body
stringlengths 26
98.2k
| body_hash
int64 -9,222,864,604,528,158,000
9,221,803,474B
| docstring
stringlengths 1
16.8k
| path
stringlengths 5
230
| name
stringlengths 1
96
| repository_name
stringlengths 7
89
| lang
stringclasses 1
value | body_without_docstring
stringlengths 20
98.2k
|
---|---|---|---|---|---|---|---|
def seconds(s):
'\n Return seconds as days.\n '
return (float(s) / SEC_PER_DAY) | -8,024,640,055,269,441,000 | Return seconds as days. | env/lib/python2.7/site-packages/matplotlib/dates.py | seconds | rbalda/neural_ocr | python | def seconds(s):
'\n \n '
return (float(s) / SEC_PER_DAY) |
def minutes(m):
'\n Return minutes as days.\n '
return (float(m) / MINUTES_PER_DAY) | 2,918,726,190,601,350,000 | Return minutes as days. | env/lib/python2.7/site-packages/matplotlib/dates.py | minutes | rbalda/neural_ocr | python | def minutes(m):
'\n \n '
return (float(m) / MINUTES_PER_DAY) |
def hours(h):
'\n Return hours as days.\n '
return (h / HOURS_PER_DAY) | -7,078,883,573,613,321,000 | Return hours as days. | env/lib/python2.7/site-packages/matplotlib/dates.py | hours | rbalda/neural_ocr | python | def hours(h):
'\n \n '
return (h / HOURS_PER_DAY) |
def weeks(w):
'\n Return weeks as days.\n '
return (w * DAYS_PER_WEEK) | 3,757,993,147,974,712,000 | Return weeks as days. | env/lib/python2.7/site-packages/matplotlib/dates.py | weeks | rbalda/neural_ocr | python | def weeks(w):
'\n \n '
return (w * DAYS_PER_WEEK) |
def __init__(self, fmt):
' fmt: any valid strptime format is supported '
self.fmt = fmt | -4,169,169,694,858,552,000 | fmt: any valid strptime format is supported | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, fmt):
' '
self.fmt = fmt |
def __call__(self, s):
's : string to be converted\n return value: a date2num float\n '
return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) | 6,304,710,515,264,939,000 | s : string to be converted
return value: a date2num float | env/lib/python2.7/site-packages/matplotlib/dates.py | __call__ | rbalda/neural_ocr | python | def __call__(self, s):
's : string to be converted\n return value: a date2num float\n '
return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) |
def __init__(self, fmt, encoding='utf-8'):
"\n Args:\n fmt: any valid strptime format is supported\n encoding: encoding to use on byte input (default: 'utf-8')\n "
super(bytespdate2num, self).__init__(fmt)
self.encoding = encoding | -7,057,810,267,372,294,000 | Args:
fmt: any valid strptime format is supported
encoding: encoding to use on byte input (default: 'utf-8') | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, fmt, encoding='utf-8'):
"\n Args:\n fmt: any valid strptime format is supported\n encoding: encoding to use on byte input (default: 'utf-8')\n "
super(bytespdate2num, self).__init__(fmt)
self.encoding = encoding |
def __call__(self, b):
'\n Args:\n b: byte input to be converted\n Returns:\n A date2num float\n '
s = b.decode(self.encoding)
return super(bytespdate2num, self).__call__(s) | 6,083,521,617,235,164,000 | Args:
b: byte input to be converted
Returns:
A date2num float | env/lib/python2.7/site-packages/matplotlib/dates.py | __call__ | rbalda/neural_ocr | python | def __call__(self, b):
'\n Args:\n b: byte input to be converted\n Returns:\n A date2num float\n '
s = b.decode(self.encoding)
return super(bytespdate2num, self).__call__(s) |
def __init__(self, fmt, tz=None):
'\n *fmt* is a :func:`strftime` format string; *tz* is the\n :class:`tzinfo` instance.\n '
if (tz is None):
tz = _get_rc_timezone()
self.fmt = fmt
self.tz = tz | -7,895,130,219,791,011,000 | *fmt* is a :func:`strftime` format string; *tz* is the
:class:`tzinfo` instance. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, fmt, tz=None):
'\n *fmt* is a :func:`strftime` format string; *tz* is the\n :class:`tzinfo` instance.\n '
if (tz is None):
tz = _get_rc_timezone()
self.fmt = fmt
self.tz = tz |
def _replace_common_substr(self, s1, s2, sub1, sub2, replacement):
'Helper function for replacing substrings sub1 and sub2\n located at the same indexes in strings s1 and s2 respectively,\n with the string replacement. It is expected that sub1 and sub2\n have the same length. Returns the pair s1, s2 after the\n substitutions.\n '
i = 0
while True:
j = s1.find(sub1, i)
if (j == (- 1)):
break
i = (j + 1)
if (s2[j:(j + len(sub2))] != sub2):
continue
s1 = ((s1[:j] + replacement) + s1[(j + len(sub1)):])
s2 = ((s2[:j] + replacement) + s2[(j + len(sub2)):])
return (s1, s2) | -8,579,673,710,969,332,000 | Helper function for replacing substrings sub1 and sub2
located at the same indexes in strings s1 and s2 respectively,
with the string replacement. It is expected that sub1 and sub2
have the same length. Returns the pair s1, s2 after the
substitutions. | env/lib/python2.7/site-packages/matplotlib/dates.py | _replace_common_substr | rbalda/neural_ocr | python | def _replace_common_substr(self, s1, s2, sub1, sub2, replacement):
'Helper function for replacing substrings sub1 and sub2\n located at the same indexes in strings s1 and s2 respectively,\n with the string replacement. It is expected that sub1 and sub2\n have the same length. Returns the pair s1, s2 after the\n substitutions.\n '
i = 0
while True:
j = s1.find(sub1, i)
if (j == (- 1)):
break
i = (j + 1)
if (s2[j:(j + len(sub2))] != sub2):
continue
s1 = ((s1[:j] + replacement) + s1[(j + len(sub1)):])
s2 = ((s2[:j] + replacement) + s2[(j + len(sub2)):])
return (s1, s2) |
def strftime_pre_1900(self, dt, fmt=None):
"Call time.strftime for years before 1900 by rolling\n forward a multiple of 28 years.\n\n *fmt* is a :func:`strftime` format string.\n\n Dalke: I hope I did this math right. Every 28 years the\n calendar repeats, except through century leap years excepting\n the 400 year leap years. But only if you're using the Gregorian\n calendar.\n "
if (fmt is None):
fmt = self.fmt
fmt = re.sub('((^|[^%])(%%)*)%f', '\\g<1>{0:06d}'.format(dt.microsecond), fmt)
year = dt.year
delta = (2000 - year)
off = (6 * ((delta // 100) + (delta // 400)))
year = (year + off)
year1 = (year + (((2000 - year) // 28) * 28))
year2 = (year1 + 28)
timetuple = dt.timetuple()
s1 = time.strftime(fmt, ((year1,) + timetuple[1:]))
s2 = time.strftime(fmt, ((year2,) + timetuple[1:]))
(s1, s2) = self._replace_common_substr(s1, s2, '{0:04d}'.format(year1), '{0:04d}'.format(year2), '{0:04d}'.format(dt.year))
(s1, s2) = self._replace_common_substr(s1, s2, '{0:02d}'.format((year1 % 100)), '{0:02d}'.format((year2 % 100)), '{0:02d}'.format((dt.year % 100)))
return cbook.unicode_safe(s1) | -3,409,017,546,486,234,000 | Call time.strftime for years before 1900 by rolling
forward a multiple of 28 years.
*fmt* is a :func:`strftime` format string.
Dalke: I hope I did this math right. Every 28 years the
calendar repeats, except through century leap years excepting
the 400 year leap years. But only if you're using the Gregorian
calendar. | env/lib/python2.7/site-packages/matplotlib/dates.py | strftime_pre_1900 | rbalda/neural_ocr | python | def strftime_pre_1900(self, dt, fmt=None):
"Call time.strftime for years before 1900 by rolling\n forward a multiple of 28 years.\n\n *fmt* is a :func:`strftime` format string.\n\n Dalke: I hope I did this math right. Every 28 years the\n calendar repeats, except through century leap years excepting\n the 400 year leap years. But only if you're using the Gregorian\n calendar.\n "
if (fmt is None):
fmt = self.fmt
fmt = re.sub('((^|[^%])(%%)*)%f', '\\g<1>{0:06d}'.format(dt.microsecond), fmt)
year = dt.year
delta = (2000 - year)
off = (6 * ((delta // 100) + (delta // 400)))
year = (year + off)
year1 = (year + (((2000 - year) // 28) * 28))
year2 = (year1 + 28)
timetuple = dt.timetuple()
s1 = time.strftime(fmt, ((year1,) + timetuple[1:]))
s2 = time.strftime(fmt, ((year2,) + timetuple[1:]))
(s1, s2) = self._replace_common_substr(s1, s2, '{0:04d}'.format(year1), '{0:04d}'.format(year2), '{0:04d}'.format(dt.year))
(s1, s2) = self._replace_common_substr(s1, s2, '{0:02d}'.format((year1 % 100)), '{0:02d}'.format((year2 % 100)), '{0:02d}'.format((dt.year % 100)))
return cbook.unicode_safe(s1) |
def strftime(self, dt, fmt=None):
'Refer to documentation for datetime.strftime.\n\n *fmt* is a :func:`strftime` format string.\n\n Warning: For years before 1900, depending upon the current\n locale it is possible that the year displayed with %x might\n be incorrect. For years before 100, %y and %Y will yield\n zero-padded strings.\n '
if (fmt is None):
fmt = self.fmt
fmt = self.illegal_s.sub('\\1', fmt)
fmt = fmt.replace('%s', 's')
if (dt.year >= 1900):
return cbook.unicode_safe(dt.strftime(fmt))
return self.strftime_pre_1900(dt, fmt) | -7,673,140,819,755,084,000 | Refer to documentation for datetime.strftime.
*fmt* is a :func:`strftime` format string.
Warning: For years before 1900, depending upon the current
locale it is possible that the year displayed with %x might
be incorrect. For years before 100, %y and %Y will yield
zero-padded strings. | env/lib/python2.7/site-packages/matplotlib/dates.py | strftime | rbalda/neural_ocr | python | def strftime(self, dt, fmt=None):
'Refer to documentation for datetime.strftime.\n\n *fmt* is a :func:`strftime` format string.\n\n Warning: For years before 1900, depending upon the current\n locale it is possible that the year displayed with %x might\n be incorrect. For years before 100, %y and %Y will yield\n zero-padded strings.\n '
if (fmt is None):
fmt = self.fmt
fmt = self.illegal_s.sub('\\1', fmt)
fmt = fmt.replace('%s', 's')
if (dt.year >= 1900):
return cbook.unicode_safe(dt.strftime(fmt))
return self.strftime_pre_1900(dt, fmt) |
def __init__(self, t, fmt, tz=None):
'\n *t* is a sequence of dates (floating point days). *fmt* is a\n :func:`strftime` format string.\n '
if (tz is None):
tz = _get_rc_timezone()
self.t = t
self.fmt = fmt
self.tz = tz | 3,572,620,911,891,964,000 | *t* is a sequence of dates (floating point days). *fmt* is a
:func:`strftime` format string. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, t, fmt, tz=None):
'\n *t* is a sequence of dates (floating point days). *fmt* is a\n :func:`strftime` format string.\n '
if (tz is None):
tz = _get_rc_timezone()
self.t = t
self.fmt = fmt
self.tz = tz |
def __call__(self, x, pos=0):
'Return the label for time *x* at position *pos*'
ind = int(round(x))
if ((ind >= len(self.t)) or (ind <= 0)):
return ''
dt = num2date(self.t[ind], self.tz)
return cbook.unicode_safe(dt.strftime(self.fmt)) | 7,515,494,125,788,098,000 | Return the label for time *x* at position *pos* | env/lib/python2.7/site-packages/matplotlib/dates.py | __call__ | rbalda/neural_ocr | python | def __call__(self, x, pos=0):
ind = int(round(x))
if ((ind >= len(self.t)) or (ind <= 0)):
return
dt = num2date(self.t[ind], self.tz)
return cbook.unicode_safe(dt.strftime(self.fmt)) |
def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'):
'\n Autoformat the date labels. The default format is the one to use\n if none of the values in ``self.scaled`` are greater than the unit\n returned by ``locator._get_unit()``.\n '
self._locator = locator
self._tz = tz
self.defaultfmt = defaultfmt
self._formatter = DateFormatter(self.defaultfmt, tz)
self.scaled = {DAYS_PER_YEAR: '%Y', DAYS_PER_MONTH: '%b %Y', 1.0: '%b %d %Y', (1.0 / HOURS_PER_DAY): '%H:%M:%S', (1.0 / MINUTES_PER_DAY): '%H:%M:%S.%f'} | -1,554,169,645,260,470,300 | Autoformat the date labels. The default format is the one to use
if none of the values in ``self.scaled`` are greater than the unit
returned by ``locator._get_unit()``. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'):
'\n Autoformat the date labels. The default format is the one to use\n if none of the values in ``self.scaled`` are greater than the unit\n returned by ``locator._get_unit()``.\n '
self._locator = locator
self._tz = tz
self.defaultfmt = defaultfmt
self._formatter = DateFormatter(self.defaultfmt, tz)
self.scaled = {DAYS_PER_YEAR: '%Y', DAYS_PER_MONTH: '%b %Y', 1.0: '%b %d %Y', (1.0 / HOURS_PER_DAY): '%H:%M:%S', (1.0 / MINUTES_PER_DAY): '%H:%M:%S.%f'} |
def __init__(self, tz=None):
'\n *tz* is a :class:`tzinfo` instance.\n '
if (tz is None):
tz = _get_rc_timezone()
self.tz = tz | -9,082,949,987,731,717,000 | *tz* is a :class:`tzinfo` instance. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, tz=None):
'\n \n '
if (tz is None):
tz = _get_rc_timezone()
self.tz = tz |
def set_tzinfo(self, tz):
'\n Set time zone info.\n '
self.tz = tz | -1,745,468,367,312,040,700 | Set time zone info. | env/lib/python2.7/site-packages/matplotlib/dates.py | set_tzinfo | rbalda/neural_ocr | python | def set_tzinfo(self, tz):
'\n \n '
self.tz = tz |
def datalim_to_dt(self):
'\n Convert axis data interval to datetime objects.\n '
(dmin, dmax) = self.axis.get_data_interval()
if (dmin > dmax):
(dmin, dmax) = (dmax, dmin)
return (num2date(dmin, self.tz), num2date(dmax, self.tz)) | -7,588,518,086,582,918,000 | Convert axis data interval to datetime objects. | env/lib/python2.7/site-packages/matplotlib/dates.py | datalim_to_dt | rbalda/neural_ocr | python | def datalim_to_dt(self):
'\n \n '
(dmin, dmax) = self.axis.get_data_interval()
if (dmin > dmax):
(dmin, dmax) = (dmax, dmin)
return (num2date(dmin, self.tz), num2date(dmax, self.tz)) |
def viewlim_to_dt(self):
'\n Converts the view interval to datetime objects.\n '
(vmin, vmax) = self.axis.get_view_interval()
if (vmin > vmax):
(vmin, vmax) = (vmax, vmin)
return (num2date(vmin, self.tz), num2date(vmax, self.tz)) | 9,095,579,861,209,821,000 | Converts the view interval to datetime objects. | env/lib/python2.7/site-packages/matplotlib/dates.py | viewlim_to_dt | rbalda/neural_ocr | python | def viewlim_to_dt(self):
'\n \n '
(vmin, vmax) = self.axis.get_view_interval()
if (vmin > vmax):
(vmin, vmax) = (vmax, vmin)
return (num2date(vmin, self.tz), num2date(vmax, self.tz)) |
def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
return 1 | -8,673,055,773,312,316,000 | Return how many days a unit of the locator is; used for
intelligent autoscaling. | env/lib/python2.7/site-packages/matplotlib/dates.py | _get_unit | rbalda/neural_ocr | python | def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
return 1 |
def _get_interval(self):
'\n Return the number of units for each tick.\n '
return 1 | 2,503,878,047,653,216,000 | Return the number of units for each tick. | env/lib/python2.7/site-packages/matplotlib/dates.py | _get_interval | rbalda/neural_ocr | python | def _get_interval(self):
'\n \n '
return 1 |
def nonsingular(self, vmin, vmax):
'\n Given the proposed upper and lower extent, adjust the range\n if it is too close to being singular (i.e. a range of ~0).\n\n '
unit = self._get_unit()
interval = self._get_interval()
if (abs((vmax - vmin)) < 1e-06):
vmin -= ((2 * unit) * interval)
vmax += ((2 * unit) * interval)
return (vmin, vmax) | 6,927,860,421,802,992,000 | Given the proposed upper and lower extent, adjust the range
if it is too close to being singular (i.e. a range of ~0). | env/lib/python2.7/site-packages/matplotlib/dates.py | nonsingular | rbalda/neural_ocr | python | def nonsingular(self, vmin, vmax):
'\n Given the proposed upper and lower extent, adjust the range\n if it is too close to being singular (i.e. a range of ~0).\n\n '
unit = self._get_unit()
interval = self._get_interval()
if (abs((vmax - vmin)) < 1e-06):
vmin -= ((2 * unit) * interval)
vmax += ((2 * unit) * interval)
return (vmin, vmax) |
def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
freq = self.rule._rrule._freq
return self.get_unit_generic(freq) | -6,887,433,986,755,907,000 | Return how many days a unit of the locator is; used for
intelligent autoscaling. | env/lib/python2.7/site-packages/matplotlib/dates.py | _get_unit | rbalda/neural_ocr | python | def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
freq = self.rule._rrule._freq
return self.get_unit_generic(freq) |
def autoscale(self):
'\n Set the view limits to include the data range.\n '
(dmin, dmax) = self.datalim_to_dt()
delta = relativedelta(dmax, dmin)
try:
start = (dmin - delta)
except ValueError:
start = _from_ordinalf(1.0)
try:
stop = (dmax + delta)
except ValueError:
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop)
(dmin, dmax) = self.datalim_to_dt()
vmin = self.rule.before(dmin, True)
if (not vmin):
vmin = dmin
vmax = self.rule.after(dmax, True)
if (not vmax):
vmax = dmax
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax) | 2,355,684,293,106,261,500 | Set the view limits to include the data range. | env/lib/python2.7/site-packages/matplotlib/dates.py | autoscale | rbalda/neural_ocr | python | def autoscale(self):
'\n \n '
(dmin, dmax) = self.datalim_to_dt()
delta = relativedelta(dmax, dmin)
try:
start = (dmin - delta)
except ValueError:
start = _from_ordinalf(1.0)
try:
stop = (dmax + delta)
except ValueError:
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop)
(dmin, dmax) = self.datalim_to_dt()
vmin = self.rule.before(dmin, True)
if (not vmin):
vmin = dmin
vmax = self.rule.after(dmax, True)
if (not vmax):
vmax = dmax
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax) |
def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=False):
"\n *minticks* is the minimum number of ticks desired, which is used to\n select the type of ticking (yearly, monthly, etc.).\n\n *maxticks* is the maximum number of ticks desired, which controls\n any interval between ticks (ticking every other, every 3, etc.).\n For really fine-grained control, this can be a dictionary mapping\n individual rrule frequency constants (YEARLY, MONTHLY, etc.)\n to their own maximum number of ticks. This can be used to keep\n the number of ticks appropriate to the format chosen in\n :class:`AutoDateFormatter`. Any frequency not specified in this\n dictionary is given a default value.\n\n *tz* is a :class:`tzinfo` instance.\n\n *interval_multiples* is a boolean that indicates whether ticks\n should be chosen to be multiple of the interval. This will lock\n ticks to 'nicer' locations. For example, this will force the\n ticks to be at hours 0,6,12,18 when hourly ticking is done at\n 6 hour intervals.\n\n The AutoDateLocator has an interval dictionary that maps the\n frequency of the tick (a constant from dateutil.rrule) and a\n multiple allowed for that ticking. The default looks like this::\n\n self.intervald = {\n YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,\n 1000, 2000, 4000, 5000, 10000],\n MONTHLY : [1, 2, 3, 4, 6],\n DAILY : [1, 2, 3, 7, 14],\n HOURLY : [1, 2, 3, 4, 6, 12],\n MINUTELY: [1, 5, 10, 15, 30],\n SECONDLY: [1, 5, 10, 15, 30],\n MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,\n 5000, 10000, 20000, 50000, 100000, 200000, 500000,\n 1000000],\n }\n\n The interval is used to specify multiples that are appropriate for\n the frequency of ticking. For instance, every 7 days is sensible\n for daily ticks, but for minutes/seconds, 15 or 30 make sense.\n You can customize this dictionary by doing::\n\n locator = AutoDateLocator()\n locator.intervald[HOURLY] = [3] # only show every 3 hours\n "
DateLocator.__init__(self, tz)
self._locator = YearLocator()
self._freq = YEARLY
self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY]
self.minticks = minticks
self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8}
if (maxticks is not None):
try:
self.maxticks.update(maxticks)
except TypeError:
self.maxticks = dict(zip(self._freqs, ([maxticks] * len(self._freqs))))
self.interval_multiples = interval_multiples
self.intervald = {YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]}
self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] | -5,306,297,637,022,860,000 | *minticks* is the minimum number of ticks desired, which is used to
select the type of ticking (yearly, monthly, etc.).
*maxticks* is the maximum number of ticks desired, which controls
any interval between ticks (ticking every other, every 3, etc.).
For really fine-grained control, this can be a dictionary mapping
individual rrule frequency constants (YEARLY, MONTHLY, etc.)
to their own maximum number of ticks. This can be used to keep
the number of ticks appropriate to the format chosen in
:class:`AutoDateFormatter`. Any frequency not specified in this
dictionary is given a default value.
*tz* is a :class:`tzinfo` instance.
*interval_multiples* is a boolean that indicates whether ticks
should be chosen to be multiple of the interval. This will lock
ticks to 'nicer' locations. For example, this will force the
ticks to be at hours 0,6,12,18 when hourly ticking is done at
6 hour intervals.
The AutoDateLocator has an interval dictionary that maps the
frequency of the tick (a constant from dateutil.rrule) and a
multiple allowed for that ticking. The default looks like this::
self.intervald = {
YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
1000, 2000, 4000, 5000, 10000],
MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000,
1000000],
}
The interval is used to specify multiples that are appropriate for
the frequency of ticking. For instance, every 7 days is sensible
for daily ticks, but for minutes/seconds, 15 or 30 make sense.
You can customize this dictionary by doing::
locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=False):
"\n *minticks* is the minimum number of ticks desired, which is used to\n select the type of ticking (yearly, monthly, etc.).\n\n *maxticks* is the maximum number of ticks desired, which controls\n any interval between ticks (ticking every other, every 3, etc.).\n For really fine-grained control, this can be a dictionary mapping\n individual rrule frequency constants (YEARLY, MONTHLY, etc.)\n to their own maximum number of ticks. This can be used to keep\n the number of ticks appropriate to the format chosen in\n :class:`AutoDateFormatter`. Any frequency not specified in this\n dictionary is given a default value.\n\n *tz* is a :class:`tzinfo` instance.\n\n *interval_multiples* is a boolean that indicates whether ticks\n should be chosen to be multiple of the interval. This will lock\n ticks to 'nicer' locations. For example, this will force the\n ticks to be at hours 0,6,12,18 when hourly ticking is done at\n 6 hour intervals.\n\n The AutoDateLocator has an interval dictionary that maps the\n frequency of the tick (a constant from dateutil.rrule) and a\n multiple allowed for that ticking. The default looks like this::\n\n self.intervald = {\n YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,\n 1000, 2000, 4000, 5000, 10000],\n MONTHLY : [1, 2, 3, 4, 6],\n DAILY : [1, 2, 3, 7, 14],\n HOURLY : [1, 2, 3, 4, 6, 12],\n MINUTELY: [1, 5, 10, 15, 30],\n SECONDLY: [1, 5, 10, 15, 30],\n MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,\n 5000, 10000, 20000, 50000, 100000, 200000, 500000,\n 1000000],\n }\n\n The interval is used to specify multiples that are appropriate for\n the frequency of ticking. For instance, every 7 days is sensible\n for daily ticks, but for minutes/seconds, 15 or 30 make sense.\n You can customize this dictionary by doing::\n\n locator = AutoDateLocator()\n locator.intervald[HOURLY] = [3] # only show every 3 hours\n "
DateLocator.__init__(self, tz)
self._locator = YearLocator()
self._freq = YEARLY
self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY]
self.minticks = minticks
self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8}
if (maxticks is not None):
try:
self.maxticks.update(maxticks)
except TypeError:
self.maxticks = dict(zip(self._freqs, ([maxticks] * len(self._freqs))))
self.interval_multiples = interval_multiples
self.intervald = {YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]}
self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] |
def __call__(self):
'Return the locations of the ticks'
self.refresh()
return self._locator() | -4,865,864,161,449,296,000 | Return the locations of the ticks | env/lib/python2.7/site-packages/matplotlib/dates.py | __call__ | rbalda/neural_ocr | python | def __call__(self):
self.refresh()
return self._locator() |
def refresh(self):
'Refresh internal information based on current limits.'
(dmin, dmax) = self.viewlim_to_dt()
self._locator = self.get_locator(dmin, dmax) | 3,994,028,736,872,974,300 | Refresh internal information based on current limits. | env/lib/python2.7/site-packages/matplotlib/dates.py | refresh | rbalda/neural_ocr | python | def refresh(self):
(dmin, dmax) = self.viewlim_to_dt()
self._locator = self.get_locator(dmin, dmax) |
def autoscale(self):
'Try to choose the view limits intelligently.'
(dmin, dmax) = self.datalim_to_dt()
self._locator = self.get_locator(dmin, dmax)
return self._locator.autoscale() | 4,944,211,996,552,428,000 | Try to choose the view limits intelligently. | env/lib/python2.7/site-packages/matplotlib/dates.py | autoscale | rbalda/neural_ocr | python | def autoscale(self):
(dmin, dmax) = self.datalim_to_dt()
self._locator = self.get_locator(dmin, dmax)
return self._locator.autoscale() |
def get_locator(self, dmin, dmax):
'Pick the best locator based on a distance.'
delta = relativedelta(dmax, dmin)
tdelta = (dmax - dmin)
if (dmin > dmax):
delta = (- delta)
tdelta = (- tdelta)
numYears = float(delta.years)
numMonths = ((numYears * MONTHS_PER_YEAR) + delta.months)
numDays = tdelta.days
numHours = ((numDays * HOURS_PER_DAY) + delta.hours)
numMinutes = ((numHours * MIN_PER_HOUR) + delta.minutes)
numSeconds = np.floor(_total_seconds(tdelta))
numMicroseconds = np.floor((_total_seconds(tdelta) * 1000000.0))
nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds]
use_rrule_locator = (([True] * 6) + [False])
byranges = [None, 1, 1, 0, 0, 0, None]
for (i, (freq, num)) in enumerate(zip(self._freqs, nums)):
if (num < self.minticks):
byranges[i] = None
continue
for interval in self.intervald[freq]:
if (num <= (interval * (self.maxticks[freq] - 1))):
break
else:
warnings.warn("AutoDateLocator was unable to pick an appropriate interval for this date range. It may be necessary to add an interval value to the AutoDateLocator's intervald dictionary. Defaulting to {0}.".format(interval))
self._freq = freq
if (self._byranges[i] and self.interval_multiples):
byranges[i] = self._byranges[i][::interval]
interval = 1
else:
byranges[i] = self._byranges[i]
break
else:
raise ValueError('No sensible date limit could be found in the AutoDateLocator.')
if use_rrule_locator[i]:
(_, bymonth, bymonthday, byhour, byminute, bysecond, _) = byranges
rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond)
locator = RRuleLocator(rrule, self.tz)
else:
locator = MicrosecondLocator(interval, tz=self.tz)
locator.set_axis(self.axis)
locator.set_view_interval(*self.axis.get_view_interval())
locator.set_data_interval(*self.axis.get_data_interval())
return locator | 5,123,982,612,934,154,000 | Pick the best locator based on a distance. | env/lib/python2.7/site-packages/matplotlib/dates.py | get_locator | rbalda/neural_ocr | python | def get_locator(self, dmin, dmax):
delta = relativedelta(dmax, dmin)
tdelta = (dmax - dmin)
if (dmin > dmax):
delta = (- delta)
tdelta = (- tdelta)
numYears = float(delta.years)
numMonths = ((numYears * MONTHS_PER_YEAR) + delta.months)
numDays = tdelta.days
numHours = ((numDays * HOURS_PER_DAY) + delta.hours)
numMinutes = ((numHours * MIN_PER_HOUR) + delta.minutes)
numSeconds = np.floor(_total_seconds(tdelta))
numMicroseconds = np.floor((_total_seconds(tdelta) * 1000000.0))
nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds]
use_rrule_locator = (([True] * 6) + [False])
byranges = [None, 1, 1, 0, 0, 0, None]
for (i, (freq, num)) in enumerate(zip(self._freqs, nums)):
if (num < self.minticks):
byranges[i] = None
continue
for interval in self.intervald[freq]:
if (num <= (interval * (self.maxticks[freq] - 1))):
break
else:
warnings.warn("AutoDateLocator was unable to pick an appropriate interval for this date range. It may be necessary to add an interval value to the AutoDateLocator's intervald dictionary. Defaulting to {0}.".format(interval))
self._freq = freq
if (self._byranges[i] and self.interval_multiples):
byranges[i] = self._byranges[i][::interval]
interval = 1
else:
byranges[i] = self._byranges[i]
break
else:
raise ValueError('No sensible date limit could be found in the AutoDateLocator.')
if use_rrule_locator[i]:
(_, bymonth, bymonthday, byhour, byminute, bysecond, _) = byranges
rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond)
locator = RRuleLocator(rrule, self.tz)
else:
locator = MicrosecondLocator(interval, tz=self.tz)
locator.set_axis(self.axis)
locator.set_view_interval(*self.axis.get_view_interval())
locator.set_data_interval(*self.axis.get_data_interval())
return locator |
def __init__(self, base=1, month=1, day=1, tz=None):
'\n Mark years that are multiple of base on a given month and day\n (default jan 1).\n '
DateLocator.__init__(self, tz)
self.base = ticker.Base(base)
self.replaced = {'month': month, 'day': day, 'hour': 0, 'minute': 0, 'second': 0, 'tzinfo': tz} | 2,204,420,914,898,779,400 | Mark years that are multiple of base on a given month and day
(default jan 1). | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, base=1, month=1, day=1, tz=None):
'\n Mark years that are multiple of base on a given month and day\n (default jan 1).\n '
DateLocator.__init__(self, tz)
self.base = ticker.Base(base)
self.replaced = {'month': month, 'day': day, 'hour': 0, 'minute': 0, 'second': 0, 'tzinfo': tz} |
def autoscale(self):
'\n Set the view limits to include the data range.\n '
(dmin, dmax) = self.datalim_to_dt()
ymin = self.base.le(dmin.year)
ymax = self.base.ge(dmax.year)
vmin = dmin.replace(year=ymin, **self.replaced)
vmax = dmax.replace(year=ymax, **self.replaced)
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax) | -3,630,744,519,156,373,500 | Set the view limits to include the data range. | env/lib/python2.7/site-packages/matplotlib/dates.py | autoscale | rbalda/neural_ocr | python | def autoscale(self):
'\n \n '
(dmin, dmax) = self.datalim_to_dt()
ymin = self.base.le(dmin.year)
ymax = self.base.ge(dmax.year)
vmin = dmin.replace(year=ymin, **self.replaced)
vmax = dmax.replace(year=ymax, **self.replaced)
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax) |
def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None):
'\n Mark every month in *bymonth*; *bymonth* can be an int or\n sequence. Default is ``range(1,13)``, i.e. every month.\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurance.\n '
if (bymonth is None):
bymonth = range(1, 13)
elif isinstance(bymonth, np.ndarray):
bymonth = [x.item() for x in bymonth.astype(int)]
rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) | -7,672,659,490,995,540,000 | Mark every month in *bymonth*; *bymonth* can be an int or
sequence. Default is ``range(1,13)``, i.e. every month.
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurance. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None):
'\n Mark every month in *bymonth*; *bymonth* can be an int or\n sequence. Default is ``range(1,13)``, i.e. every month.\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurance.\n '
if (bymonth is None):
bymonth = range(1, 13)
elif isinstance(bymonth, np.ndarray):
bymonth = [x.item() for x in bymonth.astype(int)]
rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, byweekday=1, interval=1, tz=None):
'\n Mark every weekday in *byweekday*; *byweekday* can be a number or\n sequence.\n\n Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,\n SU, the constants from :mod:`dateutil.rrule`, which have been\n imported into the :mod:`matplotlib.dates` namespace.\n\n *interval* specifies the number of weeks to skip. For example,\n ``interval=2`` plots every second week.\n '
if isinstance(byweekday, np.ndarray):
[x.item() for x in byweekday.astype(int)]
rule = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) | -6,815,969,511,609,640,000 | Mark every weekday in *byweekday*; *byweekday* can be a number or
sequence.
Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
SU, the constants from :mod:`dateutil.rrule`, which have been
imported into the :mod:`matplotlib.dates` namespace.
*interval* specifies the number of weeks to skip. For example,
``interval=2`` plots every second week. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, byweekday=1, interval=1, tz=None):
'\n Mark every weekday in *byweekday*; *byweekday* can be a number or\n sequence.\n\n Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,\n SU, the constants from :mod:`dateutil.rrule`, which have been\n imported into the :mod:`matplotlib.dates` namespace.\n\n *interval* specifies the number of weeks to skip. For example,\n ``interval=2`` plots every second week.\n '
if isinstance(byweekday, np.ndarray):
[x.item() for x in byweekday.astype(int)]
rule = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, bymonthday=None, interval=1, tz=None):
'\n Mark every day in *bymonthday*; *bymonthday* can be an int or\n sequence.\n\n Default is to tick every day of the month: ``bymonthday=range(1,32)``\n '
if (bymonthday is None):
bymonthday = range(1, 32)
elif isinstance(bymonthday, np.ndarray):
bymonthday = [x.item() for x in bymonthday.astype(int)]
rule = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) | 5,274,080,067,483,947,000 | Mark every day in *bymonthday*; *bymonthday* can be an int or
sequence.
Default is to tick every day of the month: ``bymonthday=range(1,32)`` | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, bymonthday=None, interval=1, tz=None):
'\n Mark every day in *bymonthday*; *bymonthday* can be an int or\n sequence.\n\n Default is to tick every day of the month: ``bymonthday=range(1,32)``\n '
if (bymonthday is None):
bymonthday = range(1, 32)
elif isinstance(bymonthday, np.ndarray):
bymonthday = [x.item() for x in bymonthday.astype(int)]
rule = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, byhour=None, interval=1, tz=None):
'\n Mark every hour in *byhour*; *byhour* can be an int or sequence.\n Default is to tick every hour: ``byhour=range(24)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n '
if (byhour is None):
byhour = range(24)
rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0)
RRuleLocator.__init__(self, rule, tz) | -941,876,939,098,996,500 | Mark every hour in *byhour*; *byhour* can be an int or sequence.
Default is to tick every hour: ``byhour=range(24)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, byhour=None, interval=1, tz=None):
'\n Mark every hour in *byhour*; *byhour* can be an int or sequence.\n Default is to tick every hour: ``byhour=range(24)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n '
if (byhour is None):
byhour = range(24)
rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, byminute=None, interval=1, tz=None):
'\n Mark every minute in *byminute*; *byminute* can be an int or\n sequence. Default is to tick every minute: ``byminute=range(60)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n '
if (byminute is None):
byminute = range(60)
rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0)
RRuleLocator.__init__(self, rule, tz) | 296,218,444,658,126,300 | Mark every minute in *byminute*; *byminute* can be an int or
sequence. Default is to tick every minute: ``byminute=range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, byminute=None, interval=1, tz=None):
'\n Mark every minute in *byminute*; *byminute* can be an int or\n sequence. Default is to tick every minute: ``byminute=range(60)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n '
if (byminute is None):
byminute = range(60)
rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, bysecond=None, interval=1, tz=None):
'\n Mark every second in *bysecond*; *bysecond* can be an int or\n sequence. Default is to tick every second: ``bysecond = range(60)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n\n '
if (bysecond is None):
bysecond = range(60)
rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
RRuleLocator.__init__(self, rule, tz) | -8,813,133,927,261,645,000 | Mark every second in *bysecond*; *bysecond* can be an int or
sequence. Default is to tick every second: ``bysecond = range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, bysecond=None, interval=1, tz=None):
'\n Mark every second in *bysecond*; *bysecond* can be an int or\n sequence. Default is to tick every second: ``bysecond = range(60)``\n\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second occurrence.\n\n '
if (bysecond is None):
bysecond = range(60)
rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
RRuleLocator.__init__(self, rule, tz) |
def __init__(self, interval=1, tz=None):
'\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second microsecond.\n\n '
self._interval = interval
self._wrapped_locator = ticker.MultipleLocator(interval)
self.tz = tz | 2,253,424,607,567,393,000 | *interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second microsecond. | env/lib/python2.7/site-packages/matplotlib/dates.py | __init__ | rbalda/neural_ocr | python | def __init__(self, interval=1, tz=None):
'\n *interval* is the interval between each iteration. For\n example, if ``interval=2``, mark every second microsecond.\n\n '
self._interval = interval
self._wrapped_locator = ticker.MultipleLocator(interval)
self.tz = tz |
def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
return (1.0 / MUSECONDS_PER_DAY) | -8,244,895,826,175,361,000 | Return how many days a unit of the locator is; used for
intelligent autoscaling. | env/lib/python2.7/site-packages/matplotlib/dates.py | _get_unit | rbalda/neural_ocr | python | def _get_unit(self):
'\n Return how many days a unit of the locator is; used for\n intelligent autoscaling.\n '
return (1.0 / MUSECONDS_PER_DAY) |
def _get_interval(self):
'\n Return the number of units for each tick.\n '
return self._interval | 8,565,982,526,005,957,000 | Return the number of units for each tick. | env/lib/python2.7/site-packages/matplotlib/dates.py | _get_interval | rbalda/neural_ocr | python | def _get_interval(self):
'\n \n '
return self._interval |
@staticmethod
def axisinfo(unit, axis):
'\n Return the :class:`~matplotlib.units.AxisInfo` for *unit*.\n\n *unit* is a tzinfo instance or None.\n The *axis* argument is required but not used.\n '
tz = unit
majloc = AutoDateLocator(tz=tz)
majfmt = AutoDateFormatter(majloc, tz=tz)
datemin = datetime.date(2000, 1, 1)
datemax = datetime.date(2010, 1, 1)
return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) | -3,760,185,637,134,109,700 | Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used. | env/lib/python2.7/site-packages/matplotlib/dates.py | axisinfo | rbalda/neural_ocr | python | @staticmethod
def axisinfo(unit, axis):
'\n Return the :class:`~matplotlib.units.AxisInfo` for *unit*.\n\n *unit* is a tzinfo instance or None.\n The *axis* argument is required but not used.\n '
tz = unit
majloc = AutoDateLocator(tz=tz)
majfmt = AutoDateFormatter(majloc, tz=tz)
datemin = datetime.date(2000, 1, 1)
datemax = datetime.date(2010, 1, 1)
return units.AxisInfo(majloc=majloc, majfmt=majfmt, label=, default_limits=(datemin, datemax)) |
@staticmethod
def convert(value, unit, axis):
'\n If *value* is not already a number or sequence of numbers,\n convert it with :func:`date2num`.\n\n The *unit* and *axis* arguments are not used.\n '
if units.ConversionInterface.is_numlike(value):
return value
return date2num(value) | 1,106,963,852,552,765,200 | If *value* is not already a number or sequence of numbers,
convert it with :func:`date2num`.
The *unit* and *axis* arguments are not used. | env/lib/python2.7/site-packages/matplotlib/dates.py | convert | rbalda/neural_ocr | python | @staticmethod
def convert(value, unit, axis):
'\n If *value* is not already a number or sequence of numbers,\n convert it with :func:`date2num`.\n\n The *unit* and *axis* arguments are not used.\n '
if units.ConversionInterface.is_numlike(value):
return value
return date2num(value) |
@staticmethod
def default_units(x, axis):
'\n Return the tzinfo instance of *x* or of its first element, or None\n '
if isinstance(x, np.ndarray):
x = x.ravel()
try:
x = cbook.safe_first_element(x)
except (TypeError, StopIteration):
pass
try:
return x.tzinfo
except AttributeError:
pass
return None | 8,571,303,660,489,029,000 | Return the tzinfo instance of *x* or of its first element, or None | env/lib/python2.7/site-packages/matplotlib/dates.py | default_units | rbalda/neural_ocr | python | @staticmethod
def default_units(x, axis):
'\n \n '
if isinstance(x, np.ndarray):
x = x.ravel()
try:
x = cbook.safe_first_element(x)
except (TypeError, StopIteration):
pass
try:
return x.tzinfo
except AttributeError:
pass
return None |
def _total_seconds(tdelta):
'\n Alias providing support for datetime.timedelta.total_seconds() function\n calls even in Python < 2.7.\n\n The input `tdelta` is a datetime.timedelta object, and returns a float\n containing the total number of seconds representing the `tdelta`\n duration. For large durations (> 270 on most platforms), this loses\n microsecond accuracy.\n '
return ((tdelta.microseconds + ((tdelta.seconds + (tdelta.days * SEC_PER_DAY)) * 1000000.0)) * 1e-06) | 8,408,382,371,278,128,000 | Alias providing support for datetime.timedelta.total_seconds() function
calls even in Python < 2.7.
The input `tdelta` is a datetime.timedelta object, and returns a float
containing the total number of seconds representing the `tdelta`
duration. For large durations (> 270 on most platforms), this loses
microsecond accuracy. | env/lib/python2.7/site-packages/matplotlib/dates.py | _total_seconds | rbalda/neural_ocr | python | def _total_seconds(tdelta):
'\n Alias providing support for datetime.timedelta.total_seconds() function\n calls even in Python < 2.7.\n\n The input `tdelta` is a datetime.timedelta object, and returns a float\n containing the total number of seconds representing the `tdelta`\n duration. For large durations (> 270 on most platforms), this loses\n microsecond accuracy.\n '
return ((tdelta.microseconds + ((tdelta.seconds + (tdelta.days * SEC_PER_DAY)) * 1000000.0)) * 1e-06) |
def create_hparams(experiment):
'Creates the hyper parameters.'
hparams = {}
hparams['batch_size'] = 64
hparams['eval_batch_size'] = 64
hparams['learning_rate_warmup_steps'] = 2000
hparams['learning_rate_constant'] = 1
hparams['learning_rate'] = 0.001
hparams['train_epoches'] = 20
hparams['steps_per_epoch'] = 30
hparams['train_steps'] = (100 * 1000)
hparams['eval_steps'] = 100
hparams['caption_optimizer'] = 't2t'
hparams['clip_norm'] = 5.0
hparams['widget_encoder_checkpoint'] = ''
hparams['train_files'] = ''
hparams['eval_files'] = ''
hparams['train_buffer_size'] = 2000
hparams['eval_buffer_size'] = 500
hparams['train_pixel_encoder'] = True
hparams['debug'] = False
hparams['distribution_strategy'] = 'mirrored'
hparams['decoding_task'] = True
hparams['classification_task'] = False
hparams['use_decoding_for_classification'] = False
hparams['classification_loss_weight'] = 1
hparams['train_with_one_node'] = False
hparams['embedding_file'] = ''
hparams['word_vocab_path'] = ''
hparams['glove_trainable'] = True
hparams['vocab_size'] = 10000
hparams['phrase_vocab_size'] = 10000
hparams['max_pixel_pos'] = 100
hparams['max_dom_pos'] = 500
hparams['screen_encoder'] = 'gcn'
hparams['screen_embedding_feature'] = ['text', 'type', 'pos', 'click', 'dom']
hparams['obj_text_aggregation'] = 'max'
hparams['synthetic_screen_noise'] = 0.0
hparams['encode_screen_with_context'] = False
hparams['add_pixel_skip_link'] = False
hparams['num_hidden_layers'] = 2
hparams['hidden_size'] = 2
hparams['filter_size'] = 2
hparams['num_heads'] = 2
hparams['dropout'] = 0.2
hparams['layer_prepostprocess_dropout'] = 0.2
hparams['attention_dropout'] = 0.2
hparams['relu_dropout'] = 0.2
transformer_hparams = model_params.BASE_PARAMS
hparams.update(transformer_hparams)
config = widget_caption_config.experiments[experiment]
hparams.update(config)
return hparams | 6,100,350,083,624,158,000 | Creates the hyper parameters. | widget_caption/widget_caption_model.py | create_hparams | AI21212019/google-research | python | def create_hparams(experiment):
hparams = {}
hparams['batch_size'] = 64
hparams['eval_batch_size'] = 64
hparams['learning_rate_warmup_steps'] = 2000
hparams['learning_rate_constant'] = 1
hparams['learning_rate'] = 0.001
hparams['train_epoches'] = 20
hparams['steps_per_epoch'] = 30
hparams['train_steps'] = (100 * 1000)
hparams['eval_steps'] = 100
hparams['caption_optimizer'] = 't2t'
hparams['clip_norm'] = 5.0
hparams['widget_encoder_checkpoint'] =
hparams['train_files'] =
hparams['eval_files'] =
hparams['train_buffer_size'] = 2000
hparams['eval_buffer_size'] = 500
hparams['train_pixel_encoder'] = True
hparams['debug'] = False
hparams['distribution_strategy'] = 'mirrored'
hparams['decoding_task'] = True
hparams['classification_task'] = False
hparams['use_decoding_for_classification'] = False
hparams['classification_loss_weight'] = 1
hparams['train_with_one_node'] = False
hparams['embedding_file'] =
hparams['word_vocab_path'] =
hparams['glove_trainable'] = True
hparams['vocab_size'] = 10000
hparams['phrase_vocab_size'] = 10000
hparams['max_pixel_pos'] = 100
hparams['max_dom_pos'] = 500
hparams['screen_encoder'] = 'gcn'
hparams['screen_embedding_feature'] = ['text', 'type', 'pos', 'click', 'dom']
hparams['obj_text_aggregation'] = 'max'
hparams['synthetic_screen_noise'] = 0.0
hparams['encode_screen_with_context'] = False
hparams['add_pixel_skip_link'] = False
hparams['num_hidden_layers'] = 2
hparams['hidden_size'] = 2
hparams['filter_size'] = 2
hparams['num_heads'] = 2
hparams['dropout'] = 0.2
hparams['layer_prepostprocess_dropout'] = 0.2
hparams['attention_dropout'] = 0.2
hparams['relu_dropout'] = 0.2
transformer_hparams = model_params.BASE_PARAMS
hparams.update(transformer_hparams)
config = widget_caption_config.experiments[experiment]
hparams.update(config)
return hparams |
def load_embed(file_name, vocab_size):
'Loads a pre-trained embedding matrix.\n\n Args:\n file_name: the file name of the embedding file.\n vocab_size: if > 0, only load embedding weights for vocab_size words.\n\n Returns:\n vocab: a list of tokens.\n embeds: a numpy array of embeddings for each token plus an OOV embedding.\n depth: the depth of the embedding.\n Raises:\n ValueError: embeddings have different depths.\n '
with tf.io.gfile.GFile(file_name, 'r') as embed_file:
vocab = []
embeds = []
depth = (- 1)
for (index, line) in enumerate(embed_file):
if ((vocab_size > 0) and (index >= vocab_size)):
break
line = line.strip()
tokens = line.strip().split(' ')
word = tokens[0]
vocab.append(word)
if (depth == (- 1)):
embed = [float(token) for token in tokens[1:]]
else:
embed = [float(token) for token in tokens[(- depth):]]
d = len(embed)
if (depth == (- 1)):
depth = d
if (d != depth):
raise ValueError('Inconsistent embedding sizes')
embeds.append(embed)
embeds = np.stack(embeds)
return (vocab, embeds, depth) | 8,892,763,666,272,563,000 | Loads a pre-trained embedding matrix.
Args:
file_name: the file name of the embedding file.
vocab_size: if > 0, only load embedding weights for vocab_size words.
Returns:
vocab: a list of tokens.
embeds: a numpy array of embeddings for each token plus an OOV embedding.
depth: the depth of the embedding.
Raises:
ValueError: embeddings have different depths. | widget_caption/widget_caption_model.py | load_embed | AI21212019/google-research | python | def load_embed(file_name, vocab_size):
'Loads a pre-trained embedding matrix.\n\n Args:\n file_name: the file name of the embedding file.\n vocab_size: if > 0, only load embedding weights for vocab_size words.\n\n Returns:\n vocab: a list of tokens.\n embeds: a numpy array of embeddings for each token plus an OOV embedding.\n depth: the depth of the embedding.\n Raises:\n ValueError: embeddings have different depths.\n '
with tf.io.gfile.GFile(file_name, 'r') as embed_file:
vocab = []
embeds = []
depth = (- 1)
for (index, line) in enumerate(embed_file):
if ((vocab_size > 0) and (index >= vocab_size)):
break
line = line.strip()
tokens = line.strip().split(' ')
word = tokens[0]
vocab.append(word)
if (depth == (- 1)):
embed = [float(token) for token in tokens[1:]]
else:
embed = [float(token) for token in tokens[(- depth):]]
d = len(embed)
if (depth == (- 1)):
depth = d
if (d != depth):
raise ValueError('Inconsistent embedding sizes')
embeds.append(embed)
embeds = np.stack(embeds)
return (vocab, embeds, depth) |
def compute_score(predictions, references, vocab=None):
'Computes the bleu score.\n\n Args:\n predictions: a numpy arrary in the shape of [batch_size, max_phrase_length]\n references: a numpy array in the shape of [batch_size, 7, 10]\n vocab: the vocabulary file.\n\n Returns:\n a scalar value for the corpus level bleu score.\n '
assert (np.rank(predictions) == 2)
assert (predictions.shape[0] == references.shape[0])
batch_size = predictions.shape[0]
predictions = tf.make_ndarray(tf.make_tensor_proto(predictions)).tolist()
references = tf.make_ndarray(tf.make_tensor_proto(references)).tolist()
hypotheses_list = []
references_list = []
for index in range(batch_size):
h = predictions[index]
try:
eos_index = h.index(input_utils.EOS)
except ValueError:
eos_index = len(h)
hypotheses_list.append(h[:eos_index])
ref = references[index].decode().split('|')
ref_list = [r.strip().split(' ') for r in ref if r.strip()]
references_list.append(ref_list)
all_scores = collections.defaultdict(list)
for (hypothesis, references) in zip(hypotheses_list, references_list):
if ((vocab is not None) and len(vocab)):
hypothesis = [vocab[word_id].numpy().decode() for word_id in hypothesis if (word_id > 3)]
logging.info('hypothesis: %s', str(hypothesis))
logging.info('references: %s', str(references))
h_str = ' '.join((str(e) for e in hypothesis))
r_str = [' '.join((str(e) for e in ref)) for ref in references]
scores = widget_caption_eval.coco_evaluate(r_str, h_str)
for (key, score) in scores.items():
all_scores[key].append(score)
score_names = ['BLEU-1', 'BLEU-2', 'BLEU-3', 'BLEU-4', 'ROUGE-1-f1-mean', 'ROUGE-1-f1-min', 'ROUGE-1-f1-max', 'ROUGE-2-f1-mean', 'ROUGE-2-f1-min', 'ROUGE-2-f1-max', 'ROUGE-L-f1-mean', 'ROUGE-L-f1-min', 'ROUGE-L-f1-max']
return [np.array(all_scores[name], dtype=np.float32) for name in score_names] | 2,865,074,634,727,857,700 | Computes the bleu score.
Args:
predictions: a numpy arrary in the shape of [batch_size, max_phrase_length]
references: a numpy array in the shape of [batch_size, 7, 10]
vocab: the vocabulary file.
Returns:
a scalar value for the corpus level bleu score. | widget_caption/widget_caption_model.py | compute_score | AI21212019/google-research | python | def compute_score(predictions, references, vocab=None):
'Computes the bleu score.\n\n Args:\n predictions: a numpy arrary in the shape of [batch_size, max_phrase_length]\n references: a numpy array in the shape of [batch_size, 7, 10]\n vocab: the vocabulary file.\n\n Returns:\n a scalar value for the corpus level bleu score.\n '
assert (np.rank(predictions) == 2)
assert (predictions.shape[0] == references.shape[0])
batch_size = predictions.shape[0]
predictions = tf.make_ndarray(tf.make_tensor_proto(predictions)).tolist()
references = tf.make_ndarray(tf.make_tensor_proto(references)).tolist()
hypotheses_list = []
references_list = []
for index in range(batch_size):
h = predictions[index]
try:
eos_index = h.index(input_utils.EOS)
except ValueError:
eos_index = len(h)
hypotheses_list.append(h[:eos_index])
ref = references[index].decode().split('|')
ref_list = [r.strip().split(' ') for r in ref if r.strip()]
references_list.append(ref_list)
all_scores = collections.defaultdict(list)
for (hypothesis, references) in zip(hypotheses_list, references_list):
if ((vocab is not None) and len(vocab)):
hypothesis = [vocab[word_id].numpy().decode() for word_id in hypothesis if (word_id > 3)]
logging.info('hypothesis: %s', str(hypothesis))
logging.info('references: %s', str(references))
h_str = ' '.join((str(e) for e in hypothesis))
r_str = [' '.join((str(e) for e in ref)) for ref in references]
scores = widget_caption_eval.coco_evaluate(r_str, h_str)
for (key, score) in scores.items():
all_scores[key].append(score)
score_names = ['BLEU-1', 'BLEU-2', 'BLEU-3', 'BLEU-4', 'ROUGE-1-f1-mean', 'ROUGE-1-f1-min', 'ROUGE-1-f1-max', 'ROUGE-2-f1-mean', 'ROUGE-2-f1-min', 'ROUGE-2-f1-max', 'ROUGE-L-f1-mean', 'ROUGE-L-f1-min', 'ROUGE-L-f1-max']
return [np.array(all_scores[name], dtype=np.float32) for name in score_names] |
def init_resnet(hparams, model):
'Init resnet weights from a TF model if provided.'
if (not hparams['widget_encoder_checkpoint']):
return
reader = tf.train.load_checkpoint(hparams['widget_encoder_checkpoint'])
init_set = input_utils.input_fn(hparams['train_files'], 1, hparams['vocab_size'], hparams['max_pixel_pos'], hparams['max_dom_pos'], epoches=1, buffer_size=1)
init_features = next(iter(init_set))
init_target = model.compute_targets(init_features)
model([init_features, init_target[0]], training=True)
weight_value_tuples = []
for layer in model._encoder._pixel_layers:
for param in layer.weights:
if ('batch_normalization' in param.name):
continue
(sublayer, varname) = param.name.replace(':0', '').split('/')[(- 2):]
var_name = 'encoder/{}/{}'.format(sublayer, varname)
if reader.has_tensor(var_name):
logging.info('Found pretrained weights: %s %s, %s %s', param.name, param.shape, var_name, reader.get_tensor(var_name).shape)
weight_value_tuples.append((param, reader.get_tensor(var_name)))
logging.info('Load pretrained %s weights', len(weight_value_tuples))
tf.keras.backend.batch_set_value(weight_value_tuples) | -5,117,677,739,210,213,000 | Init resnet weights from a TF model if provided. | widget_caption/widget_caption_model.py | init_resnet | AI21212019/google-research | python | def init_resnet(hparams, model):
if (not hparams['widget_encoder_checkpoint']):
return
reader = tf.train.load_checkpoint(hparams['widget_encoder_checkpoint'])
init_set = input_utils.input_fn(hparams['train_files'], 1, hparams['vocab_size'], hparams['max_pixel_pos'], hparams['max_dom_pos'], epoches=1, buffer_size=1)
init_features = next(iter(init_set))
init_target = model.compute_targets(init_features)
model([init_features, init_target[0]], training=True)
weight_value_tuples = []
for layer in model._encoder._pixel_layers:
for param in layer.weights:
if ('batch_normalization' in param.name):
continue
(sublayer, varname) = param.name.replace(':0', ).split('/')[(- 2):]
var_name = 'encoder/{}/{}'.format(sublayer, varname)
if reader.has_tensor(var_name):
logging.info('Found pretrained weights: %s %s, %s %s', param.name, param.shape, var_name, reader.get_tensor(var_name).shape)
weight_value_tuples.append((param, reader.get_tensor(var_name)))
logging.info('Load pretrained %s weights', len(weight_value_tuples))
tf.keras.backend.batch_set_value(weight_value_tuples) |
def call(self, input_tensor, training, dropout=0.0):
'Defines a single encoding layer.'
x = input_tensor
skip = x
x = self._conv_layer_1(x)
x = self._batch_norm_layer_1(x, training=training)
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
x = self._conv_layer_2(x)
x = self._batch_norm_layer_2(x, training=training)
x += skip
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
x = self._conv_layer_3(x)
x = self._batch_norm_layer_3(x, training=training)
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
return x | 6,565,116,154,512,076,000 | Defines a single encoding layer. | widget_caption/widget_caption_model.py | call | AI21212019/google-research | python | def call(self, input_tensor, training, dropout=0.0):
x = input_tensor
skip = x
x = self._conv_layer_1(x)
x = self._batch_norm_layer_1(x, training=training)
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
x = self._conv_layer_2(x)
x = self._batch_norm_layer_2(x, training=training)
x += skip
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
x = self._conv_layer_3(x)
x = self._batch_norm_layer_3(x, training=training)
x = tf.nn.relu(x)
if training:
x = tf.nn.dropout(x, rate=dropout)
return x |
def _get_encoder3(self, initial_channel_size=3):
'Defines the encoding model with a pre-defined filter/kernel sizes.'
pixel_layers = []
filter_groups = [[initial_channel_size, initial_channel_size, 4], [4, 4, 16], [16, 16, 32], [32, 32, 64], [64, 64, 128], [128, 128, 256]]
kernel_size_groups = [[5, 3, 5], [5, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]
for (index, (filters, kernel_sizes)) in enumerate(zip(filter_groups, kernel_size_groups)):
assert (len(filters) == len(kernel_sizes))
name = 'pixel_encoder_{}'.format(index)
layer = PixelEncoderLayer(name, filters, kernel_sizes)
pixel_layers.append(layer)
return pixel_layers | 9,135,900,090,690,072,000 | Defines the encoding model with a pre-defined filter/kernel sizes. | widget_caption/widget_caption_model.py | _get_encoder3 | AI21212019/google-research | python | def _get_encoder3(self, initial_channel_size=3):
pixel_layers = []
filter_groups = [[initial_channel_size, initial_channel_size, 4], [4, 4, 16], [16, 16, 32], [32, 32, 64], [64, 64, 128], [128, 128, 256]]
kernel_size_groups = [[5, 3, 5], [5, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]
for (index, (filters, kernel_sizes)) in enumerate(zip(filter_groups, kernel_size_groups)):
assert (len(filters) == len(kernel_sizes))
name = 'pixel_encoder_{}'.format(index)
layer = PixelEncoderLayer(name, filters, kernel_sizes)
pixel_layers.append(layer)
return pixel_layers |
def _embed_composite_feature(self, features, embedding_layers):
'Embed a position feature.'
embedding_list = []
for i in range(len(embedding_layers)):
embedding_list.append(embedding_layers[i](features[:, :, i]))
embedding = tf.add_n(embedding_list)
return embedding | -2,585,779,683,394,142,700 | Embed a position feature. | widget_caption/widget_caption_model.py | _embed_composite_feature | AI21212019/google-research | python | def _embed_composite_feature(self, features, embedding_layers):
embedding_list = []
for i in range(len(embedding_layers)):
embedding_list.append(embedding_layers[i](features[:, :, i]))
embedding = tf.add_n(embedding_list)
return embedding |
def _encode_view_hierarchy(self, features, object_selector, training):
'Encodes view hierarchy.'
logging.info('Using Transformer screen encoder')
developer_embeddings = self._word_embedding_layer(features['developer_token_id'])
resource_embeddings = self._word_embedding_layer(features['resource_token_id'])
developer_embeddings = self._aggregate_text_embedding(features['developer_token_id'], developer_embeddings)
resource_embeddings = self._aggregate_text_embedding(features['resource_token_id'], resource_embeddings)
type_embedding = self._type_embedding_layer(tf.maximum(features['obj_type'], 0))
clickable_embedding = self._clickable_embedding_layer(features['obj_clickable'])
object_info = []
if ('text' in self._hparams['screen_embedding_feature']):
object_info.append(developer_embeddings)
object_info.append(resource_embeddings)
if ('type' in self._hparams['screen_embedding_feature']):
object_info.append(type_embedding)
if ('pos' in self._hparams['screen_embedding_feature']):
pos_embedding = self._embed_composite_feature(features['obj_screen_pos'], self._pos_embedding_layers)
object_info.append(pos_embedding)
if ('click' in self._hparams['screen_embedding_feature']):
object_info.append(clickable_embedding)
if ('dom' in self._hparams['screen_embedding_feature']):
dom_embedding = self._embed_composite_feature(features['obj_dom_pos'], self._dom_embedding_layers)
object_info.append(dom_embedding)
object_embed = tf.concat(object_info, (- 1))
object_embed = self._vh_final_layer(object_embed)
object_mask = tf.cast(tf.not_equal(features['obj_type'], (- 1)), tf.float32)
object_embed = (object_embed * tf.expand_dims(object_mask, (- 1)))
att_bias = model_utils.get_padding_bias(object_mask)
if training:
object_embed = tf.nn.dropout(object_embed, rate=self._hparams['dropout'])
encoder_output = self._transformer_encoder(object_embed, attention_bias=att_bias, inputs_padding=None, training=training)
object_embed = tf.reshape(object_embed, [(- 1), self._hparams['hidden_size']])
encoder_output = tf.reshape(encoder_output, [(- 1), self._hparams['hidden_size']])
valid_object_embed = tf.gather(object_embed, object_selector)
valid_screen_encoding = tf.gather(encoder_output, object_selector)
return (valid_screen_encoding, valid_object_embed) | 5,191,364,270,785,644,000 | Encodes view hierarchy. | widget_caption/widget_caption_model.py | _encode_view_hierarchy | AI21212019/google-research | python | def _encode_view_hierarchy(self, features, object_selector, training):
logging.info('Using Transformer screen encoder')
developer_embeddings = self._word_embedding_layer(features['developer_token_id'])
resource_embeddings = self._word_embedding_layer(features['resource_token_id'])
developer_embeddings = self._aggregate_text_embedding(features['developer_token_id'], developer_embeddings)
resource_embeddings = self._aggregate_text_embedding(features['resource_token_id'], resource_embeddings)
type_embedding = self._type_embedding_layer(tf.maximum(features['obj_type'], 0))
clickable_embedding = self._clickable_embedding_layer(features['obj_clickable'])
object_info = []
if ('text' in self._hparams['screen_embedding_feature']):
object_info.append(developer_embeddings)
object_info.append(resource_embeddings)
if ('type' in self._hparams['screen_embedding_feature']):
object_info.append(type_embedding)
if ('pos' in self._hparams['screen_embedding_feature']):
pos_embedding = self._embed_composite_feature(features['obj_screen_pos'], self._pos_embedding_layers)
object_info.append(pos_embedding)
if ('click' in self._hparams['screen_embedding_feature']):
object_info.append(clickable_embedding)
if ('dom' in self._hparams['screen_embedding_feature']):
dom_embedding = self._embed_composite_feature(features['obj_dom_pos'], self._dom_embedding_layers)
object_info.append(dom_embedding)
object_embed = tf.concat(object_info, (- 1))
object_embed = self._vh_final_layer(object_embed)
object_mask = tf.cast(tf.not_equal(features['obj_type'], (- 1)), tf.float32)
object_embed = (object_embed * tf.expand_dims(object_mask, (- 1)))
att_bias = model_utils.get_padding_bias(object_mask)
if training:
object_embed = tf.nn.dropout(object_embed, rate=self._hparams['dropout'])
encoder_output = self._transformer_encoder(object_embed, attention_bias=att_bias, inputs_padding=None, training=training)
object_embed = tf.reshape(object_embed, [(- 1), self._hparams['hidden_size']])
encoder_output = tf.reshape(encoder_output, [(- 1), self._hparams['hidden_size']])
valid_object_embed = tf.gather(object_embed, object_selector)
valid_screen_encoding = tf.gather(encoder_output, object_selector)
return (valid_screen_encoding, valid_object_embed) |
def _aggregate_text_embedding(self, token_ids, embeddings):
'Aggregate text embedding for a UI element.'
if (self._hparams['obj_text_aggregation'] == 'max'):
valid_token_mask = tf.greater_equal(token_ids, 4)
invalid_token_bias = (tf.cast(tf.logical_not(valid_token_mask), tf.float32) * (- 1000000000.0))
embeddings = (embeddings + tf.expand_dims(invalid_token_bias, axis=(- 1)))
embeddings = tf.reduce_max(embeddings, axis=(- 2))
valid_object_mask = tf.cast(tf.reduce_any(valid_token_mask, axis=(- 1)), tf.float32)
embeddings = (embeddings * tf.expand_dims(valid_object_mask, axis=(- 1)))
elif (self._hparams['obj_text_aggregation'] == 'sum'):
real_objects = tf.cast(tf.greater_equal(token_ids, 4), tf.float32)
embeddings = tf.reduce_sum(input_tensor=(embeddings * tf.expand_dims(real_objects, 3)), axis=(- 2))
else:
raise ValueError(('Unrecognized token aggregation %s' % self._hparams['obj_text_aggregation']))
return embeddings | -6,579,745,571,836,428,000 | Aggregate text embedding for a UI element. | widget_caption/widget_caption_model.py | _aggregate_text_embedding | AI21212019/google-research | python | def _aggregate_text_embedding(self, token_ids, embeddings):
if (self._hparams['obj_text_aggregation'] == 'max'):
valid_token_mask = tf.greater_equal(token_ids, 4)
invalid_token_bias = (tf.cast(tf.logical_not(valid_token_mask), tf.float32) * (- 1000000000.0))
embeddings = (embeddings + tf.expand_dims(invalid_token_bias, axis=(- 1)))
embeddings = tf.reduce_max(embeddings, axis=(- 2))
valid_object_mask = tf.cast(tf.reduce_any(valid_token_mask, axis=(- 1)), tf.float32)
embeddings = (embeddings * tf.expand_dims(valid_object_mask, axis=(- 1)))
elif (self._hparams['obj_text_aggregation'] == 'sum'):
real_objects = tf.cast(tf.greater_equal(token_ids, 4), tf.float32)
embeddings = tf.reduce_sum(input_tensor=(embeddings * tf.expand_dims(real_objects, 3)), axis=(- 2))
else:
raise ValueError(('Unrecognized token aggregation %s' % self._hparams['obj_text_aggregation']))
return embeddings |
def call(self, decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training, cache=None):
'Return the output of the decoder layer stacks.\n\n Args:\n decoder_inputs: A tensor with shape [batch_size, target_length,\n hidden_size].\n encoder_outputs: A tensor with shape [batch_size, input_length,\n hidden_size]\n decoder_self_attention_bias: A tensor with shape [1, 1, target_len,\n target_length], the bias for decoder self-attention layer.\n attention_bias: A tensor with shape [batch_size, 1, 1, input_length], the\n bias for encoder-decoder attention layer.\n training: A bool, whether in training mode or not.\n cache: (Used for fast decoding) A nested dictionary storing previous\n decoder self-attention values. The items are:\n {layer_n: {"k": A tensor with shape [batch_size, i, key_channels],\n "v": A tensor with shape [batch_size, i, value_channels]},\n ...}\n\n Returns:\n Output of decoder layer stack.\n float32 tensor with shape [batch_size, target_length, hidden_size]\n '
outputs = self._transformer_decoder(decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training, cache=cache)
return outputs | -5,761,504,163,877,722,000 | Return the output of the decoder layer stacks.
Args:
decoder_inputs: A tensor with shape [batch_size, target_length,
hidden_size].
encoder_outputs: A tensor with shape [batch_size, input_length,
hidden_size]
decoder_self_attention_bias: A tensor with shape [1, 1, target_len,
target_length], the bias for decoder self-attention layer.
attention_bias: A tensor with shape [batch_size, 1, 1, input_length], the
bias for encoder-decoder attention layer.
training: A bool, whether in training mode or not.
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": A tensor with shape [batch_size, i, key_channels],
"v": A tensor with shape [batch_size, i, value_channels]},
...}
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size] | widget_caption/widget_caption_model.py | call | AI21212019/google-research | python | def call(self, decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training, cache=None):
'Return the output of the decoder layer stacks.\n\n Args:\n decoder_inputs: A tensor with shape [batch_size, target_length,\n hidden_size].\n encoder_outputs: A tensor with shape [batch_size, input_length,\n hidden_size]\n decoder_self_attention_bias: A tensor with shape [1, 1, target_len,\n target_length], the bias for decoder self-attention layer.\n attention_bias: A tensor with shape [batch_size, 1, 1, input_length], the\n bias for encoder-decoder attention layer.\n training: A bool, whether in training mode or not.\n cache: (Used for fast decoding) A nested dictionary storing previous\n decoder self-attention values. The items are:\n {layer_n: {"k": A tensor with shape [batch_size, i, key_channels],\n "v": A tensor with shape [batch_size, i, value_channels]},\n ...}\n\n Returns:\n Output of decoder layer stack.\n float32 tensor with shape [batch_size, target_length, hidden_size]\n '
outputs = self._transformer_decoder(decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training, cache=cache)
return outputs |
def compute_caption_metrics(self, predictions, references):
'Computes the eval metrics for decoding.'
py_types = ([tf.float32] * len(self._SCORE_NAMES))
scores = tf.py_function(compute_score, (predictions, references, self._word_vocab), py_types)
for (name, score) in zip(self._SCORE_NAMES, scores):
scoped_name = 'COCO/{}'.format(name)
self.caption_metrics[scoped_name].update_state(score)
self.model_metrics[scoped_name] = self.caption_metrics[scoped_name] | -774,783,375,998,931,000 | Computes the eval metrics for decoding. | widget_caption/widget_caption_model.py | compute_caption_metrics | AI21212019/google-research | python | def compute_caption_metrics(self, predictions, references):
py_types = ([tf.float32] * len(self._SCORE_NAMES))
scores = tf.py_function(compute_score, (predictions, references, self._word_vocab), py_types)
for (name, score) in zip(self._SCORE_NAMES, scores):
scoped_name = 'COCO/{}'.format(name)
self.caption_metrics[scoped_name].update_state(score)
self.model_metrics[scoped_name] = self.caption_metrics[scoped_name] |
def decode(self, targets, encoder_outputs, training):
'Generate logits for each value in the target sequence.\n\n Args:\n targets: target values for the output sequence. int tensor with shape\n [batch_size, target_length]\n encoder_outputs: continuous representation of input sequence. float tensor\n with shape [batch_size, input_length, hidden_size]\n training: boolean, whether in training mode or not.\n\n Returns:\n float32 tensor with shape [batch_size, target_length, vocab_size]\n '
with tf.name_scope('decode'):
length = tf.shape(targets)[1]
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(length)
encoder_shape = tf.shape(encoder_outputs)
mask = tf.ones([encoder_shape[0], encoder_shape[1]])
attention_bias = model_utils.get_padding_bias(mask)
targets = tf.pad(targets, [[0, 0], [1, 0]], constant_values=input_utils.START)
targets = targets[:, :(- 1)]
decoder_inputs = self._word_embedding_layer(targets)
with tf.name_scope('add_pos_encoding'):
pos_encoding = self._position_embedding_layer(decoder_inputs)
decoder_inputs += pos_encoding
if training:
decoder_inputs = tf.nn.dropout(decoder_inputs, rate=self._hparams['layer_postprocess_dropout'])
decoder_outputs = self._decoder(decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training)
logits = self._word_layer(decoder_outputs)
return logits | 5,422,571,246,841,141,000 | Generate logits for each value in the target sequence.
Args:
targets: target values for the output sequence. int tensor with shape
[batch_size, target_length]
encoder_outputs: continuous representation of input sequence. float tensor
with shape [batch_size, input_length, hidden_size]
training: boolean, whether in training mode or not.
Returns:
float32 tensor with shape [batch_size, target_length, vocab_size] | widget_caption/widget_caption_model.py | decode | AI21212019/google-research | python | def decode(self, targets, encoder_outputs, training):
'Generate logits for each value in the target sequence.\n\n Args:\n targets: target values for the output sequence. int tensor with shape\n [batch_size, target_length]\n encoder_outputs: continuous representation of input sequence. float tensor\n with shape [batch_size, input_length, hidden_size]\n training: boolean, whether in training mode or not.\n\n Returns:\n float32 tensor with shape [batch_size, target_length, vocab_size]\n '
with tf.name_scope('decode'):
length = tf.shape(targets)[1]
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(length)
encoder_shape = tf.shape(encoder_outputs)
mask = tf.ones([encoder_shape[0], encoder_shape[1]])
attention_bias = model_utils.get_padding_bias(mask)
targets = tf.pad(targets, [[0, 0], [1, 0]], constant_values=input_utils.START)
targets = targets[:, :(- 1)]
decoder_inputs = self._word_embedding_layer(targets)
with tf.name_scope('add_pos_encoding'):
pos_encoding = self._position_embedding_layer(decoder_inputs)
decoder_inputs += pos_encoding
if training:
decoder_inputs = tf.nn.dropout(decoder_inputs, rate=self._hparams['layer_postprocess_dropout'])
decoder_outputs = self._decoder(decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training)
logits = self._word_layer(decoder_outputs)
return logits |
def predict(self, encoder_outputs, training):
'Return predicted sequence.'
batch_size = tf.shape(encoder_outputs)[0]
symbols_to_logits_fn = self._get_symbols_to_logits_fn(max_decode_length=self._MAX_DECODE_LENGTH, training=training)
initial_ids = (tf.ones([batch_size], dtype=tf.int32) * input_utils.START)
init_decode_length = 0
num_heads = self._hparams['num_heads']
dim_per_head = (self._hparams['hidden_size'] // num_heads)
cache = {('layer_%d' % layer): {'k': tf.zeros([batch_size, init_decode_length, num_heads, dim_per_head]), 'v': tf.zeros([batch_size, init_decode_length, num_heads, dim_per_head])} for layer in range(self._hparams['num_hidden_layers'])}
encoder_shape = tf.shape(encoder_outputs)
mask = tf.ones([encoder_shape[0], encoder_shape[1]])
attention_bias = model_utils.get_padding_bias(mask)
cache['encoder_outputs'] = encoder_outputs
cache['encoder_decoder_attention_bias'] = attention_bias
(decoded_ids, _) = ops.beam_search.sequence_beam_search(symbols_to_logits_fn=symbols_to_logits_fn, initial_ids=initial_ids, initial_cache=cache, vocab_size=self._hparams['vocab_size'], beam_size=self._hparams['beam_size'], alpha=1, max_decode_length=self._MAX_DECODE_LENGTH, eos_id=input_utils.EOS)
top_decoded_ids = decoded_ids[:, 0, 1:]
return top_decoded_ids | -2,499,680,710,903,466,500 | Return predicted sequence. | widget_caption/widget_caption_model.py | predict | AI21212019/google-research | python | def predict(self, encoder_outputs, training):
batch_size = tf.shape(encoder_outputs)[0]
symbols_to_logits_fn = self._get_symbols_to_logits_fn(max_decode_length=self._MAX_DECODE_LENGTH, training=training)
initial_ids = (tf.ones([batch_size], dtype=tf.int32) * input_utils.START)
init_decode_length = 0
num_heads = self._hparams['num_heads']
dim_per_head = (self._hparams['hidden_size'] // num_heads)
cache = {('layer_%d' % layer): {'k': tf.zeros([batch_size, init_decode_length, num_heads, dim_per_head]), 'v': tf.zeros([batch_size, init_decode_length, num_heads, dim_per_head])} for layer in range(self._hparams['num_hidden_layers'])}
encoder_shape = tf.shape(encoder_outputs)
mask = tf.ones([encoder_shape[0], encoder_shape[1]])
attention_bias = model_utils.get_padding_bias(mask)
cache['encoder_outputs'] = encoder_outputs
cache['encoder_decoder_attention_bias'] = attention_bias
(decoded_ids, _) = ops.beam_search.sequence_beam_search(symbols_to_logits_fn=symbols_to_logits_fn, initial_ids=initial_ids, initial_cache=cache, vocab_size=self._hparams['vocab_size'], beam_size=self._hparams['beam_size'], alpha=1, max_decode_length=self._MAX_DECODE_LENGTH, eos_id=input_utils.EOS)
top_decoded_ids = decoded_ids[:, 0, 1:]
return top_decoded_ids |
def compute_targets(self, features):
'Compute the target token ids and phrase ids.'
batch_size = tf.shape(features['label_flag'])[0]
num_objects = tf.shape(features['label_flag'])[1]
worker_position = self._caption_object_selector(features)
valid_references = tf.gather(tf.reshape(features['reference'], [(- 1)]), worker_position)
target_phrase = features['caption_token_id']
target_phrase = tf.reshape(target_phrase, [(batch_size * num_objects), self._MAX_DECODE_LENGTH])
valid_target_phrase = tf.gather(target_phrase, worker_position)
return (valid_target_phrase, valid_references) | 402,812,099,101,840,260 | Compute the target token ids and phrase ids. | widget_caption/widget_caption_model.py | compute_targets | AI21212019/google-research | python | def compute_targets(self, features):
batch_size = tf.shape(features['label_flag'])[0]
num_objects = tf.shape(features['label_flag'])[1]
worker_position = self._caption_object_selector(features)
valid_references = tf.gather(tf.reshape(features['reference'], [(- 1)]), worker_position)
target_phrase = features['caption_token_id']
target_phrase = tf.reshape(target_phrase, [(batch_size * num_objects), self._MAX_DECODE_LENGTH])
valid_target_phrase = tf.gather(target_phrase, worker_position)
return (valid_target_phrase, valid_references) |
def _get_symbols_to_logits_fn(self, max_decode_length, training):
'Returns a decoding function that calculates logits of the next tokens.'
timing_signal = self._position_embedding_layer(inputs=None, length=max_decode_length)
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(max_decode_length)
def symbols_to_logits_fn(ids, i, cache):
'Generate logits for next potential IDs.\n\n Args:\n ids: Current decoded sequences. int tensor with shape [batch_size *\n beam_size, i + 1].\n i: Loop index.\n cache: dictionary of values storing the encoder output, encoder-decoder\n attention bias, and previous decoder attention values.\n\n Returns:\n Tuple of\n (logits with shape [batch_size * beam_size, vocab_size],\n updated cache values)\n '
decoder_input = ids[:, (- 1):]
decoder_input = self._word_embedding_layer(decoder_input)
decoder_input += timing_signal[i:(i + 1)]
self_attention_bias = decoder_self_attention_bias[:, :, i:(i + 1), :(i + 1)]
decoder_outputs = self._decoder(decoder_input, cache.get('encoder_outputs'), self_attention_bias, cache.get('encoder_decoder_attention_bias'), training=training, cache=cache)
decoder_outputs = decoder_outputs[:, (- 1), :]
logits = self._word_layer(decoder_outputs)
return (logits, cache)
return symbols_to_logits_fn | -132,147,364,262,350,850 | Returns a decoding function that calculates logits of the next tokens. | widget_caption/widget_caption_model.py | _get_symbols_to_logits_fn | AI21212019/google-research | python | def _get_symbols_to_logits_fn(self, max_decode_length, training):
timing_signal = self._position_embedding_layer(inputs=None, length=max_decode_length)
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(max_decode_length)
def symbols_to_logits_fn(ids, i, cache):
'Generate logits for next potential IDs.\n\n Args:\n ids: Current decoded sequences. int tensor with shape [batch_size *\n beam_size, i + 1].\n i: Loop index.\n cache: dictionary of values storing the encoder output, encoder-decoder\n attention bias, and previous decoder attention values.\n\n Returns:\n Tuple of\n (logits with shape [batch_size * beam_size, vocab_size],\n updated cache values)\n '
decoder_input = ids[:, (- 1):]
decoder_input = self._word_embedding_layer(decoder_input)
decoder_input += timing_signal[i:(i + 1)]
self_attention_bias = decoder_self_attention_bias[:, :, i:(i + 1), :(i + 1)]
decoder_outputs = self._decoder(decoder_input, cache.get('encoder_outputs'), self_attention_bias, cache.get('encoder_decoder_attention_bias'), training=training, cache=cache)
decoder_outputs = decoder_outputs[:, (- 1), :]
logits = self._word_layer(decoder_outputs)
return (logits, cache)
return symbols_to_logits_fn |
def symbols_to_logits_fn(ids, i, cache):
'Generate logits for next potential IDs.\n\n Args:\n ids: Current decoded sequences. int tensor with shape [batch_size *\n beam_size, i + 1].\n i: Loop index.\n cache: dictionary of values storing the encoder output, encoder-decoder\n attention bias, and previous decoder attention values.\n\n Returns:\n Tuple of\n (logits with shape [batch_size * beam_size, vocab_size],\n updated cache values)\n '
decoder_input = ids[:, (- 1):]
decoder_input = self._word_embedding_layer(decoder_input)
decoder_input += timing_signal[i:(i + 1)]
self_attention_bias = decoder_self_attention_bias[:, :, i:(i + 1), :(i + 1)]
decoder_outputs = self._decoder(decoder_input, cache.get('encoder_outputs'), self_attention_bias, cache.get('encoder_decoder_attention_bias'), training=training, cache=cache)
decoder_outputs = decoder_outputs[:, (- 1), :]
logits = self._word_layer(decoder_outputs)
return (logits, cache) | -6,548,694,566,543,476,000 | Generate logits for next potential IDs.
Args:
ids: Current decoded sequences. int tensor with shape [batch_size *
beam_size, i + 1].
i: Loop index.
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values) | widget_caption/widget_caption_model.py | symbols_to_logits_fn | AI21212019/google-research | python | def symbols_to_logits_fn(ids, i, cache):
'Generate logits for next potential IDs.\n\n Args:\n ids: Current decoded sequences. int tensor with shape [batch_size *\n beam_size, i + 1].\n i: Loop index.\n cache: dictionary of values storing the encoder output, encoder-decoder\n attention bias, and previous decoder attention values.\n\n Returns:\n Tuple of\n (logits with shape [batch_size * beam_size, vocab_size],\n updated cache values)\n '
decoder_input = ids[:, (- 1):]
decoder_input = self._word_embedding_layer(decoder_input)
decoder_input += timing_signal[i:(i + 1)]
self_attention_bias = decoder_self_attention_bias[:, :, i:(i + 1), :(i + 1)]
decoder_outputs = self._decoder(decoder_input, cache.get('encoder_outputs'), self_attention_bias, cache.get('encoder_decoder_attention_bias'), training=training, cache=cache)
decoder_outputs = decoder_outputs[:, (- 1), :]
logits = self._word_layer(decoder_outputs)
return (logits, cache) |
@deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n\n Returns:\n Sum of args.\n '
return (arg0 + arg1) | 8,087,309,597,350,725,000 | fn doc.
Args:
arg0: Arg 0.
arg1: Arg 1.
Returns:
Sum of args. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n\n Returns:\n Sum of args.\n '
return (arg0 + arg1) |
@deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
'fn doc.'
return (arg0 + arg1) | -2,257,126,715,904,382,700 | fn doc. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
return (arg0 + arg1) |
@deprecation.deprecated_args(date, instructions, 'deprecated')
def _fn(arg0, arg1, deprecated=True):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n deprecated: Deprecated!\n\n Returns:\n Sum of args.\n '
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) | 8,094,843,131,514,642,000 | fn doc.
Args:
arg0: Arg 0.
arg1: Arg 1.
deprecated: Deprecated!
Returns:
Sum of args. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated_args(date, instructions, 'deprecated')
def _fn(arg0, arg1, deprecated=True):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n deprecated: Deprecated!\n\n Returns:\n Sum of args.\n '
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) |
@deprecation.deprecated_args(date, instructions, 'deprecated')
def _fn(arg0, arg1, deprecated=True):
'fn doc.'
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) | 94,406,864,349,320,930 | fn doc. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated_args(date, instructions, 'deprecated')
def _fn(arg0, arg1, deprecated=True):
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) |
@deprecation.deprecated_arg_values(date, instructions, deprecated=True)
def _fn(arg0, arg1, deprecated=True):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n deprecated: Deprecated!\n\n Returns:\n Sum of args.\n '
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) | 6,193,847,633,101,739,000 | fn doc.
Args:
arg0: Arg 0.
arg1: Arg 1.
deprecated: Deprecated!
Returns:
Sum of args. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated_arg_values(date, instructions, deprecated=True)
def _fn(arg0, arg1, deprecated=True):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n deprecated: Deprecated!\n\n Returns:\n Sum of args.\n '
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) |
@deprecation.deprecated_arg_values(date, instructions, deprecated=True)
def _fn(arg0, arg1, deprecated=True):
'fn doc.'
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) | 1,241,249,845,256,133,000 | fn doc. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated_arg_values(date, instructions, deprecated=True)
def _fn(arg0, arg1, deprecated=True):
return ((arg0 + arg1) if deprecated else (arg1 + arg0)) |
@deprecation.deprecated(date, instructions)
def _fn(self, arg0, arg1):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n\n Returns:\n Sum of args.\n '
return (arg0 + arg1) | 3,140,255,006,421,992,400 | fn doc.
Args:
arg0: Arg 0.
arg1: Arg 1.
Returns:
Sum of args. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated(date, instructions)
def _fn(self, arg0, arg1):
'fn doc.\n\n Args:\n arg0: Arg 0.\n arg1: Arg 1.\n\n Returns:\n Sum of args.\n '
return (arg0 + arg1) |
@deprecation.deprecated(date, instructions)
def _fn(self, arg0, arg1):
'fn doc.'
return (arg0 + arg1) | -8,935,820,396,118,256,000 | fn doc. | tensorflow/python/util/deprecation_test.py | _fn | AccelAI/tensorflow | python | @deprecation.deprecated(date, instructions)
def _fn(self, arg0, arg1):
return (arg0 + arg1) |
@property
@deprecation.deprecated(date, instructions)
def _prop(self):
'prop doc.\n\n Returns:\n String.\n '
return 'prop_with_doc' | -8,016,098,677,120,810,000 | prop doc.
Returns:
String. | tensorflow/python/util/deprecation_test.py | _prop | AccelAI/tensorflow | python | @property
@deprecation.deprecated(date, instructions)
def _prop(self):
'prop doc.\n\n Returns:\n String.\n '
return 'prop_with_doc' |
def terms_from_trace(tr):
'Helper function to extract elbo components from execution traces.'
terms = {'log_factors': [], 'log_measures': [], 'scale': to_funsor(1.0), 'plate_vars': frozenset(), 'measure_vars': frozenset(), 'plate_to_step': dict()}
for (name, node) in tr.nodes.items():
if (node['type'] == 'markov_chain'):
terms['plate_to_step'][node['name']] = node['value']
for step in node['value']:
terms['measure_vars'] |= frozenset({var for var in step[1:(- 1)] if (tr.nodes[var]['funsor'].get('log_measure', None) is not None)})
if ((node['type'] != 'sample') or (type(node['fn']).__name__ == '_Subsample') or node['infer'].get('_do_not_score', False)):
continue
terms['plate_vars'] |= frozenset((f.name for f in node['cond_indep_stack'] if f.vectorized))
if (node['funsor'].get('log_measure', None) is not None):
terms['log_measures'].append(node['funsor']['log_measure'])
terms['measure_vars'] |= ((frozenset(node['funsor']['value'].inputs) | {name}) - terms['plate_vars'])
if (node.get('replay_active', False) and (set(node['funsor']['log_prob'].inputs) & terms['measure_vars']) and (float(to_data(node['funsor']['scale'])) != 1.0)):
terms['scale'] = node['funsor']['scale']
else:
node['funsor']['log_prob'] = (node['funsor']['log_prob'] * node['funsor']['scale'])
if (node['is_observed'] or (not node.get('replay_skipped', False))):
terms['log_factors'].append(node['funsor']['log_prob'])
terms['plate_to_step'].update({plate: terms['plate_to_step'].get(plate, {}) for plate in terms['plate_vars']})
return terms | 1,669,444,825,470,947,600 | Helper function to extract elbo components from execution traces. | pyro/contrib/funsor/infer/traceenum_elbo.py | terms_from_trace | 1989Ryan/pyro | python | def terms_from_trace(tr):
terms = {'log_factors': [], 'log_measures': [], 'scale': to_funsor(1.0), 'plate_vars': frozenset(), 'measure_vars': frozenset(), 'plate_to_step': dict()}
for (name, node) in tr.nodes.items():
if (node['type'] == 'markov_chain'):
terms['plate_to_step'][node['name']] = node['value']
for step in node['value']:
terms['measure_vars'] |= frozenset({var for var in step[1:(- 1)] if (tr.nodes[var]['funsor'].get('log_measure', None) is not None)})
if ((node['type'] != 'sample') or (type(node['fn']).__name__ == '_Subsample') or node['infer'].get('_do_not_score', False)):
continue
terms['plate_vars'] |= frozenset((f.name for f in node['cond_indep_stack'] if f.vectorized))
if (node['funsor'].get('log_measure', None) is not None):
terms['log_measures'].append(node['funsor']['log_measure'])
terms['measure_vars'] |= ((frozenset(node['funsor']['value'].inputs) | {name}) - terms['plate_vars'])
if (node.get('replay_active', False) and (set(node['funsor']['log_prob'].inputs) & terms['measure_vars']) and (float(to_data(node['funsor']['scale'])) != 1.0)):
terms['scale'] = node['funsor']['scale']
else:
node['funsor']['log_prob'] = (node['funsor']['log_prob'] * node['funsor']['scale'])
if (node['is_observed'] or (not node.get('replay_skipped', False))):
terms['log_factors'].append(node['funsor']['log_prob'])
terms['plate_to_step'].update({plate: terms['plate_to_step'].get(plate, {}) for plate in terms['plate_vars']})
return terms |
@pytest.mark.parametrize('url', ['https://dev.renku.ch/projects/rokroskar/scratch-project/datasets/7eba3f50-1a19-4282-8a86-2497e0f43809/'])
@pytest.mark.integration
@flaky(max_runs=30, min_passes=1)
def test_dataset_url_import_job(url, svc_client_with_repo):
'Test dataset import via url.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': url}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, url)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (f'service: dataset import {url}' == new_commit.message)
response = svc_client.get(f'/jobs/{job_id}', headers=headers)
assert response
assert_rpc_response(response)
assert ('COMPLETED' == response.json['result']['state']) | 3,253,797,028,710,346,000 | Test dataset import via url. | tests/service/jobs/test_datasets.py | test_dataset_url_import_job | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('url', ['https://dev.renku.ch/projects/rokroskar/scratch-project/datasets/7eba3f50-1a19-4282-8a86-2497e0f43809/'])
@pytest.mark.integration
@flaky(max_runs=30, min_passes=1)
def test_dataset_url_import_job(url, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': url}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, url)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (f'service: dataset import {url}' == new_commit.message)
response = svc_client.get(f'/jobs/{job_id}', headers=headers)
assert response
assert_rpc_response(response)
assert ('COMPLETED' == response.json['result']['state']) |
@pytest.mark.parametrize('doi', ['10.5281/zenodo.3239980', '10.5281/zenodo.3188334', '10.7910/DVN/TJCLKP'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_job(doi, svc_client_with_repo):
'Test dataset import via doi.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (f'service: dataset import {doi}' == new_commit.message)
response = svc_client.get(f'/jobs/{job_id}', headers=headers)
assert response
assert_rpc_response(response)
assert ('COMPLETED' == response.json['result']['state']) | -5,676,521,830,175,043,000 | Test dataset import via doi. | tests/service/jobs/test_datasets.py | test_dataset_import_job | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('doi', ['10.5281/zenodo.3239980', '10.5281/zenodo.3188334', '10.7910/DVN/TJCLKP'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_job(doi, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (f'service: dataset import {doi}' == new_commit.message)
response = svc_client.get(f'/jobs/{job_id}', headers=headers)
assert response
assert_rpc_response(response)
assert ('COMPLETED' == response.json['result']['state']) |
@pytest.mark.parametrize('doi,expected_err', [('junkjunkjunk', 'Invalid parameter value'), ('10.5281/zenodo.11111111111111111', 'Invalid parameter value')])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_junk_job(doi, expected_err, svc_client_with_repo):
'Test dataset import.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
with pytest.raises(ParameterError):
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha == new_commit.hexsha)
response = svc_client.get(f'/jobs/{job_id}', data=json.dumps(payload), headers=headers)
assert_rpc_response(response)
extras = response.json['result']['extras']
assert ('error' in extras)
assert (expected_err in extras['error']) | 3,725,200,170,761,904,000 | Test dataset import. | tests/service/jobs/test_datasets.py | test_dataset_import_junk_job | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('doi,expected_err', [('junkjunkjunk', 'Invalid parameter value'), ('10.5281/zenodo.11111111111111111', 'Invalid parameter value')])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_junk_job(doi, expected_err, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
with pytest.raises(ParameterError):
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha == new_commit.hexsha)
response = svc_client.get(f'/jobs/{job_id}', data=json.dumps(payload), headers=headers)
assert_rpc_response(response)
extras = response.json['result']['extras']
assert ('error' in extras)
assert (expected_err in extras['error']) |
@pytest.mark.parametrize('doi', ['10.5281/zenodo.3634052'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_twice_job(doi, svc_client_with_repo):
'Test dataset import.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
with pytest.raises(DatasetExistsError):
dataset_import(user, job_id, project_id, doi)
new_commit2 = Repo(dest).head.commit
assert (new_commit.hexsha == new_commit2.hexsha)
response = svc_client.get(f'/jobs/{job_id}', data=json.dumps(payload), headers=headers)
assert_rpc_response(response)
extras = response.json['result']['extras']
assert ('error' in extras)
assert ('Dataset exists' in extras['error']) | -2,663,811,129,041,810,000 | Test dataset import. | tests/service/jobs/test_datasets.py | test_dataset_import_twice_job | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('doi', ['10.5281/zenodo.3634052'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_import_twice_job(doi, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['job_id']
dataset_import(user, job_id, project_id, doi)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
with pytest.raises(DatasetExistsError):
dataset_import(user, job_id, project_id, doi)
new_commit2 = Repo(dest).head.commit
assert (new_commit.hexsha == new_commit2.hexsha)
response = svc_client.get(f'/jobs/{job_id}', data=json.dumps(payload), headers=headers)
assert_rpc_response(response)
extras = response.json['result']['extras']
assert ('error' in extras)
assert ('Dataset exists' in extras['error']) |
@pytest.mark.parametrize('url', ['https://gist.github.com/jsam/d957f306ed0fe4ff018e902df6a1c8e3'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_add_remote_file(url, svc_client_with_repo):
'Test dataset add a remote file.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'short_name': uuid.uuid4().hex, 'create_dataset': True, 'files': [{'file_url': url}]}
response = svc_client.post('/datasets.add', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'files', 'short_name', 'project_id'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['files'][0]['job_id']
commit_message = 'service: dataset add remote file'
dataset_add_remote_file(user, job_id, project_id, True, commit_message, payload['short_name'], url)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (commit_message == new_commit.message) | -4,038,006,578,331,544,600 | Test dataset add a remote file. | tests/service/jobs/test_datasets.py | test_dataset_add_remote_file | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('url', ['https://gist.github.com/jsam/d957f306ed0fe4ff018e902df6a1c8e3'])
@pytest.mark.integration
@pytest.mark.service
@flaky(max_runs=30, min_passes=1)
def test_dataset_add_remote_file(url, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'short_name': uuid.uuid4().hex, 'create_dataset': True, 'files': [{'file_url': url}]}
response = svc_client.post('/datasets.add', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'files', 'short_name', 'project_id'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
job_id = response.json['result']['files'][0]['job_id']
commit_message = 'service: dataset add remote file'
dataset_add_remote_file(user, job_id, project_id, True, commit_message, payload['short_name'], url)
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha != new_commit.hexsha)
assert (commit_message == new_commit.message) |
@pytest.mark.parametrize('doi', ['10.5281/zenodo.3761586'])
@pytest.mark.integration
@pytest.mark.service
def test_dataset_project_lock(doi, svc_client_with_repo):
'Test dataset project lock.'
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
cache_project_cleanup()
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha == new_commit.hexsha)
assert (dest.exists() and [file for file in dest.glob('*')]) | 4,504,835,722,190,145,500 | Test dataset project lock. | tests/service/jobs/test_datasets.py | test_dataset_project_lock | mohammad-sdsc/renku-python | python | @pytest.mark.parametrize('doi', ['10.5281/zenodo.3761586'])
@pytest.mark.integration
@pytest.mark.service
def test_dataset_project_lock(doi, svc_client_with_repo):
(svc_client, headers, project_id, url_components) = svc_client_with_repo
user = {'user_id': headers['Renku-User-Id']}
payload = {'project_id': project_id, 'dataset_uri': doi}
response = svc_client.post('/datasets.import', data=json.dumps(payload), headers=headers)
assert response
assert_rpc_response(response)
assert ({'job_id', 'created_at'} == set(response.json['result'].keys()))
dest = make_project_path(user, {'owner': url_components.owner, 'name': url_components.name})
old_commit = Repo(dest).head.commit
cache_project_cleanup()
new_commit = Repo(dest).head.commit
assert (old_commit.hexsha == new_commit.hexsha)
assert (dest.exists() and [file for file in dest.glob('*')]) |
async def _list_and_update(self):
'\n Update current list of resources by doing a full fetch.\n\n Overwrites all current resource info.\n '
initial_resources = None
kwargs = dict(label_selector=self.label_selector, field_selector=self.field_selector, _request_timeout=self.request_timeout, _preload_content=False)
if (not self.omit_namespace):
kwargs['namespace'] = self.namespace
list_method = getattr(self.api, self.list_method_name)
initial_resources_raw = (await list_method(**kwargs))
initial_resources = json.loads((await initial_resources_raw.read()))
self.resources = {f"{p['metadata']['namespace']}/{p['metadata']['name']}": p for p in initial_resources['items']}
if (not self.first_load_future.done()):
self.first_load_future.set_result(None)
return initial_resources['metadata']['resourceVersion'] | 8,317,582,099,941,674,000 | Update current list of resources by doing a full fetch.
Overwrites all current resource info. | kubespawner/reflector.py | _list_and_update | choldgraf/kubespawner | python | async def _list_and_update(self):
'\n Update current list of resources by doing a full fetch.\n\n Overwrites all current resource info.\n '
initial_resources = None
kwargs = dict(label_selector=self.label_selector, field_selector=self.field_selector, _request_timeout=self.request_timeout, _preload_content=False)
if (not self.omit_namespace):
kwargs['namespace'] = self.namespace
list_method = getattr(self.api, self.list_method_name)
initial_resources_raw = (await list_method(**kwargs))
initial_resources = json.loads((await initial_resources_raw.read()))
self.resources = {f"{p['metadata']['namespace']}/{p['metadata']['name']}": p for p in initial_resources['items']}
if (not self.first_load_future.done()):
self.first_load_future.set_result(None)
return initial_resources['metadata']['resourceVersion'] |
async def _watch_and_update(self):
"\n Keeps the current list of resources up-to-date\n\n We first fetch the list of current resources, and store that. Then we\n register to be notified of changes to those resources, and keep our\n local store up-to-date based on these notifications.\n\n We also perform exponential backoff, giving up after we hit 32s\n wait time. This should protect against network connections dropping\n and intermittent unavailability of the api-server. Every time we\n recover from an exception we also do a full fetch, to pick up\n changes that might've been missed in the time we were not doing\n a watch.\n\n Since the resources are read-only in the Spawner (where they are\n used), then this is safe. The Spawner's view of the world might be\n out-of-date, but it's not going to corrupt any data.\n "
selectors = []
if self.label_selector:
selectors.append(('label selector=%r' % self.label_selector))
if self.field_selector:
selectors.append(('field selector=%r' % self.field_selector))
log_selector = ', '.join(selectors)
cur_delay = 0.1
if self.omit_namespace:
ns_str = 'all namespaces'
else:
ns_str = 'namespace {}'.format(self.namespace)
self.log.info('watching for %s with %s in %s', self.kind, log_selector, ns_str)
while True:
self.log.debug('Connecting %s watcher', self.kind)
start = time.monotonic()
w = watch.Watch()
try:
resource_version = (await self._list_and_update())
watch_args = {'label_selector': self.label_selector, 'field_selector': self.field_selector, 'resource_version': resource_version}
if (not self.omit_namespace):
watch_args['namespace'] = self.namespace
if self.request_timeout:
watch_args['_request_timeout'] = self.request_timeout
if self.timeout_seconds:
watch_args['timeout_seconds'] = self.timeout_seconds
method = partial(getattr(self.api, self.list_method_name), _preload_content=False)
async with w.stream(method, **watch_args) as stream:
async for watch_event in stream:
cur_delay = 0.1
resource = watch_event['raw_object']
ref_key = '{}/{}'.format(resource['metadata']['namespace'], resource['metadata']['name'])
if (watch_event['type'] == 'DELETED'):
self.resources.pop(ref_key, None)
else:
self.resources[ref_key] = resource
if self._stopping:
self.log.info('%s watcher stopped: inner', self.kind)
break
watch_duration = (time.monotonic() - start)
if (watch_duration >= self.restart_seconds):
self.log.debug('Restarting %s watcher after %i seconds', self.kind, watch_duration)
break
except ReadTimeoutError:
self.log.warning('Read timeout watching %s, reconnecting', self.kind)
continue
except asyncio.CancelledError:
self.log.debug('Cancelled watching %s', self.kind)
raise
except Exception:
cur_delay = (cur_delay * 2)
if (cur_delay > 30):
self.log.exception('Watching resources never recovered, giving up')
if self.on_failure:
self.on_failure()
return
self.log.exception('Error when watching resources, retrying in %ss', cur_delay)
(await asyncio.sleep(cur_delay))
continue
else:
self.log.debug('%s watcher timeout', self.kind)
finally:
w.stop()
if self._stopping:
self.log.info('%s watcher stopped: outer', self.kind)
break
self.log.warning('%s watcher finished', self.kind) | 1,615,267,037,276,851,700 | Keeps the current list of resources up-to-date
We first fetch the list of current resources, and store that. Then we
register to be notified of changes to those resources, and keep our
local store up-to-date based on these notifications.
We also perform exponential backoff, giving up after we hit 32s
wait time. This should protect against network connections dropping
and intermittent unavailability of the api-server. Every time we
recover from an exception we also do a full fetch, to pick up
changes that might've been missed in the time we were not doing
a watch.
Since the resources are read-only in the Spawner (where they are
used), then this is safe. The Spawner's view of the world might be
out-of-date, but it's not going to corrupt any data. | kubespawner/reflector.py | _watch_and_update | choldgraf/kubespawner | python | async def _watch_and_update(self):
"\n Keeps the current list of resources up-to-date\n\n We first fetch the list of current resources, and store that. Then we\n register to be notified of changes to those resources, and keep our\n local store up-to-date based on these notifications.\n\n We also perform exponential backoff, giving up after we hit 32s\n wait time. This should protect against network connections dropping\n and intermittent unavailability of the api-server. Every time we\n recover from an exception we also do a full fetch, to pick up\n changes that might've been missed in the time we were not doing\n a watch.\n\n Since the resources are read-only in the Spawner (where they are\n used), then this is safe. The Spawner's view of the world might be\n out-of-date, but it's not going to corrupt any data.\n "
selectors = []
if self.label_selector:
selectors.append(('label selector=%r' % self.label_selector))
if self.field_selector:
selectors.append(('field selector=%r' % self.field_selector))
log_selector = ', '.join(selectors)
cur_delay = 0.1
if self.omit_namespace:
ns_str = 'all namespaces'
else:
ns_str = 'namespace {}'.format(self.namespace)
self.log.info('watching for %s with %s in %s', self.kind, log_selector, ns_str)
while True:
self.log.debug('Connecting %s watcher', self.kind)
start = time.monotonic()
w = watch.Watch()
try:
resource_version = (await self._list_and_update())
watch_args = {'label_selector': self.label_selector, 'field_selector': self.field_selector, 'resource_version': resource_version}
if (not self.omit_namespace):
watch_args['namespace'] = self.namespace
if self.request_timeout:
watch_args['_request_timeout'] = self.request_timeout
if self.timeout_seconds:
watch_args['timeout_seconds'] = self.timeout_seconds
method = partial(getattr(self.api, self.list_method_name), _preload_content=False)
async with w.stream(method, **watch_args) as stream:
async for watch_event in stream:
cur_delay = 0.1
resource = watch_event['raw_object']
ref_key = '{}/{}'.format(resource['metadata']['namespace'], resource['metadata']['name'])
if (watch_event['type'] == 'DELETED'):
self.resources.pop(ref_key, None)
else:
self.resources[ref_key] = resource
if self._stopping:
self.log.info('%s watcher stopped: inner', self.kind)
break
watch_duration = (time.monotonic() - start)
if (watch_duration >= self.restart_seconds):
self.log.debug('Restarting %s watcher after %i seconds', self.kind, watch_duration)
break
except ReadTimeoutError:
self.log.warning('Read timeout watching %s, reconnecting', self.kind)
continue
except asyncio.CancelledError:
self.log.debug('Cancelled watching %s', self.kind)
raise
except Exception:
cur_delay = (cur_delay * 2)
if (cur_delay > 30):
self.log.exception('Watching resources never recovered, giving up')
if self.on_failure:
self.on_failure()
return
self.log.exception('Error when watching resources, retrying in %ss', cur_delay)
(await asyncio.sleep(cur_delay))
continue
else:
self.log.debug('%s watcher timeout', self.kind)
finally:
w.stop()
if self._stopping:
self.log.info('%s watcher stopped: outer', self.kind)
break
self.log.warning('%s watcher finished', self.kind) |
async def start(self):
"\n Start the reflection process!\n\n We'll do a blocking read of all resources first, so that we don't\n race with any operations that are checking the state of the pod\n store - such as polls. This should be called only once at the\n start of program initialization (when the singleton is being created),\n and not afterwards!\n "
if (self.watch_task and (not self.watch_task.done())):
raise RuntimeError('Task watching for resources is already running')
(await self._list_and_update())
self.watch_task = asyncio.create_task(self._watch_and_update()) | 7,907,563,787,778,749,000 | Start the reflection process!
We'll do a blocking read of all resources first, so that we don't
race with any operations that are checking the state of the pod
store - such as polls. This should be called only once at the
start of program initialization (when the singleton is being created),
and not afterwards! | kubespawner/reflector.py | start | choldgraf/kubespawner | python | async def start(self):
"\n Start the reflection process!\n\n We'll do a blocking read of all resources first, so that we don't\n race with any operations that are checking the state of the pod\n store - such as polls. This should be called only once at the\n start of program initialization (when the singleton is being created),\n and not afterwards!\n "
if (self.watch_task and (not self.watch_task.done())):
raise RuntimeError('Task watching for resources is already running')
(await self._list_and_update())
self.watch_task = asyncio.create_task(self._watch_and_update()) |
async def stop(self):
'\n Cleanly shut down the watch task.\n '
self._stopping = True
if (self.watch_task and (not self.watch_task.done())):
self.watch_task.cancel()
try:
timeout = 5
(await asyncio.wait_for(self.watch_task, timeout))
except asyncio.TimeoutError:
self.log.warning(f'Watch task did not finish in {timeout}s and was cancelled')
self.watch_task = None | -6,765,147,635,296,929,000 | Cleanly shut down the watch task. | kubespawner/reflector.py | stop | choldgraf/kubespawner | python | async def stop(self):
'\n \n '
self._stopping = True
if (self.watch_task and (not self.watch_task.done())):
self.watch_task.cancel()
try:
timeout = 5
(await asyncio.wait_for(self.watch_task, timeout))
except asyncio.TimeoutError:
self.log.warning(f'Watch task did not finish in {timeout}s and was cancelled')
self.watch_task = None |
def __init__(self, configuration):
'Initialize the model.\n '
super().__init__(configuration)
self.loss_names = ['segmentation']
self.network_names = ['unet']
self.netunet = UNet(1, 2)
self.netunet = self.netunet.to(self.device)
if self.is_train:
self.criterion_loss = torch.nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.netunet.parameters(), lr=configuration['lr'])
self.optimizers = [self.optimizer]
self.val_predictions = []
self.val_labels = []
self.val_images = [] | -4,904,474,162,502,732,000 | Initialize the model. | models/segmentation_model.py | __init__ | Semere-Gr/PyTorchProjectFramework | python | def __init__(self, configuration):
'\n '
super().__init__(configuration)
self.loss_names = ['segmentation']
self.network_names = ['unet']
self.netunet = UNet(1, 2)
self.netunet = self.netunet.to(self.device)
if self.is_train:
self.criterion_loss = torch.nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.netunet.parameters(), lr=configuration['lr'])
self.optimizers = [self.optimizer]
self.val_predictions = []
self.val_labels = []
self.val_images = [] |
def forward(self):
'Run forward pass.\n '
self.output = self.netunet(self.input) | 4,487,781,734,835,777,000 | Run forward pass. | models/segmentation_model.py | forward | Semere-Gr/PyTorchProjectFramework | python | def forward(self):
'\n '
self.output = self.netunet(self.input) |
def backward(self):
'Calculate losses; called in every training iteration.\n '
self.loss_segmentation = self.criterion_loss(self.output, self.label) | 830,833,094,205,316,900 | Calculate losses; called in every training iteration. | models/segmentation_model.py | backward | Semere-Gr/PyTorchProjectFramework | python | def backward(self):
'\n '
self.loss_segmentation = self.criterion_loss(self.output, self.label) |
def optimize_parameters(self):
'Calculate gradients and update network weights.\n '
self.loss_segmentation.backward()
self.optimizer.step()
self.optimizer.zero_grad()
torch.cuda.empty_cache() | -8,851,077,193,266,028,000 | Calculate gradients and update network weights. | models/segmentation_model.py | optimize_parameters | Semere-Gr/PyTorchProjectFramework | python | def optimize_parameters(self):
'\n '
self.loss_segmentation.backward()
self.optimizer.step()
self.optimizer.zero_grad()
torch.cuda.empty_cache() |
def _str_to_identifier(string):
'Convert a string to a valid Python identifier.'
return re.sub('\\W|^(?=\\d)', '_', string) | 6,501,756,464,600,183,000 | Convert a string to a valid Python identifier. | utils/test/test_tutorials.py | _str_to_identifier | ignaziopedone/qiskit-iqx-tutorials | python | def _str_to_identifier(string):
return re.sub('\\W|^(?=\\d)', '_', string) |
def create_test(filename):
'Return a new test function.'
def test_function(self):
self._run_notebook(filename)
return test_function | -7,282,264,453,090,514,000 | Return a new test function. | utils/test/test_tutorials.py | create_test | ignaziopedone/qiskit-iqx-tutorials | python | def create_test(filename):
def test_function(self):
self._run_notebook(filename)
return test_function |
@app.route((url_prefix + 'oauth2/clients/<client_id>'), methods=['GET'])
@auth_required
def oauth2_clients(client_id: str) -> Response:
'\n Return OAuth2 client applications\n\n :return:\n GET /ajax/oauth2/clients: list of OAuth2 clients\n '
client = next((c for c in oauth_clients.values() if (c.client_id == client_id)), None)
if (not client):
raise UnknownClientError()
return json_response(dict(id=client.client_id, name=client.name, description=client.description, icon=client.icon)) | 4,067,921,045,567,628,000 | Return OAuth2 client applications
:return:
GET /ajax/oauth2/clients: list of OAuth2 clients | afterglow_core/views/ajax_api/oauth2_clients.py | oauth2_clients | SkynetRTN/afterglow-access-server | python | @app.route((url_prefix + 'oauth2/clients/<client_id>'), methods=['GET'])
@auth_required
def oauth2_clients(client_id: str) -> Response:
'\n Return OAuth2 client applications\n\n :return:\n GET /ajax/oauth2/clients: list of OAuth2 clients\n '
client = next((c for c in oauth_clients.values() if (c.client_id == client_id)), None)
if (not client):
raise UnknownClientError()
return json_response(dict(id=client.client_id, name=client.name, description=client.description, icon=client.icon)) |
def pws_constants(t):
'Lookup-table for water vapor saturation pressure constants (A, m, Tn).'
if (t < (- 20)):
raise ValueError('Temperature out of range (-20 - 350°C')
if (t < 50):
return (6.116441, 7.591386, 240.7263)
if (t < 100):
return (6.004918, 7.337936, 229.3975)
if (t < 150):
return (5.856548, 7.27731, 225.1033)
if (t < 200):
return (6.002859, 7.290361, 227.1704)
return (9.980622, 7.388931, 263.1239) | 3,113,030,149,863,625,000 | Lookup-table for water vapor saturation pressure constants (A, m, Tn). | sht21_usermode.py | pws_constants | AmedeeBulle/collectd-python-plugins | python | def pws_constants(t):
if (t < (- 20)):
raise ValueError('Temperature out of range (-20 - 350°C')
if (t < 50):
return (6.116441, 7.591386, 240.7263)
if (t < 100):
return (6.004918, 7.337936, 229.3975)
if (t < 150):
return (5.856548, 7.27731, 225.1033)
if (t < 200):
return (6.002859, 7.290361, 227.1704)
return (9.980622, 7.388931, 263.1239) |
def pws(t):
'\n Calculate water vapor saturation pressure based on temperature (in hPa).\n\n P_{WS} = A \\cdot 10^{\\frac{m \\cdot T}{T + T_n}}\n\n '
(A, m, Tn) = pws_constants(t)
power = ((m * t) / (t + Tn))
return (A * (10 ** power)) | -7,582,722,841,005,355,000 | Calculate water vapor saturation pressure based on temperature (in hPa).
P_{WS} = A \cdot 10^{\frac{m \cdot T}{T + T_n}} | sht21_usermode.py | pws | AmedeeBulle/collectd-python-plugins | python | def pws(t):
'\n Calculate water vapor saturation pressure based on temperature (in hPa).\n\n P_{WS} = A \\cdot 10^{\\frac{m \\cdot T}{T + T_n}}\n\n '
(A, m, Tn) = pws_constants(t)
power = ((m * t) / (t + Tn))
return (A * (10 ** power)) |
def pw(t, rh):
'\n Calculate Pw (in hPa).\n\n P_W = P_{WS} \\cdot RH / 100\n\n '
return ((pws(t) * rh) / 100) | 5,758,262,469,975,820,000 | Calculate Pw (in hPa).
P_W = P_{WS} \cdot RH / 100 | sht21_usermode.py | pw | AmedeeBulle/collectd-python-plugins | python | def pw(t, rh):
'\n Calculate Pw (in hPa).\n\n P_W = P_{WS} \\cdot RH / 100\n\n '
return ((pws(t) * rh) / 100) |
def td(t, rh):
'\n Calculate the dew point (in °C).\n\n T_d = \\frac{T_n}{\\frac{m}{log_{10}\\left(\\frac{P_w}{A}\\right)} - 1}\n\n '
(A, m, Tn) = pws_constants(t)
Pw = pw(t, rh)
return (Tn / ((m / math.log((Pw / A), 10)) - 1)) | 7,101,251,171,650,572,000 | Calculate the dew point (in °C).
T_d = \frac{T_n}{\frac{m}{log_{10}\left(\frac{P_w}{A}\right)} - 1} | sht21_usermode.py | td | AmedeeBulle/collectd-python-plugins | python | def td(t, rh):
'\n Calculate the dew point (in °C).\n\n T_d = \\frac{T_n}{\\frac{m}{log_{10}\\left(\\frac{P_w}{A}\\right)} - 1}\n\n '
(A, m, Tn) = pws_constants(t)
Pw = pw(t, rh)
return (Tn / ((m / math.log((Pw / A), 10)) - 1)) |
def ah(t, rh):
'\n Calculate the absolute humidity (in g/m³).\n\n A = C \\cdot P_w / T\n\n '
C = 2.16679
Pw = pw(t, rh)
T = celsius_to_kelvin(t)
return ((C * (Pw * 100)) / T) | -6,017,293,510,570,832,000 | Calculate the absolute humidity (in g/m³).
A = C \cdot P_w / T | sht21_usermode.py | ah | AmedeeBulle/collectd-python-plugins | python | def ah(t, rh):
'\n Calculate the absolute humidity (in g/m³).\n\n A = C \\cdot P_w / T\n\n '
C = 2.16679
Pw = pw(t, rh)
T = celsius_to_kelvin(t)
return ((C * (Pw * 100)) / T) |
def labels_to_one_hot(labels, n_classes=(43 + 1)):
'Convert 1D array of labels to one hot representation\n\n Args:\n labels: 1D numpy array\n '
new_labels = np.zeros((n_classes,))
new_labels[labels] = 1
return new_labels | -3,730,193,699,893,287,000 | Convert 1D array of labels to one hot representation
Args:
labels: 1D numpy array | test_single.py | labels_to_one_hot | stevenwudi/CarND-Traffic-Sign-Classifier-Project | python | def labels_to_one_hot(labels, n_classes=(43 + 1)):
'Convert 1D array of labels to one hot representation\n\n Args:\n labels: 1D numpy array\n '
new_labels = np.zeros((n_classes,))
new_labels[labels] = 1
return new_labels |
def orga_events(request):
'Add data to all template contexts.'
context = {'settings': settings}
if (not request.path.startswith('/orga/')):
return {}
if ((not getattr(request, 'user', None)) or (not request.user.is_authenticated)):
return context
if (not getattr(request, 'event', None)):
context['nav_global'] = collect_signal(nav_global, {'sender': None, 'request': request})
return context
if getattr(request, 'event', None):
_nav_event = []
for (_, response) in nav_event.send_robust(request.event, request=request):
if isinstance(response, list):
_nav_event += response
else:
_nav_event.append(response)
warnings.warn('Please return a list in your nav_event signal receiver, not a dictionary.', DeprecationWarning)
context['nav_event'] = _nav_event
context['nav_settings'] = collect_signal(nav_event_settings, {'sender': request.event, 'request': request})
if ((not request.event.is_public) and request.event.settings.custom_domain and request.user.has_perm('cfp.view_event', request.event)):
child_session_key = f'child_session_{request.event.pk}'
child_session = request.session.get(child_session_key)
s = SessionStore()
if ((not child_session) or (not s.exists(child_session))):
s[f'pretalx_event_access_{request.event.pk}'] = request.session.session_key
s.create()
context['new_session'] = s.session_key
request.session[child_session_key] = s.session_key
request.session['event_access'] = True
else:
context['new_session'] = child_session
request.session['event_access'] = True
return context | 5,796,924,850,713,361,000 | Add data to all template contexts. | src/pretalx/orga/context_processors.py | orga_events | ThomasWaldmann/pretalx | python | def orga_events(request):
context = {'settings': settings}
if (not request.path.startswith('/orga/')):
return {}
if ((not getattr(request, 'user', None)) or (not request.user.is_authenticated)):
return context
if (not getattr(request, 'event', None)):
context['nav_global'] = collect_signal(nav_global, {'sender': None, 'request': request})
return context
if getattr(request, 'event', None):
_nav_event = []
for (_, response) in nav_event.send_robust(request.event, request=request):
if isinstance(response, list):
_nav_event += response
else:
_nav_event.append(response)
warnings.warn('Please return a list in your nav_event signal receiver, not a dictionary.', DeprecationWarning)
context['nav_event'] = _nav_event
context['nav_settings'] = collect_signal(nav_event_settings, {'sender': request.event, 'request': request})
if ((not request.event.is_public) and request.event.settings.custom_domain and request.user.has_perm('cfp.view_event', request.event)):
child_session_key = f'child_session_{request.event.pk}'
child_session = request.session.get(child_session_key)
s = SessionStore()
if ((not child_session) or (not s.exists(child_session))):
s[f'pretalx_event_access_{request.event.pk}'] = request.session.session_key
s.create()
context['new_session'] = s.session_key
request.session[child_session_key] = s.session_key
request.session['event_access'] = True
else:
context['new_session'] = child_session
request.session['event_access'] = True
return context |
def testTrack(self):
'Test Track'
pass | 7,473,533,764,582,402,000 | Test Track | test/test_track.py | testTrack | dgiacomo/mux-python | python | def testTrack(self):
pass |
async def test_default_supported_features(hass, mqtt_mock):
'Test that the correct supported features.'
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: DEFAULT_CONFIG}))
entity = hass.states.get('vacuum.mqtttest')
entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0)
assert (sorted(services_to_strings(entity_features, SERVICE_TO_STRING)) == sorted(['start', 'stop', 'return_home', 'battery', 'status', 'clean_spot'])) | -7,954,197,594,334,600,000 | Test that the correct supported features. | tests/components/mqtt/test_state_vacuum.py | test_default_supported_features | FuqiangSong/home-assistant | python | async def test_default_supported_features(hass, mqtt_mock):
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: DEFAULT_CONFIG}))
entity = hass.states.get('vacuum.mqtttest')
entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0)
assert (sorted(services_to_strings(entity_features, SERVICE_TO_STRING)) == sorted(['start', 'stop', 'return_home', 'battery', 'status', 'clean_spot'])) |
async def test_all_commands(hass, mqtt_mock):
'Test simple commands send to the vacuum.'
config = deepcopy(DEFAULT_CONFIG)
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
(await hass.services.async_call(DOMAIN, SERVICE_START, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'start', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_STOP, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'stop', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_PAUSE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'pause', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_LOCATE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'locate', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_CLEAN_SPOT, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'clean_spot', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_RETURN_TO_BASE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'return_to_base', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_set_fan_speed(hass, 'medium', 'vacuum.mqtttest'))
mqtt_mock.async_publish.assert_called_once_with('vacuum/set_fan_speed', 'medium', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', entity_id='vacuum.mqtttest'))
mqtt_mock.async_publish.assert_called_once_with('vacuum/send_command', '44 FE 93', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', {'key': 'value'}, entity_id='vacuum.mqtttest'))
assert (json.loads(mqtt_mock.async_publish.mock_calls[(- 1)][1][1]) == {'command': '44 FE 93', 'key': 'value'}) | 8,679,773,904,677,183,000 | Test simple commands send to the vacuum. | tests/components/mqtt/test_state_vacuum.py | test_all_commands | FuqiangSong/home-assistant | python | async def test_all_commands(hass, mqtt_mock):
config = deepcopy(DEFAULT_CONFIG)
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
(await hass.services.async_call(DOMAIN, SERVICE_START, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'start', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_STOP, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'stop', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_PAUSE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'pause', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_LOCATE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'locate', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_CLEAN_SPOT, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'clean_spot', 0, False)
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_RETURN_TO_BASE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, 'return_to_base', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_set_fan_speed(hass, 'medium', 'vacuum.mqtttest'))
mqtt_mock.async_publish.assert_called_once_with('vacuum/set_fan_speed', 'medium', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', entity_id='vacuum.mqtttest'))
mqtt_mock.async_publish.assert_called_once_with('vacuum/send_command', '44 FE 93', 0, False)
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', {'key': 'value'}, entity_id='vacuum.mqtttest'))
assert (json.loads(mqtt_mock.async_publish.mock_calls[(- 1)][1][1]) == {'command': '44 FE 93', 'key': 'value'}) |
async def test_commands_without_supported_features(hass, mqtt_mock):
'Test commands which are not supported by the vacuum.'
config = deepcopy(DEFAULT_CONFIG)
services = mqttvacuum.STRING_TO_SERVICE['status']
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(services, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
(await hass.services.async_call(DOMAIN, SERVICE_START, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_PAUSE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_STOP, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_RETURN_TO_BASE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_LOCATE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_CLEAN_SPOT, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await common.async_set_fan_speed(hass, 'medium', 'vacuum.mqtttest'))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', {'key': 'value'}, entity_id='vacuum.mqtttest'))
mqtt_mock.async_publish.assert_not_called() | 4,664,079,603,008,944,000 | Test commands which are not supported by the vacuum. | tests/components/mqtt/test_state_vacuum.py | test_commands_without_supported_features | FuqiangSong/home-assistant | python | async def test_commands_without_supported_features(hass, mqtt_mock):
config = deepcopy(DEFAULT_CONFIG)
services = mqttvacuum.STRING_TO_SERVICE['status']
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(services, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
(await hass.services.async_call(DOMAIN, SERVICE_START, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_PAUSE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_STOP, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_RETURN_TO_BASE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_LOCATE, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await hass.services.async_call(DOMAIN, SERVICE_CLEAN_SPOT, {'entity_id': ENTITY_MATCH_ALL}, blocking=True))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await common.async_set_fan_speed(hass, 'medium', 'vacuum.mqtttest'))
mqtt_mock.async_publish.assert_not_called()
mqtt_mock.async_publish.reset_mock()
(await common.async_send_command(hass, '44 FE 93', {'key': 'value'}, entity_id='vacuum.mqtttest'))
mqtt_mock.async_publish.assert_not_called() |
async def test_status(hass, mqtt_mock):
'Test status updates from the vacuum.'
config = deepcopy(DEFAULT_CONFIG)
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
message = '{\n "battery_level": 54,\n "state": "cleaning",\n "fan_speed": "max"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
assert (state.attributes.get(ATTR_FAN_SPEED) == 'max')
message = '{\n "battery_level": 61,\n "state": "docked",\n "fan_speed": "min"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_DOCKED)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-charging-60')
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 61)
assert (state.attributes.get(ATTR_FAN_SPEED) == 'min')
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) == ['min', 'medium', 'high', 'max']) | -3,601,749,714,720,768,000 | Test status updates from the vacuum. | tests/components/mqtt/test_state_vacuum.py | test_status | FuqiangSong/home-assistant | python | async def test_status(hass, mqtt_mock):
config = deepcopy(DEFAULT_CONFIG)
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
message = '{\n "battery_level": 54,\n "state": "cleaning",\n "fan_speed": "max"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
assert (state.attributes.get(ATTR_FAN_SPEED) == 'max')
message = '{\n "battery_level": 61,\n "state": "docked",\n "fan_speed": "min"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_DOCKED)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-charging-60')
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 61)
assert (state.attributes.get(ATTR_FAN_SPEED) == 'min')
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) == ['min', 'medium', 'high', 'max']) |
async def test_no_fan_vacuum(hass, mqtt_mock):
'Test status updates from the vacuum when fan is not supported.'
config = deepcopy(DEFAULT_CONFIG)
del config[mqttvacuum.CONF_FAN_SPEED_LIST]
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.DEFAULT_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
message = '{\n "battery_level": 54,\n "state": "cleaning"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_FAN_SPEED) is None)
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) is None)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
message = '{\n "battery_level": 54,\n "state": "cleaning",\n "fan_speed": "max"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_FAN_SPEED) is None)
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) is None)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
message = '{\n "battery_level": 61,\n "state": "docked"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_DOCKED)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-charging-60')
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 61) | -5,363,847,290,666,027,000 | Test status updates from the vacuum when fan is not supported. | tests/components/mqtt/test_state_vacuum.py | test_no_fan_vacuum | FuqiangSong/home-assistant | python | async def test_no_fan_vacuum(hass, mqtt_mock):
config = deepcopy(DEFAULT_CONFIG)
del config[mqttvacuum.CONF_FAN_SPEED_LIST]
config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings(mqttvacuum.DEFAULT_SERVICES, SERVICE_TO_STRING)
assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}))
message = '{\n "battery_level": 54,\n "state": "cleaning"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_FAN_SPEED) is None)
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) is None)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
message = '{\n "battery_level": 54,\n "state": "cleaning",\n "fan_speed": "max"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_CLEANING)
assert (state.attributes.get(ATTR_FAN_SPEED) is None)
assert (state.attributes.get(ATTR_FAN_SPEED_LIST) is None)
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 54)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
message = '{\n "battery_level": 61,\n "state": "docked"\n }'
async_fire_mqtt_message(hass, 'vacuum/state', message)
state = hass.states.get('vacuum.mqtttest')
assert (state.state == STATE_DOCKED)
assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-charging-60')
assert (state.attributes.get(ATTR_BATTERY_LEVEL) == 61) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.