s1.baz()) {}
};
}
namespace PR12049 {
int function();
class Class
{
public:
Class() : member(function() {} // expected-note {{to match this '('}}
int member; // expected-error {{expected ')'}}
};
}
namespace PR14073 {
struct S1 { union { int n; }; S1() : n(n) {} }; // expected-warning {{field 'n' is uninitialized when used here}}
struct S2 { union { union { int n; }; char c; }; S2() : n(n) {} }; // expected-warning {{field 'n' is uninitialized when used here}}
struct S3 { struct { int n; }; S3() : n(n) {} }; // expected-warning {{field 'n' is uninitialized when used here}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-noreturn.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// Reachability tests have to come first because they get suppressed
// if any errors have occurred.
namespace test5 {
struct A {
__attribute__((noreturn)) void fail();
void nofail();
} a;
int &test1() {
a.nofail();
} // expected-warning {{control reaches end of non-void function}}
int &test2() {
a.fail();
}
}
namespace destructor_tests {
__attribute__((noreturn)) void fail();
struct A {
~A() __attribute__((noreturn)) { fail(); }
};
struct B {
B() {}
~B() __attribute__((noreturn)) { fail(); }
};
struct C : A {};
struct D : B {};
struct E : virtual A {};
struct F : A, virtual B {};
struct G : E {};
struct H : virtual D {};
struct I : A {};
struct J : I {};
struct K : virtual A {};
struct L : K {};
struct M : virtual C {};
struct N : M {};
struct O { N n; };
__attribute__((noreturn)) void test_1() { A a; }
__attribute__((noreturn)) void test_2() { B b; }
__attribute__((noreturn)) void test_3() { C c; }
__attribute__((noreturn)) void test_4() { D d; }
__attribute__((noreturn)) void test_5() { E e; }
__attribute__((noreturn)) void test_6() { F f; }
__attribute__((noreturn)) void test_7() { G g; }
__attribute__((noreturn)) void test_8() { H h; }
__attribute__((noreturn)) void test_9() { I i; }
__attribute__((noreturn)) void test_10() { J j; }
__attribute__((noreturn)) void test_11() { K k; }
__attribute__((noreturn)) void test_12() { L l; }
__attribute__((noreturn)) void test_13() { M m; }
__attribute__((noreturn)) void test_14() { N n; }
__attribute__((noreturn)) void test_15() { O o; }
__attribute__((noreturn)) void test_16() { const A& a = A(); }
__attribute__((noreturn)) void test_17() { const B& b = B(); }
__attribute__((noreturn)) void test_18() { const C& c = C(); }
__attribute__((noreturn)) void test_19() { const D& d = D(); }
__attribute__((noreturn)) void test_20() { const E& e = E(); }
__attribute__((noreturn)) void test_21() { const F& f = F(); }
__attribute__((noreturn)) void test_22() { const G& g = G(); }
__attribute__((noreturn)) void test_23() { const H& h = H(); }
__attribute__((noreturn)) void test_24() { const I& i = I(); }
__attribute__((noreturn)) void test_25() { const J& j = J(); }
__attribute__((noreturn)) void test_26() { const K& k = K(); }
__attribute__((noreturn)) void test_27() { const L& l = L(); }
__attribute__((noreturn)) void test_28() { const M& m = M(); }
__attribute__((noreturn)) void test_29() { const N& n = N(); }
__attribute__((noreturn)) void test_30() { const O& o = O(); }
struct AA {};
struct BB { BB() {} ~BB() {} };
struct CC : AA {};
struct DD : BB {};
struct EE : virtual AA {};
struct FF : AA, virtual BB {};
struct GG : EE {};
struct HH : virtual DD {};
struct II : AA {};
struct JJ : II {};
struct KK : virtual AA {};
struct LL : KK {};
struct MM : virtual CC {};
struct NN : MM {};
struct OO { NN n; };
__attribute__((noreturn)) void test_31() {
AA a;
BB b;
CC c;
DD d;
EE e;
FF f;
GG g;
HH h;
II i;
JJ j;
KK k;
LL l;
MM m;
NN n;
OO o;
const AA& aa = AA();
const BB& bb = BB();
const CC& cc = CC();
const DD& dd = DD();
const EE& ee = EE();
const FF& ff = FF();
const GG& gg = GG();
const HH& hh = HH();
const II& ii = II();
const JJ& jj = JJ();
const KK& kk = KK();
const LL& ll = LL();
const MM& mm = MM();
const NN& nn = NN();
const OO& oo = OO();
} // expected-warning {{function declared 'noreturn' should not return}}
struct P {
~P() __attribute__((noreturn)) { fail(); }
void foo() {}
};
struct Q : P { };
__attribute__((noreturn)) void test31() {
P().foo();
}
__attribute__((noreturn)) void test32() {
Q().foo();
}
struct R {
A a[5];
};
__attribute__((noreturn)) void test33() {
R r;
}
// FIXME: Code flow analysis does not preserve information about non-null
// pointers, so it can't determine that this function is noreturn.
__attribute__((noreturn)) void test34() {
A *a = new A;
delete a;
} // expected-warning {{function declared 'noreturn' should not return}}
struct S {
virtual ~S();
};
struct T : S {
__attribute__((noreturn)) ~T();
};
// FIXME: Code flow analysis does not preserve information about non-null
// pointers or derived class pointers, so it can't determine that this
// function is noreturn.
__attribute__((noreturn)) void test35() {
S *s = new T;
delete s;
} // expected-warning {{function declared 'noreturn' should not return}}
}
// PR5620
void f0() __attribute__((__noreturn__));
void f1(void (*)());
void f2() { f1(f0); }
// Taking the address of a noreturn function
void test_f0a() {
void (*fp)() = f0;
void (*fp1)() __attribute__((noreturn)) = f0;
}
// Taking the address of an overloaded noreturn function
void f0(int) __attribute__((__noreturn__));
void test_f0b() {
void (*fp)() = f0;
void (*fp1)() __attribute__((noreturn)) = f0;
}
// No-returned function pointers
typedef void (* noreturn_fp)() __attribute__((noreturn));
void f3(noreturn_fp); // expected-note{{candidate function}}
void test_f3() {
f3(f0); // okay
f3(f2); // expected-error{{no matching function for call}}
}
class xpto {
int blah() __attribute__((noreturn));
};
int xpto::blah() {
return 3; // expected-warning {{function 'blah' declared 'noreturn' should not return}}
}
// PR12948
namespace PR12948 {
template<int>
void foo() __attribute__((__noreturn__));
template<int>
void foo() {
while (1) continue;
}
void bar() __attribute__((__noreturn__));
void bar() {
foo<0>();
}
void baz() __attribute__((__noreturn__));
typedef void voidfn();
voidfn baz;
template<typename> void wibble() __attribute__((__noreturn__));
template<typename> voidfn wibble;
}
// PR15291
// Overload resolution per over.over should allow implicit noreturn adjustment.
namespace PR15291 {
__attribute__((noreturn)) void foo(int) {}
__attribute__((noreturn)) void foo(double) {}
template <typename T>
__attribute__((noreturn)) void bar(T) {}
void baz(int) {}
void baz(double) {}
template <typename T>
void qux(T) {}
// expected-note@+5 {{candidate function [with T = void (*)(int) __attribute__((noreturn))] not viable: no overload of 'baz' matching 'void (*)(int) __attribute__((noreturn))' for 1st argument}}
// expected-note@+4 {{candidate function [with T = void (*)(int) __attribute__((noreturn))] not viable: no overload of 'qux' matching 'void (*)(int) __attribute__((noreturn))' for 1st argument}}
// expected-note@+3 {{candidate function [with T = void (*)(int) __attribute__((noreturn))] not viable: no overload of 'bar' matching 'void (*)(int) __attribute__((noreturn))' for 1st argument}}
// expected-note@+2 {{candidate function [with T = void (*)(int)] not viable: no overload of 'bar' matching 'void (*)(int)' for 1st argument}}
// expected-note@+1 {{candidate function [with T = void (int)] not viable: no overload of 'bar' matching 'void (*)(int)' for 1st argument}}
template <typename T> void accept_T(T) {}
// expected-note@+1 {{candidate function not viable: no overload of 'bar' matching 'void (*)(int)' for 1st argument}}
void accept_fptr(void (*f)(int)) {
f(42);
}
// expected-note@+2 {{candidate function not viable: no overload of 'baz' matching 'void (*)(int) __attribute__((noreturn))' for 1st argument}}
// expected-note@+1 {{candidate function not viable: no overload of 'qux' matching 'void (*)(int) __attribute__((noreturn))' for 1st argument}}
void accept_noreturn_fptr(void __attribute__((noreturn)) (*f)(int)) {
f(42);
}
typedef void (*fptr_t)(int);
typedef void __attribute__((noreturn)) (*fptr_noreturn_t)(int);
// expected-note@+1 {{candidate function not viable: no overload of 'bar' matching 'fptr_t' (aka 'void (*)(int)') for 1st argument}}
void accept_fptr_t(fptr_t f) {
f(42);
}
// expected-note@+2 {{candidate function not viable: no overload of 'baz' matching 'fptr_noreturn_t' (aka 'void (*)(int) __attribute__((noreturn))') for 1st argument}}
// expected-note@+1 {{candidate function not viable: no overload of 'qux' matching 'fptr_noreturn_t' (aka 'void (*)(int) __attribute__((noreturn))') for 1st argument}}
void accept_fptr_noreturn_t(fptr_noreturn_t f) {
f(42);
}
// Stripping noreturn should work if everything else is correct.
void strip_noreturn() {
accept_fptr(foo);
accept_fptr(bar<int>);
accept_fptr(bar<double>); // expected-error {{no matching function for call to 'accept_fptr'}}
accept_fptr_t(foo);
accept_fptr_t(bar<int>);
accept_fptr_t(bar<double>); // expected-error {{no matching function for call to 'accept_fptr_t'}}
accept_T<void __attribute__((noreturn)) (*)(int)>(foo);
accept_T<void __attribute__((noreturn)) (*)(int)>(bar<int>);
accept_T<void __attribute__((noreturn)) (*)(int)>(bar<double>); // expected-error {{no matching function for call to 'accept_T'}}
accept_T<void (*)(int)>(foo);
accept_T<void (*)(int)>(bar<int>);
accept_T<void (*)(int)>(bar<double>); // expected-error {{no matching function for call to 'accept_T'}}
accept_T<void (int)>(foo);
accept_T<void (int)>(bar<int>);
accept_T<void (int)>(bar<double>); // expected-error {{no matching function for call to 'accept_T'}}
}
// Introducing noreturn should not work.
void introduce_noreturn() {
accept_noreturn_fptr(baz); // expected-error {{no matching function for call to 'accept_noreturn_fptr'}}
accept_noreturn_fptr(qux<int>); // expected-error {{no matching function for call to 'accept_noreturn_fptr'}}
accept_fptr_noreturn_t(baz); // expected-error {{no matching function for call to 'accept_fptr_noreturn_t'}}
accept_fptr_noreturn_t(qux<int>); // expected-error {{no matching function for call to 'accept_fptr_noreturn_t'}}
accept_T<void __attribute__((noreturn)) (*)(int)>(baz); // expected-error {{no matching function for call to 'accept_T'}}
accept_T<void __attribute__((noreturn)) (*)(int)>(qux<int>); // expected-error {{no matching function for call to 'accept_T'}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/libstdcxx_atomic_ns_hack.cpp
|
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
// libstdc++ 4.6.x contains a bug where it defines std::__atomic[0,1,2] as a
// non-inline namespace, then selects one of those namespaces and reopens it
// as inline, as a strange way of providing something like a using-directive.
// Clang has an egregious hack to work around the problem, by allowing a
// namespace to be converted from non-inline to inline in this one specific
// case.
#ifdef BE_THE_HEADER
#pragma clang system_header
namespace std {
namespace __atomic0 {
typedef int foobar;
}
namespace __atomic1 {
typedef void foobar;
}
inline namespace __atomic0 {}
}
#else
#define BE_THE_HEADER
#include "libstdcxx_atomic_ns_hack.cpp"
std::foobar fb;
using T = void; // expected-note {{here}}
using T = std::foobar; // expected-error {{different types ('std::foobar' (aka 'int') vs 'void')}}
#endif
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/short-enums.cpp
|
// RUN: %clang_cc1 -fshort-enums -fsyntax-only %s
// This shouldn't crash: PR9474
enum E { VALUE_1 };
template <typename T>
struct A {};
template <E Enum>
struct B : A<B<Enum> > {};
void bar(int x) {
switch (x) {
case sizeof(B<VALUE_1>): ;
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/function-overloaded-redecl.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
typedef const int cInt;
void f (int);
void f (const int); // redecl
void f (int) { } // expected-note {{previous definition is here}}
void f (cInt) { } // expected-error {{redefinition of 'f'}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/ns_returns_retained_block_return.cpp
|
// RUN: %clang_cc1 -fblocks -fsyntax-only -verify %s
// RUN: %clang_cc1 -fblocks -fobjc-arc -fsyntax-only -verify %s
// expected-no-diagnostics
// rdar://17259812
typedef void (^BT) ();
class S {
BT br() __attribute__((ns_returns_retained)) {
return ^{};
}
BT br1() __attribute__((ns_returns_retained));
};
BT S::br1() {
return ^{};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/invalid-instantiated-field-decl.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
template <typename T>
class SmallVectorImpl {
public:
explicit SmallVectorImpl(unsigned N) {
}
~SmallVectorImpl() { }
};
template <typename T, unsigned N>
class SmallVector : public SmallVectorImpl<T> {
typedef typename SmallVectorImpl<T>::U U; // expected-error {{no type named 'U' in 'SmallVectorImpl<CallSite>'}}
enum {
MinUs = (static_cast<unsigned int>(sizeof(T))*N + // expected-error {{invalid application of 'sizeof' to an incomplete type 'CallSite'}}
static_cast<unsigned int>(sizeof(U)) - 1) /
static_cast<unsigned int>(sizeof(U)),
NumInlineEltsElts = MinUs
};
U InlineElts[NumInlineEltsElts];
public:
SmallVector() : SmallVectorImpl<T>(NumInlineEltsElts) {
}
};
class CallSite; // expected-note {{forward declaration of 'CallSite'}}
class InlineFunctionInfo {
public:
explicit InlineFunctionInfo() {}
SmallVector<CallSite, 2> DevirtualizedCalls; // expected-note {{in instantiation of template class 'SmallVector<CallSite, 2>' requested}}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decltype-crash.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wc++11-compat %s
int& a();
void f() {
decltype(a()) c; // expected-warning {{'decltype' is a keyword in C++11}} expected-error {{use of undeclared identifier 'decltype'}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-logical-not-compare.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wlogical-not-parentheses -verify %s
// RUN: %clang_cc1 -fsyntax-only -Wlogical-not-parentheses -fdiagnostics-parseable-fixits %s 2>&1 | FileCheck %s
bool getBool();
int getInt();
bool test1(int i1, int i2, bool b1, bool b2) {
bool ret;
ret = !i1 == i2;
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{10:10-10:10}:"("
// CHECK: fix-it:"{{.*}}":{10:18-10:18}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{10:9-10:9}:"("
// CHECK: fix-it:"{{.*}}":{10:12-10:12}:")"
ret = !i1 != i2;
//expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{21:10-21:10}:"("
// CHECK: fix-it:"{{.*}}":{21:18-21:18}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{21:9-21:9}:"("
// CHECK: fix-it:"{{.*}}":{21:12-21:12}:")"
ret = !i1 < i2;
//expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{32:10-32:10}:"("
// CHECK: fix-it:"{{.*}}":{32:17-32:17}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{32:9-32:9}:"("
// CHECK: fix-it:"{{.*}}":{32:12-32:12}:")"
ret = !i1 > i2;
//expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{43:10-43:10}:"("
// CHECK: fix-it:"{{.*}}":{43:17-43:17}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{43:9-43:9}:"("
// CHECK: fix-it:"{{.*}}":{43:12-43:12}:")"
ret = !i1 <= i2;
//expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{54:10-54:10}:"("
// CHECK: fix-it:"{{.*}}":{54:18-54:18}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{54:9-54:9}:"("
// CHECK: fix-it:"{{.*}}":{54:12-54:12}:")"
ret = !i1 >= i2;
//expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{65:10-65:10}:"("
// CHECK: fix-it:"{{.*}}":{65:18-65:18}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{65:9-65:9}:"("
// CHECK: fix-it:"{{.*}}":{65:12-65:12}:")"
ret = i1 == i2;
ret = i1 != i2;
ret = i1 < i2;
ret = i1 > i2;
ret = i1 <= i2;
ret = i1 >= i2;
// Warning silenced by parens.
ret = (!i1) == i2;
ret = (!i1) != i2;
ret = (!i1) < i2;
ret = (!i1) > i2;
ret = (!i1) <= i2;
ret = (!i1) >= i2;
ret = !b1 == b2;
ret = !b1 != b2;
ret = !b1 < b2;
ret = !b1 > b2;
ret = !b1 <= b2;
ret = !b1 >= b2;
ret = !getInt() == i1;
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{98:10-98:10}:"("
// CHECK: fix-it:"{{.*}}":{98:24-98:24}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{98:9-98:9}:"("
// CHECK: fix-it:"{{.*}}":{98:18-98:18}:")"
ret = (!getInt()) == i1;
ret = !getBool() == b1;
return ret;
}
enum E {e1, e2};
E getE();
bool test2 (E e) {
bool ret;
ret = e == e1;
ret = e == getE();
ret = getE() == e1;
ret = getE() == getE();
ret = !e == e1;
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{124:10-124:10}:"("
// CHECK: fix-it:"{{.*}}":{124:17-124:17}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{124:9-124:9}:"("
// CHECK: fix-it:"{{.*}}":{124:11-124:11}:")"
ret = !e == getE();
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{135:10-135:10}:"("
// CHECK: fix-it:"{{.*}}":{135:21-135:21}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{135:9-135:9}:"("
// CHECK: fix-it:"{{.*}}":{135:11-135:11}:")"
ret = !getE() == e1;
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{146:10-146:10}:"("
// CHECK: fix-it:"{{.*}}":{146:22-146:22}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{146:9-146:9}:"("
// CHECK: fix-it:"{{.*}}":{146:16-146:16}:")"
ret = !getE() == getE();
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK: fix-it:"{{.*}}":{157:10-157:10}:"("
// CHECK: fix-it:"{{.*}}":{157:26-157:26}:")"
// CHECK: to silence this warning
// CHECK: fix-it:"{{.*}}":{157:9-157:9}:"("
// CHECK: fix-it:"{{.*}}":{157:16-157:16}:")"
ret = !(e == e1);
ret = !(e == getE());
ret = !(getE() == e1);
ret = !(getE() == getE());
ret = (!e) == e1;
ret = (!e) == getE();
ret = (!getE()) == e1;
ret = (!getE()) == getE();
return ret;
}
bool PR16673(int x) {
bool ret;
// Make sure we don't emit a fixit for the left paren, but not the right paren.
#define X(x) x
ret = X(!x == 1 && 1);
// expected-warning@-1 {{logical not is only applied to the left hand side of this comparison}}
// expected-note@-2 {{add parentheses after the '!' to evaluate the comparison first}}
// expected-note@-3 {{add parentheses around left hand side expression to silence this warning}}
// CHECK: to evaluate the comparison first
// CHECK-NOT: fix-it
// CHECK: to silence this warning
// CHECK-NOT: fix-it
return ret;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/builtin-ptrtomember-overload.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++11
// expected-no-diagnostics
struct A {};
struct B {
operator A*();
};
struct C : B {
};
void foo(C c, B b, int A::* pmf) {
int j = c->*pmf;
int i = b->*pmf;
}
struct D {
operator const D *();
};
struct DPtr {
operator volatile int D::*();
};
int test(D d, DPtr dptr) {
return d->*dptr;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-assignment-condition.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wparentheses -verify %s
struct A {
int foo();
friend A operator+(const A&, const A&);
A operator|=(const A&);
operator bool();
};
void test() {
int x, *p;
A a, b;
// With scalars.
if (x = 7) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if ((x = 7)) {}
do {
} while (x = 7); // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
do {
} while ((x = 7));
while (x = 7) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
while ((x = 7)) {}
for (; x = 7; ) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
for (; (x = 7); ) {}
if (p = p) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if ((p = p)) {}
do {
} while (p = p); // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
do {
} while ((p = p));
while (p = p) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
while ((p = p)) {}
for (; p = p; ) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
for (; (p = p); ) {}
// Initializing variables (shouldn't warn).
if (int y = x) {}
while (int y = x) {}
if (A y = a) {}
while (A y = a) {}
// With temporaries.
if (x = (b+b).foo()) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if ((x = (b+b).foo())) {}
do {
} while (x = (b+b).foo()); // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
do {
} while ((x = (b+b).foo()));
while (x = (b+b).foo()) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
while ((x = (b+b).foo())) {}
for (; x = (b+b).foo(); ) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
for (; (x = (b+b).foo()); ) {}
// With a user-defined operator.
if (a = b + b) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if ((a = b + b)) {}
do {
} while (a = b + b); // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
do {
} while ((a = b + b));
while (a = b + b) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
while ((a = b + b)) {}
for (; a = b + b; ) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '==' to turn this assignment into an equality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
for (; (a = b + b); ) {}
// Compound assignments.
if (x |= 2) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '!=' to turn this compound assignment into an inequality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if (a |= b) {} // expected-warning {{using the result of an assignment as a condition without parentheses}} \
// expected-note{{use '!=' to turn this compound assignment into an inequality comparison}} \
// expected-note{{place parentheses around the assignment to silence this warning}}
if ((x == 5)) {} // expected-warning {{equality comparison with extraneous parentheses}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}} \
// expected-note {{remove extraneous parentheses around the comparison to silence this warning}}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wparentheses-equality"
if ((x == 5)) {} // no-warning
#pragma clang diagnostic pop
if ((5 == x)) {}
#define EQ(x,y) ((x) == (y))
if (EQ(x, 5)) {}
#undef EQ
}
void (*fn)();
void test2() {
if ((fn == test2)) {} // expected-warning {{equality comparison with extraneous parentheses}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}} \
// expected-note {{remove extraneous parentheses around the comparison to silence this warning}}
if ((test2 == fn)) {}
}
namespace rdar9027658 {
template <typename T>
void f(T t) {
if ((t.g == 3)) { } // expected-warning {{equality comparison with extraneous parentheses}} \
// expected-note {{use '=' to turn this equality comparison into an assignment}} \
// expected-note {{remove extraneous parentheses around the comparison to silence this warning}}
}
struct S { int g; };
void test() {
f(S()); // expected-note {{in instantiation}}
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-thread-safety-parsing.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wthread-safety %s
#define LOCKABLE __attribute__ ((lockable))
#define SCOPED_LOCKABLE __attribute__ ((scoped_lockable))
#define GUARDED_BY(x) __attribute__ ((guarded_by(x)))
#define GUARDED_VAR __attribute__ ((guarded_var))
#define PT_GUARDED_BY(x) __attribute__ ((pt_guarded_by(x)))
#define PT_GUARDED_VAR __attribute__ ((pt_guarded_var))
#define ACQUIRED_AFTER(...) __attribute__ ((acquired_after(__VA_ARGS__)))
#define ACQUIRED_BEFORE(...) __attribute__ ((acquired_before(__VA_ARGS__)))
#define EXCLUSIVE_LOCK_FUNCTION(...) __attribute__ ((exclusive_lock_function(__VA_ARGS__)))
#define SHARED_LOCK_FUNCTION(...) __attribute__ ((shared_lock_function(__VA_ARGS__)))
#define ASSERT_EXCLUSIVE_LOCK(...) __attribute__ ((assert_exclusive_lock(__VA_ARGS__)))
#define ASSERT_SHARED_LOCK(...) __attribute__ ((assert_shared_lock(__VA_ARGS__)))
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) __attribute__ ((exclusive_trylock_function(__VA_ARGS__)))
#define SHARED_TRYLOCK_FUNCTION(...) __attribute__ ((shared_trylock_function(__VA_ARGS__)))
#define UNLOCK_FUNCTION(...) __attribute__ ((unlock_function(__VA_ARGS__)))
#define LOCK_RETURNED(x) __attribute__ ((lock_returned(x)))
#define LOCKS_EXCLUDED(...) __attribute__ ((locks_excluded(__VA_ARGS__)))
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
__attribute__ ((exclusive_locks_required(__VA_ARGS__)))
#define SHARED_LOCKS_REQUIRED(...) \
__attribute__ ((shared_locks_required(__VA_ARGS__)))
#define NO_THREAD_SAFETY_ANALYSIS __attribute__ ((no_thread_safety_analysis))
class LOCKABLE Mutex {
public:
void Lock() EXCLUSIVE_LOCK_FUNCTION();
void ReaderLock() SHARED_LOCK_FUNCTION();
void Unlock() UNLOCK_FUNCTION();
bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true);
void AssertHeld() ASSERT_EXCLUSIVE_LOCK();
void AssertReaderHeld() ASSERT_SHARED_LOCK();
};
class UnlockableMu{
};
class MuWrapper {
public:
Mutex mu;
Mutex getMu() {
return mu;
}
Mutex * getMuPointer() {
return μ
}
};
class MuDoubleWrapper {
public:
MuWrapper* muWrapper;
MuWrapper* getWrapper() {
return muWrapper;
}
};
Mutex mu1;
UnlockableMu umu;
Mutex mu2;
MuWrapper muWrapper;
MuDoubleWrapper muDoubleWrapper;
Mutex* muPointer;
Mutex** muDoublePointer = & muPointer;
Mutex& muRef = mu1;
//---------------------------------------//
// Scoping tests
//--------------------------------------//
class Foo {
Mutex foomu;
void needLock() EXCLUSIVE_LOCK_FUNCTION(foomu);
};
class Foo2 {
void needLock() EXCLUSIVE_LOCK_FUNCTION(foomu);
Mutex foomu;
};
class Bar {
Mutex barmu;
Mutex barmu2 ACQUIRED_AFTER(barmu);
};
//-----------------------------------------//
// No Thread Safety Analysis (noanal) //
//-----------------------------------------//
// FIXME: Right now we cannot parse attributes put on function definitions
// We would like to patch this at some point.
#if !__has_attribute(no_thread_safety_analysis)
#error "Should support no_thread_safety_analysis attribute"
#endif
void noanal_fun() NO_THREAD_SAFETY_ANALYSIS;
void noanal_fun_args() __attribute__((no_thread_safety_analysis(1))); // \
// expected-error {{'no_thread_safety_analysis' attribute takes no arguments}}
int noanal_testfn(int y) NO_THREAD_SAFETY_ANALYSIS;
int noanal_testfn(int y) {
int x NO_THREAD_SAFETY_ANALYSIS = y; // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
return x;
};
int noanal_test_var NO_THREAD_SAFETY_ANALYSIS; // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
class NoanalFoo {
private:
int test_field NO_THREAD_SAFETY_ANALYSIS; // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
void test_method() NO_THREAD_SAFETY_ANALYSIS;
};
class NO_THREAD_SAFETY_ANALYSIS NoanalTestClass { // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
};
void noanal_fun_params(int lvar NO_THREAD_SAFETY_ANALYSIS); // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
//-----------------------------------------//
// Guarded Var Attribute (gv)
//-----------------------------------------//
#if !__has_attribute(guarded_var)
#error "Should support guarded_var attribute"
#endif
int gv_var_noargs GUARDED_VAR;
int gv_var_args __attribute__((guarded_var(1))); // \
// expected-error {{'guarded_var' attribute takes no arguments}}
class GVFoo {
private:
int gv_field_noargs GUARDED_VAR;
int gv_field_args __attribute__((guarded_var(1))); // \
// expected-error {{'guarded_var' attribute takes no arguments}}
};
class GUARDED_VAR GV { // \
// expected-warning {{'guarded_var' attribute only applies to fields and global variables}}
};
void gv_function() GUARDED_VAR; // \
// expected-warning {{'guarded_var' attribute only applies to fields and global variables}}
void gv_function_params(int gv_lvar GUARDED_VAR); // \
// expected-warning {{'guarded_var' attribute only applies to fields and global variables}}
int gv_testfn(int y){
int x GUARDED_VAR = y; // \
// expected-warning {{'guarded_var' attribute only applies to fields and global variables}}
return x;
}
//-----------------------------------------//
// Pt Guarded Var Attribute (pgv)
//-----------------------------------------//
//FIXME: add support for boost::scoped_ptr<int> fancyptr and references
#if !__has_attribute(pt_guarded_var)
#error "Should support pt_guarded_var attribute"
#endif
int *pgv_pt_var_noargs PT_GUARDED_VAR;
int pgv_var_noargs PT_GUARDED_VAR; // \
// expected-warning {{'pt_guarded_var' only applies to pointer types; type here is 'int'}}
class PGVFoo {
private:
int *pt_field_noargs PT_GUARDED_VAR;
int field_noargs PT_GUARDED_VAR; // \
// expected-warning {{'pt_guarded_var' only applies to pointer types; type here is 'int'}}
int *gv_field_args __attribute__((pt_guarded_var(1))); // \
// expected-error {{'pt_guarded_var' attribute takes no arguments}}
};
class PT_GUARDED_VAR PGV { // \
// expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
};
int *pgv_var_args __attribute__((pt_guarded_var(1))); // \
// expected-error {{'pt_guarded_var' attribute takes no arguments}}
void pgv_function() PT_GUARDED_VAR; // \
// expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
void pgv_function_params(int *gv_lvar PT_GUARDED_VAR); // \
// expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
void pgv_testfn(int y){
int *x PT_GUARDED_VAR = new int(0); // \
// expected-warning {{'pt_guarded_var' attribute only applies to fields and global variables}}
delete x;
}
//-----------------------------------------//
// Lockable Attribute (l)
//-----------------------------------------//
//FIXME: In future we may want to add support for structs, ObjC classes, etc.
#if !__has_attribute(lockable)
#error "Should support lockable attribute"
#endif
class LOCKABLE LTestClass {
};
class __attribute__((lockable (1))) LTestClass_args { // \
// expected-error {{'lockable' attribute takes no arguments}}
};
void l_test_function() LOCKABLE; // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
int l_testfn(int y) {
int x LOCKABLE = y; // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
return x;
}
int l_test_var LOCKABLE; // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
class LFoo {
private:
int test_field LOCKABLE; // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
void test_method() LOCKABLE; // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
};
void l_function_params(int lvar LOCKABLE); // \
// expected-warning {{'lockable' attribute only applies to struct, union or class}}
//-----------------------------------------//
// Scoped Lockable Attribute (sl)
//-----------------------------------------//
#if !__has_attribute(scoped_lockable)
#error "Should support scoped_lockable attribute"
#endif
class SCOPED_LOCKABLE SLTestClass {
};
class __attribute__((scoped_lockable (1))) SLTestClass_args { // \
// expected-error {{'scoped_lockable' attribute takes no arguments}}
};
void sl_test_function() SCOPED_LOCKABLE; // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
int sl_testfn(int y) {
int x SCOPED_LOCKABLE = y; // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
return x;
}
int sl_test_var SCOPED_LOCKABLE; // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
class SLFoo {
private:
int test_field SCOPED_LOCKABLE; // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
void test_method() SCOPED_LOCKABLE; // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
};
void sl_function_params(int lvar SCOPED_LOCKABLE); // \
// expected-warning {{'scoped_lockable' attribute only applies to struct, union or class}}
//-----------------------------------------//
// Guarded By Attribute (gb)
//-----------------------------------------//
// FIXME: Eventually, would we like this attribute to take more than 1 arg?
#if !__has_attribute(guarded_by)
#error "Should support guarded_by attribute"
#endif
//1. Check applied to the right types & argument number
int gb_var_arg GUARDED_BY(mu1);
int gb_non_ascii GUARDED_BY(L"wide"); // expected-warning {{ignoring 'guarded_by' attribute because its argument is invalid}}
int gb_var_args __attribute__((guarded_by(mu1, mu2))); // \
// expected-error {{'guarded_by' attribute takes one argument}}
int gb_var_noargs __attribute__((guarded_by)); // \
// expected-error {{'guarded_by' attribute takes one argument}}
class GBFoo {
private:
int gb_field_noargs __attribute__((guarded_by)); // \
// expected-error {{'guarded_by' attribute takes one argument}}
int gb_field_args GUARDED_BY(mu1);
};
class GUARDED_BY(mu1) GB { // \
// expected-warning {{'guarded_by' attribute only applies to fields and global variables}}
};
void gb_function() GUARDED_BY(mu1); // \
// expected-warning {{'guarded_by' attribute only applies to fields and global variables}}
void gb_function_params(int gv_lvar GUARDED_BY(mu1)); // \
// expected-warning {{'guarded_by' attribute only applies to fields and global variables}}
int gb_testfn(int y){
int x GUARDED_BY(mu1) = y; // \
// expected-warning {{'guarded_by' attribute only applies to fields and global variables}}
return x;
}
//2. Check argument parsing.
// legal attribute arguments
int gb_var_arg_1 GUARDED_BY(muWrapper.mu);
int gb_var_arg_2 GUARDED_BY(muDoubleWrapper.muWrapper->mu);
int gb_var_arg_3 GUARDED_BY(muWrapper.getMu());
int gb_var_arg_4 GUARDED_BY(*muWrapper.getMuPointer());
int gb_var_arg_5 GUARDED_BY(&mu1);
int gb_var_arg_6 GUARDED_BY(muRef);
int gb_var_arg_7 GUARDED_BY(muDoubleWrapper.getWrapper()->getMu());
int gb_var_arg_8 GUARDED_BY(muPointer);
// illegal attribute arguments
int gb_var_arg_bad_1 GUARDED_BY(1); // \
// expected-warning {{'guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int gb_var_arg_bad_2 GUARDED_BY("mu"); // \
// expected-warning {{ignoring 'guarded_by' attribute because its argument is invalid}}
int gb_var_arg_bad_3 GUARDED_BY(muDoublePointer); // \
// expected-warning {{'guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int gb_var_arg_bad_4 GUARDED_BY(umu); // \
// expected-warning {{'guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'UnlockableMu'}}
//3.
// Thread Safety analysis tests
//-----------------------------------------//
// Pt Guarded By Attribute (pgb)
//-----------------------------------------//
#if !__has_attribute(pt_guarded_by)
#error "Should support pt_guarded_by attribute"
#endif
//1. Check applied to the right types & argument number
int *pgb_var_noargs __attribute__((pt_guarded_by)); // \
// expected-error {{'pt_guarded_by' attribute takes one argument}}
int *pgb_ptr_var_arg PT_GUARDED_BY(mu1);
int *pgb_ptr_var_args __attribute__((pt_guarded_by(mu1, mu2))); // \
// expected-error {{'pt_guarded_by' attribute takes one argument}}
int pgb_var_args PT_GUARDED_BY(mu1); // \
// expected-warning {{'pt_guarded_by' only applies to pointer types; type here is 'int'}}
class PGBFoo {
private:
int *pgb_field_noargs __attribute__((pt_guarded_by)); // \
// expected-error {{'pt_guarded_by' attribute takes one argument}}
int *pgb_field_args PT_GUARDED_BY(mu1);
};
class PT_GUARDED_BY(mu1) PGB { // \
// expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
};
void pgb_function() PT_GUARDED_BY(mu1); // \
// expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
void pgb_function_params(int gv_lvar PT_GUARDED_BY(mu1)); // \
// expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
void pgb_testfn(int y){
int *x PT_GUARDED_BY(mu1) = new int(0); // \
// expected-warning {{'pt_guarded_by' attribute only applies to fields and global variables}}
delete x;
}
//2. Check argument parsing.
// legal attribute arguments
int * pgb_var_arg_1 PT_GUARDED_BY(muWrapper.mu);
int * pgb_var_arg_2 PT_GUARDED_BY(muDoubleWrapper.muWrapper->mu);
int * pgb_var_arg_3 PT_GUARDED_BY(muWrapper.getMu());
int * pgb_var_arg_4 PT_GUARDED_BY(*muWrapper.getMuPointer());
int * pgb_var_arg_5 PT_GUARDED_BY(&mu1);
int * pgb_var_arg_6 PT_GUARDED_BY(muRef);
int * pgb_var_arg_7 PT_GUARDED_BY(muDoubleWrapper.getWrapper()->getMu());
int * pgb_var_arg_8 PT_GUARDED_BY(muPointer);
// illegal attribute arguments
int * pgb_var_arg_bad_1 PT_GUARDED_BY(1); // \
// expected-warning {{'pt_guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int * pgb_var_arg_bad_2 PT_GUARDED_BY("mu"); // \
// expected-warning {{ignoring 'pt_guarded_by' attribute because its argument is invalid}}
int * pgb_var_arg_bad_3 PT_GUARDED_BY(muDoublePointer); // \
// expected-warning {{'pt_guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int * pgb_var_arg_bad_4 PT_GUARDED_BY(umu); // \
// expected-warning {{'pt_guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Acquired After (aa)
//-----------------------------------------//
// FIXME: Would we like this attribute to take more than 1 arg?
#if !__has_attribute(acquired_after)
#error "Should support acquired_after attribute"
#endif
Mutex mu_aa ACQUIRED_AFTER(mu1);
Mutex aa_var_noargs __attribute__((acquired_after)); // \
// expected-error {{'acquired_after' attribute takes at least 1 argument}}
class AAFoo {
private:
Mutex aa_field_noargs __attribute__((acquired_after)); // \
// expected-error {{'acquired_after' attribute takes at least 1 argument}}
Mutex aa_field_args ACQUIRED_AFTER(mu1);
};
class ACQUIRED_AFTER(mu1) AA { // \
// expected-warning {{'acquired_after' attribute only applies to fields and global variables}}
};
void aa_function() ACQUIRED_AFTER(mu1); // \
// expected-warning {{'acquired_after' attribute only applies to fields and global variables}}
void aa_function_params(int gv_lvar ACQUIRED_AFTER(mu1)); // \
// expected-warning {{'acquired_after' attribute only applies to fields and global variables}}
void aa_testfn(int y){
Mutex x ACQUIRED_AFTER(mu1) = Mutex(); // \
// expected-warning {{'acquired_after' attribute only applies to fields and global variables}}
}
//Check argument parsing.
// legal attribute arguments
Mutex aa_var_arg_1 ACQUIRED_AFTER(muWrapper.mu);
Mutex aa_var_arg_2 ACQUIRED_AFTER(muDoubleWrapper.muWrapper->mu);
Mutex aa_var_arg_3 ACQUIRED_AFTER(muWrapper.getMu());
Mutex aa_var_arg_4 ACQUIRED_AFTER(*muWrapper.getMuPointer());
Mutex aa_var_arg_5 ACQUIRED_AFTER(&mu1);
Mutex aa_var_arg_6 ACQUIRED_AFTER(muRef);
Mutex aa_var_arg_7 ACQUIRED_AFTER(muDoubleWrapper.getWrapper()->getMu());
Mutex aa_var_arg_8 ACQUIRED_AFTER(muPointer);
// illegal attribute arguments
Mutex aa_var_arg_bad_1 ACQUIRED_AFTER(1); // \
// expected-warning {{'acquired_after' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
Mutex aa_var_arg_bad_2 ACQUIRED_AFTER("mu"); // \
// expected-warning {{ignoring 'acquired_after' attribute because its argument is invalid}}
Mutex aa_var_arg_bad_3 ACQUIRED_AFTER(muDoublePointer); // \
// expected-warning {{'acquired_after' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
Mutex aa_var_arg_bad_4 ACQUIRED_AFTER(umu); // \
// expected-warning {{'acquired_after' attribute requires arguments whose type is annotated with 'capability' attribute}}
UnlockableMu aa_var_arg_bad_5 ACQUIRED_AFTER(mu_aa); // \
// expected-warning {{'acquired_after' attribute can only be applied in a context annotated with 'capability("mutex")' attribute}}
//-----------------------------------------//
// Acquired Before (ab)
//-----------------------------------------//
#if !__has_attribute(acquired_before)
#error "Should support acquired_before attribute"
#endif
Mutex mu_ab ACQUIRED_BEFORE(mu1);
Mutex ab_var_noargs __attribute__((acquired_before)); // \
// expected-error {{'acquired_before' attribute takes at least 1 argument}}
class ABFoo {
private:
Mutex ab_field_noargs __attribute__((acquired_before)); // \
// expected-error {{'acquired_before' attribute takes at least 1 argument}}
Mutex ab_field_args ACQUIRED_BEFORE(mu1);
};
class ACQUIRED_BEFORE(mu1) AB { // \
// expected-warning {{'acquired_before' attribute only applies to fields and global variables}}
};
void ab_function() ACQUIRED_BEFORE(mu1); // \
// expected-warning {{'acquired_before' attribute only applies to fields and global variables}}
void ab_function_params(int gv_lvar ACQUIRED_BEFORE(mu1)); // \
// expected-warning {{'acquired_before' attribute only applies to fields and global variables}}
void ab_testfn(int y){
Mutex x ACQUIRED_BEFORE(mu1) = Mutex(); // \
// expected-warning {{'acquired_before' attribute only applies to fields and global variables}}
}
// Note: illegal int ab_int ACQUIRED_BEFORE(mu1) will
// be taken care of by warnings that ab__int is not lockable.
//Check argument parsing.
// legal attribute arguments
Mutex ab_var_arg_1 ACQUIRED_BEFORE(muWrapper.mu);
Mutex ab_var_arg_2 ACQUIRED_BEFORE(muDoubleWrapper.muWrapper->mu);
Mutex ab_var_arg_3 ACQUIRED_BEFORE(muWrapper.getMu());
Mutex ab_var_arg_4 ACQUIRED_BEFORE(*muWrapper.getMuPointer());
Mutex ab_var_arg_5 ACQUIRED_BEFORE(&mu1);
Mutex ab_var_arg_6 ACQUIRED_BEFORE(muRef);
Mutex ab_var_arg_7 ACQUIRED_BEFORE(muDoubleWrapper.getWrapper()->getMu());
Mutex ab_var_arg_8 ACQUIRED_BEFORE(muPointer);
// illegal attribute arguments
Mutex ab_var_arg_bad_1 ACQUIRED_BEFORE(1); // \
// expected-warning {{'acquired_before' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
Mutex ab_var_arg_bad_2 ACQUIRED_BEFORE("mu"); // \
// expected-warning {{ignoring 'acquired_before' attribute because its argument is invalid}}
Mutex ab_var_arg_bad_3 ACQUIRED_BEFORE(muDoublePointer); // \
// expected-warning {{'acquired_before' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
Mutex ab_var_arg_bad_4 ACQUIRED_BEFORE(umu); // \
// expected-warning {{'acquired_before' attribute requires arguments whose type is annotated with 'capability' attribute}}
UnlockableMu ab_var_arg_bad_5 ACQUIRED_BEFORE(mu_ab); // \
// expected-warning {{'acquired_before' attribute can only be applied in a context annotated with 'capability("mutex")' attribute}}
//-----------------------------------------//
// Exclusive Lock Function (elf)
//-----------------------------------------//
#if !__has_attribute(exclusive_lock_function)
#error "Should support exclusive_lock_function attribute"
#endif
// takes zero or more arguments, all locks (vars/fields)
void elf_function() EXCLUSIVE_LOCK_FUNCTION();
void elf_function_args() EXCLUSIVE_LOCK_FUNCTION(mu1, mu2);
int elf_testfn(int y) EXCLUSIVE_LOCK_FUNCTION();
int elf_testfn(int y) {
int x EXCLUSIVE_LOCK_FUNCTION() = y; // \
// expected-warning {{'exclusive_lock_function' attribute only applies to functions}}
return x;
};
int elf_test_var EXCLUSIVE_LOCK_FUNCTION(); // \
// expected-warning {{'exclusive_lock_function' attribute only applies to functions}}
class ElfFoo {
private:
int test_field EXCLUSIVE_LOCK_FUNCTION(); // \
// expected-warning {{'exclusive_lock_function' attribute only applies to functions}}
void test_method() EXCLUSIVE_LOCK_FUNCTION();
};
class EXCLUSIVE_LOCK_FUNCTION() ElfTestClass { // \
// expected-warning {{'exclusive_lock_function' attribute only applies to functions}}
};
void elf_fun_params(int lvar EXCLUSIVE_LOCK_FUNCTION()); // \
// expected-warning {{'exclusive_lock_function' attribute only applies to functions}}
// Check argument parsing.
// legal attribute arguments
int elf_function_1() EXCLUSIVE_LOCK_FUNCTION(muWrapper.mu);
int elf_function_2() EXCLUSIVE_LOCK_FUNCTION(muDoubleWrapper.muWrapper->mu);
int elf_function_3() EXCLUSIVE_LOCK_FUNCTION(muWrapper.getMu());
int elf_function_4() EXCLUSIVE_LOCK_FUNCTION(*muWrapper.getMuPointer());
int elf_function_5() EXCLUSIVE_LOCK_FUNCTION(&mu1);
int elf_function_6() EXCLUSIVE_LOCK_FUNCTION(muRef);
int elf_function_7() EXCLUSIVE_LOCK_FUNCTION(muDoubleWrapper.getWrapper()->getMu());
int elf_function_8() EXCLUSIVE_LOCK_FUNCTION(muPointer);
int elf_function_9(Mutex x) EXCLUSIVE_LOCK_FUNCTION(1);
int elf_function_9(Mutex x, Mutex y) EXCLUSIVE_LOCK_FUNCTION(1,2);
// illegal attribute arguments
int elf_function_bad_2() EXCLUSIVE_LOCK_FUNCTION("mu"); // \
// expected-warning {{ignoring 'exclusive_lock_function' attribute because its argument is invalid}}
int elf_function_bad_3() EXCLUSIVE_LOCK_FUNCTION(muDoublePointer); // \
// expected-warning {{'exclusive_lock_function' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int elf_function_bad_4() EXCLUSIVE_LOCK_FUNCTION(umu); // \
// expected-warning {{'exclusive_lock_function' attribute requires arguments whose type is annotated with 'capability' attribute}}
int elf_function_bad_1() EXCLUSIVE_LOCK_FUNCTION(1); // \
// expected-error {{'exclusive_lock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
int elf_function_bad_5(Mutex x) EXCLUSIVE_LOCK_FUNCTION(0); // \
// expected-error {{'exclusive_lock_function' attribute parameter 1 is out of bounds: can only be 1, since there is one parameter}}
int elf_function_bad_6(Mutex x, Mutex y) EXCLUSIVE_LOCK_FUNCTION(0); // \
// expected-error {{'exclusive_lock_function' attribute parameter 1 is out of bounds: must be between 1 and 2}}
int elf_function_bad_7() EXCLUSIVE_LOCK_FUNCTION(0); // \
// expected-error {{'exclusive_lock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
//-----------------------------------------//
// Shared Lock Function (slf)
//-----------------------------------------//
#if !__has_attribute(shared_lock_function)
#error "Should support shared_lock_function attribute"
#endif
// takes zero or more arguments, all locks (vars/fields)
void slf_function() SHARED_LOCK_FUNCTION();
void slf_function_args() SHARED_LOCK_FUNCTION(mu1, mu2);
int slf_testfn(int y) SHARED_LOCK_FUNCTION();
int slf_testfn(int y) {
int x SHARED_LOCK_FUNCTION() = y; // \
// expected-warning {{'shared_lock_function' attribute only applies to functions}}
return x;
};
int slf_test_var SHARED_LOCK_FUNCTION(); // \
// expected-warning {{'shared_lock_function' attribute only applies to functions}}
void slf_fun_params(int lvar SHARED_LOCK_FUNCTION()); // \
// expected-warning {{'shared_lock_function' attribute only applies to functions}}
class SlfFoo {
private:
int test_field SHARED_LOCK_FUNCTION(); // \
// expected-warning {{'shared_lock_function' attribute only applies to functions}}
void test_method() SHARED_LOCK_FUNCTION();
};
class SHARED_LOCK_FUNCTION() SlfTestClass { // \
// expected-warning {{'shared_lock_function' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int slf_function_1() SHARED_LOCK_FUNCTION(muWrapper.mu);
int slf_function_2() SHARED_LOCK_FUNCTION(muDoubleWrapper.muWrapper->mu);
int slf_function_3() SHARED_LOCK_FUNCTION(muWrapper.getMu());
int slf_function_4() SHARED_LOCK_FUNCTION(*muWrapper.getMuPointer());
int slf_function_5() SHARED_LOCK_FUNCTION(&mu1);
int slf_function_6() SHARED_LOCK_FUNCTION(muRef);
int slf_function_7() SHARED_LOCK_FUNCTION(muDoubleWrapper.getWrapper()->getMu());
int slf_function_8() SHARED_LOCK_FUNCTION(muPointer);
int slf_function_9(Mutex x) SHARED_LOCK_FUNCTION(1);
int slf_function_9(Mutex x, Mutex y) SHARED_LOCK_FUNCTION(1,2);
// illegal attribute arguments
int slf_function_bad_2() SHARED_LOCK_FUNCTION("mu"); // \
// expected-warning {{ignoring 'shared_lock_function' attribute because its argument is invalid}}
int slf_function_bad_3() SHARED_LOCK_FUNCTION(muDoublePointer); // \
// expected-warning {{'shared_lock_function' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int slf_function_bad_4() SHARED_LOCK_FUNCTION(umu); // \
// expected-warning {{'shared_lock_function' attribute requires arguments whose type is annotated with 'capability' attribute}}
int slf_function_bad_1() SHARED_LOCK_FUNCTION(1); // \
// expected-error {{'shared_lock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
int slf_function_bad_5(Mutex x) SHARED_LOCK_FUNCTION(0); // \
// expected-error {{'shared_lock_function' attribute parameter 1 is out of bounds: can only be 1, since there is one parameter}}
int slf_function_bad_6(Mutex x, Mutex y) SHARED_LOCK_FUNCTION(0); // \
// expected-error {{'shared_lock_function' attribute parameter 1 is out of bounds: must be between 1 and 2}}
int slf_function_bad_7() SHARED_LOCK_FUNCTION(0); // \
// expected-error {{'shared_lock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
//-----------------------------------------//
// Exclusive TryLock Function (etf)
//-----------------------------------------//
#if !__has_attribute(exclusive_trylock_function)
#error "Should support exclusive_trylock_function attribute"
#endif
// takes a mandatory boolean or integer argument specifying the retval
// plus an optional list of locks (vars/fields)
void etf_function() __attribute__((exclusive_trylock_function)); // \
// expected-error {{'exclusive_trylock_function' attribute takes at least 1 argument}}
void etf_function_args() EXCLUSIVE_TRYLOCK_FUNCTION(1, mu2);
void etf_function_arg() EXCLUSIVE_TRYLOCK_FUNCTION(1);
int etf_testfn(int y) EXCLUSIVE_TRYLOCK_FUNCTION(1);
int etf_testfn(int y) {
int x EXCLUSIVE_TRYLOCK_FUNCTION(1) = y; // \
// expected-warning {{'exclusive_trylock_function' attribute only applies to functions}}
return x;
};
int etf_test_var EXCLUSIVE_TRYLOCK_FUNCTION(1); // \
// expected-warning {{'exclusive_trylock_function' attribute only applies to functions}}
class EtfFoo {
private:
int test_field EXCLUSIVE_TRYLOCK_FUNCTION(1); // \
// expected-warning {{'exclusive_trylock_function' attribute only applies to functions}}
void test_method() EXCLUSIVE_TRYLOCK_FUNCTION(1);
};
class EXCLUSIVE_TRYLOCK_FUNCTION(1) EtfTestClass { // \
// expected-warning {{'exclusive_trylock_function' attribute only applies to functions}}
};
void etf_fun_params(int lvar EXCLUSIVE_TRYLOCK_FUNCTION(1)); // \
// expected-warning {{'exclusive_trylock_function' attribute only applies to functions}}
// Check argument parsing.
// legal attribute arguments
int etf_function_1() EXCLUSIVE_TRYLOCK_FUNCTION(1, muWrapper.mu);
int etf_function_2() EXCLUSIVE_TRYLOCK_FUNCTION(1, muDoubleWrapper.muWrapper->mu);
int etf_function_3() EXCLUSIVE_TRYLOCK_FUNCTION(1, muWrapper.getMu());
int etf_function_4() EXCLUSIVE_TRYLOCK_FUNCTION(1, *muWrapper.getMuPointer());
int etf_function_5() EXCLUSIVE_TRYLOCK_FUNCTION(1, &mu1);
int etf_function_6() EXCLUSIVE_TRYLOCK_FUNCTION(1, muRef);
int etf_function_7() EXCLUSIVE_TRYLOCK_FUNCTION(1, muDoubleWrapper.getWrapper()->getMu());
int etf_functetfn_8() EXCLUSIVE_TRYLOCK_FUNCTION(1, muPointer);
int etf_function_9() EXCLUSIVE_TRYLOCK_FUNCTION(true);
// illegal attribute arguments
int etf_function_bad_1() EXCLUSIVE_TRYLOCK_FUNCTION(mu1); // \
// expected-error {{'exclusive_trylock_function' attribute requires parameter 1 to be int or bool}}
int etf_function_bad_2() EXCLUSIVE_TRYLOCK_FUNCTION("mu"); // \
// expected-error {{'exclusive_trylock_function' attribute requires parameter 1 to be int or bool}}
int etf_function_bad_3() EXCLUSIVE_TRYLOCK_FUNCTION(muDoublePointer); // \
// expected-error {{'exclusive_trylock_function' attribute requires parameter 1 to be int or bool}}
int etf_function_bad_4() EXCLUSIVE_TRYLOCK_FUNCTION(1, "mu"); // \
// expected-warning {{ignoring 'exclusive_trylock_function' attribute because its argument is invalid}}
int etf_function_bad_5() EXCLUSIVE_TRYLOCK_FUNCTION(1, muDoublePointer); // \
// expected-warning {{'exclusive_trylock_function' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int etf_function_bad_6() EXCLUSIVE_TRYLOCK_FUNCTION(1, umu); // \
// expected-warning {{'exclusive_trylock_function' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Shared TryLock Function (stf)
//-----------------------------------------//
#if !__has_attribute(shared_trylock_function)
#error "Should support shared_trylock_function attribute"
#endif
// takes a mandatory boolean or integer argument specifying the retval
// plus an optional list of locks (vars/fields)
void stf_function() __attribute__((shared_trylock_function)); // \
// expected-error {{'shared_trylock_function' attribute takes at least 1 argument}}
void stf_function_args() SHARED_TRYLOCK_FUNCTION(1, mu2);
void stf_function_arg() SHARED_TRYLOCK_FUNCTION(1);
int stf_testfn(int y) SHARED_TRYLOCK_FUNCTION(1);
int stf_testfn(int y) {
int x SHARED_TRYLOCK_FUNCTION(1) = y; // \
// expected-warning {{'shared_trylock_function' attribute only applies to functions}}
return x;
};
int stf_test_var SHARED_TRYLOCK_FUNCTION(1); // \
// expected-warning {{'shared_trylock_function' attribute only applies to functions}}
void stf_fun_params(int lvar SHARED_TRYLOCK_FUNCTION(1)); // \
// expected-warning {{'shared_trylock_function' attribute only applies to functions}}
class StfFoo {
private:
int test_field SHARED_TRYLOCK_FUNCTION(1); // \
// expected-warning {{'shared_trylock_function' attribute only applies to functions}}
void test_method() SHARED_TRYLOCK_FUNCTION(1);
};
class SHARED_TRYLOCK_FUNCTION(1) StfTestClass { // \
// expected-warning {{'shared_trylock_function' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int stf_function_1() SHARED_TRYLOCK_FUNCTION(1, muWrapper.mu);
int stf_function_2() SHARED_TRYLOCK_FUNCTION(1, muDoubleWrapper.muWrapper->mu);
int stf_function_3() SHARED_TRYLOCK_FUNCTION(1, muWrapper.getMu());
int stf_function_4() SHARED_TRYLOCK_FUNCTION(1, *muWrapper.getMuPointer());
int stf_function_5() SHARED_TRYLOCK_FUNCTION(1, &mu1);
int stf_function_6() SHARED_TRYLOCK_FUNCTION(1, muRef);
int stf_function_7() SHARED_TRYLOCK_FUNCTION(1, muDoubleWrapper.getWrapper()->getMu());
int stf_function_8() SHARED_TRYLOCK_FUNCTION(1, muPointer);
int stf_function_9() SHARED_TRYLOCK_FUNCTION(true);
// illegal attribute arguments
int stf_function_bad_1() SHARED_TRYLOCK_FUNCTION(mu1); // \
// expected-error {{'shared_trylock_function' attribute requires parameter 1 to be int or bool}}
int stf_function_bad_2() SHARED_TRYLOCK_FUNCTION("mu"); // \
// expected-error {{'shared_trylock_function' attribute requires parameter 1 to be int or bool}}
int stf_function_bad_3() SHARED_TRYLOCK_FUNCTION(muDoublePointer); // \
// expected-error {{'shared_trylock_function' attribute requires parameter 1 to be int or bool}}
int stf_function_bad_4() SHARED_TRYLOCK_FUNCTION(1, "mu"); // \
// expected-warning {{ignoring 'shared_trylock_function' attribute because its argument is invalid}}
int stf_function_bad_5() SHARED_TRYLOCK_FUNCTION(1, muDoublePointer); // \
// expected-warning {{'shared_trylock_function' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int stf_function_bad_6() SHARED_TRYLOCK_FUNCTION(1, umu); // \
// expected-warning {{'shared_trylock_function' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Unlock Function (uf)
//-----------------------------------------//
#if !__has_attribute(unlock_function)
#error "Should support unlock_function attribute"
#endif
// takes zero or more arguments, all locks (vars/fields)
void uf_function() UNLOCK_FUNCTION();
void uf_function_args() UNLOCK_FUNCTION(mu1, mu2);
int uf_testfn(int y) UNLOCK_FUNCTION();
int uf_testfn(int y) {
int x UNLOCK_FUNCTION() = y; // \
// expected-warning {{'unlock_function' attribute only applies to functions}}
return x;
};
int uf_test_var UNLOCK_FUNCTION(); // \
// expected-warning {{'unlock_function' attribute only applies to functions}}
class UfFoo {
private:
int test_field UNLOCK_FUNCTION(); // \
// expected-warning {{'unlock_function' attribute only applies to functions}}
void test_method() UNLOCK_FUNCTION();
};
class NO_THREAD_SAFETY_ANALYSIS UfTestClass { // \
// expected-warning {{'no_thread_safety_analysis' attribute only applies to functions}}
};
void uf_fun_params(int lvar UNLOCK_FUNCTION()); // \
// expected-warning {{'unlock_function' attribute only applies to functions}}
// Check argument parsing.
// legal attribute arguments
int uf_function_1() UNLOCK_FUNCTION(muWrapper.mu);
int uf_function_2() UNLOCK_FUNCTION(muDoubleWrapper.muWrapper->mu);
int uf_function_3() UNLOCK_FUNCTION(muWrapper.getMu());
int uf_function_4() UNLOCK_FUNCTION(*muWrapper.getMuPointer());
int uf_function_5() UNLOCK_FUNCTION(&mu1);
int uf_function_6() UNLOCK_FUNCTION(muRef);
int uf_function_7() UNLOCK_FUNCTION(muDoubleWrapper.getWrapper()->getMu());
int uf_function_8() UNLOCK_FUNCTION(muPointer);
int uf_function_9(Mutex x) UNLOCK_FUNCTION(1);
int uf_function_9(Mutex x, Mutex y) UNLOCK_FUNCTION(1,2);
// illegal attribute arguments
int uf_function_bad_2() UNLOCK_FUNCTION("mu"); // \
// expected-warning {{ignoring 'unlock_function' attribute because its argument is invalid}}
int uf_function_bad_3() UNLOCK_FUNCTION(muDoublePointer); // \
// expected-warning {{'unlock_function' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int uf_function_bad_4() UNLOCK_FUNCTION(umu); // \
// expected-warning {{'unlock_function' attribute requires arguments whose type is annotated with 'capability' attribute}}
int uf_function_bad_1() UNLOCK_FUNCTION(1); // \
// expected-error {{'unlock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
int uf_function_bad_5(Mutex x) UNLOCK_FUNCTION(0); // \
// expected-error {{'unlock_function' attribute parameter 1 is out of bounds: can only be 1, since there is one parameter}}
int uf_function_bad_6(Mutex x, Mutex y) UNLOCK_FUNCTION(0); // \
// expected-error {{'unlock_function' attribute parameter 1 is out of bounds: must be between 1 and 2}}
int uf_function_bad_7() UNLOCK_FUNCTION(0); // \
// expected-error {{'unlock_function' attribute parameter 1 is out of bounds: no parameters to index into}}
//-----------------------------------------//
// Lock Returned (lr)
//-----------------------------------------//
#if !__has_attribute(lock_returned)
#error "Should support lock_returned attribute"
#endif
// Takes exactly one argument, a var/field
void lr_function() __attribute__((lock_returned)); // \
// expected-error {{'lock_returned' attribute takes one argument}}
void lr_function_arg() LOCK_RETURNED(mu1);
void lr_function_args() __attribute__((lock_returned(mu1, mu2))); // \
// expected-error {{'lock_returned' attribute takes one argument}}
int lr_testfn(int y) LOCK_RETURNED(mu1);
int lr_testfn(int y) {
int x LOCK_RETURNED(mu1) = y; // \
// expected-warning {{'lock_returned' attribute only applies to functions}}
return x;
};
int lr_test_var LOCK_RETURNED(mu1); // \
// expected-warning {{'lock_returned' attribute only applies to functions}}
void lr_fun_params(int lvar LOCK_RETURNED(mu1)); // \
// expected-warning {{'lock_returned' attribute only applies to functions}}
class LrFoo {
private:
int test_field LOCK_RETURNED(mu1); // \
// expected-warning {{'lock_returned' attribute only applies to functions}}
void test_method() LOCK_RETURNED(mu1);
};
class LOCK_RETURNED(mu1) LrTestClass { // \
// expected-warning {{'lock_returned' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int lr_function_1() LOCK_RETURNED(muWrapper.mu);
int lr_function_2() LOCK_RETURNED(muDoubleWrapper.muWrapper->mu);
int lr_function_3() LOCK_RETURNED(muWrapper.getMu());
int lr_function_4() LOCK_RETURNED(*muWrapper.getMuPointer());
int lr_function_5() LOCK_RETURNED(&mu1);
int lr_function_6() LOCK_RETURNED(muRef);
int lr_function_7() LOCK_RETURNED(muDoubleWrapper.getWrapper()->getMu());
int lr_function_8() LOCK_RETURNED(muPointer);
// illegal attribute arguments
int lr_function_bad_1() LOCK_RETURNED(1); // \
// expected-warning {{'lock_returned' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int lr_function_bad_2() LOCK_RETURNED("mu"); // \
// expected-warning {{ignoring 'lock_returned' attribute because its argument is invalid}}
int lr_function_bad_3() LOCK_RETURNED(muDoublePointer); // \
// expected-warning {{'lock_returned' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int lr_function_bad_4() LOCK_RETURNED(umu); // \
// expected-warning {{'lock_returned' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Locks Excluded (le)
//-----------------------------------------//
#if !__has_attribute(locks_excluded)
#error "Should support locks_excluded attribute"
#endif
// takes one or more arguments, all locks (vars/fields)
void le_function() __attribute__((locks_excluded)); // \
// expected-error {{'locks_excluded' attribute takes at least 1 argument}}
void le_function_arg() LOCKS_EXCLUDED(mu1);
void le_function_args() LOCKS_EXCLUDED(mu1, mu2);
int le_testfn(int y) LOCKS_EXCLUDED(mu1);
int le_testfn(int y) {
int x LOCKS_EXCLUDED(mu1) = y; // \
// expected-warning {{'locks_excluded' attribute only applies to functions}}
return x;
};
int le_test_var LOCKS_EXCLUDED(mu1); // \
// expected-warning {{'locks_excluded' attribute only applies to functions}}
void le_fun_params(int lvar LOCKS_EXCLUDED(mu1)); // \
// expected-warning {{'locks_excluded' attribute only applies to functions}}
class LeFoo {
private:
int test_field LOCKS_EXCLUDED(mu1); // \
// expected-warning {{'locks_excluded' attribute only applies to functions}}
void test_method() LOCKS_EXCLUDED(mu1);
};
class LOCKS_EXCLUDED(mu1) LeTestClass { // \
// expected-warning {{'locks_excluded' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int le_function_1() LOCKS_EXCLUDED(muWrapper.mu);
int le_function_2() LOCKS_EXCLUDED(muDoubleWrapper.muWrapper->mu);
int le_function_3() LOCKS_EXCLUDED(muWrapper.getMu());
int le_function_4() LOCKS_EXCLUDED(*muWrapper.getMuPointer());
int le_function_5() LOCKS_EXCLUDED(&mu1);
int le_function_6() LOCKS_EXCLUDED(muRef);
int le_function_7() LOCKS_EXCLUDED(muDoubleWrapper.getWrapper()->getMu());
int le_function_8() LOCKS_EXCLUDED(muPointer);
// illegal attribute arguments
int le_function_bad_1() LOCKS_EXCLUDED(1); // \
// expected-warning {{'locks_excluded' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int le_function_bad_2() LOCKS_EXCLUDED("mu"); // \
// expected-warning {{ignoring 'locks_excluded' attribute because its argument is invalid}}
int le_function_bad_3() LOCKS_EXCLUDED(muDoublePointer); // \
// expected-warning {{'locks_excluded' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int le_function_bad_4() LOCKS_EXCLUDED(umu); // \
// expected-warning {{'locks_excluded' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Exclusive Locks Required (elr)
//-----------------------------------------//
#if !__has_attribute(exclusive_locks_required)
#error "Should support exclusive_locks_required attribute"
#endif
// takes one or more arguments, all locks (vars/fields)
void elr_function() __attribute__((exclusive_locks_required)); // \
// expected-error {{'exclusive_locks_required' attribute takes at least 1 argument}}
void elr_function_arg() EXCLUSIVE_LOCKS_REQUIRED(mu1);
void elr_function_args() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2);
int elr_testfn(int y) EXCLUSIVE_LOCKS_REQUIRED(mu1);
int elr_testfn(int y) {
int x EXCLUSIVE_LOCKS_REQUIRED(mu1) = y; // \
// expected-warning {{'exclusive_locks_required' attribute only applies to functions}}
return x;
};
int elr_test_var EXCLUSIVE_LOCKS_REQUIRED(mu1); // \
// expected-warning {{'exclusive_locks_required' attribute only applies to functions}}
void elr_fun_params(int lvar EXCLUSIVE_LOCKS_REQUIRED(mu1)); // \
// expected-warning {{'exclusive_locks_required' attribute only applies to functions}}
class ElrFoo {
private:
int test_field EXCLUSIVE_LOCKS_REQUIRED(mu1); // \
// expected-warning {{'exclusive_locks_required' attribute only applies to functions}}
void test_method() EXCLUSIVE_LOCKS_REQUIRED(mu1);
};
class EXCLUSIVE_LOCKS_REQUIRED(mu1) ElrTestClass { // \
// expected-warning {{'exclusive_locks_required' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int elr_function_1() EXCLUSIVE_LOCKS_REQUIRED(muWrapper.mu);
int elr_function_2() EXCLUSIVE_LOCKS_REQUIRED(muDoubleWrapper.muWrapper->mu);
int elr_function_3() EXCLUSIVE_LOCKS_REQUIRED(muWrapper.getMu());
int elr_function_4() EXCLUSIVE_LOCKS_REQUIRED(*muWrapper.getMuPointer());
int elr_function_5() EXCLUSIVE_LOCKS_REQUIRED(&mu1);
int elr_function_6() EXCLUSIVE_LOCKS_REQUIRED(muRef);
int elr_function_7() EXCLUSIVE_LOCKS_REQUIRED(muDoubleWrapper.getWrapper()->getMu());
int elr_function_8() EXCLUSIVE_LOCKS_REQUIRED(muPointer);
// illegal attribute arguments
int elr_function_bad_1() EXCLUSIVE_LOCKS_REQUIRED(1); // \
// expected-warning {{'exclusive_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int elr_function_bad_2() EXCLUSIVE_LOCKS_REQUIRED("mu"); // \
// expected-warning {{ignoring 'exclusive_locks_required' attribute because its argument is invalid}}
int elr_function_bad_3() EXCLUSIVE_LOCKS_REQUIRED(muDoublePointer); // \
// expected-warning {{'exclusive_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int elr_function_bad_4() EXCLUSIVE_LOCKS_REQUIRED(umu); // \
// expected-warning {{'exclusive_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Shared Locks Required (slr)
//-----------------------------------------//
#if !__has_attribute(shared_locks_required)
#error "Should support shared_locks_required attribute"
#endif
// takes one or more arguments, all locks (vars/fields)
void slr_function() __attribute__((shared_locks_required)); // \
// expected-error {{'shared_locks_required' attribute takes at least 1 argument}}
void slr_function_arg() SHARED_LOCKS_REQUIRED(mu1);
void slr_function_args() SHARED_LOCKS_REQUIRED(mu1, mu2);
int slr_testfn(int y) SHARED_LOCKS_REQUIRED(mu1);
int slr_testfn(int y) {
int x SHARED_LOCKS_REQUIRED(mu1) = y; // \
// expected-warning {{'shared_locks_required' attribute only applies to functions}}
return x;
};
int slr_test_var SHARED_LOCKS_REQUIRED(mu1); // \
// expected-warning {{'shared_locks_required' attribute only applies to functions}}
void slr_fun_params(int lvar SHARED_LOCKS_REQUIRED(mu1)); // \
// expected-warning {{'shared_locks_required' attribute only applies to functions}}
class SlrFoo {
private:
int test_field SHARED_LOCKS_REQUIRED(mu1); // \
// expected-warning {{'shared_locks_required' attribute only applies to functions}}
void test_method() SHARED_LOCKS_REQUIRED(mu1);
};
class SHARED_LOCKS_REQUIRED(mu1) SlrTestClass { // \
// expected-warning {{'shared_locks_required' attribute only applies to functions}}
};
// Check argument parsing.
// legal attribute arguments
int slr_function_1() SHARED_LOCKS_REQUIRED(muWrapper.mu);
int slr_function_2() SHARED_LOCKS_REQUIRED(muDoubleWrapper.muWrapper->mu);
int slr_function_3() SHARED_LOCKS_REQUIRED(muWrapper.getMu());
int slr_function_4() SHARED_LOCKS_REQUIRED(*muWrapper.getMuPointer());
int slr_function_5() SHARED_LOCKS_REQUIRED(&mu1);
int slr_function_6() SHARED_LOCKS_REQUIRED(muRef);
int slr_function_7() SHARED_LOCKS_REQUIRED(muDoubleWrapper.getWrapper()->getMu());
int slr_function_8() SHARED_LOCKS_REQUIRED(muPointer);
// illegal attribute arguments
int slr_function_bad_1() SHARED_LOCKS_REQUIRED(1); // \
// expected-warning {{'shared_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'int'}}
int slr_function_bad_2() SHARED_LOCKS_REQUIRED("mu"); // \
// expected-warning {{ignoring 'shared_locks_required' attribute because its argument is invalid}}
int slr_function_bad_3() SHARED_LOCKS_REQUIRED(muDoublePointer); // \
// expected-warning {{'shared_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'Mutex **'}}
int slr_function_bad_4() SHARED_LOCKS_REQUIRED(umu); // \
// expected-warning {{'shared_locks_required' attribute requires arguments whose type is annotated with 'capability' attribute}}
//-----------------------------------------//
// Regression tests for unusual cases.
//-----------------------------------------//
int trivially_false_edges(bool b) {
// Create NULL (never taken) edges in CFG
if (false) return 1;
else return 2;
}
// Possible Clang bug -- method pointer in template parameter
class UnFoo {
public:
void foo();
};
template<void (UnFoo::*methptr)()>
class MCaller {
public:
static void call_method_ptr(UnFoo *f) {
// FIXME: Possible Clang bug:
// getCalleeDecl() returns NULL in the following case:
(f->*methptr)();
}
};
void call_method_ptr_inst(UnFoo* f) {
MCaller<&UnFoo::foo>::call_method_ptr(f);
}
int temp;
void empty_back_edge() {
// Create a back edge to a block with with no statements
for (;;) {
++temp;
if (temp > 10) break;
}
}
struct Foomger {
void operator++();
};
struct Foomgoper {
Foomger f;
bool done();
void invalid_back_edge() {
do {
// FIXME: Possible Clang bug:
// The first statement in this basic block has no source location
++f;
} while (!done());
}
};
//-----------------------------------------------------
// Parsing of member variables and function parameters
//------------------------------------------------------
Mutex gmu;
class StaticMu {
static Mutex statmu;
};
class FooLate {
public:
void foo1() EXCLUSIVE_LOCKS_REQUIRED(gmu) { }
void foo2() EXCLUSIVE_LOCKS_REQUIRED(mu) { }
void foo3(Mutex *m) EXCLUSIVE_LOCKS_REQUIRED(m) { }
void foo3(FooLate *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu) { }
void foo4(FooLate *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu);
static void foo5() EXCLUSIVE_LOCKS_REQUIRED(mu); // \
// expected-error {{invalid use of member 'mu' in static member function}}
template <class T>
void foo6() EXCLUSIVE_LOCKS_REQUIRED(T::statmu) { }
template <class T>
void foo7(T* f) EXCLUSIVE_LOCKS_REQUIRED(f->mu) { }
int a GUARDED_BY(gmu);
int b GUARDED_BY(mu);
int c GUARDED_BY(this->mu);
Mutex mu;
};
//-------------------------
// Empty argument lists
//-------------------------
class LOCKABLE EmptyArgListsTest {
void lock() EXCLUSIVE_LOCK_FUNCTION() { }
void unlock() UNLOCK_FUNCTION() { }
};
namespace FunctionDefinitionParseTest {
// Test parsing of attributes on function definitions.
class Foo {
public:
Mutex mu_;
void foo1();
void foo2(Foo *f);
};
template <class T>
class Bar {
public:
Mutex mu_;
void bar();
};
void Foo::foo1() EXCLUSIVE_LOCKS_REQUIRED(mu_) { }
void Foo::foo2(Foo *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_) { }
template <class T>
void Bar<T>::bar() EXCLUSIVE_LOCKS_REQUIRED(mu_) { }
void baz(Foo *f) EXCLUSIVE_LOCKS_REQUIRED(f->mu_) { }
} // end namespace
namespace TestMultiDecl {
class Foo {
public:
int GUARDED_BY(mu_) a;
int GUARDED_BY(mu_) b, c;
private:
Mutex mu_;
};
} // end namespace TestMultiDecl
namespace NestedClassLateDecl {
class Foo {
class Bar {
int a GUARDED_BY(mu);
int b GUARDED_BY(fooMuStatic);
void bar() EXCLUSIVE_LOCKS_REQUIRED(mu) { a = 0; }
void bar2(Bar* b) EXCLUSIVE_LOCKS_REQUIRED(b->mu) { b->a = 0; }
void bar3(Foo* f) EXCLUSIVE_LOCKS_REQUIRED(f->fooMu) { f->a = 0; }
Mutex mu;
};
int a GUARDED_BY(fooMu);
Mutex fooMu;
static Mutex fooMuStatic;
};
}
namespace PointerToMemberTest {
// Empty string should be ignored.
int testEmptyAttribute GUARDED_BY("");
void testEmptyAttributeFunction() EXCLUSIVE_LOCKS_REQUIRED("");
class Graph {
public:
Mutex mu_;
static Mutex* get_static_mu() LOCK_RETURNED(&Graph::mu_);
};
class Node {
public:
void foo() EXCLUSIVE_LOCKS_REQUIRED(&Graph::mu_);
int a GUARDED_BY(&Graph::mu_);
};
}
namespace SmartPointerTest {
template<class T>
class smart_ptr {
public:
T* operator->() { return ptr_; }
T& operator*() { return ptr_; }
private:
T* ptr_;
};
Mutex gmu;
smart_ptr<int> gdat PT_GUARDED_BY(gmu);
class MyClass {
public:
Mutex mu_;
smart_ptr<Mutex> smu_;
smart_ptr<int> a PT_GUARDED_BY(mu_);
int b GUARDED_BY(smu_);
};
}
namespace InheritanceTest {
class LOCKABLE Base {
public:
void lock() EXCLUSIVE_LOCK_FUNCTION();
void unlock() UNLOCK_FUNCTION();
};
class Base2 { };
class Derived1 : public Base { };
class Derived2 : public Base2, public Derived1 { };
class Derived3 : public Base2 { };
class Foo {
Derived1 mu1_;
Derived2 mu2_;
Derived3 mu3_;
int a GUARDED_BY(mu1_);
int b GUARDED_BY(mu2_);
int c GUARDED_BY(mu3_); // \
// expected-warning {{'guarded_by' attribute requires arguments whose type is annotated with 'capability' attribute; type here is 'InheritanceTest::Derived3'}}
void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1_, mu2_) {
a = 0;
b = 0;
}
};
}
namespace InvalidDeclTest {
class Foo { };
namespace {
void Foo::bar(Mutex* mu) LOCKS_EXCLUDED(mu) { } // \
// expected-error {{cannot define or redeclare 'bar' here because namespace '' does not enclose namespace 'Foo'}} \
// expected-warning {{attribute locks_excluded ignored, because it is not attached to a declaration}}
}
} // end namespace InvalidDeclTest
namespace StaticScopeTest {
class FooStream;
class Foo {
mutable Mutex mu;
int a GUARDED_BY(mu);
static int si GUARDED_BY(mu); // \
// expected-error {{invalid use of non-static data member 'mu'}}
static void foo() EXCLUSIVE_LOCKS_REQUIRED(mu); // \
// expected-error {{invalid use of member 'mu' in static member function}}
friend FooStream& operator<<(FooStream& s, const Foo& f)
EXCLUSIVE_LOCKS_REQUIRED(mu); // \
// expected-error {{invalid use of non-static data member 'mu'}}
};
} // end namespace StaticScopeTest
namespace FunctionAttributesInsideClass_ICE_Test {
class Foo {
public:
/* Originally found when parsing foo() as an ordinary method after the
* the following:
template <class T>
void syntaxErrorMethod(int i) {
if (i) {
foo(
}
}
*/
void method() {
void foo() EXCLUSIVE_LOCKS_REQUIRED(mu); // \
// expected-error {{use of undeclared identifier 'mu'}}
}
};
} // end namespace FunctionAttributesInsideClass_ICE_Test
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/crashes.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// <rdar://problem/8124080>
template<typename _Alloc> class allocator;
template<class _CharT> struct char_traits;
template<typename _CharT, typename _Traits = char_traits<_CharT>,
typename _Alloc = allocator<_CharT> >
class basic_string;
template<typename _CharT, typename _Traits, typename _Alloc>
const typename basic_string<_CharT, _Traits, _Alloc>::size_type
basic_string<_CharT, _Traits, _Alloc>::_Rep::_S_max_size // expected-error{{no member named '_Rep' in 'basic_string<_CharT, _Traits, _Alloc>'}}
= (((npos - sizeof(_Rep_base))/sizeof(_CharT)) - 1) / 4;
// PR7118
template<typename T>
class Foo {
class Bar;
void f() {
Bar i;
}
};
// PR7625
template<typename T> struct a : T {
struct x : T {
int aa() { return p; } // expected-error{{use of undeclared identifier 'p'}}
};
};
// rdar://8605381
namespace rdar8605381 {
struct X {};
struct Y { // expected-note{{candidate}}
Y();
};
struct {
Y obj;
} objs[] = {
new Y // expected-error{{no viable conversion}}
};
}
// http://llvm.org/PR8234
namespace PR8234 {
template<typename Signature>
class callback
{
};
template<typename R , typename ARG_TYPE0>
class callback<R( ARG_TYPE0)>
{
public:
callback() {}
};
template< typename ARG_TYPE0>
class callback<void( ARG_TYPE0)>
{
public:
callback() {}
};
void f()
{
callback<void(const int&)> op;
}
}
namespace PR9007 {
struct bar {
enum xxx {
yyy = sizeof(struct foo*)
};
foo *xxx();
};
}
namespace PR9026 {
class InfallibleTArray {
};
class Variant;
class CompVariant {
operator const InfallibleTArray&() const;
};
class Variant {
operator const CompVariant&() const;
};
void Write(const Variant& __v);
void Write(const InfallibleTArray& __v);
Variant x;
void Write2() {
Write(x);
}
}
namespace PR10270 {
template<typename T> class C;
template<typename T> void f() {
if (C<T> == 1) // expected-error{{expected unqualified-id}} \
// expected-error{{invalid '==' at end of declaration}}
return;
}
}
namespace rdar11806334 {
class cc_YCbCr;
class cc_rgb
{
public:
cc_rgb( uint p ); // expected-error {{unknown type name}}
cc_rgb( cc_YCbCr v_in );
};
class cc_hsl
{
public:
cc_rgb rgb();
cc_YCbCr YCbCr();
};
class cc_YCbCr
{
public:
cc_YCbCr( const cc_rgb v_in );
};
cc_YCbCr cc_hsl::YCbCr()
{
cc_YCbCr v_out = cc_YCbCr( rgb());
return v_out;
}
}
namespace test1 {
int getString(const int*);
template<int a> class ELFObjectFile {
const int* sh;
ELFObjectFile() {
switch (*sh) {
}
int SectionName(getString(sh));
}
};
}
namespace test2 {
struct fltSemantics ;
const fltSemantics &foobar();
void VisitCastExpr(int x) {
switch (x) {
case 42:
const fltSemantics &Sem = foobar();
}
}
}
namespace test3 {
struct nsCSSRect {
};
static int nsCSSRect::* sides;
nsCSSRect dimenX;
void ParseBoxCornerRadii(int y) {
switch (y) {
}
int& x = dimenX.*sides;
}
}
namespace pr16964 {
template<typename> struct bs {
bs();
static int* member(); // expected-note{{possible target}}
member(); // expected-error{{C++ requires a type specifier for all declarations}}
static member(); // expected-error{{C++ requires a type specifier for all declarations}}
static int* member(int); // expected-note{{possible target}}
};
template<typename T> bs<T>::bs() { member; } // expected-error{{did you mean to call it}}
bs<int> test() {
return bs<int>(); // expected-note{{in instantiation}}
}
}
namespace pr12791 {
template<class _Alloc> class allocator {};
template<class _CharT> struct char_traits;
struct input_iterator_tag {};
struct forward_iterator_tag : public input_iterator_tag {};
template<typename _CharT, typename _Traits, typename _Alloc> struct basic_string {
struct _Alloc_hider : _Alloc { _Alloc_hider(_CharT*, const _Alloc&); };
mutable _Alloc_hider _M_dataplus;
template<class _InputIterator> basic_string(_InputIterator __beg, _InputIterator __end, const _Alloc& __a = _Alloc());
template<class _InIterator> static _CharT* _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, input_iterator_tag);
template<class _FwdIterator> static _CharT* _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a, forward_iterator_tag);
static _CharT* _S_construct(size_type __req, _CharT __c, const _Alloc& __a); // expected-error{{unknown type name 'size_type'}}
};
template<typename _CharT, typename _Traits, typename _Alloc>
template<typename _InputIterator>
basic_string<_CharT, _Traits, _Alloc>:: basic_string(_InputIterator __beg, _InputIterator __end, const _Alloc& __a)
: _M_dataplus(_S_construct(__beg, __end, __a, input_iterator_tag()), __a) {}
template<typename _CharT, typename _Traits = char_traits<_CharT>, typename _Alloc = allocator<_CharT> > struct basic_stringbuf {
typedef _CharT char_type;
typedef basic_string<char_type, _Traits, _Alloc> __string_type;
__string_type str() const {__string_type((char_type*)0,(char_type*)0);}
};
template class basic_stringbuf<char>;
}
namespace pr16989 {
class C {
template <class T>
C tpl_mem(T *) { return } // expected-error{{expected expression}}
void mem(int *p) {
tpl_mem(p);
}
};
class C2 {
void f();
};
void C2::f() {}
}
namespace pr20660 {
appendList(int[]...); // expected-error {{C++ requires a type specifier for all declarations}}
appendList(int[]...) { } // expected-error {{C++ requires a type specifier for all declarations}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-overloaded-virtual.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Woverloaded-virtual -verify %s
struct B1 {
virtual void foo(int); // expected-note {{declared here}}
virtual void foo(); // expected-note {{declared here}}
};
struct S1 : public B1 {
void foo(float); // expected-warning {{hides overloaded virtual functions}}
};
struct S2 : public B1 {
void foo(); // expected-note {{declared here}}
};
struct B2 {
virtual void foo(void*); // expected-note {{declared here}}
};
struct MS1 : public S2, public B2 {
virtual void foo(int); // expected-warning {{hides overloaded virtual functions}}
};
struct B3 {
virtual void foo(int);
virtual void foo();
};
struct S3 : public B3 {
using B3::foo;
void foo(float);
};
struct B4 {
virtual void foo();
};
struct S4 : public B4 {
void foo(float);
void foo();
};
namespace PR9182 {
struct Base {
virtual void foo(int);
};
void Base::foo(int) { }
struct Derived : public Base {
virtual void foo(int);
void foo(int, int);
};
}
namespace PR9396 {
class A {
public:
virtual void f(int) {}
};
class B : public A {
public:
static void f() {}
};
}
namespace ThreeLayer {
struct A {
virtual void f();
};
struct B: A {
void f();
void f(int);
};
struct C: B {
void f(int);
using A::f;
};
}
namespace UnbalancedVirtual {
struct Base {
virtual void func();
};
struct Derived1: virtual Base {
virtual void func();
};
struct Derived2: virtual Base {
};
struct MostDerived: Derived1, Derived2 {
void func(int);
void func();
};
}
namespace UnbalancedVirtual2 {
struct Base {
virtual void func();
};
struct Derived1: virtual Base {
virtual void func();
};
struct Derived2: virtual Base {
};
struct Derived3: Derived1 {
virtual void func();
};
struct MostDerived: Derived3, Derived2 {
void func(int);
void func();
};
}
namespace {
class A {
virtual int foo(bool) const;
// expected-note@-1{{type mismatch at 1st parameter ('bool' vs 'int')}}
virtual int foo(int, int) const;
// expected-note@-1{{different number of parameters (2 vs 1)}}
virtual int foo(int*) const;
// expected-note@-1{{type mismatch at 1st parameter ('int *' vs 'int')}}
virtual int foo(int) volatile;
// expected-note@-1{{different qualifiers (volatile vs const)}}
};
class B : public A {
virtual int foo(int) const;
// expected-warning@-1{{hides overloaded virtual functions}}
};
}
namespace {
struct base {
void f(char) {}
};
struct derived : base {
void f(int) {}
};
void foo(derived &d) {
d.f('1'); // FIXME: this should warn about calling (anonymous namespace)::derived::f(int)
// instead of (anonymous namespace)::base::f(char).
// Note: this should be under a new diagnostic flag and eventually moved to a
// new test case since it's not strictly related to virtual functions.
d.f(12); // This should not warn.
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pr18284-crash-on-invalid.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// Don't crash (PR18284).
namespace n1 {
class A { };
class C { A a; };
A::RunTest() {} // expected-error {{C++ requires a type specifier for all declarations}}
void f() {
new C;
}
} // namespace n1
namespace n2 {
class A { };
class C : public A { };
A::RunTest() {} // expected-error {{C++ requires a type specifier for all declarations}}
void f() {
new C;
}
} // namespace n2
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/nonnull.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
template<int I>
struct TS {
__attribute__((returns_nonnull))
void *value_dependent(void) {
return I; // no-warning
}
__attribute__((returns_nonnull))
void *value_independent(void) {
return 0; // expected-warning {{null returned from function that requires a non-null return value}}
}
};
namespace Template {
template<typename T> __attribute__((nonnull)) void f(T t);
void g() { f((void*)0); } // expected-warning {{null passed to a callee that requires a non-null argument}}
void h() { f(0); }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/ms-novtable.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -verify -fms-extensions -Wno-microsoft -std=c++11
struct __declspec(novtable) S {};
enum __declspec(novtable) E {}; // expected-warning{{'novtable' attribute only applies to classes}}
int __declspec(novtable) I; // expected-warning{{'novtable' attribute only applies to classes}}
typedef struct T __declspec(novtable) U; // expected-warning{{'novtable' attribute only applies to classes}}
auto z = []() __declspec(novtable) { return nullptr; }; // expected-warning{{'novtable' attribute only applies to classes}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/types_compatible_p.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -x c++ %s
// RUN: %clang_cc1 -fsyntax-only -x c %s
// Test that GNU C extension __builtin_types_compatible_p() is not available in C++ mode.
int f() {
return __builtin_types_compatible_p(int, const int); // expected-error{{expected '(' for function-style cast or type construction}} \
// expected-error{{expected expression}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/no-rtti.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -fno-rtti %s
namespace std {
class type_info;
}
void f()
{
(void)typeid(int); // expected-error {{cannot use typeid with -fno-rtti}}
}
namespace {
struct A {
virtual ~A(){};
};
struct B : public A {
B() : A() {}
};
}
bool isa_B(A *a) {
return dynamic_cast<B *>(a) != 0; // expected-error {{cannot use dynamic_cast with -fno-rtti}}
}
void* getMostDerived(A* a) {
// This cast does not use RTTI.
return dynamic_cast<void *>(a);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/conversion-incomplete-type.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
struct string {};
class StringPiece; // expected-note {{forward declaration of 'StringPiece'}} \
// expected-note {{forward declaration of 'StringPiece'}}
struct Test {
void expectStringPiece(const StringPiece& blah) {}; // expected-note {{passing argument to parameter 'blah' here}}
void test(const string& s) {
expectStringPiece(s); // expected-error {{no viable conversion from 'const string' to incomplete type 'const StringPiece'}}
}
};
struct TestStatic {
static void expectStringPiece(const StringPiece& blah) {}; // expected-note {{passing argument to parameter 'blah' here}}
static void test(const string& s) {
expectStringPiece(s); // expected-error {{no viable conversion from 'const string' to incomplete type 'const StringPiece'}}
}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/conversion-function.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wbind-to-temporary-copy -verify %s
class X {
public:
operator bool();
operator int() const;
bool f() {
return operator bool();
}
float g() {
return operator float(); // expected-error{{use of undeclared 'operator float'}}
}
static operator short(); // expected-error{{conversion function must be a non-static member function}}
};
operator int(); // expected-error{{conversion function must be a non-static member function}}
operator int; // expected-error{{'operator int' cannot be the name of a variable or data member}}
typedef int func_type(int);
typedef int array_type[10];
class Y {
public:
void operator bool(int, ...) const; // expected-error{{conversion function cannot have a return type}} \
// expected-error{{conversion function cannot have any parameters}}
operator bool(int a = 4, int b = 6) const; // expected-error{{conversion function cannot have any parameters}}
operator float(...) const; // expected-error{{conversion function cannot be variadic}}
operator func_type(); // expected-error{{conversion function cannot convert to a function type}}
operator array_type(); // expected-error{{conversion function cannot convert to an array type}}
};
typedef int INT;
typedef INT* INT_PTR;
class Z {
operator int(); // expected-note {{previous declaration is here}}
operator int**(); // expected-note {{previous declaration is here}}
operator INT(); // expected-error{{conversion function cannot be redeclared}}
operator INT_PTR*(); // expected-error{{conversion function cannot be redeclared}}
};
class A { };
class B : public A {
public:
operator A&() const; // expected-warning{{conversion function converting 'B' to its base class 'A' will never be used}}
operator const void() const; // expected-warning{{conversion function converting 'B' to 'const void' will never be used}}
operator const B(); // expected-warning{{conversion function converting 'B' to itself will never be used}}
};
// This used to crash Clang.
struct Flip;
struct Flop {
Flop();
Flop(const Flip&); // expected-note{{candidate constructor}}
};
struct Flip {
operator Flop() const; // expected-note{{candidate function}}
};
Flop flop = Flip(); // expected-error {{conversion from 'Flip' to 'Flop' is ambiguous}}
// This tests that we don't add the second conversion declaration to the list of user conversions
struct C {
operator const char *() const;
};
C::operator const char*() const { return 0; }
void f(const C& c) {
const char* v = c;
}
// Test. Conversion in base class is visible in derived class.
class XB {
public:
operator int(); // expected-note {{candidate function}}
};
class Yb : public XB {
public:
operator char(); // expected-note {{candidate function}}
};
void f(Yb& a) {
if (a) { } // expected-error {{conversion from 'Yb' to 'bool' is ambiguous}}
int i = a; // OK. calls XB::operator int();
char ch = a; // OK. calls Yb::operator char();
}
// Test conversion + copy construction.
class AutoPtrRef { };
class AutoPtr {
AutoPtr(AutoPtr &); // expected-note{{declared private here}}
public:
AutoPtr();
AutoPtr(AutoPtrRef);
operator AutoPtrRef();
};
AutoPtr make_auto_ptr();
AutoPtr test_auto_ptr(bool Cond) {
AutoPtr p1( make_auto_ptr() );
AutoPtr p;
if (Cond)
return p; // expected-error{{calling a private constructor}}
return AutoPtr();
}
struct A1 {
A1(const char *);
~A1();
private:
A1(const A1&); // expected-note 2 {{declared private here}}
};
A1 f() {
// FIXME: redundant diagnostics!
return "Hello"; // expected-error {{calling a private constructor}} expected-warning {{an accessible copy constructor}}
}
namespace source_locations {
template<typename T>
struct sneaky_int {
typedef int type;
};
template<typename T, typename U>
struct A { };
template<typename T>
struct A<T, T> : A<T, int> { };
struct E {
template<typename T>
operator A<T, typename sneaky_int<T>::type>&() const; // expected-note{{candidate function}}
};
void f() {
A<float, float> &af = E(); // expected-error{{no viable conversion}}
A<float, int> &af2 = E();
const A<float, int> &caf2 = E();
}
// Check
template<typename T>
struct E2 {
operator T
* // expected-error{{pointer to a reference}}
() const;
};
E2<int&> e2i; // expected-note{{in instantiation}}
}
namespace crazy_declarators {
struct A {
(&operator bool())(); // expected-error {{use a typedef to declare a conversion to 'bool (&)()'}}
*operator int(); // expected-error {{put the complete type after 'operator'}}
// No suggestion of using a typedef here; that's not possible.
template<typename T> (&operator T())(); // expected-error-re {{cannot specify any part of a return type in the declaration of a conversion function{{$}}}}
};
}
namespace smart_ptr {
class Y {
class YRef { };
Y(Y&);
public:
Y();
Y(YRef);
operator YRef(); // expected-note{{candidate function}}
};
struct X { // expected-note{{candidate constructor (the implicit copy constructor) not}}
explicit X(Y);
};
Y make_Y();
X f() {
X x = make_Y(); // expected-error{{no viable conversion from 'smart_ptr::Y' to 'smart_ptr::X'}}
X x2(make_Y());
return X(Y());
}
}
struct Any {
Any(...);
};
struct Other {
Other(const Other &);
Other();
};
void test_any() {
Any any = Other(); // expected-error{{cannot pass object of non-POD type 'Other' through variadic constructor; call will abort at runtime}}
}
namespace PR7055 {
// Make sure that we don't allow too many conversions in an
// auto_ptr-like template. In particular, we can't create multiple
// temporary objects when binding to a reference.
struct auto_ptr {
struct auto_ptr_ref { };
auto_ptr(auto_ptr&);
auto_ptr(auto_ptr_ref);
explicit auto_ptr(int *);
operator auto_ptr_ref();
};
struct X {
X(auto_ptr);
};
X f() {
X x(auto_ptr(new int));
return X(auto_ptr(new int));
}
auto_ptr foo();
X e(foo());
struct Y {
Y(X);
};
Y f2(foo());
}
namespace PR7934 {
typedef unsigned char uint8;
struct MutablePtr {
MutablePtr() : ptr(0) {}
void *ptr;
operator void*() { return ptr; }
private:
operator uint8*() { return reinterpret_cast<uint8*>(ptr); }
operator const char*() const { return reinterpret_cast<const char*>(ptr); }
};
void fake_memcpy(const void *);
void use() {
MutablePtr ptr;
fake_memcpy(ptr);
}
}
namespace rdar8018274 {
struct X { };
struct Y {
operator const struct X *() const;
};
struct Z : Y {
operator struct X * ();
};
void test() {
Z x;
(void) (x != __null);
}
struct Base {
operator int();
};
struct Derived1 : Base { };
struct Derived2 : Base { };
struct SuperDerived : Derived1, Derived2 {
using Derived1::operator int;
};
struct UeberDerived : SuperDerived {
operator long();
};
void test2(UeberDerived ud) {
int i = ud; // expected-error{{ambiguous conversion from derived class 'rdar8018274::SuperDerived' to base class 'rdar8018274::Base'}}
}
struct Base2 {
operator int();
};
struct Base3 {
operator int();
};
struct Derived23 : Base2, Base3 {
using Base2::operator int;
};
struct ExtraDerived23 : Derived23 { };
void test3(ExtraDerived23 ed) {
int i = ed;
}
}
namespace PR8065 {
template <typename T> struct Iterator;
template <typename T> struct Container;
template<>
struct Iterator<int> {
typedef Container<int> container_type;
};
template <typename T>
struct Container {
typedef typename Iterator<T>::container_type X;
operator X(void) { return X(); }
};
Container<int> test;
}
namespace PR8034 {
struct C {
operator int();
private:
template <typename T> operator T();
};
int x = C().operator int();
}
namespace PR9336 {
template<class T>
struct generic_list
{
template<class Container>
operator Container()
{
Container ar;
T* i;
ar[0]=*i;
return ar;
}
};
template<class T>
struct array
{
T& operator[](int);
const T& operator[](int)const;
};
generic_list<generic_list<int> > l;
array<array<int> > a = l;
}
namespace PR8800 {
struct A;
struct C {
operator A&();
};
void f() {
C c;
A& a1(c);
A& a2 = c;
A& a3 = static_cast<A&>(c);
A& a4 = (A&)c;
}
}
namespace PR12712 {
struct A {};
struct B {
operator A();
operator A() const;
};
struct C : B {};
A f(const C c) { return c; }
}
namespace PR18234 {
struct A {
operator enum E { e } (); // expected-error {{'PR18234::A::E' cannot be defined in a type specifier}}
operator struct S { int n; } (); // expected-error {{'PR18234::A::S' cannot be defined in a type specifier}}
} a;
A::S s = a;
A::E e = a; // expected-note {{here}}
bool k1 = e == A::e; // expected-error {{no member named 'e'}}
bool k2 = e.n == 0;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/expressions.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-constant-conversion %s
void choice(int);
int choice(bool);
void test() {
// Result of ! must be type bool.
int i = choice(!1);
}
// rdar://8018252
void f0() {
extern void f0_1(int*);
register int x;
f0_1(&x);
}
namespace test1 {
template <class T> void bar(T &x) { T::fail(); }
template <class T> void bar(volatile T &x) {}
void test_ints() {
volatile int x;
bar(x = 5);
bar(x += 5);
}
enum E { E_zero };
void test_enums() {
volatile E x;
bar(x = E_zero);
bar(x += E_zero); // expected-error {{incompatible type}}
}
}
int test2(int x) {
return x && 4; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && sizeof(int) == 4; // no warning, RHS is logical op.
return x && true;
return x && false;
return x || true;
return x || false;
return x && (unsigned)0; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x || (unsigned)1; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || 0; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || 1; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || -1; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || 5; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x && 0; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && 1; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && -1; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && 5; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x || (0); // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || (1); // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || (-1); // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x || (5); // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
return x && (0); // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && (1); // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && (-1); // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x && (5); // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
}
template<unsigned int A, unsigned int B> struct S
{
enum {
e1 = A && B,
e2 = A && 7 // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
};
int foo() {
int x = A && B;
int y = B && 3; // expected-warning {{use of logical '&&' with constant operand}} \
// expected-note {{use '&' for a bitwise operation}} \
// expected-note {{remove constant to silence this warning}}
return x + y;
}
};
void test3() {
S<5, 8> s1;
S<2, 7> s2;
(void)s1.foo();
(void)s2.foo();
}
namespace pr16992 {
typedef int T;
unsigned getsz() {
return (sizeof T());
}
}
void test4() {
#define X 0
#define Y 1
bool r1 = X || Y;
#define Y2 2
bool r2 = X || Y2; // expected-warning {{use of logical '||' with constant operand}} \
// expected-note {{use '|' for a bitwise operation}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/aggregate-initialization.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// Verify that using an initializer list for a non-aggregate looks for
// constructors..
// Note that due to a (likely) standard bug, this is technically an aggregate,
// but we do not treat it as one.
struct NonAggr1 { // expected-note 2 {{candidate constructor}}
NonAggr1(int, int) { } // expected-note {{candidate constructor}}
int m;
};
struct Base { };
struct NonAggr2 : public Base { // expected-note 3 {{candidate constructor}}
int m;
};
class NonAggr3 { // expected-note 3 {{candidate constructor}}
int m;
};
struct NonAggr4 { // expected-note 3 {{candidate constructor}}
int m;
virtual void f();
};
NonAggr1 na1 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr1'}}
NonAggr2 na2 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr2'}}
NonAggr3 na3 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr3'}}
NonAggr4 na4 = { 17 }; // expected-error{{no matching constructor for initialization of 'NonAggr4'}}
// PR5817
typedef int type[][2];
const type foo = {0};
// Vector initialization.
typedef short __v4hi __attribute__ ((__vector_size__ (8)));
__v4hi v1 = { (void *)1, 2, 3 }; // expected-error {{cannot initialize a vector element of type 'short' with an rvalue of type 'void *'}}
// Array initialization.
int a[] = { (void *)1 }; // expected-error {{cannot initialize an array element of type 'int' with an rvalue of type 'void *'}}
// Struct initialization.
struct S { int a; } s = { (void *)1 }; // expected-error {{cannot initialize a member subobject of type 'int' with an rvalue of type 'void *'}}
// Check that we're copy-initializing the structs.
struct A {
A();
A(int);
~A();
A(const A&) = delete; // expected-note 2 {{'A' has been explicitly marked deleted here}}
};
struct B {
A a;
};
struct C {
const A& a;
};
void f() {
A as1[1] = { };
A as2[1] = { 1 }; // expected-error {{copying array element of type 'A' invokes deleted constructor}}
B b1 = { };
B b2 = { 1 }; // expected-error {{copying member subobject of type 'A' invokes deleted constructor}}
C c1 = { 1 };
}
class Agg {
public:
int i, j;
};
class AggAgg {
public:
Agg agg1;
Agg agg2;
};
AggAgg aggagg = { 1, 2, 3, 4 };
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/function-pointer-arguments.cpp
|
//RUN: %clang_cc1 -fsyntax-only -verify %s
namespace PR16570 {
int f1(int, int);
int f2(const int, int);
int f3(int&, int);
int f4(const int&, int);
void good() {
int(*g1)(int, int) = f1;
int(*g2)(const int, int) = f1;
int(*g3)(volatile int, int) = f1;
int(*g4)(int, int) = f2;
int(*g5)(const int, int) = f2;
int(*g6)(volatile int, int) = f2;
int(*g7)(int&, int) = f3;
int(*g8)(const int&, int) = f4;
}
void bad() {
void (*g1)(int, int) = f1;
// expected-error@-1 {{different return type ('void' vs 'int'}}
const int (*g2)(int, int) = f1;
// expected-error@-1 {{different return type ('const int' vs 'int')}}
int (*g3)(char, int) = f1;
// expected-error@-1 {{type mismatch at 1st parameter ('char' vs 'int')}}
int (*g4)(int, char) = f1;
// expected-error@-1 {{type mismatch at 2nd parameter ('char' vs 'int')}}
int (*g5)(int) = f1;
// expected-error@-1 {{different number of parameters (1 vs 2)}}
int (*g6)(int, int, int) = f1;
// expected-error@-1 {{different number of parameters (3 vs 2)}}
int (*g7)(const int, char) = f1;
// expected-error@-1 {{type mismatch at 2nd parameter ('char' vs 'int')}}
int (*g8)(int, char) = f2;
// expected-error@-1 {{type mismatch at 2nd parameter ('char' vs 'int')}}
int (*g9)(const int&, char) = f3;
// expected-error@-1 {{type mismatch at 1st parameter ('const int &' vs 'int &')}}
int (*g10)(int&, char) = f4;
// expected-error@-1 {{type mismatch at 1st parameter ('int &' vs 'const int &')}}
}
typedef void (*F)(const char * __restrict__, int);
void g(const char *, unsigned);
F f = g;
// expected-error@-1 {{type mismatch at 2nd parameter ('int' vs 'unsigned int')}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx0x-initializer-stdinitializerlist.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// This must obviously come before the definition of std::initializer_list.
void missing_initializerlist() {
auto l = {1, 2, 3, 4}; // expected-error {{std::initializer_list was not found}}
}
namespace std {
typedef decltype(sizeof(int)) size_t;
// libc++'s implementation
template <class _E>
class initializer_list
{
const _E* __begin_;
size_t __size_;
initializer_list(const _E* __b, size_t __s)
: __begin_(__b),
__size_(__s)
{}
public:
typedef _E value_type;
typedef const _E& reference;
typedef const _E& const_reference;
typedef size_t size_type;
typedef const _E* iterator;
typedef const _E* const_iterator;
initializer_list() : __begin_(nullptr), __size_(0) {}
size_t size() const {return __size_;}
const _E* begin() const {return __begin_;}
const _E* end() const {return __begin_ + __size_;}
};
}
template <typename T, typename U>
struct same_type { static const bool value = false; };
template <typename T>
struct same_type<T, T> { static const bool value = true; };
struct one { char c[1]; };
struct two { char c[2]; };
struct A {
int a, b;
};
struct B {
B();
B(int, int);
};
void simple_list() {
std::initializer_list<int> il = { 1, 2, 3 };
std::initializer_list<double> dl = { 1.0, 2.0, 3 };
std::initializer_list<A> al = { {1, 2}, {2, 3}, {3, 4} };
std::initializer_list<B> bl = { {1, 2}, {2, 3}, {} };
}
void function_call() {
void f(std::initializer_list<int>);
f({1, 2, 3});
void g(std::initializer_list<B>);
g({ {1, 2}, {2, 3}, {} });
}
struct C {
C(int);
};
struct D {
D();
operator int();
operator C();
};
void overloaded_call() {
one overloaded(std::initializer_list<int>);
two overloaded(std::initializer_list<B>);
static_assert(sizeof(overloaded({1, 2, 3})) == sizeof(one), "bad overload");
static_assert(sizeof(overloaded({ {1, 2}, {2, 3}, {} })) == sizeof(two), "bad overload");
void ambiguous(std::initializer_list<A>); // expected-note {{candidate}}
void ambiguous(std::initializer_list<B>); // expected-note {{candidate}}
ambiguous({ {1, 2}, {2, 3}, {3, 4} }); // expected-error {{ambiguous}}
one ov2(std::initializer_list<int>); // expected-note {{candidate}}
two ov2(std::initializer_list<C>); // expected-note {{candidate}}
// Worst sequence to int is identity, whereas to C it's user-defined.
static_assert(sizeof(ov2({1, 2, 3})) == sizeof(one), "bad overload");
// But here, user-defined is worst in both cases.
ov2({1, 2, D()}); // expected-error {{ambiguous}}
}
template <typename T>
T deduce(std::initializer_list<T>); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}}
template <typename T>
T deduce_ref(const std::initializer_list<T>&); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}}
void argument_deduction() {
static_assert(same_type<decltype(deduce({1, 2, 3})), int>::value, "bad deduction");
static_assert(same_type<decltype(deduce({1.0, 2.0, 3.0})), double>::value, "bad deduction");
deduce({1, 2.0}); // expected-error {{no matching function}}
static_assert(same_type<decltype(deduce_ref({1, 2, 3})), int>::value, "bad deduction");
static_assert(same_type<decltype(deduce_ref({1.0, 2.0, 3.0})), double>::value, "bad deduction");
deduce_ref({1, 2.0}); // expected-error {{no matching function}}
}
void auto_deduction() {
auto l = {1, 2, 3, 4};
auto l2 {1, 2, 3, 4}; // expected-warning {{will change meaning in a future version of Clang}}
static_assert(same_type<decltype(l), std::initializer_list<int>>::value, "");
auto bl = {1, 2.0}; // expected-error {{cannot deduce}}
for (int i : {1, 2, 3, 4}) {}
}
void dangle() {
new auto{1, 2, 3}; // expected-error {{cannot use list-initialization}}
new std::initializer_list<int>{1, 2, 3}; // expected-warning {{at the end of the full-expression}}
}
struct haslist1 {
std::initializer_list<int> il = {1, 2, 3}; // expected-warning{{at the end of the constructor}}
std::initializer_list<int> jl{1, 2, 3}; // expected-warning{{at the end of the constructor}}
haslist1();
};
haslist1::haslist1()
: il{1, 2, 3} // expected-warning{{at the end of the constructor}}
{}
namespace PR12119 {
// Deduction with nested initializer lists.
template<typename T> void f(std::initializer_list<T>);
template<typename T> void g(std::initializer_list<std::initializer_list<T>>);
void foo() {
f({0, {1}}); // expected-warning{{braces around scalar initializer}}
g({{0, 1}, {2, 3}});
std::initializer_list<int> il = {1, 2};
g({il, {2, 3}});
}
}
namespace Decay {
template<typename T>
void f(std::initializer_list<T>) {
T x = 1; // expected-error{{cannot initialize a variable of type 'const char *' with an rvalue of type 'int'}}
}
void g() {
f({"A", "BB", "CCC"}); // expected-note{{in instantiation of function template specialization 'Decay::f<const char *>' requested here}}
auto x = { "A", "BB", "CCC" };
std::initializer_list<const char *> *il = &x;
for( auto s : {"A", "BB", "CCC", "DDD"}) { }
}
}
namespace PR12436 {
struct X {
template<typename T>
X(std::initializer_list<int>, T);
};
X x({}, 17);
}
namespace rdar11948732 {
template<typename T> struct X {};
struct XCtorInit {
XCtorInit(std::initializer_list<X<int>>);
};
void f(X<int> &xi) {
XCtorInit xc = { xi, xi };
}
}
namespace PR14272 {
auto x { { 0, 0 } }; // expected-error {{cannot deduce actual type for variable 'x' with type 'auto' from initializer list}}
}
namespace initlist_of_array {
void f(std::initializer_list<int[2]>) {}
void f(std::initializer_list<int[2][2]>) = delete;
void h() {
f({{1,2},{3,4}});
}
}
namespace init_list_deduction_failure {
void f();
void f(int);
template<typename T> void g(std::initializer_list<T>);
// expected-note@-1 {{candidate template ignored: couldn't resolve reference to overloaded function 'f'}}
void h() { g({f}); }
// expected-error@-1 {{no matching function for call to 'g'}}
}
namespace deleted_copy {
struct X {
X(int i) {}
X(const X& x) = delete; // expected-note {{here}}
void operator=(const X& x) = delete;
};
std::initializer_list<X> x{1}; // expected-error {{invokes deleted constructor}}
}
namespace RefVersusInitList {
struct S {};
void f(const S &) = delete;
void f(std::initializer_list<S>);
void g(S s) { f({S()}); }
}
namespace PR18013 {
int f();
std::initializer_list<long (*)()> x = {f}; // expected-error {{cannot initialize an array element of type 'long (*const)()' with an lvalue of type 'int ()': different return type ('long' vs 'int')}}
}
namespace DR1070 {
struct S {
S(std::initializer_list<int>);
};
S s[3] = { {1, 2, 3}, {4, 5} }; // ok
S *p = new S[3] { {1, 2, 3}, {4, 5} }; // ok
}
namespace ListInitInstantiate {
struct A {
A(std::initializer_list<A>);
A(std::initializer_list<int>);
};
struct B : A {
B(int);
};
template<typename T> struct X {
X();
A a;
};
template<typename T> X<T>::X() : a{B{0}, B{1}} {}
X<int> x;
int f(const A&);
template<typename T> void g() { int k = f({0}); }
template void g<int>();
}
namespace TemporaryInitListSourceRange_PR22367 {
struct A {
constexpr A() {}
A(std::initializer_list<int>); // expected-note {{here}}
};
constexpr int f(A) { return 0; }
constexpr int k = f( // expected-error {{must be initialized by a constant expression}}
// The point of this test is to check that the caret points to
// 'std::initializer_list', not to '{0}'.
std::initializer_list // expected-note {{constructor}}
<int>
{0}
);
}
namespace ParameterPackNestedInitializerLists_PR23904c3 {
template <typename ...T>
void f(std::initializer_list<std::initializer_list<T>> ...tt);
void foo() { f({{0}}, {{'\0'}}); }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-unused-private-field.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wunused-private-field -Wused-but-marked-unused -Wno-uninitialized -verify -std=c++11 %s
class NotFullyDefined {
public:
NotFullyDefined();
private:
int y;
};
class HasUndefinedNestedClass {
class Undefined;
int unused_;
};
class HasUndefinedPureVirtualDestructor {
virtual ~HasUndefinedPureVirtualDestructor() = 0;
int unused_;
};
class HasDefinedNestedClasses {
class DefinedHere {};
class DefinedOutside;
int unused_; // expected-warning{{private field 'unused_' is not used}}
};
class HasDefinedNestedClasses::DefinedOutside {};
class HasUndefinedFriendFunction {
friend void undefinedFriendFunction();
int unused_;
};
class HasUndefinedFriendClass {
friend class NotFullyDefined;
friend class NotDefined;
int unused_;
};
class HasFriend {
friend class FriendClass;
friend void friendFunction(HasFriend f);
int unused_; // expected-warning{{private field 'unused_' is not used}}
int used_by_friend_class_;
int used_by_friend_function_;
};
class ClassWithTemplateFriend {
template <typename T> friend class TemplateFriend;
int used_by_friend_;
int unused_;
};
template <typename T> class TemplateFriend {
public:
TemplateFriend(ClassWithTemplateFriend my_friend) {
int var = my_friend.used_by_friend_;
}
};
class FriendClass {
HasFriend my_friend_;
void use() {
my_friend_.used_by_friend_class_ = 42;
}
};
void friendFunction(HasFriend my_friend) {
my_friend.used_by_friend_function_ = 42;
}
class NonTrivialConstructor {
public:
NonTrivialConstructor() {}
};
class NonTrivialDestructor {
public:
~NonTrivialDestructor() {}
};
class Trivial {
public:
Trivial() = default;
Trivial(int a) {}
};
int side_effect() {
return 42;
}
class A {
public:
A() : primitive_type_(42), default_initializer_(), other_initializer_(42),
trivial_(), user_constructor_(42),
initialized_with_side_effect_(side_effect()) {
used_ = 42;
attr_used_ = 42; // expected-warning{{'attr_used_' was marked unused but was used}}
}
A(int x, A* a) : pointer_(a) {}
private:
int primitive_type_; // expected-warning{{private field 'primitive_type_' is not used}}
A* pointer_; // expected-warning{{private field 'pointer_' is not used}}
int no_initializer_; // expected-warning{{private field 'no_initializer_' is not used}}
int default_initializer_; // expected-warning{{private field 'default_initializer_' is not used}}
int other_initializer_; // expected-warning{{private field 'other_initializer_' is not used}}
int used_, unused_; // expected-warning{{private field 'unused_' is not used}}
int in_class_initializer_ = 42; // expected-warning{{private field 'in_class_initializer_' is not used}}
int in_class_initializer_with_side_effect_ = side_effect();
Trivial trivial_initializer_ = Trivial(); // expected-warning{{private field 'trivial_initializer_' is not used}}
Trivial non_trivial_initializer_ = Trivial(42);
int initialized_with_side_effect_;
static int static_fields_are_ignored_;
Trivial trivial_; // expected-warning{{private field 'trivial_' is not used}}
Trivial user_constructor_;
NonTrivialConstructor non_trivial_constructor_;
NonTrivialDestructor non_trivial_destructor_;
int attr_ __attribute__((unused));
int attr_used_ __attribute__((unused));
};
class EverythingUsed {
public:
EverythingUsed() : as_array_index_(0), var_(by_initializer_) {
var_ = sizeof(sizeof_);
int *use = &by_reference_;
int test[2];
test[as_array_index_] = 42;
}
template<class T>
void useStuff(T t) {
by_template_function_ = 42;
}
private:
int var_;
int sizeof_;
int by_reference_;
int by_template_function_;
int as_array_index_;
int by_initializer_;
};
class HasFeatureTest {
#if __has_feature(attribute_unused_on_fields)
int unused_; // expected-warning{{private field 'unused_' is not used}}
int unused2_ __attribute__((unused)); // no-warning
#endif
};
namespace templates {
class B {
template <typename T> void f(T t);
int a;
};
} // namespace templates
namespace mutual_friends {
// Undefined methods make mutual friends undefined.
class A {
int a;
friend class B;
void doSomethingToAOrB();
};
class B {
int b;
friend class A;
};
// Undefined friends do not make a mutual friend undefined.
class C {
int c;
void doSomethingElse() {}
friend class E;
friend class D;
};
class D {
int d; // expected-warning{{private field 'd' is not used}}
friend class C;
};
// Undefined nested classes make mutual friends undefined.
class F {
int f;
class G;
friend class H;
};
class H {
int h;
friend class F;
};
} // namespace mutual_friends
namespace anonymous_structs_unions {
class A {
private:
// FIXME: Look at the DeclContext for anonymous structs/unions.
union {
int *Aligner;
unsigned char Data[8];
};
};
union S {
private:
int *Aligner;
unsigned char Data[8];
};
} // namespace anonymous_structs_unions
namespace pr13413 {
class A {
A() : p_(__null), b_(false), a_(this), p2_(nullptr) {}
void* p_; // expected-warning{{private field 'p_' is not used}}
bool b_; // expected-warning{{private field 'b_' is not used}}
A* a_; // expected-warning{{private field 'a_' is not used}}
void* p2_; // expected-warning{{private field 'p2_' is not used}}
};
}
namespace pr13543 {
void f(int);
void f(char);
struct S {
S() : p(&f) {}
private:
void (*p)(int); // expected-warning{{private field 'p' is not used}}
};
struct A { int n; };
struct B {
B() : a(A()) {}
B(char) {}
B(int n) : a{n}, b{(f(n), 0)} {}
private:
A a = A(); // expected-warning{{private field 'a' is not used}}
A b;
};
struct X { ~X(); };
class C {
X x[4]; // no-warning
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/libstdcxx_map_base_hack.cpp
|
// RUN: %clang_cc1 -fsyntax-only %s
// libstdc++ 4.2.x contains a bug where a friend struct template
// declaration for std::tr1::__detail::_Map base has different
// template arguments than the real declaration. Clang has an
// egregious hack to work around this problem, since we can't modify
// all of the world's libstdc++'s.
namespace std { namespace tr1 { namespace __detail {
template<typename _Key, typename _Value, typename _Ex, bool __unique,
typename _Hashtable>
struct _Map_base { };
} } }
namespace std { namespace tr1 {
template<typename T>
struct X1 {
template<typename _Key2, typename _Pair, typename _Hashtable>
friend struct __detail::_Map_base;
};
} }
std::tr1::X1<int> x1i;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/reinterpret-fn-obj-pedantic.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 -pedantic %s
void fnptrs()
{
typedef void (*fnptr)();
fnptr fp = 0;
void *vp = reinterpret_cast<void*>(fp); // expected-warning {{cast between pointer-to-function and pointer-to-object is an extension}}
(void)reinterpret_cast<fnptr>(vp); // expected-warning {{cast between pointer-to-function and pointer-to-object is an extension}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/comma.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
// expected-no-diagnostics
// PR6076
void f();
void (&g)() = (void(), f);
int a[1];
int (&b)[1] = (void(), a);
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/nullability-declspec.cpp
|
// RUN: %clang_cc1 -fblocks -Werror=nullability-declspec -verify %s
struct X { };
_Nullable int *ip1; // expected-error{{nullability specifier '_Nullable' cannot be applied to non-pointer type 'int'; did you mean to apply the specifier to the pointer?}}
_Nullable int (*fp1)(int); // expected-error{{nullability specifier '_Nullable' cannot be applied to non-pointer type 'int'; did you mean to apply the specifier to the function pointer?}}
_Nonnull int (^bp1)(int); // expected-error{{nullability specifier '_Nonnull' cannot be applied to non-pointer type 'int'; did you mean to apply the specifier to the block pointer?}}
_Nonnull int X::*pmd1; // expected-error{{nullability specifier '_Nonnull' cannot be applied to non-pointer type 'int'; did you mean to apply the specifier to the member pointer?}}
_Nonnull int (X::*pmf1)(int); // expected-error{{nullability specifier '_Nonnull' cannot be applied to non-pointer type 'int'; did you mean to apply the specifier to the member function pointer?}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/explicit.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
namespace Constructor {
struct A {
A(int);
};
struct B { // expected-note+ {{candidate}}
explicit B(int);
};
B::B(int) { } // expected-note+ {{here}}
struct C {
void f(const A&);
void f(const B&);
};
void f(C c) {
c.f(10);
}
A a0 = 0;
A a1(0);
A &&a2 = 0;
A &&a3(0);
A a4{0};
A &&a5 = {0};
A &&a6{0};
B b0 = 0; // expected-error {{no viable conversion}}
B b1(0);
B &&b2 = 0; // expected-error {{could not bind}}
B &&b3(0); // expected-error {{could not bind}}
B b4{0};
B &&b5 = {0}; // expected-error {{chosen constructor is explicit}}
B &&b6{0};
}
namespace Conversion {
struct A {
operator int();
explicit operator bool();
};
A::operator bool() { return false; }
struct B {
void f(int);
void f(bool);
};
void f(A a, B b) {
b.f(a);
}
void testExplicit()
{
// Taken from 12.3.2p2
class X { X(); };
class Y { }; // expected-note+ {{candidate constructor (the implicit}}
struct Z {
explicit operator X() const;
explicit operator Y() const;
explicit operator int() const;
};
Z z;
// 13.3.1.4p1 & 8.5p16:
Y y2 = z; // expected-error {{no viable conversion from 'Z' to 'Y'}}
Y y2b(z);
Y y3 = (Y)z;
Y y4 = Y(z);
Y y5 = static_cast<Y>(z);
// 13.3.1.5p1 & 8.5p16:
int i1 = (int)z;
int i2 = int(z);
int i3 = static_cast<int>(z);
int i4(z);
// 13.3.1.6p1 & 8.5.3p5:
const Y& y6 = z; // expected-error {{no viable conversion from 'Z' to 'const Y'}}
const int& y7 = z; // expected-error {{no viable conversion from 'Z' to 'const int'}}
const Y& y8(z);
const int& y9(z);
// Y is an aggregate, so aggregate-initialization is performed and the
// conversion function is not considered.
const Y y10{z}; // expected-error {{excess elements}}
const Y& y11{z}; // expected-error {{excess elements}} expected-note {{in initialization of temporary of type 'const Y'}}
const int& y12{z};
// X is not an aggregate, so constructors are considered,
// per 13.3.3.1/4 & DR1467.
const X x1{z};
const X& x2{z};
}
void testBool() {
struct Bool {
operator bool();
};
struct NotBool {
explicit operator bool(); // expected-note {{conversion to integral type 'bool'}}
};
Bool b;
NotBool n;
(void) (1 + b);
(void) (1 + n); // expected-error {{invalid operands to binary expression ('int' and 'NotBool')}}
// 5.3.1p9:
(void) (!b);
(void) (!n);
// 5.14p1:
(void) (b && true);
(void) (n && true);
// 5.15p1:
(void) (b || true);
(void) (n || true);
// 5.16p1:
(void) (b ? 0 : 1);
(void) (n ? 0: 1);
// 5.19p5:
// TODO: After constexpr has been implemented
// 6.4p4:
if (b) {}
if (n) {}
// 6.4.2p2:
switch (b) {} // expected-warning {{switch condition has boolean value}}
switch (n) {} // expected-error {{switch condition type 'NotBool' requires explicit conversion to 'bool'}} \
expected-warning {{switch condition has boolean value}}
// 6.5.1:
while (b) {}
while (n) {}
// 6.5.2p1:
do {} while (b);
do {} while (n);
// 6.5.3:
for (;b;) {}
for (;n;) {}
// 13.3.1.5p1:
bool direct1(b);
bool direct2(n);
int direct3(b);
int direct4(n); // expected-error {{no viable conversion}}
const bool &direct5(b);
const bool &direct6(n);
const int &direct7(b);
const int &direct8(n); // expected-error {{no viable conversion}}
bool directList1{b};
bool directList2{n};
int directList3{b};
int directList4{n}; // expected-error {{no viable conversion}}
const bool &directList5{b};
const bool &directList6{n};
const int &directList7{b};
const int &directList8{n}; // expected-error {{no viable conversion}}
bool copy1 = b;
bool copy2 = n; // expected-error {{no viable conversion}}
int copy3 = b;
int copy4 = n; // expected-error {{no viable conversion}}
const bool ©5 = b;
const bool ©6 = n; // expected-error {{no viable conversion}}
const int ©7 = b;
const int ©8 = n; // expected-error {{no viable conversion}}
bool copyList1 = {b};
bool copyList2 = {n}; // expected-error {{no viable conversion}}
int copyList3 = {b};
int copyList4 = {n}; // expected-error {{no viable conversion}}
const bool ©List5 = {b};
const bool ©List6 = {n}; // expected-error {{no viable conversion}}
const int ©List7 = {b};
const int ©List8 = {n}; // expected-error {{no viable conversion}}
}
void testNew()
{
// 5.3.4p6:
struct Int {
operator int();
};
struct NotInt {
explicit operator int(); // expected-note {{conversion to integral type 'int' declared here}}
};
Int i;
NotInt ni;
new int[i];
new int[ni]; // expected-error {{array size expression of type 'NotInt' requires explicit conversion to type 'int'}}
}
void testDelete()
{
// 5.3.5pp2:
struct Ptr {
operator int*();
};
struct NotPtr {
explicit operator int*(); // expected-note {{conversion}}
};
Ptr p;
NotPtr np;
delete p;
delete np; // expected-error {{converting delete expression from type 'NotPtr' to type 'int *' invokes an explicit conversion function}}
}
void testFunctionPointer()
{
// 13.3.1.1.2p2:
using Func = void(*)(int);
struct FP {
operator Func();
};
struct NotFP {
explicit operator Func();
};
FP fp;
NotFP nfp;
fp(1);
nfp(1); // expected-error {{type 'NotFP' does not provide a call operator}}
}
}
namespace pr8264 {
struct Test {
explicit explicit Test(int x); // expected-warning{{duplicate 'explicit' declaration specifier}}
};
}
namespace PR18777 {
struct S { explicit operator bool() const; } s;
int *p = new int(s); // expected-error {{no viable conversion}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/default-assignment-operator.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
class Base { // expected-error {{cannot define the implicit copy assignment operator for 'Base', because non-static reference member 'ref' can't use copy assignment operator}} \
// expected-warning{{class 'Base' does not declare any constructor to initialize its non-modifiable members}}
int &ref; // expected-note {{declared here}} \
// expected-note{{reference member 'ref' will never be initialized}}
};
class X : Base { // // expected-error {{cannot define the implicit copy assignment operator for 'X', because non-static const member 'cint' can't use copy assignment operator}} \
// expected-note{{assignment operator for 'Base' first required here}}
public:
X();
const int cint; // expected-note {{declared here}}
};
struct Y : X {
Y();
Y& operator=(const Y&);
Y& operator=(volatile Y&);
Y& operator=(const volatile Y&);
Y& operator=(Y&);
};
class Z : Y {};
Z z1;
Z z2;
// Test1
void f(X x, const X cx) {
x = cx; // expected-note{{assignment operator for 'X' first required here}}
x = cx;
z1 = z2;
}
// Test2
class T {};
T t1;
T t2;
void g() {
t1 = t2;
}
// Test3
class V {
public:
V();
V &operator = (V &b);
};
class W : V {};
W w1, w2;
void h() {
w1 = w2;
}
// Test4
class B1 {
public:
B1();
B1 &operator = (B1 b);
};
class D1 : B1 {};
D1 d1, d2;
void i() {
d1 = d2;
}
// Test5
class E1 { // expected-error{{cannot define the implicit copy assignment operator for 'E1', because non-static const member 'a' can't use copy assignment operator}}
public:
const int a; // expected-note{{declared here}}
E1() : a(0) {}
};
E1 e1, e2;
void j() {
e1 = e2; // expected-note{{assignment operator for 'E1' first required here}}
}
namespace ProtectedCheck {
struct X {
protected:
X &operator=(const X&); // expected-note{{declared protected here}}
};
struct Y : public X { };
void f(Y y) { y = y; }
struct Z { // expected-error{{'operator=' is a protected member of 'ProtectedCheck::X'}}
X x;
};
void f(Z z) { z = z; } // expected-note{{implicit copy assignment operator}}
}
namespace MultiplePaths {
struct X0 {
X0 &operator=(const X0&);
};
struct X1 : public virtual X0 { };
struct X2 : X0, X1 { }; // expected-warning{{direct base 'MultiplePaths::X0' is inaccessible due to ambiguity:\n struct MultiplePaths::X2 -> struct MultiplePaths::X0\n struct MultiplePaths::X2 -> struct MultiplePaths::X1 -> struct MultiplePaths::X0}}
void f(X2 x2) { x2 = x2; }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/wchar_t.cpp
|
// RUN: %clang_cc1 -fsyntax-only -pedantic -verify %s
wchar_t x;
void f(wchar_t p) {
wchar_t x;
unsigned wchar_t y; // expected-warning {{'wchar_t' cannot be signed or unsigned}}
signed wchar_t z; // expected-warning {{'wchar_t' cannot be signed or unsigned}}
++x;
}
// PR4502
wchar_t const c = L'c';
int a[c == L'c' ? 1 : -1];
// PR5917
template<typename _CharT>
struct basic_string {
};
template<typename _CharT>
basic_string<_CharT> operator+ (const basic_string<_CharT>&, _CharT);
int t(void) {
basic_string<wchar_t>() + L'-';
return (0);
}
// rdar://8040728
wchar_t in[] = L"\x434" "\x434"; // No warning
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/align_value.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
typedef double * __attribute__((align_value(64))) aligned_double;
void foo(aligned_double x, double * y __attribute__((align_value(32))),
double & z __attribute__((align_value(128)))) { };
template <typename T, int Q>
struct x {
typedef T* aligned_int __attribute__((align_value(32+8*Q)));
aligned_int V;
void foo(aligned_int a, T &b __attribute__((align_value(sizeof(T)*4))));
};
x<float, 4> y;
template <typename T, int Q>
struct nope {
// expected-error@+1 {{requested alignment is not a power of 2}}
void foo(T &b __attribute__((align_value(sizeof(T)+1))));
};
// expected-note@+1 {{in instantiation of template class 'nope<long double, 4>' requested here}}
nope<long double, 4> y2;
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/funcdname.cpp
|
// RUN: %clang_cc1 -std=c++1y -triple i386-pc-win32 -fms-compatibility -fms-extensions -fsyntax-only -verify %s
// expected-no-diagnostics
int foo() {
static_assert(sizeof(__FUNCDNAME__) == 12, "?foo@@YAHXZ");
return 0;
}
// Within templates.
template <typename T>
int baz() {
static_assert(sizeof(__FUNCDNAME__) == 16, "??$baz@H@@YAHXZ");
return 0;
}
struct A {
A() {
static_assert(sizeof(__FUNCDNAME__) == 13, "??0A@@QAE@XZ");
}
~A() {
static_assert(sizeof(__FUNCDNAME__) == 13, "??1A@@QAE@XZ");
}
};
int main() {
static_assert(sizeof(__FUNCDNAME__) == 5, "main");
baz<int>();
return 0;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/auto-cxx98.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++98 -Wc++11-compat
void f() {
auto int a; // expected-warning {{'auto' storage class specifier is redundant and incompatible with C++11}}
int auto b; // expected-warning {{'auto' storage class specifier is redundant and incompatible with C++11}}
auto c; // expected-warning {{C++11 extension}} expected-error {{requires an initializer}}
static auto d = 0; // expected-warning {{C++11 extension}}
auto static e = 0; // expected-warning {{C++11 extension}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-no-sanitize-memory.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
#define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#if !__has_attribute(no_sanitize_memory)
#error "Should support no_sanitize_memory"
#endif
void noanal_fun() NO_SANITIZE_MEMORY;
void noanal_fun_args() __attribute__((no_sanitize_memory(1))); // \
// expected-error {{'no_sanitize_memory' attribute takes no arguments}}
int noanal_testfn(int y) NO_SANITIZE_MEMORY;
int noanal_testfn(int y) {
int x NO_SANITIZE_MEMORY = y; // \
// expected-error {{'no_sanitize_memory' attribute only applies to functions}}
return x;
}
int noanal_test_var NO_SANITIZE_MEMORY; // \
// expected-error {{'no_sanitize_memory' attribute only applies to functions}}
class NoanalFoo {
private:
int test_field NO_SANITIZE_MEMORY; // \
// expected-error {{'no_sanitize_memory' attribute only applies to functions}}
void test_method() NO_SANITIZE_MEMORY;
};
class NO_SANITIZE_MEMORY NoanalTestClass { // \
// expected-error {{'no_sanitize_memory' attribute only applies to functions}}
};
void noanal_fun_params(int lvar NO_SANITIZE_MEMORY); // \
// expected-error {{'no_sanitize_memory' attribute only applies to functions}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-global-constructors.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -Wglobal-constructors %s -verify
int opaque_int();
namespace test0 {
// These should never require global constructors.
int a;
int b = 20;
float c = 5.0f;
// This global constructor is avoidable based on initialization order.
int d = b; // expected-warning {{global constructor}}
// These global constructors are unavoidable.
int e = opaque_int(); // expected-warning {{global constructor}}
int f = b; // expected-warning {{global constructor}}
}
namespace test1 {
struct A { int x; };
A a;
A b = A();
A c = { 10 };
A d = { opaque_int() }; // expected-warning {{global constructor}}
A e = A(A());
A f = A(a); // expected-warning {{global constructor}}
A g(a); // expected-warning {{global constructor}}
A h((A())); // elided
A i((A(A()))); // elided
}
namespace test2 {
struct A { A(); };
A a; // expected-warning {{global constructor}}
A b[10]; // expected-warning {{global constructor}}
A c[10][10]; // expected-warning {{global constructor}}
A &d = a;
A &e = b[5];
A &f = c[5][7];
}
namespace test3 {
struct A { ~A(); };
A a; // expected-warning {{global destructor}}
A b[10]; // expected-warning {{global destructor}}
A c[10][10]; // expected-warning {{global destructor}}
A &d = a;
A &e = b[5];
A &f = c[5][7];
}
namespace test4 {
char a[] = "hello";
char b[6] = "hello";
char c[][6] = { "hello" };
}
namespace test5 {
struct A { A(); };
void f1() {
static A a;
}
void f2() {
static A& a = *new A;
}
}
namespace test6 {
struct A { ~A(); };
void f1() {
static A a;
}
void f2() {
static A& a = *new A;
}
}
namespace pr8095 {
struct Foo {
int x;
Foo(int x1) : x(x1) {}
};
void foo() {
static Foo a(0);
}
struct Bar {
~Bar();
};
void bar() {
static Bar b;
}
}
namespace referencemember {
struct A { int &a; };
int a;
A b = { a };
}
namespace pr19253 {
struct A { ~A() = default; };
A a;
struct B { ~B(); };
struct C : B { ~C() = default; };
C c; // expected-warning {{global destructor}}
class D {
friend struct E;
~D() = default;
};
struct E : D {
D d;
~E() = default;
};
E e;
}
namespace pr20420 {
// No warning is expected. This used to crash.
void *array_storage[1];
const int &global_reference = *(int *)array_storage;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pr13394-crash-on-invalid.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// Don't crash (PR13394).
namespace stretch_v1 {
struct closure_t {
const stretch_v1::ops_t* d_methods; // expected-error {{no type named 'ops_t' in namespace 'stretch_v1'}}
};
}
namespace gatekeeper_v1 {
namespace gatekeeper_factory_v1 {
struct closure_t { // expected-note {{'closure_t' declared here}} expected-note {{'gatekeeper_factory_v1::closure_t' declared here}}
gatekeeper_v1::closure_t* create(); // expected-error {{no type named 'closure_t' in namespace 'gatekeeper_v1'; did you mean simply 'closure_t'?}}
};
}
// FIXME: Typo correction should remove the 'gatekeeper_v1::' name specifier
gatekeeper_v1::closure_t *x; // expected-error {{no type named 'closure_t' in namespace 'gatekeeper_v1'; did you mean 'gatekeeper_factory_v1::closure_t'}}
}
namespace Foo {
struct Base {
void Bar() {} // expected-note{{'Bar' declared here}}
};
}
struct Derived : public Foo::Base {
void test() {
Foo::Bar(); // expected-error{{no member named 'Bar' in namespace 'Foo'; did you mean simply 'Bar'?}}
}
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/class-layout.cpp
|
// RUN: %clang_cc1 -triple x86_64-unknown-unknown %s -fsyntax-only -verify -std=c++98 -Wno-inaccessible-base
// RUN: %clang_cc1 -triple x86_64-unknown-unknown %s -fsyntax-only -verify -std=c++11 -Wno-inaccessible-base
// expected-no-diagnostics
#define SA(n, p) int a##n[(p) ? 1 : -1]
struct A {
int a;
char b;
};
SA(0, sizeof(A) == 8);
struct B : A {
char c;
};
SA(1, sizeof(B) == 12);
struct C {
// Make fields private so C won't be a POD type.
private:
int a;
char b;
};
SA(2, sizeof(C) == 8);
struct D : C {
char c;
};
SA(3, sizeof(D) == 8);
struct __attribute__((packed)) E {
char b;
int a;
};
SA(4, sizeof(E) == 5);
struct __attribute__((packed)) F : E {
char d;
};
SA(5, sizeof(F) == 6);
struct G { G(); };
struct H : G { };
SA(6, sizeof(H) == 1);
struct I {
char b;
int a;
} __attribute__((packed));
SA(6_1, sizeof(I) == 5);
// PR5580
namespace PR5580 {
class A { bool iv0 : 1; };
SA(7, sizeof(A) == 1);
class B : A { bool iv0 : 1; };
SA(8, sizeof(B) == 2);
struct C { bool iv0 : 1; };
SA(9, sizeof(C) == 1);
struct D : C { bool iv0 : 1; };
SA(10, sizeof(D) == 2);
}
namespace Test1 {
// Test that we don't assert on this hierarchy.
struct A { };
struct B : A { virtual void b(); };
class C : virtual A { int c; };
struct D : virtual B { };
struct E : C, virtual D { };
class F : virtual E { };
struct G : virtual E, F { };
SA(0, sizeof(G) == 24);
}
namespace Test2 {
// Test that this somewhat complex class structure is laid out correctly.
struct A { };
struct B : A { virtual void b(); };
struct C : virtual B { };
struct D : virtual A { };
struct E : virtual B, D { };
struct F : E, virtual C { };
struct G : virtual F, A { };
struct H { G g; };
SA(0, sizeof(H) == 24);
}
namespace PR16537 {
namespace test1 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test2 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11 __attribute__((aligned(16)));
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test3 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct second_base {
char foo;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only, public second_base {
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test4 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct second_base {
char foo;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only, public second_base {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test5 {
struct pod_in_11_only {
private:
long long x;
};
struct pod_in_11_only2 {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct second_base {
pod_in_11_only2 two;
char foo;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only, public second_base {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 32);
}
namespace test6 {
struct pod_in_11_only {
private:
long long x;
};
struct pod_in_11_only2 {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct second_base {
pod_in_11_only2 two;
char foo;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only, public second_base {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 32);
}
namespace test7 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
pod_in_11_only pod12;
char tail_padding;
};
struct might_use_tail_padding : public tail_padded_pod_in_11_only {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 24);
}
namespace test8 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct another_layer {
tail_padded_pod_in_11_only pod;
char padding;
};
struct might_use_tail_padding : public another_layer {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 24);
}
namespace test9 {
struct pod_in_11_only {
private:
long long x;
};
struct tail_padded_pod_in_11_only {
pod_in_11_only pod11;
char tail_padding;
};
struct another_layer : tail_padded_pod_in_11_only {
};
struct might_use_tail_padding : public another_layer {
char may_go_into_tail_padding;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test10 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct B {
char b;
};
struct C {
pod_in_11_only c;
char cpad;
};
struct D {
char d;
};
struct might_use_tail_padding : public A, public B, public C, public D {
};
SA(0, sizeof(might_use_tail_padding) == 32);
}
namespace test11 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct B {
char b_pre;
pod_in_11_only b;
char bpad;
};
struct C {
char c_pre;
pod_in_11_only c;
char cpad;
};
struct D {
char d_pre;
pod_in_11_only d;
char dpad;
};
struct might_use_tail_padding : public A, public B, public C, public D {
char m;
};
SA(0, sizeof(might_use_tail_padding) == 88);
}
namespace test12 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a __attribute__((aligned(128)));
};
struct B {
char bpad;
};
struct C {
char cpad;
};
struct D {
char dpad;
};
struct might_use_tail_padding : public A, public B, public C, public D {
char m;
};
SA(0, sizeof(might_use_tail_padding) == 128);
}
namespace test13 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct B {
};
struct C {
char c_pre;
pod_in_11_only c;
char cpad;
};
struct D {
};
struct might_use_tail_padding : public A, public B, public C, public D {
char m;
};
SA(0, sizeof(might_use_tail_padding) == 40);
}
namespace test14 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct might_use_tail_padding : public A {
struct {
int : 0;
} x;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test15 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct might_use_tail_padding : public A {
struct {
char a:1;
char b:2;
char c:2;
char d:2;
char e:1;
} x;
};
SA(0, sizeof(might_use_tail_padding) == 16);
}
namespace test16 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct B {
char bpod;
pod_in_11_only b;
char bpad;
};
struct C : public A, public B {
};
struct D : public C {
};
struct might_use_tail_padding : public D {
char m;
};
SA(0, sizeof(might_use_tail_padding) == 40);
}
namespace test17 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a __attribute__((aligned(512)));
};
struct B {
char bpad;
pod_in_11_only foo;
char btail;
};
struct C {
char cpad;
};
struct D {
char dpad;
};
struct might_use_tail_padding : public A, public B, public C, public D {
char a;
};
SA(0, sizeof(might_use_tail_padding) == 512);
}
namespace test18 {
struct pod_in_11_only {
private:
long long x;
};
struct A {
pod_in_11_only a;
char apad;
};
struct B {
char bpod;
pod_in_11_only b;
char bpad;
};
struct A1 {
pod_in_11_only a;
char apad;
};
struct B1 {
char bpod;
pod_in_11_only b;
char bpad;
};
struct C : public A, public B {
};
struct D : public A1, public B1 {
};
struct E : public D, public C {
};
struct F : public E {
};
struct might_use_tail_padding : public F {
char m;
};
SA(0, sizeof(might_use_tail_padding) == 80);
}
} // namespace PR16537
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/builtins.cpp
|
// RUN: %clang_cc1 %s -fsyntax-only -verify -std=c++11
typedef const struct __CFString * CFStringRef;
#define CFSTR __builtin___CFStringMakeConstantString
void f() {
(void)CFStringRef(CFSTR("Hello"));
}
void a() { __builtin_va_list x, y; ::__builtin_va_copy(x, y); }
// <rdar://problem/10063539>
template<int (*Compare)(const char *s1, const char *s2)>
int equal(const char *s1, const char *s2) {
return Compare(s1, s2) == 0;
}
// FIXME: Our error recovery here sucks
template int equal<&__builtin_strcmp>(const char*, const char*); // expected-error {{builtin functions must be directly called}} expected-error {{expected unqualified-id}} expected-error {{expected ')'}} expected-note {{to match this '('}}
// PR13195
void f2() {
__builtin_isnan; // expected-error {{builtin functions must be directly called}}
}
// pr14895
typedef __typeof(sizeof(int)) size_t;
extern "C" void *__builtin_alloca (size_t);
namespace addressof {
struct S {} s;
static_assert(__builtin_addressof(s) == &s, "");
struct T { constexpr T *operator&() const { return nullptr; } int n; } t;
constexpr T *pt = __builtin_addressof(t);
static_assert(&pt->n == &t.n, "");
struct U { int n : 5; } u;
int *pbf = __builtin_addressof(u.n); // expected-error {{address of bit-field requested}}
S *ptmp = __builtin_addressof(S{}); // expected-error {{taking the address of a temporary}}
}
void no_ms_builtins() {
__assume(1); // expected-error {{use of undeclared}}
__noop(1); // expected-error {{use of undeclared}}
__debugbreak(); // expected-error {{use of undeclared}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/anonymous-struct.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
struct S {
S(); // expected-note {{because type 'S' has a user-provided default constructor}}
};
struct { // expected-error {{anonymous structs and classes must be class members}}
};
struct E {
struct {
S x; // expected-error {{anonymous struct member 'x' has a non-trivial constructor}}
};
static struct {
};
};
template <class T> void foo(T);
typedef struct { // expected-note {{use a tag name here to establish linkage prior to definition}} expected-note {{declared here}}
void test() {
foo(this); // expected-warning {{template argument uses unnamed type}}
}
} A; // expected-error {{unsupported: typedef changes linkage of anonymous type, but linkage was already computed}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/cxx0x-defaulted-functions.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify -fcxx-exceptions %s
void fn() = default; // expected-error {{only special member}}
struct foo {
void fn() = default; // expected-error {{only special member}}
foo() = default;
foo(const foo&) = default;
foo(foo&&) = default;
foo& operator = (const foo&) = default;
foo& operator = (foo&&) = default;
~foo() = default;
};
struct bar {
bar();
bar(const bar&);
bar(bar&&);
bar& operator = (const bar&);
bar& operator = (bar&&);
~bar();
};
bar::bar() = default;
bar::bar(const bar&) = default;
bar::bar(bar&&) = default;
bar& bar::operator = (const bar&) = default;
bar& bar::operator = (bar&&) = default;
bar::~bar() = default;
static_assert(__is_trivial(foo), "foo should be trivial");
static_assert(!__has_trivial_destructor(bar), "bar's destructor isn't trivial");
static_assert(!__has_trivial_constructor(bar),
"bar's default constructor isn't trivial");
static_assert(!__has_trivial_copy(bar), "bar has no trivial copy");
static_assert(!__has_trivial_assign(bar), "bar has no trivial assign");
void tester() {
foo f, g(f);
bar b, c(b);
f = g;
b = c;
}
template<typename T> struct S : T {
constexpr S() = default;
constexpr S(const S&) = default;
constexpr S(S&&) = default;
};
struct lit { constexpr lit() {} };
S<lit> s_lit; // ok
S<bar> s_bar; // ok
struct Friends {
friend S<bar>::S();
friend S<bar>::S(const S&);
friend S<bar>::S(S&&);
};
namespace DefaultedFnExceptionSpec {
// DR1330: The exception-specification of an implicitly-declared special
// member function is evaluated as needed.
template<typename T> T &&declval();
template<typename T> struct pair {
pair(const pair&) noexcept(noexcept(T(declval<T>())));
};
struct Y;
struct X { X(); X(const Y&); };
struct Y { pair<X> p; };
template<typename T>
struct A {
pair<T> p;
};
struct B {
B();
B(const A<B>&);
};
// Don't crash here.
void f() {
X x = X();
(void)noexcept(B(declval<B>()));
}
template<typename T>
struct Error {
// FIXME: Type canonicalization causes all the errors to point at the first
// declaration which has the type 'void () noexcept (T::error)'. We should
// get one error for 'Error<int>::Error()' and one for 'Error<int>::~Error()'.
void f() noexcept(T::error); // expected-error 2{{has no members}}
Error() noexcept(T::error);
Error(const Error&) noexcept(T::error);
Error(Error&&) noexcept(T::error);
Error &operator=(const Error&) noexcept(T::error);
Error &operator=(Error&&) noexcept(T::error);
~Error() noexcept(T::error);
};
struct DelayImplicit {
Error<int> e;
};
// Don't instantiate the exception specification here.
void test1(decltype(declval<DelayImplicit>() = DelayImplicit(DelayImplicit())));
void test2(decltype(declval<DelayImplicit>() = declval<const DelayImplicit>()));
void test3(decltype(DelayImplicit(declval<const DelayImplicit>())));
// Any odr-use causes the exception specification to be evaluated.
struct OdrUse { // \
expected-note {{instantiation of exception specification for 'Error'}} \
expected-note {{instantiation of exception specification for '~Error'}}
Error<int> e;
};
OdrUse use; // expected-note {{implicit default constructor for 'DefaultedFnExceptionSpec::OdrUse' first required here}}
}
namespace PR13527 {
struct X {
X() = delete; // expected-note {{here}}
X(const X&) = delete; // expected-note {{here}}
X(X&&) = delete; // expected-note {{here}}
X &operator=(const X&) = delete; // expected-note {{here}}
X &operator=(X&&) = delete; // expected-note {{here}}
~X() = delete; // expected-note {{here}}
};
X::X() = default; // expected-error {{redefinition}}
X::X(const X&) = default; // expected-error {{redefinition}}
X::X(X&&) = default; // expected-error {{redefinition}}
X &X::operator=(const X&) = default; // expected-error {{redefinition}}
X &X::operator=(X&&) = default; // expected-error {{redefinition}}
X::~X() = default; // expected-error {{redefinition}}
struct Y {
Y() = default;
Y(const Y&) = default;
Y(Y&&) = default;
Y &operator=(const Y&) = default;
Y &operator=(Y&&) = default;
~Y() = default;
};
Y::Y() = default; // expected-error {{definition of explicitly defaulted}}
Y::Y(const Y&) = default; // expected-error {{definition of explicitly defaulted}}
Y::Y(Y&&) = default; // expected-error {{definition of explicitly defaulted}}
Y &Y::operator=(const Y&) = default; // expected-error {{definition of explicitly defaulted}}
Y &Y::operator=(Y&&) = default; // expected-error {{definition of explicitly defaulted}}
Y::~Y() = default; // expected-error {{definition of explicitly defaulted}}
}
namespace PR14577 {
template<typename T>
struct Outer {
template<typename U>
struct Inner1 {
~Inner1();
};
template<typename U>
struct Inner2 {
~Inner2();
};
};
template<typename T>
Outer<T>::Inner1<T>::~Inner1() = delete; // expected-error {{nested name specifier 'Outer<T>::Inner1<T>::' for declaration does not refer into a class, class template or class template partial specialization}} expected-error {{only functions can have deleted definitions}}
template<typename T>
Outer<T>::Inner2<T>::~Inner2() = default; // expected-error {{nested name specifier 'Outer<T>::Inner2<T>::' for declaration does not refer into a class, class template or class template partial specialization}} expected-error {{only special member functions may be defaulted}}
}
extern "C" {
template<typename _Tp> // expected-error {{templates must have C++ linkage}}
void PR13573(const _Tp&) = delete;
}
namespace PR15597 {
template<typename T> struct A {
A() noexcept(true) = default;
~A() noexcept(true) = default;
};
template<typename T> struct B {
B() noexcept(false) = default; // expected-error {{does not match the calculated one}}
~B() noexcept(false) = default; // expected-error {{does not match the calculated one}}
};
A<int> a;
B<int> b; // expected-note {{here}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/switch-implicit-fallthrough-per-method.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wimplicit-fallthrough-per-function %s
int fallthrough(int n) {
switch (n / 10) {
case 0:
n += 100;
case 1: // expected-warning{{unannotated fall-through}} expected-note{{insert '[[clang::fallthrough]];' to silence this warning}} expected-note{{insert 'break;' to avoid fall-through}}
switch (n) {
case 111:
n += 111;
[[clang::fallthrough]];
case 112:
n += 112;
case 113: // expected-warning{{unannotated fall-through}} expected-note{{insert '[[clang::fallthrough]];' to silence this warning}} expected-note{{insert 'break;' to avoid fall-through}}
n += 113;
break ;
}
}
return n;
}
int fallthrough2(int n) {
switch (n / 10) {
case 0:
n += 100;
case 1: // no warning, as we didn't "opt-in" for it in this method
switch (n) {
case 111:
n += 111;
case 112: // no warning, as we didn't "opt-in" for it in this method
n += 112;
case 113: // no warning, as we didn't "opt-in" for it in this method
n += 113;
break ;
}
}
return n;
}
void unscoped(int n) {
switch (n % 2) {
case 0:
// FIXME: This should be typo-corrected, probably.
[[fallthrough]]; // expected-warning{{unknown attribute 'fallthrough' ignored}}
case 2: // expected-warning{{unannotated fall-through}} expected-note{{clang::fallthrough}} expected-note{{break;}}
[[clang::fallthrough]];
case 1:
break;
}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/derived-to-base-ambig.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify %s
class A { };
class B : public A { };
class C : public A { };
class D : public B, public C { };
void f(D* d) {
A* a;
a = d; // expected-error{{ambiguous conversion from derived class 'D' to base class 'A':}} expected-error{{assigning to 'A *' from incompatible type 'D *'}}
}
class Object2 { };
class A2 : public Object2 { };
class B2 : public virtual A2 { };
class C2 : virtual public A2 { };
class D2 : public B2, public C2 { };
class E2 : public D2, public C2, public virtual A2 { }; // expected-warning{{direct base 'C2' is inaccessible due to ambiguity:\n class E2 -> class D2 -> class C2\n class E2 -> class C2}}
class F2 : public E2, public A2 { }; // expected-warning{{direct base 'A2' is inaccessible due to ambiguity:\n class F2 -> class E2 -> class D2 -> class B2 -> class A2\n class F2 -> class A2}}
void g(E2* e2, F2* f2) {
Object2* o2;
o2 = e2;
o2 = f2; // expected-error{{ambiguous conversion from derived class 'F2' to base class 'Object2':}} expected-error{{assigning to 'Object2 *' from incompatible type 'F2 *'}}
}
// Test that ambiguous/inaccessibility checking does not trigger too
// early, because it should not apply during overload resolution.
void overload_okay(Object2*);
void overload_okay(E2*);
void overload_call(F2* f2) {
overload_okay(f2);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-print.cpp
|
// RUN: %clang_cc1 %s -ast-print -fms-extensions | FileCheck %s
// CHECK: int x __attribute__((aligned(4)));
int x __attribute__((aligned(4)));
// FIXME: Print this at a valid location for a __declspec attr.
// CHECK: int y __declspec(align(4));
__declspec(align(4)) int y;
// CHECK: void foo() __attribute__((const));
void foo() __attribute__((const));
// CHECK: void bar() __attribute__((__const));
void bar() __attribute__((__const));
// FIXME: Print this with correct format and order.
// CHECK: void foo1() __attribute__((pure)) __attribute__((noinline));
void foo1() __attribute__((noinline, pure));
// CHECK: typedef int Small1 __attribute__((mode(byte)));
typedef int Small1 __attribute__((mode(byte)));
// CHECK: int small __attribute__((mode(byte)));
int small __attribute__((mode(byte)));
// CHECK: int v __attribute__((visibility("hidden")));
int v __attribute__((visibility("hidden")));
// CHECK: class __attribute__((consumable("unknown"))) AttrTester1
class __attribute__((consumable(unknown))) AttrTester1 {
// CHECK: void callableWhen() __attribute__((callable_when("unconsumed", "consumed")));
void callableWhen() __attribute__((callable_when("unconsumed", "consumed")));
};
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/typeid-ref.cpp
|
// RUN: %clang_cc1 -triple %itanium_abi_triple -emit-llvm -o - %s | FileCheck %s
namespace std {
class type_info;
}
struct X { };
void f() {
// CHECK: @_ZTS1X = linkonce_odr constant
// CHECK: @_ZTI1X = linkonce_odr constant
(void)typeid(X&);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/decltype.cpp
|
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// PR5290
int const f0();
void f0_test() {
decltype(0, f0()) i = 0;
i = 0;
}
struct A { int a[1]; A() { } };
typedef A const AC;
int &f1(int*);
float &f2(int const*);
void test_f2() {
float &fr = f2(AC().a);
}
template <class T>
struct Future {
explicit Future(T v);
template <class F>
auto call(F&& fn) -> decltype(fn(T())) {
return fn(T());
}
template <class B, class F>
auto then(F&& fn) -> decltype(call(fn))
{
return fn(T());
}
};
void rdar16527205() {
Future<int> f1(42);
f1.call([](int){ return Future<float>(0); });
}
namespace pr10154 {
class A{
A(decltype(nullptr) param);
};
}
template<typename T> struct S {};
template<typename T> auto f(T t) -> decltype(S<int>(t)) {
using U = decltype(S<int>(t));
using U = S<int>;
return S<int>(t);
}
struct B {
B(decltype(undeclared)); // expected-error {{undeclared identifier}}
};
struct C {
C(decltype(undeclared; // expected-error {{undeclared identifier}} \
// expected-error {{expected ')'}} expected-note {{to match this '('}}
};
namespace PR16529 {
struct U {};
template <typename T> struct S {
static decltype(T{}, U{}) &f();
};
U &r = S<int>::f();
}
namespace PR18876 {
struct A { ~A() = delete; }; // expected-note +{{here}}
A f();
decltype(f()) *a; // ok, function call
decltype(A()) *b; // expected-error {{attempt to use a deleted function}}
decltype(0, f()) *c; // ok, function call on RHS of comma
decltype(0, A()) *d; // expected-error {{attempt to use a deleted function}}
decltype(f(), 0) *e; // expected-error {{attempt to use a deleted function}}
}
namespace D5789 {
struct P1 { char x[6]; } g1 = { "foo" };
struct LP1 { struct P1 p1; };
// expected-warning@+3 {{subobject initialization overrides}}
// expected-note@+2 {{previous initialization}}
// expected-note@+1 {{previous definition}}
template<class T> void foo(decltype(T(LP1{ .p1 = g1, .p1.x[1] = 'x' }))) {}
// expected-warning@+3 {{subobject initialization overrides}}
// expected-note@+2 {{previous initialization}}
template<class T>
void foo(decltype(T(LP1{ .p1 = g1, .p1.x[1] = 'r' }))) {} // okay
// expected-warning@+3 {{subobject initialization overrides}}
// expected-note@+2 {{previous initialization}}
template<class T>
void foo(decltype(T(LP1{ .p1 = { "foo" }, .p1.x[1] = 'x'}))) {} // okay
// expected-warning@+3 {{subobject initialization overrides}}
// expected-note@+2 {{previous initialization}}
// expected-error@+1 {{redefinition of 'foo'}}
template<class T> void foo(decltype(T(LP1{ .p1 = g1, .p1.x[1] = 'x' }))) {}
}
template<typename>
class conditional {
};
void foo(conditional<decltype((1),int>) { // expected-note 2 {{to match this '('}} expected-error {{expected ')'}}
} // expected-error {{expected function body after function declarator}} expected-error 2 {{expected '>'}} expected-error {{expected ')'}}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/pragma-pack.cpp
|
// RUN: %clang_cc1 -triple i686-apple-darwin9 -fsyntax-only -verify %s
// expected-no-diagnostics
namespace rdar8745206 {
struct Base {
int i;
};
#pragma pack(push, 1)
struct Sub : public Base {
char c;
};
#pragma pack(pop)
int check[sizeof(Sub) == 5 ? 1 : -1];
}
namespace check2 {
struct Base {
virtual ~Base();
int x;
};
#pragma pack(push, 1)
struct Sub : virtual Base {
char c;
};
#pragma pack(pop)
int check[sizeof(Sub) == 13 ? 1 : -1];
}
namespace llvm_support_endian {
template<typename, bool> struct X;
#pragma pack(push)
#pragma pack(1)
template<typename T> struct X<T, true> {
T t;
};
#pragma pack(pop)
#pragma pack(push)
#pragma pack(2)
template<> struct X<long double, true> {
long double c;
};
#pragma pack(pop)
int check1[__alignof(X<int, true>) == 1 ? 1 : -1];
int check2[__alignof(X<long double, true>) == 2 ? 1 : -1];
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/constant-expression-cxx1y.cpp
|
// RUN: %clang_cc1 -std=c++1y -verify %s -fcxx-exceptions -triple=x86_64-linux-gnu
struct S {
// dummy ctor to make this a literal type
constexpr S(int);
S();
int arr[10];
constexpr int &get(int n) { return arr[n]; }
constexpr const int &get(int n) const { return arr[n]; }
};
S s = S();
const S &sr = s;
static_assert(&s.get(4) - &sr.get(2) == 2, "");
// Compound-statements can be used in constexpr functions.
constexpr int e() {{{{}} return 5; }}
static_assert(e() == 5, "");
// Types can be defined in constexpr functions.
constexpr int f() {
enum E { e1, e2, e3 };
struct S {
constexpr S(E e) : e(e) {}
constexpr int get() { return e; }
E e;
};
return S(e2).get();
}
static_assert(f() == 1, "");
// Variables can be declared in constexpr functions.
constexpr int g(int k) {
const int n = 9;
int k2 = k * k;
int k3 = k2 * k;
return 3 * k3 + 5 * k2 + n * k - 20;
}
static_assert(g(2) == 42, "");
constexpr int h(int n) {
static const int m = n; // expected-error {{static variable not permitted in a constexpr function}}
return m;
}
constexpr int i(int n) {
thread_local const int m = n; // expected-error {{thread_local variable not permitted in a constexpr function}}
return m;
}
// if-statements can be used in constexpr functions.
constexpr int j(int k) {
if (k == 5)
return 1;
if (k == 1)
return 5;
else {
if (int n = 2 * k - 4) {
return n + 1;
return 2;
}
}
} // expected-note 2{{control reached end of constexpr function}}
static_assert(j(0) == -3, "");
static_assert(j(1) == 5, "");
static_assert(j(2), ""); // expected-error {{constant expression}} expected-note {{in call to 'j(2)'}}
static_assert(j(3) == 3, "");
static_assert(j(4) == 5, "");
static_assert(j(5) == 1, "");
// There can be 0 return-statements.
constexpr void k() {
}
// If the return type is not 'void', no return statements => never a constant
// expression, so still diagnose that case.
[[noreturn]] constexpr int fn() { // expected-error {{no return statement in constexpr function}}
fn();
}
// We evaluate the body of a constexpr constructor, to check for side-effects.
struct U {
constexpr U(int n) {
if (j(n)) {} // expected-note {{in call to 'j(2)'}}
}
};
constexpr U u1{1};
constexpr U u2{2}; // expected-error {{constant expression}} expected-note {{in call to 'U(2)'}}
// We allow expression-statements.
constexpr int l(bool b) {
if (b)
throw "invalid value for b!"; // expected-note {{subexpression not valid}}
return 5;
}
static_assert(l(false) == 5, "");
static_assert(l(true), ""); // expected-error {{constant expression}} expected-note {{in call to 'l(true)'}}
// Potential constant expression checking is still applied where possible.
constexpr int htonl(int x) { // expected-error {{never produces a constant expression}}
typedef unsigned char uchar;
uchar arr[4] = { uchar(x >> 24), uchar(x >> 16), uchar(x >> 8), uchar(x) };
return *reinterpret_cast<int*>(arr); // expected-note {{reinterpret_cast is not allowed in a constant expression}}
}
constexpr int maybe_htonl(bool isBigEndian, int x) {
if (isBigEndian)
return x;
typedef unsigned char uchar;
uchar arr[4] = { uchar(x >> 24), uchar(x >> 16), uchar(x >> 8), uchar(x) };
return *reinterpret_cast<int*>(arr); // expected-note {{reinterpret_cast is not allowed in a constant expression}}
}
constexpr int swapped = maybe_htonl(false, 123); // expected-error {{constant expression}} expected-note {{in call}}
namespace NS {
constexpr int n = 0;
}
constexpr int namespace_alias() {
namespace N = NS;
return N::n;
}
namespace assign {
constexpr int a = 0;
const int b = 0;
int c = 0; // expected-note {{here}}
constexpr void set(const int &a, int b) {
const_cast<int&>(a) = b; // expected-note 3{{constant expression cannot modify an object that is visible outside that expression}}
}
constexpr int wrap(int a, int b) {
set(a, b);
return a;
}
static_assert((set(a, 1), a) == 1, ""); // expected-error {{constant expression}} expected-note {{in call to 'set(a, 1)'}}
static_assert((set(b, 1), b) == 1, ""); // expected-error {{constant expression}} expected-note {{in call to 'set(b, 1)'}}
static_assert((set(c, 1), c) == 1, ""); // expected-error {{constant expression}} expected-note {{in call to 'set(c, 1)'}}
static_assert(wrap(a, 1) == 1, "");
static_assert(wrap(b, 1) == 1, "");
static_assert(wrap(c, 1) == 1, ""); // expected-error {{constant expression}} expected-note {{read of non-const variable 'c'}}
}
namespace string_assign {
template<typename T>
constexpr void swap(T &a, T &b) {
T tmp = a;
a = b;
b = tmp;
}
template<typename Iterator>
constexpr void reverse(Iterator begin, Iterator end) {
while (begin != end && begin != --end)
swap(*begin++, *end);
}
template<typename Iterator1, typename Iterator2>
constexpr bool equal(Iterator1 a, Iterator1 ae, Iterator2 b, Iterator2 be) {
while (a != ae && b != be)
if (*a++ != *b++)
return false;
return a == ae && b == be;
}
constexpr bool test1(int n) {
char stuff[100] = "foobarfoo";
const char stuff2[100] = "oofraboof";
reverse(stuff, stuff + n); // expected-note {{cannot refer to element 101 of array of 100 elements}}
return equal(stuff, stuff + n, stuff2, stuff2 + n);
}
static_assert(!test1(1), "");
static_assert(test1(3), "");
static_assert(!test1(6), "");
static_assert(test1(9), "");
static_assert(!test1(100), "");
static_assert(!test1(101), ""); // expected-error {{constant expression}} expected-note {{in call to 'test1(101)'}}
// FIXME: We should be able to reject this before it's called
constexpr void f() {
char foo[10] = { "z" }; // expected-note {{here}}
foo[10] = 'x'; // expected-warning {{past the end}} expected-note {{assignment to dereferenced one-past-the-end pointer}}
}
constexpr int k = (f(), 0); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace array_resize {
constexpr int do_stuff(int k1, int k2) {
int arr[1234] = { 1, 2, 3, 4 };
arr[k1] = 5; // expected-note {{past-the-end}} expected-note {{cannot refer to element 1235}} expected-note {{cannot refer to element -1}}
return arr[k2];
}
static_assert(do_stuff(1, 2) == 3, "");
static_assert(do_stuff(0, 0) == 5, "");
static_assert(do_stuff(1233, 1233) == 5, "");
static_assert(do_stuff(1233, 0) == 1, "");
static_assert(do_stuff(1234, 0) == 1, ""); // expected-error {{constant expression}} expected-note {{in call}}
static_assert(do_stuff(1235, 0) == 1, ""); // expected-error {{constant expression}} expected-note {{in call}}
static_assert(do_stuff(-1, 0) == 1, ""); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace potential_const_expr {
constexpr void set(int &n) { n = 1; }
constexpr int div_zero_1() { int z = 0; set(z); return 100 / z; } // no error
constexpr int div_zero_2() { // expected-error {{never produces a constant expression}}
int z = 0;
return 100 / (set(z), 0); // expected-note {{division by zero}}
}
int n; // expected-note {{declared here}}
constexpr int ref() { // expected-error {{never produces a constant expression}}
int &r = n;
return r; // expected-note {{read of non-const variable 'n'}}
}
}
namespace subobject {
union A { constexpr A() : y(5) {} int x, y; };
struct B { A a; };
struct C : B {};
union D { constexpr D() : c() {} constexpr D(int n) : n(n) {} C c; int n; };
constexpr void f(D &d) {
d.c.a.y = 3;
// expected-note@-1 {{cannot modify an object that is visible outside}}
// expected-note@-2 {{assignment to member 'c' of union with active member 'n'}}
}
constexpr bool check(D &d) { return d.c.a.y == 3; }
constexpr bool g() { D d; f(d); return d.c.a.y == 3; }
static_assert(g(), "");
D d;
constexpr bool h() { f(d); return check(d); } // expected-note {{in call}}
static_assert(h(), ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr bool i() { D d(0); f(d); return check(d); } // expected-note {{in call}}
static_assert(i(), ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr bool j() { D d; d.c.a.x = 3; return check(d); } // expected-note {{assignment to member 'x' of union with active member 'y'}}
static_assert(j(), ""); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace lifetime {
constexpr int &&id(int &&n) { return static_cast<int&&>(n); }
constexpr int &&dead() { return id(0); } // expected-note {{temporary created here}}
constexpr int bad() { int &&n = dead(); n = 1; return n; } // expected-note {{assignment to temporary whose lifetime has ended}}
static_assert(bad(), ""); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace const_modify {
constexpr int modify(int &n) { return n = 1; } // expected-note 2 {{modification of object of const-qualified type 'const int'}}
constexpr int test1() { int k = 0; return modify(k); }
constexpr int test2() { const int k = 0; return modify(const_cast<int&>(k)); } // expected-note 2 {{in call}}
static_assert(test1() == 1, "");
static_assert(test2() == 1, ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int i = test2(); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace null {
constexpr int test(int *p) {
return *p = 123; // expected-note {{assignment to dereferenced null pointer}}
}
static_assert(test(0), ""); // expected-error {{constant expression}} expected-note {{in call}}
}
namespace incdec {
template<typename T> constexpr T &ref(T &&r) { return r; }
template<typename T> constexpr T postinc(T &&r) { return (r++, r); }
template<typename T> constexpr T postdec(T &&r) { return (r--, r); }
static_assert(++ref(0) == 1, "");
static_assert(ref(0)++ == 0, "");
static_assert(postinc(0) == 1, "");
static_assert(--ref(0) == -1, "");
static_assert(ref(0)-- == 0, "");
static_assert(postdec(0) == -1, "");
constexpr int overflow_int_inc_1 = ref(0x7fffffff)++; // expected-error {{constant}} expected-note {{2147483648}}
constexpr int overflow_int_inc_1_ok = ref(0x7ffffffe)++;
constexpr int overflow_int_inc_2 = ++ref(0x7fffffff); // expected-error {{constant}} expected-note {{2147483648}}
constexpr int overflow_int_inc_2_ok = ++ref(0x7ffffffe);
// inc/dec on short can't overflow because we promote to int first
static_assert(++ref<short>(0x7fff) == (int)0xffff8000u, "");
static_assert(--ref<short>(0x8000) == 0x7fff, "");
// inc on bool sets to true
static_assert(++ref(false), ""); // expected-warning {{deprecated}}
static_assert(++ref(true), ""); // expected-warning {{deprecated}}
int arr[10];
static_assert(++ref(&arr[0]) == &arr[1], "");
static_assert(++ref(&arr[9]) == &arr[10], "");
static_assert(++ref(&arr[10]) == &arr[11], ""); // expected-error {{constant}} expected-note {{cannot refer to element 11}}
static_assert(ref(&arr[0])++ == &arr[0], "");
static_assert(ref(&arr[10])++ == &arr[10], ""); // expected-error {{constant}} expected-note {{cannot refer to element 11}}
static_assert(postinc(&arr[0]) == &arr[1], "");
static_assert(--ref(&arr[10]) == &arr[9], "");
static_assert(--ref(&arr[1]) == &arr[0], "");
static_assert(--ref(&arr[0]) != &arr[0], ""); // expected-error {{constant}} expected-note {{cannot refer to element -1}}
static_assert(ref(&arr[1])-- == &arr[1], "");
static_assert(ref(&arr[0])-- == &arr[0], ""); // expected-error {{constant}} expected-note {{cannot refer to element -1}}
static_assert(postdec(&arr[1]) == &arr[0], "");
int x;
static_assert(++ref(&x) == &x + 1, "");
static_assert(++ref(0.0) == 1.0, "");
static_assert(ref(0.0)++ == 0.0, "");
static_assert(postinc(0.0) == 1.0, "");
static_assert(--ref(0.0) == -1.0, "");
static_assert(ref(0.0)-- == 0.0, "");
static_assert(postdec(0.0) == -1.0, "");
static_assert(++ref(1e100) == 1e100, "");
static_assert(--ref(1e100) == 1e100, "");
union U {
int a, b;
};
constexpr int f(U u) {
return ++u.b; // expected-note {{increment of member 'b' of union with active member 'a'}}
}
constexpr int wrong_member = f({0}); // expected-error {{constant}} expected-note {{in call to 'f({.a = 0})'}}
constexpr int vol = --ref<volatile int>(0); // expected-error {{constant}} expected-note {{decrement of volatile-qualified}}
constexpr int incr(int k) {
int x = k;
if (x++ == 100)
return x;
return incr(x);
}
static_assert(incr(0) == 101, "");
}
namespace compound_assign {
constexpr bool test_int() {
int a = 3;
a += 6;
if (a != 9) return false;
a -= 2;
if (a != 7) return false;
a *= 3;
if (a != 21) return false;
if (&(a /= 10) != &a) return false;
if (a != 2) return false;
a <<= 3;
if (a != 16) return false;
a %= 6;
if (a != 4) return false;
a >>= 1;
if (a != 2) return false;
a ^= 10;
if (a != 8) return false;
a |= 5;
if (a != 13) return false;
a &= 14;
if (a != 12) return false;
return true;
}
static_assert(test_int(), "");
constexpr bool test_float() {
float f = 123.;
f *= 2;
if (f != 246.) return false;
if ((f -= 0.5) != 245.5) return false;
if (f != 245.5) return false;
f /= 0.5;
if (f != 491.) return false;
f += -40;
if (f != 451.) return false;
return true;
}
static_assert(test_float(), "");
constexpr bool test_ptr() {
int arr[123] = {};
int *p = arr;
if ((p += 4) != &arr[4]) return false;
if (p != &arr[4]) return false;
p += -1;
if (p != &arr[3]) return false;
if ((p -= -10) != &arr[13]) return false;
if (p != &arr[13]) return false;
p -= 11;
if (p != &arr[2]) return false;
return true;
}
static_assert(test_ptr(), "");
template<typename T>
constexpr bool test_overflow() {
T a = 1;
while (a != a / 2)
a *= 2; // expected-note {{value 2147483648 is outside the range}} expected-note {{ 9223372036854775808 }} expected-note {{floating point arithmetic produces an infinity}}
return true;
}
static_assert(test_overflow<int>(), ""); // expected-error {{constant}} expected-note {{call}}
static_assert(test_overflow<unsigned>(), ""); // ok, unsigned overflow is defined
static_assert(test_overflow<short>(), ""); // ok, short is promoted to int before multiplication
static_assert(test_overflow<unsigned short>(), ""); // ok
static_assert(test_overflow<unsigned long long>(), ""); // ok
static_assert(test_overflow<long long>(), ""); // expected-error {{constant}} expected-note {{call}}
static_assert(test_overflow<float>(), ""); // expected-error {{constant}} expected-note {{call}}
constexpr short test_promotion(short k) {
short s = k;
s *= s;
return s;
}
static_assert(test_promotion(100) == 10000, "");
static_assert(test_promotion(200) == -25536, "");
static_assert(test_promotion(256) == 0, "");
constexpr const char *test_bounds(const char *p, int o) {
return p += o; // expected-note {{element 5 of}} expected-note {{element -1 of}} expected-note {{element 1000 of}}
}
static_assert(test_bounds("foo", 0)[0] == 'f', "");
static_assert(test_bounds("foo", 3)[0] == 0, "");
static_assert(test_bounds("foo", 4)[-3] == 'o', "");
static_assert(test_bounds("foo" + 4, -4)[0] == 'f', "");
static_assert(test_bounds("foo", 5) != 0, ""); // expected-error {{constant}} expected-note {{call}}
static_assert(test_bounds("foo", -1) != 0, ""); // expected-error {{constant}} expected-note {{call}}
static_assert(test_bounds("foo", 1000) != 0, ""); // expected-error {{constant}} expected-note {{call}}
}
namespace loops {
constexpr int fib_loop(int a) {
int f_k = 0, f_k_plus_one = 1;
for (int k = 1; k != a; ++k) {
int f_k_plus_two = f_k + f_k_plus_one;
f_k = f_k_plus_one;
f_k_plus_one = f_k_plus_two;
}
return f_k_plus_one;
}
static_assert(fib_loop(46) == 1836311903, "");
constexpr bool breaks_work() {
int a = 0;
for (int n = 0; n != 100; ++n) {
++a;
if (a == 5) continue;
if ((a % 5) == 0) break;
}
int b = 0;
while (b != 17) {
++b;
if (b == 6) continue;
if ((b % 6) == 0) break;
}
int c = 0;
do {
++c;
if (c == 7) continue;
if ((c % 7) == 0) break;
} while (c != 21);
return a == 10 && b == 12 & c == 14;
}
static_assert(breaks_work(), "");
void not_constexpr();
constexpr bool no_cont_after_break() {
for (;;) {
break;
not_constexpr();
}
while (true) {
break;
not_constexpr();
}
do {
break;
not_constexpr();
} while (true);
return true;
}
static_assert(no_cont_after_break(), "");
constexpr bool cond() {
for (int a = 1; bool b = a != 3; ++a) {
if (!b)
return false;
}
while (bool b = true) {
b = false;
break;
}
return true;
}
static_assert(cond(), "");
constexpr int range_for() {
int arr[] = { 1, 2, 3, 4, 5 };
int sum = 0;
for (int x : arr)
sum += x;
return sum;
}
static_assert(range_for() == 15, "");
template<int...N> struct ints {};
template<typename A, typename B> struct join_ints;
template<int...As, int...Bs> struct join_ints<ints<As...>, ints<Bs...>> {
using type = ints<As..., sizeof...(As) + Bs...>;
};
template<unsigned N> struct make_ints {
using type = typename join_ints<typename make_ints<N/2>::type, typename make_ints<(N+1)/2>::type>::type;
};
template<> struct make_ints<0> { using type = ints<>; };
template<> struct make_ints<1> { using type = ints<0>; };
struct ignore { template<typename ...Ts> constexpr ignore(Ts &&...) {} };
template<typename T, unsigned N> struct array {
constexpr array() : arr{} {}
template<typename ...X>
constexpr array(X ...x) : arr{} {
init(typename make_ints<sizeof...(X)>::type{}, x...);
}
template<int ...I, typename ...X> constexpr void init(ints<I...>, X ...x) {
ignore{arr[I] = x ...};
}
T arr[N];
struct iterator {
T *p;
constexpr explicit iterator(T *p) : p(p) {}
constexpr bool operator!=(iterator o) { return p != o.p; }
constexpr iterator &operator++() { ++p; return *this; }
constexpr T &operator*() { return *p; }
};
constexpr iterator begin() { return iterator(arr); }
constexpr iterator end() { return iterator(arr + N); }
};
constexpr int range_for_2() {
array<int, 5> arr { 1, 2, 3, 4, 5 };
int sum = 0;
for (int k : arr) {
sum += k;
if (sum > 8) break;
}
return sum;
}
static_assert(range_for_2() == 10, "");
}
namespace assignment_op {
struct A {
constexpr A() : n(5) {}
int n;
struct B {
int k = 1;
union U {
constexpr U() : y(4) {}
int x;
int y;
} u;
} b;
};
constexpr bool testA() {
A a, b;
a.n = 7;
a.b.u.y = 5;
b = a;
return b.n == 7 && b.b.u.y == 5 && b.b.k == 1;
}
static_assert(testA(), "");
struct B {
bool assigned = false;
constexpr B &operator=(const B&) {
assigned = true;
return *this;
}
};
struct C : B {
B b;
int n = 5;
};
constexpr bool testC() {
C c, d;
c.n = 7;
d = c;
c.n = 3;
return d.n == 7 && d.assigned && d.b.assigned;
}
static_assert(testC(), "");
}
namespace switch_stmt {
constexpr int f(char k) {
bool b = false;
int z = 6;
switch (k) {
return -1;
case 0:
if (false) {
case 1:
z = 1;
for (; b;) {
return 5;
while (0)
case 2: return 2;
case 7: z = 7;
do case 6: {
return z;
if (false)
case 3: return 3;
case 4: z = 4;
} while (1);
case 5: b = true;
case 9: z = 9;
}
return z;
} else if (false) case 8: z = 8;
else if (false) {
case 10:
z = -10;
break;
}
else z = 0;
return z;
default:
return -1;
}
return -z;
}
static_assert(f(0) == 0, "");
static_assert(f(1) == 1, "");
static_assert(f(2) == 2, "");
static_assert(f(3) == 3, "");
static_assert(f(4) == 4, "");
static_assert(f(5) == 5, "");
static_assert(f(6) == 6, "");
static_assert(f(7) == 7, "");
static_assert(f(8) == 8, "");
static_assert(f(9) == 9, "");
static_assert(f(10) == 10, "");
// Check that we can continue an outer loop from within a switch.
constexpr bool contin() {
for (int n = 0; n != 10; ++n) {
switch (n) {
case 0:
++n;
continue;
case 1:
return false;
case 2:
return true;
}
}
return false;
}
static_assert(contin(), "");
constexpr bool switch_into_for() {
int n = 0;
switch (n) {
for (; n == 1; ++n) {
return n == 1;
case 0: ;
}
}
return false;
}
static_assert(switch_into_for(), "");
constexpr void duff_copy(char *a, const char *b, int n) {
switch ((n - 1) % 8 + 1) {
for ( ; n; n = (n - 1) & ~7) {
case 8: a[n-8] = b[n-8];
case 7: a[n-7] = b[n-7];
case 6: a[n-6] = b[n-6];
case 5: a[n-5] = b[n-5];
case 4: a[n-4] = b[n-4];
case 3: a[n-3] = b[n-3];
case 2: a[n-2] = b[n-2];
case 1: a[n-1] = b[n-1];
}
case 0: ;
}
}
constexpr bool test_copy(const char *str, int n) {
char buffer[16] = {};
duff_copy(buffer, str, n);
for (int i = 0; i != sizeof(buffer); ++i)
if (buffer[i] != (i < n ? str[i] : 0))
return false;
return true;
}
static_assert(test_copy("foo", 0), "");
static_assert(test_copy("foo", 1), "");
static_assert(test_copy("foo", 2), "");
static_assert(test_copy("hello world", 0), "");
static_assert(test_copy("hello world", 7), "");
static_assert(test_copy("hello world", 8), "");
static_assert(test_copy("hello world", 9), "");
static_assert(test_copy("hello world", 10), "");
static_assert(test_copy("hello world", 10), "");
}
namespace deduced_return_type {
constexpr auto f() { return 0; }
template<typename T> constexpr auto g(T t) { return t; }
static_assert(f() == 0, "");
static_assert(g(true), "");
}
namespace modify_temporary_during_construction {
struct A { int &&temporary; int x; int y; };
constexpr int f(int &r) { r *= 9; return r - 12; }
constexpr A a = { 6, f(a.temporary), a.temporary }; // expected-note {{temporary created here}}
static_assert(a.x == 42, "");
static_assert(a.y == 54, "");
constexpr int k = a.temporary++; // expected-error {{constant expression}} expected-note {{outside the expression that created the temporary}}
}
namespace std {
typedef decltype(sizeof(int)) size_t;
template <class _E>
class initializer_list
{
const _E* __begin_;
size_t __size_;
constexpr initializer_list(const _E* __b, size_t __s)
: __begin_(__b),
__size_(__s)
{}
public:
typedef _E value_type;
typedef const _E& reference;
typedef const _E& const_reference;
typedef size_t size_type;
typedef const _E* iterator;
typedef const _E* const_iterator;
constexpr initializer_list() : __begin_(nullptr), __size_(0) {}
constexpr size_t size() const {return __size_;}
constexpr const _E* begin() const {return __begin_;}
constexpr const _E* end() const {return __begin_ + __size_;}
};
}
namespace InitializerList {
constexpr int sum(std::initializer_list<int> ints) {
int total = 0;
for (int n : ints) total += n;
return total;
}
static_assert(sum({1, 2, 3, 4, 5}) == 15, "");
}
namespace StmtExpr {
constexpr int f(int k) {
switch (k) {
case 0:
return 0;
({
case 1: // expected-note {{not supported}}
return 1;
});
}
}
static_assert(f(1) == 1, ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int g() { // expected-error {{never produces a constant}}
return ({ int n; n; }); // expected-note {{object of type 'int' is not initialized}}
}
// FIXME: We should handle the void statement expression case.
constexpr int h() { // expected-error {{never produces a constant}}
({ if (true) {} }); // expected-note {{not supported}}
return 0;
}
}
namespace VirtualFromBase {
struct S1 {
virtual int f() const;
};
struct S2 {
virtual int f();
};
template <typename T> struct X : T {
constexpr X() {}
double d = 0.0;
constexpr int f() { return sizeof(T); }
};
// Non-virtual f(), OK.
constexpr X<X<S1>> xxs1;
constexpr X<S1> *p = const_cast<X<X<S1>>*>(&xxs1);
static_assert(p->f() == sizeof(S1), "");
// Virtual f(), not OK.
constexpr X<X<S2>> xxs2;
constexpr X<S2> *q = const_cast<X<X<S2>>*>(&xxs2);
static_assert(q->f() == sizeof(X<S2>), ""); // expected-error {{constant expression}} expected-note {{virtual function call}}
}
namespace Lifetime {
constexpr int &get(int &&r) { return r; }
constexpr int f() {
int &r = get(123);
return r; // expected-note {{read of object outside its lifetime}}
}
static_assert(f() == 123, ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int g() {
int *p = 0;
{
int n = 0;
p = &n;
n = 42;
}
*p = 123; // expected-note {{assignment to object outside its lifetime}}
return *p;
}
static_assert(g() == 42, ""); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int h(int n) {
int *p[4] = {};
int &&r = 1;
p[0] = &r;
while (int a = 1) {
p[1] = &a;
for (int b = 1; int c = 1; ) {
p[2] = &b, p[3] = &c;
break;
}
break;
}
*p[n] = 0; // expected-note 3{{assignment to object outside its lifetime}}
return *p[n];
}
static_assert(h(0) == 0, ""); // ok, lifetime-extended
static_assert(h(1) == 0, ""); // expected-error {{constant expression}} expected-note {{in call}}
static_assert(h(2) == 0, ""); // expected-error {{constant expression}} expected-note {{in call}}
static_assert(h(3) == 0, ""); // expected-error {{constant expression}} expected-note {{in call}}
// FIXME: This function should be treated as non-constant.
constexpr void lifetime_versus_loops() {
int *p = 0;
for (int i = 0; i != 2; ++i) {
int *q = p;
int n = 0;
p = &n;
if (i)
// This modifies the 'n' from the previous iteration of the loop outside
// its lifetime.
++*q;
}
}
static_assert((lifetime_versus_loops(), true), "");
}
namespace Bitfields {
struct A {
bool b : 3;
int n : 4;
unsigned u : 5;
};
constexpr bool test() {
A a {};
a.b += 2;
--a.n;
--a.u;
a.n = -a.n * 3;
return a.b == false && a.n == 3 && a.u == 31;
}
static_assert(test(), "");
}
namespace PR17615 {
struct A {
int &&r;
constexpr A(int &&r) : r(static_cast<int &&>(r)) {}
constexpr A() : A(0) {
(void)+r; // expected-note {{outside its lifetime}}
}
};
constexpr int k = A().r; // expected-error {{constant expression}} expected-note {{in call to}}
}
namespace PR17331 {
template<typename T, unsigned int N>
constexpr T sum(const T (&arr)[N]) {
T result = 0;
for (T i : arr)
result += i;
return result;
}
constexpr int ARR[] = { 1, 2, 3, 4, 5 };
static_assert(sum(ARR) == 15, "");
}
namespace EmptyClass {
struct E1 {} e1;
union E2 {} e2; // expected-note 4{{here}}
struct E3 : E1 {} e3;
template<typename E>
constexpr int f(E &a, int kind) {
switch (kind) {
case 0: { E e(a); return 0; } // expected-note {{read}} expected-note {{in call}}
case 1: { E e(static_cast<E&&>(a)); return 0; } // expected-note {{read}} expected-note {{in call}}
case 2: { E e; e = a; return 0; } // expected-note {{read}} expected-note {{in call}}
case 3: { E e; e = static_cast<E&&>(a); return 0; } // expected-note {{read}} expected-note {{in call}}
}
}
constexpr int test1 = f(e1, 0);
constexpr int test2 = f(e2, 0); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int test3 = f(e3, 0);
constexpr int test4 = f(e1, 1);
constexpr int test5 = f(e2, 1); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int test6 = f(e3, 1);
constexpr int test7 = f(e1, 2);
constexpr int test8 = f(e2, 2); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int test9 = f(e3, 2);
constexpr int testa = f(e1, 3);
constexpr int testb = f(e2, 3); // expected-error {{constant expression}} expected-note {{in call}}
constexpr int testc = f(e3, 3);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/MicrosoftExtensions.cpp
|
// RUN: %clang_cc1 %s -triple i686-pc-win32 -fsyntax-only -Wmicrosoft -Wc++11-extensions -Wno-long-long -verify -fms-extensions -fexceptions -fcxx-exceptions
// Microsoft doesn't validate exception specification.
namespace microsoft_exception_spec {
void foo(); // expected-note {{previous declaration}}
void foo() throw(); // expected-warning {{exception specification in declaration does not match previous declaration}}
void r6() throw(...); // expected-note {{previous declaration}}
void r6() throw(int); // expected-warning {{exception specification in declaration does not match previous declaration}}
struct Base {
virtual void f2();
virtual void f3() throw(...);
};
struct Derived : Base {
virtual void f2() throw(...);
virtual void f3();
};
class A {
virtual ~A() throw(); // expected-note {{overridden virtual function is here}}
};
class B : public A {
virtual ~B(); // expected-warning {{exception specification of overriding function is more lax than base version}}
};
}
// MSVC allows type definition in anonymous union and struct
struct A
{
union
{
int a;
struct B // expected-warning {{types declared in an anonymous union are a Microsoft extension}}
{
int c;
} d;
union C // expected-warning {{types declared in an anonymous union are a Microsoft extension}}
{
int e;
int ee;
} f;
typedef int D; // expected-warning {{types declared in an anonymous union are a Microsoft extension}}
struct F; // expected-warning {{types declared in an anonymous union are a Microsoft extension}}
};
struct
{
int a2;
struct B2 // expected-warning {{types declared in an anonymous struct are a Microsoft extension}}
{
int c2;
} d2;
union C2 // expected-warning {{types declared in an anonymous struct are a Microsoft extension}}
{
int e2;
int ee2;
} f2;
typedef int D2; // expected-warning {{types declared in an anonymous struct are a Microsoft extension}}
struct F2; // expected-warning {{types declared in an anonymous struct are a Microsoft extension}}
};
};
// __stdcall handling
struct M {
int __stdcall addP();
float __stdcall subtractP();
};
// __unaligned handling
typedef char __unaligned *aligned_type;
typedef struct UnalignedTag { int f; } __unaligned *aligned_type2;
template<typename T> void h1(T (__stdcall M::* const )()) { }
void m1() {
h1<int>(&M::addP);
h1(&M::subtractP);
}
void f(long long);
void f(int);
int main()
{
// This is an ambiguous call in standard C++.
// This calls f(long long) in Microsoft mode because LL is always signed.
f(0xffffffffffffffffLL);
f(0xffffffffffffffffi64);
}
// Enumeration types with a fixed underlying type.
const int seventeen = 17;
typedef int Int;
struct X0 {
enum E1 : Int { SomeOtherValue } field; // expected-warning{{enumeration types with a fixed underlying type are a C++11 extension}}
enum E1 : seventeen;
};
enum : long long { // expected-warning{{enumeration types with a fixed underlying type are a C++11 extension}}
SomeValue = 0x100000000
};
class AAA {
__declspec(dllimport) void f(void) { }
void f2(void); // expected-note{{previous declaration is here}}
};
__declspec(dllimport) void AAA::f2(void) { // expected-error{{dllimport cannot be applied to non-inline function definition}}
// expected-error@-1{{redeclaration of 'AAA::f2' cannot add 'dllimport' attribute}}
}
template <class T>
class BB {
public:
void f(int g = 10 ); // expected-note {{previous definition is here}}
};
template <class T>
void BB<T>::f(int g = 0) { } // expected-warning {{redefinition of default argument}}
extern void static_func();
void static_func(); // expected-note {{previous declaration is here}}
static void static_func() // expected-warning {{redeclaring non-static 'static_func' as static is a Microsoft extension}}
{
}
extern const int static_var; // expected-note {{previous declaration is here}}
static const int static_var = 3; // expected-warning {{redeclaring non-static 'static_var' as static is a Microsoft extension}}
long function_prototype(int a);
long (*function_ptr)(int a);
void function_to_voidptr_conv() {
void *a1 = function_prototype;
void *a2 = &function_prototype;
void *a3 = function_ptr;
}
void pointer_to_integral_type_conv(char* ptr) {
char ch = (char)ptr;
short sh = (short)ptr;
ch = (char)ptr;
sh = (short)ptr;
// These are valid C++.
bool b = (bool)ptr;
b = static_cast<bool>(ptr);
// This is bad.
b = reinterpret_cast<bool>(ptr); // expected-error {{cast from pointer to smaller type 'bool' loses information}}
}
struct PR11150 {
class X {
virtual void f() = 0;
};
int array[__is_abstract(X)? 1 : -1];
};
void f() { int __except = 0; }
void ::f(); // expected-warning{{extra qualification on member 'f'}}
class C {
C::C(); // expected-warning{{extra qualification on member 'C'}}
};
struct StructWithProperty {
__declspec(property(get=GetV)) int V1;
__declspec(property(put=SetV)) int V2;
__declspec(property(get=GetV, put=SetV_NotExist)) int V3;
__declspec(property(get=GetV_NotExist, put=SetV)) int V4;
__declspec(property(get=GetV, put=SetV)) int V5;
int GetV() { return 123; }
void SetV(int i) {}
};
void TestProperty() {
StructWithProperty sp;
int i = sp.V2; // expected-error{{no getter defined for property 'V2'}}
sp.V1 = 12; // expected-error{{no setter defined for property 'V1'}}
int j = sp.V4; // expected-error{{no member named 'GetV_NotExist' in 'StructWithProperty'}} expected-error{{cannot find suitable getter for property 'V4'}}
sp.V3 = 14; // expected-error{{no member named 'SetV_NotExist' in 'StructWithProperty'}} expected-error{{cannot find suitable setter for property 'V3'}}
int k = sp.V5;
sp.V5 = k++;
}
/* 4 tests for PseudoObject, begin */
struct SP1
{
bool operator()() { return true; }
};
struct SP2
{
__declspec(property(get=GetV)) SP1 V;
SP1 GetV() { return SP1(); }
};
void TestSP2() {
SP2 sp2;
bool b = sp2.V();
}
struct SP3 {
template <class T>
void f(T t) {}
};
template <class T>
struct SP4
{
__declspec(property(get=GetV)) int V;
int GetV() { return 123; }
void f() { SP3 s2; s2.f(V); }
};
void TestSP4() {
SP4<int> s;
s.f();
}
template <class T>
struct SP5
{
__declspec(property(get=GetV)) T V;
int GetV() { return 123; }
void f() { int *p = new int[V]; }
};
template <class T>
struct SP6
{
public:
__declspec(property(get=GetV)) T V;
T GetV() { return 123; }
void f() { int t = V; }
};
void TestSP6() {
SP6<int> c;
c.f();
}
/* 4 tests for PseudoObject, end */
// Property access: explicit, implicit, with Qualifier
struct SP7 {
__declspec(property(get=GetV, put=SetV)) int V;
int GetV() { return 123; }
void SetV(int v) {}
void ImplicitAccess() { int i = V; V = i; }
void ExplicitAccess() { int i = this->V; this->V = i; }
};
struct SP8: public SP7 {
void AccessWithQualifier() { int i = SP7::V; SP7::V = i; }
};
// Property usage
template <class T>
struct SP9 {
__declspec(property(get=GetV, put=SetV)) T V;
T GetV() { return 0; }
void SetV(T v) {}
bool f() { V = this->V; return V < this->V; }
void g() { V++; }
void h() { V*=2; }
};
struct SP10 {
SP10(int v) {}
bool operator<(const SP10& v) { return true; }
SP10 operator*(int v) { return *this; }
SP10 operator+(int v) { return *this; }
SP10& operator=(const SP10& v) { return *this; }
};
void TestSP9() {
SP9<int> c;
int i = c.V; // Decl initializer
i = c.V; // Binary op operand
c.SetV(c.V); // CallExpr arg
int *p = new int[c.V + 1]; // Array size
p[c.V] = 1; // Array index
c.V = 123; // Setter
c.V++; // Unary op operand
c.V *= 2; // Unary op operand
SP9<int*> c2;
c2.V[0] = 123; // Array
SP9<SP10> c3;
c3.f(); // Overloaded binary op operand
c3.g(); // Overloaded incdec op operand
c3.h(); // Overloaded unary op operand
}
union u {
int *i1;
int &i2; // expected-warning {{union member 'i2' has reference type 'int &', which is a Microsoft extension}}
};
// Property getter using reference.
struct SP11 {
__declspec(property(get=GetV)) int V;
int _v;
int& GetV() { return _v; }
void UseV();
void TakePtr(int *) {}
void TakeRef(int &) {}
void TakeVal(int) {}
};
void SP11::UseV() {
TakePtr(&V);
TakeRef(V);
TakeVal(V);
}
struct StructWithUnnamedMember {
__declspec(property(get=GetV)) int : 10; // expected-error {{anonymous property is not supported}}
};
struct MSPropertyClass {
int get() { return 42; }
int __declspec(property(get = get)) n;
};
int *f(MSPropertyClass &x) {
return &x.n; // expected-error {{address of property expression requested}}
}
int MSPropertyClass::*g() {
return &MSPropertyClass::n; // expected-error {{address of property expression requested}}
}
namespace rdar14250378 {
class Bar {};
namespace NyNamespace {
class Foo {
public:
Bar* EnsureBar();
};
class Baz : public Foo {
public:
friend class Bar;
};
Bar* Foo::EnsureBar() {
return 0;
}
}
}
// expected-error@+1 {{'sealed' keyword not permitted with interface types}}
__interface InterfaceWithSealed sealed {
};
struct SomeBase {
virtual void OverrideMe();
// expected-note@+2 {{overridden virtual function is here}}
// expected-warning@+1 {{'sealed' keyword is a Microsoft extension}}
virtual void SealedFunction() sealed; // expected-note {{overridden virtual function is here}}
};
// expected-note@+2 {{'SealedType' declared here}}
// expected-warning@+1 {{'sealed' keyword is a Microsoft extension}}
struct SealedType sealed : SomeBase {
// expected-error@+2 {{declaration of 'SealedFunction' overrides a 'sealed' function}}
// FIXME. warning can be suppressed if we're also issuing error for overriding a 'final' function.
virtual void SealedFunction(); // expected-warning {{'SealedFunction' overrides a member function but is not marked 'override'}}
// expected-warning@+1 {{'override' keyword is a C++11 extension}}
virtual void OverrideMe() override;
};
// expected-error@+1 {{base 'SealedType' is marked 'sealed'}}
struct InheritFromSealed : SealedType {};
void AfterClassBody() {
// expected-warning@+1 {{attribute 'deprecated' is ignored, place it after "struct" to apply attribute to type declaration}}
struct D {} __declspec(deprecated);
struct __declspec(align(4)) S {} __declspec(align(8)) s1;
S s2;
_Static_assert(__alignof(S) == 4, "");
_Static_assert(__alignof(s1) == 8, "");
_Static_assert(__alignof(s2) == 4, "");
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/warn-self-move.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wself-move -std=c++11 -verify %s
// definitions for std::move
namespace std {
inline namespace foo {
template <class T> struct remove_reference { typedef T type; };
template <class T> struct remove_reference<T&> { typedef T type; };
template <class T> struct remove_reference<T&&> { typedef T type; };
template <class T> typename remove_reference<T>::type &&move(T &&t);
}
}
void int_test() {
int x = 5;
x = std::move(x); // expected-warning{{explicitly moving}}
(x) = std::move(x); // expected-warning{{explicitly moving}}
using std::move;
x = move(x); // expected-warning{{explicitly moving}}
}
int global;
void global_int_test() {
global = std::move(global); // expected-warning{{explicitly moving}}
(global) = std::move(global); // expected-warning{{explicitly moving}}
using std::move;
global = move(global); // expected-warning{{explicitly moving}}
}
class field_test {
int x;
field_test(field_test&& other) {
x = std::move(x); // expected-warning{{explicitly moving}}
x = std::move(other.x);
other.x = std::move(x);
other.x = std::move(other.x); // expected-warning{{explicitly moving}}
}
};
struct A {};
struct B { A a; };
struct C { C() {}; ~C() {} };
void struct_test() {
A a;
a = std::move(a); // expected-warning{{explicitly moving}}
B b;
b = std::move(b); // expected-warning{{explicitly moving}}
b.a = std::move(b.a); // expected-warning{{explicitly moving}}
C c;
c = std::move(c); // expected-warning{{explicitly moving}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/qualification-conversion.cpp
|
// RUN: %clang_cc1 -fsyntax-only -pedantic -verify %s
int* quals1(int const * p);
int* quals2(int const * const * pp);
int* quals3(int const * * const * ppp); // expected-note{{candidate function}}
void test_quals(int * p, int * * pp, int * * * ppp) {
int const * const * pp2 = pp;
quals1(p);
quals2(pp);
quals3(ppp); // expected-error {{no matching}}
}
struct A {};
void mquals1(int const A::*p);
void mquals2(int const A::* const A::*pp);
void mquals3(int const A::* A::* const A::*ppp); // expected-note{{candidate function}}
void test_mquals(int A::*p, int A::* A::*pp, int A::* A::* A::*ppp) {
int const A::* const A::* pp2 = pp;
mquals1(p);
mquals2(pp);
mquals3(ppp); // expected-error {{no matching}}
}
void aquals1(int const (*p)[1]);
void aquals2(int * const (*pp)[1]);
void aquals2a(int const * (*pp2)[1]); // expected-note{{candidate function}}
void test_aquals(int (*p)[1], int * (*pp)[1], int * (*pp2)[1]) {
int const (*p2)[1] = p;
aquals1(p);
aquals2(pp);
aquals2a(pp2); // expected-error {{no matching}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/empty-class-layout.cpp
|
// RUN: %clang_cc1 -triple x86_64-unknown-unknown %s -fsyntax-only -verify -Wno-inaccessible-base
// expected-no-diagnostics
#define SA(n, p) int a##n[(p) ? 1 : -1]
namespace Test0 {
struct A { int a; };
SA(0, sizeof(A) == 4);
struct B { };
SA(1, sizeof(B) == 1);
struct C : A, B { };
SA(2, sizeof(C) == 4);
struct D { };
struct E : D { };
struct F : E { };
struct G : E, F { };
SA(3, sizeof(G) == 2);
struct Empty { Empty(); };
struct I : Empty {
Empty e;
};
SA(4, sizeof(I) == 2);
struct J : Empty {
Empty e[2];
};
SA(5, sizeof(J) == 3);
template<int N> struct Derived : Empty, Derived<N - 1> {
};
template<> struct Derived<0> : Empty { };
struct S1 : virtual Derived<10> {
Empty e;
};
SA(6, sizeof(S1) == 24);
struct S2 : virtual Derived<10> {
Empty e[2];
};
SA(7, sizeof(S2) == 24);
struct S3 {
Empty e;
};
struct S4 : Empty, S3 {
};
SA(8, sizeof(S4) == 2);
struct S5 : S3, Empty {};
SA(9, sizeof(S5) == 2);
struct S6 : S5 { };
SA(10, sizeof(S6) == 2);
struct S7 : Empty {
void *v;
};
SA(11, sizeof(S7) == 8);
struct S8 : Empty, A {
};
SA(12, sizeof(S8) == 4);
}
namespace Test1 {
// Test that we don't try to place both A subobjects at offset 0.
struct A { };
class B { virtual void f(); };
class C : A, virtual B { };
struct D : virtual C { };
struct E : virtual A { };
class F : D, E { };
SA(0, sizeof(F) == 24);
}
namespace Test2 {
// Test that B::a isn't laid out at offset 0.
struct Empty { };
struct A : Empty { };
struct B : Empty {
A a;
};
SA(0, sizeof(B) == 2);
}
namespace Test3 {
// Test that B::a isn't laid out at offset 0.
struct Empty { };
struct A { Empty e; };
struct B : Empty { A a; };
SA(0, sizeof(B) == 2);
}
namespace Test4 {
// Test that C::Empty isn't laid out at offset 0.
struct Empty { };
struct A : Empty { };
struct B { A a; };
struct C : B, Empty { };
SA(0, sizeof(C) == 2);
}
namespace Test5 {
// Test that B::Empty isn't laid out at offset 0.
struct Empty { };
struct Field : virtual Empty { };
struct A {
Field f;
};
struct B : A, Empty { };
SA(0, sizeof(B) == 16);
}
namespace Test6 {
// Test that B::A isn't laid out at offset 0.
struct Empty { };
struct Field : virtual Empty { };
struct A {
Field f;
};
struct B : Empty, A { };
SA(0, sizeof(B) == 16);
}
namespace Test7 {
// Make sure we reserve enough space for both bases; PR11745.
struct Empty { };
struct Base1 : Empty { };
struct Base2 : Empty { };
struct Test : Base1, Base2 {
char c;
};
SA(0, sizeof(Test) == 2);
}
namespace Test8 {
// Test that type sugar doesn't make us incorrectly determine the size of an
// array of empty classes.
struct Empty1 {};
struct Empty2 {};
struct Empties : Empty1, Empty2 {};
typedef Empty1 Sugar[4];
struct A : Empty2, Empties {
// This must go at offset 2, because if it were at offset 0,
// V[0][1] would overlap Empties::Empty1.
Sugar V[1];
};
SA(0, sizeof(A) == 6);
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/null_in_arithmetic_ops.cpp
|
// RUN: %clang_cc1 -triple x86_64-unknown-unknown -fsyntax-only -fblocks -Wnull-arithmetic -verify -Wno-string-plus-int -Wno-tautological-pointer-compare %s
#include <stddef.h>
void f() {
int a;
bool b;
void (^c)();
class X;
void (X::*d) ();
extern void e();
int f[2];
const void *v;
a = 0 ? NULL + a : a + NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL - a : a - NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL / a : a / NULL; // expected-warning 2{{use of NULL in arithmetic operation}} \
// expected-warning {{division by zero is undefined}}
a = 0 ? NULL * a : a * NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL >> a : a >> NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL << a : a << NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL % a : a % NULL; // expected-warning 2{{use of NULL in arithmetic operation}} \
expected-warning {{remainder by zero is undefined}}
a = 0 ? NULL & a : a & NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL | a : a | NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
a = 0 ? NULL ^ a : a ^ NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
// Check for warnings or errors when doing arithmetic on pointers and other
// types.
v = 0 ? NULL + &a : &a + NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
v = 0 ? NULL + c : c + NULL; // \
expected-error {{invalid operands to binary expression ('long' and 'void (^)()')}} \
expected-error {{invalid operands to binary expression ('void (^)()' and 'long')}}
v = 0 ? NULL + d : d + NULL; // \
expected-error {{invalid operands to binary expression ('long' and 'void (X::*)()')}} \
expected-error {{invalid operands to binary expression ('void (X::*)()' and 'long')}}
v = 0 ? NULL + e : e + NULL; // expected-error 2{{arithmetic on a pointer to the function type 'void ()'}}
v = 0 ? NULL + f : f + NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
v = 0 ? NULL + "f" : "f" + NULL; // expected-warning 2{{use of NULL in arithmetic operation}}
// Using two NULLs should only give one error instead of two.
a = NULL + NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL - NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL / NULL; // expected-warning{{use of NULL in arithmetic operation}} \
// expected-warning{{division by zero is undefined}}
a = NULL * NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL >> NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL << NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL % NULL; // expected-warning{{use of NULL in arithmetic operation}} \
// expected-warning{{remainder by zero is undefined}}
a = NULL & NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL | NULL; // expected-warning{{use of NULL in arithmetic operation}}
a = NULL ^ NULL; // expected-warning{{use of NULL in arithmetic operation}}
a += NULL; // expected-warning{{use of NULL in arithmetic operation}}
a -= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a /= NULL; // expected-warning{{use of NULL in arithmetic operation}} \
// expected-warning{{division by zero is undefined}}
a *= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a >>= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a <<= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a %= NULL; // expected-warning{{use of NULL in arithmetic operation}} \
// expected-warning{{remainder by zero is undefined}}
a &= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a |= NULL; // expected-warning{{use of NULL in arithmetic operation}}
a ^= NULL; // expected-warning{{use of NULL in arithmetic operation}}
b = a < NULL || a > NULL; // expected-warning 2{{comparison between NULL and non-pointer ('int' and NULL)}}
b = NULL < a || NULL > a; // expected-warning 2{{comparison between NULL and non-pointer (NULL and 'int')}}
b = a <= NULL || a >= NULL; // expected-warning 2{{comparison between NULL and non-pointer ('int' and NULL)}}
b = NULL <= a || NULL >= a; // expected-warning 2{{comparison between NULL and non-pointer (NULL and 'int')}}
b = a == NULL || a != NULL; // expected-warning 2{{comparison between NULL and non-pointer ('int' and NULL)}}
b = NULL == a || NULL != a; // expected-warning 2{{comparison between NULL and non-pointer (NULL and 'int')}}
b = &a < NULL || NULL < &a || &a > NULL || NULL > &a;
b = &a <= NULL || NULL <= &a || &a >= NULL || NULL >= &a;
b = &a == NULL || NULL == &a || &a != NULL || NULL != &a;
b = 0 == a;
b = 0 == &a;
b = NULL < NULL || NULL > NULL;
b = NULL <= NULL || NULL >= NULL;
b = NULL == NULL || NULL != NULL;
b = ((NULL)) != a; // expected-warning{{comparison between NULL and non-pointer (NULL and 'int')}}
// Check that even non-standard pointers don't warn.
b = c == NULL || NULL == c || c != NULL || NULL != c;
b = d == NULL || NULL == d || d != NULL || NULL != d;
b = e == NULL || NULL == e || e != NULL || NULL != e;
b = f == NULL || NULL == f || f != NULL || NULL != f;
b = "f" == NULL || NULL == "f" || "f" != NULL || NULL != "f";
return NULL; // expected-error{{void function 'f' should not return a value}}
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/PR9902.cpp
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// expected-no-diagnostics
template <class _Tp, class _Up, bool = false>
struct __allocator_traits_rebind
{
};
template <template <class, class...> class _Alloc, class _Tp, class ..._Args,
class _Up>
struct __allocator_traits_rebind<_Alloc<_Tp, _Args...>, _Up, false>
{
typedef _Alloc<_Up, _Args...> type;
};
template <class Alloc>
struct allocator_traits
{
template <class T> using rebind_alloc = typename __allocator_traits_rebind<Alloc, T>::type;
template <class T> using rebind_traits = allocator_traits<rebind_alloc<T>>;
};
template <class T>
struct allocator {};
int main()
{
allocator_traits<allocator<char>>::rebind_alloc<int> a;
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/address-of-temporary.cpp
|
// RUN: %clang_cc1 -fsyntax-only -Wno-error=address-of-temporary -verify -std=gnu++11 %s
struct X {
X();
X(int);
X(int, int);
};
void f0() { (void)&X(); } // expected-warning{{taking the address of a temporary object}}
void f1() { (void)&X(1); } // expected-warning{{taking the address of a temporary object}}
void f2() { (void)&X(1, 2); } // expected-warning{{taking the address of a temporary object}}
void f3() { (void)&(X)1; } // expected-warning{{taking the address of a temporary object}}
namespace PointerToArrayDecay {
struct Y {
int a[4];
};
struct Z {
int n;
~Z();
};
typedef int A[4];
typedef Z AZ[4];
template<typename T> void consume(T);
struct S { int *p; };
void g0() { int *p = Y().a; } // expected-warning{{pointer is initialized by a temporary array}}
void g1() { int *p = Y{}.a; } // expected-warning{{pointer is initialized by a temporary array}}
void g2() { int *p = A{}; } // expected-warning{{pointer is initialized by a temporary array}}
void g3() { int *p = (A){}; } // expected-warning{{pointer is initialized by a temporary array}}
void g4() { Z *p = AZ{}; } // expected-warning{{pointer is initialized by a temporary array}}
void h0() { consume(Y().a); }
void h1() { consume(Y{}.a); }
void h2() { consume(A{}); }
void h3() { consume((A){}); }
void h4() { consume(AZ{}); }
void i0() { S s = { Y().a }; } // expected-warning{{pointer is initialized by a temporary array}}
void i1() { S s = { Y{}.a }; } // expected-warning{{pointer is initialized by a temporary array}}
void i2() { S s = { A{} }; } // expected-warning{{pointer is initialized by a temporary array}}
void i3() { S s = { (A){} }; } // expected-warning{{pointer is initialized by a temporary array}}
void j0() { (void)S { Y().a }; }
void j1() { (void)S { Y{}.a }; }
void j2() { (void)S { A{} }; }
void j3() { (void)S { (A){} }; }
void k0() { consume(S { Y().a }); }
void k1() { consume(S { Y{}.a }); }
void k2() { consume(S { A{} }); }
void k3() { consume(S { (A){} }); }
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/attr-gnu.cpp
|
// RUN: %clang_cc1 -std=gnu++11 -fsyntax-only -fms-compatibility -verify %s
void f() {
// GNU-style attributes are prohibited in this position.
auto P = new int * __attribute__((vector_size(8))); // expected-error {{an attribute list cannot appear here}} \
// expected-error {{invalid vector element type 'int *'}}
// Ensure that MS type attribute keywords are still supported in this
// position.
auto P2 = new int * __sptr; // Ok
}
void g(int a[static [[]] 5]); // expected-error {{static array size is a C99 feature, not permitted in C++}}
namespace {
class B {
public:
virtual void test() {}
virtual void test2() {}
virtual void test3() {}
};
class D : public B {
public:
void test() __attribute__((deprecated)) final {} // expected-warning {{GCC does not allow an attribute in this position on a function declaration}}
void test2() [[]] override {} // Ok
void test3() __attribute__((cf_unknown_transfer)) override {} // Ok, not known to GCC.
};
}
|
0 |
repos/DirectXShaderCompiler/tools/clang/test
|
repos/DirectXShaderCompiler/tools/clang/test/SemaCXX/printf-block.cpp
|
// RUN: %clang_cc1 -fsyntax-only -fblocks -Wformat -verify %s -Wno-error=non-pod-varargs
int (^block) (int, const char *,...) __attribute__((__format__(__printf__,2,3))) = ^ __attribute__((__format__(__printf__,2,3))) (int arg, const char *format,...) {return 5;};
class HasNoCStr {
const char *str;
public:
HasNoCStr(const char *s): str(s) { }
const char *not_c_str() {return str;}
};
void test_block() {
const char str[] = "test";
HasNoCStr hncs(str);
int n = 4;
block(n, "%s %d", str, n); // no-warning
block(n, "%s %s", hncs, n); // expected-warning{{cannot pass non-POD object of type 'HasNoCStr' to variadic block; expected type from format string was 'char *'}} expected-warning{{format specifies type 'char *' but the argument has type 'int'}}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.