body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@message.setter def message(self, message): 'Sets the message of this WikiCommit.\n\n\n :param message: The message of this WikiCommit. # noqa: E501\n :type: str\n ' self._message = message
-7,870,938,731,241,469,000
Sets the message of this WikiCommit. :param message: The message of this WikiCommit. # noqa: E501 :type: str
gitea_api/models/wiki_commit.py
message
r7l/python-gitea-api
python
@message.setter def message(self, message): 'Sets the message of this WikiCommit.\n\n\n :param message: The message of this WikiCommit. # noqa: E501\n :type: str\n ' self._message = message
@property def sha(self): 'Gets the sha of this WikiCommit. # noqa: E501\n\n\n :return: The sha of this WikiCommit. # noqa: E501\n :rtype: str\n ' return self._sha
2,141,027,612,509,132,000
Gets the sha of this WikiCommit. # noqa: E501 :return: The sha of this WikiCommit. # noqa: E501 :rtype: str
gitea_api/models/wiki_commit.py
sha
r7l/python-gitea-api
python
@property def sha(self): 'Gets the sha of this WikiCommit. # noqa: E501\n\n\n :return: The sha of this WikiCommit. # noqa: E501\n :rtype: str\n ' return self._sha
@sha.setter def sha(self, sha): 'Sets the sha of this WikiCommit.\n\n\n :param sha: The sha of this WikiCommit. # noqa: E501\n :type: str\n ' self._sha = sha
6,294,440,623,741,654,000
Sets the sha of this WikiCommit. :param sha: The sha of this WikiCommit. # noqa: E501 :type: str
gitea_api/models/wiki_commit.py
sha
r7l/python-gitea-api
python
@sha.setter def sha(self, sha): 'Sets the sha of this WikiCommit.\n\n\n :param sha: The sha of this WikiCommit. # noqa: E501\n :type: str\n ' self._sha = sha
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(WikiCommit, dict): for (key, value) in self.items(): result[key] = value return result
-3,813,903,353,230,840,000
Returns the model properties as a dict
gitea_api/models/wiki_commit.py
to_dict
r7l/python-gitea-api
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(WikiCommit, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
gitea_api/models/wiki_commit.py
to_str
r7l/python-gitea-api
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
gitea_api/models/wiki_commit.py
__repr__
r7l/python-gitea-api
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, WikiCommit)): return False return (self.__dict__ == other.__dict__)
7,727,040,178,788,317,000
Returns true if both objects are equal
gitea_api/models/wiki_commit.py
__eq__
r7l/python-gitea-api
python
def __eq__(self, other): if (not isinstance(other, WikiCommit)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
gitea_api/models/wiki_commit.py
__ne__
r7l/python-gitea-api
python
def __ne__(self, other): return (not (self == other))
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, data_collection_rule_name: Optional[pulumi.Input[str]]=None, data_flows: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]]]=None, data_sources: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']]]=None, description: Optional[pulumi.Input[str]]=None, destinations: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']]]=None, location: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, __props__=None, __name__=None, __opts__=None): "\n Definition of ARM tracked top level resource.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] data_collection_rule_name: The name of the data collection rule. The name is case insensitive.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]] data_flows: The specification of data flows.\n :param pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']] data_sources: The specification of data sources. \n This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint.\n :param pulumi.Input[str] description: Description of the data collection rule.\n :param pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']] destinations: The specification of destinations.\n :param pulumi.Input[str] location: The geo-location where the resource lives.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.\n " if (__name__ is not None): warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning) resource_name = __name__ if (__opts__ is not None): warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if (opts is None): opts = pulumi.ResourceOptions() if (not isinstance(opts, pulumi.ResourceOptions)): raise TypeError('Expected resource options to be a ResourceOptions instance') if (opts.version is None): opts.version = _utilities.get_version() if (opts.id is None): if (__props__ is not None): raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['data_collection_rule_name'] = data_collection_rule_name if ((data_flows is None) and (not opts.urn)): raise TypeError("Missing required property 'data_flows'") __props__['data_flows'] = data_flows __props__['data_sources'] = data_sources __props__['description'] = description if ((destinations is None) and (not opts.urn)): raise TypeError("Missing required property 'destinations'") __props__['destinations'] = destinations __props__['location'] = location if ((resource_group_name is None) and (not opts.urn)): raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['etag'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_='azure-nextgen:insights/v20191101preview:DataCollectionRule'), pulumi.Alias(type_='azure-native:insights:DataCollectionRule'), pulumi.Alias(type_='azure-nextgen:insights:DataCollectionRule')]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DataCollectionRule, __self__).__init__('azure-native:insights/v20191101preview:DataCollectionRule', resource_name, __props__, opts)
-8,366,357,137,412,955,000
Definition of ARM tracked top level resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] data_collection_rule_name: The name of the data collection rule. The name is case insensitive. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]] data_flows: The specification of data flows. :param pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']] data_sources: The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint. :param pulumi.Input[str] description: Description of the data collection rule. :param pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']] destinations: The specification of destinations. :param pulumi.Input[str] location: The geo-location where the resource lives. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
__init__
pulumi-bot/pulumi-azure-native
python
def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions]=None, data_collection_rule_name: Optional[pulumi.Input[str]]=None, data_flows: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]]]=None, data_sources: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']]]=None, description: Optional[pulumi.Input[str]]=None, destinations: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']]]=None, location: Optional[pulumi.Input[str]]=None, resource_group_name: Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[Mapping[(str, pulumi.Input[str])]]]=None, __props__=None, __name__=None, __opts__=None): "\n Definition of ARM tracked top level resource.\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] data_collection_rule_name: The name of the data collection rule. The name is case insensitive.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]] data_flows: The specification of data flows.\n :param pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']] data_sources: The specification of data sources. \n This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint.\n :param pulumi.Input[str] description: Description of the data collection rule.\n :param pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']] destinations: The specification of destinations.\n :param pulumi.Input[str] location: The geo-location where the resource lives.\n :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive.\n :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags.\n " if (__name__ is not None): warnings.warn('explicit use of __name__ is deprecated', DeprecationWarning) resource_name = __name__ if (__opts__ is not None): warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if (opts is None): opts = pulumi.ResourceOptions() if (not isinstance(opts, pulumi.ResourceOptions)): raise TypeError('Expected resource options to be a ResourceOptions instance') if (opts.version is None): opts.version = _utilities.get_version() if (opts.id is None): if (__props__ is not None): raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['data_collection_rule_name'] = data_collection_rule_name if ((data_flows is None) and (not opts.urn)): raise TypeError("Missing required property 'data_flows'") __props__['data_flows'] = data_flows __props__['data_sources'] = data_sources __props__['description'] = description if ((destinations is None) and (not opts.urn)): raise TypeError("Missing required property 'destinations'") __props__['destinations'] = destinations __props__['location'] = location if ((resource_group_name is None) and (not opts.urn)): raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['etag'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_='azure-nextgen:insights/v20191101preview:DataCollectionRule'), pulumi.Alias(type_='azure-native:insights:DataCollectionRule'), pulumi.Alias(type_='azure-nextgen:insights:DataCollectionRule')]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DataCollectionRule, __self__).__init__('azure-native:insights/v20191101preview:DataCollectionRule', resource_name, __props__, opts)
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'DataCollectionRule': "\n Get an existing DataCollectionRule resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__['data_flows'] = None __props__['data_sources'] = None __props__['description'] = None __props__['destinations'] = None __props__['etag'] = None __props__['location'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['tags'] = None __props__['type'] = None return DataCollectionRule(resource_name, opts=opts, __props__=__props__)
-3,088,457,438,230,935,600
Get an existing DataCollectionRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
get
pulumi-bot/pulumi-azure-native
python
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions]=None) -> 'DataCollectionRule': "\n Get an existing DataCollectionRule resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n " opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__['data_flows'] = None __props__['data_sources'] = None __props__['description'] = None __props__['destinations'] = None __props__['etag'] = None __props__['location'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['tags'] = None __props__['type'] = None return DataCollectionRule(resource_name, opts=opts, __props__=__props__)
@property @pulumi.getter(name='dataFlows') def data_flows(self) -> pulumi.Output[Sequence['outputs.DataFlowResponse']]: '\n The specification of data flows.\n ' return pulumi.get(self, 'data_flows')
998,013,760,708,920,400
The specification of data flows.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
data_flows
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter(name='dataFlows') def data_flows(self) -> pulumi.Output[Sequence['outputs.DataFlowResponse']]: '\n \n ' return pulumi.get(self, 'data_flows')
@property @pulumi.getter(name='dataSources') def data_sources(self) -> pulumi.Output[Optional['outputs.DataCollectionRuleResponseDataSources']]: '\n The specification of data sources. \n This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint.\n ' return pulumi.get(self, 'data_sources')
6,409,329,648,646,107,000
The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
data_sources
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter(name='dataSources') def data_sources(self) -> pulumi.Output[Optional['outputs.DataCollectionRuleResponseDataSources']]: '\n The specification of data sources. \n This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint.\n ' return pulumi.get(self, 'data_sources')
@property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: '\n Description of the data collection rule.\n ' return pulumi.get(self, 'description')
-765,155,414,852,401,200
Description of the data collection rule.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
description
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: '\n \n ' return pulumi.get(self, 'description')
@property @pulumi.getter def destinations(self) -> pulumi.Output['outputs.DataCollectionRuleResponseDestinations']: '\n The specification of destinations.\n ' return pulumi.get(self, 'destinations')
2,759,344,770,410,032,600
The specification of destinations.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
destinations
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def destinations(self) -> pulumi.Output['outputs.DataCollectionRuleResponseDestinations']: '\n \n ' return pulumi.get(self, 'destinations')
@property @pulumi.getter def etag(self) -> pulumi.Output[str]: '\n Resource entity tag (ETag).\n ' return pulumi.get(self, 'etag')
1,359,688,913,322,792,700
Resource entity tag (ETag).
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
etag
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def etag(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'etag')
@property @pulumi.getter def location(self) -> pulumi.Output[str]: '\n The geo-location where the resource lives.\n ' return pulumi.get(self, 'location')
7,682,718,716,494,702,000
The geo-location where the resource lives.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
location
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def location(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'location')
@property @pulumi.getter def name(self) -> pulumi.Output[str]: '\n The name of the resource.\n ' return pulumi.get(self, 'name')
7,945,008,266,317,837,000
The name of the resource.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
name
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def name(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'name')
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> pulumi.Output[str]: '\n The resource provisioning state.\n ' return pulumi.get(self, 'provisioning_state')
-3,707,423,413,488,761,300
The resource provisioning state.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
provisioning_state
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter(name='provisioningState') def provisioning_state(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'provisioning_state')
@property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[(str, str)]]]: '\n Resource tags.\n ' return pulumi.get(self, 'tags')
-2,929,197,049,816,896,000
Resource tags.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
tags
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[(str, str)]]]: '\n \n ' return pulumi.get(self, 'tags')
@property @pulumi.getter def type(self) -> pulumi.Output[str]: '\n The type of the resource.\n ' return pulumi.get(self, 'type')
3,589,901,220,239,403,500
The type of the resource.
sdk/python/pulumi_azure_native/insights/v20191101preview/data_collection_rule.py
type
pulumi-bot/pulumi-azure-native
python
@property @pulumi.getter def type(self) -> pulumi.Output[str]: '\n \n ' return pulumi.get(self, 'type')
def test_corner_case_for_power_at_1(metric_class=TweedieDevianceScore): 'Test that corner case for power=1.0 produce valid result.' metric = TweedieDevianceScore() targets = torch.tensor([0, 1, 0, 1]) preds = torch.tensor([0.1, 0.1, 0.1, 0.1]) val = metric(preds, targets) assert (val != 0.0) assert (not torch.isnan(val))
-4,181,891,001,919,652,000
Test that corner case for power=1.0 produce valid result.
tests/regression/test_tweedie_deviance.py
test_corner_case_for_power_at_1
Abdelrhman-Hosny/metrics
python
def test_corner_case_for_power_at_1(metric_class=TweedieDevianceScore): metric = TweedieDevianceScore() targets = torch.tensor([0, 1, 0, 1]) preds = torch.tensor([0.1, 0.1, 0.1, 0.1]) val = metric(preds, targets) assert (val != 0.0) assert (not torch.isnan(val))
@beam.ptransform_fn @beam.typehints.with_input_types(Union[(_INPUT_TYPE, Tuple[(_K, _INPUT_TYPE)])]) @beam.typehints.with_output_types(Union[(_OUTPUT_TYPE, Tuple[(_K, _OUTPUT_TYPE)])]) def RunInference(examples: beam.pvalue.PCollection, inference_spec_type: model_spec_pb2.InferenceSpecType) -> beam.pvalue.PCollection: 'Run inference with a model.\n\n There are two types of inference you can perform using this PTransform:\n 1. In-process inference from a SavedModel instance. Used when\n `saved_model_spec` field is set in `inference_spec_type`.\n 2. Remote inference by using a service endpoint. Used when\n `ai_platform_prediction_model_spec` field is set in\n `inference_spec_type`.\n\n TODO(b/131873699): Add support for the following features:\n 1. tf.train.SequenceExample as Input for RemotePredict.\n 2. beam.Shared() initialization via Fingerprint for models CSE.\n 3. Models as SideInput.\n 4. TPU models.\n\n Args:\n examples: A PCollection containing examples of the following possible kinds,\n each with their corresponding return type.\n - PCollection[Example] -> PCollection[PredictionLog]\n * Works with Classify, Regress, MultiInference, Predict and\n RemotePredict.\n\n - PCollection[SequenceExample] -> PCollection[PredictionLog]\n * Works with Predict and (serialized) RemotePredict.\n\n - PCollection[bytes] -> PCollection[PredictionLog]\n * For serialized Example: Works with Classify, Regress,\n MultiInference, Predict and RemotePredict.\n * For everything else: Works with Predict and RemotePredict.\n\n - PCollection[Tuple[K, Example]] -> PCollection[\n Tuple[K, PredictionLog]]\n * Works with Classify, Regress, MultiInference, Predict and\n RemotePredict.\n\n - PCollection[Tuple[K, SequenceExample]] -> PCollection[\n Tuple[K, PredictionLog]]\n * Works with Predict and (serialized) RemotePredict.\n\n - PCollection[Tuple[K, bytes]] -> PCollection[\n Tuple[K, PredictionLog]]\n * For serialized Example: Works with Classify, Regress,\n MultiInference, Predict and RemotePredict.\n * For everything else: Works with Predict and RemotePredict.\n\n inference_spec_type: Model inference endpoint.\n\n Returns:\n A PCollection (possibly keyed) containing prediction logs.\n ' return (examples | ('RunInferenceImpl' >> run_inference.RunInferenceImpl(inference_spec_type)))
2,901,633,151,631,102,000
Run inference with a model. There are two types of inference you can perform using this PTransform: 1. In-process inference from a SavedModel instance. Used when `saved_model_spec` field is set in `inference_spec_type`. 2. Remote inference by using a service endpoint. Used when `ai_platform_prediction_model_spec` field is set in `inference_spec_type`. TODO(b/131873699): Add support for the following features: 1. tf.train.SequenceExample as Input for RemotePredict. 2. beam.Shared() initialization via Fingerprint for models CSE. 3. Models as SideInput. 4. TPU models. Args: examples: A PCollection containing examples of the following possible kinds, each with their corresponding return type. - PCollection[Example] -> PCollection[PredictionLog] * Works with Classify, Regress, MultiInference, Predict and RemotePredict. - PCollection[SequenceExample] -> PCollection[PredictionLog] * Works with Predict and (serialized) RemotePredict. - PCollection[bytes] -> PCollection[PredictionLog] * For serialized Example: Works with Classify, Regress, MultiInference, Predict and RemotePredict. * For everything else: Works with Predict and RemotePredict. - PCollection[Tuple[K, Example]] -> PCollection[ Tuple[K, PredictionLog]] * Works with Classify, Regress, MultiInference, Predict and RemotePredict. - PCollection[Tuple[K, SequenceExample]] -> PCollection[ Tuple[K, PredictionLog]] * Works with Predict and (serialized) RemotePredict. - PCollection[Tuple[K, bytes]] -> PCollection[ Tuple[K, PredictionLog]] * For serialized Example: Works with Classify, Regress, MultiInference, Predict and RemotePredict. * For everything else: Works with Predict and RemotePredict. inference_spec_type: Model inference endpoint. Returns: A PCollection (possibly keyed) containing prediction logs.
tfx_bsl/public/beam/run_inference.py
RunInference
RossKohler/tfx-bsl
python
@beam.ptransform_fn @beam.typehints.with_input_types(Union[(_INPUT_TYPE, Tuple[(_K, _INPUT_TYPE)])]) @beam.typehints.with_output_types(Union[(_OUTPUT_TYPE, Tuple[(_K, _OUTPUT_TYPE)])]) def RunInference(examples: beam.pvalue.PCollection, inference_spec_type: model_spec_pb2.InferenceSpecType) -> beam.pvalue.PCollection: 'Run inference with a model.\n\n There are two types of inference you can perform using this PTransform:\n 1. In-process inference from a SavedModel instance. Used when\n `saved_model_spec` field is set in `inference_spec_type`.\n 2. Remote inference by using a service endpoint. Used when\n `ai_platform_prediction_model_spec` field is set in\n `inference_spec_type`.\n\n TODO(b/131873699): Add support for the following features:\n 1. tf.train.SequenceExample as Input for RemotePredict.\n 2. beam.Shared() initialization via Fingerprint for models CSE.\n 3. Models as SideInput.\n 4. TPU models.\n\n Args:\n examples: A PCollection containing examples of the following possible kinds,\n each with their corresponding return type.\n - PCollection[Example] -> PCollection[PredictionLog]\n * Works with Classify, Regress, MultiInference, Predict and\n RemotePredict.\n\n - PCollection[SequenceExample] -> PCollection[PredictionLog]\n * Works with Predict and (serialized) RemotePredict.\n\n - PCollection[bytes] -> PCollection[PredictionLog]\n * For serialized Example: Works with Classify, Regress,\n MultiInference, Predict and RemotePredict.\n * For everything else: Works with Predict and RemotePredict.\n\n - PCollection[Tuple[K, Example]] -> PCollection[\n Tuple[K, PredictionLog]]\n * Works with Classify, Regress, MultiInference, Predict and\n RemotePredict.\n\n - PCollection[Tuple[K, SequenceExample]] -> PCollection[\n Tuple[K, PredictionLog]]\n * Works with Predict and (serialized) RemotePredict.\n\n - PCollection[Tuple[K, bytes]] -> PCollection[\n Tuple[K, PredictionLog]]\n * For serialized Example: Works with Classify, Regress,\n MultiInference, Predict and RemotePredict.\n * For everything else: Works with Predict and RemotePredict.\n\n inference_spec_type: Model inference endpoint.\n\n Returns:\n A PCollection (possibly keyed) containing prediction logs.\n ' return (examples | ('RunInferenceImpl' >> run_inference.RunInferenceImpl(inference_spec_type)))
def hapi(trange=None, server=None, dataset=None, parameters='', suffix='', catalog=False): "\n Loads data from a HAPI server into pytplot variables\n\n Parameters\n -----------\n trange: list of str or list of float\n Time range to load the data for\n\n server: str\n HAPI server to load the data from\n\n dataset: str\n HAPI dataset to load\n\n parameters: str or list of str\n Parameters in the dataset to load; default\n is to load them all\n\n suffix: str\n Suffix to append to the tplot variables\n\n catalog: bool\n If True, returns the server's catalog of datasets\n\n Returns\n -------\n List of tplot variables created.\n " if (server is None): print('Error, no server specified; example servers include:') print('- https://cdaweb.gsfc.nasa.gov/hapi') print('- https://pds-ppi.igpp.ucla.edu/hapi') print('- http://planet.physics.uiowa.edu/das/das2Server/hapi') print('- https://iswa.gsfc.nasa.gov/IswaSystemWebApp/hapi') print('- http://lasp.colorado.edu/lisird/hapi') return if catalog: catalog = load_hapi(server) items = [] if ('catalog' in catalog.keys()): items = catalog['catalog'] print('Available datasets: ') for item in items: if ('title' in item.keys()): print(((item['id'] + ': ') + item['title'])) else: print(item['id']) return if (dataset is None): print('Error, no dataset specified; please see the catalog for a list of available data sets.') return if (trange is None): print('Error, no trange specified') return if isinstance(parameters, list): parameters = ','.join(parameters) opts = {'logging': False} (data, hapi_metadata) = load_hapi(server, dataset, parameters, trange[0], trange[1], **opts) out_vars = [] params = hapi_metadata['parameters'] for param in params[1:]: spec = False param_name = param.get('name') print(('Loading ' + param_name)) try: with warnings.catch_warnings(): warnings.simplefilter('ignore', category=ResourceWarning) (data, hapi_metadata) = load_hapi(server, dataset, param_name, trange[0], trange[1], **opts) except: breakpoint() print('Error! 95') continue timestamps = [datapoint[0] for datapoint in data] unixtimes = [time_double(timestamp.decode('utf-8')) for timestamp in timestamps] param_type = hapi_metadata['parameters'][1].get('type') if (param_type is None): param_type = 'double' data_size = hapi_metadata['parameters'][1].get('size') if (data_size is None): single_line = True try: if (param_type == 'double'): single_line = isinstance(data[0][1], np.float64) elif (param_type == 'integer'): single_line = isinstance(data[0][1], np.int32) except IndexError: breakpoint() print('Error! 103') continue if single_line: data_out = np.zeros(len(data)) else: try: data_out = np.zeros((len(data), len(data[0][1]))) except TypeError: print('Error! 112') breakpoint() continue for (idx, datapoint) in enumerate(data): if single_line: data_out[idx] = datapoint[1] else: data_out[idx, :] = datapoint[1] data_out = data_out.squeeze() fill_value = hapi_metadata['parameters'][1].get('fill') if (fill_value is not None): if (param_type == 'double'): fill_value = float(fill_value) data_out[(data_out == fill_value)] = np.nan elif (param_type == 'integer'): fill_value = int(fill_value) data_out[(data_out == fill_value)] = 0 bins = param.get('bins') if (bins is not None): centers = bins[0].get('centers') if (centers is not None): spec = True data_table = {'x': unixtimes, 'y': data_out} if spec: data_table['v'] = centers saved = store_data((param_name + suffix), data=data_table) metadata = get_data((param_name + suffix), metadata=True) metadata['HAPI'] = hapi_metadata if spec: options((param_name + suffix), 'spec', True) if saved: out_vars.append((param_name + suffix)) sleep(1) return out_vars
-1,940,759,919,022,476,800
Loads data from a HAPI server into pytplot variables Parameters ----------- trange: list of str or list of float Time range to load the data for server: str HAPI server to load the data from dataset: str HAPI dataset to load parameters: str or list of str Parameters in the dataset to load; default is to load them all suffix: str Suffix to append to the tplot variables catalog: bool If True, returns the server's catalog of datasets Returns ------- List of tplot variables created.
pyspedas/hapi/hapi.py
hapi
pulupa/pyspedas
python
def hapi(trange=None, server=None, dataset=None, parameters=, suffix=, catalog=False): "\n Loads data from a HAPI server into pytplot variables\n\n Parameters\n -----------\n trange: list of str or list of float\n Time range to load the data for\n\n server: str\n HAPI server to load the data from\n\n dataset: str\n HAPI dataset to load\n\n parameters: str or list of str\n Parameters in the dataset to load; default\n is to load them all\n\n suffix: str\n Suffix to append to the tplot variables\n\n catalog: bool\n If True, returns the server's catalog of datasets\n\n Returns\n -------\n List of tplot variables created.\n " if (server is None): print('Error, no server specified; example servers include:') print('- https://cdaweb.gsfc.nasa.gov/hapi') print('- https://pds-ppi.igpp.ucla.edu/hapi') print('- http://planet.physics.uiowa.edu/das/das2Server/hapi') print('- https://iswa.gsfc.nasa.gov/IswaSystemWebApp/hapi') print('- http://lasp.colorado.edu/lisird/hapi') return if catalog: catalog = load_hapi(server) items = [] if ('catalog' in catalog.keys()): items = catalog['catalog'] print('Available datasets: ') for item in items: if ('title' in item.keys()): print(((item['id'] + ': ') + item['title'])) else: print(item['id']) return if (dataset is None): print('Error, no dataset specified; please see the catalog for a list of available data sets.') return if (trange is None): print('Error, no trange specified') return if isinstance(parameters, list): parameters = ','.join(parameters) opts = {'logging': False} (data, hapi_metadata) = load_hapi(server, dataset, parameters, trange[0], trange[1], **opts) out_vars = [] params = hapi_metadata['parameters'] for param in params[1:]: spec = False param_name = param.get('name') print(('Loading ' + param_name)) try: with warnings.catch_warnings(): warnings.simplefilter('ignore', category=ResourceWarning) (data, hapi_metadata) = load_hapi(server, dataset, param_name, trange[0], trange[1], **opts) except: breakpoint() print('Error! 95') continue timestamps = [datapoint[0] for datapoint in data] unixtimes = [time_double(timestamp.decode('utf-8')) for timestamp in timestamps] param_type = hapi_metadata['parameters'][1].get('type') if (param_type is None): param_type = 'double' data_size = hapi_metadata['parameters'][1].get('size') if (data_size is None): single_line = True try: if (param_type == 'double'): single_line = isinstance(data[0][1], np.float64) elif (param_type == 'integer'): single_line = isinstance(data[0][1], np.int32) except IndexError: breakpoint() print('Error! 103') continue if single_line: data_out = np.zeros(len(data)) else: try: data_out = np.zeros((len(data), len(data[0][1]))) except TypeError: print('Error! 112') breakpoint() continue for (idx, datapoint) in enumerate(data): if single_line: data_out[idx] = datapoint[1] else: data_out[idx, :] = datapoint[1] data_out = data_out.squeeze() fill_value = hapi_metadata['parameters'][1].get('fill') if (fill_value is not None): if (param_type == 'double'): fill_value = float(fill_value) data_out[(data_out == fill_value)] = np.nan elif (param_type == 'integer'): fill_value = int(fill_value) data_out[(data_out == fill_value)] = 0 bins = param.get('bins') if (bins is not None): centers = bins[0].get('centers') if (centers is not None): spec = True data_table = {'x': unixtimes, 'y': data_out} if spec: data_table['v'] = centers saved = store_data((param_name + suffix), data=data_table) metadata = get_data((param_name + suffix), metadata=True) metadata['HAPI'] = hapi_metadata if spec: options((param_name + suffix), 'spec', True) if saved: out_vars.append((param_name + suffix)) sleep(1) return out_vars
def wrap_socket(sock, server_hostname, ssl_context=None, force_proto=None): "\n A vastly simplified SSL wrapping function. We'll probably extend this to\n do more things later.\n " global _context if ssl_context: _ssl_context = ssl_context else: if (_context is None): _context = init_context() _ssl_context = _context ssl_sock = _ssl_context.wrap_socket(sock, server_hostname=server_hostname) if _ssl_context.check_hostname: try: ssl.match_hostname(ssl_sock.getpeercert(), server_hostname) except AttributeError: ssl.verify_hostname(ssl_sock, server_hostname) proto = force_proto with ignore_missing(): if (proto is None): proto = ssl_sock.selected_alpn_protocol() with ignore_missing(): if (proto is None): proto = ssl_sock.selected_npn_protocol() return (ssl_sock, proto)
-732,052,899,502,781,700
A vastly simplified SSL wrapping function. We'll probably extend this to do more things later.
hyper/tls.py
wrap_socket
qtacore/hyper
python
def wrap_socket(sock, server_hostname, ssl_context=None, force_proto=None): "\n A vastly simplified SSL wrapping function. We'll probably extend this to\n do more things later.\n " global _context if ssl_context: _ssl_context = ssl_context else: if (_context is None): _context = init_context() _ssl_context = _context ssl_sock = _ssl_context.wrap_socket(sock, server_hostname=server_hostname) if _ssl_context.check_hostname: try: ssl.match_hostname(ssl_sock.getpeercert(), server_hostname) except AttributeError: ssl.verify_hostname(ssl_sock, server_hostname) proto = force_proto with ignore_missing(): if (proto is None): proto = ssl_sock.selected_alpn_protocol() with ignore_missing(): if (proto is None): proto = ssl_sock.selected_npn_protocol() return (ssl_sock, proto)
def init_context(cert_path=None, cert=None, cert_password=None): "\n Create a new ``SSLContext`` that is correctly set up for an HTTP/2\n connection. This SSL context object can be customized and passed as a\n parameter to the :class:`HTTPConnection <hyper.HTTPConnection>` class.\n Provide your own certificate file in case you don’t want to use hyper’s\n default certificate. The path to the certificate can be absolute or\n relative to your working directory.\n\n :param cert_path: (optional) The path to the certificate file of\n “certification authority” (CA) certificates\n :param cert: (optional) if string, path to ssl client cert file (.pem).\n If tuple, ('cert', 'key') pair.\n The certfile string must be the path to a single file in PEM format\n containing the certificate as well as any number of CA certificates\n needed to establish the certificate’s authenticity. The keyfile string,\n if present, must point to a file containing the private key in.\n Otherwise the private key will be taken from certfile as well.\n :param cert_password: (optional) The password argument may be a function to\n call to get the password for decrypting the private key. It will only\n be called if the private key is encrypted and a password is necessary.\n It will be called with no arguments, and it should return a string,\n bytes, or bytearray. If the return value is a string it will be\n encoded as UTF-8 before using it to decrypt the key. Alternatively a\n string, bytes, or bytearray value may be supplied directly as the\n password argument. It will be ignored if the private key is not\n encrypted and no password is needed.\n :returns: An ``SSLContext`` correctly set up for HTTP/2.\n " cafile = (cert_path or cert_loc) if ((not cafile) or (not path.exists(cafile))): err_msg = ((((('No certificate found at ' + str(cafile)) + '. Either ') + 'ensure the default cert.pem file is included in the ') + 'distribution or provide a custom certificate when ') + 'creating the connection.') raise MissingCertFile(err_msg) context = ssl.SSLContext(ssl.PROTOCOL_SSLv23) context.set_default_verify_paths() context.load_verify_locations(cafile=cafile) context.verify_mode = ssl.CERT_REQUIRED context.check_hostname = True with ignore_missing(): context.set_npn_protocols(SUPPORTED_NPN_PROTOCOLS) with ignore_missing(): context.set_alpn_protocols(SUPPORTED_NPN_PROTOCOLS) context.options |= ssl.OP_NO_COMPRESSION if (cert is not None): if (not isinstance(cert, six.string_types)): context.load_cert_chain(cert[0], cert[1], cert_password) else: context.load_cert_chain(cert, password=cert_password) return context
-1,115,899,053,343,230,600
Create a new ``SSLContext`` that is correctly set up for an HTTP/2 connection. This SSL context object can be customized and passed as a parameter to the :class:`HTTPConnection <hyper.HTTPConnection>` class. Provide your own certificate file in case you don’t want to use hyper’s default certificate. The path to the certificate can be absolute or relative to your working directory. :param cert_path: (optional) The path to the certificate file of “certification authority” (CA) certificates :param cert: (optional) if string, path to ssl client cert file (.pem). If tuple, ('cert', 'key') pair. The certfile string must be the path to a single file in PEM format containing the certificate as well as any number of CA certificates needed to establish the certificate’s authenticity. The keyfile string, if present, must point to a file containing the private key in. Otherwise the private key will be taken from certfile as well. :param cert_password: (optional) The password argument may be a function to call to get the password for decrypting the private key. It will only be called if the private key is encrypted and a password is necessary. It will be called with no arguments, and it should return a string, bytes, or bytearray. If the return value is a string it will be encoded as UTF-8 before using it to decrypt the key. Alternatively a string, bytes, or bytearray value may be supplied directly as the password argument. It will be ignored if the private key is not encrypted and no password is needed. :returns: An ``SSLContext`` correctly set up for HTTP/2.
hyper/tls.py
init_context
qtacore/hyper
python
def init_context(cert_path=None, cert=None, cert_password=None): "\n Create a new ``SSLContext`` that is correctly set up for an HTTP/2\n connection. This SSL context object can be customized and passed as a\n parameter to the :class:`HTTPConnection <hyper.HTTPConnection>` class.\n Provide your own certificate file in case you don’t want to use hyper’s\n default certificate. The path to the certificate can be absolute or\n relative to your working directory.\n\n :param cert_path: (optional) The path to the certificate file of\n “certification authority” (CA) certificates\n :param cert: (optional) if string, path to ssl client cert file (.pem).\n If tuple, ('cert', 'key') pair.\n The certfile string must be the path to a single file in PEM format\n containing the certificate as well as any number of CA certificates\n needed to establish the certificate’s authenticity. The keyfile string,\n if present, must point to a file containing the private key in.\n Otherwise the private key will be taken from certfile as well.\n :param cert_password: (optional) The password argument may be a function to\n call to get the password for decrypting the private key. It will only\n be called if the private key is encrypted and a password is necessary.\n It will be called with no arguments, and it should return a string,\n bytes, or bytearray. If the return value is a string it will be\n encoded as UTF-8 before using it to decrypt the key. Alternatively a\n string, bytes, or bytearray value may be supplied directly as the\n password argument. It will be ignored if the private key is not\n encrypted and no password is needed.\n :returns: An ``SSLContext`` correctly set up for HTTP/2.\n " cafile = (cert_path or cert_loc) if ((not cafile) or (not path.exists(cafile))): err_msg = ((((('No certificate found at ' + str(cafile)) + '. Either ') + 'ensure the default cert.pem file is included in the ') + 'distribution or provide a custom certificate when ') + 'creating the connection.') raise MissingCertFile(err_msg) context = ssl.SSLContext(ssl.PROTOCOL_SSLv23) context.set_default_verify_paths() context.load_verify_locations(cafile=cafile) context.verify_mode = ssl.CERT_REQUIRED context.check_hostname = True with ignore_missing(): context.set_npn_protocols(SUPPORTED_NPN_PROTOCOLS) with ignore_missing(): context.set_alpn_protocols(SUPPORTED_NPN_PROTOCOLS) context.options |= ssl.OP_NO_COMPRESSION if (cert is not None): if (not isinstance(cert, six.string_types)): context.load_cert_chain(cert[0], cert[1], cert_password) else: context.load_cert_chain(cert, password=cert_password) return context
def _configure_randomizer(self): 'configure domain randomizer\n ' for obstacle_names in self.obstacle_names: RandomizerManager.get_instance().add(ModelVisualRandomizer(model_name=obstacle_names, model_randomizer_type=ModelRandomizerType.MODEL))
6,835,405,223,600,537,000
configure domain randomizer
reinforcement_learning/rl_deepracer_robomaker_coach_gazebo/src/markov/agent_ctrl/obstacles_agent_ctrl.py
_configure_randomizer
LastRemote/amazon-sagemaker-examples
python
def _configure_randomizer(self): '\n ' for obstacle_names in self.obstacle_names: RandomizerManager.get_instance().add(ModelVisualRandomizer(model_name=obstacle_names, model_randomizer_type=ModelRandomizerType.MODEL))
def aws_exception_handler(e): 'AWS specific exception handler.\n Args:\n e: the exception that was raised by the underlying API call that just failed.\n Returns:\n True if this exception can be retried, False otherwise.\n ' return ('Request limit exceeded' in str(e))
-6,550,005,376,189,701,000
AWS specific exception handler. Args: e: the exception that was raised by the underlying API call that just failed. Returns: True if this exception can be retried, False otherwise.
managed/devops/opscli/ybops/cloud/aws/utils.py
aws_exception_handler
bhavin192/yugabyte-db
python
def aws_exception_handler(e): 'AWS specific exception handler.\n Args:\n e: the exception that was raised by the underlying API call that just failed.\n Returns:\n True if this exception can be retried, False otherwise.\n ' return ('Request limit exceeded' in str(e))
def aws_request_limit_retry(fn): 'A decorator for retrying an AWS operation after exceeding request limit. Does retries with\n randomized jitter. Ideally, we should reconfigure boto3 to do the right kind of retries\n internally, but as of May 2017 there does not seem to be a good way of doing that.\n\n Initially not adding this decorator to all functions in this module. This should be done\n gradually as we encounter rate limiting errors.\n\n Relevant boto issues:\n\n https://github.com/boto/boto3/issues/770\n https://github.com/boto/botocore/issues/882\n ' return request_retry_decorator(fn, aws_exception_handler)
-5,006,045,213,595,636,000
A decorator for retrying an AWS operation after exceeding request limit. Does retries with randomized jitter. Ideally, we should reconfigure boto3 to do the right kind of retries internally, but as of May 2017 there does not seem to be a good way of doing that. Initially not adding this decorator to all functions in this module. This should be done gradually as we encounter rate limiting errors. Relevant boto issues: https://github.com/boto/boto3/issues/770 https://github.com/boto/botocore/issues/882
managed/devops/opscli/ybops/cloud/aws/utils.py
aws_request_limit_retry
bhavin192/yugabyte-db
python
def aws_request_limit_retry(fn): 'A decorator for retrying an AWS operation after exceeding request limit. Does retries with\n randomized jitter. Ideally, we should reconfigure boto3 to do the right kind of retries\n internally, but as of May 2017 there does not seem to be a good way of doing that.\n\n Initially not adding this decorator to all functions in this module. This should be done\n gradually as we encounter rate limiting errors.\n\n Relevant boto issues:\n\n https://github.com/boto/boto3/issues/770\n https://github.com/boto/botocore/issues/882\n ' return request_retry_decorator(fn, aws_exception_handler)
def get_client(region): 'Method to get boto3 ec2 resource for given region\n Args:\n region (str): Region name\n Returns:\n boto3 resource\n ' return boto3.resource('ec2', region_name=region)
5,647,238,591,775,809,000
Method to get boto3 ec2 resource for given region Args: region (str): Region name Returns: boto3 resource
managed/devops/opscli/ybops/cloud/aws/utils.py
get_client
bhavin192/yugabyte-db
python
def get_client(region): 'Method to get boto3 ec2 resource for given region\n Args:\n region (str): Region name\n Returns:\n boto3 resource\n ' return boto3.resource('ec2', region_name=region)
def get_clients(regions): 'Method to get boto3 clients for given region or all the regions if none specified.\n Args:\n regions (list): List of regions to return clients for\n Returns:\n clients(obj): Map of region to boto3 resource\n ' return {region: get_client(region) for region in regions}
-2,862,654,079,155,418,600
Method to get boto3 clients for given region or all the regions if none specified. Args: regions (list): List of regions to return clients for Returns: clients(obj): Map of region to boto3 resource
managed/devops/opscli/ybops/cloud/aws/utils.py
get_clients
bhavin192/yugabyte-db
python
def get_clients(regions): 'Method to get boto3 clients for given region or all the regions if none specified.\n Args:\n regions (list): List of regions to return clients for\n Returns:\n clients(obj): Map of region to boto3 resource\n ' return {region: get_client(region) for region in regions}
def get_zones(region, dest_vpc_id=None): 'Method to fetch zones for given region or all the regions if none specified.\n Args:\n region (str): Name of region to get zones of.\n Returns:\n zones (obj): Map of zone -> subnet\n ' result = {} filters = get_filters('state', 'available') client = boto3.client('ec2', region_name=region) zones = client.describe_availability_zones(Filters=filters).get('AvailabilityZones', []) new_client = get_client(region) zone_mapping = {} for z in zones: zone_name = z['ZoneName'] zone_tag = SUBNET_PREFIX_FORMAT.format(zone_name) region_vpc = None if dest_vpc_id: region_vpc = new_client.Vpc(dest_vpc_id) else: region_vpc = get_vpc(new_client, RESOURCE_PREFIX_FORMAT.format(region)) subnet = next(iter(fetch_subnets(region_vpc, zone_tag)), None) if (subnet is None): subnet = next(iter([s for s in region_vpc.subnets.all() if (s.availability_zone == zone_name)]), None) zone_mapping[zone_name] = (subnet.id if (subnet is not None) else None) return zone_mapping
4,495,920,307,806,312,400
Method to fetch zones for given region or all the regions if none specified. Args: region (str): Name of region to get zones of. Returns: zones (obj): Map of zone -> subnet
managed/devops/opscli/ybops/cloud/aws/utils.py
get_zones
bhavin192/yugabyte-db
python
def get_zones(region, dest_vpc_id=None): 'Method to fetch zones for given region or all the regions if none specified.\n Args:\n region (str): Name of region to get zones of.\n Returns:\n zones (obj): Map of zone -> subnet\n ' result = {} filters = get_filters('state', 'available') client = boto3.client('ec2', region_name=region) zones = client.describe_availability_zones(Filters=filters).get('AvailabilityZones', []) new_client = get_client(region) zone_mapping = {} for z in zones: zone_name = z['ZoneName'] zone_tag = SUBNET_PREFIX_FORMAT.format(zone_name) region_vpc = None if dest_vpc_id: region_vpc = new_client.Vpc(dest_vpc_id) else: region_vpc = get_vpc(new_client, RESOURCE_PREFIX_FORMAT.format(region)) subnet = next(iter(fetch_subnets(region_vpc, zone_tag)), None) if (subnet is None): subnet = next(iter([s for s in region_vpc.subnets.all() if (s.availability_zone == zone_name)]), None) zone_mapping[zone_name] = (subnet.id if (subnet is not None) else None) return zone_mapping
def get_vpc(client, tag_name, **kwargs): 'Method to fetch vpc based on the tag_name.\n Args:\n client (boto client): Boto Client for the region to query.\n tag_name (str): VPC tag name.\n Returns:\n VPC obj: VPC object or None.\n ' filters = get_tag_filter(tag_name) return next(iter(client.vpcs.filter(Filters=filters)), None)
3,140,496,971,922,859,000
Method to fetch vpc based on the tag_name. Args: client (boto client): Boto Client for the region to query. tag_name (str): VPC tag name. Returns: VPC obj: VPC object or None.
managed/devops/opscli/ybops/cloud/aws/utils.py
get_vpc
bhavin192/yugabyte-db
python
def get_vpc(client, tag_name, **kwargs): 'Method to fetch vpc based on the tag_name.\n Args:\n client (boto client): Boto Client for the region to query.\n tag_name (str): VPC tag name.\n Returns:\n VPC obj: VPC object or None.\n ' filters = get_tag_filter(tag_name) return next(iter(client.vpcs.filter(Filters=filters)), None)
def fetch_subnets(vpc, tag_name): 'Method to fetch subnets based on the tag_name.\n Args:\n vpc (vpc obj): VPC object to search for subnets\n tag_name (str): subnet tag name.\n Returns:\n subnets (list): list of aws subnets for given vpc.\n ' filters = get_tag_filter(tag_name) return vpc.subnets.filter(Filters=filters)
7,710,063,374,320,810,000
Method to fetch subnets based on the tag_name. Args: vpc (vpc obj): VPC object to search for subnets tag_name (str): subnet tag name. Returns: subnets (list): list of aws subnets for given vpc.
managed/devops/opscli/ybops/cloud/aws/utils.py
fetch_subnets
bhavin192/yugabyte-db
python
def fetch_subnets(vpc, tag_name): 'Method to fetch subnets based on the tag_name.\n Args:\n vpc (vpc obj): VPC object to search for subnets\n tag_name (str): subnet tag name.\n Returns:\n subnets (list): list of aws subnets for given vpc.\n ' filters = get_tag_filter(tag_name) return vpc.subnets.filter(Filters=filters)
def create_subnet(client, vpc, zone, cidr, tag_name): 'Method to create subnet based on cidr and tag name.\n Args:\n client (boto client): Region specific boto client\n vpc (VPC object): VPC object to create subnet.\n zone (str): Availability zone name\n cidr (str): CIDR string\n tag_name (str): Tag name for subnet.\n Returns:\n subnet: Newly created subnet object.\n ' subnet = next((s for s in fetch_subnets(vpc, tag_name) if (s.cidr_block == cidr)), None) if (subnet is None): subnet = vpc.create_subnet(CidrBlock=cidr, AvailabilityZone=zone) client.meta.client.get_waiter('subnet_available').wait(SubnetIds=[subnet.id]) tag_resource_name(client, subnet.id, tag_name) return subnet
-29,046,076,793,090,160
Method to create subnet based on cidr and tag name. Args: client (boto client): Region specific boto client vpc (VPC object): VPC object to create subnet. zone (str): Availability zone name cidr (str): CIDR string tag_name (str): Tag name for subnet. Returns: subnet: Newly created subnet object.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_subnet
bhavin192/yugabyte-db
python
def create_subnet(client, vpc, zone, cidr, tag_name): 'Method to create subnet based on cidr and tag name.\n Args:\n client (boto client): Region specific boto client\n vpc (VPC object): VPC object to create subnet.\n zone (str): Availability zone name\n cidr (str): CIDR string\n tag_name (str): Tag name for subnet.\n Returns:\n subnet: Newly created subnet object.\n ' subnet = next((s for s in fetch_subnets(vpc, tag_name) if (s.cidr_block == cidr)), None) if (subnet is None): subnet = vpc.create_subnet(CidrBlock=cidr, AvailabilityZone=zone) client.meta.client.get_waiter('subnet_available').wait(SubnetIds=[subnet.id]) tag_resource_name(client, subnet.id, tag_name) return subnet
def get_security_group(client, group_name, vpc, **kwargs): 'Method to fetch security group based on the group_name.\n Args:\n client (boto client): Region specific boto client\n group_name (str): Security Group name\n vpc (VPC object): The VPC in which to check for the SG\n Returns:\n SecurityGroup: Matching security group.\n ' filters = (get_filters('group-name', group_name) + get_filters('vpc-id', vpc.id)) return next(iter(client.security_groups.filter(Filters=filters)), None)
-2,037,505,821,622,541,000
Method to fetch security group based on the group_name. Args: client (boto client): Region specific boto client group_name (str): Security Group name vpc (VPC object): The VPC in which to check for the SG Returns: SecurityGroup: Matching security group.
managed/devops/opscli/ybops/cloud/aws/utils.py
get_security_group
bhavin192/yugabyte-db
python
def get_security_group(client, group_name, vpc, **kwargs): 'Method to fetch security group based on the group_name.\n Args:\n client (boto client): Region specific boto client\n group_name (str): Security Group name\n vpc (VPC object): The VPC in which to check for the SG\n Returns:\n SecurityGroup: Matching security group.\n ' filters = (get_filters('group-name', group_name) + get_filters('vpc-id', vpc.id)) return next(iter(client.security_groups.filter(Filters=filters)), None)
@get_or_create(get_security_group) def create_security_group(client, group_name, vpc, description, rules): 'Method to create a security group based on the group_name and authorize ingress with\n the rules provided.\n Args:\n client (boto client): Region specific boto client\n group_name (str): security group name\n description (str): description of the security group\n vpc (VPC Object): VPC object to create the security group\n rules (dict): List of rules to add to security group.\n ' sg = vpc.create_security_group(GroupName=group_name, Description=description) try: for rule in rules: sg.authorize_ingress(IpProtocol=rule['ip_protocol'], CidrIp=rule['cidr_ip'], FromPort=rule['from_port'], ToPort=rule['to_port']) except Exception as e: logging.error('Authorize Security Group Ingress failed: {}'.format(e)) sg.delete() raise YBOpsRuntimeError('Security Group creation failed.') return sg
-3,877,660,530,089,913,000
Method to create a security group based on the group_name and authorize ingress with the rules provided. Args: client (boto client): Region specific boto client group_name (str): security group name description (str): description of the security group vpc (VPC Object): VPC object to create the security group rules (dict): List of rules to add to security group.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_security_group
bhavin192/yugabyte-db
python
@get_or_create(get_security_group) def create_security_group(client, group_name, vpc, description, rules): 'Method to create a security group based on the group_name and authorize ingress with\n the rules provided.\n Args:\n client (boto client): Region specific boto client\n group_name (str): security group name\n description (str): description of the security group\n vpc (VPC Object): VPC object to create the security group\n rules (dict): List of rules to add to security group.\n ' sg = vpc.create_security_group(GroupName=group_name, Description=description) try: for rule in rules: sg.authorize_ingress(IpProtocol=rule['ip_protocol'], CidrIp=rule['cidr_ip'], FromPort=rule['from_port'], ToPort=rule['to_port']) except Exception as e: logging.error('Authorize Security Group Ingress failed: {}'.format(e)) sg.delete() raise YBOpsRuntimeError('Security Group creation failed.') return sg
def get_igw(client, tag_name, **kwargs): 'Method to fetch Internet Gateway based on tag_name.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Internet Gateway tag name.\n Returns:\n internet_gateway: internet gateway object.\n ' filters = get_tag_filter(tag_name) return next(iter(client.internet_gateways.filter(Filters=filters)), None)
5,410,119,642,960,169,000
Method to fetch Internet Gateway based on tag_name. Args: client (boto client): Region specific boto client tag_name (str): Internet Gateway tag name. Returns: internet_gateway: internet gateway object.
managed/devops/opscli/ybops/cloud/aws/utils.py
get_igw
bhavin192/yugabyte-db
python
def get_igw(client, tag_name, **kwargs): 'Method to fetch Internet Gateway based on tag_name.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Internet Gateway tag name.\n Returns:\n internet_gateway: internet gateway object.\n ' filters = get_tag_filter(tag_name) return next(iter(client.internet_gateways.filter(Filters=filters)), None)
@get_or_create(get_igw) def create_igw(client, tag_name, vpc): "Method to create Internet Gateway based on tag_name in given VPC. If the gateway\n already exists, it would return that object. If the object doesn't have a tag, we\n would tag it accordingly.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Tag name for internet gateway.\n vpc (VPC object): VPC object to create Internet Gateway\n Returns:\n internet gateway: newly internet gateway object.\n " existing_igw = next(iter(vpc.internet_gateways.all()), None) if (existing_igw is not None): tag_resource_name(client, existing_igw.id, tag_name) return existing_igw igw = client.create_internet_gateway() tag_resource_name(client, igw.id, tag_name) vpc.attach_internet_gateway(InternetGatewayId=igw.id) return igw
2,810,598,964,722,193,000
Method to create Internet Gateway based on tag_name in given VPC. If the gateway already exists, it would return that object. If the object doesn't have a tag, we would tag it accordingly. Args: client (boto client): Region specific boto client tag_name (str): Tag name for internet gateway. vpc (VPC object): VPC object to create Internet Gateway Returns: internet gateway: newly internet gateway object.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_igw
bhavin192/yugabyte-db
python
@get_or_create(get_igw) def create_igw(client, tag_name, vpc): "Method to create Internet Gateway based on tag_name in given VPC. If the gateway\n already exists, it would return that object. If the object doesn't have a tag, we\n would tag it accordingly.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Tag name for internet gateway.\n vpc (VPC object): VPC object to create Internet Gateway\n Returns:\n internet gateway: newly internet gateway object.\n " existing_igw = next(iter(vpc.internet_gateways.all()), None) if (existing_igw is not None): tag_resource_name(client, existing_igw.id, tag_name) return existing_igw igw = client.create_internet_gateway() tag_resource_name(client, igw.id, tag_name) vpc.attach_internet_gateway(InternetGatewayId=igw.id) return igw
def get_route_table(client, tag_name, **kwargs): 'Method to fetch route table based on tag_name\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Route table tag name to search for.\n Returns:\n RouteTable (obj): Matching route table object or None.\n ' filters = get_tag_filter(tag_name) return next(iter(client.route_tables.filter(Filters=filters)), None)
1,407,385,284,823,409,400
Method to fetch route table based on tag_name Args: client (boto client): Region specific boto client tag_name (str): Route table tag name to search for. Returns: RouteTable (obj): Matching route table object or None.
managed/devops/opscli/ybops/cloud/aws/utils.py
get_route_table
bhavin192/yugabyte-db
python
def get_route_table(client, tag_name, **kwargs): 'Method to fetch route table based on tag_name\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Route table tag name to search for.\n Returns:\n RouteTable (obj): Matching route table object or None.\n ' filters = get_tag_filter(tag_name) return next(iter(client.route_tables.filter(Filters=filters)), None)
@get_or_create(get_route_table) def create_route_table(client, tag_name, vpc): 'Method to create route table based on tag_name in given VPC. It will first\n query for the tag name to see if the route table already exists or if one is already\n attached to the VPC, if so it will return that route table.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Route table tag name\n vpc (vpc object): VPC object to create the route table against\n Returns:\n RouteTable (obj): newly created RouteTable object.\n ' existing_route_table = next(iter(vpc.route_tables.all()), None) if (existing_route_table is not None): tag_resource_name(client, existing_route_table.id, tag_name) return existing_route_table route_table = vpc.create_route_table() tag_resource_name(client, route_table.id, tag_name) return route_table
-9,139,993,306,136,857,000
Method to create route table based on tag_name in given VPC. It will first query for the tag name to see if the route table already exists or if one is already attached to the VPC, if so it will return that route table. Args: client (boto client): Region specific boto client tag_name (str): Route table tag name vpc (vpc object): VPC object to create the route table against Returns: RouteTable (obj): newly created RouteTable object.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_route_table
bhavin192/yugabyte-db
python
@get_or_create(get_route_table) def create_route_table(client, tag_name, vpc): 'Method to create route table based on tag_name in given VPC. It will first\n query for the tag name to see if the route table already exists or if one is already\n attached to the VPC, if so it will return that route table.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): Route table tag name\n vpc (vpc object): VPC object to create the route table against\n Returns:\n RouteTable (obj): newly created RouteTable object.\n ' existing_route_table = next(iter(vpc.route_tables.all()), None) if (existing_route_table is not None): tag_resource_name(client, existing_route_table.id, tag_name) return existing_route_table route_table = vpc.create_route_table() tag_resource_name(client, route_table.id, tag_name) return route_table
@get_and_cleanup(get_security_group) def cleanup_security_group(sg, **kwargs): 'Method to cleanup security group for the matching group_name.\n Args:\n sg: Instance of security group matching the group_name.\n ' sg.delete()
4,922,713,416,734,661,000
Method to cleanup security group for the matching group_name. Args: sg: Instance of security group matching the group_name.
managed/devops/opscli/ybops/cloud/aws/utils.py
cleanup_security_group
bhavin192/yugabyte-db
python
@get_and_cleanup(get_security_group) def cleanup_security_group(sg, **kwargs): 'Method to cleanup security group for the matching group_name.\n Args:\n sg: Instance of security group matching the group_name.\n ' sg.delete()
@get_and_cleanup(get_igw) def cleanup_igw(igw, **kwargs): 'Method to cleanup Internet Gateway matching the tag name. And also remove any vpc\n that is attached to the Internet Gateway.\n Args:\n igw: Instance of Internet Gateway matching tag_name.\n ' for vpc in igw.attachments: igw.detach_from_vpc(VpcId=vpc['VpcId']) igw.delete()
-7,607,356,858,449,717,000
Method to cleanup Internet Gateway matching the tag name. And also remove any vpc that is attached to the Internet Gateway. Args: igw: Instance of Internet Gateway matching tag_name.
managed/devops/opscli/ybops/cloud/aws/utils.py
cleanup_igw
bhavin192/yugabyte-db
python
@get_and_cleanup(get_igw) def cleanup_igw(igw, **kwargs): 'Method to cleanup Internet Gateway matching the tag name. And also remove any vpc\n that is attached to the Internet Gateway.\n Args:\n igw: Instance of Internet Gateway matching tag_name.\n ' for vpc in igw.attachments: igw.detach_from_vpc(VpcId=vpc['VpcId']) igw.delete()
@get_and_cleanup(get_route_table) def cleanup_route_table(rt, **kwargs): 'Method to cleanup the Route Table matching the tag name.\n Args:\n rt: Instance of Route Table matching tag_name.\n ' rt.delete()
6,731,431,572,599,774,000
Method to cleanup the Route Table matching the tag name. Args: rt: Instance of Route Table matching tag_name.
managed/devops/opscli/ybops/cloud/aws/utils.py
cleanup_route_table
bhavin192/yugabyte-db
python
@get_and_cleanup(get_route_table) def cleanup_route_table(rt, **kwargs): 'Method to cleanup the Route Table matching the tag name.\n Args:\n rt: Instance of Route Table matching tag_name.\n ' rt.delete()
def get_route_by_cidr(route_table, cidr): 'Method to check if given CIDR already attached to route table.\n Args:\n RouteTable (obj): Route Table object.\n cidr (str): CIDR string to check in route table.\n Returns:\n Route: the route for this CIDR or None if not found\n ' return dict(((r.destination_cidr_block, r) for r in route_table.routes)).get(cidr)
-4,798,626,644,708,583,000
Method to check if given CIDR already attached to route table. Args: RouteTable (obj): Route Table object. cidr (str): CIDR string to check in route table. Returns: Route: the route for this CIDR or None if not found
managed/devops/opscli/ybops/cloud/aws/utils.py
get_route_by_cidr
bhavin192/yugabyte-db
python
def get_route_by_cidr(route_table, cidr): 'Method to check if given CIDR already attached to route table.\n Args:\n RouteTable (obj): Route Table object.\n cidr (str): CIDR string to check in route table.\n Returns:\n Route: the route for this CIDR or None if not found\n ' return dict(((r.destination_cidr_block, r) for r in route_table.routes)).get(cidr)
@get_or_create(get_vpc) def create_vpc(client, tag_name, cidr): 'Method to create vpc based on the cidr and tag with tag_name.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): VPC tag name\n cidr (str): CIDR string.\n Returns:\n VPC(Object): Newly created VPC object.\n ' vpc = client.create_vpc(CidrBlock=cidr) vpc.modify_attribute(EnableDnsHostnames={'Value': True}) tag_resource_name(client, vpc.id, tag_name) return vpc
5,086,123,577,382,439,000
Method to create vpc based on the cidr and tag with tag_name. Args: client (boto client): Region specific boto client tag_name (str): VPC tag name cidr (str): CIDR string. Returns: VPC(Object): Newly created VPC object.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_vpc
bhavin192/yugabyte-db
python
@get_or_create(get_vpc) def create_vpc(client, tag_name, cidr): 'Method to create vpc based on the cidr and tag with tag_name.\n Args:\n client (boto client): Region specific boto client\n tag_name (str): VPC tag name\n cidr (str): CIDR string.\n Returns:\n VPC(Object): Newly created VPC object.\n ' vpc = client.create_vpc(CidrBlock=cidr) vpc.modify_attribute(EnableDnsHostnames={'Value': True}) tag_resource_name(client, vpc.id, tag_name) return vpc
def set_yb_sg_and_fetch_vpc(metadata, region, dest_vpc_id): 'Method to bootstrap vpc and security group, and enable vpc peering\n with the host_instance vpc.\n Args:\n metadata (obj): Cloud metadata object with cidr prefix and other metadata.\n region (str): Region name to create the vpc in.\n dest_vpc_id (str): Id of the VPC that yugabyte machines will reside in.\n Returns:\n vpc_info (json): return vpc, subnet and security group as json.\n ' client = get_client(region) dest_vpc = client.Vpc(dest_vpc_id) subnets = {subnet.availability_zone: subnet for subnet in dest_vpc.subnets.all()} sg_group_name = get_yb_sg_name(region) rules = metadata['sg_rules'] for r in rules: r.update({'cidr_ip': IGW_CIDR}) add_cidr_to_rules(rules, dest_vpc.cidr_block) sgs = [create_security_group(client=client, group_name=sg_group_name, vpc=dest_vpc, description='YugaByte SG', rules=rules)] return vpc_components_as_json(dest_vpc, sgs, subnets)
6,087,758,651,699,521,000
Method to bootstrap vpc and security group, and enable vpc peering with the host_instance vpc. Args: metadata (obj): Cloud metadata object with cidr prefix and other metadata. region (str): Region name to create the vpc in. dest_vpc_id (str): Id of the VPC that yugabyte machines will reside in. Returns: vpc_info (json): return vpc, subnet and security group as json.
managed/devops/opscli/ybops/cloud/aws/utils.py
set_yb_sg_and_fetch_vpc
bhavin192/yugabyte-db
python
def set_yb_sg_and_fetch_vpc(metadata, region, dest_vpc_id): 'Method to bootstrap vpc and security group, and enable vpc peering\n with the host_instance vpc.\n Args:\n metadata (obj): Cloud metadata object with cidr prefix and other metadata.\n region (str): Region name to create the vpc in.\n dest_vpc_id (str): Id of the VPC that yugabyte machines will reside in.\n Returns:\n vpc_info (json): return vpc, subnet and security group as json.\n ' client = get_client(region) dest_vpc = client.Vpc(dest_vpc_id) subnets = {subnet.availability_zone: subnet for subnet in dest_vpc.subnets.all()} sg_group_name = get_yb_sg_name(region) rules = metadata['sg_rules'] for r in rules: r.update({'cidr_ip': IGW_CIDR}) add_cidr_to_rules(rules, dest_vpc.cidr_block) sgs = [create_security_group(client=client, group_name=sg_group_name, vpc=dest_vpc, description='YugaByte SG', rules=rules)] return vpc_components_as_json(dest_vpc, sgs, subnets)
def query_vpc(region): 'Method to query VPC against given region and respective subnets.\n Args:\n region (str): Region name to query the VPC.\n Returns:\n vpc and subnet info (obj): Object with region and zone subnet id.\n ' per_vpc_info = {} raw_client = boto3.client('ec2', region_name=region) zones = [z['ZoneName'] for z in raw_client.describe_availability_zones(Filters=get_filters('state', 'available')).get('AvailabilityZones', [])] subnets_by_zone = {z: [] for z in zones} client = get_client(region) per_vpc_sgs = {} sgs = client.security_groups.all() for sg in sgs: sg_list = per_vpc_sgs.setdefault(sg.vpc_id, []) sg_list.append({'sg_id': sg.group_id, 'sg_name': sg.group_name}) region_vpcs = client.vpcs.all() for vpc in region_vpcs: subnets = vpc.subnets.filter(Filters=get_filters('state', 'available')) for s in subnets: subnets_for_this_az = subnets_by_zone.setdefault(s.availability_zone, []) subnets_for_this_az.append({'subnet_id': s.subnet_id, 'name': _get_name_from_tags(s.tags), 'public': s.map_public_ip_on_launch}) vpc_info = {'subnets_by_zone': subnets_by_zone, 'security_groups': per_vpc_sgs.get(vpc.id, [])} per_vpc_info[vpc.id] = vpc_info region_json = {'per_vpc_info': per_vpc_info} return region_json
1,682,906,710,431,175,700
Method to query VPC against given region and respective subnets. Args: region (str): Region name to query the VPC. Returns: vpc and subnet info (obj): Object with region and zone subnet id.
managed/devops/opscli/ybops/cloud/aws/utils.py
query_vpc
bhavin192/yugabyte-db
python
def query_vpc(region): 'Method to query VPC against given region and respective subnets.\n Args:\n region (str): Region name to query the VPC.\n Returns:\n vpc and subnet info (obj): Object with region and zone subnet id.\n ' per_vpc_info = {} raw_client = boto3.client('ec2', region_name=region) zones = [z['ZoneName'] for z in raw_client.describe_availability_zones(Filters=get_filters('state', 'available')).get('AvailabilityZones', [])] subnets_by_zone = {z: [] for z in zones} client = get_client(region) per_vpc_sgs = {} sgs = client.security_groups.all() for sg in sgs: sg_list = per_vpc_sgs.setdefault(sg.vpc_id, []) sg_list.append({'sg_id': sg.group_id, 'sg_name': sg.group_name}) region_vpcs = client.vpcs.all() for vpc in region_vpcs: subnets = vpc.subnets.filter(Filters=get_filters('state', 'available')) for s in subnets: subnets_for_this_az = subnets_by_zone.setdefault(s.availability_zone, []) subnets_for_this_az.append({'subnet_id': s.subnet_id, 'name': _get_name_from_tags(s.tags), 'public': s.map_public_ip_on_launch}) vpc_info = {'subnets_by_zone': subnets_by_zone, 'security_groups': per_vpc_sgs.get(vpc.id, [])} per_vpc_info[vpc.id] = vpc_info region_json = {'per_vpc_info': per_vpc_info} return region_json
def vpc_components_as_json(vpc, sgs, subnets): 'Method takes VPC, Security Group and Subnets and returns a json data format with ids.\n Args:\n vpc (VPC Object): Region specific VPC object\n sgs (List of Security Group Object): Region specific Security Group object\n subnets (subnet object map): Map of Subnet objects keyed of zone.\n Retuns:\n json (str): A Json string for yugaware to consume with necessary ids.\n ' result = {} result['vpc_id'] = vpc.id result['security_group'] = [{'id': sg.group_id, 'name': sg.group_name} for sg in sgs] result['zones'] = {} for (zone, subnet) in subnets.iteritems(): result['zones'][zone] = subnet.id return result
3,918,596,843,332,259,300
Method takes VPC, Security Group and Subnets and returns a json data format with ids. Args: vpc (VPC Object): Region specific VPC object sgs (List of Security Group Object): Region specific Security Group object subnets (subnet object map): Map of Subnet objects keyed of zone. Retuns: json (str): A Json string for yugaware to consume with necessary ids.
managed/devops/opscli/ybops/cloud/aws/utils.py
vpc_components_as_json
bhavin192/yugabyte-db
python
def vpc_components_as_json(vpc, sgs, subnets): 'Method takes VPC, Security Group and Subnets and returns a json data format with ids.\n Args:\n vpc (VPC Object): Region specific VPC object\n sgs (List of Security Group Object): Region specific Security Group object\n subnets (subnet object map): Map of Subnet objects keyed of zone.\n Retuns:\n json (str): A Json string for yugaware to consume with necessary ids.\n ' result = {} result['vpc_id'] = vpc.id result['security_group'] = [{'id': sg.group_id, 'name': sg.group_name} for sg in sgs] result['zones'] = {} for (zone, subnet) in subnets.iteritems(): result['zones'][zone] = subnet.id return result
def delete_vpc(region, host_vpc_id=None, host_vpc_region=None): 'Method to delete VPC, Subnet, Internet Gateway, Route Table and VPC peering.\n Args:\n region (str): Region name to query the VPC.\n ' vpc_region_tag = RESOURCE_PREFIX_FORMAT.format(region) client = get_client(region) region_vpc = get_vpc(client, vpc_region_tag) if (region_vpc is None): raise YBOpsRuntimeError('VPC not setup.') zones = get_zones(region) sg_group_name = get_yb_sg_name(region) cleanup_security_group(client=client, group_name=sg_group_name, vpc=region_vpc) for (zone, subnet_id) in zones.iteritems(): vpc_zone_tag = SUBNET_PREFIX_FORMAT.format(zone) if (subnet_id is not None): client.Subnet(subnet_id).delete() igw_tag = IGW_PREFIX_FORMAT.format(region) cleanup_igw(client=client, tag_name=igw_tag) host_vpc = None if ((host_vpc_id is not None) and (host_vpc_region is not None)): host_vpc = get_client(host_vpc_region).Vpc(host_vpc_id) for rt in list(host_vpc.route_tables.all()): delete_route(rt, region_vpc.cidr_block) cleanup_vpc_peering(client=client, vpc=region_vpc, host_vpc=None) region_vpc.delete() route_table_tag = ROUTE_TABLE_PREFIX_FORMAT.format(region) cleanup_route_table(client=client, tag_name=route_table_tag) return {'success': 'VPC deleted.'}
4,416,998,199,135,841,300
Method to delete VPC, Subnet, Internet Gateway, Route Table and VPC peering. Args: region (str): Region name to query the VPC.
managed/devops/opscli/ybops/cloud/aws/utils.py
delete_vpc
bhavin192/yugabyte-db
python
def delete_vpc(region, host_vpc_id=None, host_vpc_region=None): 'Method to delete VPC, Subnet, Internet Gateway, Route Table and VPC peering.\n Args:\n region (str): Region name to query the VPC.\n ' vpc_region_tag = RESOURCE_PREFIX_FORMAT.format(region) client = get_client(region) region_vpc = get_vpc(client, vpc_region_tag) if (region_vpc is None): raise YBOpsRuntimeError('VPC not setup.') zones = get_zones(region) sg_group_name = get_yb_sg_name(region) cleanup_security_group(client=client, group_name=sg_group_name, vpc=region_vpc) for (zone, subnet_id) in zones.iteritems(): vpc_zone_tag = SUBNET_PREFIX_FORMAT.format(zone) if (subnet_id is not None): client.Subnet(subnet_id).delete() igw_tag = IGW_PREFIX_FORMAT.format(region) cleanup_igw(client=client, tag_name=igw_tag) host_vpc = None if ((host_vpc_id is not None) and (host_vpc_region is not None)): host_vpc = get_client(host_vpc_region).Vpc(host_vpc_id) for rt in list(host_vpc.route_tables.all()): delete_route(rt, region_vpc.cidr_block) cleanup_vpc_peering(client=client, vpc=region_vpc, host_vpc=None) region_vpc.delete() route_table_tag = ROUTE_TABLE_PREFIX_FORMAT.format(region) cleanup_route_table(client=client, tag_name=route_table_tag) return {'success': 'VPC deleted.'}
def tag_resource_name(client, resource_id, tag_name): 'Method to create name tag for given resource.\n Args:\n client (boto3 client): Region specific boto client\n resource_id (str): EC2 resource id to tag\n tag_name (str): Tag name.\n ' tag_resource(client, resource_id, 'Name', tag_name)
1,643,940,847,136,764,200
Method to create name tag for given resource. Args: client (boto3 client): Region specific boto client resource_id (str): EC2 resource id to tag tag_name (str): Tag name.
managed/devops/opscli/ybops/cloud/aws/utils.py
tag_resource_name
bhavin192/yugabyte-db
python
def tag_resource_name(client, resource_id, tag_name): 'Method to create name tag for given resource.\n Args:\n client (boto3 client): Region specific boto client\n resource_id (str): EC2 resource id to tag\n tag_name (str): Tag name.\n ' tag_resource(client, resource_id, 'Name', tag_name)
def tag_resource(client, resource_id, tag_key, tag_value): 'Method to attach arbitrary key-value tags to resources.\n Args:\n client (boto3 client): Region specific boto client\n resource_id (str): EC2 resource id to tag\n tag_key: Tag key\n tag_value: Tag value\n ' tags = [{'Key': tag_key, 'Value': tag_value}] client.create_tags(Resources=[resource_id], Tags=tags)
-7,063,555,688,052,461,000
Method to attach arbitrary key-value tags to resources. Args: client (boto3 client): Region specific boto client resource_id (str): EC2 resource id to tag tag_key: Tag key tag_value: Tag value
managed/devops/opscli/ybops/cloud/aws/utils.py
tag_resource
bhavin192/yugabyte-db
python
def tag_resource(client, resource_id, tag_key, tag_value): 'Method to attach arbitrary key-value tags to resources.\n Args:\n client (boto3 client): Region specific boto client\n resource_id (str): EC2 resource id to tag\n tag_key: Tag key\n tag_value: Tag value\n ' tags = [{'Key': tag_key, 'Value': tag_value}] client.create_tags(Resources=[resource_id], Tags=tags)
def get_vpc_peerings(vpc, host_vpc, **kwargs): 'Method to fetch all the VPC peerings against given VPC. If host_vpc is provided\n it will check if there is a peering against that vpc.\n Args:\n vpc(VPC object): VPC Object to search for peerings\n host_vpc (Host VPC object): Can be Null as well, to check if specific host_vpc\n peering is done.\n Returns:\n VPC peering (array): Array list of vpc peerings.\n ' output = [] vpc_peerings = vpc.accepted_vpc_peering_connections.all() output.extend([vp for vp in vpc_peerings if ((vp.status.get('Code') == 'active') and ((host_vpc is None) or (vp.requester_vpc == host_vpc)))]) vpc_peerings = vpc.requested_vpc_peering_connections.all() output.extend([vp for vp in vpc_peerings if ((vp.status.get('Code') == 'active') and ((host_vpc is None) or (vp.accepter_vpc == host_vpc)))]) return output
6,595,738,698,098,746,000
Method to fetch all the VPC peerings against given VPC. If host_vpc is provided it will check if there is a peering against that vpc. Args: vpc(VPC object): VPC Object to search for peerings host_vpc (Host VPC object): Can be Null as well, to check if specific host_vpc peering is done. Returns: VPC peering (array): Array list of vpc peerings.
managed/devops/opscli/ybops/cloud/aws/utils.py
get_vpc_peerings
bhavin192/yugabyte-db
python
def get_vpc_peerings(vpc, host_vpc, **kwargs): 'Method to fetch all the VPC peerings against given VPC. If host_vpc is provided\n it will check if there is a peering against that vpc.\n Args:\n vpc(VPC object): VPC Object to search for peerings\n host_vpc (Host VPC object): Can be Null as well, to check if specific host_vpc\n peering is done.\n Returns:\n VPC peering (array): Array list of vpc peerings.\n ' output = [] vpc_peerings = vpc.accepted_vpc_peering_connections.all() output.extend([vp for vp in vpc_peerings if ((vp.status.get('Code') == 'active') and ((host_vpc is None) or (vp.requester_vpc == host_vpc)))]) vpc_peerings = vpc.requested_vpc_peering_connections.all() output.extend([vp for vp in vpc_peerings if ((vp.status.get('Code') == 'active') and ((host_vpc is None) or (vp.accepter_vpc == host_vpc)))]) return output
@get_or_create(get_vpc_peerings) def create_vpc_peering(client, vpc, host_vpc, target_region): "Method would create a vpc peering between the newly created VPC and caller's VPC\n Also makes sure, if they aren't the same, then there is no need for vpc peering.\n Args:\n client (boto client): Region specific boto client\n vpc (VPC object): Newly created VPC object\n host_vpc(Host VPC object): Host VPC to peer with.\n target_region (region name): Region name in which peering is being created.\n Returns:\n VPC peering (array): Array list of vpc peerings.\n " try: peer_conn = client.create_vpc_peering_connection(VpcId=host_vpc.id, PeerVpcId=vpc.id, PeerRegion=target_region) peer_conn.wait_until_exists() remote_peer_conn = get_client(target_region).VpcPeeringConnection(peer_conn.id) remote_peer_conn.wait_until_exists() remote_peer_conn.accept() return [peer_conn] except Exception as e: logging.error(e) raise YBOpsRuntimeError('Unable to create VPC peering.')
-4,914,788,249,579,337,000
Method would create a vpc peering between the newly created VPC and caller's VPC Also makes sure, if they aren't the same, then there is no need for vpc peering. Args: client (boto client): Region specific boto client vpc (VPC object): Newly created VPC object host_vpc(Host VPC object): Host VPC to peer with. target_region (region name): Region name in which peering is being created. Returns: VPC peering (array): Array list of vpc peerings.
managed/devops/opscli/ybops/cloud/aws/utils.py
create_vpc_peering
bhavin192/yugabyte-db
python
@get_or_create(get_vpc_peerings) def create_vpc_peering(client, vpc, host_vpc, target_region): "Method would create a vpc peering between the newly created VPC and caller's VPC\n Also makes sure, if they aren't the same, then there is no need for vpc peering.\n Args:\n client (boto client): Region specific boto client\n vpc (VPC object): Newly created VPC object\n host_vpc(Host VPC object): Host VPC to peer with.\n target_region (region name): Region name in which peering is being created.\n Returns:\n VPC peering (array): Array list of vpc peerings.\n " try: peer_conn = client.create_vpc_peering_connection(VpcId=host_vpc.id, PeerVpcId=vpc.id, PeerRegion=target_region) peer_conn.wait_until_exists() remote_peer_conn = get_client(target_region).VpcPeeringConnection(peer_conn.id) remote_peer_conn.wait_until_exists() remote_peer_conn.accept() return [peer_conn] except Exception as e: logging.error(e) raise YBOpsRuntimeError('Unable to create VPC peering.')
def init(name): '\n ## Init\n\n [ID]\n Init adalah perintah inisiasi oleh metric untuk membuat sebuah project dengan pondasi yang telah di setup, cara\n penggunaan ini bisa dengan 2 cara, membuat project dari direktori saat ini (CWD) atau dengan direktori baru.\n [EN]\n Init is the command initiation by metric to create a project with the foundation that has been setup, there are\n 2 ways to work with it, either you can create from current working directory (CWD) or new directory.\n\n @param name: project name\n ' project_path = os.getcwd() if (name != '.'): project_path = os.path.join(os.getcwd(), name) Package.make_directory(project_path) _init(Base.base_configuration(project_path), project_path) packages_build = {'apps': ('resources',), 'models': tuple()} for (k, v) in packages_build.items(): Package.make_package(os.path.join(project_path, k)) for i in v: Package.make_package(os.path.join(project_path, k, i)) dir_build = {'apps': ('views',), 'models': ('fields',), '.': ('scripts',)} for (k, v) in dir_build.items(): for i in v: Package.make_directory(os.path.join(project_path, k, i)) file_remove = ['script.py.mako'] [os.remove(os.path.join(project_path, i)) for i in file_remove] scripts = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../scripts') [copy(file, os.path.join(project_path, 'scripts')) for file in glob.glob(os.path.join(scripts, '*.mako'))] os.rename(os.path.join(project_path, 'env.py'), os.path.join(project_path, 'scripts', 'env.py')) copy_tree(os.path.join(scripts, 'setup'), project_path) for file in glob.glob(os.path.join(os.path.join(scripts, 'setup'), '*.py')): copy(file, project_path) Conf.reset(project_path)
4,756,611,065,565,339,000
## Init [ID] Init adalah perintah inisiasi oleh metric untuk membuat sebuah project dengan pondasi yang telah di setup, cara penggunaan ini bisa dengan 2 cara, membuat project dari direktori saat ini (CWD) atau dengan direktori baru. [EN] Init is the command initiation by metric to create a project with the foundation that has been setup, there are 2 ways to work with it, either you can create from current working directory (CWD) or new directory. @param name: project name
metric/cli/__init__.py
init
kzulfazriawan/metric
python
def init(name): '\n ## Init\n\n [ID]\n Init adalah perintah inisiasi oleh metric untuk membuat sebuah project dengan pondasi yang telah di setup, cara\n penggunaan ini bisa dengan 2 cara, membuat project dari direktori saat ini (CWD) atau dengan direktori baru.\n [EN]\n Init is the command initiation by metric to create a project with the foundation that has been setup, there are\n 2 ways to work with it, either you can create from current working directory (CWD) or new directory.\n\n @param name: project name\n ' project_path = os.getcwd() if (name != '.'): project_path = os.path.join(os.getcwd(), name) Package.make_directory(project_path) _init(Base.base_configuration(project_path), project_path) packages_build = {'apps': ('resources',), 'models': tuple()} for (k, v) in packages_build.items(): Package.make_package(os.path.join(project_path, k)) for i in v: Package.make_package(os.path.join(project_path, k, i)) dir_build = {'apps': ('views',), 'models': ('fields',), '.': ('scripts',)} for (k, v) in dir_build.items(): for i in v: Package.make_directory(os.path.join(project_path, k, i)) file_remove = ['script.py.mako'] [os.remove(os.path.join(project_path, i)) for i in file_remove] scripts = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../scripts') [copy(file, os.path.join(project_path, 'scripts')) for file in glob.glob(os.path.join(scripts, '*.mako'))] os.rename(os.path.join(project_path, 'env.py'), os.path.join(project_path, 'scripts', 'env.py')) copy_tree(os.path.join(scripts, 'setup'), project_path) for file in glob.glob(os.path.join(os.path.join(scripts, 'setup'), '*.py')): copy(file, project_path) Conf.reset(project_path)
def make_resource(name): '\n ## Make resource\n\n [ID]\n Perintah ini adalah suatu perintah yang digunakan untuk membuat "resource" baru dari "script" yang telah di\n sediakan.\n [EN]\n This is a command that used to create new "resource" based from the existing "script" provided.\n\n @param name: resource name\n ' t = Template() t.template_type = 'resource' t.make(name)
5,630,455,689,173,030,000
## Make resource [ID] Perintah ini adalah suatu perintah yang digunakan untuk membuat "resource" baru dari "script" yang telah di sediakan. [EN] This is a command that used to create new "resource" based from the existing "script" provided. @param name: resource name
metric/cli/__init__.py
make_resource
kzulfazriawan/metric
python
def make_resource(name): '\n ## Make resource\n\n [ID]\n Perintah ini adalah suatu perintah yang digunakan untuk membuat "resource" baru dari "script" yang telah di\n sediakan.\n [EN]\n This is a command that used to create new "resource" based from the existing "script" provided.\n\n @param name: resource name\n ' t = Template() t.template_type = 'resource' t.make(name)
def __init__(self, transmitted_bytes_per_sec=None, received_bytes_per_sec=None): '\n Keyword args:\n transmitted_bytes_per_sec (float): Total bytes transmitted per second.\n received_bytes_per_sec (float): Total bytes received per second.\n ' if (transmitted_bytes_per_sec is not None): self.transmitted_bytes_per_sec = transmitted_bytes_per_sec if (received_bytes_per_sec is not None): self.received_bytes_per_sec = received_bytes_per_sec
6,875,175,826,083,959,000
Keyword args: transmitted_bytes_per_sec (float): Total bytes transmitted per second. received_bytes_per_sec (float): Total bytes received per second.
pypureclient/flashblade/FB_2_3/models/replication_performance.py
__init__
Flav-STOR-WL/py-pure-client
python
def __init__(self, transmitted_bytes_per_sec=None, received_bytes_per_sec=None): '\n Keyword args:\n transmitted_bytes_per_sec (float): Total bytes transmitted per second.\n received_bytes_per_sec (float): Total bytes received per second.\n ' if (transmitted_bytes_per_sec is not None): self.transmitted_bytes_per_sec = transmitted_bytes_per_sec if (received_bytes_per_sec is not None): self.received_bytes_per_sec = received_bytes_per_sec
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(ReplicationPerformance, dict): for (key, value) in self.items(): result[key] = value return result
3,724,535,437,965,489,000
Returns the model properties as a dict
pypureclient/flashblade/FB_2_3/models/replication_performance.py
to_dict
Flav-STOR-WL/py-pure-client
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(ReplicationPerformance, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
pypureclient/flashblade/FB_2_3/models/replication_performance.py
to_str
Flav-STOR-WL/py-pure-client
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
pypureclient/flashblade/FB_2_3/models/replication_performance.py
__repr__
Flav-STOR-WL/py-pure-client
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, ReplicationPerformance)): return False return (self.__dict__ == other.__dict__)
6,495,413,359,304,010,000
Returns true if both objects are equal
pypureclient/flashblade/FB_2_3/models/replication_performance.py
__eq__
Flav-STOR-WL/py-pure-client
python
def __eq__(self, other): if (not isinstance(other, ReplicationPerformance)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
pypureclient/flashblade/FB_2_3/models/replication_performance.py
__ne__
Flav-STOR-WL/py-pure-client
python
def __ne__(self, other): return (not (self == other))
def home(request): '\n View function for simply rendering the Ionic Angular\n index.html\n ' return render(request, 'www/index.html')
5,884,574,123,324,748,000
View function for simply rendering the Ionic Angular index.html
practicality/frontend/views.py
home
broden-wanner/practicality
python
def home(request): '\n View function for simply rendering the Ionic Angular\n index.html\n ' return render(request, 'www/index.html')
def main(): 'The entry point for this script.' usage = 'usage: %prog [dir] [-b basedir] [-o jsfile]\n example:\n %prog\n %prog assets -o js/jsfy_res.js\n ' parser = optparse.OptionParser(usage) parser.add_option('-b', '--base', dest='basedir', help='base dir') parser.add_option('-o', '--output', dest='outputpath', help='export js file path') (options, args) = parser.parse_args() if isinstance(options.basedir, str): basedir = options.basedir else: basedir = '.' basedir = abspath(basedir) if isinstance(options.outputpath, str): outputpath = options.outputpath else: outputpath = './jsfy_res.js' fout = open(outputpath, 'w') fout.write('// generated with jsfy.py, v0.1 (https://github.com/floatinghotpot/jsfy)\n\n') fout.write('var jsfy_res = jsfy_res || {};\n\n') if (not basedir.endswith('/')): basedir = (basedir + '/') for f in args: f = abspath(f) if isfile(f): jsfy_file(f, basedir, fout) elif isdir(f): jsfy_dir(f, basedir, fout) fout.close()
-8,927,664,434,250,232,000
The entry point for this script.
tools/jsfy.py
main
floatinghotpot/ajax-local
python
def main(): usage = 'usage: %prog [dir] [-b basedir] [-o jsfile]\n example:\n %prog\n %prog assets -o js/jsfy_res.js\n ' parser = optparse.OptionParser(usage) parser.add_option('-b', '--base', dest='basedir', help='base dir') parser.add_option('-o', '--output', dest='outputpath', help='export js file path') (options, args) = parser.parse_args() if isinstance(options.basedir, str): basedir = options.basedir else: basedir = '.' basedir = abspath(basedir) if isinstance(options.outputpath, str): outputpath = options.outputpath else: outputpath = './jsfy_res.js' fout = open(outputpath, 'w') fout.write('// generated with jsfy.py, v0.1 (https://github.com/floatinghotpot/jsfy)\n\n') fout.write('var jsfy_res = jsfy_res || {};\n\n') if (not basedir.endswith('/')): basedir = (basedir + '/') for f in args: f = abspath(f) if isfile(f): jsfy_file(f, basedir, fout) elif isdir(f): jsfy_dir(f, basedir, fout) fout.close()
def to_representation(self, instance): 'Return an ordered dictionary of HAL-style links.' request = self.context.get('request') ret = OrderedDict() for link in self.links: name = link[0] ret[name] = self.to_link(request, instance, *link[1:]) return ret
3,141,942,805,471,202,300
Return an ordered dictionary of HAL-style links.
django_hal/fields.py
to_representation
jacktrades/django-hal
python
def to_representation(self, instance): request = self.context.get('request') ret = OrderedDict() for link in self.links: name = link[0] ret[name] = self.to_link(request, instance, *link[1:]) return ret
def get_attribute(self, instance, *args, **kwargs): 'Return the whole instance, instead of looking up an attribute value.\n\n Implementation note: We do this because `Serializer.to_representation`\n builds the list of serializer fields with something like:\n\n for field in serializer_fields:\n field.to_representation(field.get_attribute(instance))\n\n Since we need the instance in `to_representation` so we can query arbitrary\n attributes on it to build urls, we simply have to return the instance here.\n ' return instance
3,648,155,090,417,222,000
Return the whole instance, instead of looking up an attribute value. Implementation note: We do this because `Serializer.to_representation` builds the list of serializer fields with something like: for field in serializer_fields: field.to_representation(field.get_attribute(instance)) Since we need the instance in `to_representation` so we can query arbitrary attributes on it to build urls, we simply have to return the instance here.
django_hal/fields.py
get_attribute
jacktrades/django-hal
python
def get_attribute(self, instance, *args, **kwargs): 'Return the whole instance, instead of looking up an attribute value.\n\n Implementation note: We do this because `Serializer.to_representation`\n builds the list of serializer fields with something like:\n\n for field in serializer_fields:\n field.to_representation(field.get_attribute(instance))\n\n Since we need the instance in `to_representation` so we can query arbitrary\n attributes on it to build urls, we simply have to return the instance here.\n ' return instance
def to_link(self, request, instance, urlpattern, kwargs=None, query_kwargs=None): 'Return an absolute url for the given urlpattern.' if query_kwargs: query_kwargs = {k: getattr(instance, v) for (k, v) in query_kwargs.items()} if (not kwargs): url = reverse(urlpattern, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} if isinstance(kwargs, basestring): url = reverse(urlpattern, kwargs={kwargs: getattr(instance, kwargs)}, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} reverse_kwargs = {} if kwargs: for (k, v) in kwargs.items(): reverse_kwargs[k] = getattr(instance, v) try: url = reverse(urlpattern, kwargs=reverse_kwargs, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} except NoReverseMatch: return None
3,290,308,599,027,952,600
Return an absolute url for the given urlpattern.
django_hal/fields.py
to_link
jacktrades/django-hal
python
def to_link(self, request, instance, urlpattern, kwargs=None, query_kwargs=None): if query_kwargs: query_kwargs = {k: getattr(instance, v) for (k, v) in query_kwargs.items()} if (not kwargs): url = reverse(urlpattern, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} if isinstance(kwargs, basestring): url = reverse(urlpattern, kwargs={kwargs: getattr(instance, kwargs)}, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} reverse_kwargs = {} if kwargs: for (k, v) in kwargs.items(): reverse_kwargs[k] = getattr(instance, v) try: url = reverse(urlpattern, kwargs=reverse_kwargs, request=request) if (not query_kwargs): return {'href': url} return {'href': ('%s?%s' % (url, urlencode(query_kwargs)))} except NoReverseMatch: return None
@staticmethod def parse_input_params(size=None, error=None): '\n Check if input params are valid and return sample size.\n\n :param size: an int not smaller than 16, which we would use to estimate\n number of unique values.\n :param error: max estimation error, which is a float between 0.01 and 0.50.\n If error is given, sample size will be calculated from error with\n _get_sample_size_from_est_error function.\n :return: sample size\n :raises:\n ValueError: If both size and error are given, or neither is given, or\n values are out of range.\n ' if (None not in (size, error)): raise ValueError((ApproximateUnique._MULTI_VALUE_ERR_MSG % (size, error))) elif ((size is None) and (error is None)): raise ValueError(ApproximateUnique._NO_VALUE_ERR_MSG) elif (size is not None): if ((not isinstance(size, int)) or (size < 16)): raise ValueError((ApproximateUnique._INPUT_SIZE_ERR_MSG % size)) else: return size elif ((error < 0.01) or (error > 0.5)): raise ValueError((ApproximateUnique._INPUT_ERROR_ERR_MSG % error)) else: return ApproximateUnique._get_sample_size_from_est_error(error)
-8,460,358,820,266,177,000
Check if input params are valid and return sample size. :param size: an int not smaller than 16, which we would use to estimate number of unique values. :param error: max estimation error, which is a float between 0.01 and 0.50. If error is given, sample size will be calculated from error with _get_sample_size_from_est_error function. :return: sample size :raises: ValueError: If both size and error are given, or neither is given, or values are out of range.
sdks/python/apache_beam/transforms/stats.py
parse_input_params
TimvdLippe/beam
python
@staticmethod def parse_input_params(size=None, error=None): '\n Check if input params are valid and return sample size.\n\n :param size: an int not smaller than 16, which we would use to estimate\n number of unique values.\n :param error: max estimation error, which is a float between 0.01 and 0.50.\n If error is given, sample size will be calculated from error with\n _get_sample_size_from_est_error function.\n :return: sample size\n :raises:\n ValueError: If both size and error are given, or neither is given, or\n values are out of range.\n ' if (None not in (size, error)): raise ValueError((ApproximateUnique._MULTI_VALUE_ERR_MSG % (size, error))) elif ((size is None) and (error is None)): raise ValueError(ApproximateUnique._NO_VALUE_ERR_MSG) elif (size is not None): if ((not isinstance(size, int)) or (size < 16)): raise ValueError((ApproximateUnique._INPUT_SIZE_ERR_MSG % size)) else: return size elif ((error < 0.01) or (error > 0.5)): raise ValueError((ApproximateUnique._INPUT_ERROR_ERR_MSG % error)) else: return ApproximateUnique._get_sample_size_from_est_error(error)
@staticmethod def _get_sample_size_from_est_error(est_err): '\n :return: sample size\n\n Calculate sample size from estimation error\n ' return int(math.ceil((4.0 / math.pow(est_err, 2.0))))
-1,706,389,842,662,100,500
:return: sample size Calculate sample size from estimation error
sdks/python/apache_beam/transforms/stats.py
_get_sample_size_from_est_error
TimvdLippe/beam
python
@staticmethod def _get_sample_size_from_est_error(est_err): '\n :return: sample size\n\n Calculate sample size from estimation error\n ' return int(math.ceil((4.0 / math.pow(est_err, 2.0))))
def add(self, element): '\n :param an element from pcoll.\n :return: boolean type whether the value is in the heap\n\n Adds a value to the heap, returning whether the value is (large enough to\n be) in the heap.\n ' if ((len(self._sample_heap) >= self._sample_size) and (element < self._min_hash)): return False if (element not in self._sample_set): self._sample_set.add(element) heapq.heappush(self._sample_heap, element) if (len(self._sample_heap) > self._sample_size): temp = heapq.heappop(self._sample_heap) self._sample_set.remove(temp) self._min_hash = self._sample_heap[0] elif (element < self._min_hash): self._min_hash = element return True
2,688,914,121,887,976,000
:param an element from pcoll. :return: boolean type whether the value is in the heap Adds a value to the heap, returning whether the value is (large enough to be) in the heap.
sdks/python/apache_beam/transforms/stats.py
add
TimvdLippe/beam
python
def add(self, element): '\n :param an element from pcoll.\n :return: boolean type whether the value is in the heap\n\n Adds a value to the heap, returning whether the value is (large enough to\n be) in the heap.\n ' if ((len(self._sample_heap) >= self._sample_size) and (element < self._min_hash)): return False if (element not in self._sample_set): self._sample_set.add(element) heapq.heappush(self._sample_heap, element) if (len(self._sample_heap) > self._sample_size): temp = heapq.heappop(self._sample_heap) self._sample_set.remove(temp) self._min_hash = self._sample_heap[0] elif (element < self._min_hash): self._min_hash = element return True
def get_estimate(self): '\n :return: estimation count of unique values\n\n If heap size is smaller than sample size, just return heap size.\n Otherwise, takes into account the possibility of hash collisions,\n which become more likely than not for 2^32 distinct elements.\n Note that log(1+x) ~ x for small x, so for sampleSize << maxHash\n log(1 - sample_size/sample_space) / log(1 - 1/sample_space) ~ sample_size\n and hence estimate ~ sample_size * hash_space / sample_space\n as one would expect.\n\n Given sample_size / sample_space = est / hash_space\n est = sample_size * hash_space / sample_space\n\n Given above sample_size approximate,\n est = log1p(-sample_size/sample_space) / log1p(-1/sample_space)\n * hash_space / sample_space\n ' if (len(self._sample_heap) < self._sample_size): return len(self._sample_heap) else: sample_space_size = (sys.maxsize - (1.0 * self._min_hash)) est = (((math.log1p(((- self._sample_size) / sample_space_size)) / math.log1p(((- 1) / sample_space_size))) * self._HASH_SPACE_SIZE) / sample_space_size) return round(est)
-6,950,131,626,907,893,000
:return: estimation count of unique values If heap size is smaller than sample size, just return heap size. Otherwise, takes into account the possibility of hash collisions, which become more likely than not for 2^32 distinct elements. Note that log(1+x) ~ x for small x, so for sampleSize << maxHash log(1 - sample_size/sample_space) / log(1 - 1/sample_space) ~ sample_size and hence estimate ~ sample_size * hash_space / sample_space as one would expect. Given sample_size / sample_space = est / hash_space est = sample_size * hash_space / sample_space Given above sample_size approximate, est = log1p(-sample_size/sample_space) / log1p(-1/sample_space) * hash_space / sample_space
sdks/python/apache_beam/transforms/stats.py
get_estimate
TimvdLippe/beam
python
def get_estimate(self): '\n :return: estimation count of unique values\n\n If heap size is smaller than sample size, just return heap size.\n Otherwise, takes into account the possibility of hash collisions,\n which become more likely than not for 2^32 distinct elements.\n Note that log(1+x) ~ x for small x, so for sampleSize << maxHash\n log(1 - sample_size/sample_space) / log(1 - 1/sample_space) ~ sample_size\n and hence estimate ~ sample_size * hash_space / sample_space\n as one would expect.\n\n Given sample_size / sample_space = est / hash_space\n est = sample_size * hash_space / sample_space\n\n Given above sample_size approximate,\n est = log1p(-sample_size/sample_space) / log1p(-1/sample_space)\n * hash_space / sample_space\n ' if (len(self._sample_heap) < self._sample_size): return len(self._sample_heap) else: sample_space_size = (sys.maxsize - (1.0 * self._min_hash)) est = (((math.log1p(((- self._sample_size) / sample_space_size)) / math.log1p(((- 1) / sample_space_size))) * self._HASH_SPACE_SIZE) / sample_space_size) return round(est)
def build_graph(self): '\n Creates the computation graph\n ' ' Create Variables ' with tf.variable_scope(self.name): self.step_sizes = self._create_step_size_vars() ' --- Build inner update graph for adapting the policy and sampling trajectories --- ' (self.adapted_policies_params, self.adapt_input_ph_dict) = self._build_inner_adaption() ' ----- Build graph for the meta-update ----- ' self.meta_op_phs_dict = OrderedDict() (obs_phs, action_phs, adv_phs, dist_info_old_phs, all_phs_dict) = self._make_input_placeholders('step0') self.meta_op_phs_dict.update(all_phs_dict) (distribution_info_vars, current_policy_params) = ([], []) (all_surr_objs, all_inner_kls) = ([], []) for i in range(self.meta_batch_size): dist_info_sym = self.policy.distribution_info_sym(obs_phs[i], params=None) distribution_info_vars.append(dist_info_sym) current_policy_params.append(self.policy.policy_params) initial_distribution_info_vars = distribution_info_vars initial_action_phs = action_phs with tf.variable_scope(self.name): ' Inner updates' for step_id in range(1, (self.num_inner_grad_steps + 1)): (surr_objs, adapted_policy_params) = ([], []) for i in range(self.meta_batch_size): surr_loss = self._adapt_objective_sym(action_phs[i], adv_phs[i], dist_info_old_phs[i], distribution_info_vars[i]) adapted_params_var = self._adapt_sym(surr_loss, current_policy_params[i]) adapted_policy_params.append(adapted_params_var) surr_objs.append(surr_loss) all_surr_objs.append(surr_objs) (obs_phs, action_phs, adv_phs, dist_info_old_phs, all_phs_dict) = self._make_input_placeholders(('step%i' % step_id)) self.meta_op_phs_dict.update(all_phs_dict) distribution_info_vars = [self.policy.distribution_info_sym(obs_phs[i], params=adapted_policy_params[i]) for i in range(self.meta_batch_size)] current_policy_params = adapted_policy_params ' Outer objective ' (surr_objs, outer_kls) = ([], []) for i in range(self.meta_batch_size): likelihood_ratio = self.policy.distribution.likelihood_ratio_sym(action_phs[i], dist_info_old_phs[i], distribution_info_vars[i]) outer_kl = tf.reduce_mean(self.policy.distribution.kl_sym(dist_info_old_phs[i], distribution_info_vars[i])) surr_obj = (- tf.reduce_mean((likelihood_ratio * adv_phs[i]))) if self.exploration: adj_avg_rewards = tf.placeholder(dtype=tf.float32, shape=[None], name=(((('adj_avg_rewards' + '_') + str(self.num_inner_grad_steps)) + '_') + str(i))) self.meta_op_phs_dict[('step%i_task%i_%s' % (self.num_inner_grad_steps, i, 'adj_avg_rewards'))] = adj_avg_rewards log_likelihood_inital = self.policy.distribution.log_likelihood_sym(initial_action_phs[i], initial_distribution_info_vars[i]) surr_obj += ((- tf.reduce_mean(adj_avg_rewards)) * tf.reduce_mean(log_likelihood_inital)) surr_objs.append(surr_obj) outer_kls.append(outer_kl) mean_outer_kl = tf.reduce_mean(tf.stack(outer_kls)) ' Mean over meta tasks ' meta_objective = tf.reduce_mean(tf.stack(surr_objs, 0)) self.optimizer.build_graph(loss=meta_objective, target=self.policy, input_ph_dict=self.meta_op_phs_dict, leq_constraint=(mean_outer_kl, self.step_size))
-1,550,013,902,086,852,400
Creates the computation graph
meta_policy_search/meta_algos/trpo_maml.py
build_graph
Manifold-Computing/MMAML-rl
python
def build_graph(self): '\n \n ' ' Create Variables ' with tf.variable_scope(self.name): self.step_sizes = self._create_step_size_vars() ' --- Build inner update graph for adapting the policy and sampling trajectories --- ' (self.adapted_policies_params, self.adapt_input_ph_dict) = self._build_inner_adaption() ' ----- Build graph for the meta-update ----- ' self.meta_op_phs_dict = OrderedDict() (obs_phs, action_phs, adv_phs, dist_info_old_phs, all_phs_dict) = self._make_input_placeholders('step0') self.meta_op_phs_dict.update(all_phs_dict) (distribution_info_vars, current_policy_params) = ([], []) (all_surr_objs, all_inner_kls) = ([], []) for i in range(self.meta_batch_size): dist_info_sym = self.policy.distribution_info_sym(obs_phs[i], params=None) distribution_info_vars.append(dist_info_sym) current_policy_params.append(self.policy.policy_params) initial_distribution_info_vars = distribution_info_vars initial_action_phs = action_phs with tf.variable_scope(self.name): ' Inner updates' for step_id in range(1, (self.num_inner_grad_steps + 1)): (surr_objs, adapted_policy_params) = ([], []) for i in range(self.meta_batch_size): surr_loss = self._adapt_objective_sym(action_phs[i], adv_phs[i], dist_info_old_phs[i], distribution_info_vars[i]) adapted_params_var = self._adapt_sym(surr_loss, current_policy_params[i]) adapted_policy_params.append(adapted_params_var) surr_objs.append(surr_loss) all_surr_objs.append(surr_objs) (obs_phs, action_phs, adv_phs, dist_info_old_phs, all_phs_dict) = self._make_input_placeholders(('step%i' % step_id)) self.meta_op_phs_dict.update(all_phs_dict) distribution_info_vars = [self.policy.distribution_info_sym(obs_phs[i], params=adapted_policy_params[i]) for i in range(self.meta_batch_size)] current_policy_params = adapted_policy_params ' Outer objective ' (surr_objs, outer_kls) = ([], []) for i in range(self.meta_batch_size): likelihood_ratio = self.policy.distribution.likelihood_ratio_sym(action_phs[i], dist_info_old_phs[i], distribution_info_vars[i]) outer_kl = tf.reduce_mean(self.policy.distribution.kl_sym(dist_info_old_phs[i], distribution_info_vars[i])) surr_obj = (- tf.reduce_mean((likelihood_ratio * adv_phs[i]))) if self.exploration: adj_avg_rewards = tf.placeholder(dtype=tf.float32, shape=[None], name=(((('adj_avg_rewards' + '_') + str(self.num_inner_grad_steps)) + '_') + str(i))) self.meta_op_phs_dict[('step%i_task%i_%s' % (self.num_inner_grad_steps, i, 'adj_avg_rewards'))] = adj_avg_rewards log_likelihood_inital = self.policy.distribution.log_likelihood_sym(initial_action_phs[i], initial_distribution_info_vars[i]) surr_obj += ((- tf.reduce_mean(adj_avg_rewards)) * tf.reduce_mean(log_likelihood_inital)) surr_objs.append(surr_obj) outer_kls.append(outer_kl) mean_outer_kl = tf.reduce_mean(tf.stack(outer_kls)) ' Mean over meta tasks ' meta_objective = tf.reduce_mean(tf.stack(surr_objs, 0)) self.optimizer.build_graph(loss=meta_objective, target=self.policy, input_ph_dict=self.meta_op_phs_dict, leq_constraint=(mean_outer_kl, self.step_size))
def optimize_policy(self, all_samples_data, log=True): '\n Performs MAML outer step\n\n Args:\n all_samples_data (list) : list of lists of lists of samples (each is a dict) split by gradient update and\n meta task\n log (bool) : whether to log statistics\n\n Returns:\n None\n ' meta_op_input_dict = self._extract_input_dict_meta_op(all_samples_data, self._optimization_keys) logger.log('Computing KL before') mean_kl_before = self.optimizer.constraint_val(meta_op_input_dict) logger.log('Computing loss before') loss_before = self.optimizer.loss(meta_op_input_dict) logger.log('Optimizing') self.optimizer.optimize(meta_op_input_dict) logger.log('Computing loss after') loss_after = self.optimizer.loss(meta_op_input_dict) logger.log('Computing KL after') mean_kl = self.optimizer.constraint_val(meta_op_input_dict) if log: logger.logkv('MeanKLBefore', mean_kl_before) logger.logkv('MeanKL', mean_kl) logger.logkv('LossBefore', loss_before) logger.logkv('LossAfter', loss_after) logger.logkv('dLoss', (loss_before - loss_after))
7,132,963,398,032,266,000
Performs MAML outer step Args: all_samples_data (list) : list of lists of lists of samples (each is a dict) split by gradient update and meta task log (bool) : whether to log statistics Returns: None
meta_policy_search/meta_algos/trpo_maml.py
optimize_policy
Manifold-Computing/MMAML-rl
python
def optimize_policy(self, all_samples_data, log=True): '\n Performs MAML outer step\n\n Args:\n all_samples_data (list) : list of lists of lists of samples (each is a dict) split by gradient update and\n meta task\n log (bool) : whether to log statistics\n\n Returns:\n None\n ' meta_op_input_dict = self._extract_input_dict_meta_op(all_samples_data, self._optimization_keys) logger.log('Computing KL before') mean_kl_before = self.optimizer.constraint_val(meta_op_input_dict) logger.log('Computing loss before') loss_before = self.optimizer.loss(meta_op_input_dict) logger.log('Optimizing') self.optimizer.optimize(meta_op_input_dict) logger.log('Computing loss after') loss_after = self.optimizer.loss(meta_op_input_dict) logger.log('Computing KL after') mean_kl = self.optimizer.constraint_val(meta_op_input_dict) if log: logger.logkv('MeanKLBefore', mean_kl_before) logger.logkv('MeanKL', mean_kl) logger.logkv('LossBefore', loss_before) logger.logkv('LossAfter', loss_after) logger.logkv('dLoss', (loss_before - loss_after))
def __init__(self, filename): '\n\t\tClass initialization.\n\t\t:param filename: name of the file to store the data, str\n\t\t' self.filename = filename self.content = {}
5,144,989,418,529,070,000
Class initialization. :param filename: name of the file to store the data, str
scripts/writer.py
__init__
STASYA00/CityMorph
python
def __init__(self, filename): '\n\t\tClass initialization.\n\t\t:param filename: name of the file to store the data, str\n\t\t' self.filename = filename self.content = {}
def add(self, instance, result): '\n\t\tFunction that adds an instance with its smart labels to the collection\n\t\t:param instance: name of instance, str\n\t\t:param result: smart labels, dict {label_name: label_value}\n\t\t:return:\n\t\t' self.content[instance] = result
1,213,584,165,480,076,500
Function that adds an instance with its smart labels to the collection :param instance: name of instance, str :param result: smart labels, dict {label_name: label_value} :return:
scripts/writer.py
add
STASYA00/CityMorph
python
def add(self, instance, result): '\n\t\tFunction that adds an instance with its smart labels to the collection\n\t\t:param instance: name of instance, str\n\t\t:param result: smart labels, dict {label_name: label_value}\n\t\t:return:\n\t\t' self.content[instance] = result
def get_instances(self) -> list: '\n\t\tFunction that gets the instances that already exist in the file\n\t\t:return: existing instances, list\n\t\t' return list(self.content.keys())
-477,849,477,581,249,000
Function that gets the instances that already exist in the file :return: existing instances, list
scripts/writer.py
get_instances
STASYA00/CityMorph
python
def get_instances(self) -> list: '\n\t\tFunction that gets the instances that already exist in the file\n\t\t:return: existing instances, list\n\t\t' return list(self.content.keys())
def reset(self): '\n\t\tFunction that resets the file to an empty state.\n\t\t:return:\n\t\t' del self.content self.content = {}
-6,866,196,078,460,596,000
Function that resets the file to an empty state. :return:
scripts/writer.py
reset
STASYA00/CityMorph
python
def reset(self): '\n\t\tFunction that resets the file to an empty state.\n\t\t:return:\n\t\t' del self.content self.content = {}
def save(self): '\n\t\tFunction that saves all the smart labels in the class to a local file\n\t\tTODO: add saving to AWS based on AWS_SAVE in config\n\t\t:return:\n\t\t' with open(self.filename, 'w') as f: json.dump(self.content, f)
-2,173,692,445,259,486,500
Function that saves all the smart labels in the class to a local file TODO: add saving to AWS based on AWS_SAVE in config :return:
scripts/writer.py
save
STASYA00/CityMorph
python
def save(self): '\n\t\tFunction that saves all the smart labels in the class to a local file\n\t\tTODO: add saving to AWS based on AWS_SAVE in config\n\t\t:return:\n\t\t' with open(self.filename, 'w') as f: json.dump(self.content, f)
def save(self): "\n\t\tFunction that saves the writer's content to local system in json format.\n\t\t:return:\n\t\t" with open(self.filename, 'a') as json_file: json.dump(self.content, json_file)
466,244,485,614,108,900
Function that saves the writer's content to local system in json format. :return:
scripts/writer.py
save
STASYA00/CityMorph
python
def save(self): "\n\t\tFunction that saves the writer's content to local system in json format.\n\t\t:return:\n\t\t" with open(self.filename, 'a') as json_file: json.dump(self.content, json_file)
@tf_export('copy') def copy(input, tensor_name='', debug_ops_spec=[], name=None): 'Copy Op.\n\n Performs CPU-to-CPU or GPU-to-GPU deep-copying of tensor, depending on the\n device on which the tensor is allocated.\n N.B.: If the all downstream attached debug ops are disabled given the current\n gRPC gating status, the output will simply forward the input tensor without\n deep-copying. See the documentation of Debug* ops for more details.\n\n Unlike the CopyHost Op, this op does not have HostMemory constraint on its\n input or output.\n\n Args:\n input: A `Tensor`. Input tensor.\n tensor_name: An optional `string`. Defaults to `""`.\n The name of the input tensor.\n debug_ops_spec: An optional list of `strings`. Defaults to `[]`.\n A list of debug op spec (op, url, gated_grpc) for attached debug\n ops. Each element of the list has the format\n <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented\n as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1",\n "DebugIdentity;file:///tmp/tfdbg_1;0".\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor, deep-copied from input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_, _, _op) = _op_def_lib._apply_op_helper('Copy', input=input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_ops_spec', _op.get_attr('debug_ops_spec')) _execute.record_gradient('Copy', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'Copy', name, _ctx._post_execution_callbacks, input, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) return _result except _core._FallbackException: return copy_eager_fallback(input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
500,006,722,487,040,260
Copy Op. Performs CPU-to-CPU or GPU-to-GPU deep-copying of tensor, depending on the device on which the tensor is allocated. N.B.: If the all downstream attached debug ops are disabled given the current gRPC gating status, the output will simply forward the input tensor without deep-copying. See the documentation of Debug* ops for more details. Unlike the CopyHost Op, this op does not have HostMemory constraint on its input or output. Args: input: A `Tensor`. Input tensor. tensor_name: An optional `string`. Defaults to `""`. The name of the input tensor. debug_ops_spec: An optional list of `strings`. Defaults to `[]`. A list of debug op spec (op, url, gated_grpc) for attached debug ops. Each element of the list has the format <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1", "DebugIdentity;file:///tmp/tfdbg_1;0". name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. Output tensor, deep-copied from input.
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
copy
Soum-Soum/Tensorflow_Face_Finder
python
@tf_export('copy') def copy(input, tensor_name=, debug_ops_spec=[], name=None): 'Copy Op.\n\n Performs CPU-to-CPU or GPU-to-GPU deep-copying of tensor, depending on the\n device on which the tensor is allocated.\n N.B.: If the all downstream attached debug ops are disabled given the current\n gRPC gating status, the output will simply forward the input tensor without\n deep-copying. See the documentation of Debug* ops for more details.\n\n Unlike the CopyHost Op, this op does not have HostMemory constraint on its\n input or output.\n\n Args:\n input: A `Tensor`. Input tensor.\n tensor_name: An optional `string`. Defaults to ``.\n The name of the input tensor.\n debug_ops_spec: An optional list of `strings`. Defaults to `[]`.\n A list of debug op spec (op, url, gated_grpc) for attached debug\n ops. Each element of the list has the format\n <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented\n as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1",\n "DebugIdentity;file:///tmp/tfdbg_1;0".\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor, deep-copied from input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_, _, _op) = _op_def_lib._apply_op_helper('Copy', input=input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_ops_spec', _op.get_attr('debug_ops_spec')) _execute.record_gradient('Copy', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'Copy', name, _ctx._post_execution_callbacks, input, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) return _result except _core._FallbackException: return copy_eager_fallback(input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def copy_eager_fallback(input, tensor_name='', debug_ops_spec=[], name=None): 'This is the slowpath function for Eager mode.\n This is for function copy\n ' _ctx = _context.context() if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) _result = _execute.execute(b'Copy', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('Copy', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
-8,941,354,909,665,893,000
This is the slowpath function for Eager mode. This is for function copy
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
copy_eager_fallback
Soum-Soum/Tensorflow_Face_Finder
python
def copy_eager_fallback(input, tensor_name=, debug_ops_spec=[], name=None): 'This is the slowpath function for Eager mode.\n This is for function copy\n ' _ctx = _context.context() if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) _result = _execute.execute(b'Copy', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('Copy', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
@tf_export('copy_host') def copy_host(input, tensor_name='', debug_ops_spec=[], name=None): 'Copy Host Op.\n\n Performs CPU-to-CPU deep-copying of tensor.\n N.B.: If the all downstream attached debug ops are disabled given the current\n gRPC gating status, the output will simply forward the input tensor without\n deep-copying. See the documentation of Debug* ops for more details.\n\n Unlike the Copy Op, this op has HostMemory constraint on its input or output.\n\n Args:\n input: A `Tensor`. Input tensor.\n tensor_name: An optional `string`. Defaults to `""`.\n The name of the input tensor.\n debug_ops_spec: An optional list of `strings`. Defaults to `[]`.\n A list of debug op spec (op, url, gated_grpc) for attached debug\n ops. Each element of the list has the format\n <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented\n as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1",\n "DebugIdentity;file:///tmp/tfdbg_1;0".\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor, deep-copied from input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy_host' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_, _, _op) = _op_def_lib._apply_op_helper('CopyHost', input=input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_ops_spec', _op.get_attr('debug_ops_spec')) _execute.record_gradient('CopyHost', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'CopyHost', name, _ctx._post_execution_callbacks, input, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) return _result except _core._FallbackException: return copy_host_eager_fallback(input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
8,536,506,984,682,582,000
Copy Host Op. Performs CPU-to-CPU deep-copying of tensor. N.B.: If the all downstream attached debug ops are disabled given the current gRPC gating status, the output will simply forward the input tensor without deep-copying. See the documentation of Debug* ops for more details. Unlike the Copy Op, this op has HostMemory constraint on its input or output. Args: input: A `Tensor`. Input tensor. tensor_name: An optional `string`. Defaults to `""`. The name of the input tensor. debug_ops_spec: An optional list of `strings`. Defaults to `[]`. A list of debug op spec (op, url, gated_grpc) for attached debug ops. Each element of the list has the format <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1", "DebugIdentity;file:///tmp/tfdbg_1;0". name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. Output tensor, deep-copied from input.
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
copy_host
Soum-Soum/Tensorflow_Face_Finder
python
@tf_export('copy_host') def copy_host(input, tensor_name=, debug_ops_spec=[], name=None): 'Copy Host Op.\n\n Performs CPU-to-CPU deep-copying of tensor.\n N.B.: If the all downstream attached debug ops are disabled given the current\n gRPC gating status, the output will simply forward the input tensor without\n deep-copying. See the documentation of Debug* ops for more details.\n\n Unlike the Copy Op, this op has HostMemory constraint on its input or output.\n\n Args:\n input: A `Tensor`. Input tensor.\n tensor_name: An optional `string`. Defaults to ``.\n The name of the input tensor.\n debug_ops_spec: An optional list of `strings`. Defaults to `[]`.\n A list of debug op spec (op, url, gated_grpc) for attached debug\n ops. Each element of the list has the format\n <debug_op>;<grpc_url>;<gated_grpc>, wherein gated_grpc is boolean represented\n as 0/1. E.g., "DebugIdentity;grpc://foo:3333;1",\n "DebugIdentity;file:///tmp/tfdbg_1;0".\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor, deep-copied from input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy_host' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_, _, _op) = _op_def_lib._apply_op_helper('CopyHost', input=input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_ops_spec', _op.get_attr('debug_ops_spec')) _execute.record_gradient('CopyHost', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'CopyHost', name, _ctx._post_execution_callbacks, input, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) return _result except _core._FallbackException: return copy_host_eager_fallback(input, tensor_name=tensor_name, debug_ops_spec=debug_ops_spec, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def copy_host_eager_fallback(input, tensor_name='', debug_ops_spec=[], name=None): 'This is the slowpath function for Eager mode.\n This is for function copy_host\n ' _ctx = _context.context() if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy_host' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) _result = _execute.execute(b'CopyHost', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('CopyHost', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
-8,671,730,748,628,526,000
This is the slowpath function for Eager mode. This is for function copy_host
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
copy_host_eager_fallback
Soum-Soum/Tensorflow_Face_Finder
python
def copy_host_eager_fallback(input, tensor_name=, debug_ops_spec=[], name=None): 'This is the slowpath function for Eager mode.\n This is for function copy_host\n ' _ctx = _context.context() if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_ops_spec is None): debug_ops_spec = [] if (not isinstance(debug_ops_spec, (list, tuple))): raise TypeError(("Expected list for 'debug_ops_spec' argument to 'copy_host' Op, not %r." % debug_ops_spec)) debug_ops_spec = [_execute.make_str(_s, 'debug_ops_spec') for _s in debug_ops_spec] (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'tensor_name', tensor_name, 'debug_ops_spec', debug_ops_spec) _result = _execute.execute(b'CopyHost', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('CopyHost', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
@tf_export('debug_identity') def debug_identity(input, device_name='', tensor_name='', debug_urls=[], gated_grpc=False, name=None): 'Debug Identity Op.\n\n Provides an identity mapping of the non-Ref type input tensor for debugging.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type.\n device_name: An optional `string`. Defaults to `""`.\n tensor_name: An optional `string`. Defaults to `""`.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor that equals the input tensor.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_identity' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugIdentity', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugIdentity', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugIdentity', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_identity_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
-7,136,687,543,313,901,000
Debug Identity Op. Provides an identity mapping of the non-Ref type input tensor for debugging. Args: input: A `Tensor`. Input tensor, non-Reference type. device_name: An optional `string`. Defaults to `""`. tensor_name: An optional `string`. Defaults to `""`. Name of the input tensor. debug_urls: An optional list of `strings`. Defaults to `[]`. List of URLs to debug targets, e.g., file:///foo/tfdbg_dump, grpc:://localhost:11011 gated_grpc: An optional `bool`. Defaults to `False`. Whether this op will be gated. If any of the debug_urls of this debug node is of the grpc:// scheme, when the value of this attribute is set to True, the data will not actually be sent via the grpc stream unless this debug op has been enabled at the debug_url. If all of the debug_urls of this debug node are of the grpc:// scheme and the debug op is enabled at none of them, the output will be an empty Tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. Output tensor that equals the input tensor.
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_identity
Soum-Soum/Tensorflow_Face_Finder
python
@tf_export('debug_identity') def debug_identity(input, device_name=, tensor_name=, debug_urls=[], gated_grpc=False, name=None): 'Debug Identity Op.\n\n Provides an identity mapping of the non-Ref type input tensor for debugging.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type.\n device_name: An optional `string`. Defaults to ``.\n tensor_name: An optional `string`. Defaults to ``.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor`. Has the same type as `input`.\n Output tensor that equals the input tensor.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_identity' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugIdentity', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugIdentity', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugIdentity', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_identity_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def debug_identity_eager_fallback(input, device_name='', tensor_name='', debug_urls=[], gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_identity\n ' _ctx = _context.context() if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_identity' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugIdentity', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugIdentity', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
-1,054,784,189,007,809,000
This is the slowpath function for Eager mode. This is for function debug_identity
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_identity_eager_fallback
Soum-Soum/Tensorflow_Face_Finder
python
def debug_identity_eager_fallback(input, device_name=, tensor_name=, debug_urls=[], gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_identity\n ' _ctx = _context.context() if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_identity' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugIdentity', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugIdentity', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
@tf_export('debug_nan_count') def debug_nan_count(input, device_name='', tensor_name='', debug_urls=[], gated_grpc=False, name=None): 'Debug NaN Value Counter Op\n\n Counts number of NaNs in the input tensor, for debugging.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type.\n device_name: An optional `string`. Defaults to `""`.\n tensor_name: An optional `string`. Defaults to `""`.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011.\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `int64`.\n An integer output tensor that is the number of NaNs in the input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_nan_count' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugNanCount', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugNanCount', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugNanCount', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_nan_count_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
6,683,522,879,572,854,000
Debug NaN Value Counter Op Counts number of NaNs in the input tensor, for debugging. Args: input: A `Tensor`. Input tensor, non-Reference type. device_name: An optional `string`. Defaults to `""`. tensor_name: An optional `string`. Defaults to `""`. Name of the input tensor. debug_urls: An optional list of `strings`. Defaults to `[]`. List of URLs to debug targets, e.g., file:///foo/tfdbg_dump, grpc:://localhost:11011. gated_grpc: An optional `bool`. Defaults to `False`. Whether this op will be gated. If any of the debug_urls of this debug node is of the grpc:// scheme, when the value of this attribute is set to True, the data will not actually be sent via the grpc stream unless this debug op has been enabled at the debug_url. If all of the debug_urls of this debug node are of the grpc:// scheme and the debug op is enabled at none of them, the output will be an empty Tensor. name: A name for the operation (optional). Returns: A `Tensor` of type `int64`. An integer output tensor that is the number of NaNs in the input.
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_nan_count
Soum-Soum/Tensorflow_Face_Finder
python
@tf_export('debug_nan_count') def debug_nan_count(input, device_name=, tensor_name=, debug_urls=[], gated_grpc=False, name=None): 'Debug NaN Value Counter Op\n\n Counts number of NaNs in the input tensor, for debugging.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type.\n device_name: An optional `string`. Defaults to ``.\n tensor_name: An optional `string`. Defaults to ``.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011.\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `int64`.\n An integer output tensor that is the number of NaNs in the input.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_nan_count' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugNanCount', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugNanCount', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugNanCount', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_nan_count_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def debug_nan_count_eager_fallback(input, device_name='', tensor_name='', debug_urls=[], gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_nan_count\n ' _ctx = _context.context() if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_nan_count' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugNanCount', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugNanCount', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
5,057,920,901,955,037,000
This is the slowpath function for Eager mode. This is for function debug_nan_count
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_nan_count_eager_fallback
Soum-Soum/Tensorflow_Face_Finder
python
def debug_nan_count_eager_fallback(input, device_name=, tensor_name=, debug_urls=[], gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_nan_count\n ' _ctx = _context.context() if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_nan_count' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugNanCount', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugNanCount', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
@tf_export('debug_numeric_summary') def debug_numeric_summary(input, device_name='', tensor_name='', debug_urls=[], lower_bound=float('-inf'), upper_bound=float('inf'), mute_if_healthy=False, gated_grpc=False, name=None): 'Debug Numeric Summary Op.\n\n Provide a basic summary of numeric value types, range and distribution.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type, float or double.\n device_name: An optional `string`. Defaults to `""`.\n tensor_name: An optional `string`. Defaults to `""`.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011\n lower_bound: An optional `float`. Defaults to `float(\'-inf\')`.\n (float) The lower bound <= which values will be included in the\n generalized -inf count. Default: -inf.\n upper_bound: An optional `float`. Defaults to `float(\'inf\')`.\n (float) The upper bound >= which values will be included in the\n generalized +inf count. Default: +inf.\n mute_if_healthy: An optional `bool`. Defaults to `False`.\n (bool) Do not send data to the debug URLs unless at least one\n of elements [2], [3] and [7] (i.e., the nan count and the generalized -inf and\n inf counts) is non-zero.\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `float64`.\n A double tensor of shape [14 + nDimensions], where nDimensions is the\n the number of dimensions of the tensor\'s shape. The elements of output are:\n [0]: is initialized (1.0) or not (0.0).\n [1]: total number of elements\n [2]: NaN element count\n [3]: generalized -inf count: elements <= lower_bound. lower_bound is -inf by\n default.\n [4]: negative element count (excluding -inf), if lower_bound is the default\n -inf. Otherwise, this is the count of elements > lower_bound and < 0.\n [5]: zero element count\n [6]: positive element count (excluding +inf), if upper_bound is the default\n -inf. Otherwise, this is the count of elements < upper_bound and > 0.\n [7]: generalized +inf count, elements >= upper_bound. upper_bound is +inf by\n default.\n Output elements [1:8] are all zero, if the tensor is uninitialized.\n [8]: minimum of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: +inf.\n [9]: maximum of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: -inf.\n [10]: mean of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: NaN.\n [11]: variance of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: NaN.\n [12]: Data type of the tensor encoded as an enum integer. See the DataType\n proto for more details.\n [13]: Number of dimensions of the tensor (ndims).\n [14+]: Sizes of the dimensions.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_numeric_summary' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (lower_bound is None): lower_bound = float('-inf') lower_bound = _execute.make_float(lower_bound, 'lower_bound') if (upper_bound is None): upper_bound = float('inf') upper_bound = _execute.make_float(upper_bound, 'upper_bound') if (mute_if_healthy is None): mute_if_healthy = False mute_if_healthy = _execute.make_bool(mute_if_healthy, 'mute_if_healthy') if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugNumericSummary', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, lower_bound=lower_bound, upper_bound=upper_bound, mute_if_healthy=mute_if_healthy, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'lower_bound', _op.get_attr('lower_bound'), 'upper_bound', _op.get_attr('upper_bound'), 'mute_if_healthy', _op.get_attr('mute_if_healthy'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugNumericSummary', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugNumericSummary', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'lower_bound', lower_bound, 'upper_bound', upper_bound, 'mute_if_healthy', mute_if_healthy, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_numeric_summary_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, lower_bound=lower_bound, upper_bound=upper_bound, mute_if_healthy=mute_if_healthy, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
-8,895,079,336,447,695,000
Debug Numeric Summary Op. Provide a basic summary of numeric value types, range and distribution. Args: input: A `Tensor`. Input tensor, non-Reference type, float or double. device_name: An optional `string`. Defaults to `""`. tensor_name: An optional `string`. Defaults to `""`. Name of the input tensor. debug_urls: An optional list of `strings`. Defaults to `[]`. List of URLs to debug targets, e.g., file:///foo/tfdbg_dump, grpc:://localhost:11011 lower_bound: An optional `float`. Defaults to `float('-inf')`. (float) The lower bound <= which values will be included in the generalized -inf count. Default: -inf. upper_bound: An optional `float`. Defaults to `float('inf')`. (float) The upper bound >= which values will be included in the generalized +inf count. Default: +inf. mute_if_healthy: An optional `bool`. Defaults to `False`. (bool) Do not send data to the debug URLs unless at least one of elements [2], [3] and [7] (i.e., the nan count and the generalized -inf and inf counts) is non-zero. gated_grpc: An optional `bool`. Defaults to `False`. Whether this op will be gated. If any of the debug_urls of this debug node is of the grpc:// scheme, when the value of this attribute is set to True, the data will not actually be sent via the grpc stream unless this debug op has been enabled at the debug_url. If all of the debug_urls of this debug node are of the grpc:// scheme and the debug op is enabled at none of them, the output will be an empty Tensor. name: A name for the operation (optional). Returns: A `Tensor` of type `float64`. A double tensor of shape [14 + nDimensions], where nDimensions is the the number of dimensions of the tensor's shape. The elements of output are: [0]: is initialized (1.0) or not (0.0). [1]: total number of elements [2]: NaN element count [3]: generalized -inf count: elements <= lower_bound. lower_bound is -inf by default. [4]: negative element count (excluding -inf), if lower_bound is the default -inf. Otherwise, this is the count of elements > lower_bound and < 0. [5]: zero element count [6]: positive element count (excluding +inf), if upper_bound is the default -inf. Otherwise, this is the count of elements < upper_bound and > 0. [7]: generalized +inf count, elements >= upper_bound. upper_bound is +inf by default. Output elements [1:8] are all zero, if the tensor is uninitialized. [8]: minimum of all non-inf and non-NaN elements. If uninitialized or no such element exists: +inf. [9]: maximum of all non-inf and non-NaN elements. If uninitialized or no such element exists: -inf. [10]: mean of all non-inf and non-NaN elements. If uninitialized or no such element exists: NaN. [11]: variance of all non-inf and non-NaN elements. If uninitialized or no such element exists: NaN. [12]: Data type of the tensor encoded as an enum integer. See the DataType proto for more details. [13]: Number of dimensions of the tensor (ndims). [14+]: Sizes of the dimensions.
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_numeric_summary
Soum-Soum/Tensorflow_Face_Finder
python
@tf_export('debug_numeric_summary') def debug_numeric_summary(input, device_name=, tensor_name=, debug_urls=[], lower_bound=float('-inf'), upper_bound=float('inf'), mute_if_healthy=False, gated_grpc=False, name=None): 'Debug Numeric Summary Op.\n\n Provide a basic summary of numeric value types, range and distribution.\n\n Args:\n input: A `Tensor`. Input tensor, non-Reference type, float or double.\n device_name: An optional `string`. Defaults to ``.\n tensor_name: An optional `string`. Defaults to ``.\n Name of the input tensor.\n debug_urls: An optional list of `strings`. Defaults to `[]`.\n List of URLs to debug targets, e.g.,\n file:///foo/tfdbg_dump, grpc:://localhost:11011\n lower_bound: An optional `float`. Defaults to `float(\'-inf\')`.\n (float) The lower bound <= which values will be included in the\n generalized -inf count. Default: -inf.\n upper_bound: An optional `float`. Defaults to `float(\'inf\')`.\n (float) The upper bound >= which values will be included in the\n generalized +inf count. Default: +inf.\n mute_if_healthy: An optional `bool`. Defaults to `False`.\n (bool) Do not send data to the debug URLs unless at least one\n of elements [2], [3] and [7] (i.e., the nan count and the generalized -inf and\n inf counts) is non-zero.\n gated_grpc: An optional `bool`. Defaults to `False`.\n Whether this op will be gated. If any of the debug_urls of this\n debug node is of the grpc:// scheme, when the value of this attribute is set\n to True, the data will not actually be sent via the grpc stream unless this\n debug op has been enabled at the debug_url. If all of the debug_urls of this\n debug node are of the grpc:// scheme and the debug op is enabled at none of\n them, the output will be an empty Tensor.\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `float64`.\n A double tensor of shape [14 + nDimensions], where nDimensions is the\n the number of dimensions of the tensor\'s shape. The elements of output are:\n [0]: is initialized (1.0) or not (0.0).\n [1]: total number of elements\n [2]: NaN element count\n [3]: generalized -inf count: elements <= lower_bound. lower_bound is -inf by\n default.\n [4]: negative element count (excluding -inf), if lower_bound is the default\n -inf. Otherwise, this is the count of elements > lower_bound and < 0.\n [5]: zero element count\n [6]: positive element count (excluding +inf), if upper_bound is the default\n -inf. Otherwise, this is the count of elements < upper_bound and > 0.\n [7]: generalized +inf count, elements >= upper_bound. upper_bound is +inf by\n default.\n Output elements [1:8] are all zero, if the tensor is uninitialized.\n [8]: minimum of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: +inf.\n [9]: maximum of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: -inf.\n [10]: mean of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: NaN.\n [11]: variance of all non-inf and non-NaN elements.\n If uninitialized or no such element exists: NaN.\n [12]: Data type of the tensor encoded as an enum integer. See the DataType\n proto for more details.\n [13]: Number of dimensions of the tensor (ndims).\n [14+]: Sizes of the dimensions.\n ' _ctx = _context.context() if (not _ctx.executing_eagerly()): if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_numeric_summary' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (lower_bound is None): lower_bound = float('-inf') lower_bound = _execute.make_float(lower_bound, 'lower_bound') if (upper_bound is None): upper_bound = float('inf') upper_bound = _execute.make_float(upper_bound, 'upper_bound') if (mute_if_healthy is None): mute_if_healthy = False mute_if_healthy = _execute.make_bool(mute_if_healthy, 'mute_if_healthy') if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_, _, _op) = _op_def_lib._apply_op_helper('DebugNumericSummary', input=input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, lower_bound=lower_bound, upper_bound=upper_bound, mute_if_healthy=mute_if_healthy, gated_grpc=gated_grpc, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ('T', _op.get_attr('T'), 'device_name', _op.get_attr('device_name'), 'tensor_name', _op.get_attr('tensor_name'), 'debug_urls', _op.get_attr('debug_urls'), 'lower_bound', _op.get_attr('lower_bound'), 'upper_bound', _op.get_attr('upper_bound'), 'mute_if_healthy', _op.get_attr('mute_if_healthy'), 'gated_grpc', _op.get_attr('gated_grpc')) _execute.record_gradient('DebugNumericSummary', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._handle, _ctx.device_name, 'DebugNumericSummary', name, _ctx._post_execution_callbacks, input, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'lower_bound', lower_bound, 'upper_bound', upper_bound, 'mute_if_healthy', mute_if_healthy, 'gated_grpc', gated_grpc) return _result except _core._FallbackException: return debug_numeric_summary_eager_fallback(input, device_name=device_name, tensor_name=tensor_name, debug_urls=debug_urls, lower_bound=lower_bound, upper_bound=upper_bound, mute_if_healthy=mute_if_healthy, gated_grpc=gated_grpc, name=name) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def debug_numeric_summary_eager_fallback(input, device_name='', tensor_name='', debug_urls=[], lower_bound=float('-inf'), upper_bound=float('inf'), mute_if_healthy=False, gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_numeric_summary\n ' _ctx = _context.context() if (device_name is None): device_name = '' device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = '' tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_numeric_summary' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (lower_bound is None): lower_bound = float('-inf') lower_bound = _execute.make_float(lower_bound, 'lower_bound') if (upper_bound is None): upper_bound = float('inf') upper_bound = _execute.make_float(upper_bound, 'upper_bound') if (mute_if_healthy is None): mute_if_healthy = False mute_if_healthy = _execute.make_bool(mute_if_healthy, 'mute_if_healthy') if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'lower_bound', lower_bound, 'upper_bound', upper_bound, 'mute_if_healthy', mute_if_healthy, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugNumericSummary', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugNumericSummary', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
2,770,299,211,202,803,700
This is the slowpath function for Eager mode. This is for function debug_numeric_summary
venv1/Lib/site-packages/tensorflow/python/debug/ops/gen_debug_ops.py
debug_numeric_summary_eager_fallback
Soum-Soum/Tensorflow_Face_Finder
python
def debug_numeric_summary_eager_fallback(input, device_name=, tensor_name=, debug_urls=[], lower_bound=float('-inf'), upper_bound=float('inf'), mute_if_healthy=False, gated_grpc=False, name=None): 'This is the slowpath function for Eager mode.\n This is for function debug_numeric_summary\n ' _ctx = _context.context() if (device_name is None): device_name = device_name = _execute.make_str(device_name, 'device_name') if (tensor_name is None): tensor_name = tensor_name = _execute.make_str(tensor_name, 'tensor_name') if (debug_urls is None): debug_urls = [] if (not isinstance(debug_urls, (list, tuple))): raise TypeError(("Expected list for 'debug_urls' argument to 'debug_numeric_summary' Op, not %r." % debug_urls)) debug_urls = [_execute.make_str(_s, 'debug_urls') for _s in debug_urls] if (lower_bound is None): lower_bound = float('-inf') lower_bound = _execute.make_float(lower_bound, 'lower_bound') if (upper_bound is None): upper_bound = float('inf') upper_bound = _execute.make_float(upper_bound, 'upper_bound') if (mute_if_healthy is None): mute_if_healthy = False mute_if_healthy = _execute.make_bool(mute_if_healthy, 'mute_if_healthy') if (gated_grpc is None): gated_grpc = False gated_grpc = _execute.make_bool(gated_grpc, 'gated_grpc') (_attr_T, (input,)) = _execute.args_to_matching_eager([input], _ctx) _inputs_flat = [input] _attrs = ('T', _attr_T, 'device_name', device_name, 'tensor_name', tensor_name, 'debug_urls', debug_urls, 'lower_bound', lower_bound, 'upper_bound', upper_bound, 'mute_if_healthy', mute_if_healthy, 'gated_grpc', gated_grpc) _result = _execute.execute(b'DebugNumericSummary', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('DebugNumericSummary', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
@click.command('exons', short_help='Load exons') @click.option('-e', '--exons-file', type=click.Path(exists=True), help='Path to file with ensembl exons') @click.option('-b', '--build', type=click.Choice(['37', '38']), default='37', show_default=True) @with_appcontext def exons(build, exons_file): 'Load exons into the scout database. If no file, fetch exons from ensembl biomart' adapter = store LOG.info('Running scout load exons') start = datetime.now() existing_exon = adapter.exon(build=build) if existing_exon: LOG.warning('Dropping all exons ') adapter.drop_exons(build=build) LOG.info('Exons dropped') nr_exons = 0 if exons_file: ensembl_exons = get_file_handle(exons_file) for (nr_exons, line) in enumerate(ensembl_exons, 1): pass ensembl_exons = get_file_handle(exons_file) else: ensembl_exons = fetch_ensembl_exons(build=build) nr_exons = 1360000 try: load_exons(adapter, ensembl_exons, build, nr_exons=nr_exons) except Exception as err: LOG.warning('Something went wrong with ensembl biomart') LOG.info('Please download a mart dump manually, see instructions in user guide for admins') return LOG.info('Time to load exons: {0}'.format((datetime.now() - start)))
-8,420,868,486,457,255,000
Load exons into the scout database. If no file, fetch exons from ensembl biomart
scout/commands/load/exons.py
exons
Clinical-Genomics/scout
python
@click.command('exons', short_help='Load exons') @click.option('-e', '--exons-file', type=click.Path(exists=True), help='Path to file with ensembl exons') @click.option('-b', '--build', type=click.Choice(['37', '38']), default='37', show_default=True) @with_appcontext def exons(build, exons_file): adapter = store LOG.info('Running scout load exons') start = datetime.now() existing_exon = adapter.exon(build=build) if existing_exon: LOG.warning('Dropping all exons ') adapter.drop_exons(build=build) LOG.info('Exons dropped') nr_exons = 0 if exons_file: ensembl_exons = get_file_handle(exons_file) for (nr_exons, line) in enumerate(ensembl_exons, 1): pass ensembl_exons = get_file_handle(exons_file) else: ensembl_exons = fetch_ensembl_exons(build=build) nr_exons = 1360000 try: load_exons(adapter, ensembl_exons, build, nr_exons=nr_exons) except Exception as err: LOG.warning('Something went wrong with ensembl biomart') LOG.info('Please download a mart dump manually, see instructions in user guide for admins') return LOG.info('Time to load exons: {0}'.format((datetime.now() - start)))
def dictkeys(dct): '\n Returns a list of keys of dictionary\n\n dict.keys returns a view that works like .keys in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return list(dct.keys())
-3,805,923,842,563,118,600
Returns a list of keys of dictionary dict.keys returns a view that works like .keys in Python 2 *except* any modifications in the dictionary will be visible (and will cause errors if the view is being iterated over while it is modified).
pika/compat.py
dictkeys
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def dictkeys(dct): '\n Returns a list of keys of dictionary\n\n dict.keys returns a view that works like .keys in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return list(dct.keys())
def dictvalues(dct): '\n Returns a list of values of a dictionary\n\n dict.values returns a view that works like .values in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return list(dct.values())
2,355,709,757,336,019,500
Returns a list of values of a dictionary dict.values returns a view that works like .values in Python 2 *except* any modifications in the dictionary will be visible (and will cause errors if the view is being iterated over while it is modified).
pika/compat.py
dictvalues
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def dictvalues(dct): '\n Returns a list of values of a dictionary\n\n dict.values returns a view that works like .values in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return list(dct.values())
def dict_iteritems(dct): '\n Returns an iterator of items (key/value pairs) of a dictionary\n\n dict.items returns a view that works like .items in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return dct.items()
-837,165,073,974,448,100
Returns an iterator of items (key/value pairs) of a dictionary dict.items returns a view that works like .items in Python 2 *except* any modifications in the dictionary will be visible (and will cause errors if the view is being iterated over while it is modified).
pika/compat.py
dict_iteritems
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def dict_iteritems(dct): '\n Returns an iterator of items (key/value pairs) of a dictionary\n\n dict.items returns a view that works like .items in Python 2\n *except* any modifications in the dictionary will be visible\n (and will cause errors if the view is being iterated over while\n it is modified).\n ' return dct.items()
def dict_itervalues(dct): '\n :param dict dct:\n :returns: an iterator of the values of a dictionary\n ' return dct.values()
5,895,645,862,643,673,000
:param dict dct: :returns: an iterator of the values of a dictionary
pika/compat.py
dict_itervalues
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def dict_itervalues(dct): '\n :param dict dct:\n :returns: an iterator of the values of a dictionary\n ' return dct.values()
def byte(*args): '\n This is the same as Python 2 `chr(n)` for bytes in Python 3\n\n Returns a single byte `bytes` for the given int argument (we\n optimize it a bit here by passing the positional argument tuple\n directly to the bytes constructor.\n ' return bytes(args)
-8,906,836,667,376,551,000
This is the same as Python 2 `chr(n)` for bytes in Python 3 Returns a single byte `bytes` for the given int argument (we optimize it a bit here by passing the positional argument tuple directly to the bytes constructor.
pika/compat.py
byte
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def byte(*args): '\n This is the same as Python 2 `chr(n)` for bytes in Python 3\n\n Returns a single byte `bytes` for the given int argument (we\n optimize it a bit here by passing the positional argument tuple\n directly to the bytes constructor.\n ' return bytes(args)
def canonical_str(value): '\n Return the canonical str value for the string.\n In both Python 3 and Python 2 this is str.\n ' return str(value)
-6,477,917,416,949,840,000
Return the canonical str value for the string. In both Python 3 and Python 2 this is str.
pika/compat.py
canonical_str
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def canonical_str(value): '\n Return the canonical str value for the string.\n In both Python 3 and Python 2 this is str.\n ' return str(value)
def canonical_str(value): '\n Returns the canonical string value of the given string.\n In Python 2 this is the value unchanged if it is an str, otherwise\n it is the unicode value encoded as UTF-8.\n ' try: return str(value) except UnicodeEncodeError: return str(value.encode('utf-8'))
-7,015,359,506,289,830,000
Returns the canonical string value of the given string. In Python 2 this is the value unchanged if it is an str, otherwise it is the unicode value encoded as UTF-8.
pika/compat.py
canonical_str
EnjoyLifeFund/macHighSierra-py36-pkgs
python
def canonical_str(value): '\n Returns the canonical string value of the given string.\n In Python 2 this is the value unchanged if it is an str, otherwise\n it is the unicode value encoded as UTF-8.\n ' try: return str(value) except UnicodeEncodeError: return str(value.encode('utf-8'))
def __init__(self, value=None, reject_on_error=None, checked=None, local_vars_configuration=None): 'ExtendedBoolValueTest - a model defined in OpenAPI' if (local_vars_configuration is None): local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._value = None self._reject_on_error = None self._checked = None self.discriminator = None if (value is not None): self.value = value if (reject_on_error is not None): self.reject_on_error = reject_on_error if (checked is not None): self.checked = checked
5,704,099,914,382,409,000
ExtendedBoolValueTest - a model defined in OpenAPI
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
__init__
Telestream/telestream-cloud-python-sdk
python
def __init__(self, value=None, reject_on_error=None, checked=None, local_vars_configuration=None): if (local_vars_configuration is None): local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._value = None self._reject_on_error = None self._checked = None self.discriminator = None if (value is not None): self.value = value if (reject_on_error is not None): self.reject_on_error = reject_on_error if (checked is not None): self.checked = checked
@property def value(self): 'Gets the value of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The value of this ExtendedBoolValueTest. # noqa: E501\n :rtype: ExtendedBool\n ' return self._value
-7,428,640,341,322,616,000
Gets the value of this ExtendedBoolValueTest. # noqa: E501 :return: The value of this ExtendedBoolValueTest. # noqa: E501 :rtype: ExtendedBool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
value
Telestream/telestream-cloud-python-sdk
python
@property def value(self): 'Gets the value of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The value of this ExtendedBoolValueTest. # noqa: E501\n :rtype: ExtendedBool\n ' return self._value
@value.setter def value(self, value): 'Sets the value of this ExtendedBoolValueTest.\n\n\n :param value: The value of this ExtendedBoolValueTest. # noqa: E501\n :type: ExtendedBool\n ' self._value = value
-8,696,274,499,143,007,000
Sets the value of this ExtendedBoolValueTest. :param value: The value of this ExtendedBoolValueTest. # noqa: E501 :type: ExtendedBool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
value
Telestream/telestream-cloud-python-sdk
python
@value.setter def value(self, value): 'Sets the value of this ExtendedBoolValueTest.\n\n\n :param value: The value of this ExtendedBoolValueTest. # noqa: E501\n :type: ExtendedBool\n ' self._value = value
@property def reject_on_error(self): 'Gets the reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n :rtype: bool\n ' return self._reject_on_error
5,830,948,398,873,198,000
Gets the reject_on_error of this ExtendedBoolValueTest. # noqa: E501 :return: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501 :rtype: bool
telestream_cloud_qc_sdk/telestream_cloud_qc/models/extended_bool_value_test.py
reject_on_error
Telestream/telestream-cloud-python-sdk
python
@property def reject_on_error(self): 'Gets the reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n\n\n :return: The reject_on_error of this ExtendedBoolValueTest. # noqa: E501\n :rtype: bool\n ' return self._reject_on_error