body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@Issue(4213) @Skip(svntest.main.is_fs_type_fsx) def recover_old_empty(sbox): 'recover empty --compatible-version=1.3' sbox.build(create_wc=False, empty=True, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir)
-5,409,064,214,191,564,000
recover empty --compatible-version=1.3
subversion/tests/cmdline/svnadmin_tests.py
recover_old_empty
auycro/subversion
python
@Issue(4213) @Skip(svntest.main.is_fs_type_fsx) def recover_old_empty(sbox): sbox.build(create_wc=False, empty=True, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir)
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_keep_going(sbox): 'svnadmin verify --keep-going test' if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url B_url = (sbox.repo_url + '/B') C_url = (sbox.repo_url + '/C') svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', B_url) svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', C_url) r2 = fsfs_file(sbox.repo_dir, 'revs', '2') fp = open(r2, 'r+b') fp.write(b'inserting junk to corrupt the rev') fp.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', sbox.repo_dir) exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*', '.*Summary.*', '.*r2: E160004:.*', '.*r2: E160004:.*', '.*r3: E160004:.*', '.*r3: E160004:.*']) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', '.*Error verifying revision 3.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', 'svnadmin: E205012:.*'], False) if svntest.main.is_fs_log_addressing(): exp_err.insert(0, '.*Error verifying repository metadata.') exp_err.insert(1, 'svnadmin: E160004:.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): exp_out = svntest.verify.RegexListOutput(['.*Verifying metadata at revision 0.*']) else: exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.']) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying repository metadata.*') if svntest.main.is_fs_log_addressing(): exp_err = svntest.verify.RegexListOutput(['.*Error verifying repository metadata.', 'svnadmin: E160004:.*'], False) else: exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*'], False) if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--quiet', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): exp_err = svntest.verify.RegexListOutput(['.*Error verifying repository metadata.', 'svnadmin: E160004:.*'], False) else: exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*'], False) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", None, errput, None, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
-444,823,730,030,649,400
svnadmin verify --keep-going test
subversion/tests/cmdline/svnadmin_tests.py
verify_keep_going
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_keep_going(sbox): if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url B_url = (sbox.repo_url + '/B') C_url = (sbox.repo_url + '/C') svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', B_url) svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', C_url) r2 = fsfs_file(sbox.repo_dir, 'revs', '2') fp = open(r2, 'r+b') fp.write(b'inserting junk to corrupt the rev') fp.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', sbox.repo_dir) exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*', '.*Summary.*', '.*r2: E160004:.*', '.*r2: E160004:.*', '.*r3: E160004:.*', '.*r3: E160004:.*']) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', '.*Error verifying revision 3.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', 'svnadmin: E205012:.*'], False) if svntest.main.is_fs_log_addressing(): exp_err.insert(0, '.*Error verifying repository metadata.') exp_err.insert(1, 'svnadmin: E160004:.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): exp_out = svntest.verify.RegexListOutput(['.*Verifying metadata at revision 0.*']) else: exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.']) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying repository metadata.*') if svntest.main.is_fs_log_addressing(): exp_err = svntest.verify.RegexListOutput(['.*Error verifying repository metadata.', 'svnadmin: E160004:.*'], False) else: exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*'], False) if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--quiet', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): exp_err = svntest.verify.RegexListOutput(['.*Error verifying repository metadata.', 'svnadmin: E160004:.*'], False) else: exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*'], False) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", None, errput, None, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_keep_going_quiet(sbox): 'svnadmin verify --keep-going --quiet test' if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url B_url = (sbox.repo_url + '/B') C_url = (sbox.repo_url + '/C') svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', B_url) svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', C_url) r2 = fsfs_file(sbox.repo_dir, 'revs', '2') fp = open(r2, 'r+b') fp.write(b'inserting junk to corrupt the rev') fp.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', '--quiet', sbox.repo_dir) exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', '.*Error verifying revision 3.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', 'svnadmin: E205012:.*'], False) if svntest.main.is_fs_log_addressing(): exp_err.insert(0, '.*Error verifying repository metadata.') exp_err.insert(1, 'svnadmin: E160004:.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, None, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
-1,586,240,796,637,758,200
svnadmin verify --keep-going --quiet test
subversion/tests/cmdline/svnadmin_tests.py
verify_keep_going_quiet
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_keep_going_quiet(sbox): if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url B_url = (sbox.repo_url + '/B') C_url = (sbox.repo_url + '/C') svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', B_url) svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', C_url) r2 = fsfs_file(sbox.repo_dir, 'revs', '2') fp = open(r2, 'r+b') fp.write(b'inserting junk to corrupt the rev') fp.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', '--quiet', sbox.repo_dir) exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', '.*Error verifying revision 3.', 'svnadmin: E160004:.*', 'svnadmin: E160004:.*', 'svnadmin: E205012:.*'], False) if svntest.main.is_fs_log_addressing(): exp_err.insert(0, '.*Error verifying repository metadata.') exp_err.insert(1, 'svnadmin: E160004:.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, None, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_invalid_path_changes(sbox): 'detect invalid changed path list entries' if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url for r in range(2, 20): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', ((sbox.repo_url + '/B') + str(r))) set_changed_path_list(sbox, 2, b'_0.0.t1-1 add-dir false false /A\n\n') set_changed_path_list(sbox, 4, b'_0.0.t3-2 add-dir false false /C/X\n\n') set_changed_path_list(sbox, 6, b'_0.0.t5-2 delete-dir false false /C\n\n') set_changed_path_list(sbox, 8, b'_0.0.t7-2 delete-file false false /B3\n\n') set_changed_path_list(sbox, 10, b'_0.0.t9-2 add-dir false false /B10\n6 /B8\n') set_changed_path_list(sbox, 12, b'_0.0.t11-2 add-file false false /B12\n9 /B8\n') set_changed_path_list(sbox, 14, b'_0.0.t13-2 modify-file false false /A/D/H/foo\n\n') set_changed_path_list(sbox, 16, b'_0.0.t15-2 modify-file false false /B12\n\n') set_changed_path_list(sbox, 18, b'_0.0.t17-2 replace-file false false /A/D/H/foo\n\n') (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', sbox.repo_dir) exp_out1 = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 3.', '.*Verified revision 5.', '.*Verified revision 7.', '.*Verified revision 8.', '.*Verified revision 9.', '.*Verified revision 11.', '.*Verified revision 13.', '.*Verified revision 15.', '.*Verified revision 17.', '.*Verified revision 19.', '.*', '.*Summary.*', '.*r2: E160020:.*', '.*r2: E160020:.*', '.*r4: E160013:.*', '.*r6: E160013:.*', '.*r6: E160013:.*', '.*r10: E160013:.*', '.*r10: E160013:.*', '.*r12: E145001:.*', '.*r12: E145001:.*', '.*r14: E160013:.*', '.*r14: E160013:.*', '.*r16: E145001:.*', '.*r16: E145001:.*', '.*r18: E160013:.*', '.*r18: E160013:.*']) exp_err1 = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*', '.*Error verifying revision 4.', 'svnadmin: E160013:.*', '.*Error verifying revision 6.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 10.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 12.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 14.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 16.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 18.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', 'svnadmin: E205012:.*'], False) exp_out2 = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 3.', '.*Verified revision 5.', '.*Verified revision 7.', '.*Verified revision 8.', '.*Verified revision 9.', '.*Verified revision 11.', '.*Verified revision 13.', '.*Verified revision 15.', '.*Verified revision 17.', '.*Verified revision 19.', '.*', '.*Summary.*', '.*r2: E160020:.*', '.*r2: E160020:.*', '.*r4: E160013:.*', '.*r6: E160013:.*', '.*r10: E160013:.*', '.*r10: E160013:.*', '.*r12: E145001:.*', '.*r12: E145001:.*', '.*r14: E160013:.*', '.*r16: E145001:.*', '.*r16: E145001:.*', '.*r18: E160013:.*']) exp_err2 = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*', '.*Error verifying revision 4.', 'svnadmin: E160013:.*', '.*Error verifying revision 6.', 'svnadmin: E160013:.*', '.*Error verifying revision 10.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 12.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 14.', 'svnadmin: E160013:.*', '.*Error verifying revision 16.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 18.', 'svnadmin: E160013:.*', 'svnadmin: E205012:.*'], False) try: rev6_line = errput.index('* Error verifying revision 6.\n') rev10_line = errput.index('* Error verifying revision 10.\n') error_count = 0 for line in errput[(rev6_line + 1):rev10_line]: if ('svnadmin: E' in line): error_count = (error_count + 1) if (error_count == 1): exp_out = exp_out2 exp_err = exp_err2 else: exp_out = exp_out1 exp_err = exp_err1 except ValueError: exp_out = exp_out1 exp_err = exp_err1 if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (19 / svntest.main.options.fsfs_sharding)): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.']) exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*'], False) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (19 / svntest.main.options.fsfs_sharding)): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--quiet', sbox.repo_dir) exp_out = [] exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*'], False) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", output, errput, exp_out, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
5,820,727,438,573,355,000
detect invalid changed path list entries
subversion/tests/cmdline/svnadmin_tests.py
verify_invalid_path_changes
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def verify_invalid_path_changes(sbox): if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False) repo_url = sbox.repo_url for r in range(2, 20): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', 'log_msg', ((sbox.repo_url + '/B') + str(r))) set_changed_path_list(sbox, 2, b'_0.0.t1-1 add-dir false false /A\n\n') set_changed_path_list(sbox, 4, b'_0.0.t3-2 add-dir false false /C/X\n\n') set_changed_path_list(sbox, 6, b'_0.0.t5-2 delete-dir false false /C\n\n') set_changed_path_list(sbox, 8, b'_0.0.t7-2 delete-file false false /B3\n\n') set_changed_path_list(sbox, 10, b'_0.0.t9-2 add-dir false false /B10\n6 /B8\n') set_changed_path_list(sbox, 12, b'_0.0.t11-2 add-file false false /B12\n9 /B8\n') set_changed_path_list(sbox, 14, b'_0.0.t13-2 modify-file false false /A/D/H/foo\n\n') set_changed_path_list(sbox, 16, b'_0.0.t15-2 modify-file false false /B12\n\n') set_changed_path_list(sbox, 18, b'_0.0.t17-2 replace-file false false /A/D/H/foo\n\n') (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--keep-going', sbox.repo_dir) exp_out1 = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 3.', '.*Verified revision 5.', '.*Verified revision 7.', '.*Verified revision 8.', '.*Verified revision 9.', '.*Verified revision 11.', '.*Verified revision 13.', '.*Verified revision 15.', '.*Verified revision 17.', '.*Verified revision 19.', '.*', '.*Summary.*', '.*r2: E160020:.*', '.*r2: E160020:.*', '.*r4: E160013:.*', '.*r6: E160013:.*', '.*r6: E160013:.*', '.*r10: E160013:.*', '.*r10: E160013:.*', '.*r12: E145001:.*', '.*r12: E145001:.*', '.*r14: E160013:.*', '.*r14: E160013:.*', '.*r16: E145001:.*', '.*r16: E145001:.*', '.*r18: E160013:.*', '.*r18: E160013:.*']) exp_err1 = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*', '.*Error verifying revision 4.', 'svnadmin: E160013:.*', '.*Error verifying revision 6.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 10.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 12.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 14.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 16.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 18.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', 'svnadmin: E205012:.*'], False) exp_out2 = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 3.', '.*Verified revision 5.', '.*Verified revision 7.', '.*Verified revision 8.', '.*Verified revision 9.', '.*Verified revision 11.', '.*Verified revision 13.', '.*Verified revision 15.', '.*Verified revision 17.', '.*Verified revision 19.', '.*', '.*Summary.*', '.*r2: E160020:.*', '.*r2: E160020:.*', '.*r4: E160013:.*', '.*r6: E160013:.*', '.*r10: E160013:.*', '.*r10: E160013:.*', '.*r12: E145001:.*', '.*r12: E145001:.*', '.*r14: E160013:.*', '.*r16: E145001:.*', '.*r16: E145001:.*', '.*r18: E160013:.*']) exp_err2 = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*', '.*Error verifying revision 4.', 'svnadmin: E160013:.*', '.*Error verifying revision 6.', 'svnadmin: E160013:.*', '.*Error verifying revision 10.', 'svnadmin: E160013:.*', 'svnadmin: E160013:.*', '.*Error verifying revision 12.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 14.', 'svnadmin: E160013:.*', '.*Error verifying revision 16.', 'svnadmin: E145001:.*', 'svnadmin: E145001:.*', '.*Error verifying revision 18.', 'svnadmin: E160013:.*', 'svnadmin: E205012:.*'], False) try: rev6_line = errput.index('* Error verifying revision 6.\n') rev10_line = errput.index('* Error verifying revision 10.\n') error_count = 0 for line in errput[(rev6_line + 1):rev10_line]: if ('svnadmin: E' in line): error_count = (error_count + 1) if (error_count == 1): exp_out = exp_out2 exp_err = exp_err2 else: exp_out = exp_out1 exp_err = exp_err1 except ValueError: exp_out = exp_out1 exp_err = exp_err1 if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (19 / svntest.main.options.fsfs_sharding)): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) exp_out = svntest.verify.RegexListOutput(['.*Verified revision 0.', '.*Verified revision 1.']) exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*'], False) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (19 / svntest.main.options.fsfs_sharding)): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--quiet', sbox.repo_dir) exp_out = [] exp_err = svntest.verify.RegexListOutput(['.*Error verifying revision 2.', 'svnadmin: E160020:.*', 'svnadmin: E160020:.*'], False) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", output, errput, exp_out, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
def verify_denormalized_names(sbox): 'detect denormalized names and name collisions' sbox.build(create_wc=False, empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'normalization_check.dump') load_dumpstream(sbox, svntest.actions.load_dumpfile(dumpfile_location)) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--check-normalization', sbox.repo_dir) expected_output_regex_list = ['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 2.', '.*Verified revision 3.', "WARNING 0x0003: Duplicate representation of path 'A/.*/.*lpha'", '.*Verified revision 4.', '.*Verified revision 5.', "WARNING 0x0004: Duplicate representation of path '/Q/.*lpha' in svn:mergeinfo property of 'A/.*'", '.*Verified revision 6.', '.*Verified revision 7.'] if (svntest.main.fs_has_rep_sharing() and (not svntest.main.is_fs_type_bdb())): expected_output_regex_list.insert(0, '.*Verifying repository metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (7 / svntest.main.options.fsfs_sharding)): expected_output_regex_list.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): expected_output_regex_list.insert(0, '.* Verifying metadata at revision 0.*') exp_out = svntest.verify.RegexListOutput(expected_output_regex_list) exp_err = svntest.verify.ExpectedOutput([]) svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err)
8,407,033,995,025,627,000
detect denormalized names and name collisions
subversion/tests/cmdline/svnadmin_tests.py
verify_denormalized_names
auycro/subversion
python
def verify_denormalized_names(sbox): sbox.build(create_wc=False, empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'normalization_check.dump') load_dumpstream(sbox, svntest.actions.load_dumpfile(dumpfile_location)) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', '--check-normalization', sbox.repo_dir) expected_output_regex_list = ['.*Verified revision 0.', '.*Verified revision 1.', '.*Verified revision 2.', '.*Verified revision 3.', "WARNING 0x0003: Duplicate representation of path 'A/.*/.*lpha'", '.*Verified revision 4.', '.*Verified revision 5.', "WARNING 0x0004: Duplicate representation of path '/Q/.*lpha' in svn:mergeinfo property of 'A/.*'", '.*Verified revision 6.', '.*Verified revision 7.'] if (svntest.main.fs_has_rep_sharing() and (not svntest.main.is_fs_type_bdb())): expected_output_regex_list.insert(0, '.*Verifying repository metadata.*') if (svntest.main.options.fsfs_sharding is not None): for x in range(0, (7 / svntest.main.options.fsfs_sharding)): expected_output_regex_list.insert(0, '.*Verifying.*metadata.*') if svntest.main.is_fs_log_addressing(): expected_output_regex_list.insert(0, '.* Verifying metadata at revision 0.*') exp_out = svntest.verify.RegexListOutput(expected_output_regex_list) exp_err = svntest.verify.ExpectedOutput([]) svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err)
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_recover_old_non_empty(sbox): 'fsfs recover non-empty --compatible-version=1.3' sbox.build(create_wc=False, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir)
544,593,585,622,874,500
fsfs recover non-empty --compatible-version=1.3
subversion/tests/cmdline/svnadmin_tests.py
fsfs_recover_old_non_empty
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_recover_old_non_empty(sbox): sbox.build(create_wc=False, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir)
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_old_non_empty(sbox): 'fsfs hotcopy non-empty --compatible-version=1.3' sbox.build(create_wc=False, minor_version=3) (backup_dir, backup_url) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir)
-2,298,455,371,426,589,700
fsfs hotcopy non-empty --compatible-version=1.3
subversion/tests/cmdline/svnadmin_tests.py
fsfs_hotcopy_old_non_empty
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_old_non_empty(sbox): sbox.build(create_wc=False, minor_version=3) (backup_dir, backup_url) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir)
def load_ignore_dates(sbox): 'svnadmin load --ignore-dates' start_time = time.localtime() time.sleep(1) sbox.build(create_wc=False, empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dumpfile_skeleton = svntest.actions.load_dumpfile(dumpfile_location) load_dumpstream(sbox, dumpfile_skeleton, '--ignore-dates') svntest.actions.run_and_verify_svnlook(['6\n'], None, 'youngest', sbox.repo_dir) for rev in range(1, 6): (exit_code, output, errput) = svntest.main.run_svnlook('date', '-r', rev, sbox.repo_dir) if errput: raise SVNUnexpectedStderr(errput) rev_time = time.strptime(output[0].rstrip()[:19], '%Y-%m-%d %H:%M:%S') if (rev_time < start_time): raise svntest.Failure(('Revision time for r%d older than load start time\n rev_time: %s\n start_time: %s' % (rev, str(rev_time), str(start_time))))
7,302,272,163,203,743,000
svnadmin load --ignore-dates
subversion/tests/cmdline/svnadmin_tests.py
load_ignore_dates
auycro/subversion
python
def load_ignore_dates(sbox): start_time = time.localtime() time.sleep(1) sbox.build(create_wc=False, empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dumpfile_skeleton = svntest.actions.load_dumpfile(dumpfile_location) load_dumpstream(sbox, dumpfile_skeleton, '--ignore-dates') svntest.actions.run_and_verify_svnlook(['6\n'], None, 'youngest', sbox.repo_dir) for rev in range(1, 6): (exit_code, output, errput) = svntest.main.run_svnlook('date', '-r', rev, sbox.repo_dir) if errput: raise SVNUnexpectedStderr(errput) rev_time = time.strptime(output[0].rstrip()[:19], '%Y-%m-%d %H:%M:%S') if (rev_time < start_time): raise svntest.Failure(('Revision time for r%d older than load start time\n rev_time: %s\n start_time: %s' % (rev, str(rev_time), str(start_time))))
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_old_with_id_changes(sbox): 'fsfs hotcopy old with node-id and copy-id changes' sbox.build(create_wc=True, minor_version=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r1') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_propset('foo', 'bar', 'A/mu') sbox.simple_commit(message='r2') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r2') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_copy('A/B/E', 'A/B/E1') sbox.simple_commit(message='r3') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r3') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_rm('A/D/gamma') sbox.simple_commit(message='r4') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r4') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_add_text('This is the replaced file.\n', 'A/D/gamma') sbox.simple_commit(message='r5') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r5') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_add_text('This is an entirely new file.\n', 'A/C/mu1') sbox.simple_commit(message='r6') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r6') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_append('A/mu', 'This is change in the existing file.\n') sbox.simple_commit(message='r7') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r7') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir)
-3,939,098,385,355,646,000
fsfs hotcopy old with node-id and copy-id changes
subversion/tests/cmdline/svnadmin_tests.py
fsfs_hotcopy_old_with_id_changes
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_old_with_id_changes(sbox): sbox.build(create_wc=True, minor_version=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r1') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_propset('foo', 'bar', 'A/mu') sbox.simple_commit(message='r2') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r2') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_copy('A/B/E', 'A/B/E1') sbox.simple_commit(message='r3') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r3') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_rm('A/D/gamma') sbox.simple_commit(message='r4') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r4') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_add_text('This is the replaced file.\n', 'A/D/gamma') sbox.simple_commit(message='r5') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r5') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_add_text('This is an entirely new file.\n', 'A/C/mu1') sbox.simple_commit(message='r6') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r6') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir) sbox.simple_append('A/mu', 'This is change in the existing file.\n') sbox.simple_commit(message='r7') (backup_dir, backup_url) = sbox.add_repo_path('backup-after-r7') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) check_hotcopy_fsfs(sbox.repo_dir, backup_dir) check_hotcopy_fsfs(sbox.repo_dir, inc_backup_dir)
@SkipUnless(svntest.main.fs_has_pack) def verify_packed(sbox): 'verify packed with small shards' sbox.build() patch_format(sbox.repo_dir, shard_size=2) sbox.simple_append('iota', 'Line.\n') sbox.simple_append('A/D/gamma', 'Another line.\n') sbox.simple_commit(message='r2') sbox.simple_propset('foo', 'bar', 'iota') sbox.simple_propset('foo', 'baz', 'A/mu') sbox.simple_commit(message='r3') sbox.simple_rm('A/C') sbox.simple_copy('A/B/E', 'A/B/E1') sbox.simple_move('A/mu', 'A/B/mu') sbox.simple_commit(message='r4') sbox.simple_propdel('foo', 'A/B/mu') sbox.simple_commit(message='r5') if (svntest.main.is_fs_type_fsfs and svntest.main.options.fsfs_packing): pass else: expected_output = ['Packing revisions in shard 0...done.\n', 'Packing revisions in shard 1...done.\n', 'Packing revisions in shard 2...done.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'pack', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): expected_output = ['* Verifying metadata at revision 0 ...\n', '* Verifying metadata at revision 2 ...\n', '* Verifying metadata at revision 4 ...\n', '* Verifying repository metadata ...\n', '* Verified revision 0.\n', '* Verified revision 1.\n', '* Verified revision 2.\n', '* Verified revision 3.\n', '* Verified revision 4.\n', '* Verified revision 5.\n'] else: expected_output = ['* Verifying repository metadata ...\n', '* Verified revision 0.\n', '* Verified revision 1.\n', '* Verified revision 2.\n', '* Verified revision 3.\n', '* Verified revision 4.\n', '* Verified revision 5.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'verify', sbox.repo_dir)
-3,766,254,840,301,204,000
verify packed with small shards
subversion/tests/cmdline/svnadmin_tests.py
verify_packed
auycro/subversion
python
@SkipUnless(svntest.main.fs_has_pack) def verify_packed(sbox): sbox.build() patch_format(sbox.repo_dir, shard_size=2) sbox.simple_append('iota', 'Line.\n') sbox.simple_append('A/D/gamma', 'Another line.\n') sbox.simple_commit(message='r2') sbox.simple_propset('foo', 'bar', 'iota') sbox.simple_propset('foo', 'baz', 'A/mu') sbox.simple_commit(message='r3') sbox.simple_rm('A/C') sbox.simple_copy('A/B/E', 'A/B/E1') sbox.simple_move('A/mu', 'A/B/mu') sbox.simple_commit(message='r4') sbox.simple_propdel('foo', 'A/B/mu') sbox.simple_commit(message='r5') if (svntest.main.is_fs_type_fsfs and svntest.main.options.fsfs_packing): pass else: expected_output = ['Packing revisions in shard 0...done.\n', 'Packing revisions in shard 1...done.\n', 'Packing revisions in shard 2...done.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'pack', sbox.repo_dir) if svntest.main.is_fs_log_addressing(): expected_output = ['* Verifying metadata at revision 0 ...\n', '* Verifying metadata at revision 2 ...\n', '* Verifying metadata at revision 4 ...\n', '* Verifying repository metadata ...\n', '* Verified revision 0.\n', '* Verified revision 1.\n', '* Verified revision 2.\n', '* Verified revision 3.\n', '* Verified revision 4.\n', '* Verified revision 5.\n'] else: expected_output = ['* Verifying repository metadata ...\n', '* Verified revision 0.\n', '* Verified revision 1.\n', '* Verified revision 2.\n', '* Verified revision 3.\n', '* Verified revision 4.\n', '* Verified revision 5.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'verify', sbox.repo_dir)
def freeze_freeze(sbox): 'svnadmin freeze svnadmin freeze (some-cmd)' sbox.build(create_wc=False, read_only=True) (second_repo_dir, _) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, second_repo_dir) if (svntest.main.is_fs_type_fsx() or (svntest.main.is_fs_type_fsfs() and (svntest.main.options.server_minor_version < 9))): svntest.actions.run_and_verify_svnadmin([], None, 'setuuid', second_repo_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'freeze', '--', sbox.repo_dir, svntest.main.svnadmin_binary, 'freeze', '--', second_repo_dir, sys.executable, '-c', 'True') arg_file = sbox.get_tempname() svntest.main.file_write(arg_file, ('%s\n%s\n' % (sbox.repo_dir, second_repo_dir))) svntest.actions.run_and_verify_svnadmin(None, [], 'freeze', '-F', arg_file, '--', sys.executable, '-c', 'True')
-2,789,566,124,145,146,000
svnadmin freeze svnadmin freeze (some-cmd)
subversion/tests/cmdline/svnadmin_tests.py
freeze_freeze
auycro/subversion
python
def freeze_freeze(sbox): sbox.build(create_wc=False, read_only=True) (second_repo_dir, _) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(None, [], 'hotcopy', sbox.repo_dir, second_repo_dir) if (svntest.main.is_fs_type_fsx() or (svntest.main.is_fs_type_fsfs() and (svntest.main.options.server_minor_version < 9))): svntest.actions.run_and_verify_svnadmin([], None, 'setuuid', second_repo_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'freeze', '--', sbox.repo_dir, svntest.main.svnadmin_binary, 'freeze', '--', second_repo_dir, sys.executable, '-c', 'True') arg_file = sbox.get_tempname() svntest.main.file_write(arg_file, ('%s\n%s\n' % (sbox.repo_dir, second_repo_dir))) svntest.actions.run_and_verify_svnadmin(None, [], 'freeze', '-F', arg_file, '--', sys.executable, '-c', 'True')
def verify_metadata_only(sbox): 'verify metadata only' sbox.build(create_wc=False) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir, '--metadata-only') if errput: raise SVNUnexpectedStderr(errput) if svntest.main.is_fs_log_addressing(): svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', ['* Verifying metadata at revision 0 ...\n', '* Verifying repository metadata ...\n'], output) elif (svntest.main.fs_has_rep_sharing() and (not svntest.main.is_fs_type_bdb())): svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', ['* Verifying repository metadata ...\n'], output) else: svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', [], output)
7,340,750,279,070,634,000
verify metadata only
subversion/tests/cmdline/svnadmin_tests.py
verify_metadata_only
auycro/subversion
python
def verify_metadata_only(sbox): sbox.build(create_wc=False) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir, '--metadata-only') if errput: raise SVNUnexpectedStderr(errput) if svntest.main.is_fs_log_addressing(): svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', ['* Verifying metadata at revision 0 ...\n', '* Verifying repository metadata ...\n'], output) elif (svntest.main.fs_has_rep_sharing() and (not svntest.main.is_fs_type_bdb())): svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', ['* Verifying repository metadata ...\n'], output) else: svntest.verify.compare_and_display_lines("Unexpected error while running 'svnadmin verify'.", 'STDOUT', [], output)
@Skip(svntest.main.is_fs_type_bdb) def verify_quickly(sbox): 'verify quickly using metadata' sbox.build(create_wc=False) rev_file = open(fsfs_file(sbox.repo_dir, 'revs', '1'), 'r+b') rev_file.seek(8) rev_file.write(b'#') rev_file.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir, '--metadata-only') if svntest.main.is_fs_log_addressing(): exp_out = svntest.verify.RegexListOutput([]) exp_err = svntest.verify.RegexListOutput(['svnadmin: E160004:.*'], False) else: exp_out = svntest.verify.RegexListOutput([]) exp_err = svntest.verify.RegexListOutput([]) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
-3,595,489,181,338,386,000
verify quickly using metadata
subversion/tests/cmdline/svnadmin_tests.py
verify_quickly
auycro/subversion
python
@Skip(svntest.main.is_fs_type_bdb) def verify_quickly(sbox): sbox.build(create_wc=False) rev_file = open(fsfs_file(sbox.repo_dir, 'revs', '1'), 'r+b') rev_file.seek(8) rev_file.write(b'#') rev_file.close() (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir, '--metadata-only') if svntest.main.is_fs_log_addressing(): exp_out = svntest.verify.RegexListOutput([]) exp_err = svntest.verify.RegexListOutput(['svnadmin: E160004:.*'], False) else: exp_out = svntest.verify.RegexListOutput([]) exp_err = svntest.verify.RegexListOutput([]) if svntest.main.fs_has_rep_sharing(): exp_out.insert(0, '.*Verifying.*metadata.*') if svntest.verify.verify_outputs("Unexpected error while running 'svnadmin verify'.", output, errput, exp_out, exp_err): raise svntest.Failure svntest.main.safe_rmtree(sbox.repo_dir, True)
@SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.fs_has_pack) def fsfs_hotcopy_progress(sbox): 'hotcopy progress reporting' if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False, empty=True) patch_format(sbox.repo_dir, shard_size=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') expected_full = ['* Copied revision 0.\n'] expected_incremental = ['* Copied revision 0.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-0') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(3): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-1') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'pack', sbox.repo_dir) expected_full = ['* Copied revisions from 0 to 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revisions from 0 to 2.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-2') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(4, 6): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) svntest.actions.run_and_verify_svnadmin(None, [], 'pack', sbox.repo_dir) for i in range(6, 8): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revisions from 0 to 2.\n', '* Copied revisions from 3 to 5.\n', '* Copied revision 6.\n', '* Copied revision 7.\n'] expected_incremental = ['* Copied revisions from 3 to 5.\n', '* Copied revision 6.\n', '* Copied revision 7.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-3') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir)
-1,912,052,797,931,870,700
hotcopy progress reporting
subversion/tests/cmdline/svnadmin_tests.py
fsfs_hotcopy_progress
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.fs_has_pack) def fsfs_hotcopy_progress(sbox): if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False, empty=True) patch_format(sbox.repo_dir, shard_size=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') expected_full = ['* Copied revision 0.\n'] expected_incremental = ['* Copied revision 0.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-0') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(3): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-1') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) svntest.actions.run_and_verify_svnadmin(None, [], 'pack', sbox.repo_dir) expected_full = ['* Copied revisions from 0 to 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revisions from 0 to 2.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-2') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(4, 6): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) svntest.actions.run_and_verify_svnadmin(None, [], 'pack', sbox.repo_dir) for i in range(6, 8): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revisions from 0 to 2.\n', '* Copied revisions from 3 to 5.\n', '* Copied revision 6.\n', '* Copied revision 7.\n'] expected_incremental = ['* Copied revisions from 3 to 5.\n', '* Copied revision 6.\n', '* Copied revision 7.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-3') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir)
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_progress_with_revprop_changes(sbox): 'incremental hotcopy progress with changed revprops' if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False, empty=True) for i in range(6): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_output = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n', '* Copied revision 4.\n', '* Copied revision 5.\n', '* Copied revision 6.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(expected_output, [], 'hotcopy', sbox.repo_dir, backup_dir) revprop_file = sbox.get_tempname() svntest.main.file_write(revprop_file, 'Modified log message.') for i in [1, 3, 6]: svntest.actions.run_and_verify_svnadmin(None, [], 'setrevprop', sbox.repo_dir, '-r', i, 'svn:log', revprop_file) expected_output = ['* Copied revision 1.\n', '* Copied revision 3.\n', '* Copied revision 6.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'hotcopy', '--incremental', sbox.repo_dir, backup_dir)
-8,229,865,375,370,251,000
incremental hotcopy progress with changed revprops
subversion/tests/cmdline/svnadmin_tests.py
fsfs_hotcopy_progress_with_revprop_changes
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_progress_with_revprop_changes(sbox): if svntest.main.options.fsfs_packing: raise svntest.Skip('fsfs packing set') sbox.build(create_wc=False, empty=True) for i in range(6): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_output = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n', '* Copied revision 4.\n', '* Copied revision 5.\n', '* Copied revision 6.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup') svntest.actions.run_and_verify_svnadmin(expected_output, [], 'hotcopy', sbox.repo_dir, backup_dir) revprop_file = sbox.get_tempname() svntest.main.file_write(revprop_file, 'Modified log message.') for i in [1, 3, 6]: svntest.actions.run_and_verify_svnadmin(None, [], 'setrevprop', sbox.repo_dir, '-r', i, 'svn:log', revprop_file) expected_output = ['* Copied revision 1.\n', '* Copied revision 3.\n', '* Copied revision 6.\n'] svntest.actions.run_and_verify_svnadmin(expected_output, [], 'hotcopy', '--incremental', sbox.repo_dir, backup_dir)
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_progress_old(sbox): 'hotcopy --compatible-version=1.3 progress' sbox.build(create_wc=False, empty=True, minor_version=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') expected_full = ['* Copied revision 0.\n'] expected_incremental = ['* Copied revision 0.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-0') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(3): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-1') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir)
-878,062,420,884,698,800
hotcopy --compatible-version=1.3 progress
subversion/tests/cmdline/svnadmin_tests.py
fsfs_hotcopy_progress_old
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def fsfs_hotcopy_progress_old(sbox): sbox.build(create_wc=False, empty=True, minor_version=3) (inc_backup_dir, inc_backup_url) = sbox.add_repo_path('incremental-backup') expected_full = ['* Copied revision 0.\n'] expected_incremental = ['* Copied revision 0.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-0') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir) for i in range(3): svntest.actions.run_and_verify_svn(None, [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + ('/dir-%i' % i))) expected_full = ['* Copied revision 0.\n', '* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] expected_incremental = ['* Copied revision 1.\n', '* Copied revision 2.\n', '* Copied revision 3.\n'] (backup_dir, backup_url) = sbox.add_repo_path('backup-1') svntest.actions.run_and_verify_svnadmin(expected_full, [], 'hotcopy', sbox.repo_dir, backup_dir) svntest.actions.run_and_verify_svnadmin(expected_incremental, [], 'hotcopy', '--incremental', sbox.repo_dir, inc_backup_dir)
@SkipUnless(svntest.main.fs_has_unique_freeze) def freeze_same_uuid(sbox): 'freeze multiple repositories with same UUID' sbox.build(create_wc=False) (first_repo_dir, _) = sbox.add_repo_path('first') (second_repo_dir, _) = sbox.add_repo_path('second') svntest.main.create_repos(first_repo_dir) svntest.main.create_repos(second_repo_dir) dump_path = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dump_contents = open(dump_path, 'rb').readlines() svntest.actions.run_and_verify_load(first_repo_dir, dump_contents) svntest.actions.run_and_verify_load(second_repo_dir, dump_contents) arg_file = sbox.get_tempname() svntest.main.file_write(arg_file, ('%s\n%s\n' % (first_repo_dir, second_repo_dir))) svntest.actions.run_and_verify_svnadmin(None, None, 'freeze', '-F', arg_file, '--', sys.executable, '-c', 'True')
-594,798,748,947,338,800
freeze multiple repositories with same UUID
subversion/tests/cmdline/svnadmin_tests.py
freeze_same_uuid
auycro/subversion
python
@SkipUnless(svntest.main.fs_has_unique_freeze) def freeze_same_uuid(sbox): sbox.build(create_wc=False) (first_repo_dir, _) = sbox.add_repo_path('first') (second_repo_dir, _) = sbox.add_repo_path('second') svntest.main.create_repos(first_repo_dir) svntest.main.create_repos(second_repo_dir) dump_path = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dump_contents = open(dump_path, 'rb').readlines() svntest.actions.run_and_verify_load(first_repo_dir, dump_contents) svntest.actions.run_and_verify_load(second_repo_dir, dump_contents) arg_file = sbox.get_tempname() svntest.main.file_write(arg_file, ('%s\n%s\n' % (first_repo_dir, second_repo_dir))) svntest.actions.run_and_verify_svnadmin(None, None, 'freeze', '-F', arg_file, '--', sys.executable, '-c', 'True')
@Skip(svntest.main.is_fs_type_fsx) def upgrade(sbox): 'upgrade --compatible-version=1.3' sbox.build(create_wc=False, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'upgrade', sbox.repo_dir) svntest.actions.run_and_verify_svn(['Committing transaction...\n', 'Committed revision 2.\n'], [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + '/dir'))
-4,504,573,146,459,374,000
upgrade --compatible-version=1.3
subversion/tests/cmdline/svnadmin_tests.py
upgrade
auycro/subversion
python
@Skip(svntest.main.is_fs_type_fsx) def upgrade(sbox): sbox.build(create_wc=False, minor_version=3) svntest.actions.run_and_verify_svnadmin(None, [], 'upgrade', sbox.repo_dir) svntest.actions.run_and_verify_svn(['Committing transaction...\n', 'Committed revision 2.\n'], [], 'mkdir', '-m', svntest.main.make_log_msg(), (sbox.repo_url + '/dir'))
def load_txdelta(sbox): 'exercising svn_txdelta_target on BDB' sbox.build(empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'load_txdelta.dump.gz') dumpfile = gzip.open(dumpfile_location, 'rb').readlines() load_dumpstream(sbox, dumpfile) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) if errput: raise SVNUnexpectedStderr(errput) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", None, output, None, '.*Verified revision *'): raise svntest.Failure
-2,468,967,267,577,584,600
exercising svn_txdelta_target on BDB
subversion/tests/cmdline/svnadmin_tests.py
load_txdelta
auycro/subversion
python
def load_txdelta(sbox): sbox.build(empty=True) dumpfile_location = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'load_txdelta.dump.gz') dumpfile = gzip.open(dumpfile_location, 'rb').readlines() load_dumpstream(sbox, dumpfile) (exit_code, output, errput) = svntest.main.run_svnadmin('verify', sbox.repo_dir) if errput: raise SVNUnexpectedStderr(errput) if svntest.verify.verify_outputs("Output of 'svnadmin verify' is unexpected.", None, output, None, '.*Verified revision *'): raise svntest.Failure
@Issues(4563) def load_no_svndate_r0(sbox): 'load without svn:date on r0' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svnlook([' svn:date\n'], [], 'proplist', '--revprop', '-r0', sbox.repo_dir) dump_old = [b'SVN-fs-dump-format-version: 2\n', b'\n', b'UUID: bf52886d-358d-4493-a414-944a6e5ad4f5\n', b'\n', b'Revision-number: 0\n', b'Prop-content-length: 10\n', b'Content-length: 10\n', b'\n', b'PROPS-END\n', b'\n'] svntest.actions.run_and_verify_load(sbox.repo_dir, dump_old) svntest.actions.run_and_verify_svnlook([], [], 'proplist', '--revprop', '-r0', sbox.repo_dir)
-9,160,021,234,037,082,000
load without svn:date on r0
subversion/tests/cmdline/svnadmin_tests.py
load_no_svndate_r0
auycro/subversion
python
@Issues(4563) def load_no_svndate_r0(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svnlook([' svn:date\n'], [], 'proplist', '--revprop', '-r0', sbox.repo_dir) dump_old = [b'SVN-fs-dump-format-version: 2\n', b'\n', b'UUID: bf52886d-358d-4493-a414-944a6e5ad4f5\n', b'\n', b'Revision-number: 0\n', b'Prop-content-length: 10\n', b'Content-length: 10\n', b'\n', b'PROPS-END\n', b'\n'] svntest.actions.run_and_verify_load(sbox.repo_dir, dump_old) svntest.actions.run_and_verify_svnlook([], [], 'proplist', '--revprop', '-r0', sbox.repo_dir)
@SkipUnless(svntest.main.is_fs_type_fsfs) def hotcopy_read_only(sbox): "'svnadmin hotcopy' a read-only source repository" sbox.build() svntest.main.chmod_tree(sbox.repo_dir, 0, svntest.main.S_ALL_WRITE) (backup_dir, backup_url) = sbox.add_repo_path('backup') (exit_code, output, errput) = svntest.main.run_svnadmin('hotcopy', sbox.repo_dir, backup_dir) svntest.main.chmod_tree(sbox.repo_dir, svntest.main.S_ALL_WRITE, svntest.main.S_ALL_WRITE) if errput: logger.warn('Error: hotcopy failed') raise SVNUnexpectedStderr(errput)
-8,641,223,759,628,086,000
'svnadmin hotcopy' a read-only source repository
subversion/tests/cmdline/svnadmin_tests.py
hotcopy_read_only
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) def hotcopy_read_only(sbox): sbox.build() svntest.main.chmod_tree(sbox.repo_dir, 0, svntest.main.S_ALL_WRITE) (backup_dir, backup_url) = sbox.add_repo_path('backup') (exit_code, output, errput) = svntest.main.run_svnadmin('hotcopy', sbox.repo_dir, backup_dir) svntest.main.chmod_tree(sbox.repo_dir, svntest.main.S_ALL_WRITE, svntest.main.S_ALL_WRITE) if errput: logger.warn('Error: hotcopy failed') raise SVNUnexpectedStderr(errput)
@SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.fs_has_pack) def fsfs_pack_non_sharded(sbox): "'svnadmin pack' on a non-sharded repository" sbox.build(create_wc=False, minor_version=min(svntest.main.options.server_minor_version, 3)) if is_sharded(sbox.repo_dir): raise svntest.Skip('sharded pre-cooked repository') svntest.actions.run_and_verify_svnadmin(None, [], 'upgrade', sbox.repo_dir) svntest.actions.run_and_verify_svnadmin(['svnadmin: Warning - this repository is not sharded. Packing has no effect.\n'], [], 'pack', sbox.repo_dir)
3,323,902,558,173,068,000
'svnadmin pack' on a non-sharded repository
subversion/tests/cmdline/svnadmin_tests.py
fsfs_pack_non_sharded
auycro/subversion
python
@SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.fs_has_pack) def fsfs_pack_non_sharded(sbox): sbox.build(create_wc=False, minor_version=min(svntest.main.options.server_minor_version, 3)) if is_sharded(sbox.repo_dir): raise svntest.Skip('sharded pre-cooked repository') svntest.actions.run_and_verify_svnadmin(None, [], 'upgrade', sbox.repo_dir) svntest.actions.run_and_verify_svnadmin(['svnadmin: Warning - this repository is not sharded. Packing has no effect.\n'], [], 'pack', sbox.repo_dir)
def load_revprops(sbox): 'svnadmin load-revprops' sbox.build(create_wc=False, empty=True) dump_path = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dump_contents = open(dump_path, 'rb').readlines() load_and_verify_dumpstream(sbox, None, [], None, False, dump_contents) svntest.actions.run_and_verify_svnlook(['Initial setup...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) input_file = sbox.get_tempname() svntest.main.file_write(input_file, 'Modified log message...\n') svntest.actions.run_and_verify_svnadmin([], [], 'setlog', '--bypass-hooks', '-r1', sbox.repo_dir, input_file) svntest.actions.run_and_verify_svnlook(['Modified log message...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) svntest.main.run_command_stdin(svntest.main.svnadmin_binary, None, 0, True, dump_contents, 'load-revprops', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(['Initial setup...\n', '\n'], [], 'log', '-r1', sbox.repo_dir)
8,441,304,003,097,096,000
svnadmin load-revprops
subversion/tests/cmdline/svnadmin_tests.py
load_revprops
auycro/subversion
python
def load_revprops(sbox): sbox.build(create_wc=False, empty=True) dump_path = os.path.join(os.path.dirname(sys.argv[0]), 'svnadmin_tests_data', 'skeleton_repos.dump') dump_contents = open(dump_path, 'rb').readlines() load_and_verify_dumpstream(sbox, None, [], None, False, dump_contents) svntest.actions.run_and_verify_svnlook(['Initial setup...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) input_file = sbox.get_tempname() svntest.main.file_write(input_file, 'Modified log message...\n') svntest.actions.run_and_verify_svnadmin([], [], 'setlog', '--bypass-hooks', '-r1', sbox.repo_dir, input_file) svntest.actions.run_and_verify_svnlook(['Modified log message...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) svntest.main.run_command_stdin(svntest.main.svnadmin_binary, None, 0, True, dump_contents, 'load-revprops', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(['Initial setup...\n', '\n'], [], 'log', '-r1', sbox.repo_dir)
def dump_revprops(sbox): 'svnadmin dump-revprops' sbox.build(create_wc=False) (exit_code, dump_contents, errput) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump-revprops', '-q', sbox.repo_dir) for line in dump_contents: if (line.find(b'Node-path: ') > (- 1)): logger.warn('Error: path change found in revprops-only dump.') raise svntest.Failure (exit_code, log_msg, errput) = svntest.actions.run_and_verify_svnlook(None, [], 'log', '-r1', sbox.repo_dir) input_file = sbox.get_tempname() svntest.main.file_write(input_file, 'Modified log message...\n') svntest.actions.run_and_verify_svnadmin([], [], 'setlog', '--bypass-hooks', '-r1', sbox.repo_dir, input_file) svntest.actions.run_and_verify_svnlook(['Modified log message...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) svntest.main.run_command_stdin(svntest.main.svnadmin_binary, None, 0, True, dump_contents, 'load-revprops', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(log_msg, [], 'log', '-r1', sbox.repo_dir)
8,094,951,945,586,859,000
svnadmin dump-revprops
subversion/tests/cmdline/svnadmin_tests.py
dump_revprops
auycro/subversion
python
def dump_revprops(sbox): sbox.build(create_wc=False) (exit_code, dump_contents, errput) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump-revprops', '-q', sbox.repo_dir) for line in dump_contents: if (line.find(b'Node-path: ') > (- 1)): logger.warn('Error: path change found in revprops-only dump.') raise svntest.Failure (exit_code, log_msg, errput) = svntest.actions.run_and_verify_svnlook(None, [], 'log', '-r1', sbox.repo_dir) input_file = sbox.get_tempname() svntest.main.file_write(input_file, 'Modified log message...\n') svntest.actions.run_and_verify_svnadmin([], [], 'setlog', '--bypass-hooks', '-r1', sbox.repo_dir, input_file) svntest.actions.run_and_verify_svnlook(['Modified log message...\n', '\n'], [], 'log', '-r1', sbox.repo_dir) svntest.main.run_command_stdin(svntest.main.svnadmin_binary, None, 0, True, dump_contents, 'load-revprops', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(log_msg, [], 'log', '-r1', sbox.repo_dir)
@XFail(svntest.main.is_fs_type_fsx) @Issue(4598) def dump_no_op_change(sbox): 'svnadmin dump with no-op changes' sbox.build(create_wc=False, empty=True) empty_file = sbox.get_tempname() svntest.main.file_write(empty_file, '') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', '-r2', sbox.repo_url) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', '-r2', sbox2.repo_url) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', (sbox.repo_url + '/bar')) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', (sbox2.repo_url + '/bar'))
4,759,590,128,040,377,000
svnadmin dump with no-op changes
subversion/tests/cmdline/svnadmin_tests.py
dump_no_op_change
auycro/subversion
python
@XFail(svntest.main.is_fs_type_fsx) @Issue(4598) def dump_no_op_change(sbox): sbox.build(create_wc=False, empty=True) empty_file = sbox.get_tempname() svntest.main.file_write(empty_file, ) svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', '-r2', sbox.repo_url) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', '-r2', sbox2.repo_url) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', (sbox.repo_url + '/bar')) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', (sbox2.repo_url + '/bar'))
@XFail(svntest.main.is_fs_type_bdb) @XFail(svntest.main.is_fs_type_fsx) @Issue(4623) def dump_no_op_prop_change(sbox): 'svnadmin dump with no-op property change' sbox.build(create_wc=False, empty=True) empty_file = sbox.get_tempname() svntest.main.file_write(empty_file, '') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar', 'propset', 'pname', 'pval', 'bar') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'propset', 'pname', 'pval', 'bar') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', '-r2', sbox.repo_url) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', '-r2', sbox2.repo_url) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', (sbox.repo_url + '/bar')) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', (sbox2.repo_url + '/bar'))
881,411,580,517,528,000
svnadmin dump with no-op property change
subversion/tests/cmdline/svnadmin_tests.py
dump_no_op_prop_change
auycro/subversion
python
@XFail(svntest.main.is_fs_type_bdb) @XFail(svntest.main.is_fs_type_fsx) @Issue(4623) def dump_no_op_prop_change(sbox): sbox.build(create_wc=False, empty=True) empty_file = sbox.get_tempname() svntest.main.file_write(empty_file, ) svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'put', empty_file, 'bar', 'propset', 'pname', 'pval', 'bar') svntest.actions.run_and_verify_svnmucc(None, [], '-U', sbox.repo_url, '-m', svntest.main.make_log_msg(), 'propset', 'pname', 'pval', 'bar') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', '-r2', sbox.repo_url) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', '-r2', sbox2.repo_url) (_, expected, _) = svntest.actions.run_and_verify_svn(None, [], 'log', '-v', (sbox.repo_url + '/bar')) found = [True for line in expected if (line.find('M /bar\n') != (- 1))] if (not found): raise svntest.Failure svntest.actions.run_and_verify_svn(expected, [], 'log', '-v', (sbox2.repo_url + '/bar'))
def load_no_flush_to_disk(sbox): 'svnadmin load --no-flush-to-disk' sbox.build(empty=True) dump = clean_dumpfile() expected = [svntest.wc.State('', {'A': svntest.wc.StateItem(contents='text\n', props={'svn:keywords': 'Id'})})] load_and_verify_dumpstream(sbox, [], [], expected, True, dump, '--no-flush-to-disk', '--ignore-uuid')
-502,437,378,718,735,040
svnadmin load --no-flush-to-disk
subversion/tests/cmdline/svnadmin_tests.py
load_no_flush_to_disk
auycro/subversion
python
def load_no_flush_to_disk(sbox): sbox.build(empty=True) dump = clean_dumpfile() expected = [svntest.wc.State(, {'A': svntest.wc.StateItem(contents='text\n', props={'svn:keywords': 'Id'})})] load_and_verify_dumpstream(sbox, [], [], expected, True, dump, '--no-flush-to-disk', '--ignore-uuid')
def dump_to_file(sbox): 'svnadmin dump --file ARG' sbox.build(create_wc=False, empty=False) expected_dump = svntest.actions.run_and_verify_dump(sbox.repo_dir) file = sbox.get_tempname() svntest.actions.run_and_verify_svnadmin2([], ['* Dumped revision 0.\n', '* Dumped revision 1.\n'], 0, 'dump', '--file', file, sbox.repo_dir) actual_dump = open(file, 'rb').readlines() svntest.verify.compare_dump_files(None, None, expected_dump, actual_dump) file = sbox.get_tempname() svntest.main.file_write(file, '') svntest.actions.run_and_verify_svnadmin2([], ['* Dumped revision 0.\n', '* Dumped revision 1.\n'], 0, 'dump', '--file', file, sbox.repo_dir) actual_dump = open(file, 'rb').readlines() svntest.verify.compare_dump_files(None, None, expected_dump, actual_dump)
-7,564,124,315,480,732,000
svnadmin dump --file ARG
subversion/tests/cmdline/svnadmin_tests.py
dump_to_file
auycro/subversion
python
def dump_to_file(sbox): sbox.build(create_wc=False, empty=False) expected_dump = svntest.actions.run_and_verify_dump(sbox.repo_dir) file = sbox.get_tempname() svntest.actions.run_and_verify_svnadmin2([], ['* Dumped revision 0.\n', '* Dumped revision 1.\n'], 0, 'dump', '--file', file, sbox.repo_dir) actual_dump = open(file, 'rb').readlines() svntest.verify.compare_dump_files(None, None, expected_dump, actual_dump) file = sbox.get_tempname() svntest.main.file_write(file, ) svntest.actions.run_and_verify_svnadmin2([], ['* Dumped revision 0.\n', '* Dumped revision 1.\n'], 0, 'dump', '--file', file, sbox.repo_dir) actual_dump = open(file, 'rb').readlines() svntest.verify.compare_dump_files(None, None, expected_dump, actual_dump)
def load_from_file(sbox): 'svnadmin load --file ARG' sbox.build(empty=True) file = sbox.get_tempname() with open(file, 'wb') as f: f.writelines(clean_dumpfile()) svntest.actions.run_and_verify_svnadmin2(None, [], 0, 'load', '--file', file, '--ignore-uuid', sbox.repo_dir) expected_tree = svntest.wc.State('', {'A': svntest.wc.StateItem(contents='text\n', props={'svn:keywords': 'Id'})}) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'update', sbox.wc_dir) svntest.actions.verify_disk(sbox.wc_dir, expected_tree, check_props=True)
8,242,333,286,280,110,000
svnadmin load --file ARG
subversion/tests/cmdline/svnadmin_tests.py
load_from_file
auycro/subversion
python
def load_from_file(sbox): sbox.build(empty=True) file = sbox.get_tempname() with open(file, 'wb') as f: f.writelines(clean_dumpfile()) svntest.actions.run_and_verify_svnadmin2(None, [], 0, 'load', '--file', file, '--ignore-uuid', sbox.repo_dir) expected_tree = svntest.wc.State(, {'A': svntest.wc.StateItem(contents='text\n', props={'svn:keywords': 'Id'})}) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'update', sbox.wc_dir) svntest.actions.verify_disk(sbox.wc_dir, expected_tree, check_props=True)
def dump_exclude(sbox): 'svnadmin dump with excluded paths' sbox.build(create_wc=False) (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/A/D/H', '--exclude', '/A/B/E', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /A\n'), re.escape(' A /A/B\n'), re.escape(' A /A/B/F\n'), re.escape(' A /A/B/lambda\n'), re.escape(' A /A/C\n'), re.escape(' A /A/D\n'), re.escape(' A /A/D/G\n'), re.escape(' A /A/D/G/pi\n'), re.escape(' A /A/D/G/rho\n'), re.escape(' A /A/D/G/tau\n'), re.escape(' A /A/D/gamma\n'), re.escape(' A /A/mu\n'), re.escape(' A /iota\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
-6,663,219,952,791,313,000
svnadmin dump with excluded paths
subversion/tests/cmdline/svnadmin_tests.py
dump_exclude
auycro/subversion
python
def dump_exclude(sbox): sbox.build(create_wc=False) (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/A/D/H', '--exclude', '/A/B/E', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /A\n'), re.escape(' A /A/B\n'), re.escape(' A /A/B/F\n'), re.escape(' A /A/B/lambda\n'), re.escape(' A /A/C\n'), re.escape(' A /A/D\n'), re.escape(' A /A/D/G\n'), re.escape(' A /A/D/G/pi\n'), re.escape(' A /A/D/G/rho\n'), re.escape(' A /A/D/G/tau\n'), re.escape(' A /A/D/gamma\n'), re.escape(' A /A/mu\n'), re.escape(' A /iota\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_exclude_copysource(sbox): 'svnadmin dump with excluded copysource' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches'), (sbox.repo_url + '/tags'), '-m', 'Create repository structure.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches/branch1'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/trunk', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches/branch1\n'), '-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches\n'), re.escape(' A /tags\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
-7,391,016,316,495,740,000
svnadmin dump with excluded copysource
subversion/tests/cmdline/svnadmin_tests.py
dump_exclude_copysource
auycro/subversion
python
def dump_exclude_copysource(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches'), (sbox.repo_url + '/tags'), '-m', 'Create repository structure.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches/branch1'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/trunk', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches/branch1\n'), '-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches\n'), re.escape(' A /tags\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_include(sbox): 'svnadmin dump with included paths' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/A'), (sbox.repo_url + '/B'), (sbox.repo_url + '/C'), '-m', 'Create folder.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/A', '--include', '/C', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /A\n'), re.escape(' A /C\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
8,657,263,414,146,474,000
svnadmin dump with included paths
subversion/tests/cmdline/svnadmin_tests.py
dump_include
auycro/subversion
python
def dump_include(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/A'), (sbox.repo_url + '/B'), (sbox.repo_url + '/C'), '-m', 'Create folder.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/A', '--include', '/C', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /A\n'), re.escape(' A /C\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_not_include_copysource(sbox): 'svnadmin dump with not included copysource' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches'), (sbox.repo_url + '/tags'), '-m', 'Create repository structure.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches/branch1'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/branches', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches/branch1\n'), '-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
1,605,245,060,668,169,700
svnadmin dump with not included copysource
subversion/tests/cmdline/svnadmin_tests.py
dump_not_include_copysource
auycro/subversion
python
def dump_not_include_copysource(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches'), (sbox.repo_url + '/tags'), '-m', 'Create repository structure.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/trunk'), (sbox.repo_url + '/branches/branch1'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/branches', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches/branch1\n'), '-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /branches\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_exclude_by_pattern(sbox): 'svnadmin dump with paths excluded by pattern' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/aaa'), (sbox.repo_url + '/aab'), (sbox.repo_url + '/aac'), (sbox.repo_url + '/bbc'), '-m', 'Create repository structure.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/aa?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /bbc\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
2,939,393,347,528,312,300
svnadmin dump with paths excluded by pattern
subversion/tests/cmdline/svnadmin_tests.py
dump_exclude_by_pattern
auycro/subversion
python
def dump_exclude_by_pattern(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/aaa'), (sbox.repo_url + '/aab'), (sbox.repo_url + '/aac'), (sbox.repo_url + '/bbc'), '-m', 'Create repository structure.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/aa?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /bbc\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_include_by_pattern(sbox): 'svnadmin dump with paths included by pattern' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/aaa'), (sbox.repo_url + '/aab'), (sbox.repo_url + '/aac'), (sbox.repo_url + '/bbc'), '-m', 'Create repository structure.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/aa?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /aaa\n'), re.escape(' A /aab\n'), re.escape(' A /aac\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
1,634,369,048,131,271,000
svnadmin dump with paths included by pattern
subversion/tests/cmdline/svnadmin_tests.py
dump_include_by_pattern
auycro/subversion
python
def dump_include_by_pattern(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/aaa'), (sbox.repo_url + '/aab'), (sbox.repo_url + '/aac'), (sbox.repo_url + '/bbc'), '-m', 'Create repository structure.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/aa?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r1\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /aaa\n'), re.escape(' A /aab\n'), re.escape(' A /aac\n'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def dump_exclude_all_rev_changes(sbox): 'svnadmin dump with all revision changes excluded' sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r1a'), (sbox.repo_url + '/r1b'), (sbox.repo_url + '/r1c'), '-m', 'Revision 1.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r2a'), (sbox.repo_url + '/r2b'), (sbox.repo_url + '/r2c'), '-m', 'Revision 2.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r3a'), (sbox.repo_url + '/r3b'), (sbox.repo_url + '/r3c'), '-m', 'Revision 3.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/r2?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r3 | jrandom | .* | 1 line\\n', re.escape('Changed paths:'), re.escape(' A /r3a'), re.escape(' A /r3b'), re.escape(' A /r3c'), '', re.escape('Revision 3.'), '-+\\n', re.escape('r2 | (no author) | (no date) | 1 line'), '', '', '-+\\n', 'r1 | jrandom | .* | 1 line\\n', re.escape('Changed paths:'), re.escape(' A /r1a'), re.escape(' A /r1b'), re.escape(' A /r1c'), '', re.escape('Revision 1.'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', sbox2.repo_url)
880,426,043,000,715,300
svnadmin dump with all revision changes excluded
subversion/tests/cmdline/svnadmin_tests.py
dump_exclude_all_rev_changes
auycro/subversion
python
def dump_exclude_all_rev_changes(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r1a'), (sbox.repo_url + '/r1b'), (sbox.repo_url + '/r1c'), '-m', 'Revision 1.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r2a'), (sbox.repo_url + '/r2b'), (sbox.repo_url + '/r2c'), '-m', 'Revision 2.') svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'mkdir', (sbox.repo_url + '/r3a'), (sbox.repo_url + '/r3b'), (sbox.repo_url + '/r3c'), '-m', 'Revision 3.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--exclude', '/r2?', '--pattern', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r3 | jrandom | .* | 1 line\\n', re.escape('Changed paths:'), re.escape(' A /r3a'), re.escape(' A /r3b'), re.escape(' A /r3c'), , re.escape('Revision 3.'), '-+\\n', re.escape('r2 | (no author) | (no date) | 1 line'), , , '-+\\n', 'r1 | jrandom | .* | 1 line\\n', re.escape('Changed paths:'), re.escape(' A /r1a'), re.escape(' A /r1b'), re.escape(' A /r1c'), , re.escape('Revision 1.'), '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', sbox2.repo_url)
def dump_invalid_filtering_option(sbox): 'dump with --include and --exclude simultaneously' sbox.build(create_wc=False, empty=False) expected_error = ".*: '--exclude' and '--include' options cannot be used simultaneously" svntest.actions.run_and_verify_svnadmin(None, expected_error, 'dump', '-q', '--exclude', '/A/D/H', '--include', '/A/B/E', sbox.repo_dir)
326,157,909,571,971,500
dump with --include and --exclude simultaneously
subversion/tests/cmdline/svnadmin_tests.py
dump_invalid_filtering_option
auycro/subversion
python
def dump_invalid_filtering_option(sbox): sbox.build(create_wc=False, empty=False) expected_error = ".*: '--exclude' and '--include' options cannot be used simultaneously" svntest.actions.run_and_verify_svnadmin(None, expected_error, 'dump', '-q', '--exclude', '/A/D/H', '--include', '/A/B/E', sbox.repo_dir)
@Issue(4725) def load_issue4725(sbox): 'load that triggers issue 4725' sbox.build(empty=True) sbox.simple_mkdir('subversion') sbox.simple_commit() sbox.simple_mkdir('subversion/trunk') sbox.simple_mkdir('subversion/branches') sbox.simple_commit() sbox.simple_mkdir('subversion/trunk/src') sbox.simple_commit() (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump, '-M100')
-1,960,894,554,059,477,200
load that triggers issue 4725
subversion/tests/cmdline/svnadmin_tests.py
load_issue4725
auycro/subversion
python
@Issue(4725) def load_issue4725(sbox): sbox.build(empty=True) sbox.simple_mkdir('subversion') sbox.simple_commit() sbox.simple_mkdir('subversion/trunk') sbox.simple_mkdir('subversion/branches') sbox.simple_commit() sbox.simple_mkdir('subversion/trunk/src') sbox.simple_commit() (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump, '-M100')
@Issue(4767) def dump_no_canonicalize_svndate(sbox): "svnadmin dump shouldn't canonicalize svn:date" sbox.build(create_wc=False, empty=True) svntest.actions.enable_revprop_changes(sbox.repo_dir) propval = '2015-01-01T00:00:00.0Z' svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'propset', '--revprop', '-r0', 'svn:date', propval, sbox.repo_url) dump_lines = svntest.actions.run_and_verify_dump(sbox.repo_dir) assert ((propval.encode() + b'\n') in dump_lines)
45,566,800,534,895,640
svnadmin dump shouldn't canonicalize svn:date
subversion/tests/cmdline/svnadmin_tests.py
dump_no_canonicalize_svndate
auycro/subversion
python
@Issue(4767) def dump_no_canonicalize_svndate(sbox): sbox.build(create_wc=False, empty=True) svntest.actions.enable_revprop_changes(sbox.repo_dir) propval = '2015-01-01T00:00:00.0Z' svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'propset', '--revprop', '-r0', 'svn:date', propval, sbox.repo_url) dump_lines = svntest.actions.run_and_verify_dump(sbox.repo_dir) assert ((propval.encode() + b'\n') in dump_lines)
def check_recover_prunes_rep_cache(sbox, enable_rep_sharing): "Check 'recover' prunes the rep-cache while enable-rep-sharing is\n true/false.\n " rep_cache_r1 = read_rep_cache(sbox.repo_dir) sbox.simple_append('iota', 'New line.\n') sbox.simple_commit() rep_cache_r2 = read_rep_cache(sbox.repo_dir) if (not (len(rep_cache_r2) == (len(rep_cache_r1) + 1))): raise svntest.Failure fsfs_conf = svntest.main.get_fsfs_conf_file_path(sbox.repo_dir) svntest.main.file_append(fsfs_conf, ('\n[rep-sharing]\nenable-rep-sharing = %s\n' % (('true' if enable_rep_sharing else 'false'),))) head_rev_path = fsfs_file(sbox.repo_dir, 'revs', '2') os.remove(head_rev_path) current_path = os.path.join(sbox.repo_dir, 'db', 'current') svntest.main.file_write(current_path, '1\n') svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(['1\n'], [], 'youngest', sbox.repo_dir) rep_cache_recovered = read_rep_cache(sbox.repo_dir) if (not (rep_cache_recovered == rep_cache_r1)): raise svntest.Failure
1,701,348,569,688,906,800
Check 'recover' prunes the rep-cache while enable-rep-sharing is true/false.
subversion/tests/cmdline/svnadmin_tests.py
check_recover_prunes_rep_cache
auycro/subversion
python
def check_recover_prunes_rep_cache(sbox, enable_rep_sharing): "Check 'recover' prunes the rep-cache while enable-rep-sharing is\n true/false.\n " rep_cache_r1 = read_rep_cache(sbox.repo_dir) sbox.simple_append('iota', 'New line.\n') sbox.simple_commit() rep_cache_r2 = read_rep_cache(sbox.repo_dir) if (not (len(rep_cache_r2) == (len(rep_cache_r1) + 1))): raise svntest.Failure fsfs_conf = svntest.main.get_fsfs_conf_file_path(sbox.repo_dir) svntest.main.file_append(fsfs_conf, ('\n[rep-sharing]\nenable-rep-sharing = %s\n' % (('true' if enable_rep_sharing else 'false'),))) head_rev_path = fsfs_file(sbox.repo_dir, 'revs', '2') os.remove(head_rev_path) current_path = os.path.join(sbox.repo_dir, 'db', 'current') svntest.main.file_write(current_path, '1\n') svntest.actions.run_and_verify_svnadmin(None, [], 'recover', sbox.repo_dir) svntest.actions.run_and_verify_svnlook(['1\n'], [], 'youngest', sbox.repo_dir) rep_cache_recovered = read_rep_cache(sbox.repo_dir) if (not (rep_cache_recovered == rep_cache_r1)): raise svntest.Failure
@Issue(4077) @SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.python_sqlite_can_read_without_rowid) def recover_prunes_rep_cache_when_enabled(sbox): 'recover prunes rep cache when enabled' sbox.build() check_recover_prunes_rep_cache(sbox, enable_rep_sharing=True)
-6,380,502,636,390,315,000
recover prunes rep cache when enabled
subversion/tests/cmdline/svnadmin_tests.py
recover_prunes_rep_cache_when_enabled
auycro/subversion
python
@Issue(4077) @SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.python_sqlite_can_read_without_rowid) def recover_prunes_rep_cache_when_enabled(sbox): sbox.build() check_recover_prunes_rep_cache(sbox, enable_rep_sharing=True)
@Issue(4077) @SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.python_sqlite_can_read_without_rowid) def recover_prunes_rep_cache_when_disabled(sbox): 'recover prunes rep cache when disabled' sbox.build() check_recover_prunes_rep_cache(sbox, enable_rep_sharing=False)
-6,677,523,881,005,802,000
recover prunes rep cache when disabled
subversion/tests/cmdline/svnadmin_tests.py
recover_prunes_rep_cache_when_disabled
auycro/subversion
python
@Issue(4077) @SkipUnless(svntest.main.is_fs_type_fsfs) @SkipUnless(svntest.main.python_sqlite_can_read_without_rowid) def recover_prunes_rep_cache_when_disabled(sbox): sbox.build() check_recover_prunes_rep_cache(sbox, enable_rep_sharing=False)
@Issue(4760) def dump_include_copied_directory(sbox): 'include copied directory with nested nodes' sbox.build(create_wc=False) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/A/D'), (sbox.repo_url + '/COPY'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/COPY', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /COPY'), re.escape(' A /COPY/G'), re.escape(' A /COPY/G/pi'), re.escape(' A /COPY/G/rho'), re.escape(' A /COPY/G/tau'), re.escape(' A /COPY/H'), re.escape(' A /COPY/H/chi'), re.escape(' A /COPY/H/omega'), re.escape(' A /COPY/H/psi'), re.escape(' A /COPY/gamma'), '-+\\n', 'r1\\ .*\n', '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
450,583,208,109,373,600
include copied directory with nested nodes
subversion/tests/cmdline/svnadmin_tests.py
dump_include_copied_directory
auycro/subversion
python
@Issue(4760) def dump_include_copied_directory(sbox): sbox.build(create_wc=False) svntest.actions.run_and_verify_svn(svntest.verify.AnyOutput, [], 'copy', (sbox.repo_url + '/A/D'), (sbox.repo_url + '/COPY'), '-m', 'Create branch.') (_, dump, _) = svntest.actions.run_and_verify_svnadmin(None, [], 'dump', '-q', '--include', '/COPY', sbox.repo_dir) sbox2 = sbox.clone_dependent() sbox2.build(create_wc=False, empty=True) load_and_verify_dumpstream(sbox2, None, [], None, False, dump) expected_output = svntest.verify.RegexListOutput(['-+\\n', 'r2\\ .*\n', re.escape('Changed paths:\n'), re.escape(' A /COPY'), re.escape(' A /COPY/G'), re.escape(' A /COPY/G/pi'), re.escape(' A /COPY/G/rho'), re.escape(' A /COPY/G/tau'), re.escape(' A /COPY/H'), re.escape(' A /COPY/H/chi'), re.escape(' A /COPY/H/omega'), re.escape(' A /COPY/H/psi'), re.escape(' A /COPY/gamma'), '-+\\n', 'r1\\ .*\n', '-+\\n']) svntest.actions.run_and_verify_svn(expected_output, [], 'log', '-v', '-q', sbox2.repo_url)
def load_normalize_node_props(sbox): 'svnadmin load --normalize node props' dump_str = b'SVN-fs-dump-format-version: 2\n\nUUID: dc40867b-38f6-0310-9f5f-f81aa277e06f\n\nRevision-number: 0\nProp-content-length: 56\nContent-length: 56\n\nK 8\nsvn:date\nV 27\n2005-05-03T19:09:41.129900Z\nPROPS-END\n\nRevision-number: 1\nProp-content-length: 99\nContent-length: 99\n\nK 7\nsvn:log\nV 0\n\nK 10\nsvn:author\nV 2\npl\nK 8\nsvn:date\nV 27\n2005-05-03T19:10:19.975578Z\nPROPS-END\n\nNode-path: \nNode-kind: dir\nNode-action: change\nProp-content-length: 32\nContent-length: 32\n\nK 10\nsvn:ignore\nV 3\n\n\r\n\nPROPS-END\n\n\n' sbox.build(empty=True) exp_err = svntest.verify.RegexListOutput(['svnadmin: E125005:.*', 'svnadmin: E125017:.*'], match_all=False) load_and_verify_dumpstream(sbox, [], exp_err, dumpfile_revisions, False, dump_str, '--ignore-uuid') svntest.actions.load_repo(sbox, dump_str=dump_str, bypass_prop_validation=False, normalize_props=True) (exit_code, output, _) = svntest.main.run_svn(None, 'pg', 'svn:ignore', '--no-newline', sbox.repo_url) svntest.verify.verify_exit_code(None, exit_code, 0) if (output != ['\n', '\n']): raise svntest.Failure(('Unexpected property value %s' % output))
-5,918,447,927,095,142,000
svnadmin load --normalize node props
subversion/tests/cmdline/svnadmin_tests.py
load_normalize_node_props
auycro/subversion
python
def load_normalize_node_props(sbox): dump_str = b'SVN-fs-dump-format-version: 2\n\nUUID: dc40867b-38f6-0310-9f5f-f81aa277e06f\n\nRevision-number: 0\nProp-content-length: 56\nContent-length: 56\n\nK 8\nsvn:date\nV 27\n2005-05-03T19:09:41.129900Z\nPROPS-END\n\nRevision-number: 1\nProp-content-length: 99\nContent-length: 99\n\nK 7\nsvn:log\nV 0\n\nK 10\nsvn:author\nV 2\npl\nK 8\nsvn:date\nV 27\n2005-05-03T19:10:19.975578Z\nPROPS-END\n\nNode-path: \nNode-kind: dir\nNode-action: change\nProp-content-length: 32\nContent-length: 32\n\nK 10\nsvn:ignore\nV 3\n\n\r\n\nPROPS-END\n\n\n' sbox.build(empty=True) exp_err = svntest.verify.RegexListOutput(['svnadmin: E125005:.*', 'svnadmin: E125017:.*'], match_all=False) load_and_verify_dumpstream(sbox, [], exp_err, dumpfile_revisions, False, dump_str, '--ignore-uuid') svntest.actions.load_repo(sbox, dump_str=dump_str, bypass_prop_validation=False, normalize_props=True) (exit_code, output, _) = svntest.main.run_svn(None, 'pg', 'svn:ignore', '--no-newline', sbox.repo_url) svntest.verify.verify_exit_code(None, exit_code, 0) if (output != ['\n', '\n']): raise svntest.Failure(('Unexpected property value %s' % output))
def _read(self): ' Read P2L index using svnfsfs. ' (exit_code, output, errput) = svntest.main.run_svnfsfs('dump-index', ('-r' + str(self.revision)), self.repo_dir) svntest.verify.verify_outputs('Error while dumping index', [], errput, [], []) svntest.verify.verify_exit_code(None, exit_code, 0) self.by_item.clear() for line in output: values = line.split() if ((len(values) >= 4) and (values[0] != 'Start')): item = int(values[4]) self.by_item[item] = values
2,798,168,454,450,458,000
Read P2L index using svnfsfs.
subversion/tests/cmdline/svnadmin_tests.py
_read
auycro/subversion
python
def _read(self): ' ' (exit_code, output, errput) = svntest.main.run_svnfsfs('dump-index', ('-r' + str(self.revision)), self.repo_dir) svntest.verify.verify_outputs('Error while dumping index', [], errput, [], []) svntest.verify.verify_exit_code(None, exit_code, 0) self.by_item.clear() for line in output: values = line.split() if ((len(values) >= 4) and (values[0] != 'Start')): item = int(values[4]) self.by_item[item] = values
def _write(self): ' Rewrite indexes using svnfsfs. ' by_offset = {} for key in self.by_item: values = self.by_item[key] by_offset[int(values[0], 16)] = values lines = [] for (offset, values) in sorted(by_offset.items()): values = by_offset[offset] line = (((((((((values[0] + ' ') + values[1]) + ' ') + values[2]) + ' ') + values[3]) + ' ') + values[4]) + '\n') lines.append(line.encode()) (exit_code, output, errput) = svntest.main.run_command_stdin(svntest.main.svnfsfs_binary, 0, 0, False, lines, 'load-index', self.repo_dir) svntest.verify.verify_outputs('Error while rewriting index', output, errput, [], []) svntest.verify.verify_exit_code(None, exit_code, 0)
463,800,620,164,410,800
Rewrite indexes using svnfsfs.
subversion/tests/cmdline/svnadmin_tests.py
_write
auycro/subversion
python
def _write(self): ' ' by_offset = {} for key in self.by_item: values = self.by_item[key] by_offset[int(values[0], 16)] = values lines = [] for (offset, values) in sorted(by_offset.items()): values = by_offset[offset] line = (((((((((values[0] + ' ') + values[1]) + ' ') + values[2]) + ' ') + values[3]) + ' ') + values[4]) + '\n') lines.append(line.encode()) (exit_code, output, errput) = svntest.main.run_command_stdin(svntest.main.svnfsfs_binary, 0, 0, False, lines, 'load-index', self.repo_dir) svntest.verify.verify_outputs('Error while rewriting index', output, errput, [], []) svntest.verify.verify_exit_code(None, exit_code, 0)
def get_item(self, item): ' Return offset, length and type of ITEM. ' values = self.by_item[item] offset = int(values[0], 16) len = int(values[1], 16) type = values[2] return (offset, len, type)
-2,074,339,648,030,979,800
Return offset, length and type of ITEM.
subversion/tests/cmdline/svnadmin_tests.py
get_item
auycro/subversion
python
def get_item(self, item): ' ' values = self.by_item[item] offset = int(values[0], 16) len = int(values[1], 16) type = values[2] return (offset, len, type)
def modify_item(self, item, offset, len): ' Modify offset and length of ITEM. ' values = self.by_item[item] values[0] = ('%x' % offset) values[1] = ('%x' % len) self._write()
-2,660,641,024,189,489,700
Modify offset and length of ITEM.
subversion/tests/cmdline/svnadmin_tests.py
modify_item
auycro/subversion
python
def modify_item(self, item, offset, len): ' ' values = self.by_item[item] values[0] = ('%x' % offset) values[1] = ('%x' % len) self._write()
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--enable_extended_memory_metrics=true') def test_varz_hidden_variables(self): 'Tests that modified hidden variables show up in /varz' response = requests.get('http://localhost:25000/varz?json') assert (response.status_code == requests.codes.ok) varz_json = json.loads(response.text) flag = [e for e in varz_json['flags'] if (e['name'] == 'enable_extended_memory_metrics')] assert (len(flag) == 1) assert (flag[0]['default'] == 'false') assert (flag[0]['current'] == 'true') assert flag[0]['experimental']
7,393,242,295,967,590,000
Tests that modified hidden variables show up in /varz
tests/custom_cluster/test_web_pages.py
test_varz_hidden_variables
AlexanderSaydakov/impala
python
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--enable_extended_memory_metrics=true') def test_varz_hidden_variables(self): response = requests.get('http://localhost:25000/varz?json') assert (response.status_code == requests.codes.ok) varz_json = json.loads(response.text) flag = [e for e in varz_json['flags'] if (e['name'] == 'enable_extended_memory_metrics')] assert (len(flag) == 1) assert (flag[0]['default'] == 'false') assert (flag[0]['current'] == 'true') assert flag[0]['experimental']
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--webserver_max_post_length_bytes=100') def test_max_post_length(self): 'Tests that the maximum length of a POST request that will be accepted' too_big_post_content = ('c' * 10000) response = requests.post('http://localhost:25000/', too_big_post_content) assert (response.status_code == requests.codes.request_entity_too_large) ok_post_content = ('c' * 100) response = requests.post('http://localhost:25000/', ok_post_content) assert (response.status_code == requests.codes.ok)
5,251,090,867,718,838,000
Tests that the maximum length of a POST request that will be accepted
tests/custom_cluster/test_web_pages.py
test_max_post_length
AlexanderSaydakov/impala
python
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--webserver_max_post_length_bytes=100') def test_max_post_length(self): too_big_post_content = ('c' * 10000) response = requests.post('http://localhost:25000/', too_big_post_content) assert (response.status_code == requests.codes.request_entity_too_large) ok_post_content = ('c' * 100) response = requests.post('http://localhost:25000/', ok_post_content) assert (response.status_code == requests.codes.ok)
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--query_stmt_size=0') def test_query_stmt_without_truncate(self): 'Check if the full query string is displayed in the query list on the WebUI.' query_select = ('x ' * 450) query = 'select "{0}"'.format(query_select) expected = 'select \\"{0}\\"'.format(query_select) self.execute_query(query) response = requests.get('http://localhost:25000/queries?json') response_json = response.text assert (expected in response_json), 'No matching statement found in the queries site.'
2,366,411,541,843,872,300
Check if the full query string is displayed in the query list on the WebUI.
tests/custom_cluster/test_web_pages.py
test_query_stmt_without_truncate
AlexanderSaydakov/impala
python
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--query_stmt_size=0') def test_query_stmt_without_truncate(self): query_select = ('x ' * 450) query = 'select "{0}"'.format(query_select) expected = 'select \\"{0}\\"'.format(query_select) self.execute_query(query) response = requests.get('http://localhost:25000/queries?json') response_json = response.text assert (expected in response_json), 'No matching statement found in the queries site.'
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--query_stmt_size=10') def test_query_stmt_with_custom_length(self): 'Check if the partial query with the correct length is displayed in the query list\n on the WebUI.' query = 'select "{0}"'.format(('x ' * 450)) expected = 'select \\"x ...' self.execute_query(query) response = requests.get('http://localhost:25000/queries?json') response_json = response.text assert (expected in response_json), 'No matching statement found in the queries site.'
573,251,272,263,913,500
Check if the partial query with the correct length is displayed in the query list on the WebUI.
tests/custom_cluster/test_web_pages.py
test_query_stmt_with_custom_length
AlexanderSaydakov/impala
python
@pytest.mark.execute_serially @CustomClusterTestSuite.with_args(impalad_args='--query_stmt_size=10') def test_query_stmt_with_custom_length(self): 'Check if the partial query with the correct length is displayed in the query list\n on the WebUI.' query = 'select "{0}"'.format(('x ' * 450)) expected = 'select \\"x ...' self.execute_query(query) response = requests.get('http://localhost:25000/queries?json') response_json = response.text assert (expected in response_json), 'No matching statement found in the queries site.'
def goal_conditions_for_demo(demo: Demonstration, behaviors: Any) -> List[str]: '\n Infer the goal conditions of a single demonstration.\n\n Args\n ----\n demo: the demonstration to infer the goal of.\n behavior: check the behavior to remove conflicting conditions.\n\n Returns\n -------\n goals: list of the goals inferred in the demonstration.\n\n ' goals = [] for i in range((len(demo) - 1), (- 1), (- 1)): for condition in demo[i].postconditions(): if ((condition not in goals) and (not contains_conflicting(behaviors, goals, condition))): goals.append(condition) goals.reverse() return goals
-8,493,976,639,920,056,000
Infer the goal conditions of a single demonstration. Args ---- demo: the demonstration to infer the goal of. behavior: check the behavior to remove conflicting conditions. Returns ------- goals: list of the goals inferred in the demonstration.
bt_learning/bt_learning/learning_from_demo/goal_identification.py
goal_conditions_for_demo
matiov/disambiguate-BT-execution
python
def goal_conditions_for_demo(demo: Demonstration, behaviors: Any) -> List[str]: '\n Infer the goal conditions of a single demonstration.\n\n Args\n ----\n demo: the demonstration to infer the goal of.\n behavior: check the behavior to remove conflicting conditions.\n\n Returns\n -------\n goals: list of the goals inferred in the demonstration.\n\n ' goals = [] for i in range((len(demo) - 1), (- 1), (- 1)): for condition in demo[i].postconditions(): if ((condition not in goals) and (not contains_conflicting(behaviors, goals, condition))): goals.append(condition) goals.reverse() return goals
def goal_tree(goals: List[str], behaviors: Any, world_interface: Any) -> BehaviourTree: '\n Construct a Behavior Tree strarting from the goals.\n\n Args\n ----\n goals: list of all goals inferred from the demonstration.\n behaviors: behavior in the demontration, as defined in robot_behaviors package.\n world_interface: interface to the robot.\n\n Returns\n -------\n tree: a Behavior Tree of goal conditions.\n\n ' tree = RSequence() for goal in goals: (node, _) = behaviors.get_node_from_string(goal, world_interface, None) tree.add_child(node) return tree
6,080,646,337,530,809,000
Construct a Behavior Tree strarting from the goals. Args ---- goals: list of all goals inferred from the demonstration. behaviors: behavior in the demontration, as defined in robot_behaviors package. world_interface: interface to the robot. Returns ------- tree: a Behavior Tree of goal conditions.
bt_learning/bt_learning/learning_from_demo/goal_identification.py
goal_tree
matiov/disambiguate-BT-execution
python
def goal_tree(goals: List[str], behaviors: Any, world_interface: Any) -> BehaviourTree: '\n Construct a Behavior Tree strarting from the goals.\n\n Args\n ----\n goals: list of all goals inferred from the demonstration.\n behaviors: behavior in the demontration, as defined in robot_behaviors package.\n world_interface: interface to the robot.\n\n Returns\n -------\n tree: a Behavior Tree of goal conditions.\n\n ' tree = RSequence() for goal in goals: (node, _) = behaviors.get_node_from_string(goal, world_interface, None) tree.add_child(node) return tree
def get_minibatch(roidb, num_classes): 'Given a roidb, construct a minibatch sampled from it.' num_images = len(roidb) random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert ((cfg.TRAIN.BATCH_SIZE % num_images) == 0), 'num_images ({}) must divide BATCH_SIZE ({})'.format(num_images, cfg.TRAIN.BATCH_SIZE) (im_blob, im_scales) = _get_image_blob(roidb, random_scale_inds) blobs = {'data': im_blob} assert (len(im_scales) == 1), 'Single batch only' assert (len(roidb) == 1), 'Single batch only' sep = '/' clp_file_format = '.npy' clp_file_store = 'CloudPoints' img_path = roidb[0]['image'] img_path_arr = img_path.split(sep) prefix = img_path_arr[:(- 2)] file_name = (img_path_arr[(- 1)].split('.')[0] + clp_file_format) clp_path = os.path.join(sep.join(prefix), clp_file_store, file_name) valid_points = np.load(clp_path) width_ori = roidb[0]['height'] height_ori = roidb[0]['width'] clp_ori = np.zeros([width_ori, height_ori], dtype=np.float32) clp_ori[tuple((valid_points.T[1, :], valid_points.T[0, :]))] = 1 clp_reshape = np.empty([width_ori, height_ori, 3], dtype=np.float32) for i in range(3): clp_reshape[0:width_ori, 0:height_ori, i] = clp_ori clp_res = cv2.resize(clp_reshape, None, None, fx=im_scales[0], fy=im_scales[0], interpolation=cv2.INTER_LINEAR) clp_res = clp_res[:, :, 0] clp_res[(clp_res > 0)] = 1 width = clp_res.shape[0] height = clp_res.shape[1] clp_res = clp_res.reshape([1, width, height, 1]) blobs['clp_info'] = clp_res if cfg.TRAIN.USE_ALL_GT: gt_inds = np.where((roidb[0]['gt_classes'] != 0))[0] else: gt_inds = np.where((roidb[0]['gt_classes'] != (0 & np.all((roidb[0]['gt_overlaps'].toarray() > (- 1.0)), axis=1))))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = (roidb[0]['boxes'][gt_inds, :] * im_scales[0]) gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs
-3,172,347,574,009,824,000
Given a roidb, construct a minibatch sampled from it.
lib/roi_data_layer/minibatch.py
get_minibatch
wennieWN/endernewton_tf-faster-rcnn
python
def get_minibatch(roidb, num_classes): num_images = len(roidb) random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert ((cfg.TRAIN.BATCH_SIZE % num_images) == 0), 'num_images ({}) must divide BATCH_SIZE ({})'.format(num_images, cfg.TRAIN.BATCH_SIZE) (im_blob, im_scales) = _get_image_blob(roidb, random_scale_inds) blobs = {'data': im_blob} assert (len(im_scales) == 1), 'Single batch only' assert (len(roidb) == 1), 'Single batch only' sep = '/' clp_file_format = '.npy' clp_file_store = 'CloudPoints' img_path = roidb[0]['image'] img_path_arr = img_path.split(sep) prefix = img_path_arr[:(- 2)] file_name = (img_path_arr[(- 1)].split('.')[0] + clp_file_format) clp_path = os.path.join(sep.join(prefix), clp_file_store, file_name) valid_points = np.load(clp_path) width_ori = roidb[0]['height'] height_ori = roidb[0]['width'] clp_ori = np.zeros([width_ori, height_ori], dtype=np.float32) clp_ori[tuple((valid_points.T[1, :], valid_points.T[0, :]))] = 1 clp_reshape = np.empty([width_ori, height_ori, 3], dtype=np.float32) for i in range(3): clp_reshape[0:width_ori, 0:height_ori, i] = clp_ori clp_res = cv2.resize(clp_reshape, None, None, fx=im_scales[0], fy=im_scales[0], interpolation=cv2.INTER_LINEAR) clp_res = clp_res[:, :, 0] clp_res[(clp_res > 0)] = 1 width = clp_res.shape[0] height = clp_res.shape[1] clp_res = clp_res.reshape([1, width, height, 1]) blobs['clp_info'] = clp_res if cfg.TRAIN.USE_ALL_GT: gt_inds = np.where((roidb[0]['gt_classes'] != 0))[0] else: gt_inds = np.where((roidb[0]['gt_classes'] != (0 & np.all((roidb[0]['gt_overlaps'].toarray() > (- 1.0)), axis=1))))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = (roidb[0]['boxes'][gt_inds, :] * im_scales[0]) gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs
def _get_image_blob(roidb, scale_inds): 'Builds an input blob from the images in the roidb at the specified\n scales.\n ' num_images = len(roidb) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::(- 1), :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] (im, im_scale) = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) blob = im_list_to_blob(processed_ims) return (blob, im_scales)
1,247,642,366,500,196,600
Builds an input blob from the images in the roidb at the specified scales.
lib/roi_data_layer/minibatch.py
_get_image_blob
wennieWN/endernewton_tf-faster-rcnn
python
def _get_image_blob(roidb, scale_inds): 'Builds an input blob from the images in the roidb at the specified\n scales.\n ' num_images = len(roidb) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::(- 1), :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] (im, im_scale) = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) blob = im_list_to_blob(processed_ims) return (blob, im_scales)
def __init__(self, *args, **kwds): '\n Constructor. Any message fields that are implicitly/explicitly\n set to None will be assigned a default value. The recommend\n use is keyword arguments as this is more robust to future message\n changes. You cannot mix in-order arguments and keyword arguments.\n\n The available fields are:\n header,sysid,compid,acc,gyro,mag\n\n :param args: complete set of field values, in .msg order\n :param kwds: use keyword arguments corresponding to message field names\n to set specific fields.\n ' if (args or kwds): super(mav_cc16_IMU, self).__init__(*args, **kwds) if (self.header is None): self.header = std_msgs.msg.Header() if (self.sysid is None): self.sysid = 0 if (self.compid is None): self.compid = 0 if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() else: self.header = std_msgs.msg.Header() self.sysid = 0 self.compid = 0 self.acc = geometry_msgs.msg.Vector3() self.gyro = geometry_msgs.msg.Vector3() self.mag = geometry_msgs.msg.Vector3()
-5,999,975,263,630,756,000
Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,sysid,compid,acc,gyro,mag :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields.
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
__init__
jessecha/OPCAS
python
def __init__(self, *args, **kwds): '\n Constructor. Any message fields that are implicitly/explicitly\n set to None will be assigned a default value. The recommend\n use is keyword arguments as this is more robust to future message\n changes. You cannot mix in-order arguments and keyword arguments.\n\n The available fields are:\n header,sysid,compid,acc,gyro,mag\n\n :param args: complete set of field values, in .msg order\n :param kwds: use keyword arguments corresponding to message field names\n to set specific fields.\n ' if (args or kwds): super(mav_cc16_IMU, self).__init__(*args, **kwds) if (self.header is None): self.header = std_msgs.msg.Header() if (self.sysid is None): self.sysid = 0 if (self.compid is None): self.compid = 0 if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() else: self.header = std_msgs.msg.Header() self.sysid = 0 self.compid = 0 self.acc = geometry_msgs.msg.Vector3() self.gyro = geometry_msgs.msg.Vector3() self.mag = geometry_msgs.msg.Vector3()
def _get_types(self): '\n internal API method\n ' return self._slot_types
840,424,092,067,405,300
internal API method
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
_get_types
jessecha/OPCAS
python
def _get_types(self): '\n \n ' return self._slot_types
def serialize(self, buff): '\n serialize message into buffer\n :param buff: buffer, ``StringIO``\n ' try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if (python3 or (type(_x) == unicode)): _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack(('<I%ss' % length), length, _x)) _x = self buff.write(_get_struct_2B9d().pack(_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z)) except struct.error as se: self._check_types(struct.error(("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self)))))) except TypeError as te: self._check_types(ValueError(("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))))
-2,631,236,140,840,951,000
serialize message into buffer :param buff: buffer, ``StringIO``
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
serialize
jessecha/OPCAS
python
def serialize(self, buff): '\n serialize message into buffer\n :param buff: buffer, ``StringIO``\n ' try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if (python3 or (type(_x) == unicode)): _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack(('<I%ss' % length), length, _x)) _x = self buff.write(_get_struct_2B9d().pack(_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z)) except struct.error as se: self._check_types(struct.error(("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self)))))) except TypeError as te: self._check_types(ValueError(("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))))
def deserialize(self, str): '\n unpack serialized message in str into this message instance\n :param str: byte array of serialized message, ``str``\n ' try: if (self.header is None): self.header = std_msgs.msg.Header() if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 74 (_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z) = _get_struct_2B9d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
11,232,664,134,381,544
unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str``
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
deserialize
jessecha/OPCAS
python
def deserialize(self, str): '\n unpack serialized message in str into this message instance\n :param str: byte array of serialized message, ``str``\n ' try: if (self.header is None): self.header = std_msgs.msg.Header() if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 74 (_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z) = _get_struct_2B9d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
def serialize_numpy(self, buff, numpy): '\n serialize message with numpy array types into buffer\n :param buff: buffer, ``StringIO``\n :param numpy: numpy python module\n ' try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if (python3 or (type(_x) == unicode)): _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack(('<I%ss' % length), length, _x)) _x = self buff.write(_get_struct_2B9d().pack(_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z)) except struct.error as se: self._check_types(struct.error(("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self)))))) except TypeError as te: self._check_types(ValueError(("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))))
-8,567,815,062,247,637,000
serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
serialize_numpy
jessecha/OPCAS
python
def serialize_numpy(self, buff, numpy): '\n serialize message with numpy array types into buffer\n :param buff: buffer, ``StringIO``\n :param numpy: numpy python module\n ' try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if (python3 or (type(_x) == unicode)): _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack(('<I%ss' % length), length, _x)) _x = self buff.write(_get_struct_2B9d().pack(_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z)) except struct.error as se: self._check_types(struct.error(("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self)))))) except TypeError as te: self._check_types(ValueError(("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))))
def deserialize_numpy(self, str, numpy): '\n unpack serialized message in str into this message instance using numpy for array types\n :param str: byte array of serialized message, ``str``\n :param numpy: numpy python module\n ' try: if (self.header is None): self.header = std_msgs.msg.Header() if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 74 (_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z) = _get_struct_2B9d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
6,518,810,983,754,949,000
unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module
Catkin_PKG_Car/devel/lib/python2.7/dist-packages/drive_ros_msgs/msg/_mav_cc16_IMU.py
deserialize_numpy
jessecha/OPCAS
python
def deserialize_numpy(self, str, numpy): '\n unpack serialized message in str into this message instance using numpy for array types\n :param str: byte array of serialized message, ``str``\n :param numpy: numpy python module\n ' try: if (self.header is None): self.header = std_msgs.msg.Header() if (self.acc is None): self.acc = geometry_msgs.msg.Vector3() if (self.gyro is None): self.gyro = geometry_msgs.msg.Vector3() if (self.mag is None): self.mag = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 74 (_x.sysid, _x.compid, _x.acc.x, _x.acc.y, _x.acc.z, _x.gyro.x, _x.gyro.y, _x.gyro.z, _x.mag.x, _x.mag.y, _x.mag.z) = _get_struct_2B9d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
def test_events(): 'Tests that expected events are created by MOTAccumulator.update().' acc = mm.MOTAccumulator() acc.update([], [1, 2], [], frameid=0) acc.update([1, 2], [], [], frameid=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=2) acc.update([1, 2], [1, 2], [[0.2, np.nan], [np.nan, 0.1]], frameid=3) acc.update([1, 2], [1, 2], [[5, 1], [1, 5]], frameid=4) acc.update([], [], [], frameid=5) expect = mm.MOTAccumulator.new_event_dataframe() expect.loc[(0, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(0, 1), :] = ['RAW', np.nan, 1, np.nan] expect.loc[(0, 2), :] = ['RAW', np.nan, 2, np.nan] expect.loc[(0, 3), :] = ['FP', np.nan, 1, np.nan] expect.loc[(0, 4), :] = ['FP', np.nan, 2, np.nan] expect.loc[(1, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(1, 1), :] = ['RAW', 1, np.nan, np.nan] expect.loc[(1, 2), :] = ['RAW', 2, np.nan, np.nan] expect.loc[(1, 3), :] = ['MISS', 1, np.nan, np.nan] expect.loc[(1, 4), :] = ['MISS', 2, np.nan, np.nan] expect.loc[(2, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(2, 1), :] = ['RAW', 1, 1, 1.0] expect.loc[(2, 2), :] = ['RAW', 1, 2, 0.5] expect.loc[(2, 3), :] = ['RAW', 2, 1, 0.3] expect.loc[(2, 4), :] = ['RAW', 2, 2, 1.0] expect.loc[(2, 5), :] = ['MATCH', 1, 2, 0.5] expect.loc[(2, 6), :] = ['MATCH', 2, 1, 0.3] expect.loc[(3, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(3, 1), :] = ['RAW', 1, 1, 0.2] expect.loc[(3, 2), :] = ['RAW', 2, 2, 0.1] expect.loc[(3, 3), :] = ['TRANSFER', 1, 1, 0.2] expect.loc[(3, 4), :] = ['SWITCH', 1, 1, 0.2] expect.loc[(3, 5), :] = ['TRANSFER', 2, 2, 0.1] expect.loc[(3, 6), :] = ['SWITCH', 2, 2, 0.1] expect.loc[(4, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(4, 1), :] = ['RAW', 1, 1, 5.0] expect.loc[(4, 2), :] = ['RAW', 1, 2, 1.0] expect.loc[(4, 3), :] = ['RAW', 2, 1, 1.0] expect.loc[(4, 4), :] = ['RAW', 2, 2, 5.0] expect.loc[(4, 5), :] = ['MATCH', 1, 1, 5.0] expect.loc[(4, 6), :] = ['MATCH', 2, 2, 5.0] expect.loc[(5, 0), :] = ['RAW', np.nan, np.nan, np.nan] pd.util.testing.assert_frame_equal(acc.events, expect)
2,827,419,784,747,043,300
Tests that expected events are created by MOTAccumulator.update().
motmetrics/tests/test_mot.py
test_events
Borda/py-motmetrics
python
def test_events(): acc = mm.MOTAccumulator() acc.update([], [1, 2], [], frameid=0) acc.update([1, 2], [], [], frameid=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=2) acc.update([1, 2], [1, 2], [[0.2, np.nan], [np.nan, 0.1]], frameid=3) acc.update([1, 2], [1, 2], [[5, 1], [1, 5]], frameid=4) acc.update([], [], [], frameid=5) expect = mm.MOTAccumulator.new_event_dataframe() expect.loc[(0, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(0, 1), :] = ['RAW', np.nan, 1, np.nan] expect.loc[(0, 2), :] = ['RAW', np.nan, 2, np.nan] expect.loc[(0, 3), :] = ['FP', np.nan, 1, np.nan] expect.loc[(0, 4), :] = ['FP', np.nan, 2, np.nan] expect.loc[(1, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(1, 1), :] = ['RAW', 1, np.nan, np.nan] expect.loc[(1, 2), :] = ['RAW', 2, np.nan, np.nan] expect.loc[(1, 3), :] = ['MISS', 1, np.nan, np.nan] expect.loc[(1, 4), :] = ['MISS', 2, np.nan, np.nan] expect.loc[(2, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(2, 1), :] = ['RAW', 1, 1, 1.0] expect.loc[(2, 2), :] = ['RAW', 1, 2, 0.5] expect.loc[(2, 3), :] = ['RAW', 2, 1, 0.3] expect.loc[(2, 4), :] = ['RAW', 2, 2, 1.0] expect.loc[(2, 5), :] = ['MATCH', 1, 2, 0.5] expect.loc[(2, 6), :] = ['MATCH', 2, 1, 0.3] expect.loc[(3, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(3, 1), :] = ['RAW', 1, 1, 0.2] expect.loc[(3, 2), :] = ['RAW', 2, 2, 0.1] expect.loc[(3, 3), :] = ['TRANSFER', 1, 1, 0.2] expect.loc[(3, 4), :] = ['SWITCH', 1, 1, 0.2] expect.loc[(3, 5), :] = ['TRANSFER', 2, 2, 0.1] expect.loc[(3, 6), :] = ['SWITCH', 2, 2, 0.1] expect.loc[(4, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(4, 1), :] = ['RAW', 1, 1, 5.0] expect.loc[(4, 2), :] = ['RAW', 1, 2, 1.0] expect.loc[(4, 3), :] = ['RAW', 2, 1, 1.0] expect.loc[(4, 4), :] = ['RAW', 2, 2, 5.0] expect.loc[(4, 5), :] = ['MATCH', 1, 1, 5.0] expect.loc[(4, 6), :] = ['MATCH', 2, 2, 5.0] expect.loc[(5, 0), :] = ['RAW', np.nan, np.nan, np.nan] pd.util.testing.assert_frame_equal(acc.events, expect)
def test_max_switch_time(): 'Tests max_switch_time option.' acc = mm.MOTAccumulator(max_switch_time=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=1) frameid = acc.update([1, 2], [1, 2], [[0.5, np.nan], [np.nan, 0.5]], frameid=2) df = acc.events.loc[frameid] assert (((df.Type == 'SWITCH') | (df.Type == 'RAW')) | (df.Type == 'TRANSFER')).all() acc = mm.MOTAccumulator(max_switch_time=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=1) frameid = acc.update([1, 2], [1, 2], [[0.5, np.nan], [np.nan, 0.5]], frameid=5) df = acc.events.loc[frameid] assert (((df.Type == 'MATCH') | (df.Type == 'RAW')) | (df.Type == 'TRANSFER')).all()
-84,593,867,561,195,820
Tests max_switch_time option.
motmetrics/tests/test_mot.py
test_max_switch_time
Borda/py-motmetrics
python
def test_max_switch_time(): acc = mm.MOTAccumulator(max_switch_time=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=1) frameid = acc.update([1, 2], [1, 2], [[0.5, np.nan], [np.nan, 0.5]], frameid=2) df = acc.events.loc[frameid] assert (((df.Type == 'SWITCH') | (df.Type == 'RAW')) | (df.Type == 'TRANSFER')).all() acc = mm.MOTAccumulator(max_switch_time=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=1) frameid = acc.update([1, 2], [1, 2], [[0.5, np.nan], [np.nan, 0.5]], frameid=5) df = acc.events.loc[frameid] assert (((df.Type == 'MATCH') | (df.Type == 'RAW')) | (df.Type == 'TRANSFER')).all()
def test_auto_id(): 'Tests auto_id option.' acc = mm.MOTAccumulator(auto_id=True) acc.update([1, 2, 3, 4], [], []) acc.update([1, 2, 3, 4], [], []) assert (acc.events.index.levels[0][(- 1)] == 1) acc.update([1, 2, 3, 4], [], []) assert (acc.events.index.levels[0][(- 1)] == 2) with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [], frameid=5) acc = mm.MOTAccumulator(auto_id=False) with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [])
-1,848,275,232,027,954,400
Tests auto_id option.
motmetrics/tests/test_mot.py
test_auto_id
Borda/py-motmetrics
python
def test_auto_id(): acc = mm.MOTAccumulator(auto_id=True) acc.update([1, 2, 3, 4], [], []) acc.update([1, 2, 3, 4], [], []) assert (acc.events.index.levels[0][(- 1)] == 1) acc.update([1, 2, 3, 4], [], []) assert (acc.events.index.levels[0][(- 1)] == 2) with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [], frameid=5) acc = mm.MOTAccumulator(auto_id=False) with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [])
def test_merge_dataframes(): 'Tests merge_event_dataframes().' acc = mm.MOTAccumulator() acc.update([], [1, 2], [], frameid=0) acc.update([1, 2], [], [], frameid=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=2) acc.update([1, 2], [1, 2], [[0.2, np.nan], [np.nan, 0.1]], frameid=3) (r, mappings) = mm.MOTAccumulator.merge_event_dataframes([acc.events, acc.events], return_mappings=True) expect = mm.MOTAccumulator.new_event_dataframe() expect.loc[(0, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(0, 1), :] = ['RAW', np.nan, mappings[0]['hid_map'][1], np.nan] expect.loc[(0, 2), :] = ['RAW', np.nan, mappings[0]['hid_map'][2], np.nan] expect.loc[(0, 3), :] = ['FP', np.nan, mappings[0]['hid_map'][1], np.nan] expect.loc[(0, 4), :] = ['FP', np.nan, mappings[0]['hid_map'][2], np.nan] expect.loc[(1, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(1, 1), :] = ['RAW', mappings[0]['oid_map'][1], np.nan, np.nan] expect.loc[(1, 2), :] = ['RAW', mappings[0]['oid_map'][2], np.nan, np.nan] expect.loc[(1, 3), :] = ['MISS', mappings[0]['oid_map'][1], np.nan, np.nan] expect.loc[(1, 4), :] = ['MISS', mappings[0]['oid_map'][2], np.nan, np.nan] expect.loc[(2, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(2, 1), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 1] expect.loc[(2, 2), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][2], 0.5] expect.loc[(2, 3), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][1], 0.3] expect.loc[(2, 4), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 1.0] expect.loc[(2, 5), :] = ['MATCH', mappings[0]['oid_map'][1], mappings[0]['hid_map'][2], 0.5] expect.loc[(2, 6), :] = ['MATCH', mappings[0]['oid_map'][2], mappings[0]['hid_map'][1], 0.3] expect.loc[(3, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(3, 1), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 2), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(3, 3), :] = ['TRANSFER', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 4), :] = ['SWITCH', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 5), :] = ['TRANSFER', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(3, 6), :] = ['SWITCH', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(4, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(4, 1), :] = ['RAW', np.nan, mappings[1]['hid_map'][1], np.nan] expect.loc[(4, 2), :] = ['RAW', np.nan, mappings[1]['hid_map'][2], np.nan] expect.loc[(4, 3), :] = ['FP', np.nan, mappings[1]['hid_map'][1], np.nan] expect.loc[(4, 4), :] = ['FP', np.nan, mappings[1]['hid_map'][2], np.nan] expect.loc[(5, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(5, 1), :] = ['RAW', mappings[1]['oid_map'][1], np.nan, np.nan] expect.loc[(5, 2), :] = ['RAW', mappings[1]['oid_map'][2], np.nan, np.nan] expect.loc[(5, 3), :] = ['MISS', mappings[1]['oid_map'][1], np.nan, np.nan] expect.loc[(5, 4), :] = ['MISS', mappings[1]['oid_map'][2], np.nan, np.nan] expect.loc[(6, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(6, 1), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 1] expect.loc[(6, 2), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][2], 0.5] expect.loc[(6, 3), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][1], 0.3] expect.loc[(6, 4), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 1.0] expect.loc[(6, 5), :] = ['MATCH', mappings[1]['oid_map'][1], mappings[1]['hid_map'][2], 0.5] expect.loc[(6, 6), :] = ['MATCH', mappings[1]['oid_map'][2], mappings[1]['hid_map'][1], 0.3] expect.loc[(7, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(7, 1), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 2), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] expect.loc[(7, 3), :] = ['TRANSFER', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 4), :] = ['SWITCH', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 5), :] = ['TRANSFER', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] expect.loc[(7, 6), :] = ['SWITCH', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] pd.util.testing.assert_frame_equal(r, expect)
2,031,126,333,783,907,800
Tests merge_event_dataframes().
motmetrics/tests/test_mot.py
test_merge_dataframes
Borda/py-motmetrics
python
def test_merge_dataframes(): acc = mm.MOTAccumulator() acc.update([], [1, 2], [], frameid=0) acc.update([1, 2], [], [], frameid=1) acc.update([1, 2], [1, 2], [[1, 0.5], [0.3, 1]], frameid=2) acc.update([1, 2], [1, 2], [[0.2, np.nan], [np.nan, 0.1]], frameid=3) (r, mappings) = mm.MOTAccumulator.merge_event_dataframes([acc.events, acc.events], return_mappings=True) expect = mm.MOTAccumulator.new_event_dataframe() expect.loc[(0, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(0, 1), :] = ['RAW', np.nan, mappings[0]['hid_map'][1], np.nan] expect.loc[(0, 2), :] = ['RAW', np.nan, mappings[0]['hid_map'][2], np.nan] expect.loc[(0, 3), :] = ['FP', np.nan, mappings[0]['hid_map'][1], np.nan] expect.loc[(0, 4), :] = ['FP', np.nan, mappings[0]['hid_map'][2], np.nan] expect.loc[(1, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(1, 1), :] = ['RAW', mappings[0]['oid_map'][1], np.nan, np.nan] expect.loc[(1, 2), :] = ['RAW', mappings[0]['oid_map'][2], np.nan, np.nan] expect.loc[(1, 3), :] = ['MISS', mappings[0]['oid_map'][1], np.nan, np.nan] expect.loc[(1, 4), :] = ['MISS', mappings[0]['oid_map'][2], np.nan, np.nan] expect.loc[(2, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(2, 1), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 1] expect.loc[(2, 2), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][2], 0.5] expect.loc[(2, 3), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][1], 0.3] expect.loc[(2, 4), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 1.0] expect.loc[(2, 5), :] = ['MATCH', mappings[0]['oid_map'][1], mappings[0]['hid_map'][2], 0.5] expect.loc[(2, 6), :] = ['MATCH', mappings[0]['oid_map'][2], mappings[0]['hid_map'][1], 0.3] expect.loc[(3, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(3, 1), :] = ['RAW', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 2), :] = ['RAW', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(3, 3), :] = ['TRANSFER', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 4), :] = ['SWITCH', mappings[0]['oid_map'][1], mappings[0]['hid_map'][1], 0.2] expect.loc[(3, 5), :] = ['TRANSFER', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(3, 6), :] = ['SWITCH', mappings[0]['oid_map'][2], mappings[0]['hid_map'][2], 0.1] expect.loc[(4, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(4, 1), :] = ['RAW', np.nan, mappings[1]['hid_map'][1], np.nan] expect.loc[(4, 2), :] = ['RAW', np.nan, mappings[1]['hid_map'][2], np.nan] expect.loc[(4, 3), :] = ['FP', np.nan, mappings[1]['hid_map'][1], np.nan] expect.loc[(4, 4), :] = ['FP', np.nan, mappings[1]['hid_map'][2], np.nan] expect.loc[(5, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(5, 1), :] = ['RAW', mappings[1]['oid_map'][1], np.nan, np.nan] expect.loc[(5, 2), :] = ['RAW', mappings[1]['oid_map'][2], np.nan, np.nan] expect.loc[(5, 3), :] = ['MISS', mappings[1]['oid_map'][1], np.nan, np.nan] expect.loc[(5, 4), :] = ['MISS', mappings[1]['oid_map'][2], np.nan, np.nan] expect.loc[(6, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(6, 1), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 1] expect.loc[(6, 2), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][2], 0.5] expect.loc[(6, 3), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][1], 0.3] expect.loc[(6, 4), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 1.0] expect.loc[(6, 5), :] = ['MATCH', mappings[1]['oid_map'][1], mappings[1]['hid_map'][2], 0.5] expect.loc[(6, 6), :] = ['MATCH', mappings[1]['oid_map'][2], mappings[1]['hid_map'][1], 0.3] expect.loc[(7, 0), :] = ['RAW', np.nan, np.nan, np.nan] expect.loc[(7, 1), :] = ['RAW', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 2), :] = ['RAW', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] expect.loc[(7, 3), :] = ['TRANSFER', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 4), :] = ['SWITCH', mappings[1]['oid_map'][1], mappings[1]['hid_map'][1], 0.2] expect.loc[(7, 5), :] = ['TRANSFER', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] expect.loc[(7, 6), :] = ['SWITCH', mappings[1]['oid_map'][2], mappings[1]['hid_map'][2], 0.1] pd.util.testing.assert_frame_equal(r, expect)
def cutadapt_to_json(filepath, savetofile=None): 'Convert cutadapt/trim_galore output to json\n\n Parameters\n ----------\n filepath: string\n Path to trim_galore/cutadapt output.txt\n\n Returns\n -------\n json_data: dict\n ' fh = open(filepath, 'r') trim_info = {} length_counts = {} length_exp = {} length_obsexp = {} adapters = {} sample = None for l in fh: if ('cutadapt' in l): sample = None if l.startswith('Used user'): adapters = 'User provided' break if l.startswith('No adapter'): adapters = 'None found (second pass)' break if l.startswith('Command line parameters'): sample = l.split()[(- 1)] sample = path_leaf(sample).replace('.fq.gz', '').replace('.fastq.gz', '') if (sample in trim_info): log.debug('Duplicate sample name found! Overwriting: {}'.format(sample)) trim_info[sample] = dict() if (sample is not None): for (k, r) in list(regexes.items()): match = re.search(r, l) if match: trim_info[sample][k] = int(match.group(1).replace(',', '')) if ('===' in l): log_section = l.strip().strip('=').strip() if l.startswith('Sequence:'): plot_sname = '{} - {}'.format(sample, log_section) adapters[plot_sname] = l.split(';')[0].strip('Sequence: ') if (('length' in l) and ('count' in l) and ('expect' in l)): plot_sname = sample if (log_section is not None): plot_sname = '{} - {}'.format(sample, log_section) length_counts[plot_sname] = dict() length_exp[plot_sname] = dict() length_obsexp[plot_sname] = dict() for l in fh: r_seqs = re.search('^(\\d+)\\s+(\\d+)\\s+([\\d\\.]+)', l) if r_seqs: a_len = int(r_seqs.group(1)) length_counts[plot_sname][a_len] = int(r_seqs.group(2)) length_exp[plot_sname][a_len] = float(r_seqs.group(3)) if (float(r_seqs.group(3)) > 0): length_obsexp[plot_sname][a_len] = (float(r_seqs.group(2)) / float(r_seqs.group(3))) else: length_obsexp[plot_sname][a_len] = float(r_seqs.group(2)) else: break fh.close() json_data = {'adapters': adapters, 'trim_info': trim_info, 'length_exp': length_exp, 'length_obsexp': length_obsexp, 'length_counts': length_counts} if savetofile: json.dump(json_data, savetofile) return json_data
6,655,342,304,274,616,000
Convert cutadapt/trim_galore output to json Parameters ---------- filepath: string Path to trim_galore/cutadapt output.txt Returns ------- json_data: dict
riboraptor/cutadapt_to_json.py
cutadapt_to_json
saketkc/riboraptor
python
def cutadapt_to_json(filepath, savetofile=None): 'Convert cutadapt/trim_galore output to json\n\n Parameters\n ----------\n filepath: string\n Path to trim_galore/cutadapt output.txt\n\n Returns\n -------\n json_data: dict\n ' fh = open(filepath, 'r') trim_info = {} length_counts = {} length_exp = {} length_obsexp = {} adapters = {} sample = None for l in fh: if ('cutadapt' in l): sample = None if l.startswith('Used user'): adapters = 'User provided' break if l.startswith('No adapter'): adapters = 'None found (second pass)' break if l.startswith('Command line parameters'): sample = l.split()[(- 1)] sample = path_leaf(sample).replace('.fq.gz', ).replace('.fastq.gz', ) if (sample in trim_info): log.debug('Duplicate sample name found! Overwriting: {}'.format(sample)) trim_info[sample] = dict() if (sample is not None): for (k, r) in list(regexes.items()): match = re.search(r, l) if match: trim_info[sample][k] = int(match.group(1).replace(',', )) if ('===' in l): log_section = l.strip().strip('=').strip() if l.startswith('Sequence:'): plot_sname = '{} - {}'.format(sample, log_section) adapters[plot_sname] = l.split(';')[0].strip('Sequence: ') if (('length' in l) and ('count' in l) and ('expect' in l)): plot_sname = sample if (log_section is not None): plot_sname = '{} - {}'.format(sample, log_section) length_counts[plot_sname] = dict() length_exp[plot_sname] = dict() length_obsexp[plot_sname] = dict() for l in fh: r_seqs = re.search('^(\\d+)\\s+(\\d+)\\s+([\\d\\.]+)', l) if r_seqs: a_len = int(r_seqs.group(1)) length_counts[plot_sname][a_len] = int(r_seqs.group(2)) length_exp[plot_sname][a_len] = float(r_seqs.group(3)) if (float(r_seqs.group(3)) > 0): length_obsexp[plot_sname][a_len] = (float(r_seqs.group(2)) / float(r_seqs.group(3))) else: length_obsexp[plot_sname][a_len] = float(r_seqs.group(2)) else: break fh.close() json_data = {'adapters': adapters, 'trim_info': trim_info, 'length_exp': length_exp, 'length_obsexp': length_obsexp, 'length_counts': length_counts} if savetofile: json.dump(json_data, savetofile) return json_data
def get_default_conda_env(include_cloudpickle=False, keras_module=None): '\n :return: The default Conda environment for MLflow Models produced by calls to\n :func:`save_model()` and :func:`log_model()`.\n ' import tensorflow as tf conda_deps = [] pip_deps = [] if (keras_module is None): import keras keras_module = keras if (keras_module.__name__ == 'keras'): if (LooseVersion(keras_module.__version__) < LooseVersion('2.3.1')): conda_deps.append('keras=={}'.format(keras_module.__version__)) else: pip_deps.append('keras=={}'.format(keras_module.__version__)) if include_cloudpickle: import cloudpickle pip_deps.append('cloudpickle=={}'.format(cloudpickle.__version__)) if (LooseVersion(tf.__version__) <= LooseVersion('1.13.2')): conda_deps.append('tensorflow=={}'.format(tf.__version__)) else: pip_deps.append('tensorflow=={}'.format(tf.__version__)) return _mlflow_conda_env(additional_conda_deps=conda_deps, additional_pip_deps=pip_deps, additional_conda_channels=None)
-5,623,015,681,642,164,000
:return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`.
mlflow/keras.py
get_default_conda_env
AnesBenmerzoug/mlflow
python
def get_default_conda_env(include_cloudpickle=False, keras_module=None): '\n :return: The default Conda environment for MLflow Models produced by calls to\n :func:`save_model()` and :func:`log_model()`.\n ' import tensorflow as tf conda_deps = [] pip_deps = [] if (keras_module is None): import keras keras_module = keras if (keras_module.__name__ == 'keras'): if (LooseVersion(keras_module.__version__) < LooseVersion('2.3.1')): conda_deps.append('keras=={}'.format(keras_module.__version__)) else: pip_deps.append('keras=={}'.format(keras_module.__version__)) if include_cloudpickle: import cloudpickle pip_deps.append('cloudpickle=={}'.format(cloudpickle.__version__)) if (LooseVersion(tf.__version__) <= LooseVersion('1.13.2')): conda_deps.append('tensorflow=={}'.format(tf.__version__)) else: pip_deps.append('tensorflow=={}'.format(tf.__version__)) return _mlflow_conda_env(additional_conda_deps=conda_deps, additional_pip_deps=pip_deps, additional_conda_channels=None)
def save_model(keras_model, path, conda_env=None, mlflow_model=None, custom_objects=None, keras_module=None, signature: ModelSignature=None, input_example: ModelInputExample=None, **kwargs): '\n Save a Keras model to a path on the local file system.\n\n :param keras_model: Keras model to be saved.\n :param path: Local path where the model is to be saved.\n :param conda_env: Either a dictionary representation of a Conda environment or the path to a\n Conda environment yaml file. If provided, this decsribes the environment\n this model should be run in. At minimum, it should specify the\n dependencies contained in :func:`get_default_conda_env()`. If\n ``None``, the default :func:`get_default_conda_env()` environment is\n added to the model. The following is an *example* dictionary\n representation of a Conda environment::\n\n {\n \'name\': \'mlflow-env\',\n \'channels\': [\'defaults\'],\n \'dependencies\': [\n \'python=3.7.0\',\n \'keras=2.2.4\',\n \'tensorflow=1.8.0\'\n ]\n }\n :param mlflow_model: MLflow model config this flavor is being added to.\n :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to\n custom classes or functions associated with the Keras model. MLflow saves\n these custom layers using CloudPickle and restores them automatically\n when the model is loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n :param keras_module: Keras module to be used to save / load the model\n (``keras`` or ``tf.keras``). If not provided, MLflow will\n attempt to infer the Keras module based on the given model.\n :param kwargs: kwargs to pass to ``keras_model.save`` method.\n\n :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`\n describes model input and output :py:class:`Schema <mlflow.types.Schema>`.\n The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`\n from datasets with valid model input (e.g. the training dataset with target\n column omitted) and valid model output (e.g. model predictions generated on\n the training dataset), for example:\n\n .. code-block:: python\n\n from mlflow.models.signature import infer_signature\n train = df.drop_column("target_label")\n predictions = ... # compute model predictions\n signature = infer_signature(train, predictions)\n :param input_example: (Experimental) Input example provides one or several instances of valid\n model input. The example can be used as a hint of what data to feed the\n model. The given example will be converted to a Pandas DataFrame and then\n serialized to json using the Pandas split-oriented format. Bytes are\n base64-encoded.\n\n .. code-block:: python\n :caption: Example\n\n import mlflow\n # Build, compile, and train your model\n keras_model = ...\n keras_model_path = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))\n # Save the model as an MLflow Model\n mlflow.keras.save_model(keras_model, keras_model_path)\n ' if (keras_module is None): def _is_plain_keras(model): try: import keras.engine.network return isinstance(model, keras.engine.network.Network) except ImportError: return False def _is_tf_keras(model): try: import tensorflow.keras.models return isinstance(model, tensorflow.keras.models.Model) except ImportError: return False if _is_plain_keras(keras_model): keras_module = importlib.import_module('keras') elif _is_tf_keras(keras_model): keras_module = importlib.import_module('tensorflow.keras') else: raise MlflowException("Unable to infer keras module from the model, please specify which keras module ('keras' or 'tensorflow.keras') is to be used to save and load the model.") elif (type(keras_module) == str): keras_module = importlib.import_module(keras_module) path = os.path.abspath(path) if os.path.exists(path): raise MlflowException("Path '{}' already exists".format(path)) data_subpath = 'data' data_path = os.path.join(path, data_subpath) os.makedirs(data_path) if (mlflow_model is None): mlflow_model = Model() if (signature is not None): mlflow_model.signature = signature if (input_example is not None): _save_example(mlflow_model, input_example, path) if (custom_objects is not None): _save_custom_objects(data_path, custom_objects) with open(os.path.join(data_path, _KERAS_MODULE_SPEC_PATH), 'w') as f: f.write(keras_module.__name__) model_subpath = os.path.join(data_subpath, _MODEL_SAVE_PATH) model_path = os.path.join(path, model_subpath) if path.startswith('/dbfs/'): with tempfile.NamedTemporaryFile(suffix='.h5') as f: keras_model.save(f.name, **kwargs) f.flush() shutil.copyfile(src=f.name, dst=model_path) else: keras_model.save(model_path, **kwargs) mlflow_model.add_flavor(FLAVOR_NAME, keras_module=keras_module.__name__, keras_version=keras_module.__version__, data=data_subpath) if (conda_env is None): conda_env = get_default_conda_env(include_cloudpickle=(custom_objects is not None), keras_module=keras_module) elif (not isinstance(conda_env, dict)): with open(conda_env, 'r') as f: conda_env = yaml.safe_load(f) with open(os.path.join(path, _CONDA_ENV_SUBPATH), 'w') as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) pyfunc.add_to_model(mlflow_model, loader_module='mlflow.keras', data=data_subpath, env=_CONDA_ENV_SUBPATH) mlflow_model.save(os.path.join(path, 'MLmodel'))
1,466,731,621,052,774,000
Save a Keras model to a path on the local file system. :param keras_model: Keras model to be saved. :param path: Local path where the model is to be saved. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'keras=2.2.4', 'tensorflow=1.8.0' ] } :param mlflow_model: MLflow model config this flavor is being added to. :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to custom classes or functions associated with the Keras model. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.keras.load_model` and :py:func:`mlflow.pyfunc.load_model`. :param keras_module: Keras module to be used to save / load the model (``keras`` or ``tf.keras``). If not provided, MLflow will attempt to infer the Keras module based on the given model. :param kwargs: kwargs to pass to ``keras_model.save`` method. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. .. code-block:: python :caption: Example import mlflow # Build, compile, and train your model keras_model = ... keras_model_path = ... keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"]) results = keras_model.fit( x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val)) # Save the model as an MLflow Model mlflow.keras.save_model(keras_model, keras_model_path)
mlflow/keras.py
save_model
AnesBenmerzoug/mlflow
python
def save_model(keras_model, path, conda_env=None, mlflow_model=None, custom_objects=None, keras_module=None, signature: ModelSignature=None, input_example: ModelInputExample=None, **kwargs): '\n Save a Keras model to a path on the local file system.\n\n :param keras_model: Keras model to be saved.\n :param path: Local path where the model is to be saved.\n :param conda_env: Either a dictionary representation of a Conda environment or the path to a\n Conda environment yaml file. If provided, this decsribes the environment\n this model should be run in. At minimum, it should specify the\n dependencies contained in :func:`get_default_conda_env()`. If\n ``None``, the default :func:`get_default_conda_env()` environment is\n added to the model. The following is an *example* dictionary\n representation of a Conda environment::\n\n {\n \'name\': \'mlflow-env\',\n \'channels\': [\'defaults\'],\n \'dependencies\': [\n \'python=3.7.0\',\n \'keras=2.2.4\',\n \'tensorflow=1.8.0\'\n ]\n }\n :param mlflow_model: MLflow model config this flavor is being added to.\n :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to\n custom classes or functions associated with the Keras model. MLflow saves\n these custom layers using CloudPickle and restores them automatically\n when the model is loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n :param keras_module: Keras module to be used to save / load the model\n (``keras`` or ``tf.keras``). If not provided, MLflow will\n attempt to infer the Keras module based on the given model.\n :param kwargs: kwargs to pass to ``keras_model.save`` method.\n\n :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`\n describes model input and output :py:class:`Schema <mlflow.types.Schema>`.\n The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`\n from datasets with valid model input (e.g. the training dataset with target\n column omitted) and valid model output (e.g. model predictions generated on\n the training dataset), for example:\n\n .. code-block:: python\n\n from mlflow.models.signature import infer_signature\n train = df.drop_column("target_label")\n predictions = ... # compute model predictions\n signature = infer_signature(train, predictions)\n :param input_example: (Experimental) Input example provides one or several instances of valid\n model input. The example can be used as a hint of what data to feed the\n model. The given example will be converted to a Pandas DataFrame and then\n serialized to json using the Pandas split-oriented format. Bytes are\n base64-encoded.\n\n .. code-block:: python\n :caption: Example\n\n import mlflow\n # Build, compile, and train your model\n keras_model = ...\n keras_model_path = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))\n # Save the model as an MLflow Model\n mlflow.keras.save_model(keras_model, keras_model_path)\n ' if (keras_module is None): def _is_plain_keras(model): try: import keras.engine.network return isinstance(model, keras.engine.network.Network) except ImportError: return False def _is_tf_keras(model): try: import tensorflow.keras.models return isinstance(model, tensorflow.keras.models.Model) except ImportError: return False if _is_plain_keras(keras_model): keras_module = importlib.import_module('keras') elif _is_tf_keras(keras_model): keras_module = importlib.import_module('tensorflow.keras') else: raise MlflowException("Unable to infer keras module from the model, please specify which keras module ('keras' or 'tensorflow.keras') is to be used to save and load the model.") elif (type(keras_module) == str): keras_module = importlib.import_module(keras_module) path = os.path.abspath(path) if os.path.exists(path): raise MlflowException("Path '{}' already exists".format(path)) data_subpath = 'data' data_path = os.path.join(path, data_subpath) os.makedirs(data_path) if (mlflow_model is None): mlflow_model = Model() if (signature is not None): mlflow_model.signature = signature if (input_example is not None): _save_example(mlflow_model, input_example, path) if (custom_objects is not None): _save_custom_objects(data_path, custom_objects) with open(os.path.join(data_path, _KERAS_MODULE_SPEC_PATH), 'w') as f: f.write(keras_module.__name__) model_subpath = os.path.join(data_subpath, _MODEL_SAVE_PATH) model_path = os.path.join(path, model_subpath) if path.startswith('/dbfs/'): with tempfile.NamedTemporaryFile(suffix='.h5') as f: keras_model.save(f.name, **kwargs) f.flush() shutil.copyfile(src=f.name, dst=model_path) else: keras_model.save(model_path, **kwargs) mlflow_model.add_flavor(FLAVOR_NAME, keras_module=keras_module.__name__, keras_version=keras_module.__version__, data=data_subpath) if (conda_env is None): conda_env = get_default_conda_env(include_cloudpickle=(custom_objects is not None), keras_module=keras_module) elif (not isinstance(conda_env, dict)): with open(conda_env, 'r') as f: conda_env = yaml.safe_load(f) with open(os.path.join(path, _CONDA_ENV_SUBPATH), 'w') as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) pyfunc.add_to_model(mlflow_model, loader_module='mlflow.keras', data=data_subpath, env=_CONDA_ENV_SUBPATH) mlflow_model.save(os.path.join(path, 'MLmodel'))
def log_model(keras_model, artifact_path, conda_env=None, custom_objects=None, keras_module=None, registered_model_name=None, signature: ModelSignature=None, input_example: ModelInputExample=None, **kwargs): '\n Log a Keras model as an MLflow artifact for the current run.\n\n :param keras_model: Keras model to be saved.\n :param artifact_path: Run-relative artifact path.\n :param conda_env: Either a dictionary representation of a Conda environment or\n the path to a Conda environment yaml file.\n If provided, this describes the environment this model should be\n run in. At minimum, it should specify the dependencies\n contained in :func:`get_default_conda_env()`. If ``None``, the default\n :func:`mlflow.keras.get_default_conda_env()` environment is added to\n the model. The following is an *example* dictionary representation of a\n Conda environment::\n\n {\n \'name\': \'mlflow-env\',\n \'channels\': [\'defaults\'],\n \'dependencies\': [\n \'python=3.7.0\',\n \'keras=2.2.4\',\n \'tensorflow=1.8.0\'\n ]\n }\n\n :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to\n custom classes or functions associated with the Keras model. MLflow saves\n these custom layers using CloudPickle and restores them automatically\n when the model is loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n :param keras_module: Keras module to be used to save / load the model\n (``keras`` or ``tf.keras``). If not provided, MLflow will\n attempt to infer the Keras module based on the given model.\n :param registered_model_name: (Experimental) If given, create a model version under\n ``registered_model_name``, also creating a registered model if one\n with the given name does not exist.\n\n :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`\n describes model input and output :py:class:`Schema <mlflow.types.Schema>`.\n The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`\n from datasets with valid model input (e.g. the training dataset with target\n column omitted) and valid model output (e.g. model predictions generated on\n the training dataset), for example:\n\n .. code-block:: python\n\n from mlflow.models.signature import infer_signature\n train = df.drop_column("target_label")\n predictions = ... # compute model predictions\n signature = infer_signature(train, predictions)\n :param input_example: (Experimental) Input example provides one or several instances of valid\n model input. The example can be used as a hint of what data to feed the\n model. The given example will be converted to a Pandas DataFrame and then\n serialized to json using the Pandas split-oriented format. Bytes are\n base64-encoded.\n\n :param kwargs: kwargs to pass to ``keras_model.save`` method.\n\n .. code-block:: python\n :caption: Example\n\n from keras import Dense, layers\n import mlflow\n # Build, compile, and train your model\n keras_model = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))\n # Log metrics and log the model\n with mlflow.start_run() as run:\n mlflow.keras.log_model(keras_model, "models")\n ' Model.log(artifact_path=artifact_path, flavor=mlflow.keras, keras_model=keras_model, conda_env=conda_env, custom_objects=custom_objects, keras_module=keras_module, registered_model_name=registered_model_name, signature=signature, input_example=input_example, **kwargs)
-6,210,177,250,117,643,000
Log a Keras model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`mlflow.keras.get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'keras=2.2.4', 'tensorflow=1.8.0' ] } :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to custom classes or functions associated with the Keras model. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.keras.load_model` and :py:func:`mlflow.pyfunc.load_model`. :param keras_module: Keras module to be used to save / load the model (``keras`` or ``tf.keras``). If not provided, MLflow will attempt to infer the Keras module based on the given model. :param registered_model_name: (Experimental) If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param kwargs: kwargs to pass to ``keras_model.save`` method. .. code-block:: python :caption: Example from keras import Dense, layers import mlflow # Build, compile, and train your model keras_model = ... keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"]) results = keras_model.fit( x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val)) # Log metrics and log the model with mlflow.start_run() as run: mlflow.keras.log_model(keras_model, "models")
mlflow/keras.py
log_model
AnesBenmerzoug/mlflow
python
def log_model(keras_model, artifact_path, conda_env=None, custom_objects=None, keras_module=None, registered_model_name=None, signature: ModelSignature=None, input_example: ModelInputExample=None, **kwargs): '\n Log a Keras model as an MLflow artifact for the current run.\n\n :param keras_model: Keras model to be saved.\n :param artifact_path: Run-relative artifact path.\n :param conda_env: Either a dictionary representation of a Conda environment or\n the path to a Conda environment yaml file.\n If provided, this describes the environment this model should be\n run in. At minimum, it should specify the dependencies\n contained in :func:`get_default_conda_env()`. If ``None``, the default\n :func:`mlflow.keras.get_default_conda_env()` environment is added to\n the model. The following is an *example* dictionary representation of a\n Conda environment::\n\n {\n \'name\': \'mlflow-env\',\n \'channels\': [\'defaults\'],\n \'dependencies\': [\n \'python=3.7.0\',\n \'keras=2.2.4\',\n \'tensorflow=1.8.0\'\n ]\n }\n\n :param custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to\n custom classes or functions associated with the Keras model. MLflow saves\n these custom layers using CloudPickle and restores them automatically\n when the model is loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n :param keras_module: Keras module to be used to save / load the model\n (``keras`` or ``tf.keras``). If not provided, MLflow will\n attempt to infer the Keras module based on the given model.\n :param registered_model_name: (Experimental) If given, create a model version under\n ``registered_model_name``, also creating a registered model if one\n with the given name does not exist.\n\n :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>`\n describes model input and output :py:class:`Schema <mlflow.types.Schema>`.\n The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`\n from datasets with valid model input (e.g. the training dataset with target\n column omitted) and valid model output (e.g. model predictions generated on\n the training dataset), for example:\n\n .. code-block:: python\n\n from mlflow.models.signature import infer_signature\n train = df.drop_column("target_label")\n predictions = ... # compute model predictions\n signature = infer_signature(train, predictions)\n :param input_example: (Experimental) Input example provides one or several instances of valid\n model input. The example can be used as a hint of what data to feed the\n model. The given example will be converted to a Pandas DataFrame and then\n serialized to json using the Pandas split-oriented format. Bytes are\n base64-encoded.\n\n :param kwargs: kwargs to pass to ``keras_model.save`` method.\n\n .. code-block:: python\n :caption: Example\n\n from keras import Dense, layers\n import mlflow\n # Build, compile, and train your model\n keras_model = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size = 128, validation_data=(x_val, y_val))\n # Log metrics and log the model\n with mlflow.start_run() as run:\n mlflow.keras.log_model(keras_model, "models")\n ' Model.log(artifact_path=artifact_path, flavor=mlflow.keras, keras_model=keras_model, conda_env=conda_env, custom_objects=custom_objects, keras_module=keras_module, registered_model_name=registered_model_name, signature=signature, input_example=input_example, **kwargs)
def _save_custom_objects(path, custom_objects): '\n Save custom objects dictionary to a cloudpickle file so a model can be easily loaded later.\n\n :param path: An absolute path that points to the data directory within /path/to/model.\n :param custom_objects: Keras ``custom_objects`` is a dictionary mapping\n names (strings) to custom classes or functions to be considered\n during deserialization. MLflow saves these custom layers using\n CloudPickle and restores them automatically when the model is\n loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n ' import cloudpickle custom_objects_path = os.path.join(path, _CUSTOM_OBJECTS_SAVE_PATH) with open(custom_objects_path, 'wb') as out_f: cloudpickle.dump(custom_objects, out_f)
-3,764,244,966,678,153,700
Save custom objects dictionary to a cloudpickle file so a model can be easily loaded later. :param path: An absolute path that points to the data directory within /path/to/model. :param custom_objects: Keras ``custom_objects`` is a dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.keras.load_model` and :py:func:`mlflow.pyfunc.load_model`.
mlflow/keras.py
_save_custom_objects
AnesBenmerzoug/mlflow
python
def _save_custom_objects(path, custom_objects): '\n Save custom objects dictionary to a cloudpickle file so a model can be easily loaded later.\n\n :param path: An absolute path that points to the data directory within /path/to/model.\n :param custom_objects: Keras ``custom_objects`` is a dictionary mapping\n names (strings) to custom classes or functions to be considered\n during deserialization. MLflow saves these custom layers using\n CloudPickle and restores them automatically when the model is\n loaded with :py:func:`mlflow.keras.load_model` and\n :py:func:`mlflow.pyfunc.load_model`.\n ' import cloudpickle custom_objects_path = os.path.join(path, _CUSTOM_OBJECTS_SAVE_PATH) with open(custom_objects_path, 'wb') as out_f: cloudpickle.dump(custom_objects, out_f)
def _load_pyfunc(path): '\n Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``.\n\n :param path: Local filesystem path to the MLflow Model with the ``keras`` flavor.\n ' import tensorflow as tf if os.path.isfile(os.path.join(path, _KERAS_MODULE_SPEC_PATH)): with open(os.path.join(path, _KERAS_MODULE_SPEC_PATH), 'r') as f: keras_module = importlib.import_module(f.read()) else: import keras keras_module = keras K = importlib.import_module((keras_module.__name__ + '.backend')) if ((keras_module.__name__ == 'tensorflow.keras') or (K.backend() == 'tensorflow')): if (LooseVersion(tf.__version__) < LooseVersion('2.0.0')): graph = tf.Graph() sess = tf.Session(graph=graph) with graph.as_default(): with sess.as_default(): K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, graph, sess) else: K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, None, None) else: raise MlflowException(("Unsupported backend '%s'" % K._BACKEND))
-1,494,293,613,030,853,000
Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``. :param path: Local filesystem path to the MLflow Model with the ``keras`` flavor.
mlflow/keras.py
_load_pyfunc
AnesBenmerzoug/mlflow
python
def _load_pyfunc(path): '\n Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``.\n\n :param path: Local filesystem path to the MLflow Model with the ``keras`` flavor.\n ' import tensorflow as tf if os.path.isfile(os.path.join(path, _KERAS_MODULE_SPEC_PATH)): with open(os.path.join(path, _KERAS_MODULE_SPEC_PATH), 'r') as f: keras_module = importlib.import_module(f.read()) else: import keras keras_module = keras K = importlib.import_module((keras_module.__name__ + '.backend')) if ((keras_module.__name__ == 'tensorflow.keras') or (K.backend() == 'tensorflow')): if (LooseVersion(tf.__version__) < LooseVersion('2.0.0')): graph = tf.Graph() sess = tf.Session(graph=graph) with graph.as_default(): with sess.as_default(): K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, graph, sess) else: K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, None, None) else: raise MlflowException(("Unsupported backend '%s'" % K._BACKEND))
def load_model(model_uri, **kwargs): '\n Load a Keras model from a local file or a run.\n\n Extra arguments are passed through to keras.load_model.\n\n :param model_uri: The location, in URI format, of the MLflow model. For example:\n\n - ``/Users/me/path/to/local/model``\n - ``relative/path/to/local/model``\n - ``s3://my_bucket/path/to/model``\n - ``runs:/<mlflow_run_id>/run-relative/path/to/model``\n - ``models:/<model_name>/<model_version>``\n - ``models:/<model_name>/<stage>``\n\n For more information about supported URI schemes, see\n `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#\n artifact-locations>`_.\n\n :return: A Keras model instance.\n\n .. code-block:: python\n :caption: Example\n\n # Load persisted model as a Keras model or as a PyFunc, call predict() on a pandas DataFrame\n keras_model = mlflow.keras.load_model("runs:/96771d893a5e46159d9f3b49bf9013e2" + "/models")\n predictions = keras_model.predict(x_test)\n ' local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) keras_module = importlib.import_module(flavor_conf.get('keras_module', 'keras')) keras_model_artifacts_path = os.path.join(local_model_path, flavor_conf.get('data', _MODEL_SAVE_PATH)) return _load_model(model_path=keras_model_artifacts_path, keras_module=keras_module, **kwargs)
2,781,844,495,470,014,500
Load a Keras model from a local file or a run. Extra arguments are passed through to keras.load_model. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :return: A Keras model instance. .. code-block:: python :caption: Example # Load persisted model as a Keras model or as a PyFunc, call predict() on a pandas DataFrame keras_model = mlflow.keras.load_model("runs:/96771d893a5e46159d9f3b49bf9013e2" + "/models") predictions = keras_model.predict(x_test)
mlflow/keras.py
load_model
AnesBenmerzoug/mlflow
python
def load_model(model_uri, **kwargs): '\n Load a Keras model from a local file or a run.\n\n Extra arguments are passed through to keras.load_model.\n\n :param model_uri: The location, in URI format, of the MLflow model. For example:\n\n - ``/Users/me/path/to/local/model``\n - ``relative/path/to/local/model``\n - ``s3://my_bucket/path/to/model``\n - ``runs:/<mlflow_run_id>/run-relative/path/to/model``\n - ``models:/<model_name>/<model_version>``\n - ``models:/<model_name>/<stage>``\n\n For more information about supported URI schemes, see\n `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#\n artifact-locations>`_.\n\n :return: A Keras model instance.\n\n .. code-block:: python\n :caption: Example\n\n # Load persisted model as a Keras model or as a PyFunc, call predict() on a pandas DataFrame\n keras_model = mlflow.keras.load_model("runs:/96771d893a5e46159d9f3b49bf9013e2" + "/models")\n predictions = keras_model.predict(x_test)\n ' local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) keras_module = importlib.import_module(flavor_conf.get('keras_module', 'keras')) keras_model_artifacts_path = os.path.join(local_model_path, flavor_conf.get('data', _MODEL_SAVE_PATH)) return _load_model(model_path=keras_model_artifacts_path, keras_module=keras_module, **kwargs)
@experimental def autolog(): '\n Enables automatic logging from Keras to MLflow. Autologging captures the following information:\n\n **Metrics** and **Parameters**\n - Training loss; validation loss; user-specified metrics\n - Metrics associated with the ``EarlyStopping`` callbacks: ``stopped_epoch``,\n ``restored_epoch``, ``restore_best_weight``, ``last_epoch``, etc\n - ``fit()`` or ``fit_generator()`` parameters; optimizer name; learning rate; epsilon\n - ``fit()`` or ``fit_generator()`` parameters associated with ``EarlyStopping``: ``min_delta``,\n ``patience``, ``baseline``, ``restore_best_weights``, etc\n **Artifacts**\n - Model summary on training start\n - `MLflow Model <https://mlflow.org/docs/latest/models.html>`_ (Keras model) on training end\n\n .. code-block:: python\n :caption: Example\n\n import mlflow\n import mlflow.keras\n # Build, compile, enable autologging, and train your model\n keras_model = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n # autolog your metrics, parameters, and model\n mlflow.keras.autolog()\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val))\n\n ``EarlyStopping Integration with Keras AutoLogging``\n\n MLflow will detect if an ``EarlyStopping`` callback is used in a ``fit()`` or\n ``fit_generator()`` call, and if the ``restore_best_weights`` parameter is set to be ``True``,\n then MLflow will log the metrics associated with the restored model as a final, extra step.\n The epoch of the restored model will also be logged as the metric ``restored_epoch``.\n This allows for easy comparison between the actual metrics of the restored model and\n the metrics of other models.\n\n If ``restore_best_weights`` is set to be ``False``, then MLflow will not log an additional step.\n\n Regardless of ``restore_best_weights``, MLflow will also log ``stopped_epoch``,\n which indicates the epoch at which training stopped due to early stopping.\n\n If training does not end due to early stopping, then ``stopped_epoch`` will be logged as ``0``.\n\n MLflow will also log the parameters of the ``EarlyStopping`` callback,\n excluding ``mode`` and ``verbose``.\n ' import keras class __MLflowKerasCallback(keras.callbacks.Callback): '\n Callback for auto-logging metrics and parameters.\n Records available logs after each epoch.\n Records model structural information as params when training begins\n ' def on_train_begin(self, logs=None): try_mlflow_log(mlflow.log_param, 'num_layers', len(self.model.layers)) try_mlflow_log(mlflow.log_param, 'optimizer_name', type(self.model.optimizer).__name__) if hasattr(self.model.optimizer, 'lr'): lr = (self.model.optimizer.lr if (type(self.model.optimizer.lr) is float) else keras.backend.eval(self.model.optimizer.lr)) try_mlflow_log(mlflow.log_param, 'learning_rate', lr) if hasattr(self.model.optimizer, 'epsilon'): epsilon = (self.model.optimizer.epsilon if (type(self.model.optimizer.epsilon) is float) else keras.backend.eval(self.model.optimizer.epsilon)) try_mlflow_log(mlflow.log_param, 'epsilon', epsilon) sum_list = [] self.model.summary(print_fn=sum_list.append) summary = '\n'.join(sum_list) tempdir = tempfile.mkdtemp() try: summary_file = os.path.join(tempdir, 'model_summary.txt') with open(summary_file, 'w') as f: f.write(summary) try_mlflow_log(mlflow.log_artifact, local_path=summary_file) finally: shutil.rmtree(tempdir) def on_epoch_end(self, epoch, logs=None): if (not logs): return try_mlflow_log(mlflow.log_metrics, logs, step=epoch) def on_train_end(self, logs=None): try_mlflow_log(log_model, self.model, artifact_path='model') def _implements_train_batch_hooks(self): return False def _implements_test_batch_hooks(self): return False def _implements_predict_batch_hooks(self): return False def _early_stop_check(callbacks): if (LooseVersion(keras.__version__) < LooseVersion('2.3.0')): es_callback = keras.callbacks.EarlyStopping else: es_callback = keras.callbacks.callbacks.EarlyStopping for callback in callbacks: if isinstance(callback, es_callback): return callback return None def _log_early_stop_callback_params(callback): if callback: try: earlystopping_params = {'monitor': callback.monitor, 'min_delta': callback.min_delta, 'patience': callback.patience, 'baseline': callback.baseline, 'restore_best_weights': callback.restore_best_weights} try_mlflow_log(mlflow.log_params, earlystopping_params) except Exception: return def _get_early_stop_callback_attrs(callback): try: return (callback.stopped_epoch, callback.restore_best_weights, callback.patience) except Exception: return None def _log_early_stop_callback_metrics(callback, history): if callback: callback_attrs = _get_early_stop_callback_attrs(callback) if (callback_attrs is None): return (stopped_epoch, restore_best_weights, patience) = callback_attrs try_mlflow_log(mlflow.log_metric, 'stopped_epoch', stopped_epoch) if ((stopped_epoch != 0) and restore_best_weights): restored_epoch = (stopped_epoch - max(1, patience)) try_mlflow_log(mlflow.log_metric, 'restored_epoch', restored_epoch) restored_metrics = {key: history.history[key][restored_epoch] for key in history.history.keys()} metric_key = next(iter(history.history), None) if (metric_key is not None): last_epoch = len(history.history[metric_key]) try_mlflow_log(mlflow.log_metrics, restored_metrics, step=last_epoch) def _run_and_log_function(self, original, args, kwargs, unlogged_params, callback_arg_index): if (not mlflow.active_run()): try_mlflow_log(mlflow.start_run) auto_end_run = True else: auto_end_run = False log_fn_args_as_params(original, args, kwargs, unlogged_params) early_stop_callback = None if (len(args) > callback_arg_index): tmp_list = list(args) early_stop_callback = _early_stop_check(tmp_list[callback_arg_index]) tmp_list[callback_arg_index] += [__MLflowKerasCallback()] args = tuple(tmp_list) elif ('callbacks' in kwargs): early_stop_callback = _early_stop_check(kwargs['callbacks']) kwargs['callbacks'] += [__MLflowKerasCallback()] else: kwargs['callbacks'] = [__MLflowKerasCallback()] _log_early_stop_callback_params(early_stop_callback) history = original(self, *args, **kwargs) _log_early_stop_callback_metrics(early_stop_callback, history) if auto_end_run: try_mlflow_log(mlflow.end_run) return history @gorilla.patch(keras.Model) def fit(self, *args, **kwargs): original = gorilla.get_original_attribute(keras.Model, 'fit') unlogged_params = ['self', 'x', 'y', 'callbacks', 'validation_data', 'verbose'] return _run_and_log_function(self, original, args, kwargs, unlogged_params, 5) @gorilla.patch(keras.Model) def fit_generator(self, *args, **kwargs): original = gorilla.get_original_attribute(keras.Model, 'fit_generator') unlogged_params = ['self', 'generator', 'callbacks', 'validation_data', 'verbose'] return _run_and_log_function(self, original, args, kwargs, unlogged_params, 4) settings = gorilla.Settings(allow_hit=True, store_hit=True) gorilla.apply(gorilla.Patch(keras.Model, 'fit', fit, settings=settings)) gorilla.apply(gorilla.Patch(keras.Model, 'fit_generator', fit_generator, settings=settings))
-6,303,646,048,311,755,000
Enables automatic logging from Keras to MLflow. Autologging captures the following information: **Metrics** and **Parameters** - Training loss; validation loss; user-specified metrics - Metrics associated with the ``EarlyStopping`` callbacks: ``stopped_epoch``, ``restored_epoch``, ``restore_best_weight``, ``last_epoch``, etc - ``fit()`` or ``fit_generator()`` parameters; optimizer name; learning rate; epsilon - ``fit()`` or ``fit_generator()`` parameters associated with ``EarlyStopping``: ``min_delta``, ``patience``, ``baseline``, ``restore_best_weights``, etc **Artifacts** - Model summary on training start - `MLflow Model <https://mlflow.org/docs/latest/models.html>`_ (Keras model) on training end .. code-block:: python :caption: Example import mlflow import mlflow.keras # Build, compile, enable autologging, and train your model keras_model = ... keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"]) # autolog your metrics, parameters, and model mlflow.keras.autolog() results = keras_model.fit( x_train, y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val)) ``EarlyStopping Integration with Keras AutoLogging`` MLflow will detect if an ``EarlyStopping`` callback is used in a ``fit()`` or ``fit_generator()`` call, and if the ``restore_best_weights`` parameter is set to be ``True``, then MLflow will log the metrics associated with the restored model as a final, extra step. The epoch of the restored model will also be logged as the metric ``restored_epoch``. This allows for easy comparison between the actual metrics of the restored model and the metrics of other models. If ``restore_best_weights`` is set to be ``False``, then MLflow will not log an additional step. Regardless of ``restore_best_weights``, MLflow will also log ``stopped_epoch``, which indicates the epoch at which training stopped due to early stopping. If training does not end due to early stopping, then ``stopped_epoch`` will be logged as ``0``. MLflow will also log the parameters of the ``EarlyStopping`` callback, excluding ``mode`` and ``verbose``.
mlflow/keras.py
autolog
AnesBenmerzoug/mlflow
python
@experimental def autolog(): '\n Enables automatic logging from Keras to MLflow. Autologging captures the following information:\n\n **Metrics** and **Parameters**\n - Training loss; validation loss; user-specified metrics\n - Metrics associated with the ``EarlyStopping`` callbacks: ``stopped_epoch``,\n ``restored_epoch``, ``restore_best_weight``, ``last_epoch``, etc\n - ``fit()`` or ``fit_generator()`` parameters; optimizer name; learning rate; epsilon\n - ``fit()`` or ``fit_generator()`` parameters associated with ``EarlyStopping``: ``min_delta``,\n ``patience``, ``baseline``, ``restore_best_weights``, etc\n **Artifacts**\n - Model summary on training start\n - `MLflow Model <https://mlflow.org/docs/latest/models.html>`_ (Keras model) on training end\n\n .. code-block:: python\n :caption: Example\n\n import mlflow\n import mlflow.keras\n # Build, compile, enable autologging, and train your model\n keras_model = ...\n keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])\n # autolog your metrics, parameters, and model\n mlflow.keras.autolog()\n results = keras_model.fit(\n x_train, y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val))\n\n ``EarlyStopping Integration with Keras AutoLogging``\n\n MLflow will detect if an ``EarlyStopping`` callback is used in a ``fit()`` or\n ``fit_generator()`` call, and if the ``restore_best_weights`` parameter is set to be ``True``,\n then MLflow will log the metrics associated with the restored model as a final, extra step.\n The epoch of the restored model will also be logged as the metric ``restored_epoch``.\n This allows for easy comparison between the actual metrics of the restored model and\n the metrics of other models.\n\n If ``restore_best_weights`` is set to be ``False``, then MLflow will not log an additional step.\n\n Regardless of ``restore_best_weights``, MLflow will also log ``stopped_epoch``,\n which indicates the epoch at which training stopped due to early stopping.\n\n If training does not end due to early stopping, then ``stopped_epoch`` will be logged as ``0``.\n\n MLflow will also log the parameters of the ``EarlyStopping`` callback,\n excluding ``mode`` and ``verbose``.\n ' import keras class __MLflowKerasCallback(keras.callbacks.Callback): '\n Callback for auto-logging metrics and parameters.\n Records available logs after each epoch.\n Records model structural information as params when training begins\n ' def on_train_begin(self, logs=None): try_mlflow_log(mlflow.log_param, 'num_layers', len(self.model.layers)) try_mlflow_log(mlflow.log_param, 'optimizer_name', type(self.model.optimizer).__name__) if hasattr(self.model.optimizer, 'lr'): lr = (self.model.optimizer.lr if (type(self.model.optimizer.lr) is float) else keras.backend.eval(self.model.optimizer.lr)) try_mlflow_log(mlflow.log_param, 'learning_rate', lr) if hasattr(self.model.optimizer, 'epsilon'): epsilon = (self.model.optimizer.epsilon if (type(self.model.optimizer.epsilon) is float) else keras.backend.eval(self.model.optimizer.epsilon)) try_mlflow_log(mlflow.log_param, 'epsilon', epsilon) sum_list = [] self.model.summary(print_fn=sum_list.append) summary = '\n'.join(sum_list) tempdir = tempfile.mkdtemp() try: summary_file = os.path.join(tempdir, 'model_summary.txt') with open(summary_file, 'w') as f: f.write(summary) try_mlflow_log(mlflow.log_artifact, local_path=summary_file) finally: shutil.rmtree(tempdir) def on_epoch_end(self, epoch, logs=None): if (not logs): return try_mlflow_log(mlflow.log_metrics, logs, step=epoch) def on_train_end(self, logs=None): try_mlflow_log(log_model, self.model, artifact_path='model') def _implements_train_batch_hooks(self): return False def _implements_test_batch_hooks(self): return False def _implements_predict_batch_hooks(self): return False def _early_stop_check(callbacks): if (LooseVersion(keras.__version__) < LooseVersion('2.3.0')): es_callback = keras.callbacks.EarlyStopping else: es_callback = keras.callbacks.callbacks.EarlyStopping for callback in callbacks: if isinstance(callback, es_callback): return callback return None def _log_early_stop_callback_params(callback): if callback: try: earlystopping_params = {'monitor': callback.monitor, 'min_delta': callback.min_delta, 'patience': callback.patience, 'baseline': callback.baseline, 'restore_best_weights': callback.restore_best_weights} try_mlflow_log(mlflow.log_params, earlystopping_params) except Exception: return def _get_early_stop_callback_attrs(callback): try: return (callback.stopped_epoch, callback.restore_best_weights, callback.patience) except Exception: return None def _log_early_stop_callback_metrics(callback, history): if callback: callback_attrs = _get_early_stop_callback_attrs(callback) if (callback_attrs is None): return (stopped_epoch, restore_best_weights, patience) = callback_attrs try_mlflow_log(mlflow.log_metric, 'stopped_epoch', stopped_epoch) if ((stopped_epoch != 0) and restore_best_weights): restored_epoch = (stopped_epoch - max(1, patience)) try_mlflow_log(mlflow.log_metric, 'restored_epoch', restored_epoch) restored_metrics = {key: history.history[key][restored_epoch] for key in history.history.keys()} metric_key = next(iter(history.history), None) if (metric_key is not None): last_epoch = len(history.history[metric_key]) try_mlflow_log(mlflow.log_metrics, restored_metrics, step=last_epoch) def _run_and_log_function(self, original, args, kwargs, unlogged_params, callback_arg_index): if (not mlflow.active_run()): try_mlflow_log(mlflow.start_run) auto_end_run = True else: auto_end_run = False log_fn_args_as_params(original, args, kwargs, unlogged_params) early_stop_callback = None if (len(args) > callback_arg_index): tmp_list = list(args) early_stop_callback = _early_stop_check(tmp_list[callback_arg_index]) tmp_list[callback_arg_index] += [__MLflowKerasCallback()] args = tuple(tmp_list) elif ('callbacks' in kwargs): early_stop_callback = _early_stop_check(kwargs['callbacks']) kwargs['callbacks'] += [__MLflowKerasCallback()] else: kwargs['callbacks'] = [__MLflowKerasCallback()] _log_early_stop_callback_params(early_stop_callback) history = original(self, *args, **kwargs) _log_early_stop_callback_metrics(early_stop_callback, history) if auto_end_run: try_mlflow_log(mlflow.end_run) return history @gorilla.patch(keras.Model) def fit(self, *args, **kwargs): original = gorilla.get_original_attribute(keras.Model, 'fit') unlogged_params = ['self', 'x', 'y', 'callbacks', 'validation_data', 'verbose'] return _run_and_log_function(self, original, args, kwargs, unlogged_params, 5) @gorilla.patch(keras.Model) def fit_generator(self, *args, **kwargs): original = gorilla.get_original_attribute(keras.Model, 'fit_generator') unlogged_params = ['self', 'generator', 'callbacks', 'validation_data', 'verbose'] return _run_and_log_function(self, original, args, kwargs, unlogged_params, 4) settings = gorilla.Settings(allow_hit=True, store_hit=True) gorilla.apply(gorilla.Patch(keras.Model, 'fit', fit, settings=settings)) gorilla.apply(gorilla.Patch(keras.Model, 'fit_generator', fit_generator, settings=settings))
def __init__(self, request_id=None, loadbalancer=None): 'UpdateLoadBalancerResponse - a model defined in huaweicloud sdk' super(UpdateLoadBalancerResponse, self).__init__() self._request_id = None self._loadbalancer = None self.discriminator = None if (request_id is not None): self.request_id = request_id if (loadbalancer is not None): self.loadbalancer = loadbalancer
-8,088,897,903,473,774,000
UpdateLoadBalancerResponse - a model defined in huaweicloud sdk
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
__init__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __init__(self, request_id=None, loadbalancer=None): super(UpdateLoadBalancerResponse, self).__init__() self._request_id = None self._loadbalancer = None self.discriminator = None if (request_id is not None): self.request_id = request_id if (loadbalancer is not None): self.loadbalancer = loadbalancer
@property def request_id(self): 'Gets the request_id of this UpdateLoadBalancerResponse.\n\n 请求ID。 注:自动生成 。\n\n :return: The request_id of this UpdateLoadBalancerResponse.\n :rtype: str\n ' return self._request_id
-8,462,964,027,465,042,000
Gets the request_id of this UpdateLoadBalancerResponse. 请求ID。 注:自动生成 。 :return: The request_id of this UpdateLoadBalancerResponse. :rtype: str
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
request_id
JeffreyDin/huaweicloud-sdk-python-v3
python
@property def request_id(self): 'Gets the request_id of this UpdateLoadBalancerResponse.\n\n 请求ID。 注:自动生成 。\n\n :return: The request_id of this UpdateLoadBalancerResponse.\n :rtype: str\n ' return self._request_id
@request_id.setter def request_id(self, request_id): 'Sets the request_id of this UpdateLoadBalancerResponse.\n\n 请求ID。 注:自动生成 。\n\n :param request_id: The request_id of this UpdateLoadBalancerResponse.\n :type: str\n ' self._request_id = request_id
72,391,224,966,096,530
Sets the request_id of this UpdateLoadBalancerResponse. 请求ID。 注:自动生成 。 :param request_id: The request_id of this UpdateLoadBalancerResponse. :type: str
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
request_id
JeffreyDin/huaweicloud-sdk-python-v3
python
@request_id.setter def request_id(self, request_id): 'Sets the request_id of this UpdateLoadBalancerResponse.\n\n 请求ID。 注:自动生成 。\n\n :param request_id: The request_id of this UpdateLoadBalancerResponse.\n :type: str\n ' self._request_id = request_id
@property def loadbalancer(self): 'Gets the loadbalancer of this UpdateLoadBalancerResponse.\n\n\n :return: The loadbalancer of this UpdateLoadBalancerResponse.\n :rtype: LoadBalancer\n ' return self._loadbalancer
6,225,271,543,845,143,000
Gets the loadbalancer of this UpdateLoadBalancerResponse. :return: The loadbalancer of this UpdateLoadBalancerResponse. :rtype: LoadBalancer
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
loadbalancer
JeffreyDin/huaweicloud-sdk-python-v3
python
@property def loadbalancer(self): 'Gets the loadbalancer of this UpdateLoadBalancerResponse.\n\n\n :return: The loadbalancer of this UpdateLoadBalancerResponse.\n :rtype: LoadBalancer\n ' return self._loadbalancer
@loadbalancer.setter def loadbalancer(self, loadbalancer): 'Sets the loadbalancer of this UpdateLoadBalancerResponse.\n\n\n :param loadbalancer: The loadbalancer of this UpdateLoadBalancerResponse.\n :type: LoadBalancer\n ' self._loadbalancer = loadbalancer
-8,328,612,680,979,810,000
Sets the loadbalancer of this UpdateLoadBalancerResponse. :param loadbalancer: The loadbalancer of this UpdateLoadBalancerResponse. :type: LoadBalancer
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
loadbalancer
JeffreyDin/huaweicloud-sdk-python-v3
python
@loadbalancer.setter def loadbalancer(self, loadbalancer): 'Sets the loadbalancer of this UpdateLoadBalancerResponse.\n\n\n :param loadbalancer: The loadbalancer of this UpdateLoadBalancerResponse.\n :type: LoadBalancer\n ' self._loadbalancer = loadbalancer
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
2,594,216,033,120,720,000
Returns the model properties as a dict
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
to_dict
JeffreyDin/huaweicloud-sdk-python-v3
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
to_str
JeffreyDin/huaweicloud-sdk-python-v3
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
__repr__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, UpdateLoadBalancerResponse)): return False return (self.__dict__ == other.__dict__)
-2,017,557,468,176,576,300
Returns true if both objects are equal
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
__eq__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __eq__(self, other): if (not isinstance(other, UpdateLoadBalancerResponse)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/update_load_balancer_response.py
__ne__
JeffreyDin/huaweicloud-sdk-python-v3
python
def __ne__(self, other): return (not (self == other))
def get_regions(): 'Return an array of the regions this account is active in. Ordered with us-east-1 in the front.' ec2 = boto3.client('ec2') response = ec2.describe_regions() output = ['us-east-1'] for r in response['Regions']: if (r['RegionName'] == 'us-east-1'): continue output.append(r['RegionName']) return output
605,186,307,391,275,400
Return an array of the regions this account is active in. Ordered with us-east-1 in the front.
scripts/extract_findings_to_csv.py
get_regions
jchrisfarris/aws-macie-automations
python
def get_regions(): ec2 = boto3.client('ec2') response = ec2.describe_regions() output = ['us-east-1'] for r in response['Regions']: if (r['RegionName'] == 'us-east-1'): continue output.append(r['RegionName']) return output
def _get_rc_timezone(): '\n Retrieve the preferred timeszone from the rcParams dictionary.\n ' s = matplotlib.rcParams['timezone'] if (s == 'UTC'): return UTC import pytz return pytz.timezone(s)
8,285,655,359,077,192,000
Retrieve the preferred timeszone from the rcParams dictionary.
env/lib/python2.7/site-packages/matplotlib/dates.py
_get_rc_timezone
rbalda/neural_ocr
python
def _get_rc_timezone(): '\n \n ' s = matplotlib.rcParams['timezone'] if (s == 'UTC'): return UTC import pytz return pytz.timezone(s)
def _to_ordinalf(dt): '\n Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float\n days, preserving hours, minutes, seconds and microseconds. Return value\n is a :func:`float`.\n ' if (hasattr(dt, 'tzinfo') and (dt.tzinfo is not None)): delta = dt.tzinfo.utcoffset(dt) if (delta is not None): dt -= delta base = float(dt.toordinal()) if isinstance(dt, datetime.datetime): cdate = dt.date() midnight_time = datetime.time(0, 0, 0, tzinfo=dt.tzinfo) rdt = datetime.datetime.combine(cdate, midnight_time) td_remainder = _total_seconds((dt - rdt)) if (td_remainder > 0): base += (td_remainder / SEC_PER_DAY) return base
-4,235,236,962,482,482,700
Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`.
env/lib/python2.7/site-packages/matplotlib/dates.py
_to_ordinalf
rbalda/neural_ocr
python
def _to_ordinalf(dt): '\n Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float\n days, preserving hours, minutes, seconds and microseconds. Return value\n is a :func:`float`.\n ' if (hasattr(dt, 'tzinfo') and (dt.tzinfo is not None)): delta = dt.tzinfo.utcoffset(dt) if (delta is not None): dt -= delta base = float(dt.toordinal()) if isinstance(dt, datetime.datetime): cdate = dt.date() midnight_time = datetime.time(0, 0, 0, tzinfo=dt.tzinfo) rdt = datetime.datetime.combine(cdate, midnight_time) td_remainder = _total_seconds((dt - rdt)) if (td_remainder > 0): base += (td_remainder / SEC_PER_DAY) return base
def _from_ordinalf(x, tz=None): "\n Convert Gregorian float of the date, preserving hours, minutes,\n seconds and microseconds. Return value is a :class:`datetime`.\n\n The input date `x` is a float in ordinal days at UTC, and the output will\n be the specified :class:`datetime` object corresponding to that time in\n timezone `tz`, or if `tz` is `None`, in the timezone specified in\n `rcParams['timezone']`.\n " if (tz is None): tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC) remainder = (float(x) - ix) dt += datetime.timedelta(microseconds=int((remainder * MUSECONDS_PER_DAY))) if (dt.microsecond < 10): dt = dt.replace(microsecond=0) elif (dt.microsecond > 999990): dt += datetime.timedelta(microseconds=(1000000.0 - dt.microsecond)) return dt.astimezone(tz)
6,921,709,850,315,226,000
Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a :class:`datetime`. The input date `x` is a float in ordinal days at UTC, and the output will be the specified :class:`datetime` object corresponding to that time in timezone `tz`, or if `tz` is `None`, in the timezone specified in `rcParams['timezone']`.
env/lib/python2.7/site-packages/matplotlib/dates.py
_from_ordinalf
rbalda/neural_ocr
python
def _from_ordinalf(x, tz=None): "\n Convert Gregorian float of the date, preserving hours, minutes,\n seconds and microseconds. Return value is a :class:`datetime`.\n\n The input date `x` is a float in ordinal days at UTC, and the output will\n be the specified :class:`datetime` object corresponding to that time in\n timezone `tz`, or if `tz` is `None`, in the timezone specified in\n `rcParams['timezone']`.\n " if (tz is None): tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC) remainder = (float(x) - ix) dt += datetime.timedelta(microseconds=int((remainder * MUSECONDS_PER_DAY))) if (dt.microsecond < 10): dt = dt.replace(microsecond=0) elif (dt.microsecond > 999990): dt += datetime.timedelta(microseconds=(1000000.0 - dt.microsecond)) return dt.astimezone(tz)
def datestr2num(d, default=None): '\n Convert a date string to a datenum using\n :func:`dateutil.parser.parse`.\n\n Parameters\n ----------\n d : string or sequence of strings\n The dates to convert.\n\n default : datetime instance\n The default date to use when fields are missing in `d`.\n ' if cbook.is_string_like(d): dt = dateutil.parser.parse(d, default=default) return date2num(dt) else: if (default is not None): d = [dateutil.parser.parse(s, default=default) for s in d] d = np.asarray(d) if (not d.size): return d return date2num(_dateutil_parser_parse_np_vectorized(d))
3,791,047,595,217,189,000
Convert a date string to a datenum using :func:`dateutil.parser.parse`. Parameters ---------- d : string or sequence of strings The dates to convert. default : datetime instance The default date to use when fields are missing in `d`.
env/lib/python2.7/site-packages/matplotlib/dates.py
datestr2num
rbalda/neural_ocr
python
def datestr2num(d, default=None): '\n Convert a date string to a datenum using\n :func:`dateutil.parser.parse`.\n\n Parameters\n ----------\n d : string or sequence of strings\n The dates to convert.\n\n default : datetime instance\n The default date to use when fields are missing in `d`.\n ' if cbook.is_string_like(d): dt = dateutil.parser.parse(d, default=default) return date2num(dt) else: if (default is not None): d = [dateutil.parser.parse(s, default=default) for s in d] d = np.asarray(d) if (not d.size): return d return date2num(_dateutil_parser_parse_np_vectorized(d))
def date2num(d): '\n *d* is either a :class:`datetime` instance or a sequence of datetimes.\n\n Return value is a floating point number (or sequence of floats)\n which gives the number of days (fraction part represents hours,\n minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*.\n The addition of one here is a historical artifact. Also, note\n that the Gregorian calendar is assumed; this is not universal\n practice. For details, see the module docstring.\n ' if (not cbook.iterable(d)): return _to_ordinalf(d) else: d = np.asarray(d) if (not d.size): return d return _to_ordinalf_np_vectorized(d)
2,110,665,873,702,849,000
*d* is either a :class:`datetime` instance or a sequence of datetimes. Return value is a floating point number (or sequence of floats) which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring.
env/lib/python2.7/site-packages/matplotlib/dates.py
date2num
rbalda/neural_ocr
python
def date2num(d): '\n *d* is either a :class:`datetime` instance or a sequence of datetimes.\n\n Return value is a floating point number (or sequence of floats)\n which gives the number of days (fraction part represents hours,\n minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*.\n The addition of one here is a historical artifact. Also, note\n that the Gregorian calendar is assumed; this is not universal\n practice. For details, see the module docstring.\n ' if (not cbook.iterable(d)): return _to_ordinalf(d) else: d = np.asarray(d) if (not d.size): return d return _to_ordinalf_np_vectorized(d)
def julian2num(j): '\n Convert a Julian date (or sequence) to a matplotlib date (or sequence).\n ' if cbook.iterable(j): j = np.asarray(j) return (j - JULIAN_OFFSET)
6,728,965,020,165,259,000
Convert a Julian date (or sequence) to a matplotlib date (or sequence).
env/lib/python2.7/site-packages/matplotlib/dates.py
julian2num
rbalda/neural_ocr
python
def julian2num(j): '\n \n ' if cbook.iterable(j): j = np.asarray(j) return (j - JULIAN_OFFSET)
def num2julian(n): '\n Convert a matplotlib date (or sequence) to a Julian date (or sequence).\n ' if cbook.iterable(n): n = np.asarray(n) return (n + JULIAN_OFFSET)
-5,886,472,614,472,625,000
Convert a matplotlib date (or sequence) to a Julian date (or sequence).
env/lib/python2.7/site-packages/matplotlib/dates.py
num2julian
rbalda/neural_ocr
python
def num2julian(n): '\n \n ' if cbook.iterable(n): n = np.asarray(n) return (n + JULIAN_OFFSET)
def num2date(x, tz=None): '\n *x* is a float value which gives the number of days\n (fraction part represents hours, minutes, seconds) since\n 0001-01-01 00:00:00 UTC *plus* *one*.\n The addition of one here is a historical artifact. Also, note\n that the Gregorian calendar is assumed; this is not universal\n practice. For details, see the module docstring.\n\n Return value is a :class:`datetime` instance in timezone *tz* (default to\n rcparams TZ value).\n\n If *x* is a sequence, a sequence of :class:`datetime` objects will\n be returned.\n ' if (tz is None): tz = _get_rc_timezone() if (not cbook.iterable(x)): return _from_ordinalf(x, tz) else: x = np.asarray(x) if (not x.size): return x return _from_ordinalf_np_vectorized(x, tz).tolist()
-4,338,585,028,737,360,400
*x* is a float value which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. Return value is a :class:`datetime` instance in timezone *tz* (default to rcparams TZ value). If *x* is a sequence, a sequence of :class:`datetime` objects will be returned.
env/lib/python2.7/site-packages/matplotlib/dates.py
num2date
rbalda/neural_ocr
python
def num2date(x, tz=None): '\n *x* is a float value which gives the number of days\n (fraction part represents hours, minutes, seconds) since\n 0001-01-01 00:00:00 UTC *plus* *one*.\n The addition of one here is a historical artifact. Also, note\n that the Gregorian calendar is assumed; this is not universal\n practice. For details, see the module docstring.\n\n Return value is a :class:`datetime` instance in timezone *tz* (default to\n rcparams TZ value).\n\n If *x* is a sequence, a sequence of :class:`datetime` objects will\n be returned.\n ' if (tz is None): tz = _get_rc_timezone() if (not cbook.iterable(x)): return _from_ordinalf(x, tz) else: x = np.asarray(x) if (not x.size): return x return _from_ordinalf_np_vectorized(x, tz).tolist()
def drange(dstart, dend, delta): '\n Return a date range as float Gregorian ordinals. *dstart* and\n *dend* are :class:`datetime` instances. *delta* is a\n :class:`datetime.timedelta` instance.\n ' f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) step = (_total_seconds(delta) / SEC_PER_DAY) num = int(np.ceil(((f2 - f1) / step))) dinterval_end = (dstart + (num * delta)) if (dinterval_end >= dend): dinterval_end -= delta num -= 1 f2 = _to_ordinalf(dinterval_end) return np.linspace(f1, f2, (num + 1))
2,959,573,575,103,759,400
Return a date range as float Gregorian ordinals. *dstart* and *dend* are :class:`datetime` instances. *delta* is a :class:`datetime.timedelta` instance.
env/lib/python2.7/site-packages/matplotlib/dates.py
drange
rbalda/neural_ocr
python
def drange(dstart, dend, delta): '\n Return a date range as float Gregorian ordinals. *dstart* and\n *dend* are :class:`datetime` instances. *delta* is a\n :class:`datetime.timedelta` instance.\n ' f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) step = (_total_seconds(delta) / SEC_PER_DAY) num = int(np.ceil(((f2 - f1) / step))) dinterval_end = (dstart + (num * delta)) if (dinterval_end >= dend): dinterval_end -= delta num -= 1 f2 = _to_ordinalf(dinterval_end) return np.linspace(f1, f2, (num + 1))
def _close_to_dt(d1, d2, epsilon=5): '\n Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.\n ' delta = (d2 - d1) mus = abs((_total_seconds(delta) * 1000000.0)) assert (mus < epsilon)
-2,725,794,435,686,897,000
Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.
env/lib/python2.7/site-packages/matplotlib/dates.py
_close_to_dt
rbalda/neural_ocr
python
def _close_to_dt(d1, d2, epsilon=5): '\n \n ' delta = (d2 - d1) mus = abs((_total_seconds(delta) * 1000000.0)) assert (mus < epsilon)
def _close_to_num(o1, o2, epsilon=5): '\n Assert that float ordinals *o1* and *o2* are within *epsilon*\n microseconds.\n ' delta = abs(((o2 - o1) * MUSECONDS_PER_DAY)) assert (delta < epsilon)
-7,665,723,005,057,277,000
Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds.
env/lib/python2.7/site-packages/matplotlib/dates.py
_close_to_num
rbalda/neural_ocr
python
def _close_to_num(o1, o2, epsilon=5): '\n Assert that float ordinals *o1* and *o2* are within *epsilon*\n microseconds.\n ' delta = abs(((o2 - o1) * MUSECONDS_PER_DAY)) assert (delta < epsilon)
def epoch2num(e): '\n Convert an epoch or sequence of epochs to the new date format,\n that is days since 0001.\n ' return (EPOCH_OFFSET + (np.asarray(e) / SEC_PER_DAY))
-4,557,584,763,846,818,000
Convert an epoch or sequence of epochs to the new date format, that is days since 0001.
env/lib/python2.7/site-packages/matplotlib/dates.py
epoch2num
rbalda/neural_ocr
python
def epoch2num(e): '\n Convert an epoch or sequence of epochs to the new date format,\n that is days since 0001.\n ' return (EPOCH_OFFSET + (np.asarray(e) / SEC_PER_DAY))
def num2epoch(d): '\n Convert days since 0001 to epoch. *d* can be a number or sequence.\n ' return ((np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY)
3,946,712,163,784,859,600
Convert days since 0001 to epoch. *d* can be a number or sequence.
env/lib/python2.7/site-packages/matplotlib/dates.py
num2epoch
rbalda/neural_ocr
python
def num2epoch(d): '\n \n ' return ((np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY)
def mx2num(mxdates): '\n Convert mx :class:`datetime` instance (or sequence of mx\n instances) to the new date format.\n ' scalar = False if (not cbook.iterable(mxdates)): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret
-492,982,039,525,289,340
Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format.
env/lib/python2.7/site-packages/matplotlib/dates.py
mx2num
rbalda/neural_ocr
python
def mx2num(mxdates): '\n Convert mx :class:`datetime` instance (or sequence of mx\n instances) to the new date format.\n ' scalar = False if (not cbook.iterable(mxdates)): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret
def date_ticker_factory(span, tz=None, numticks=5): '\n Create a date locator with *numticks* (approx) and a date formatter\n for *span* in days. Return value is (locator, formatter).\n ' if (span == 0): span = (1 / HOURS_PER_DAY) mins = (span * MINUTES_PER_DAY) hrs = (span * HOURS_PER_DAY) days = span wks = (span / DAYS_PER_WEEK) months = (span / DAYS_PER_MONTH) years = (span / DAYS_PER_YEAR) if (years > numticks): locator = YearLocator(int((years / numticks)), tz=tz) fmt = '%Y' elif (months > numticks): locator = MonthLocator(tz=tz) fmt = '%b %Y' elif (wks > numticks): locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif (days > numticks): locator = DayLocator(interval=int(math.ceil((days / numticks))), tz=tz) fmt = '%b %d' elif (hrs > numticks): locator = HourLocator(interval=int(math.ceil((hrs / numticks))), tz=tz) fmt = '%H:%M\n%b %d' elif (mins > numticks): locator = MinuteLocator(interval=int(math.ceil((mins / numticks))), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return (locator, formatter)
-7,755,151,327,285,663,000
Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter).
env/lib/python2.7/site-packages/matplotlib/dates.py
date_ticker_factory
rbalda/neural_ocr
python
def date_ticker_factory(span, tz=None, numticks=5): '\n Create a date locator with *numticks* (approx) and a date formatter\n for *span* in days. Return value is (locator, formatter).\n ' if (span == 0): span = (1 / HOURS_PER_DAY) mins = (span * MINUTES_PER_DAY) hrs = (span * HOURS_PER_DAY) days = span wks = (span / DAYS_PER_WEEK) months = (span / DAYS_PER_MONTH) years = (span / DAYS_PER_YEAR) if (years > numticks): locator = YearLocator(int((years / numticks)), tz=tz) fmt = '%Y' elif (months > numticks): locator = MonthLocator(tz=tz) fmt = '%b %Y' elif (wks > numticks): locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif (days > numticks): locator = DayLocator(interval=int(math.ceil((days / numticks))), tz=tz) fmt = '%b %d' elif (hrs > numticks): locator = HourLocator(interval=int(math.ceil((hrs / numticks))), tz=tz) fmt = '%H:%M\n%b %d' elif (mins > numticks): locator = MinuteLocator(interval=int(math.ceil((mins / numticks))), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return (locator, formatter)