body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@reject_on_error.setter def reject_on_error(self, reject_on_error): 'Sets the reject_on_error of this ExtendedBoolValueTest.\n\n\n :param reject_on_error: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n :type: bool\n ' self._reject_on_error = reject_on_error
6,733,980,712,168,993,000
Sets the reject_on_error of this ExtendedBoolValueTest. :param reject_on_error: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501 :type: bool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
reject_on_error
Telestream/telestream-cloud-python-sdk
python
@reject_on_error.setter def reject_on_error(self, reject_on_error): 'Sets the reject_on_error of this ExtendedBoolValueTest.\n\n\n :param reject_on_error: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n :type: bool\n ' self._reject_on_error = reject_on_error
@property def checked(self): 'Gets the checked of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The checked of this ExtendedBoolValueTest. # noqa: E501\n :rtype: bool\n ' return self._checked
-3,276,358,111,662,453,000
Gets the checked of this ExtendedBoolValueTest. # noqa: E501 :return: The checked of this ExtendedBoolValueTest. # noqa: E501 :rtype: bool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
checked
Telestream/telestream-cloud-python-sdk
python
@property def checked(self): 'Gets the checked of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The checked of this ExtendedBoolValueTest. # noqa: E501\n :rtype: bool\n ' return self._checked
@checked.setter def checked(self, checked): 'Sets the checked of this ExtendedBoolValueTest.\n\n\n :param checked: The checked of this ExtendedBoolValueTest. # noqa: E501\n :type: bool\n ' self._checked = checked
-5,146,549,918,617,549,000
Sets the checked of this ExtendedBoolValueTest. :param checked: The checked of this ExtendedBoolValueTest. # noqa: E501 :type: bool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
checked
Telestream/telestream-cloud-python-sdk
python
@checked.setter def checked(self, checked): 'Sets the checked of this ExtendedBoolValueTest.\n\n\n :param checked: The checked of this ExtendedBoolValueTest. # noqa: E501\n :type: bool\n ' self._checked = checked
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
8,442,519,487,048,767,000
Returns the model properties as a dict
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
to_dict
Telestream/telestream-cloud-python-sdk
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
to_str
Telestream/telestream-cloud-python-sdk
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
__repr__
Telestream/telestream-cloud-python-sdk
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, ExtendedBoolValueTest)): return False return (self.to_dict() == other.to_dict())
487,001,221,569,480,700
Returns true if both objects are equal
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
__eq__
Telestream/telestream-cloud-python-sdk
python
def __eq__(self, other): if (not isinstance(other, ExtendedBoolValueTest)): return False return (self.to_dict() == other.to_dict())
def __ne__(self, other): 'Returns true if both objects are not equal' if (not isinstance(other, ExtendedBoolValueTest)): return True return (self.to_dict() != other.to_dict())
3,255,979,270,629,175,000
Returns true if both objects are not equal
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
__ne__
Telestream/telestream-cloud-python-sdk
python
def __ne__(self, other): if (not isinstance(other, ExtendedBoolValueTest)): return True return (self.to_dict() != other.to_dict())
def train(data: Dict[(str, np.ndarray)], model_name: str, dest_path: str, sample_size: int, n_classes: int, lr: float, batch_size: int, epochs: int, verbose: int, shuffle: bool, patience: int, seed: int): '\n Function for running experiments on various unmixing models,\n given a set of hyper parameters.\n\n :param data: The data dictionary containing\n the subsets for training and validation.\n First dimension of the datasets should be the number of samples.\n :param model_name: Name of the model, it serves as a key in the\n dictionary holding all functions returning models.\n :param dest_path: Path to where all experiment runs will be saved as\n subdirectories in this given directory.\n :param sample_size: Size of the input sample.\n :param n_classes: Number of classes.\n :param lr: Learning rate for the model, i.e., regulates\n the size of the step in the gradient descent process.\n :param batch_size: Size of the batch used in training phase,\n it is the size of samples per gradient step.\n :param epochs: Number of epochs for model to train.\n :param verbose: Verbosity mode used in training, (0, 1 or 2).\n :param shuffle: Boolean indicating whether to shuffle datasets.\n :param patience: Number of epochs without improvement in order to\n stop the training phase.\n :param seed: Seed for training reproducibility.\n ' np.random.seed(seed=seed) model = _get_model(model_key=model_name, **{'input_size': sample_size, 'n_classes': n_classes}) model.summary() model.compile(optimizer=tf.keras.optimizers.Adam(lr=lr), loss=UNMIXING_LOSSES[model_name], metrics=UNMIXING_TRAIN_METRICS[model_name]) time_history = time_metrics.TimeHistory() mcp_save = tf.keras.callbacks.ModelCheckpoint(os.path.join(dest_path, 'model.h5'), save_best_only=True, monitor='val_loss', mode='min') early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, mode='min') callbacks = [time_history, mcp_save, early_stopping] train_dict = data[enums.Dataset.TRAIN].copy() val_dict = data[enums.Dataset.VAL].copy() (min_, max_) = (data[enums.DataStats.MIN], data[enums.DataStats.MAX]) transformations = [transforms.MinMaxNormalize(min_=min_, max_=max_)] transformations += [t() for t in UNMIXING_TRANSFORMS[model_name]] train_dict = transforms.apply_transformations(train_dict, transformations) val_dict = transforms.apply_transformations(val_dict, transformations) history = model.fit(x=train_dict[enums.Dataset.DATA], y=train_dict[enums.Dataset.LABELS], epochs=epochs, verbose=verbose, shuffle=shuffle, validation_data=(val_dict[enums.Dataset.DATA], val_dict[enums.Dataset.LABELS]), callbacks=callbacks, batch_size=batch_size) np.savetxt(os.path.join(dest_path, 'min-max.csv'), np.array([min_, max_]), delimiter=',', fmt='%f') history.history[time_metrics.TimeHistory.__name__] = time_history.average io.save_metrics(dest_path=dest_path, file_name='training_metrics.csv', metrics=history.history)
-1,414,845,563,647,005,400
Function for running experiments on various unmixing models, given a set of hyper parameters. :param data: The data dictionary containing the subsets for training and validation. First dimension of the datasets should be the number of samples. :param model_name: Name of the model, it serves as a key in the dictionary holding all functions returning models. :param dest_path: Path to where all experiment runs will be saved as subdirectories in this given directory. :param sample_size: Size of the input sample. :param n_classes: Number of classes. :param lr: Learning rate for the model, i.e., regulates the size of the step in the gradient descent process. :param batch_size: Size of the batch used in training phase, it is the size of samples per gradient step. :param epochs: Number of epochs for model to train. :param verbose: Verbosity mode used in training, (0, 1 or 2). :param shuffle: Boolean indicating whether to shuffle datasets. :param patience: Number of epochs without improvement in order to stop the training phase. :param seed: Seed for training reproducibility.
src/model/train_unmixing.py
train
laugh12321/DACN
python
def train(data: Dict[(str, np.ndarray)], model_name: str, dest_path: str, sample_size: int, n_classes: int, lr: float, batch_size: int, epochs: int, verbose: int, shuffle: bool, patience: int, seed: int): '\n Function for running experiments on various unmixing models,\n given a set of hyper parameters.\n\n :param data: The data dictionary containing\n the subsets for training and validation.\n First dimension of the datasets should be the number of samples.\n :param model_name: Name of the model, it serves as a key in the\n dictionary holding all functions returning models.\n :param dest_path: Path to where all experiment runs will be saved as\n subdirectories in this given directory.\n :param sample_size: Size of the input sample.\n :param n_classes: Number of classes.\n :param lr: Learning rate for the model, i.e., regulates\n the size of the step in the gradient descent process.\n :param batch_size: Size of the batch used in training phase,\n it is the size of samples per gradient step.\n :param epochs: Number of epochs for model to train.\n :param verbose: Verbosity mode used in training, (0, 1 or 2).\n :param shuffle: Boolean indicating whether to shuffle datasets.\n :param patience: Number of epochs without improvement in order to\n stop the training phase.\n :param seed: Seed for training reproducibility.\n ' np.random.seed(seed=seed) model = _get_model(model_key=model_name, **{'input_size': sample_size, 'n_classes': n_classes}) model.summary() model.compile(optimizer=tf.keras.optimizers.Adam(lr=lr), loss=UNMIXING_LOSSES[model_name], metrics=UNMIXING_TRAIN_METRICS[model_name]) time_history = time_metrics.TimeHistory() mcp_save = tf.keras.callbacks.ModelCheckpoint(os.path.join(dest_path, 'model.h5'), save_best_only=True, monitor='val_loss', mode='min') early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, mode='min') callbacks = [time_history, mcp_save, early_stopping] train_dict = data[enums.Dataset.TRAIN].copy() val_dict = data[enums.Dataset.VAL].copy() (min_, max_) = (data[enums.DataStats.MIN], data[enums.DataStats.MAX]) transformations = [transforms.MinMaxNormalize(min_=min_, max_=max_)] transformations += [t() for t in UNMIXING_TRANSFORMS[model_name]] train_dict = transforms.apply_transformations(train_dict, transformations) val_dict = transforms.apply_transformations(val_dict, transformations) history = model.fit(x=train_dict[enums.Dataset.DATA], y=train_dict[enums.Dataset.LABELS], epochs=epochs, verbose=verbose, shuffle=shuffle, validation_data=(val_dict[enums.Dataset.DATA], val_dict[enums.Dataset.LABELS]), callbacks=callbacks, batch_size=batch_size) np.savetxt(os.path.join(dest_path, 'min-max.csv'), np.array([min_, max_]), delimiter=',', fmt='%f') history.history[time_metrics.TimeHistory.__name__] = time_history.average io.save_metrics(dest_path=dest_path, file_name='training_metrics.csv', metrics=history.history)
def _style(message: str, **kwargs: Any) -> str: 'Wrapper around mypy.util for fancy formatting.' kwargs.setdefault('color', 'none') return _formatter.style(message, **kwargs)
7,824,578,596,113,823,000
Wrapper around mypy.util for fancy formatting.
venv/Lib/site-packages/mypy/stubtest.py
_style
HarisHijazi/mojarnik-server
python
def _style(message: str, **kwargs: Any) -> str: kwargs.setdefault('color', 'none') return _formatter.style(message, **kwargs)
def test_module(module_name: str) -> Iterator[Error]: "Tests a given module's stub against introspecting it at runtime.\n\n Requires the stub to have been built already, accomplished by a call to ``build_stubs``.\n\n :param module_name: The module to test\n\n " stub = get_stub(module_name) if (stub is None): (yield Error([module_name], 'failed to find stubs', MISSING, None)) return try: with warnings.catch_warnings(): warnings.simplefilter('ignore') runtime = importlib.import_module(module_name) except Exception as e: (yield Error([module_name], 'failed to import: {}'.format(e), stub, MISSING)) return with warnings.catch_warnings(): warnings.simplefilter('ignore') (yield from verify(stub, runtime, [module_name]))
4,199,037,603,568,104,000
Tests a given module's stub against introspecting it at runtime. Requires the stub to have been built already, accomplished by a call to ``build_stubs``. :param module_name: The module to test
venv/Lib/site-packages/mypy/stubtest.py
test_module
HarisHijazi/mojarnik-server
python
def test_module(module_name: str) -> Iterator[Error]: "Tests a given module's stub against introspecting it at runtime.\n\n Requires the stub to have been built already, accomplished by a call to ``build_stubs``.\n\n :param module_name: The module to test\n\n " stub = get_stub(module_name) if (stub is None): (yield Error([module_name], 'failed to find stubs', MISSING, None)) return try: with warnings.catch_warnings(): warnings.simplefilter('ignore') runtime = importlib.import_module(module_name) except Exception as e: (yield Error([module_name], 'failed to import: {}'.format(e), stub, MISSING)) return with warnings.catch_warnings(): warnings.simplefilter('ignore') (yield from verify(stub, runtime, [module_name]))
@singledispatch def verify(stub: nodes.Node, runtime: MaybeMissing[Any], object_path: List[str]) -> Iterator[Error]: 'Entry point for comparing a stub to a runtime object.\n\n We use single dispatch based on the type of ``stub``.\n\n :param stub: The mypy node representing a part of the stub\n :param runtime: The runtime object corresponding to ``stub``\n\n ' (yield Error(object_path, 'is an unknown mypy node', stub, runtime))
-1,455,489,771,263,504,100
Entry point for comparing a stub to a runtime object. We use single dispatch based on the type of ``stub``. :param stub: The mypy node representing a part of the stub :param runtime: The runtime object corresponding to ``stub``
venv/Lib/site-packages/mypy/stubtest.py
verify
HarisHijazi/mojarnik-server
python
@singledispatch def verify(stub: nodes.Node, runtime: MaybeMissing[Any], object_path: List[str]) -> Iterator[Error]: 'Entry point for comparing a stub to a runtime object.\n\n We use single dispatch based on the type of ``stub``.\n\n :param stub: The mypy node representing a part of the stub\n :param runtime: The runtime object corresponding to ``stub``\n\n ' (yield Error(object_path, 'is an unknown mypy node', stub, runtime))
def _verify_arg_name(stub_arg: nodes.Argument, runtime_arg: inspect.Parameter, function_name: str) -> Iterator[str]: 'Checks whether argument names match.' if is_dunder(function_name, exclude_special=True): return def strip_prefix(s: str, prefix: str) -> str: return (s[len(prefix):] if s.startswith(prefix) else s) if (strip_prefix(stub_arg.variable.name, '__') == runtime_arg.name): return def names_approx_match(a: str, b: str) -> bool: a = a.strip('_') b = b.strip('_') return (a.startswith(b) or b.startswith(a) or (len(a) == 1) or (len(b) == 1)) if ((runtime_arg.kind == inspect.Parameter.POSITIONAL_ONLY) and names_approx_match(stub_arg.variable.name, runtime_arg.name)): return if (stub_arg.variable.name == '_self'): return (yield 'stub argument "{}" differs from runtime argument "{}"'.format(stub_arg.variable.name, runtime_arg.name))
1,372,644,029,172,474,400
Checks whether argument names match.
venv/Lib/site-packages/mypy/stubtest.py
_verify_arg_name
HarisHijazi/mojarnik-server
python
def _verify_arg_name(stub_arg: nodes.Argument, runtime_arg: inspect.Parameter, function_name: str) -> Iterator[str]: if is_dunder(function_name, exclude_special=True): return def strip_prefix(s: str, prefix: str) -> str: return (s[len(prefix):] if s.startswith(prefix) else s) if (strip_prefix(stub_arg.variable.name, '__') == runtime_arg.name): return def names_approx_match(a: str, b: str) -> bool: a = a.strip('_') b = b.strip('_') return (a.startswith(b) or b.startswith(a) or (len(a) == 1) or (len(b) == 1)) if ((runtime_arg.kind == inspect.Parameter.POSITIONAL_ONLY) and names_approx_match(stub_arg.variable.name, runtime_arg.name)): return if (stub_arg.variable.name == '_self'): return (yield 'stub argument "{}" differs from runtime argument "{}"'.format(stub_arg.variable.name, runtime_arg.name))
def _verify_arg_default_value(stub_arg: nodes.Argument, runtime_arg: inspect.Parameter) -> Iterator[str]: 'Checks whether argument default values are compatible.' if (runtime_arg.default != inspect.Parameter.empty): if (stub_arg.kind not in (nodes.ARG_OPT, nodes.ARG_NAMED_OPT)): (yield 'runtime argument "{}" has a default value but stub argument does not'.format(runtime_arg.name)) else: runtime_type = get_mypy_type_of_runtime_value(runtime_arg.default) stub_type = (stub_arg.variable.type or stub_arg.type_annotation) if isinstance(stub_type, mypy.types.TypeVarType): stub_type = stub_type.upper_bound if ((runtime_type is not None) and (stub_type is not None) and (type(runtime_arg.default) != object) and (not is_subtype_helper(runtime_type, stub_type))): (yield 'runtime argument "{}" has a default value of type {}, which is incompatible with stub argument type {}'.format(runtime_arg.name, runtime_type, stub_type)) elif (stub_arg.kind in (nodes.ARG_OPT, nodes.ARG_NAMED_OPT)): (yield 'stub argument "{}" has a default value but runtime argument does not'.format(stub_arg.variable.name))
7,913,220,526,749,710,000
Checks whether argument default values are compatible.
venv/Lib/site-packages/mypy/stubtest.py
_verify_arg_default_value
HarisHijazi/mojarnik-server
python
def _verify_arg_default_value(stub_arg: nodes.Argument, runtime_arg: inspect.Parameter) -> Iterator[str]: if (runtime_arg.default != inspect.Parameter.empty): if (stub_arg.kind not in (nodes.ARG_OPT, nodes.ARG_NAMED_OPT)): (yield 'runtime argument "{}" has a default value but stub argument does not'.format(runtime_arg.name)) else: runtime_type = get_mypy_type_of_runtime_value(runtime_arg.default) stub_type = (stub_arg.variable.type or stub_arg.type_annotation) if isinstance(stub_type, mypy.types.TypeVarType): stub_type = stub_type.upper_bound if ((runtime_type is not None) and (stub_type is not None) and (type(runtime_arg.default) != object) and (not is_subtype_helper(runtime_type, stub_type))): (yield 'runtime argument "{}" has a default value of type {}, which is incompatible with stub argument type {}'.format(runtime_arg.name, runtime_type, stub_type)) elif (stub_arg.kind in (nodes.ARG_OPT, nodes.ARG_NAMED_OPT)): (yield 'stub argument "{}" has a default value but runtime argument does not'.format(stub_arg.variable.name))
def _resolve_funcitem_from_decorator(dec: nodes.OverloadPart) -> Optional[nodes.FuncItem]: "Returns a FuncItem that corresponds to the output of the decorator.\n\n Returns None if we can't figure out what that would be. For convenience, this function also\n accepts FuncItems.\n\n " if isinstance(dec, nodes.FuncItem): return dec if dec.func.is_property: return None def apply_decorator_to_funcitem(decorator: nodes.Expression, func: nodes.FuncItem) -> Optional[nodes.FuncItem]: if (not isinstance(decorator, nodes.RefExpr)): return None if (decorator.fullname is None): return None if (decorator.fullname in ('builtins.staticmethod', 'typing.overload', 'abc.abstractmethod')): return func if (decorator.fullname == 'builtins.classmethod'): assert (func.arguments[0].variable.name in ('cls', 'metacls')) ret = copy.copy(func) ret.arguments = ret.arguments[1:] return ret return None func = dec.func for decorator in dec.original_decorators: resulting_func = apply_decorator_to_funcitem(decorator, func) if (resulting_func is None): return None func = resulting_func return func
-1,845,176,756,709,411,300
Returns a FuncItem that corresponds to the output of the decorator. Returns None if we can't figure out what that would be. For convenience, this function also accepts FuncItems.
venv/Lib/site-packages/mypy/stubtest.py
_resolve_funcitem_from_decorator
HarisHijazi/mojarnik-server
python
def _resolve_funcitem_from_decorator(dec: nodes.OverloadPart) -> Optional[nodes.FuncItem]: "Returns a FuncItem that corresponds to the output of the decorator.\n\n Returns None if we can't figure out what that would be. For convenience, this function also\n accepts FuncItems.\n\n " if isinstance(dec, nodes.FuncItem): return dec if dec.func.is_property: return None def apply_decorator_to_funcitem(decorator: nodes.Expression, func: nodes.FuncItem) -> Optional[nodes.FuncItem]: if (not isinstance(decorator, nodes.RefExpr)): return None if (decorator.fullname is None): return None if (decorator.fullname in ('builtins.staticmethod', 'typing.overload', 'abc.abstractmethod')): return func if (decorator.fullname == 'builtins.classmethod'): assert (func.arguments[0].variable.name in ('cls', 'metacls')) ret = copy.copy(func) ret.arguments = ret.arguments[1:] return ret return None func = dec.func for decorator in dec.original_decorators: resulting_func = apply_decorator_to_funcitem(decorator, func) if (resulting_func is None): return None func = resulting_func return func
def is_dunder(name: str, exclude_special: bool=False) -> bool: 'Returns whether name is a dunder name.\n\n :param exclude_special: Whether to return False for a couple special dunder methods.\n\n ' if (exclude_special and (name in SPECIAL_DUNDERS)): return False return (name.startswith('__') and name.endswith('__'))
8,043,481,766,942,279,000
Returns whether name is a dunder name. :param exclude_special: Whether to return False for a couple special dunder methods.
venv/Lib/site-packages/mypy/stubtest.py
is_dunder
HarisHijazi/mojarnik-server
python
def is_dunder(name: str, exclude_special: bool=False) -> bool: 'Returns whether name is a dunder name.\n\n :param exclude_special: Whether to return False for a couple special dunder methods.\n\n ' if (exclude_special and (name in SPECIAL_DUNDERS)): return False return (name.startswith('__') and name.endswith('__'))
def is_subtype_helper(left: mypy.types.Type, right: mypy.types.Type) -> bool: 'Checks whether ``left`` is a subtype of ``right``.' left = mypy.types.get_proper_type(left) right = mypy.types.get_proper_type(right) if (isinstance(left, mypy.types.LiteralType) and isinstance(left.value, int) and (left.value in (0, 1)) and isinstance(right, mypy.types.Instance) and (right.type.fullname == 'builtins.bool')): return True with mypy.state.strict_optional_set(True): return mypy.subtypes.is_subtype(left, right)
-4,968,396,397,563,760,000
Checks whether ``left`` is a subtype of ``right``.
venv/Lib/site-packages/mypy/stubtest.py
is_subtype_helper
HarisHijazi/mojarnik-server
python
def is_subtype_helper(left: mypy.types.Type, right: mypy.types.Type) -> bool: left = mypy.types.get_proper_type(left) right = mypy.types.get_proper_type(right) if (isinstance(left, mypy.types.LiteralType) and isinstance(left.value, int) and (left.value in (0, 1)) and isinstance(right, mypy.types.Instance) and (right.type.fullname == 'builtins.bool')): return True with mypy.state.strict_optional_set(True): return mypy.subtypes.is_subtype(left, right)
def get_mypy_type_of_runtime_value(runtime: Any) -> Optional[mypy.types.Type]: "Returns a mypy type object representing the type of ``runtime``.\n\n Returns None if we can't find something that works.\n\n " if (runtime is None): return mypy.types.NoneType() if isinstance(runtime, property): return None def anytype() -> mypy.types.AnyType: return mypy.types.AnyType(mypy.types.TypeOfAny.unannotated) if isinstance(runtime, (types.FunctionType, types.BuiltinFunctionType, types.MethodType, types.BuiltinMethodType)): builtins = get_stub('builtins') assert (builtins is not None) type_info = builtins.names['function'].node assert isinstance(type_info, nodes.TypeInfo) fallback = mypy.types.Instance(type_info, [anytype()]) try: signature = inspect.signature(runtime) arg_types = [] arg_kinds = [] arg_names = [] for arg in signature.parameters.values(): arg_types.append(anytype()) arg_names.append((None if (arg.kind == inspect.Parameter.POSITIONAL_ONLY) else arg.name)) has_default = (arg.default == inspect.Parameter.empty) if (arg.kind == inspect.Parameter.POSITIONAL_ONLY): arg_kinds.append((nodes.ARG_POS if has_default else nodes.ARG_OPT)) elif (arg.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD): arg_kinds.append((nodes.ARG_POS if has_default else nodes.ARG_OPT)) elif (arg.kind == inspect.Parameter.KEYWORD_ONLY): arg_kinds.append((nodes.ARG_NAMED if has_default else nodes.ARG_NAMED_OPT)) elif (arg.kind == inspect.Parameter.VAR_POSITIONAL): arg_kinds.append(nodes.ARG_STAR) elif (arg.kind == inspect.Parameter.VAR_KEYWORD): arg_kinds.append(nodes.ARG_STAR2) else: raise AssertionError except ValueError: arg_types = [anytype(), anytype()] arg_kinds = [nodes.ARG_STAR, nodes.ARG_STAR2] arg_names = [None, None] return mypy.types.CallableType(arg_types, arg_kinds, arg_names, ret_type=anytype(), fallback=fallback, is_ellipsis_args=True) stub = get_stub(type(runtime).__module__) if (stub is None): return None type_name = type(runtime).__name__ if (type_name not in stub.names): return None type_info = stub.names[type_name].node if isinstance(type_info, nodes.Var): return type_info.type if (not isinstance(type_info, nodes.TypeInfo)): return None if isinstance(runtime, tuple): optional_items = [get_mypy_type_of_runtime_value(v) for v in runtime] items = [(i if (i is not None) else anytype()) for i in optional_items] fallback = mypy.types.Instance(type_info, [anytype()]) return mypy.types.TupleType(items, fallback) fallback = mypy.types.Instance(type_info, [anytype() for _ in type_info.type_vars]) try: return mypy.types.LiteralType(value=runtime, fallback=fallback) except TypeError: return fallback
2,015,463,356,520,767,200
Returns a mypy type object representing the type of ``runtime``. Returns None if we can't find something that works.
venv/Lib/site-packages/mypy/stubtest.py
get_mypy_type_of_runtime_value
HarisHijazi/mojarnik-server
python
def get_mypy_type_of_runtime_value(runtime: Any) -> Optional[mypy.types.Type]: "Returns a mypy type object representing the type of ``runtime``.\n\n Returns None if we can't find something that works.\n\n " if (runtime is None): return mypy.types.NoneType() if isinstance(runtime, property): return None def anytype() -> mypy.types.AnyType: return mypy.types.AnyType(mypy.types.TypeOfAny.unannotated) if isinstance(runtime, (types.FunctionType, types.BuiltinFunctionType, types.MethodType, types.BuiltinMethodType)): builtins = get_stub('builtins') assert (builtins is not None) type_info = builtins.names['function'].node assert isinstance(type_info, nodes.TypeInfo) fallback = mypy.types.Instance(type_info, [anytype()]) try: signature = inspect.signature(runtime) arg_types = [] arg_kinds = [] arg_names = [] for arg in signature.parameters.values(): arg_types.append(anytype()) arg_names.append((None if (arg.kind == inspect.Parameter.POSITIONAL_ONLY) else arg.name)) has_default = (arg.default == inspect.Parameter.empty) if (arg.kind == inspect.Parameter.POSITIONAL_ONLY): arg_kinds.append((nodes.ARG_POS if has_default else nodes.ARG_OPT)) elif (arg.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD): arg_kinds.append((nodes.ARG_POS if has_default else nodes.ARG_OPT)) elif (arg.kind == inspect.Parameter.KEYWORD_ONLY): arg_kinds.append((nodes.ARG_NAMED if has_default else nodes.ARG_NAMED_OPT)) elif (arg.kind == inspect.Parameter.VAR_POSITIONAL): arg_kinds.append(nodes.ARG_STAR) elif (arg.kind == inspect.Parameter.VAR_KEYWORD): arg_kinds.append(nodes.ARG_STAR2) else: raise AssertionError except ValueError: arg_types = [anytype(), anytype()] arg_kinds = [nodes.ARG_STAR, nodes.ARG_STAR2] arg_names = [None, None] return mypy.types.CallableType(arg_types, arg_kinds, arg_names, ret_type=anytype(), fallback=fallback, is_ellipsis_args=True) stub = get_stub(type(runtime).__module__) if (stub is None): return None type_name = type(runtime).__name__ if (type_name not in stub.names): return None type_info = stub.names[type_name].node if isinstance(type_info, nodes.Var): return type_info.type if (not isinstance(type_info, nodes.TypeInfo)): return None if isinstance(runtime, tuple): optional_items = [get_mypy_type_of_runtime_value(v) for v in runtime] items = [(i if (i is not None) else anytype()) for i in optional_items] fallback = mypy.types.Instance(type_info, [anytype()]) return mypy.types.TupleType(items, fallback) fallback = mypy.types.Instance(type_info, [anytype() for _ in type_info.type_vars]) try: return mypy.types.LiteralType(value=runtime, fallback=fallback) except TypeError: return fallback
def build_stubs(modules: List[str], options: Options, find_submodules: bool=False) -> List[str]: 'Uses mypy to construct stub objects for the given modules.\n\n This sets global state that ``get_stub`` can access.\n\n Returns all modules we might want to check. If ``find_submodules`` is False, this is equal\n to ``modules``.\n\n :param modules: List of modules to build stubs for.\n :param options: Mypy options for finding and building stubs.\n :param find_submodules: Whether to attempt to find submodules of the given modules as well.\n\n ' data_dir = mypy.build.default_data_dir() search_path = mypy.modulefinder.compute_search_paths([], options, data_dir) find_module_cache = mypy.modulefinder.FindModuleCache(search_path, fscache=None, options=options) all_modules = [] sources = [] for module in modules: all_modules.append(module) if (not find_submodules): module_path = find_module_cache.find_module(module) if (not isinstance(module_path, str)): continue sources.append(mypy.modulefinder.BuildSource(module_path, module, None)) else: found_sources = find_module_cache.find_modules_recursive(module) sources.extend(found_sources) all_modules.extend((s.module for s in found_sources if (s.module not in all_modules))) try: res = mypy.build.build(sources=sources, options=options) except mypy.errors.CompileError as e: output = [_style('error: ', color='red', bold=True), 'not checking stubs due to failed mypy compile:\n', str(e)] print(''.join(output)) raise RuntimeError from e if res.errors: output = [_style('error: ', color='red', bold=True), 'not checking stubs due to mypy build errors:\n'] print((''.join(output) + '\n'.join(res.errors))) raise RuntimeError global _all_stubs _all_stubs = res.files return all_modules
379,680,852,265,002,900
Uses mypy to construct stub objects for the given modules. This sets global state that ``get_stub`` can access. Returns all modules we might want to check. If ``find_submodules`` is False, this is equal to ``modules``. :param modules: List of modules to build stubs for. :param options: Mypy options for finding and building stubs. :param find_submodules: Whether to attempt to find submodules of the given modules as well.
venv/Lib/site-packages/mypy/stubtest.py
build_stubs
HarisHijazi/mojarnik-server
python
def build_stubs(modules: List[str], options: Options, find_submodules: bool=False) -> List[str]: 'Uses mypy to construct stub objects for the given modules.\n\n This sets global state that ``get_stub`` can access.\n\n Returns all modules we might want to check. If ``find_submodules`` is False, this is equal\n to ``modules``.\n\n :param modules: List of modules to build stubs for.\n :param options: Mypy options for finding and building stubs.\n :param find_submodules: Whether to attempt to find submodules of the given modules as well.\n\n ' data_dir = mypy.build.default_data_dir() search_path = mypy.modulefinder.compute_search_paths([], options, data_dir) find_module_cache = mypy.modulefinder.FindModuleCache(search_path, fscache=None, options=options) all_modules = [] sources = [] for module in modules: all_modules.append(module) if (not find_submodules): module_path = find_module_cache.find_module(module) if (not isinstance(module_path, str)): continue sources.append(mypy.modulefinder.BuildSource(module_path, module, None)) else: found_sources = find_module_cache.find_modules_recursive(module) sources.extend(found_sources) all_modules.extend((s.module for s in found_sources if (s.module not in all_modules))) try: res = mypy.build.build(sources=sources, options=options) except mypy.errors.CompileError as e: output = [_style('error: ', color='red', bold=True), 'not checking stubs due to failed mypy compile:\n', str(e)] print(.join(output)) raise RuntimeError from e if res.errors: output = [_style('error: ', color='red', bold=True), 'not checking stubs due to mypy build errors:\n'] print((.join(output) + '\n'.join(res.errors))) raise RuntimeError global _all_stubs _all_stubs = res.files return all_modules
def get_stub(module: str) -> Optional[nodes.MypyFile]: "Returns a stub object for the given module, if we've built one." return _all_stubs.get(module)
718,094,875,160,185,500
Returns a stub object for the given module, if we've built one.
venv/Lib/site-packages/mypy/stubtest.py
get_stub
HarisHijazi/mojarnik-server
python
def get_stub(module: str) -> Optional[nodes.MypyFile]: return _all_stubs.get(module)
def get_typeshed_stdlib_modules(custom_typeshed_dir: Optional[str]) -> List[str]: 'Returns a list of stdlib modules in typeshed (for current Python version).' stdlib_py_versions = mypy.modulefinder.load_stdlib_py_versions(custom_typeshed_dir) packages = set() if (sys.version_info < (3, 6)): version_info = (3, 6) else: version_info = sys.version_info[0:2] for (module, versions) in stdlib_py_versions.items(): (minver, maxver) = versions if ((version_info >= minver) and ((maxver is None) or (version_info <= maxver))): packages.add(module) if custom_typeshed_dir: typeshed_dir = Path(custom_typeshed_dir) else: typeshed_dir = (Path(mypy.build.default_data_dir()) / 'typeshed') stdlib_dir = (typeshed_dir / 'stdlib') modules = [] for path in stdlib_dir.rglob('*.pyi'): if (path.stem == '__init__'): path = path.parent module = '.'.join((path.relative_to(stdlib_dir).parts[:(- 1)] + (path.stem,))) if (module.split('.')[0] in packages): modules.append(module) return sorted(modules)
-7,716,510,822,172,239,000
Returns a list of stdlib modules in typeshed (for current Python version).
venv/Lib/site-packages/mypy/stubtest.py
get_typeshed_stdlib_modules
HarisHijazi/mojarnik-server
python
def get_typeshed_stdlib_modules(custom_typeshed_dir: Optional[str]) -> List[str]: stdlib_py_versions = mypy.modulefinder.load_stdlib_py_versions(custom_typeshed_dir) packages = set() if (sys.version_info < (3, 6)): version_info = (3, 6) else: version_info = sys.version_info[0:2] for (module, versions) in stdlib_py_versions.items(): (minver, maxver) = versions if ((version_info >= minver) and ((maxver is None) or (version_info <= maxver))): packages.add(module) if custom_typeshed_dir: typeshed_dir = Path(custom_typeshed_dir) else: typeshed_dir = (Path(mypy.build.default_data_dir()) / 'typeshed') stdlib_dir = (typeshed_dir / 'stdlib') modules = [] for path in stdlib_dir.rglob('*.pyi'): if (path.stem == '__init__'): path = path.parent module = '.'.join((path.relative_to(stdlib_dir).parts[:(- 1)] + (path.stem,))) if (module.split('.')[0] in packages): modules.append(module) return sorted(modules)
def test_stubs(args: argparse.Namespace, use_builtins_fixtures: bool=False) -> int: "This is stubtest! It's time to test the stubs!" allowlist = {entry: False for allowlist_file in args.allowlist for entry in get_allowlist_entries(allowlist_file)} allowlist_regexes = {entry: re.compile(entry) for entry in allowlist} generated_allowlist = set() modules = args.modules if args.check_typeshed: assert (not args.modules), 'Cannot pass both --check-typeshed and a list of modules' modules = get_typeshed_stdlib_modules(args.custom_typeshed_dir) annoying_modules = {'antigravity', 'this'} modules = [m for m in modules if (m not in annoying_modules)] assert modules, 'No modules to check' options = Options() options.incremental = False options.custom_typeshed_dir = args.custom_typeshed_dir options.config_file = args.mypy_config_file options.use_builtins_fixtures = use_builtins_fixtures if options.config_file: def set_strict_flags() -> None: return parse_config_file(options, set_strict_flags, options.config_file, sys.stdout, sys.stderr) try: modules = build_stubs(modules, options, find_submodules=(not args.check_typeshed)) except RuntimeError: return 1 exit_code = 0 for module in modules: for error in test_module(module): if (args.ignore_missing_stub and error.is_missing_stub()): continue if (args.ignore_positional_only and error.is_positional_only_related()): continue if (error.object_desc in allowlist): allowlist[error.object_desc] = True continue is_allowlisted = False for w in allowlist: if allowlist_regexes[w].fullmatch(error.object_desc): allowlist[w] = True is_allowlisted = True break if is_allowlisted: continue exit_code = 1 if args.generate_allowlist: generated_allowlist.add(error.object_desc) continue print(error.get_description(concise=args.concise)) if (not args.ignore_unused_allowlist): for w in allowlist: if ((not allowlist[w]) and (not allowlist_regexes[w].fullmatch(''))): exit_code = 1 print('note: unused allowlist entry {}'.format(w)) if args.generate_allowlist: for e in sorted(generated_allowlist): print(e) exit_code = 0 return exit_code
8,016,859,559,546,443,000
This is stubtest! It's time to test the stubs!
venv/Lib/site-packages/mypy/stubtest.py
test_stubs
HarisHijazi/mojarnik-server
python
def test_stubs(args: argparse.Namespace, use_builtins_fixtures: bool=False) -> int: allowlist = {entry: False for allowlist_file in args.allowlist for entry in get_allowlist_entries(allowlist_file)} allowlist_regexes = {entry: re.compile(entry) for entry in allowlist} generated_allowlist = set() modules = args.modules if args.check_typeshed: assert (not args.modules), 'Cannot pass both --check-typeshed and a list of modules' modules = get_typeshed_stdlib_modules(args.custom_typeshed_dir) annoying_modules = {'antigravity', 'this'} modules = [m for m in modules if (m not in annoying_modules)] assert modules, 'No modules to check' options = Options() options.incremental = False options.custom_typeshed_dir = args.custom_typeshed_dir options.config_file = args.mypy_config_file options.use_builtins_fixtures = use_builtins_fixtures if options.config_file: def set_strict_flags() -> None: return parse_config_file(options, set_strict_flags, options.config_file, sys.stdout, sys.stderr) try: modules = build_stubs(modules, options, find_submodules=(not args.check_typeshed)) except RuntimeError: return 1 exit_code = 0 for module in modules: for error in test_module(module): if (args.ignore_missing_stub and error.is_missing_stub()): continue if (args.ignore_positional_only and error.is_positional_only_related()): continue if (error.object_desc in allowlist): allowlist[error.object_desc] = True continue is_allowlisted = False for w in allowlist: if allowlist_regexes[w].fullmatch(error.object_desc): allowlist[w] = True is_allowlisted = True break if is_allowlisted: continue exit_code = 1 if args.generate_allowlist: generated_allowlist.add(error.object_desc) continue print(error.get_description(concise=args.concise)) if (not args.ignore_unused_allowlist): for w in allowlist: if ((not allowlist[w]) and (not allowlist_regexes[w].fullmatch())): exit_code = 1 print('note: unused allowlist entry {}'.format(w)) if args.generate_allowlist: for e in sorted(generated_allowlist): print(e) exit_code = 0 return exit_code
def __init__(self, object_path: List[str], message: str, stub_object: MaybeMissing[nodes.Node], runtime_object: MaybeMissing[Any], *, stub_desc: Optional[str]=None, runtime_desc: Optional[str]=None) -> None: 'Represents an error found by stubtest.\n\n :param object_path: Location of the object with the error,\n e.g. ``["module", "Class", "method"]``\n :param message: Error message\n :param stub_object: The mypy node representing the stub\n :param runtime_object: Actual object obtained from the runtime\n :param stub_desc: Specialised description for the stub object, should you wish\n :param runtime_desc: Specialised description for the runtime object, should you wish\n\n ' self.object_desc = '.'.join(object_path) self.message = message self.stub_object = stub_object self.runtime_object = runtime_object self.stub_desc = (stub_desc or str(getattr(stub_object, 'type', stub_object))) self.runtime_desc = (runtime_desc or str(runtime_object))
-7,149,678,860,484,340,000
Represents an error found by stubtest. :param object_path: Location of the object with the error, e.g. ``["module", "Class", "method"]`` :param message: Error message :param stub_object: The mypy node representing the stub :param runtime_object: Actual object obtained from the runtime :param stub_desc: Specialised description for the stub object, should you wish :param runtime_desc: Specialised description for the runtime object, should you wish
venv/Lib/site-packages/mypy/stubtest.py
__init__
HarisHijazi/mojarnik-server
python
def __init__(self, object_path: List[str], message: str, stub_object: MaybeMissing[nodes.Node], runtime_object: MaybeMissing[Any], *, stub_desc: Optional[str]=None, runtime_desc: Optional[str]=None) -> None: 'Represents an error found by stubtest.\n\n :param object_path: Location of the object with the error,\n e.g. ``["module", "Class", "method"]``\n :param message: Error message\n :param stub_object: The mypy node representing the stub\n :param runtime_object: Actual object obtained from the runtime\n :param stub_desc: Specialised description for the stub object, should you wish\n :param runtime_desc: Specialised description for the runtime object, should you wish\n\n ' self.object_desc = '.'.join(object_path) self.message = message self.stub_object = stub_object self.runtime_object = runtime_object self.stub_desc = (stub_desc or str(getattr(stub_object, 'type', stub_object))) self.runtime_desc = (runtime_desc or str(runtime_object))
def is_missing_stub(self) -> bool: 'Whether or not the error is for something missing from the stub.' return isinstance(self.stub_object, Missing)
5,390,748,104,280,314,000
Whether or not the error is for something missing from the stub.
venv/Lib/site-packages/mypy/stubtest.py
is_missing_stub
HarisHijazi/mojarnik-server
python
def is_missing_stub(self) -> bool: return isinstance(self.stub_object, Missing)
def is_positional_only_related(self) -> bool: 'Whether or not the error is for something being (or not being) positional-only.' return ('leading double underscore' in self.message)
-4,917,370,307,703,007,000
Whether or not the error is for something being (or not being) positional-only.
venv/Lib/site-packages/mypy/stubtest.py
is_positional_only_related
HarisHijazi/mojarnik-server
python
def is_positional_only_related(self) -> bool: return ('leading double underscore' in self.message)
def get_description(self, concise: bool=False) -> str: 'Returns a description of the error.\n\n :param concise: Whether to return a concise, one-line description\n\n ' if concise: return ((_style(self.object_desc, bold=True) + ' ') + self.message) stub_line = None stub_file = None if (not isinstance(self.stub_object, Missing)): stub_line = self.stub_object.line stub_loc_str = '' if stub_line: stub_loc_str += ' at line {}'.format(stub_line) if stub_file: stub_loc_str += ' in file {}'.format(Path(stub_file)) runtime_line = None runtime_file = None if (not isinstance(self.runtime_object, Missing)): try: runtime_line = inspect.getsourcelines(self.runtime_object)[1] except (OSError, TypeError): pass try: runtime_file = inspect.getsourcefile(self.runtime_object) except TypeError: pass runtime_loc_str = '' if runtime_line: runtime_loc_str += ' at line {}'.format(runtime_line) if runtime_file: runtime_loc_str += ' in file {}'.format(Path(runtime_file)) output = [_style('error: ', color='red', bold=True), _style(self.object_desc, bold=True), ' ', self.message, '\n', 'Stub:', _style(stub_loc_str, dim=True), '\n', _style((self.stub_desc + '\n'), color='blue', dim=True), 'Runtime:', _style(runtime_loc_str, dim=True), '\n', _style((self.runtime_desc + '\n'), color='blue', dim=True)] return ''.join(output)
7,574,251,078,733,622,000
Returns a description of the error. :param concise: Whether to return a concise, one-line description
venv/Lib/site-packages/mypy/stubtest.py
get_description
HarisHijazi/mojarnik-server
python
def get_description(self, concise: bool=False) -> str: 'Returns a description of the error.\n\n :param concise: Whether to return a concise, one-line description\n\n ' if concise: return ((_style(self.object_desc, bold=True) + ' ') + self.message) stub_line = None stub_file = None if (not isinstance(self.stub_object, Missing)): stub_line = self.stub_object.line stub_loc_str = if stub_line: stub_loc_str += ' at line {}'.format(stub_line) if stub_file: stub_loc_str += ' in file {}'.format(Path(stub_file)) runtime_line = None runtime_file = None if (not isinstance(self.runtime_object, Missing)): try: runtime_line = inspect.getsourcelines(self.runtime_object)[1] except (OSError, TypeError): pass try: runtime_file = inspect.getsourcefile(self.runtime_object) except TypeError: pass runtime_loc_str = if runtime_line: runtime_loc_str += ' at line {}'.format(runtime_line) if runtime_file: runtime_loc_str += ' in file {}'.format(Path(runtime_file)) output = [_style('error: ', color='red', bold=True), _style(self.object_desc, bold=True), ' ', self.message, '\n', 'Stub:', _style(stub_loc_str, dim=True), '\n', _style((self.stub_desc + '\n'), color='blue', dim=True), 'Runtime:', _style(runtime_loc_str, dim=True), '\n', _style((self.runtime_desc + '\n'), color='blue', dim=True)] return .join(output)
@staticmethod def from_overloadedfuncdef(stub: nodes.OverloadedFuncDef) -> 'Signature[nodes.Argument]': "Returns a Signature from an OverloadedFuncDef.\n\n If life were simple, to verify_overloadedfuncdef, we'd just verify_funcitem for each of its\n items. Unfortunately, life isn't simple and overloads are pretty deceitful. So instead, we\n try and combine the overload's items into a single signature that is compatible with any\n lies it might try to tell.\n\n " assume_positional_only = is_dunder(stub.name, exclude_special=True) all_args = {} for func in map(_resolve_funcitem_from_decorator, stub.items): assert (func is not None) args = maybe_strip_cls(stub.name, func.arguments) for (index, arg) in enumerate(args): name = ('__{}'.format(index) if (arg.variable.name.startswith('__') or assume_positional_only) else arg.variable.name) all_args.setdefault(name, []).append((arg, index)) def get_position(arg_name: str) -> int: return max((index for (_, index) in all_args[arg_name])) def get_type(arg_name: str) -> mypy.types.ProperType: with mypy.state.strict_optional_set(True): all_types = [(arg.variable.type or arg.type_annotation) for (arg, _) in all_args[arg_name]] return mypy.typeops.make_simplified_union([t for t in all_types if t]) def get_kind(arg_name: str) -> int: kinds = {arg.kind for (arg, _) in all_args[arg_name]} if (nodes.ARG_STAR in kinds): return nodes.ARG_STAR if (nodes.ARG_STAR2 in kinds): return nodes.ARG_STAR2 is_opt = ((len(all_args[arg_name]) < len(stub.items)) or (nodes.ARG_OPT in kinds) or (nodes.ARG_NAMED_OPT in kinds)) is_pos = ((nodes.ARG_OPT in kinds) or (nodes.ARG_POS in kinds)) if is_opt: return (nodes.ARG_OPT if is_pos else nodes.ARG_NAMED_OPT) return (nodes.ARG_POS if is_pos else nodes.ARG_NAMED) sig = Signature() for arg_name in sorted(all_args, key=get_position): example_arg_name = all_args[arg_name][0][0].variable.name arg = nodes.Argument(nodes.Var(example_arg_name, get_type(arg_name)), type_annotation=None, initializer=None, kind=get_kind(arg_name)) if (arg.kind in (nodes.ARG_POS, nodes.ARG_OPT)): sig.pos.append(arg) elif (arg.kind in (nodes.ARG_NAMED, nodes.ARG_NAMED_OPT)): sig.kwonly[arg.variable.name] = arg elif (arg.kind == nodes.ARG_STAR): sig.varpos = arg elif (arg.kind == nodes.ARG_STAR2): sig.varkw = arg else: raise AssertionError return sig
1,645,200,278,387,473,000
Returns a Signature from an OverloadedFuncDef. If life were simple, to verify_overloadedfuncdef, we'd just verify_funcitem for each of its items. Unfortunately, life isn't simple and overloads are pretty deceitful. So instead, we try and combine the overload's items into a single signature that is compatible with any lies it might try to tell.
venv/Lib/site-packages/mypy/stubtest.py
from_overloadedfuncdef
HarisHijazi/mojarnik-server
python
@staticmethod def from_overloadedfuncdef(stub: nodes.OverloadedFuncDef) -> 'Signature[nodes.Argument]': "Returns a Signature from an OverloadedFuncDef.\n\n If life were simple, to verify_overloadedfuncdef, we'd just verify_funcitem for each of its\n items. Unfortunately, life isn't simple and overloads are pretty deceitful. So instead, we\n try and combine the overload's items into a single signature that is compatible with any\n lies it might try to tell.\n\n " assume_positional_only = is_dunder(stub.name, exclude_special=True) all_args = {} for func in map(_resolve_funcitem_from_decorator, stub.items): assert (func is not None) args = maybe_strip_cls(stub.name, func.arguments) for (index, arg) in enumerate(args): name = ('__{}'.format(index) if (arg.variable.name.startswith('__') or assume_positional_only) else arg.variable.name) all_args.setdefault(name, []).append((arg, index)) def get_position(arg_name: str) -> int: return max((index for (_, index) in all_args[arg_name])) def get_type(arg_name: str) -> mypy.types.ProperType: with mypy.state.strict_optional_set(True): all_types = [(arg.variable.type or arg.type_annotation) for (arg, _) in all_args[arg_name]] return mypy.typeops.make_simplified_union([t for t in all_types if t]) def get_kind(arg_name: str) -> int: kinds = {arg.kind for (arg, _) in all_args[arg_name]} if (nodes.ARG_STAR in kinds): return nodes.ARG_STAR if (nodes.ARG_STAR2 in kinds): return nodes.ARG_STAR2 is_opt = ((len(all_args[arg_name]) < len(stub.items)) or (nodes.ARG_OPT in kinds) or (nodes.ARG_NAMED_OPT in kinds)) is_pos = ((nodes.ARG_OPT in kinds) or (nodes.ARG_POS in kinds)) if is_opt: return (nodes.ARG_OPT if is_pos else nodes.ARG_NAMED_OPT) return (nodes.ARG_POS if is_pos else nodes.ARG_NAMED) sig = Signature() for arg_name in sorted(all_args, key=get_position): example_arg_name = all_args[arg_name][0][0].variable.name arg = nodes.Argument(nodes.Var(example_arg_name, get_type(arg_name)), type_annotation=None, initializer=None, kind=get_kind(arg_name)) if (arg.kind in (nodes.ARG_POS, nodes.ARG_OPT)): sig.pos.append(arg) elif (arg.kind in (nodes.ARG_NAMED, nodes.ARG_NAMED_OPT)): sig.kwonly[arg.variable.name] = arg elif (arg.kind == nodes.ARG_STAR): sig.varpos = arg elif (arg.kind == nodes.ARG_STAR2): sig.varkw = arg else: raise AssertionError return sig
def period_range(start=None, end=None, periods: (int | None)=None, freq=None, name=None) -> PeriodIndex: '\n Return a fixed frequency PeriodIndex.\n\n The day (calendar) is the default frequency.\n\n Parameters\n ----------\n start : str or period-like, default None\n Left bound for generating periods.\n end : str or period-like, default None\n Right bound for generating periods.\n periods : int, default None\n Number of periods to generate.\n freq : str or DateOffset, optional\n Frequency alias. By default the freq is taken from `start` or `end`\n if those are Period objects. Otherwise, the default is ``"D"`` for\n daily frequency.\n name : str, default None\n Name of the resulting PeriodIndex.\n\n Returns\n -------\n PeriodIndex\n\n Notes\n -----\n Of the three parameters: ``start``, ``end``, and ``periods``, exactly two\n must be specified.\n\n To learn more about the frequency strings, please see `this link\n <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.\n\n Examples\n --------\n >>> pd.period_range(start=\'2017-01-01\', end=\'2018-01-01\', freq=\'M\')\n PeriodIndex([\'2017-01\', \'2017-02\', \'2017-03\', \'2017-04\', \'2017-05\', \'2017-06\',\n \'2017-07\', \'2017-08\', \'2017-09\', \'2017-10\', \'2017-11\', \'2017-12\',\n \'2018-01\'],\n dtype=\'period[M]\')\n\n If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor\n endpoints for a ``PeriodIndex`` with frequency matching that of the\n ``period_range`` constructor.\n\n >>> pd.period_range(start=pd.Period(\'2017Q1\', freq=\'Q\'),\n ... end=pd.Period(\'2017Q2\', freq=\'Q\'), freq=\'M\')\n PeriodIndex([\'2017-03\', \'2017-04\', \'2017-05\', \'2017-06\'],\n dtype=\'period[M]\')\n ' if (com.count_not_none(start, end, periods) != 2): raise ValueError('Of the three parameters: start, end, and periods, exactly two must be specified') if ((freq is None) and ((not isinstance(start, Period)) and (not isinstance(end, Period)))): freq = 'D' (data, freq) = PeriodArray._generate_range(start, end, periods, freq, fields={}) data = PeriodArray(data, freq=freq) return PeriodIndex(data, name=name)
-1,241,766,003,733,699,300
Return a fixed frequency PeriodIndex. The day (calendar) is the default frequency. Parameters ---------- start : str or period-like, default None Left bound for generating periods. end : str or period-like, default None Right bound for generating periods. periods : int, default None Number of periods to generate. freq : str or DateOffset, optional Frequency alias. By default the freq is taken from `start` or `end` if those are Period objects. Otherwise, the default is ``"D"`` for daily frequency. name : str, default None Name of the resulting PeriodIndex. Returns ------- PeriodIndex Notes ----- Of the three parameters: ``start``, ``end``, and ``periods``, exactly two must be specified. To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M') PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06', '2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12', '2018-01'], dtype='period[M]') If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor endpoints for a ``PeriodIndex`` with frequency matching that of the ``period_range`` constructor. >>> pd.period_range(start=pd.Period('2017Q1', freq='Q'), ... end=pd.Period('2017Q2', freq='Q'), freq='M') PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]')
env/Lib/site-packages/pandas/core/indexes/period.py
period_range
ATJWen/weather-app
python
def period_range(start=None, end=None, periods: (int | None)=None, freq=None, name=None) -> PeriodIndex: '\n Return a fixed frequency PeriodIndex.\n\n The day (calendar) is the default frequency.\n\n Parameters\n ----------\n start : str or period-like, default None\n Left bound for generating periods.\n end : str or period-like, default None\n Right bound for generating periods.\n periods : int, default None\n Number of periods to generate.\n freq : str or DateOffset, optional\n Frequency alias. By default the freq is taken from `start` or `end`\n if those are Period objects. Otherwise, the default is ``"D"`` for\n daily frequency.\n name : str, default None\n Name of the resulting PeriodIndex.\n\n Returns\n -------\n PeriodIndex\n\n Notes\n -----\n Of the three parameters: ``start``, ``end``, and ``periods``, exactly two\n must be specified.\n\n To learn more about the frequency strings, please see `this link\n <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.\n\n Examples\n --------\n >>> pd.period_range(start=\'2017-01-01\', end=\'2018-01-01\', freq=\'M\')\n PeriodIndex([\'2017-01\', \'2017-02\', \'2017-03\', \'2017-04\', \'2017-05\', \'2017-06\',\n \'2017-07\', \'2017-08\', \'2017-09\', \'2017-10\', \'2017-11\', \'2017-12\',\n \'2018-01\'],\n dtype=\'period[M]\')\n\n If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor\n endpoints for a ``PeriodIndex`` with frequency matching that of the\n ``period_range`` constructor.\n\n >>> pd.period_range(start=pd.Period(\'2017Q1\', freq=\'Q\'),\n ... end=pd.Period(\'2017Q2\', freq=\'Q\'), freq=\'M\')\n PeriodIndex([\'2017-03\', \'2017-04\', \'2017-05\', \'2017-06\'],\n dtype=\'period[M]\')\n ' if (com.count_not_none(start, end, periods) != 2): raise ValueError('Of the three parameters: start, end, and periods, exactly two must be specified') if ((freq is None) and ((not isinstance(start, Period)) and (not isinstance(end, Period)))): freq = 'D' (data, freq) = PeriodArray._generate_range(start, end, periods, freq, fields={}) data = PeriodArray(data, freq=freq) return PeriodIndex(data, name=name)
def _maybe_convert_timedelta(self, other): '\n Convert timedelta-like input to an integer multiple of self.freq\n\n Parameters\n ----------\n other : timedelta, np.timedelta64, DateOffset, int, np.ndarray\n\n Returns\n -------\n converted : int, np.ndarray[int64]\n\n Raises\n ------\n IncompatibleFrequency : if the input cannot be written as a multiple\n of self.freq. Note IncompatibleFrequency subclasses ValueError.\n ' if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): if isinstance(self.freq, Tick): delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, BaseOffset): if (other.base == self.freq.base): return other.n raise raise_on_incompatible(self, other) elif is_integer(other): return other raise raise_on_incompatible(self, None)
-2,410,665,731,165,831,700
Convert timedelta-like input to an integer multiple of self.freq Parameters ---------- other : timedelta, np.timedelta64, DateOffset, int, np.ndarray Returns ------- converted : int, np.ndarray[int64] Raises ------ IncompatibleFrequency : if the input cannot be written as a multiple of self.freq. Note IncompatibleFrequency subclasses ValueError.
env/Lib/site-packages/pandas/core/indexes/period.py
_maybe_convert_timedelta
ATJWen/weather-app
python
def _maybe_convert_timedelta(self, other): '\n Convert timedelta-like input to an integer multiple of self.freq\n\n Parameters\n ----------\n other : timedelta, np.timedelta64, DateOffset, int, np.ndarray\n\n Returns\n -------\n converted : int, np.ndarray[int64]\n\n Raises\n ------\n IncompatibleFrequency : if the input cannot be written as a multiple\n of self.freq. Note IncompatibleFrequency subclasses ValueError.\n ' if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): if isinstance(self.freq, Tick): delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, BaseOffset): if (other.base == self.freq.base): return other.n raise raise_on_incompatible(self, other) elif is_integer(other): return other raise raise_on_incompatible(self, None)
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: '\n Can we compare values of the given dtype to our own?\n ' if (not isinstance(dtype, PeriodDtype)): return False return (dtype.freq == self.freq)
2,929,216,423,391,983,600
Can we compare values of the given dtype to our own?
env/Lib/site-packages/pandas/core/indexes/period.py
_is_comparable_dtype
ATJWen/weather-app
python
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: '\n \n ' if (not isinstance(dtype, PeriodDtype)): return False return (dtype.freq == self.freq)
def asof_locs(self, where: Index, mask: np.ndarray) -> np.ndarray: '\n where : array of timestamps\n mask : np.ndarray[bool]\n Array of booleans where data is not NA.\n ' if isinstance(where, DatetimeIndex): where = PeriodIndex(where._values, freq=self.freq) elif (not isinstance(where, PeriodIndex)): raise TypeError('asof_locs `where` must be DatetimeIndex or PeriodIndex') return super().asof_locs(where, mask)
-2,531,526,199,883,752,400
where : array of timestamps mask : np.ndarray[bool] Array of booleans where data is not NA.
env/Lib/site-packages/pandas/core/indexes/period.py
asof_locs
ATJWen/weather-app
python
def asof_locs(self, where: Index, mask: np.ndarray) -> np.ndarray: '\n where : array of timestamps\n mask : np.ndarray[bool]\n Array of booleans where data is not NA.\n ' if isinstance(where, DatetimeIndex): where = PeriodIndex(where._values, freq=self.freq) elif (not isinstance(where, PeriodIndex)): raise TypeError('asof_locs `where` must be DatetimeIndex or PeriodIndex') return super().asof_locs(where, mask)
@property def is_full(self) -> bool: '\n Returns True if this PeriodIndex is range-like in that all Periods\n between start and end are present, in order.\n ' if (len(self) == 0): return True if (not self.is_monotonic_increasing): raise ValueError('Index is not monotonic') values = self.asi8 return ((values[1:] - values[:(- 1)]) < 2).all()
-6,990,255,511,362,442,000
Returns True if this PeriodIndex is range-like in that all Periods between start and end are present, in order.
env/Lib/site-packages/pandas/core/indexes/period.py
is_full
ATJWen/weather-app
python
@property def is_full(self) -> bool: '\n Returns True if this PeriodIndex is range-like in that all Periods\n between start and end are present, in order.\n ' if (len(self) == 0): return True if (not self.is_monotonic_increasing): raise ValueError('Index is not monotonic') values = self.asi8 return ((values[1:] - values[:(- 1)]) < 2).all()
def get_loc(self, key, method=None, tolerance=None): '\n Get integer location for requested label.\n\n Parameters\n ----------\n key : Period, NaT, str, or datetime\n String or datetime key must be parsable as Period.\n\n Returns\n -------\n loc : int or ndarray[int64]\n\n Raises\n ------\n KeyError\n Key is not present in the index.\n TypeError\n If key is listlike or otherwise not hashable.\n ' orig_key = key if (not is_scalar(key)): raise InvalidIndexError(key) if is_valid_na_for_dtype(key, self.dtype): key = NaT elif isinstance(key, str): try: loc = self._get_string_slice(key) return loc except (TypeError, ValueError): pass try: (asdt, reso_str) = parse_time_string(key, self.freq) except (ValueError, DateParseError) as err: raise KeyError(f"Cannot interpret '{key}' as period") from err reso = Resolution.from_attrname(reso_str) grp = reso.freq_group.value freqn = self.dtype.freq_group_code assert (grp >= freqn) if ((grp == freqn) or ((reso == Resolution.RESO_DAY) and (self.dtype.freq.name == 'B'))): key = Period(asdt, freq=self.freq) loc = self.get_loc(key, method=method, tolerance=tolerance) return loc elif (method is None): raise KeyError(key) else: key = asdt elif isinstance(key, Period): sfreq = self.freq kfreq = key.freq if (not ((sfreq.n == kfreq.n) and (sfreq._period_dtype_code == kfreq._period_dtype_code))): raise KeyError(key) elif isinstance(key, datetime): try: key = Period(key, freq=self.freq) except ValueError as err: raise KeyError(orig_key) from err else: raise KeyError(key) try: key = Period(key, freq=self.freq) except ValueError as err: raise KeyError(orig_key) from err try: return Index.get_loc(self, key, method, tolerance) except KeyError as err: raise KeyError(orig_key) from err
-5,329,255,313,596,644,000
Get integer location for requested label. Parameters ---------- key : Period, NaT, str, or datetime String or datetime key must be parsable as Period. Returns ------- loc : int or ndarray[int64] Raises ------ KeyError Key is not present in the index. TypeError If key is listlike or otherwise not hashable.
env/Lib/site-packages/pandas/core/indexes/period.py
get_loc
ATJWen/weather-app
python
def get_loc(self, key, method=None, tolerance=None): '\n Get integer location for requested label.\n\n Parameters\n ----------\n key : Period, NaT, str, or datetime\n String or datetime key must be parsable as Period.\n\n Returns\n -------\n loc : int or ndarray[int64]\n\n Raises\n ------\n KeyError\n Key is not present in the index.\n TypeError\n If key is listlike or otherwise not hashable.\n ' orig_key = key if (not is_scalar(key)): raise InvalidIndexError(key) if is_valid_na_for_dtype(key, self.dtype): key = NaT elif isinstance(key, str): try: loc = self._get_string_slice(key) return loc except (TypeError, ValueError): pass try: (asdt, reso_str) = parse_time_string(key, self.freq) except (ValueError, DateParseError) as err: raise KeyError(f"Cannot interpret '{key}' as period") from err reso = Resolution.from_attrname(reso_str) grp = reso.freq_group.value freqn = self.dtype.freq_group_code assert (grp >= freqn) if ((grp == freqn) or ((reso == Resolution.RESO_DAY) and (self.dtype.freq.name == 'B'))): key = Period(asdt, freq=self.freq) loc = self.get_loc(key, method=method, tolerance=tolerance) return loc elif (method is None): raise KeyError(key) else: key = asdt elif isinstance(key, Period): sfreq = self.freq kfreq = key.freq if (not ((sfreq.n == kfreq.n) and (sfreq._period_dtype_code == kfreq._period_dtype_code))): raise KeyError(key) elif isinstance(key, datetime): try: key = Period(key, freq=self.freq) except ValueError as err: raise KeyError(orig_key) from err else: raise KeyError(key) try: key = Period(key, freq=self.freq) except ValueError as err: raise KeyError(orig_key) from err try: return Index.get_loc(self, key, method, tolerance) except KeyError as err: raise KeyError(orig_key) from err
def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default): "\n If label is a string or a datetime, cast it to Period.ordinal according\n to resolution.\n\n Parameters\n ----------\n label : object\n side : {'left', 'right'}\n kind : {'loc', 'getitem'}, or None\n\n Returns\n -------\n bound : Period or object\n\n Notes\n -----\n Value of `side` parameter should be validated in caller.\n\n " assert (kind in ['loc', 'getitem', None, lib.no_default]) self._deprecated_arg(kind, 'kind', '_maybe_cast_slice_bound') if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, str): try: (parsed, reso_str) = parse_time_string(label, self.freq) except ValueError as err: raise self._invalid_indexer('slice', label) from err reso = Resolution.from_attrname(reso_str) (lower, upper) = self._parsed_string_to_bounds(reso, parsed) return (lower if (side == 'left') else upper) elif (not isinstance(label, self._data._recognized_scalars)): raise self._invalid_indexer('slice', label) return label
-8,794,501,317,859,449,000
If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'}, or None Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller.
env/Lib/site-packages/pandas/core/indexes/period.py
_maybe_cast_slice_bound
ATJWen/weather-app
python
def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default): "\n If label is a string or a datetime, cast it to Period.ordinal according\n to resolution.\n\n Parameters\n ----------\n label : object\n side : {'left', 'right'}\n kind : {'loc', 'getitem'}, or None\n\n Returns\n -------\n bound : Period or object\n\n Notes\n -----\n Value of `side` parameter should be validated in caller.\n\n " assert (kind in ['loc', 'getitem', None, lib.no_default]) self._deprecated_arg(kind, 'kind', '_maybe_cast_slice_bound') if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, str): try: (parsed, reso_str) = parse_time_string(label, self.freq) except ValueError as err: raise self._invalid_indexer('slice', label) from err reso = Resolution.from_attrname(reso_str) (lower, upper) = self._parsed_string_to_bounds(reso, parsed) return (lower if (side == 'left') else upper) elif (not isinstance(label, self._data._recognized_scalars)): raise self._invalid_indexer('slice', label) return label
def fill(self): 'Intelligently sets any non-specific parameters.' _ = getattr(self, 'num_classes') _ = getattr(self, 'num_features') self.bagged_num_features = int((self.feature_bagging_fraction * self.num_features)) self.bagged_features = None if (self.feature_bagging_fraction < 1.0): self.bagged_features = [random.sample(range(self.num_features), self.bagged_num_features) for _ in range(self.num_trees)] self.regression = getattr(self, 'regression', False) self.num_outputs = (self.num_classes if self.regression else 1) self.num_output_columns = (self.num_classes + 1) self.max_depth = (self.max_depth or int((2 * math.ceil(math.log(self.max_nodes, 2))))) self.num_splits_to_consider = (self.num_splits_to_consider or max(10, int(math.ceil(math.sqrt(self.num_features))))) num_fertile = int(math.ceil((self.max_nodes / self.num_splits_to_consider))) num_fertile = max(num_fertile, 1000) self.max_fertile_nodes = (self.max_fertile_nodes or num_fertile) self.max_fertile_nodes = min(self.max_fertile_nodes, int(math.ceil((self.max_nodes / 2.0)))) num_split_initializiations_per_input = max(1, int(math.floor((self.num_splits_to_consider / self.split_after_samples)))) self.split_initializations_per_input = getattr(self, 'split_initializations_per_input', num_split_initializiations_per_input) self.base_random_seed = getattr(self, 'base_random_seed', 0) return self
3,822,639,199,110,041,600
Intelligently sets any non-specific parameters.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
fill
AdityaPai2398/tensorflow
python
def fill(self): _ = getattr(self, 'num_classes') _ = getattr(self, 'num_features') self.bagged_num_features = int((self.feature_bagging_fraction * self.num_features)) self.bagged_features = None if (self.feature_bagging_fraction < 1.0): self.bagged_features = [random.sample(range(self.num_features), self.bagged_num_features) for _ in range(self.num_trees)] self.regression = getattr(self, 'regression', False) self.num_outputs = (self.num_classes if self.regression else 1) self.num_output_columns = (self.num_classes + 1) self.max_depth = (self.max_depth or int((2 * math.ceil(math.log(self.max_nodes, 2))))) self.num_splits_to_consider = (self.num_splits_to_consider or max(10, int(math.ceil(math.sqrt(self.num_features))))) num_fertile = int(math.ceil((self.max_nodes / self.num_splits_to_consider))) num_fertile = max(num_fertile, 1000) self.max_fertile_nodes = (self.max_fertile_nodes or num_fertile) self.max_fertile_nodes = min(self.max_fertile_nodes, int(math.ceil((self.max_nodes / 2.0)))) num_split_initializiations_per_input = max(1, int(math.floor((self.num_splits_to_consider / self.split_after_samples)))) self.split_initializations_per_input = getattr(self, 'split_initializations_per_input', num_split_initializiations_per_input) self.base_random_seed = getattr(self, 'base_random_seed', 0) return self
def __init__(self, tree_stats, params): 'A simple container for stats about a forest.' self.tree_stats = tree_stats self.params = params
3,002,426,196,251,461,600
A simple container for stats about a forest.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
__init__
AdityaPai2398/tensorflow
python
def __init__(self, tree_stats, params): self.tree_stats = tree_stats self.params = params
def training_graph(self, input_data, input_labels, data_spec=None, epoch=None, **tree_kwargs): "Constructs a TF graph for training a random forest.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n input_labels: A tensor or placeholder for labels associated with\n input_data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n epoch: A tensor or placeholder for the epoch the training data comes from.\n **tree_kwargs: Keyword arguments passed to each tree's training_graph.\n\n Returns:\n The last op in the random forest training graph.\n " data_spec = (([constants.DATA_FLOAT] * self.params.num_features) if (data_spec is None) else data_spec) tree_graphs = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): seed = self.params.base_random_seed if (seed != 0): seed += i tree_data = input_data tree_labels = input_labels if (self.params.bagging_fraction < 1.0): batch_size = array_ops.slice(array_ops.shape(input_data), [0], [1]) r = random_ops.random_uniform(batch_size, seed=seed) mask = math_ops.less(r, (array_ops.ones_like(r) * self.params.bagging_fraction)) gather_indices = array_ops.squeeze(array_ops.where(mask), squeeze_dims=[1]) tree_data = array_ops.gather(input_data, gather_indices) tree_labels = array_ops.gather(input_labels, gather_indices) if self.params.bagged_features: tree_data = self._bag_features(i, tree_data) initialization = self.trees[i].tree_initialization() with ops.control_dependencies([initialization]): tree_graphs.append(self.trees[i].training_graph(tree_data, tree_labels, seed, data_spec=data_spec, epoch=([0] if (epoch is None) else epoch), **tree_kwargs)) return control_flow_ops.group(*tree_graphs)
-2,788,288,756,385,881,600
Constructs a TF graph for training a random forest. Args: input_data: A tensor or SparseTensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. data_spec: A list of tf.dtype values specifying the original types of each column. epoch: A tensor or placeholder for the epoch the training data comes from. **tree_kwargs: Keyword arguments passed to each tree's training_graph. Returns: The last op in the random forest training graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
training_graph
AdityaPai2398/tensorflow
python
def training_graph(self, input_data, input_labels, data_spec=None, epoch=None, **tree_kwargs): "Constructs a TF graph for training a random forest.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n input_labels: A tensor or placeholder for labels associated with\n input_data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n epoch: A tensor or placeholder for the epoch the training data comes from.\n **tree_kwargs: Keyword arguments passed to each tree's training_graph.\n\n Returns:\n The last op in the random forest training graph.\n " data_spec = (([constants.DATA_FLOAT] * self.params.num_features) if (data_spec is None) else data_spec) tree_graphs = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): seed = self.params.base_random_seed if (seed != 0): seed += i tree_data = input_data tree_labels = input_labels if (self.params.bagging_fraction < 1.0): batch_size = array_ops.slice(array_ops.shape(input_data), [0], [1]) r = random_ops.random_uniform(batch_size, seed=seed) mask = math_ops.less(r, (array_ops.ones_like(r) * self.params.bagging_fraction)) gather_indices = array_ops.squeeze(array_ops.where(mask), squeeze_dims=[1]) tree_data = array_ops.gather(input_data, gather_indices) tree_labels = array_ops.gather(input_labels, gather_indices) if self.params.bagged_features: tree_data = self._bag_features(i, tree_data) initialization = self.trees[i].tree_initialization() with ops.control_dependencies([initialization]): tree_graphs.append(self.trees[i].training_graph(tree_data, tree_labels, seed, data_spec=data_spec, epoch=([0] if (epoch is None) else epoch), **tree_kwargs)) return control_flow_ops.group(*tree_graphs)
def inference_graph(self, input_data, data_spec=None): 'Constructs a TF graph for evaluating a random forest.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n\n Returns:\n The last op in the random forest inference graph.\n ' data_spec = (([constants.DATA_FLOAT] * self.params.num_features) if (data_spec is None) else data_spec) probabilities = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): tree_data = input_data if self.params.bagged_features: tree_data = self._bag_features(i, input_data) probabilities.append(self.trees[i].inference_graph(tree_data, data_spec)) with ops.device(self.device_assigner.get_device(0)): all_predict = array_ops.pack(probabilities) return (math_ops.reduce_sum(all_predict, 0) / self.params.num_trees)
7,747,370,123,409,987,000
Constructs a TF graph for evaluating a random forest. Args: input_data: A tensor or SparseTensor or placeholder for input data. data_spec: A list of tf.dtype values specifying the original types of each column. Returns: The last op in the random forest inference graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
inference_graph
AdityaPai2398/tensorflow
python
def inference_graph(self, input_data, data_spec=None): 'Constructs a TF graph for evaluating a random forest.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n\n Returns:\n The last op in the random forest inference graph.\n ' data_spec = (([constants.DATA_FLOAT] * self.params.num_features) if (data_spec is None) else data_spec) probabilities = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): tree_data = input_data if self.params.bagged_features: tree_data = self._bag_features(i, input_data) probabilities.append(self.trees[i].inference_graph(tree_data, data_spec)) with ops.device(self.device_assigner.get_device(0)): all_predict = array_ops.pack(probabilities) return (math_ops.reduce_sum(all_predict, 0) / self.params.num_trees)
def average_size(self): 'Constructs a TF graph for evaluating the average size of a forest.\n\n Returns:\n The average number of nodes over the trees.\n ' sizes = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): sizes.append(self.trees[i].size()) return math_ops.reduce_mean(array_ops.pack(sizes))
5,671,812,050,120,021,000
Constructs a TF graph for evaluating the average size of a forest. Returns: The average number of nodes over the trees.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
average_size
AdityaPai2398/tensorflow
python
def average_size(self): 'Constructs a TF graph for evaluating the average size of a forest.\n\n Returns:\n The average number of nodes over the trees.\n ' sizes = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): sizes.append(self.trees[i].size()) return math_ops.reduce_mean(array_ops.pack(sizes))
def average_impurity(self): 'Constructs a TF graph for evaluating the leaf impurity of a forest.\n\n Returns:\n The last op in the graph.\n ' impurities = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): impurities.append(self.trees[i].average_impurity()) return math_ops.reduce_mean(array_ops.pack(impurities))
-7,324,765,734,865,910,000
Constructs a TF graph for evaluating the leaf impurity of a forest. Returns: The last op in the graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
average_impurity
AdityaPai2398/tensorflow
python
def average_impurity(self): 'Constructs a TF graph for evaluating the leaf impurity of a forest.\n\n Returns:\n The last op in the graph.\n ' impurities = [] for i in range(self.params.num_trees): with ops.device(self.device_assigner.get_device(i)): impurities.append(self.trees[i].average_impurity()) return math_ops.reduce_mean(array_ops.pack(impurities))
def _gini(self, class_counts): 'Calculate the Gini impurity.\n\n If c(i) denotes the i-th class count and c = sum_i c(i) then\n score = 1 - sum_i ( c(i) / c )^2\n\n Args:\n class_counts: A 2-D tensor of per-class counts, usually a slice or\n gather from variables.node_sums.\n\n Returns:\n A 1-D tensor of the Gini impurities for each row in the input.\n ' smoothed = (1.0 + array_ops.slice(class_counts, [0, 1], [(- 1), (- 1)])) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return (1.0 - (sum_squares / (sums * sums)))
7,108,791,516,632,742,000
Calculate the Gini impurity. If c(i) denotes the i-th class count and c = sum_i c(i) then score = 1 - sum_i ( c(i) / c )^2 Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
_gini
AdityaPai2398/tensorflow
python
def _gini(self, class_counts): 'Calculate the Gini impurity.\n\n If c(i) denotes the i-th class count and c = sum_i c(i) then\n score = 1 - sum_i ( c(i) / c )^2\n\n Args:\n class_counts: A 2-D tensor of per-class counts, usually a slice or\n gather from variables.node_sums.\n\n Returns:\n A 1-D tensor of the Gini impurities for each row in the input.\n ' smoothed = (1.0 + array_ops.slice(class_counts, [0, 1], [(- 1), (- 1)])) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return (1.0 - (sum_squares / (sums * sums)))
def _weighted_gini(self, class_counts): 'Our split score is the Gini impurity times the number of examples.\n\n If c(i) denotes the i-th class count and c = sum_i c(i) then\n score = c * (1 - sum_i ( c(i) / c )^2 )\n = c - sum_i c(i)^2 / c\n Args:\n class_counts: A 2-D tensor of per-class counts, usually a slice or\n gather from variables.node_sums.\n\n Returns:\n A 1-D tensor of the Gini impurities for each row in the input.\n ' smoothed = (1.0 + array_ops.slice(class_counts, [0, 1], [(- 1), (- 1)])) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return (sums - (sum_squares / sums))
6,267,550,326,469,067,000
Our split score is the Gini impurity times the number of examples. If c(i) denotes the i-th class count and c = sum_i c(i) then score = c * (1 - sum_i ( c(i) / c )^2 ) = c - sum_i c(i)^2 / c Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
_weighted_gini
AdityaPai2398/tensorflow
python
def _weighted_gini(self, class_counts): 'Our split score is the Gini impurity times the number of examples.\n\n If c(i) denotes the i-th class count and c = sum_i c(i) then\n score = c * (1 - sum_i ( c(i) / c )^2 )\n = c - sum_i c(i)^2 / c\n Args:\n class_counts: A 2-D tensor of per-class counts, usually a slice or\n gather from variables.node_sums.\n\n Returns:\n A 1-D tensor of the Gini impurities for each row in the input.\n ' smoothed = (1.0 + array_ops.slice(class_counts, [0, 1], [(- 1), (- 1)])) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return (sums - (sum_squares / sums))
def _variance(self, sums, squares): 'Calculate the variance for each row of the input tensors.\n\n Variance is V = E[x^2] - (E[x])^2.\n\n Args:\n sums: A tensor containing output sums, usually a slice from\n variables.node_sums. Should contain the number of examples seen\n in index 0 so we can calculate expected value.\n squares: Same as sums, but sums of squares.\n\n Returns:\n A 1-D tensor of the variances for each row in the input.\n ' total_count = array_ops.slice(sums, [0, 0], [(- 1), 1]) e_x = (sums / total_count) e_x2 = (squares / total_count) return math_ops.reduce_sum((e_x2 - math_ops.square(e_x)), 1)
-4,835,720,901,682,458,000
Calculate the variance for each row of the input tensors. Variance is V = E[x^2] - (E[x])^2. Args: sums: A tensor containing output sums, usually a slice from variables.node_sums. Should contain the number of examples seen in index 0 so we can calculate expected value. squares: Same as sums, but sums of squares. Returns: A 1-D tensor of the variances for each row in the input.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
_variance
AdityaPai2398/tensorflow
python
def _variance(self, sums, squares): 'Calculate the variance for each row of the input tensors.\n\n Variance is V = E[x^2] - (E[x])^2.\n\n Args:\n sums: A tensor containing output sums, usually a slice from\n variables.node_sums. Should contain the number of examples seen\n in index 0 so we can calculate expected value.\n squares: Same as sums, but sums of squares.\n\n Returns:\n A 1-D tensor of the variances for each row in the input.\n ' total_count = array_ops.slice(sums, [0, 0], [(- 1), 1]) e_x = (sums / total_count) e_x2 = (squares / total_count) return math_ops.reduce_sum((e_x2 - math_ops.square(e_x)), 1)
def training_graph(self, input_data, input_labels, random_seed, data_spec, epoch=None): 'Constructs a TF graph for training a random tree.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n input_labels: A tensor or placeholder for labels associated with\n input_data.\n random_seed: The random number generator seed to use for this tree. 0\n means use the current time as the seed.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n epoch: A tensor or placeholder for the epoch the training data comes from.\n\n Returns:\n The last op in the random tree training graph.\n ' epoch = ([0] if (epoch is None) else epoch) sparse_indices = [] sparse_values = [] sparse_shape = [] if isinstance(input_data, ops.SparseTensor): sparse_indices = input_data.indices sparse_values = input_data.values sparse_shape = input_data.shape input_data = [] (node_sums, node_squares, splits_indices, splits_sums, splits_squares, totals_indices, totals_sums, totals_squares, input_leaves) = self.training_ops.count_extremely_random_stats(input_data, sparse_indices, sparse_values, sparse_shape, data_spec, input_labels, self.variables.tree, self.variables.tree_thresholds, self.variables.node_to_accumulator_map, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, self.variables.start_epoch, epoch, num_classes=self.params.num_output_columns, regression=self.params.regression) node_update_ops = [] node_update_ops.append(state_ops.assign_add(self.variables.node_sums, node_sums)) splits_update_ops = [] splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.candidate_split_sums, splits_indices, splits_sums)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.accumulator_sums, totals_indices, totals_sums)) if self.params.regression: node_update_ops.append(state_ops.assign_add(self.variables.node_squares, node_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.candidate_split_squares, splits_indices, splits_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.accumulator_squares, totals_indices, totals_squares)) (update_indices, feature_updates, threshold_updates) = self.training_ops.sample_inputs(input_data, sparse_indices, sparse_values, sparse_shape, self.variables.node_to_accumulator_map, input_leaves, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, split_initializations_per_input=self.params.split_initializations_per_input, split_sampling_random_seed=random_seed) update_features_op = state_ops.scatter_update(self.variables.candidate_split_features, update_indices, feature_updates) update_thresholds_op = state_ops.scatter_update(self.variables.candidate_split_thresholds, update_indices, threshold_updates) with ops.control_dependencies(splits_update_ops): children = array_ops.squeeze(array_ops.slice(self.variables.tree, [0, 0], [(- 1), 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf), squeeze_dims=[1])) (finished, stale) = self.training_ops.finished_nodes(leaves, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, self.variables.start_epoch, epoch, num_split_after_samples=self.params.split_after_samples, min_split_samples=self.params.min_split_samples) non_fertile_leaves = array_ops.boolean_mask(leaves, math_ops.less(array_ops.gather(self.variables.node_to_accumulator_map, leaves), 0)) with ops.control_dependencies(node_update_ops): sums = array_ops.gather(self.variables.node_sums, non_fertile_leaves) if self.params.regression: squares = array_ops.gather(self.variables.node_squares, non_fertile_leaves) non_fertile_leaf_scores = self._variance(sums, squares) else: non_fertile_leaf_scores = self._weighted_gini(sums) with ops.control_dependencies(splits_update_ops): split_indices = self.training_ops.best_splits(finished, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, regression=self.params.regression) with ops.control_dependencies([update_features_op, update_thresholds_op]): (tree_update_indices, tree_children_updates, tree_threshold_updates, tree_depth_updates, new_eot) = self.training_ops.grow_tree(self.variables.end_of_tree, self.variables.tree_depths, self.variables.node_to_accumulator_map, finished, split_indices, self.variables.candidate_split_features, self.variables.candidate_split_thresholds) tree_update_op = state_ops.scatter_update(self.variables.tree, tree_update_indices, tree_children_updates) thresholds_update_op = state_ops.scatter_update(self.variables.tree_thresholds, tree_update_indices, tree_threshold_updates) depth_update_op = state_ops.scatter_update(self.variables.tree_depths, tree_update_indices, tree_depth_updates) new_epoch_updates = (epoch * array_ops.ones_like(tree_depth_updates)) epoch_update_op = state_ops.scatter_update(self.variables.start_epoch, tree_update_indices, new_epoch_updates) with ops.control_dependencies([depth_update_op]): (node_map_updates, accumulators_cleared, accumulators_allocated) = self.training_ops.update_fertile_slots(finished, non_fertile_leaves, non_fertile_leaf_scores, self.variables.end_of_tree, self.variables.tree_depths, self.variables.accumulator_sums, self.variables.node_to_accumulator_map, stale, max_depth=self.params.max_depth, regression=self.params.regression) (gated_new_eot,) = control_flow_ops.tuple([new_eot], control_inputs=[node_map_updates]) eot_update_op = state_ops.assign(self.variables.end_of_tree, gated_new_eot) updates = [] updates.append(eot_update_op) updates.append(tree_update_op) updates.append(thresholds_update_op) updates.append(epoch_update_op) updates.append(state_ops.scatter_update(self.variables.node_to_accumulator_map, array_ops.squeeze(array_ops.slice(node_map_updates, [0, 0], [1, (- 1)]), squeeze_dims=[0]), array_ops.squeeze(array_ops.slice(node_map_updates, [1, 0], [1, (- 1)]), squeeze_dims=[0]))) cleared_and_allocated_accumulators = array_ops.concat(0, [accumulators_cleared, accumulators_allocated]) split_values = array_ops.tile(array_ops.expand_dims(array_ops.expand_dims(array_ops.zeros_like(cleared_and_allocated_accumulators, dtype=dtypes.float32), 1), 2), [1, self.params.num_splits_to_consider, self.params.num_output_columns]) updates.append(state_ops.scatter_update(self.variables.candidate_split_sums, cleared_and_allocated_accumulators, split_values)) if self.params.regression: updates.append(state_ops.scatter_update(self.variables.candidate_split_squares, cleared_and_allocated_accumulators, split_values)) total_cleared = array_ops.tile(array_ops.expand_dims(math_ops.neg(array_ops.ones_like(accumulators_cleared, dtype=dtypes.float32)), 1), [1, self.params.num_output_columns]) total_reset = array_ops.tile(array_ops.expand_dims(array_ops.zeros_like(accumulators_allocated, dtype=dtypes.float32), 1), [1, self.params.num_output_columns]) accumulator_updates = array_ops.concat(0, [total_cleared, total_reset]) updates.append(state_ops.scatter_update(self.variables.accumulator_sums, cleared_and_allocated_accumulators, accumulator_updates)) if self.params.regression: updates.append(state_ops.scatter_update(self.variables.accumulator_squares, cleared_and_allocated_accumulators, accumulator_updates)) split_features_updates = array_ops.tile(array_ops.expand_dims(math_ops.neg(array_ops.ones_like(cleared_and_allocated_accumulators)), 1), [1, self.params.num_splits_to_consider]) updates.append(state_ops.scatter_update(self.variables.candidate_split_features, cleared_and_allocated_accumulators, split_features_updates)) updates += self.finish_iteration() return control_flow_ops.group(*updates)
-5,841,729,855,553,593,000
Constructs a TF graph for training a random tree. Args: input_data: A tensor or SparseTensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. random_seed: The random number generator seed to use for this tree. 0 means use the current time as the seed. data_spec: A list of tf.dtype values specifying the original types of each column. epoch: A tensor or placeholder for the epoch the training data comes from. Returns: The last op in the random tree training graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
training_graph
AdityaPai2398/tensorflow
python
def training_graph(self, input_data, input_labels, random_seed, data_spec, epoch=None): 'Constructs a TF graph for training a random tree.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n input_labels: A tensor or placeholder for labels associated with\n input_data.\n random_seed: The random number generator seed to use for this tree. 0\n means use the current time as the seed.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n epoch: A tensor or placeholder for the epoch the training data comes from.\n\n Returns:\n The last op in the random tree training graph.\n ' epoch = ([0] if (epoch is None) else epoch) sparse_indices = [] sparse_values = [] sparse_shape = [] if isinstance(input_data, ops.SparseTensor): sparse_indices = input_data.indices sparse_values = input_data.values sparse_shape = input_data.shape input_data = [] (node_sums, node_squares, splits_indices, splits_sums, splits_squares, totals_indices, totals_sums, totals_squares, input_leaves) = self.training_ops.count_extremely_random_stats(input_data, sparse_indices, sparse_values, sparse_shape, data_spec, input_labels, self.variables.tree, self.variables.tree_thresholds, self.variables.node_to_accumulator_map, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, self.variables.start_epoch, epoch, num_classes=self.params.num_output_columns, regression=self.params.regression) node_update_ops = [] node_update_ops.append(state_ops.assign_add(self.variables.node_sums, node_sums)) splits_update_ops = [] splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.candidate_split_sums, splits_indices, splits_sums)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.accumulator_sums, totals_indices, totals_sums)) if self.params.regression: node_update_ops.append(state_ops.assign_add(self.variables.node_squares, node_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.candidate_split_squares, splits_indices, splits_squares)) splits_update_ops.append(self.training_ops.scatter_add_ndim(self.variables.accumulator_squares, totals_indices, totals_squares)) (update_indices, feature_updates, threshold_updates) = self.training_ops.sample_inputs(input_data, sparse_indices, sparse_values, sparse_shape, self.variables.node_to_accumulator_map, input_leaves, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, split_initializations_per_input=self.params.split_initializations_per_input, split_sampling_random_seed=random_seed) update_features_op = state_ops.scatter_update(self.variables.candidate_split_features, update_indices, feature_updates) update_thresholds_op = state_ops.scatter_update(self.variables.candidate_split_thresholds, update_indices, threshold_updates) with ops.control_dependencies(splits_update_ops): children = array_ops.squeeze(array_ops.slice(self.variables.tree, [0, 0], [(- 1), 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf), squeeze_dims=[1])) (finished, stale) = self.training_ops.finished_nodes(leaves, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, self.variables.start_epoch, epoch, num_split_after_samples=self.params.split_after_samples, min_split_samples=self.params.min_split_samples) non_fertile_leaves = array_ops.boolean_mask(leaves, math_ops.less(array_ops.gather(self.variables.node_to_accumulator_map, leaves), 0)) with ops.control_dependencies(node_update_ops): sums = array_ops.gather(self.variables.node_sums, non_fertile_leaves) if self.params.regression: squares = array_ops.gather(self.variables.node_squares, non_fertile_leaves) non_fertile_leaf_scores = self._variance(sums, squares) else: non_fertile_leaf_scores = self._weighted_gini(sums) with ops.control_dependencies(splits_update_ops): split_indices = self.training_ops.best_splits(finished, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, regression=self.params.regression) with ops.control_dependencies([update_features_op, update_thresholds_op]): (tree_update_indices, tree_children_updates, tree_threshold_updates, tree_depth_updates, new_eot) = self.training_ops.grow_tree(self.variables.end_of_tree, self.variables.tree_depths, self.variables.node_to_accumulator_map, finished, split_indices, self.variables.candidate_split_features, self.variables.candidate_split_thresholds) tree_update_op = state_ops.scatter_update(self.variables.tree, tree_update_indices, tree_children_updates) thresholds_update_op = state_ops.scatter_update(self.variables.tree_thresholds, tree_update_indices, tree_threshold_updates) depth_update_op = state_ops.scatter_update(self.variables.tree_depths, tree_update_indices, tree_depth_updates) new_epoch_updates = (epoch * array_ops.ones_like(tree_depth_updates)) epoch_update_op = state_ops.scatter_update(self.variables.start_epoch, tree_update_indices, new_epoch_updates) with ops.control_dependencies([depth_update_op]): (node_map_updates, accumulators_cleared, accumulators_allocated) = self.training_ops.update_fertile_slots(finished, non_fertile_leaves, non_fertile_leaf_scores, self.variables.end_of_tree, self.variables.tree_depths, self.variables.accumulator_sums, self.variables.node_to_accumulator_map, stale, max_depth=self.params.max_depth, regression=self.params.regression) (gated_new_eot,) = control_flow_ops.tuple([new_eot], control_inputs=[node_map_updates]) eot_update_op = state_ops.assign(self.variables.end_of_tree, gated_new_eot) updates = [] updates.append(eot_update_op) updates.append(tree_update_op) updates.append(thresholds_update_op) updates.append(epoch_update_op) updates.append(state_ops.scatter_update(self.variables.node_to_accumulator_map, array_ops.squeeze(array_ops.slice(node_map_updates, [0, 0], [1, (- 1)]), squeeze_dims=[0]), array_ops.squeeze(array_ops.slice(node_map_updates, [1, 0], [1, (- 1)]), squeeze_dims=[0]))) cleared_and_allocated_accumulators = array_ops.concat(0, [accumulators_cleared, accumulators_allocated]) split_values = array_ops.tile(array_ops.expand_dims(array_ops.expand_dims(array_ops.zeros_like(cleared_and_allocated_accumulators, dtype=dtypes.float32), 1), 2), [1, self.params.num_splits_to_consider, self.params.num_output_columns]) updates.append(state_ops.scatter_update(self.variables.candidate_split_sums, cleared_and_allocated_accumulators, split_values)) if self.params.regression: updates.append(state_ops.scatter_update(self.variables.candidate_split_squares, cleared_and_allocated_accumulators, split_values)) total_cleared = array_ops.tile(array_ops.expand_dims(math_ops.neg(array_ops.ones_like(accumulators_cleared, dtype=dtypes.float32)), 1), [1, self.params.num_output_columns]) total_reset = array_ops.tile(array_ops.expand_dims(array_ops.zeros_like(accumulators_allocated, dtype=dtypes.float32), 1), [1, self.params.num_output_columns]) accumulator_updates = array_ops.concat(0, [total_cleared, total_reset]) updates.append(state_ops.scatter_update(self.variables.accumulator_sums, cleared_and_allocated_accumulators, accumulator_updates)) if self.params.regression: updates.append(state_ops.scatter_update(self.variables.accumulator_squares, cleared_and_allocated_accumulators, accumulator_updates)) split_features_updates = array_ops.tile(array_ops.expand_dims(math_ops.neg(array_ops.ones_like(cleared_and_allocated_accumulators)), 1), [1, self.params.num_splits_to_consider]) updates.append(state_ops.scatter_update(self.variables.candidate_split_features, cleared_and_allocated_accumulators, split_features_updates)) updates += self.finish_iteration() return control_flow_ops.group(*updates)
def finish_iteration(self): 'Perform any operations that should be done at the end of an iteration.\n\n This is mostly useful for subclasses that need to reset variables after\n an iteration, such as ones that are used to finish nodes.\n\n Returns:\n A list of operations.\n ' return []
-114,024,798,016,085,220
Perform any operations that should be done at the end of an iteration. This is mostly useful for subclasses that need to reset variables after an iteration, such as ones that are used to finish nodes. Returns: A list of operations.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
finish_iteration
AdityaPai2398/tensorflow
python
def finish_iteration(self): 'Perform any operations that should be done at the end of an iteration.\n\n This is mostly useful for subclasses that need to reset variables after\n an iteration, such as ones that are used to finish nodes.\n\n Returns:\n A list of operations.\n ' return []
def inference_graph(self, input_data, data_spec): 'Constructs a TF graph for evaluating a random tree.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n\n Returns:\n The last op in the random tree inference graph.\n ' sparse_indices = [] sparse_values = [] sparse_shape = [] if isinstance(input_data, ops.SparseTensor): sparse_indices = input_data.indices sparse_values = input_data.values sparse_shape = input_data.shape input_data = [] return self.inference_ops.tree_predictions(input_data, sparse_indices, sparse_values, sparse_shape, data_spec, self.variables.tree, self.variables.tree_thresholds, self.variables.node_sums, valid_leaf_threshold=self.params.valid_leaf_threshold)
-1,317,678,232,807,222,500
Constructs a TF graph for evaluating a random tree. Args: input_data: A tensor or SparseTensor or placeholder for input data. data_spec: A list of tf.dtype values specifying the original types of each column. Returns: The last op in the random tree inference graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
inference_graph
AdityaPai2398/tensorflow
python
def inference_graph(self, input_data, data_spec): 'Constructs a TF graph for evaluating a random tree.\n\n Args:\n input_data: A tensor or SparseTensor or placeholder for input data.\n data_spec: A list of tf.dtype values specifying the original types of\n each column.\n\n Returns:\n The last op in the random tree inference graph.\n ' sparse_indices = [] sparse_values = [] sparse_shape = [] if isinstance(input_data, ops.SparseTensor): sparse_indices = input_data.indices sparse_values = input_data.values sparse_shape = input_data.shape input_data = [] return self.inference_ops.tree_predictions(input_data, sparse_indices, sparse_values, sparse_shape, data_spec, self.variables.tree, self.variables.tree_thresholds, self.variables.node_sums, valid_leaf_threshold=self.params.valid_leaf_threshold)
def average_impurity(self): 'Constructs a TF graph for evaluating the average leaf impurity of a tree.\n\n If in regression mode, this is the leaf variance. If in classification mode,\n this is the gini impurity.\n\n Returns:\n The last op in the graph.\n ' children = array_ops.squeeze(array_ops.slice(self.variables.tree, [0, 0], [(- 1), 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf), squeeze_dims=[1])) counts = array_ops.gather(self.variables.node_sums, leaves) gini = self._weighted_gini(counts) def impurity(): return gini def big(): return (array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.0) return control_flow_ops.cond(math_ops.greater(array_ops.shape(leaves)[0], 0), impurity, big)
2,271,007,417,708,949,200
Constructs a TF graph for evaluating the average leaf impurity of a tree. If in regression mode, this is the leaf variance. If in classification mode, this is the gini impurity. Returns: The last op in the graph.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
average_impurity
AdityaPai2398/tensorflow
python
def average_impurity(self): 'Constructs a TF graph for evaluating the average leaf impurity of a tree.\n\n If in regression mode, this is the leaf variance. If in classification mode,\n this is the gini impurity.\n\n Returns:\n The last op in the graph.\n ' children = array_ops.squeeze(array_ops.slice(self.variables.tree, [0, 0], [(- 1), 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf), squeeze_dims=[1])) counts = array_ops.gather(self.variables.node_sums, leaves) gini = self._weighted_gini(counts) def impurity(): return gini def big(): return (array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.0) return control_flow_ops.cond(math_ops.greater(array_ops.shape(leaves)[0], 0), impurity, big)
def size(self): 'Constructs a TF graph for evaluating the current number of nodes.\n\n Returns:\n The current number of nodes in the tree.\n ' return (self.variables.end_of_tree - 1)
4,745,050,360,644,350,000
Constructs a TF graph for evaluating the current number of nodes. Returns: The current number of nodes in the tree.
tensorflow/contrib/tensor_forest/python/tensor_forest.py
size
AdityaPai2398/tensorflow
python
def size(self): 'Constructs a TF graph for evaluating the current number of nodes.\n\n Returns:\n The current number of nodes in the tree.\n ' return (self.variables.end_of_tree - 1)
def __init__(self, floatingip=None): 'NeutronCreateFloatingIpRequestBody - a model defined in huaweicloud sdk' self._floatingip = None self.discriminator = None self.floatingip = floatingip
-8,986,675,368,031,841,000
NeutronCreateFloatingIpRequestBody - a model defined in huaweicloud sdk
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
__init__
huaweicloud/huaweicloud-sdk-python-v3
python
def __init__(self, floatingip=None): self._floatingip = None self.discriminator = None self.floatingip = floatingip
@property def floatingip(self): 'Gets the floatingip of this NeutronCreateFloatingIpRequestBody.\n\n\n :return: The floatingip of this NeutronCreateFloatingIpRequestBody.\n :rtype: CreateFloatingIpOption\n ' return self._floatingip
1,985,792,057,117,326,000
Gets the floatingip of this NeutronCreateFloatingIpRequestBody. :return: The floatingip of this NeutronCreateFloatingIpRequestBody. :rtype: CreateFloatingIpOption
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
floatingip
huaweicloud/huaweicloud-sdk-python-v3
python
@property def floatingip(self): 'Gets the floatingip of this NeutronCreateFloatingIpRequestBody.\n\n\n :return: The floatingip of this NeutronCreateFloatingIpRequestBody.\n :rtype: CreateFloatingIpOption\n ' return self._floatingip
@floatingip.setter def floatingip(self, floatingip): 'Sets the floatingip of this NeutronCreateFloatingIpRequestBody.\n\n\n :param floatingip: The floatingip of this NeutronCreateFloatingIpRequestBody.\n :type: CreateFloatingIpOption\n ' self._floatingip = floatingip
-5,082,099,477,760,268,000
Sets the floatingip of this NeutronCreateFloatingIpRequestBody. :param floatingip: The floatingip of this NeutronCreateFloatingIpRequestBody. :type: CreateFloatingIpOption
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
floatingip
huaweicloud/huaweicloud-sdk-python-v3
python
@floatingip.setter def floatingip(self, floatingip): 'Sets the floatingip of this NeutronCreateFloatingIpRequestBody.\n\n\n :param floatingip: The floatingip of this NeutronCreateFloatingIpRequestBody.\n :type: CreateFloatingIpOption\n ' self._floatingip = floatingip
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
2,594,216,033,120,720,000
Returns the model properties as a dict
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
to_dict
huaweicloud/huaweicloud-sdk-python-v3
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
def to_str(self): 'Returns the string representation of the model' import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding('utf-8') return json.dumps(sanitize_for_serialization(self), ensure_ascii=False)
-6,095,553,759,700,562,000
Returns the string representation of the model
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
to_str
huaweicloud/huaweicloud-sdk-python-v3
python
def to_str(self): import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding('utf-8') return json.dumps(sanitize_for_serialization(self), ensure_ascii=False)
def __repr__(self): 'For `print`' return self.to_str()
-1,581,176,371,750,213,000
For `print`
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
__repr__
huaweicloud/huaweicloud-sdk-python-v3
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, NeutronCreateFloatingIpRequestBody)): return False return (self.__dict__ == other.__dict__)
1,684,303,059,840,454,000
Returns true if both objects are equal
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
__eq__
huaweicloud/huaweicloud-sdk-python-v3
python
def __eq__(self, other): if (not isinstance(other, NeutronCreateFloatingIpRequestBody)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
huaweicloud-sdk-eip/huaweicloudsdkeip/v2/model/neutron_create_floating_ip_request_body.py
__ne__
huaweicloud/huaweicloud-sdk-python-v3
python
def __ne__(self, other): return (not (self == other))
@pytest.mark.parametrize('SearchCV', [HalvingRandomSearchCV, HalvingGridSearchCV]) def test_min_resources_null(SearchCV): 'Check that we raise an error if the minimum resources is set to 0.' base_estimator = FastClassifier() param_grid = {'a': [1]} X = np.empty(0).reshape(0, 3) search = SearchCV(base_estimator, param_grid, min_resources='smallest') err_msg = 'min_resources_=0: you might have passed an empty dataset X.' with pytest.raises(ValueError, match=err_msg): search.fit(X, [])
-706,482,965,388,153,000
Check that we raise an error if the minimum resources is set to 0.
sklearn/model_selection/tests/test_successive_halving.py
test_min_resources_null
3021104750/scikit-learn
python
@pytest.mark.parametrize('SearchCV', [HalvingRandomSearchCV, HalvingGridSearchCV]) def test_min_resources_null(SearchCV): base_estimator = FastClassifier() param_grid = {'a': [1]} X = np.empty(0).reshape(0, 3) search = SearchCV(base_estimator, param_grid, min_resources='smallest') err_msg = 'min_resources_=0: you might have passed an empty dataset X.' with pytest.raises(ValueError, match=err_msg): search.fit(X, [])
@pytest.mark.parametrize('SearchCV', [HalvingGridSearchCV, HalvingRandomSearchCV]) def test_select_best_index(SearchCV): 'Check the selection strategy of the halving search.' results = {'iter': np.array([0, 0, 0, 0, 1, 1, 2, 2, 2]), 'mean_test_score': np.array([4, 3, 5, 1, 11, 10, 5, 6, 9]), 'params': np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'])} best_index = SearchCV._select_best_index(None, None, results) assert (best_index == 8)
-8,218,927,456,292,474,000
Check the selection strategy of the halving search.
sklearn/model_selection/tests/test_successive_halving.py
test_select_best_index
3021104750/scikit-learn
python
@pytest.mark.parametrize('SearchCV', [HalvingGridSearchCV, HalvingRandomSearchCV]) def test_select_best_index(SearchCV): results = {'iter': np.array([0, 0, 0, 0, 1, 1, 2, 2, 2]), 'mean_test_score': np.array([4, 3, 5, 1, 11, 10, 5, 6, 9]), 'params': np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'])} best_index = SearchCV._select_best_index(None, None, results) assert (best_index == 8)
def drawline(): "Tracé d'une ligne dans le canevas can1" global x1, y1, x2, y2, coul can1.create_line(x1, y1, x2, y2, width=2, fill=coul) (y2, y1) = ((y2 + 10), (y1 - 10))
3,233,638,542,157,701,600
Tracé d'une ligne dans le canevas can1
Exemples cours 4/TK_Line.py
drawline
geocot/coursPython
python
def drawline(): global x1, y1, x2, y2, coul can1.create_line(x1, y1, x2, y2, width=2, fill=coul) (y2, y1) = ((y2 + 10), (y1 - 10))
def changecolor(): 'Changement aléatoire de la couleur du tracé' global coul pal = ['purple', 'cyan', 'maroon', 'green', 'red', 'blue', 'orange', 'yellow'] c = randrange(8) coul = pal[c]
-6,397,451,742,445,943,000
Changement aléatoire de la couleur du tracé
Exemples cours 4/TK_Line.py
changecolor
geocot/coursPython
python
def changecolor(): global coul pal = ['purple', 'cyan', 'maroon', 'green', 'red', 'blue', 'orange', 'yellow'] c = randrange(8) coul = pal[c]
@tf.function def mse_loss(static, moving): 'Computes the mean squared error (MSE) loss.\n\n Currently, only 4-D inputs are supported.\n\n Parameters\n ----------\n static : tf.Tensor, shape (N, H, W, C)\n The static image to which the moving image is aligned.\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image, the same shape as the static image.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n Mean squared error between the static and the moving images,\n averaged over the batch.\n ' loss = tf.reduce_mean(tf.square((moving - static))) return loss
-8,802,986,864,010,985,000
Computes the mean squared error (MSE) loss. Currently, only 4-D inputs are supported. Parameters ---------- static : tf.Tensor, shape (N, H, W, C) The static image to which the moving image is aligned. moving : tf.Tensor, shape (N, H, W, C) The moving image, the same shape as the static image. Returns ------- loss : tf.Tensor, shape () Mean squared error between the static and the moving images, averaged over the batch.
register_basics.py
mse_loss
jerinka/voxelmorph_demo
python
@tf.function def mse_loss(static, moving): 'Computes the mean squared error (MSE) loss.\n\n Currently, only 4-D inputs are supported.\n\n Parameters\n ----------\n static : tf.Tensor, shape (N, H, W, C)\n The static image to which the moving image is aligned.\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image, the same shape as the static image.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n Mean squared error between the static and the moving images,\n averaged over the batch.\n ' loss = tf.reduce_mean(tf.square((moving - static))) return loss
@tf.function def ncc_loss(static, moving): 'Computes the normalized cross-correlation (NCC) loss.\n\n Currently, only 4-D inputs are supported.\n\n Parameters\n ----------\n static : tf.Tensor, shape (N, H, W, C)\n The static image to which the moving image is aligned.\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image, the same shape as the static image.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n Normalized cross-correlation loss between the static and the\n moving images, averaged over the batch. Range is [-1.0, 1.0].\n The best value is -1 (perfect match) and the worst is 1.\n\n References\n ----------\n .. [1] `Wikipedia entry for the Cross-correlation\n <https://en.wikipedia.org/wiki/Cross-correlation>`_\n ' eps = tf.constant(1e-09, 'float32') static_mean = tf.reduce_mean(static, axis=[1, 2], keepdims=True) moving_mean = tf.reduce_mean(moving, axis=[1, 2], keepdims=True) static_std = tf.math.reduce_std(static, axis=[1, 2], keepdims=True) moving_std = tf.math.reduce_std(moving, axis=[1, 2], keepdims=True) static_hat = ((static - static_mean) / (static_std + eps)) moving_hat = ((moving - moving_mean) / (moving_std + eps)) ncc = tf.reduce_mean((static_hat * moving_hat)) loss = (- ncc) return loss
-1,974,962,980,259,870,200
Computes the normalized cross-correlation (NCC) loss. Currently, only 4-D inputs are supported. Parameters ---------- static : tf.Tensor, shape (N, H, W, C) The static image to which the moving image is aligned. moving : tf.Tensor, shape (N, H, W, C) The moving image, the same shape as the static image. Returns ------- loss : tf.Tensor, shape () Normalized cross-correlation loss between the static and the moving images, averaged over the batch. Range is [-1.0, 1.0]. The best value is -1 (perfect match) and the worst is 1. References ---------- .. [1] `Wikipedia entry for the Cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_
register_basics.py
ncc_loss
jerinka/voxelmorph_demo
python
@tf.function def ncc_loss(static, moving): 'Computes the normalized cross-correlation (NCC) loss.\n\n Currently, only 4-D inputs are supported.\n\n Parameters\n ----------\n static : tf.Tensor, shape (N, H, W, C)\n The static image to which the moving image is aligned.\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image, the same shape as the static image.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n Normalized cross-correlation loss between the static and the\n moving images, averaged over the batch. Range is [-1.0, 1.0].\n The best value is -1 (perfect match) and the worst is 1.\n\n References\n ----------\n .. [1] `Wikipedia entry for the Cross-correlation\n <https://en.wikipedia.org/wiki/Cross-correlation>`_\n ' eps = tf.constant(1e-09, 'float32') static_mean = tf.reduce_mean(static, axis=[1, 2], keepdims=True) moving_mean = tf.reduce_mean(moving, axis=[1, 2], keepdims=True) static_std = tf.math.reduce_std(static, axis=[1, 2], keepdims=True) moving_std = tf.math.reduce_std(moving, axis=[1, 2], keepdims=True) static_hat = ((static - static_mean) / (static_std + eps)) moving_hat = ((moving - moving_mean) / (moving_std + eps)) ncc = tf.reduce_mean((static_hat * moving_hat)) loss = (- ncc) return loss
def simple_cnn(input_shape=(32, 32, 2)): "Creates a 2-D convolutional encoder-decoder network.\n\n Parameters\n ----------\n input_shape : sequence of ints, optional\n Input data shape of the form (H, W, C). Default is (32, 32, 2).\n\n Returns\n -------\n model\n An instance of Keras' Model class.\n\n Notes\n -----\n Given a concatenated pair of static and moving images as input, the\n CNN computes a dense displacement field that is used to warp the\n moving image to match with the static image.\n\n The number of channels in the output (displacement field) is equal\n to the dimensionality of the input data. For 3-D volumes, it is 3,\n and for 2-D images, it is 2. The first channel comprises\n displacement in the x-direction and the second comprises\n displacement in the y-direction.\n " out_channels = 2 inputs = layers.Input(shape=input_shape) x = layers.Conv2D(32, kernel_size=3, strides=2, padding='same', activation='relu')(inputs) x = layers.BatchNormalization()(x) x = layers.Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.MaxPool2D(pool_size=2)(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.MaxPool2D(pool_size=2)(x) x = layers.Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(64, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(32, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(16, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(16, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2D(out_channels, kernel_size=1, strides=1, padding='same')(x) model = tf.keras.Model(inputs, x, name='simple_cnn') return model '\n Differntiable image sampling\n References:\n 1. https://github.com/tensorflow/models/blob/master/research/transformer/spatial_transformer.py\n 2. Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial\n transformer networks." Advances in neural information processing\n systems. 2015. https://arxiv.org/pdf/1506.02025.pdf\n 3. *Spatial* Transformer Networks by Kushagra Bhatnagar https://link.medium.com/0b2OrmqVO5\n '
4,992,043,161,819,919,000
Creates a 2-D convolutional encoder-decoder network. Parameters ---------- input_shape : sequence of ints, optional Input data shape of the form (H, W, C). Default is (32, 32, 2). Returns ------- model An instance of Keras' Model class. Notes ----- Given a concatenated pair of static and moving images as input, the CNN computes a dense displacement field that is used to warp the moving image to match with the static image. The number of channels in the output (displacement field) is equal to the dimensionality of the input data. For 3-D volumes, it is 3, and for 2-D images, it is 2. The first channel comprises displacement in the x-direction and the second comprises displacement in the y-direction.
register_basics.py
simple_cnn
jerinka/voxelmorph_demo
python
def simple_cnn(input_shape=(32, 32, 2)): "Creates a 2-D convolutional encoder-decoder network.\n\n Parameters\n ----------\n input_shape : sequence of ints, optional\n Input data shape of the form (H, W, C). Default is (32, 32, 2).\n\n Returns\n -------\n model\n An instance of Keras' Model class.\n\n Notes\n -----\n Given a concatenated pair of static and moving images as input, the\n CNN computes a dense displacement field that is used to warp the\n moving image to match with the static image.\n\n The number of channels in the output (displacement field) is equal\n to the dimensionality of the input data. For 3-D volumes, it is 3,\n and for 2-D images, it is 2. The first channel comprises\n displacement in the x-direction and the second comprises\n displacement in the y-direction.\n " out_channels = 2 inputs = layers.Input(shape=input_shape) x = layers.Conv2D(32, kernel_size=3, strides=2, padding='same', activation='relu')(inputs) x = layers.BatchNormalization()(x) x = layers.Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.MaxPool2D(pool_size=2)(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.MaxPool2D(pool_size=2)(x) x = layers.Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(64, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(32, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2DTranspose(16, kernel_size=2, strides=2, padding='same')(x) x = layers.Conv2D(16, kernel_size=3, strides=1, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv2D(out_channels, kernel_size=1, strides=1, padding='same')(x) model = tf.keras.Model(inputs, x, name='simple_cnn') return model '\n Differntiable image sampling\n References:\n 1. https://github.com/tensorflow/models/blob/master/research/transformer/spatial_transformer.py\n 2. Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial\n transformer networks." Advances in neural information processing\n systems. 2015. https://arxiv.org/pdf/1506.02025.pdf\n 3. *Spatial* Transformer Networks by Kushagra Bhatnagar https://link.medium.com/0b2OrmqVO5\n '
@tf.function def grid_sample(moving, grid): 'Given a moving image and a sampling grid as input, computes the\n transformed image by sampling the moving image at locations given by\n the grid.\n\n Currently, only 2-D images, i.e., 4-D inputs are supported.\n\n Parameters\n ----------\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image.\n grid : tf.Tensor, shape (N, H, W, C)\n A tensor of sampling points (x, y). The x and y values should be\n normalized to [-1.0, 1.0] range.\n\n Returns\n -------\n moved : tf.Tensor, shape (N, H, W, C)\n The transformed image.\n\n Notes\n -----\n Let M be the moving image of shape (H, W, C), T be the transformed\n image of the same shape and G be the 2-D sampling grid of shape\n (H, W, 2). The value of T at a location (x, y) is T[y, x, :] =\n M[y\', x\', :] where [x\', y\'] = G[y, x, :].\n\n Further, [x\', y\'] = [x + dx, y + dy] where [dx, dy] are the\n displacements outputted by the CNN. When dx and dy are 0, the\n sampling grid G is a regular grid and the transformed image is the\n same as the moving image.\n\n Since the sampling point (x + dx, y + dy) can be non-integral, the\n value M[y\', x\'] is calculated using bi-linear interpolation.\n\n References\n ----------\n .. [1] `Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial\n transformer networks." Advances in neural information processing\n systems. 2015. <https://arxiv.org/abs/1506.02025>`_\n .. [2] `TensorFlow implementation of spatial transformer networks.\n <https://github.com/tensorflow/models/tree/master/research/transformer>`_\n .. [3] `Spatial Transformer Networks by Kushagra Bhatnagar\n <https://link.medium.com/0b2OrmqVO5>`_\n ' (nb, nh, nw, nc) = moving.shape x = grid[(..., 0)] y = grid[(..., 1)] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') x = (((x + 1.0) * 0.5) * tf.cast(nw, 'float32')) y = (((y + 1.0) * 0.5) * tf.cast(nh, 'float32')) y_max = tf.cast((nh - 1), 'int32') x_max = tf.cast((nw - 1), 'int32') zero = tf.constant(0, 'int32') x0 = tf.cast(tf.floor(x), 'int32') x1 = (x0 + 1) y0 = tf.cast(tf.floor(y), 'int32') y1 = (y0 + 1) x0 = tf.clip_by_value(x0, zero, x_max) x1 = tf.clip_by_value(x1, zero, x_max) y0 = tf.clip_by_value(y0, zero, y_max) y1 = tf.clip_by_value(y1, zero, y_max) b = (tf.ones_like(x0) * tf.reshape(tf.range(nb), [nb, 1, 1])) idx_a = tf.stack([b, y0, x0], axis=(- 1)) idx_b = tf.stack([b, y1, x0], axis=(- 1)) idx_c = tf.stack([b, y0, x1], axis=(- 1)) idx_d = tf.stack([b, y1, x1], axis=(- 1)) moving_a = tf.gather_nd(moving, idx_a) moving_b = tf.gather_nd(moving, idx_b) moving_c = tf.gather_nd(moving, idx_c) moving_d = tf.gather_nd(moving, idx_d) x0_f = tf.cast(x0, 'float32') x1_f = tf.cast(x1, 'float32') y0_f = tf.cast(y0, 'float32') y1_f = tf.cast(y1, 'float32') wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), axis=(- 1)) wb = tf.expand_dims(((x1_f - x) * (y - y0_f)), axis=(- 1)) wc = tf.expand_dims(((x - x0_f) * (y1_f - y)), axis=(- 1)) wd = tf.expand_dims(((x - x0_f) * (y - y0_f)), axis=(- 1)) moved = tf.add_n([(wa * moving_a), (wb * moving_b), (wc * moving_c), (wd * moving_d)]) return moved
-8,025,276,344,341,063,000
Given a moving image and a sampling grid as input, computes the transformed image by sampling the moving image at locations given by the grid. Currently, only 2-D images, i.e., 4-D inputs are supported. Parameters ---------- moving : tf.Tensor, shape (N, H, W, C) The moving image. grid : tf.Tensor, shape (N, H, W, C) A tensor of sampling points (x, y). The x and y values should be normalized to [-1.0, 1.0] range. Returns ------- moved : tf.Tensor, shape (N, H, W, C) The transformed image. Notes ----- Let M be the moving image of shape (H, W, C), T be the transformed image of the same shape and G be the 2-D sampling grid of shape (H, W, 2). The value of T at a location (x, y) is T[y, x, :] = M[y', x', :] where [x', y'] = G[y, x, :]. Further, [x', y'] = [x + dx, y + dy] where [dx, dy] are the displacements outputted by the CNN. When dx and dy are 0, the sampling grid G is a regular grid and the transformed image is the same as the moving image. Since the sampling point (x + dx, y + dy) can be non-integral, the value M[y', x'] is calculated using bi-linear interpolation. References ---------- .. [1] `Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." Advances in neural information processing systems. 2015. <https://arxiv.org/abs/1506.02025>`_ .. [2] `TensorFlow implementation of spatial transformer networks. <https://github.com/tensorflow/models/tree/master/research/transformer>`_ .. [3] `Spatial Transformer Networks by Kushagra Bhatnagar <https://link.medium.com/0b2OrmqVO5>`_
register_basics.py
grid_sample
jerinka/voxelmorph_demo
python
@tf.function def grid_sample(moving, grid): 'Given a moving image and a sampling grid as input, computes the\n transformed image by sampling the moving image at locations given by\n the grid.\n\n Currently, only 2-D images, i.e., 4-D inputs are supported.\n\n Parameters\n ----------\n moving : tf.Tensor, shape (N, H, W, C)\n The moving image.\n grid : tf.Tensor, shape (N, H, W, C)\n A tensor of sampling points (x, y). The x and y values should be\n normalized to [-1.0, 1.0] range.\n\n Returns\n -------\n moved : tf.Tensor, shape (N, H, W, C)\n The transformed image.\n\n Notes\n -----\n Let M be the moving image of shape (H, W, C), T be the transformed\n image of the same shape and G be the 2-D sampling grid of shape\n (H, W, 2). The value of T at a location (x, y) is T[y, x, :] =\n M[y\', x\', :] where [x\', y\'] = G[y, x, :].\n\n Further, [x\', y\'] = [x + dx, y + dy] where [dx, dy] are the\n displacements outputted by the CNN. When dx and dy are 0, the\n sampling grid G is a regular grid and the transformed image is the\n same as the moving image.\n\n Since the sampling point (x + dx, y + dy) can be non-integral, the\n value M[y\', x\'] is calculated using bi-linear interpolation.\n\n References\n ----------\n .. [1] `Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial\n transformer networks." Advances in neural information processing\n systems. 2015. <https://arxiv.org/abs/1506.02025>`_\n .. [2] `TensorFlow implementation of spatial transformer networks.\n <https://github.com/tensorflow/models/tree/master/research/transformer>`_\n .. [3] `Spatial Transformer Networks by Kushagra Bhatnagar\n <https://link.medium.com/0b2OrmqVO5>`_\n ' (nb, nh, nw, nc) = moving.shape x = grid[(..., 0)] y = grid[(..., 1)] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') x = (((x + 1.0) * 0.5) * tf.cast(nw, 'float32')) y = (((y + 1.0) * 0.5) * tf.cast(nh, 'float32')) y_max = tf.cast((nh - 1), 'int32') x_max = tf.cast((nw - 1), 'int32') zero = tf.constant(0, 'int32') x0 = tf.cast(tf.floor(x), 'int32') x1 = (x0 + 1) y0 = tf.cast(tf.floor(y), 'int32') y1 = (y0 + 1) x0 = tf.clip_by_value(x0, zero, x_max) x1 = tf.clip_by_value(x1, zero, x_max) y0 = tf.clip_by_value(y0, zero, y_max) y1 = tf.clip_by_value(y1, zero, y_max) b = (tf.ones_like(x0) * tf.reshape(tf.range(nb), [nb, 1, 1])) idx_a = tf.stack([b, y0, x0], axis=(- 1)) idx_b = tf.stack([b, y1, x0], axis=(- 1)) idx_c = tf.stack([b, y0, x1], axis=(- 1)) idx_d = tf.stack([b, y1, x1], axis=(- 1)) moving_a = tf.gather_nd(moving, idx_a) moving_b = tf.gather_nd(moving, idx_b) moving_c = tf.gather_nd(moving, idx_c) moving_d = tf.gather_nd(moving, idx_d) x0_f = tf.cast(x0, 'float32') x1_f = tf.cast(x1, 'float32') y0_f = tf.cast(y0, 'float32') y1_f = tf.cast(y1, 'float32') wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), axis=(- 1)) wb = tf.expand_dims(((x1_f - x) * (y - y0_f)), axis=(- 1)) wc = tf.expand_dims(((x - x0_f) * (y1_f - y)), axis=(- 1)) wd = tf.expand_dims(((x - x0_f) * (y - y0_f)), axis=(- 1)) moved = tf.add_n([(wa * moving_a), (wb * moving_b), (wc * moving_c), (wd * moving_d)]) return moved
@tf.function def regular_grid(shape): 'Returns a batch of 2-D regular grids.\n\n Currently, only 2-D regular grids are supported.\n\n Parameters\n ----------\n shape : sequence of ints, shape (3, )\n The desired regular grid shape of the form (N, H, W).\n\n Returns\n -------\n grid : tf.Tensor, shape (N, H, W, 2)\n A batch of 2-D regular grids, values normalized to [-1.0, 1.0]\n range.\n\n Notes\n -----\n Sampling using the regular grid is an identity transformation, i.e.,\n it results in the same input and output images.\n\n References\n ----------\n .. [1] `NumPy, "numpy.meshgrid"\n <https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html>`_\n .. [2] `NumPy, "numpy.indices"\n <https://numpy.org/doc/stable/reference/generated/numpy.indices.html>`_\n ' (nb, nh, nw) = shape x = tf.linspace((- 1.0), 1.0, nw) y = tf.linspace((- 1.0), 1.0, nh) (X, Y) = tf.meshgrid(x, y) grid = tf.stack([X, Y], axis=(- 1)) grid = tf.expand_dims(grid, axis=0) multiples = tf.constant([nb, 1, 1, 1], tf.int32) grid = tf.tile(grid, multiples) return grid
-4,218,321,770,434,875,400
Returns a batch of 2-D regular grids. Currently, only 2-D regular grids are supported. Parameters ---------- shape : sequence of ints, shape (3, ) The desired regular grid shape of the form (N, H, W). Returns ------- grid : tf.Tensor, shape (N, H, W, 2) A batch of 2-D regular grids, values normalized to [-1.0, 1.0] range. Notes ----- Sampling using the regular grid is an identity transformation, i.e., it results in the same input and output images. References ---------- .. [1] `NumPy, "numpy.meshgrid" <https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html>`_ .. [2] `NumPy, "numpy.indices" <https://numpy.org/doc/stable/reference/generated/numpy.indices.html>`_
register_basics.py
regular_grid
jerinka/voxelmorph_demo
python
@tf.function def regular_grid(shape): 'Returns a batch of 2-D regular grids.\n\n Currently, only 2-D regular grids are supported.\n\n Parameters\n ----------\n shape : sequence of ints, shape (3, )\n The desired regular grid shape of the form (N, H, W).\n\n Returns\n -------\n grid : tf.Tensor, shape (N, H, W, 2)\n A batch of 2-D regular grids, values normalized to [-1.0, 1.0]\n range.\n\n Notes\n -----\n Sampling using the regular grid is an identity transformation, i.e.,\n it results in the same input and output images.\n\n References\n ----------\n .. [1] `NumPy, "numpy.meshgrid"\n <https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html>`_\n .. [2] `NumPy, "numpy.indices"\n <https://numpy.org/doc/stable/reference/generated/numpy.indices.html>`_\n ' (nb, nh, nw) = shape x = tf.linspace((- 1.0), 1.0, nw) y = tf.linspace((- 1.0), 1.0, nh) (X, Y) = tf.meshgrid(x, y) grid = tf.stack([X, Y], axis=(- 1)) grid = tf.expand_dims(grid, axis=0) multiples = tf.constant([nb, 1, 1, 1], tf.int32) grid = tf.tile(grid, multiples) return grid
@tf.function def train_step(model, moving, static, criterion, optimizer): 'A generic training procedure for one iteration.\n\n Parameters\n ----------\n model\n A convolutional encoder-decoder network.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n criterion\n The loss function.\n optimizer\n An optimzer.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n The average loss for the batch.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) with tf.GradientTape() as tape: inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) loss = criterion(moved, static) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return loss
-1,444,017,728,608,054,500
A generic training procedure for one iteration. Parameters ---------- model A convolutional encoder-decoder network. moving : tf.Tensor, shape (N, H, W, C) A batch of moving images. static : tf.Tensor, shape (1, H, W, C) The static image. criterion The loss function. optimizer An optimzer. Returns ------- loss : tf.Tensor, shape () The average loss for the batch.
register_basics.py
train_step
jerinka/voxelmorph_demo
python
@tf.function def train_step(model, moving, static, criterion, optimizer): 'A generic training procedure for one iteration.\n\n Parameters\n ----------\n model\n A convolutional encoder-decoder network.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n criterion\n The loss function.\n optimizer\n An optimzer.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n The average loss for the batch.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) with tf.GradientTape() as tape: inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) loss = criterion(moved, static) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return loss
@tf.function def test_step(model, moving, static, criterion): 'A generic testing procedure.\n\n Parameters\n ----------\n model\n A convolutional encoder-decoder network.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n criterion\n The loss function.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n The average loss for the batch.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs, training=False) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) loss = criterion(moved, static) return loss
-7,464,719,366,714,921,000
A generic testing procedure. Parameters ---------- model A convolutional encoder-decoder network. moving : tf.Tensor, shape (N, H, W, C) A batch of moving images. static : tf.Tensor, shape (1, H, W, C) The static image. criterion The loss function. Returns ------- loss : tf.Tensor, shape () The average loss for the batch.
register_basics.py
test_step
jerinka/voxelmorph_demo
python
@tf.function def test_step(model, moving, static, criterion): 'A generic testing procedure.\n\n Parameters\n ----------\n model\n A convolutional encoder-decoder network.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n criterion\n The loss function.\n\n Returns\n -------\n loss : tf.Tensor, shape ()\n The average loss for the batch.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs, training=False) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) loss = criterion(moved, static) return loss
def load_data(label=2): 'Loads the MNIST dataset and preprocesses it: scales to [0.0, 1.0]\n range, resizes the images from (28, 28) to (32, 32) and filters the\n dataset to keep images of just one class.\n\n Parameters\n ----------\n label : {2, 0, 1, 3, 4, 5, 6, 7, 8, 9}, default 2\n The class of images to train and test on.\n\n Returns\n -------\n (x_train, x_test) : tuple of ndarrays\n NumPy arrays of training and testing images.\n ' ((x_train, y_train), (x_test, y_test)) = tf.keras.datasets.mnist.load_data() ids_train = np.where((y_train == label)) ids_test = np.where((y_test == label)) x_train = x_train[ids_train] x_test = x_test[ids_test] x_train = (x_train.astype(np.float32) / 255.0) x_test = (x_test.astype(np.float32) / 255.0) x_train = x_train[(..., None)] x_test = x_test[(..., None)] x_train = tf.image.resize(x_train, (32, 32)) x_test = tf.image.resize(x_test, (32, 32)) return (x_train, x_test)
7,456,557,386,423,309,000
Loads the MNIST dataset and preprocesses it: scales to [0.0, 1.0] range, resizes the images from (28, 28) to (32, 32) and filters the dataset to keep images of just one class. Parameters ---------- label : {2, 0, 1, 3, 4, 5, 6, 7, 8, 9}, default 2 The class of images to train and test on. Returns ------- (x_train, x_test) : tuple of ndarrays NumPy arrays of training and testing images.
register_basics.py
load_data
jerinka/voxelmorph_demo
python
def load_data(label=2): 'Loads the MNIST dataset and preprocesses it: scales to [0.0, 1.0]\n range, resizes the images from (28, 28) to (32, 32) and filters the\n dataset to keep images of just one class.\n\n Parameters\n ----------\n label : {2, 0, 1, 3, 4, 5, 6, 7, 8, 9}, default 2\n The class of images to train and test on.\n\n Returns\n -------\n (x_train, x_test) : tuple of ndarrays\n NumPy arrays of training and testing images.\n ' ((x_train, y_train), (x_test, y_test)) = tf.keras.datasets.mnist.load_data() ids_train = np.where((y_train == label)) ids_test = np.where((y_test == label)) x_train = x_train[ids_train] x_test = x_test[ids_test] x_train = (x_train.astype(np.float32) / 255.0) x_test = (x_test.astype(np.float32) / 255.0) x_train = x_train[(..., None)] x_test = x_test[(..., None)] x_train = tf.image.resize(x_train, (32, 32)) x_test = tf.image.resize(x_test, (32, 32)) return (x_train, x_test)
def plot_images(model, moving, static): 'Visualize some images after training.\n\n Parameters\n ----------\n model\n The trained model.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs, training=False) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) moved = (moved.numpy().squeeze(axis=(- 1)) * 255.0) moved = moved.astype(np.uint8) moving = (moving.numpy().squeeze(axis=(- 1)) * 255.0) moving = moving.astype(np.uint8) static = (static.numpy().squeeze(axis=(- 1)) * 255.0) static = static.astype(np.uint8) fig = plt.figure(figsize=((3 * 1.7), (nb * 1.7))) titles_list = ['Static', 'Moved', 'Moving'] images_list = [static, moved, moving] for i in range(nb): for j in range(3): ax = fig.add_subplot(nb, 3, (((i * 3) + j) + 1)) if (i == 0): ax.set_title(titles_list[j], fontsize=20) ax.set_axis_off() ax.imshow(images_list[j][i], cmap='gray') plt.tight_layout() plt.show()
-2,103,651,409,913,373,200
Visualize some images after training. Parameters ---------- model The trained model. moving : tf.Tensor, shape (N, H, W, C) A batch of moving images. static : tf.Tensor, shape (1, H, W, C) The static image.
register_basics.py
plot_images
jerinka/voxelmorph_demo
python
def plot_images(model, moving, static): 'Visualize some images after training.\n\n Parameters\n ----------\n model\n The trained model.\n moving : tf.Tensor, shape (N, H, W, C)\n A batch of moving images.\n static : tf.Tensor, shape (1, H, W, C)\n The static image.\n ' (nb, nh, nw, nc) = moving.shape multiples = tf.constant([nb, 1, 1, 1], tf.int32) static = tf.tile(static, multiples) inputs = tf.concat([moving, static], axis=(- 1)) deformation = model(inputs, training=False) grid = regular_grid([nb, nh, nw]) grid_new = (grid + deformation) grid_new = tf.clip_by_value(grid_new, (- 1), 1) moved = grid_sample(moving, grid_new) moved = (moved.numpy().squeeze(axis=(- 1)) * 255.0) moved = moved.astype(np.uint8) moving = (moving.numpy().squeeze(axis=(- 1)) * 255.0) moving = moving.astype(np.uint8) static = (static.numpy().squeeze(axis=(- 1)) * 255.0) static = static.astype(np.uint8) fig = plt.figure(figsize=((3 * 1.7), (nb * 1.7))) titles_list = ['Static', 'Moved', 'Moving'] images_list = [static, moved, moving] for i in range(nb): for j in range(3): ax = fig.add_subplot(nb, 3, (((i * 3) + j) + 1)) if (i == 0): ax.set_title(titles_list[j], fontsize=20) ax.set_axis_off() ax.imshow(images_list[j][i], cmap='gray') plt.tight_layout() plt.show()
def egg(num_eggs: int) -> None: 'prints the number of eggs.\n\n Arguments:\n num_eggs {int} -- The number of eggs\n\n Returns:\n None.\n ' print(f'We have {num_eggs} eggs')
-3,256,755,077,250,168,300
prints the number of eggs. Arguments: num_eggs {int} -- The number of eggs Returns: None.
src/moonshine/__main__.py
egg
CatchemAl/moonshine
python
def egg(num_eggs: int) -> None: 'prints the number of eggs.\n\n Arguments:\n num_eggs {int} -- The number of eggs\n\n Returns:\n None.\n ' print(f'We have {num_eggs} eggs')
def get(self, request): '提供订单结算页面' user = request.user try: addresses = Address.objects.filter(user=user, is_deleted=False) except Address.DoesNotExist: addresses = None redis_conn = get_redis_connection('carts') item_dict = redis_conn.hgetall(('carts_%s' % user.id)) cart_selected = redis_conn.smembers(('selected_%s' % user.id)) cart = {} for sku_id in cart_selected: cart[int(sku_id)] = int(item_dict[sku_id]) total_count = 0 total_amount = Decimal(0.0) skus = SKU.objects.filter(id__in=cart.keys()) for sku in skus: sku.count = cart[sku.id] sku.amount = (sku.count * sku.price) total_count += sku.count total_amount += sku.amount freight = Decimal('10.00') context = {'addresses': addresses, 'skus': skus, 'total_count': total_count, 'total_amount': total_amount, 'freight': freight, 'payment_amount': (total_amount + freight)} return render(request, 'place_order.html', context)
221,095,081,085,981,470
提供订单结算页面
meiduo_mall/meiduo_mall/apps/orders/views.py
get
Gdavid123/md_project
python
def get(self, request): user = request.user try: addresses = Address.objects.filter(user=user, is_deleted=False) except Address.DoesNotExist: addresses = None redis_conn = get_redis_connection('carts') item_dict = redis_conn.hgetall(('carts_%s' % user.id)) cart_selected = redis_conn.smembers(('selected_%s' % user.id)) cart = {} for sku_id in cart_selected: cart[int(sku_id)] = int(item_dict[sku_id]) total_count = 0 total_amount = Decimal(0.0) skus = SKU.objects.filter(id__in=cart.keys()) for sku in skus: sku.count = cart[sku.id] sku.amount = (sku.count * sku.price) total_count += sku.count total_amount += sku.amount freight = Decimal('10.00') context = {'addresses': addresses, 'skus': skus, 'total_count': total_count, 'total_amount': total_amount, 'freight': freight, 'payment_amount': (total_amount + freight)} return render(request, 'place_order.html', context)
def post(self, request): '保存订单信息和订单商品信息' json_dict = json.loads(request.body) address_id = json_dict.get('address_id') pay_method = json_dict.get('pay_method') if (not all([address_id, pay_method])): return HttpResponseForbidden('缺少必传参数') try: address = Address.objects.get(id=address_id) except Exception: return HttpResponseForbidden('参数address_id错误') if (pay_method not in [OrderInfo.PAY_METHODS_ENUM['CASH'], OrderInfo.PAY_METHODS_ENUM['ALIPAY']]): return HttpResponseForbidden('参数pay_method错误') user = request.user order_id = (timezone.localtime().strftime('%Y%m%d%H%M%S') + ('%09d' % user.id)) with transaction.atomic(): save_id = transaction.savepoint() try: order = OrderInfo.objects.create(order_id=order_id, user=user, address=address, total_count=0, total_amount=Decimal('0'), freight=Decimal('10.00'), pay_method=pay_method, status=(OrderInfo.ORDER_STATUS_ENUM['UNPAID'] if (pay_method == OrderInfo.PAY_METHODS_ENUM['ALIPAY']) else OrderInfo.ORDER_STATUS_ENUM['UNSEND'])) redis_conn = get_redis_connection('carts') item_dict = redis_conn.hgetall(('carts_%s' % user.id)) cart_selected = redis_conn.smembers(('selected_%s' % user.id)) carts = {} for sku_id in cart_selected: carts[int(sku_id)] = int(item_dict[sku_id]) sku_ids = carts.keys() for sku_id in sku_ids: while True: sku = SKU.objects.get(id=sku_id) origin_stock = sku.stock origin_sales = sku.sales sku_count = carts[sku_id] if (sku_count > origin_stock): transaction.savepoint_rollback(save_id) return JsonResponse({'code': RETCODE.STOCKERR, 'errmsg': '库存不足'}) new_stock = (origin_stock - sku_count) new_sales = (origin_sales + sku_count) result = SKU.objects.filter(id=sku_id, stock=origin_stock).update(stock=new_stock, sales=new_sales) if (result == 0): continue sku.goods.sales += sku_count sku.goods.save() OrderGoods.objects.create(order=order, sku=sku, count=sku_count, price=sku.price) order.total_count += sku_count order.total_amount += (sku_count * sku.price) break order.total_amount += order.freight order.save() except Exception as e: logger.error(e) transaction.savepoint_rollback(save_id) return JsonResponse({'code': RETCODE.DBERR, 'errmsg': '下单失败'}) transaction.savepoint_commit(save_id) pl = redis_conn.pipeline() pl.hdel(('carts_%s' % user.id), *cart_selected) pl.srem(('selected_%s' % user.id), *cart_selected) pl.execute() return JsonResponse({'code': RETCODE.OK, 'errmsg': '下单成功', 'order_id': order.order_id})
6,315,316,786,832,754,000
保存订单信息和订单商品信息
meiduo_mall/meiduo_mall/apps/orders/views.py
post
Gdavid123/md_project
python
def post(self, request): json_dict = json.loads(request.body) address_id = json_dict.get('address_id') pay_method = json_dict.get('pay_method') if (not all([address_id, pay_method])): return HttpResponseForbidden('缺少必传参数') try: address = Address.objects.get(id=address_id) except Exception: return HttpResponseForbidden('参数address_id错误') if (pay_method not in [OrderInfo.PAY_METHODS_ENUM['CASH'], OrderInfo.PAY_METHODS_ENUM['ALIPAY']]): return HttpResponseForbidden('参数pay_method错误') user = request.user order_id = (timezone.localtime().strftime('%Y%m%d%H%M%S') + ('%09d' % user.id)) with transaction.atomic(): save_id = transaction.savepoint() try: order = OrderInfo.objects.create(order_id=order_id, user=user, address=address, total_count=0, total_amount=Decimal('0'), freight=Decimal('10.00'), pay_method=pay_method, status=(OrderInfo.ORDER_STATUS_ENUM['UNPAID'] if (pay_method == OrderInfo.PAY_METHODS_ENUM['ALIPAY']) else OrderInfo.ORDER_STATUS_ENUM['UNSEND'])) redis_conn = get_redis_connection('carts') item_dict = redis_conn.hgetall(('carts_%s' % user.id)) cart_selected = redis_conn.smembers(('selected_%s' % user.id)) carts = {} for sku_id in cart_selected: carts[int(sku_id)] = int(item_dict[sku_id]) sku_ids = carts.keys() for sku_id in sku_ids: while True: sku = SKU.objects.get(id=sku_id) origin_stock = sku.stock origin_sales = sku.sales sku_count = carts[sku_id] if (sku_count > origin_stock): transaction.savepoint_rollback(save_id) return JsonResponse({'code': RETCODE.STOCKERR, 'errmsg': '库存不足'}) new_stock = (origin_stock - sku_count) new_sales = (origin_sales + sku_count) result = SKU.objects.filter(id=sku_id, stock=origin_stock).update(stock=new_stock, sales=new_sales) if (result == 0): continue sku.goods.sales += sku_count sku.goods.save() OrderGoods.objects.create(order=order, sku=sku, count=sku_count, price=sku.price) order.total_count += sku_count order.total_amount += (sku_count * sku.price) break order.total_amount += order.freight order.save() except Exception as e: logger.error(e) transaction.savepoint_rollback(save_id) return JsonResponse({'code': RETCODE.DBERR, 'errmsg': '下单失败'}) transaction.savepoint_commit(save_id) pl = redis_conn.pipeline() pl.hdel(('carts_%s' % user.id), *cart_selected) pl.srem(('selected_%s' % user.id), *cart_selected) pl.execute() return JsonResponse({'code': RETCODE.OK, 'errmsg': '下单成功', 'order_id': order.order_id})
@commands.command() @commands.guild_only() @commands.has_permissions(kick_members=True) async def kick(self, ctx, user: discord.Member, *, reason: str=None): 'Kicks a user from the server.' if (user == ctx.author): return (await ctx.send('Kicking yourself? smh.')) if (user == self.bot.user): return (await ctx.send("I can't kick myself.")) res = (f', for reason: `{reason}`' if reason else '') try: (await user.kick(reason=reason)) (await ctx.send(f'Kicked {user}{res}')) except discord.Forbidden: (await ctx.send("I don't have permissions to kick that user.")) except Exception as e: raise e
3,890,303,692,033,552,400
Kicks a user from the server.
cogs/mod.py
kick
bananaboy21/LadyBug-Bot
python
@commands.command() @commands.guild_only() @commands.has_permissions(kick_members=True) async def kick(self, ctx, user: discord.Member, *, reason: str=None): if (user == ctx.author): return (await ctx.send('Kicking yourself? smh.')) if (user == self.bot.user): return (await ctx.send("I can't kick myself.")) res = (f', for reason: `{reason}`' if reason else ) try: (await user.kick(reason=reason)) (await ctx.send(f'Kicked {user}{res}')) except discord.Forbidden: (await ctx.send("I don't have permissions to kick that user.")) except Exception as e: raise e
@commands.command() @comnands.guild_only() @commands.has_permissions(manage_messages=True) async def purge(self, ctx, amount): 'Purges X amount of messages from a channel' try: amount = int(amount) except ValueError: return (await ctx.send('Enter a number only!')) try: (await ctx.channel.purge(limit=(amount + 1))) (await ctx.send(f'Purged **{amount}** messages', delete_after=3)) except discord.Forbidden: (await ctx.send(f'I need the `Manage Messages` permission to do this.'))
-5,009,195,797,135,292,000
Purges X amount of messages from a channel
cogs/mod.py
purge
bananaboy21/LadyBug-Bot
python
@commands.command() @comnands.guild_only() @commands.has_permissions(manage_messages=True) async def purge(self, ctx, amount): try: amount = int(amount) except ValueError: return (await ctx.send('Enter a number only!')) try: (await ctx.channel.purge(limit=(amount + 1))) (await ctx.send(f'Purged **{amount}** messages', delete_after=3)) except discord.Forbidden: (await ctx.send(f'I need the `Manage Messages` permission to do this.'))
def _fill_buffer(self, in_data, frame_count, time_info, status_flags): 'Continuously collect data from the audio stream, into the buffer.' self._buff.put(in_data) return (None, paContinue)
8,279,764,556,543,421,000
Continuously collect data from the audio stream, into the buffer.
googlesr.py
_fill_buffer
kwea123/Unity_live_caption
python
def _fill_buffer(self, in_data, frame_count, time_info, status_flags): self._buff.put(in_data) return (None, paContinue)
def create_process_chain_entry(input_name): 'Create a Actinia process description that uses t.rast.series to create the minimum\n value of the time series.\n\n :param input_time_series: The input time series name\n :param output_map: The name of the output map\n :return: A Actinia process chain description\n ' (location, mapset, datatype, layer_name) = ActiniaInterface.layer_def_to_components(input_name) input_name = layer_name if (mapset is not None): input_name = ((layer_name + '@') + mapset) rn = randint(0, 1000000) pc = {} if (datatype == 'raster'): pc = {'id': ('r_info_%i' % rn), 'module': 'r.info', 'inputs': [{'param': 'map', 'value': input_name}], 'flags': 'g'} elif (datatype == 'vector'): pc = {'id': ('v_info_%i' % rn), 'module': 'v.info', 'inputs': [{'param': 'map', 'value': input_name}], 'flags': 'g'} elif (datatype == 'strds'): pc = {'id': ('t_info_%i' % rn), 'module': 't.info', 'inputs': [{'param': 'input', 'value': input_name}], 'flags': 'g'} else: raise Exception('Unsupported datatype') return pc
-4,390,559,835,525,533,000
Create a Actinia process description that uses t.rast.series to create the minimum value of the time series. :param input_time_series: The input time series name :param output_map: The name of the output map :return: A Actinia process chain description
src/openeo_grass_gis_driver/actinia_processing/get_data_process.py
create_process_chain_entry
AnikaBettge/openeo-grassgis-driver
python
def create_process_chain_entry(input_name): 'Create a Actinia process description that uses t.rast.series to create the minimum\n value of the time series.\n\n :param input_time_series: The input time series name\n :param output_map: The name of the output map\n :return: A Actinia process chain description\n ' (location, mapset, datatype, layer_name) = ActiniaInterface.layer_def_to_components(input_name) input_name = layer_name if (mapset is not None): input_name = ((layer_name + '@') + mapset) rn = randint(0, 1000000) pc = {} if (datatype == 'raster'): pc = {'id': ('r_info_%i' % rn), 'module': 'r.info', 'inputs': [{'param': 'map', 'value': input_name}], 'flags': 'g'} elif (datatype == 'vector'): pc = {'id': ('v_info_%i' % rn), 'module': 'v.info', 'inputs': [{'param': 'map', 'value': input_name}], 'flags': 'g'} elif (datatype == 'strds'): pc = {'id': ('t_info_%i' % rn), 'module': 't.info', 'inputs': [{'param': 'input', 'value': input_name}], 'flags': 'g'} else: raise Exception('Unsupported datatype') return pc
def get_process_list(process): 'Analyse the process description and return the Actinia process chain and the name of the processing result\n\n :param process: The process description\n :return: (output_names, actinia_process_list)\n ' (input_names, process_list) = analyse_process_graph(process) output_names = [] if ('data_id' not in process): raise Exception(('Process %s requires parameter <data_id>' % PROCESS_NAME)) output_names.append(process['data_id']) pc = create_process_chain_entry(input_name=process['data_id']) process_list.append(pc) for input_name in input_names: output_name = input_name output_names.append(output_name) return (output_names, process_list)
-8,158,080,401,428,951,000
Analyse the process description and return the Actinia process chain and the name of the processing result :param process: The process description :return: (output_names, actinia_process_list)
src/openeo_grass_gis_driver/actinia_processing/get_data_process.py
get_process_list
AnikaBettge/openeo-grassgis-driver
python
def get_process_list(process): 'Analyse the process description and return the Actinia process chain and the name of the processing result\n\n :param process: The process description\n :return: (output_names, actinia_process_list)\n ' (input_names, process_list) = analyse_process_graph(process) output_names = [] if ('data_id' not in process): raise Exception(('Process %s requires parameter <data_id>' % PROCESS_NAME)) output_names.append(process['data_id']) pc = create_process_chain_entry(input_name=process['data_id']) process_list.append(pc) for input_name in input_names: output_name = input_name output_names.append(output_name) return (output_names, process_list)
def test_ooo_ns(self): ' Check that ooo exists in namespace declarations ' calcdoc = OpenDocumentSpreadsheet() table = odf.table.Table(name='Costs') forms = odf.office.Forms() form = odf.form.Form(controlimplementation='ooo:com.sun.star.form.component.Form') lb = odf.form.Listbox(controlimplementation='ooo:com.sun.star.form.component.ListBox', dropdown='true', id='control1') form.addElement(lb) forms.addElement(form) table.addElement(forms) tr = odf.table.TableRow() table.addElement(tr) tr = odf.table.TableRow() cell = odf.table.TableCell() tr.addElement(cell) cell = odf.table.TableCell() draw = odf.draw.Control(control='control1', height='0.1126in', width='0.798in', x='0.0303in', y='0.0205in', endcelladdress='Costs.B2', endx='0.8283in', endy='0.1331in') cell.addElement(draw) tr.addElement(cell) table.addElement(tr) calcdoc.spreadsheet.addElement(table) result = calcdoc.contentxml() self.assertNotEqual((- 1), result.find(b'xmlns:ooo="http://openoffice.org/2004/office"'))
-4,638,254,260,209,595,000
Check that ooo exists in namespace declarations
desktop/core/ext-py/odfpy-1.4.1/tests/testform.py
test_ooo_ns
10088/hue
python
def test_ooo_ns(self): ' ' calcdoc = OpenDocumentSpreadsheet() table = odf.table.Table(name='Costs') forms = odf.office.Forms() form = odf.form.Form(controlimplementation='ooo:com.sun.star.form.component.Form') lb = odf.form.Listbox(controlimplementation='ooo:com.sun.star.form.component.ListBox', dropdown='true', id='control1') form.addElement(lb) forms.addElement(form) table.addElement(forms) tr = odf.table.TableRow() table.addElement(tr) tr = odf.table.TableRow() cell = odf.table.TableCell() tr.addElement(cell) cell = odf.table.TableCell() draw = odf.draw.Control(control='control1', height='0.1126in', width='0.798in', x='0.0303in', y='0.0205in', endcelladdress='Costs.B2', endx='0.8283in', endy='0.1331in') cell.addElement(draw) tr.addElement(cell) table.addElement(tr) calcdoc.spreadsheet.addElement(table) result = calcdoc.contentxml() self.assertNotEqual((- 1), result.find(b'xmlns:ooo="http://openoffice.org/2004/office"'))
def acked(err, msg): 'Delivery report callback called (from flush()) on successful or failed delivery of the message.' if (err is not None): print('failed to deliver message: {0}'.format(err.str())) else: print('produced to: {0} [{1}] @ {2}'.format(msg.topic(), msg.partition(), msg.offset()))
-5,767,730,579,330,683,000
Delivery report callback called (from flush()) on successful or failed delivery of the message.
examples/confluent_cloud.py
acked
RasmusWL/confluent-kafka-python
python
def acked(err, msg): if (err is not None): print('failed to deliver message: {0}'.format(err.str())) else: print('produced to: {0} [{1}] @ {2}'.format(msg.topic(), msg.partition(), msg.offset()))
@cached_property def openapi_types(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n ' lazy_import() return {'cluster': (ClusterInfoSummary,)}
-2,487,247,778,736,868,400
This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type.
api/client/src/pcluster_client/model/delete_cluster_response_content.py
openapi_types
Chen188/aws-parallelcluster
python
@cached_property def openapi_types(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n ' lazy_import() return {'cluster': (ClusterInfoSummary,)}
@convert_js_args_to_python_args def __init__(self, cluster, *args, **kwargs): 'DeleteClusterResponseContent - a model defined in OpenAPI\n\n Args:\n cluster (ClusterInfoSummary):\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n ' _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,)) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = (_visited_composed_classes + (self.__class__,)) self.cluster = cluster for (var_name, var_value) in kwargs.items(): if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)): continue setattr(self, var_name, var_value)
560,588,246,799,685,570
DeleteClusterResponseContent - a model defined in OpenAPI Args: cluster (ClusterInfoSummary): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,)
api/client/src/pcluster_client/model/delete_cluster_response_content.py
__init__
Chen188/aws-parallelcluster
python
@convert_js_args_to_python_args def __init__(self, cluster, *args, **kwargs): 'DeleteClusterResponseContent - a model defined in OpenAPI\n\n Args:\n cluster (ClusterInfoSummary):\n\n Keyword Args:\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n ' _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,)) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = (_visited_composed_classes + (self.__class__,)) self.cluster = cluster for (var_name, var_value) in kwargs.items(): if ((var_name not in self.attribute_map) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (self.additional_properties_type is None)): continue setattr(self, var_name, var_value)
def on_status_update(self, channel, callback): '\n Callback to execute on status of update of channel\n ' if (not (channel in self._callbacks)): self._callbacks[channel] = [] self._callbacks[channel].append(callback)
-786,942,491,258,360,300
Callback to execute on status of update of channel
velbus/modules/vmbbl.py
on_status_update
ddanssaert/python-velbus
python
def on_status_update(self, channel, callback): '\n \n ' if (not (channel in self._callbacks)): self._callbacks[channel] = [] self._callbacks[channel].append(callback)
def clean_path(self, path): '\n Helper to clean issues path from remote tasks\n ' if path.startswith(WORKER_CHECKOUT): path = path[len(WORKER_CHECKOUT):] if path.startswith('/'): path = path[1:] return path
77,414,928,993,778,610
Helper to clean issues path from remote tasks
src/staticanalysis/bot/static_analysis_bot/task.py
clean_path
Mozilla-GitHub-Standards/7a0517c85b685752ad36ce0e8246040e3de8d842fb0f2696540dfc0c54da847b
python
def clean_path(self, path): '\n \n ' if path.startswith(WORKER_CHECKOUT): path = path[len(WORKER_CHECKOUT):] if path.startswith('/'): path = path[1:] return path
def __init__(self, model_dir, every_n_steps=1): 'Create a FeatureImportanceSummarySaver Hook.\n\n This hook creates scalar summaries representing feature importance\n for each feature column during training.\n\n Args:\n model_dir: model base output directory.\n every_n_steps: frequency, in number of steps, for logging summaries.\n\n Raises:\n ValueError: If one of the arguments is invalid.\n ' if (model_dir is None): raise ValueError('model dir must be specified.') self._model_dir = model_dir self._every_n_steps = every_n_steps self._last_triggered_step = None
-6,315,023,366,711,679,000
Create a FeatureImportanceSummarySaver Hook. This hook creates scalar summaries representing feature importance for each feature column during training. Args: model_dir: model base output directory. every_n_steps: frequency, in number of steps, for logging summaries. Raises: ValueError: If one of the arguments is invalid.
tensorflow/contrib/boosted_trees/estimator_batch/trainer_hooks.py
__init__
252125889/tensorflow
python
def __init__(self, model_dir, every_n_steps=1): 'Create a FeatureImportanceSummarySaver Hook.\n\n This hook creates scalar summaries representing feature importance\n for each feature column during training.\n\n Args:\n model_dir: model base output directory.\n every_n_steps: frequency, in number of steps, for logging summaries.\n\n Raises:\n ValueError: If one of the arguments is invalid.\n ' if (model_dir is None): raise ValueError('model dir must be specified.') self._model_dir = model_dir self._every_n_steps = every_n_steps self._last_triggered_step = None
def __init__(self, rolling_update=None, type=None, local_vars_configuration=None): 'V1beta2DeploymentStrategy - a model defined in OpenAPI' if (local_vars_configuration is None): local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._rolling_update = None self._type = None self.discriminator = None if (rolling_update is not None): self.rolling_update = rolling_update if (type is not None): self.type = type
1,758,358,165,594,836,200
V1beta2DeploymentStrategy - a model defined in OpenAPI
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
__init__
playground-julia/kubernetes_asyncio
python
def __init__(self, rolling_update=None, type=None, local_vars_configuration=None): if (local_vars_configuration is None): local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._rolling_update = None self._type = None self.discriminator = None if (rolling_update is not None): self.rolling_update = rolling_update if (type is not None): self.type = type
@property def rolling_update(self): 'Gets the rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n\n\n :return: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n :rtype: V1beta2RollingUpdateDeployment\n ' return self._rolling_update
2,836,691,819,272,422,400
Gets the rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :return: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :rtype: V1beta2RollingUpdateDeployment
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
rolling_update
playground-julia/kubernetes_asyncio
python
@property def rolling_update(self): 'Gets the rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n\n\n :return: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n :rtype: V1beta2RollingUpdateDeployment\n ' return self._rolling_update
@rolling_update.setter def rolling_update(self, rolling_update): 'Sets the rolling_update of this V1beta2DeploymentStrategy.\n\n\n :param rolling_update: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n :type: V1beta2RollingUpdateDeployment\n ' self._rolling_update = rolling_update
-6,238,375,914,927,697,000
Sets the rolling_update of this V1beta2DeploymentStrategy. :param rolling_update: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :type: V1beta2RollingUpdateDeployment
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
rolling_update
playground-julia/kubernetes_asyncio
python
@rolling_update.setter def rolling_update(self, rolling_update): 'Sets the rolling_update of this V1beta2DeploymentStrategy.\n\n\n :param rolling_update: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501\n :type: V1beta2RollingUpdateDeployment\n ' self._rolling_update = rolling_update
@property def type(self): 'Gets the type of this V1beta2DeploymentStrategy. # noqa: E501\n\n Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501\n\n :return: The type of this V1beta2DeploymentStrategy. # noqa: E501\n :rtype: str\n ' return self._type
-5,930,811,531,650,901,000
Gets the type of this V1beta2DeploymentStrategy. # noqa: E501 Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501 :return: The type of this V1beta2DeploymentStrategy. # noqa: E501 :rtype: str
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
type
playground-julia/kubernetes_asyncio
python
@property def type(self): 'Gets the type of this V1beta2DeploymentStrategy. # noqa: E501\n\n Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501\n\n :return: The type of this V1beta2DeploymentStrategy. # noqa: E501\n :rtype: str\n ' return self._type
@type.setter def type(self, type): 'Sets the type of this V1beta2DeploymentStrategy.\n\n Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501\n\n :param type: The type of this V1beta2DeploymentStrategy. # noqa: E501\n :type: str\n ' self._type = type
-6,357,622,358,049,090,000
Sets the type of this V1beta2DeploymentStrategy. Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501 :param type: The type of this V1beta2DeploymentStrategy. # noqa: E501 :type: str
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
type
playground-julia/kubernetes_asyncio
python
@type.setter def type(self, type): 'Sets the type of this V1beta2DeploymentStrategy.\n\n Type of deployment. Can be "Recreate" or "RollingUpdate". Default is RollingUpdate. # noqa: E501\n\n :param type: The type of this V1beta2DeploymentStrategy. # noqa: E501\n :type: str\n ' self._type = type
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
8,442,519,487,048,767,000
Returns the model properties as a dict
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
to_dict
playground-julia/kubernetes_asyncio
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
to_str
playground-julia/kubernetes_asyncio
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
__repr__
playground-julia/kubernetes_asyncio
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, V1beta2DeploymentStrategy)): return False return (self.to_dict() == other.to_dict())
6,809,897,058,905,253,000
Returns true if both objects are equal
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
__eq__
playground-julia/kubernetes_asyncio
python
def __eq__(self, other): if (not isinstance(other, V1beta2DeploymentStrategy)): return False return (self.to_dict() == other.to_dict())
def __ne__(self, other): 'Returns true if both objects are not equal' if (not isinstance(other, V1beta2DeploymentStrategy)): return True return (self.to_dict() != other.to_dict())
4,985,561,881,093,274,000
Returns true if both objects are not equal
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
__ne__
playground-julia/kubernetes_asyncio
python
def __ne__(self, other): if (not isinstance(other, V1beta2DeploymentStrategy)): return True return (self.to_dict() != other.to_dict())
@register_make_test_function() def make_transpose_conv_tests(options): 'Make a set of tests to do transpose_conv.' test_parameters = [{'input_shape': [[1, 3, 4, 1], [1, 10, 10, 3], [3, 20, 20, 1]], 'filter_size': [[1, 1], [1, 2], [3, 3]], 'strides': [[1, 1, 1, 1], [1, 3, 3, 1]], 'padding': ['SAME', 'VALID'], 'data_format': ['NHWC'], 'channel_multiplier': [1, 2], 'output_shape': [[]], 'fully_quantize': [False]}, {'input_shape': [[1, 3, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 1, 1, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 3, 3, 2]], 'fully_quantize': [True]}, {'input_shape': [[1, 3, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 2, 2, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 6, 6, 2]], 'fully_quantize': [True]}, {'input_shape': [[1, 4, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 2, 2, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 8, 6, 2]], 'fully_quantize': [True]}] def get_tensor_shapes(parameters): input_shape = parameters['input_shape'] filter_size = parameters['filter_size'] if (not parameters['fully_quantize']): filter_shape = (filter_size + [input_shape[3], parameters['channel_multiplier']]) return [input_shape, filter_shape] return [input_shape, filter_size] def build_graph(parameters): 'Build a transpose_conv graph given `parameters`.' (input_shape, filter_shape) = get_tensor_shapes(parameters) input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=input_shape) filter_input = tf.compat.v1.placeholder(dtype=tf.float32, name='filter', shape=filter_shape) if (not parameters['fully_quantize']): input_tensors = [input_tensor, filter_input] conv_outputs = tf.nn.conv2d(input_tensor, filter_input, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) out = tf.compat.v1.nn.conv2d_backprop_input(input_shape, filter_input, conv_outputs, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) else: input_tensors = [input_tensor] filter_input = create_tensor_data(np.float32, filter_shape, min_value=(- 1), max_value=1) out = tf.nn.conv2d_transpose(input_tensor, filter_input, parameters['output_shape'], strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) return (input_tensors, [out]) def build_inputs(parameters, sess, inputs, outputs): (input_shape, filter_shape) = get_tensor_shapes(parameters) if (not parameters['fully_quantize']): values = [create_tensor_data(np.float32, input_shape), create_tensor_data(np.float32, filter_shape)] else: values = [create_tensor_data(np.float32, input_shape, min_value=(- 1), max_value=1)] return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
6,016,943,675,267,754,000
Make a set of tests to do transpose_conv.
tensorflow/lite/testing/op_tests/transpose_conv.py
make_transpose_conv_tests
1250281649/tensorflow
python
@register_make_test_function() def make_transpose_conv_tests(options): test_parameters = [{'input_shape': [[1, 3, 4, 1], [1, 10, 10, 3], [3, 20, 20, 1]], 'filter_size': [[1, 1], [1, 2], [3, 3]], 'strides': [[1, 1, 1, 1], [1, 3, 3, 1]], 'padding': ['SAME', 'VALID'], 'data_format': ['NHWC'], 'channel_multiplier': [1, 2], 'output_shape': [[]], 'fully_quantize': [False]}, {'input_shape': [[1, 3, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 1, 1, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 3, 3, 2]], 'fully_quantize': [True]}, {'input_shape': [[1, 3, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 2, 2, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 6, 6, 2]], 'fully_quantize': [True]}, {'input_shape': [[1, 4, 3, 1]], 'filter_size': [[3, 3, 2, 1]], 'strides': [[1, 2, 2, 1]], 'padding': ['SAME'], 'data_format': ['NHWC'], 'channel_multiplier': [1], 'output_shape': [[1, 8, 6, 2]], 'fully_quantize': [True]}] def get_tensor_shapes(parameters): input_shape = parameters['input_shape'] filter_size = parameters['filter_size'] if (not parameters['fully_quantize']): filter_shape = (filter_size + [input_shape[3], parameters['channel_multiplier']]) return [input_shape, filter_shape] return [input_shape, filter_size] def build_graph(parameters): 'Build a transpose_conv graph given `parameters`.' (input_shape, filter_shape) = get_tensor_shapes(parameters) input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=input_shape) filter_input = tf.compat.v1.placeholder(dtype=tf.float32, name='filter', shape=filter_shape) if (not parameters['fully_quantize']): input_tensors = [input_tensor, filter_input] conv_outputs = tf.nn.conv2d(input_tensor, filter_input, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) out = tf.compat.v1.nn.conv2d_backprop_input(input_shape, filter_input, conv_outputs, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) else: input_tensors = [input_tensor] filter_input = create_tensor_data(np.float32, filter_shape, min_value=(- 1), max_value=1) out = tf.nn.conv2d_transpose(input_tensor, filter_input, parameters['output_shape'], strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) return (input_tensors, [out]) def build_inputs(parameters, sess, inputs, outputs): (input_shape, filter_shape) = get_tensor_shapes(parameters) if (not parameters['fully_quantize']): values = [create_tensor_data(np.float32, input_shape), create_tensor_data(np.float32, filter_shape)] else: values = [create_tensor_data(np.float32, input_shape, min_value=(- 1), max_value=1)] return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
def build_graph(parameters): 'Build a transpose_conv graph given `parameters`.' (input_shape, filter_shape) = get_tensor_shapes(parameters) input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=input_shape) filter_input = tf.compat.v1.placeholder(dtype=tf.float32, name='filter', shape=filter_shape) if (not parameters['fully_quantize']): input_tensors = [input_tensor, filter_input] conv_outputs = tf.nn.conv2d(input_tensor, filter_input, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) out = tf.compat.v1.nn.conv2d_backprop_input(input_shape, filter_input, conv_outputs, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) else: input_tensors = [input_tensor] filter_input = create_tensor_data(np.float32, filter_shape, min_value=(- 1), max_value=1) out = tf.nn.conv2d_transpose(input_tensor, filter_input, parameters['output_shape'], strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) return (input_tensors, [out])
-8,626,366,598,057,815,000
Build a transpose_conv graph given `parameters`.
tensorflow/lite/testing/op_tests/transpose_conv.py
build_graph
1250281649/tensorflow
python
def build_graph(parameters): (input_shape, filter_shape) = get_tensor_shapes(parameters) input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=input_shape) filter_input = tf.compat.v1.placeholder(dtype=tf.float32, name='filter', shape=filter_shape) if (not parameters['fully_quantize']): input_tensors = [input_tensor, filter_input] conv_outputs = tf.nn.conv2d(input_tensor, filter_input, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) out = tf.compat.v1.nn.conv2d_backprop_input(input_shape, filter_input, conv_outputs, strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) else: input_tensors = [input_tensor] filter_input = create_tensor_data(np.float32, filter_shape, min_value=(- 1), max_value=1) out = tf.nn.conv2d_transpose(input_tensor, filter_input, parameters['output_shape'], strides=parameters['strides'], padding=parameters['padding'], data_format=parameters['data_format']) return (input_tensors, [out])
def _adapt_clause(self, clause, as_filter, orm_only): 'Adapt incoming clauses to transformations which\n have been applied within this query.' adapters = [] orm_only = getattr(self, '_orm_only_adapt', orm_only) if (as_filter and self._filter_aliases): for fa in self._filter_aliases._visitor_iterator: adapters.append((orm_only, fa.replace)) if self._from_obj_alias: adapters.append((getattr(self, '_orm_only_from_obj_alias', orm_only), self._from_obj_alias.replace)) if self._polymorphic_adapters: adapters.append((orm_only, self._adapt_polymorphic_element)) if (not adapters): return clause def replace(elem): for (_orm_only, adapter) in adapters: if ((not _orm_only) or ('_orm_adapt' in elem._annotations) or ('parententity' in elem._annotations)): e = adapter(elem) if (e is not None): return e return visitors.replacement_traverse(clause, {}, replace)
179,562,849,315,056,350
Adapt incoming clauses to transformations which have been applied within this query.
lib/sqlalchemy/orm/query.py
_adapt_clause
slafs/sqlalchemy
python
def _adapt_clause(self, clause, as_filter, orm_only): 'Adapt incoming clauses to transformations which\n have been applied within this query.' adapters = [] orm_only = getattr(self, '_orm_only_adapt', orm_only) if (as_filter and self._filter_aliases): for fa in self._filter_aliases._visitor_iterator: adapters.append((orm_only, fa.replace)) if self._from_obj_alias: adapters.append((getattr(self, '_orm_only_from_obj_alias', orm_only), self._from_obj_alias.replace)) if self._polymorphic_adapters: adapters.append((orm_only, self._adapt_polymorphic_element)) if (not adapters): return clause def replace(elem): for (_orm_only, adapter) in adapters: if ((not _orm_only) or ('_orm_adapt' in elem._annotations) or ('parententity' in elem._annotations)): e = adapter(elem) if (e is not None): return e return visitors.replacement_traverse(clause, {}, replace)
@property def statement(self): 'The full SELECT statement represented by this Query.\n\n The statement by default will not have disambiguating labels\n applied to the construct unless with_labels(True) is called\n first.\n\n ' stmt = self._compile_context(labels=self._with_labels).statement if self._params: stmt = stmt.params(self._params) return stmt._annotate({'no_replacement_traverse': True})
8,025,505,478,787,422,000
The full SELECT statement represented by this Query. The statement by default will not have disambiguating labels applied to the construct unless with_labels(True) is called first.
lib/sqlalchemy/orm/query.py
statement
slafs/sqlalchemy
python
@property def statement(self): 'The full SELECT statement represented by this Query.\n\n The statement by default will not have disambiguating labels\n applied to the construct unless with_labels(True) is called\n first.\n\n ' stmt = self._compile_context(labels=self._with_labels).statement if self._params: stmt = stmt.params(self._params) return stmt._annotate({'no_replacement_traverse': True})
def subquery(self, name=None, with_labels=False, reduce_columns=False): 'return the full SELECT statement represented by\n this :class:`.Query`, embedded within an :class:`.Alias`.\n\n Eager JOIN generation within the query is disabled.\n\n :param name: string name to be assigned as the alias;\n this is passed through to :meth:`.FromClause.alias`.\n If ``None``, a name will be deterministically generated\n at compile time.\n\n :param with_labels: if True, :meth:`.with_labels` will be called\n on the :class:`.Query` first to apply table-qualified labels\n to all columns.\n\n :param reduce_columns: if True, :meth:`.Select.reduce_columns` will\n be called on the resulting :func:`.select` construct,\n to remove same-named columns where one also refers to the other\n via foreign key or WHERE clause equivalence.\n\n .. versionchanged:: 0.8 the ``with_labels`` and ``reduce_columns``\n keyword arguments were added.\n\n ' q = self.enable_eagerloads(False) if with_labels: q = q.with_labels() q = q.statement if reduce_columns: q = q.reduce_columns() return q.alias(name=name)
9,211,129,501,899,320,000
return the full SELECT statement represented by this :class:`.Query`, embedded within an :class:`.Alias`. Eager JOIN generation within the query is disabled. :param name: string name to be assigned as the alias; this is passed through to :meth:`.FromClause.alias`. If ``None``, a name will be deterministically generated at compile time. :param with_labels: if True, :meth:`.with_labels` will be called on the :class:`.Query` first to apply table-qualified labels to all columns. :param reduce_columns: if True, :meth:`.Select.reduce_columns` will be called on the resulting :func:`.select` construct, to remove same-named columns where one also refers to the other via foreign key or WHERE clause equivalence. .. versionchanged:: 0.8 the ``with_labels`` and ``reduce_columns`` keyword arguments were added.
lib/sqlalchemy/orm/query.py
subquery
slafs/sqlalchemy
python
def subquery(self, name=None, with_labels=False, reduce_columns=False): 'return the full SELECT statement represented by\n this :class:`.Query`, embedded within an :class:`.Alias`.\n\n Eager JOIN generation within the query is disabled.\n\n :param name: string name to be assigned as the alias;\n this is passed through to :meth:`.FromClause.alias`.\n If ``None``, a name will be deterministically generated\n at compile time.\n\n :param with_labels: if True, :meth:`.with_labels` will be called\n on the :class:`.Query` first to apply table-qualified labels\n to all columns.\n\n :param reduce_columns: if True, :meth:`.Select.reduce_columns` will\n be called on the resulting :func:`.select` construct,\n to remove same-named columns where one also refers to the other\n via foreign key or WHERE clause equivalence.\n\n .. versionchanged:: 0.8 the ``with_labels`` and ``reduce_columns``\n keyword arguments were added.\n\n ' q = self.enable_eagerloads(False) if with_labels: q = q.with_labels() q = q.statement if reduce_columns: q = q.reduce_columns() return q.alias(name=name)
def cte(self, name=None, recursive=False): 'Return the full SELECT statement represented by this\n :class:`.Query` represented as a common table expression (CTE).\n\n .. versionadded:: 0.7.6\n\n Parameters and usage are the same as those of the\n :meth:`.SelectBase.cte` method; see that method for\n further details.\n\n Here is the `Postgresql WITH\n RECURSIVE example\n <http://www.postgresql.org/docs/8.4/static/queries-with.html>`_.\n Note that, in this example, the ``included_parts`` cte and the\n ``incl_alias`` alias of it are Core selectables, which\n means the columns are accessed via the ``.c.`` attribute. The\n ``parts_alias`` object is an :func:`.orm.aliased` instance of the\n ``Part`` entity, so column-mapped attributes are available\n directly::\n\n from sqlalchemy.orm import aliased\n\n class Part(Base):\n __tablename__ = \'part\'\n part = Column(String, primary_key=True)\n sub_part = Column(String, primary_key=True)\n quantity = Column(Integer)\n\n included_parts = session.query(\n Part.sub_part,\n Part.part,\n Part.quantity).\\\n filter(Part.part=="our part").\\\n cte(name="included_parts", recursive=True)\n\n incl_alias = aliased(included_parts, name="pr")\n parts_alias = aliased(Part, name="p")\n included_parts = included_parts.union_all(\n session.query(\n parts_alias.sub_part,\n parts_alias.part,\n parts_alias.quantity).\\\n filter(parts_alias.part==incl_alias.c.sub_part)\n )\n\n q = session.query(\n included_parts.c.sub_part,\n func.sum(included_parts.c.quantity).\n label(\'total_quantity\')\n ).\\\n group_by(included_parts.c.sub_part)\n\n .. seealso::\n\n :meth:`.SelectBase.cte`\n\n ' return self.enable_eagerloads(False).statement.cte(name=name, recursive=recursive)
6,680,600,726,794,780,000
Return the full SELECT statement represented by this :class:`.Query` represented as a common table expression (CTE). .. versionadded:: 0.7.6 Parameters and usage are the same as those of the :meth:`.SelectBase.cte` method; see that method for further details. Here is the `Postgresql WITH RECURSIVE example <http://www.postgresql.org/docs/8.4/static/queries-with.html>`_. Note that, in this example, the ``included_parts`` cte and the ``incl_alias`` alias of it are Core selectables, which means the columns are accessed via the ``.c.`` attribute. The ``parts_alias`` object is an :func:`.orm.aliased` instance of the ``Part`` entity, so column-mapped attributes are available directly:: from sqlalchemy.orm import aliased class Part(Base): __tablename__ = 'part' part = Column(String, primary_key=True) sub_part = Column(String, primary_key=True) quantity = Column(Integer) included_parts = session.query( Part.sub_part, Part.part, Part.quantity).\ filter(Part.part=="our part").\ cte(name="included_parts", recursive=True) incl_alias = aliased(included_parts, name="pr") parts_alias = aliased(Part, name="p") included_parts = included_parts.union_all( session.query( parts_alias.sub_part, parts_alias.part, parts_alias.quantity).\ filter(parts_alias.part==incl_alias.c.sub_part) ) q = session.query( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\ group_by(included_parts.c.sub_part) .. seealso:: :meth:`.SelectBase.cte`
lib/sqlalchemy/orm/query.py
cte
slafs/sqlalchemy
python
def cte(self, name=None, recursive=False): 'Return the full SELECT statement represented by this\n :class:`.Query` represented as a common table expression (CTE).\n\n .. versionadded:: 0.7.6\n\n Parameters and usage are the same as those of the\n :meth:`.SelectBase.cte` method; see that method for\n further details.\n\n Here is the `Postgresql WITH\n RECURSIVE example\n <http://www.postgresql.org/docs/8.4/static/queries-with.html>`_.\n Note that, in this example, the ``included_parts`` cte and the\n ``incl_alias`` alias of it are Core selectables, which\n means the columns are accessed via the ``.c.`` attribute. The\n ``parts_alias`` object is an :func:`.orm.aliased` instance of the\n ``Part`` entity, so column-mapped attributes are available\n directly::\n\n from sqlalchemy.orm import aliased\n\n class Part(Base):\n __tablename__ = \'part\'\n part = Column(String, primary_key=True)\n sub_part = Column(String, primary_key=True)\n quantity = Column(Integer)\n\n included_parts = session.query(\n Part.sub_part,\n Part.part,\n Part.quantity).\\\n filter(Part.part=="our part").\\\n cte(name="included_parts", recursive=True)\n\n incl_alias = aliased(included_parts, name="pr")\n parts_alias = aliased(Part, name="p")\n included_parts = included_parts.union_all(\n session.query(\n parts_alias.sub_part,\n parts_alias.part,\n parts_alias.quantity).\\\n filter(parts_alias.part==incl_alias.c.sub_part)\n )\n\n q = session.query(\n included_parts.c.sub_part,\n func.sum(included_parts.c.quantity).\n label(\'total_quantity\')\n ).\\\n group_by(included_parts.c.sub_part)\n\n .. seealso::\n\n :meth:`.SelectBase.cte`\n\n ' return self.enable_eagerloads(False).statement.cte(name=name, recursive=recursive)