content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def create_virtual_cdrom_spec(client_factory,
datastore,
controller_key,
file_path,
cdrom_unit_number):
"""Builds spec for the creation of a new Virtual CDROM to the VM."""
config_spec = client_factory.create(
'ns0:VirtualDeviceConfigSpec')
config_spec.operation = "add"
cdrom = client_factory.create('ns0:VirtualCdrom')
cdrom_device_backing = client_factory.create(
'ns0:VirtualCdromIsoBackingInfo')
cdrom_device_backing.datastore = datastore
cdrom_device_backing.fileName = file_path
cdrom.backing = cdrom_device_backing
cdrom.controllerKey = controller_key
cdrom.unitNumber = cdrom_unit_number
cdrom.key = -1
connectable_spec = client_factory.create('ns0:VirtualDeviceConnectInfo')
connectable_spec.startConnected = True
connectable_spec.allowGuestControl = False
connectable_spec.connected = True
cdrom.connectable = connectable_spec
config_spec.device = cdrom
return config_spec | 8f62c70c432c368f0f94b3c1dc48f38d75093b07 | 7,270 |
def plot_mean_and_CI(axes, mean, lb, ub, label, freqs, linestyle='-'):
""" Plot mean and confidence boundaries.
Args:
axes: plt.axes
mean: np.ndarray
lb: np.ndarray
ub: np.ndarray
label: string
freqs: list
linestyle: string
Returns: plt.axes
"""
axes.fill_between(freqs, ub, lb, alpha=.25)
axes.plot(freqs, mean, label=label, marker = 'o', linestyle=linestyle)
return axes | 77b7ecaa6dddae474495c0a65efafbf08717584c | 7,273 |
def locked(acquire, release):
"""Decorator taking two methods to acquire/release a lock as argument,
returning a decorator function which will call the inner method after
having called acquire(self) et will call release(self) afterwards.
"""
def decorator(f):
def wrapper(self, *args, **kwargs):
acquire(self)
try:
return f(self, *args, **kwargs)
finally:
release(self)
return wrapper
return decorator | 92f8ae3b36375d14962997436bc1d210510b4cdb | 7,274 |
def check_next_in_request(request):
"""
Проверяет наличие слова 'next' в объекте запроса request методе POST
:param request:
:return:
"""
return True if 'next' in request.POST else False | b70ba54fa32234798b842ffcb24834fdcd95c827 | 7,276 |
def overlap_slices(large_array_shape, small_array_shape, position):
"""
Modified version of `~astropy.nddata.utils.overlap_slices`.
Get slices for the overlapping part of a small and a large array.
Given a certain position of the center of the small array, with
respect to the large array, tuples of slices are returned which can be
used to extract, add or subtract the small array at the given
position. This function takes care of the correct behavior at the
boundaries, where the small array is cut of appropriately.
Parameters
----------
large_array_shape : tuple
Shape of the large array.
small_array_shape : tuple
Shape of the small array.
position : tuple
Position of the small array's center, with respect to the large array.
Coordinates should be in the same order as the array shape.
Returns
-------
slices_large : tuple of slices
Slices in all directions for the large array, such that
``large_array[slices_large]`` extracts the region of the large array
that overlaps with the small array.
slices_small : slice
Slices in all directions for the small array, such that
``small_array[slices_small]`` extracts the region that is inside the
large array.
"""
# Get edge coordinates
edges_min = [int(pos - small_shape // 2) for (pos, small_shape) in
zip(position, small_array_shape)]
edges_max = [int(pos + (small_shape - small_shape // 2)) for
(pos, small_shape) in
zip(position, small_array_shape)]
# Set up slices
slices_large = tuple(slice(max(0, edge_min), min(large_shape, edge_max))
for (edge_min, edge_max, large_shape) in
zip(edges_min, edges_max, large_array_shape))
slices_small = tuple(slice(max(0, -edge_min),
min(large_shape - edge_min,
edge_max - edge_min))
for (edge_min, edge_max, large_shape) in
zip(edges_min, edges_max, large_array_shape))
return slices_large, slices_small | ef86928b3ef619f209247bb72e2e391d14d541c4 | 7,277 |
import numpy
def rotmat(x, origin=(0, 0, 0), upvector=(0, 0, 1)):
"""
Given a position vector x, find the rotation matrix to r,h,v coordinates.
"""
x = numpy.asarray(x) - numpy.asarray(origin)
nr = x / numpy.sqrt((x * x).sum())
nh = numpy.cross(upvector, nr)
if all(nh == 0.0):
nh = numpy.cross((1, 0, 0), nr)
if all(nh == 0.0):
nh = numpy.cross((0, 1, 0), nr)
nh = nh / numpy.sqrt((nh * nh).sum())
nv = numpy.cross(nr, nh)
nv = nv / numpy.sqrt((nv * nv).sum())
return numpy.array([nr, nh, nv]) | 519d7aaa15dd48bb31aed0059c01f365f4e8118b | 7,278 |
def product(data):
"""
Generate the product for the entries specified by the data.
"""
return "tRNA-{aa} ({anticodon})".format(
aa=data["metadata"]["isotype"],
anticodon=data["metadata"]["anticodon"],
) | 5f347cfa1fd7d7030fb1b1a5d2e88eb664c831ae | 7,280 |
def get_zygosity(call):
"""Check if a variant position qualifies as a variant
0,1,2,3==HOM_REF, HET, UNKNOWN, HOM_ALT"""
zygdict = dict([(0, "nocall"), (1, "het"), (2, "nocall"), (3, "hom")])
return zygdict[call] | aff88ed481beeb6406261822eca482430494b6f6 | 7,281 |
import torch
def create_batch(sentences, params, dico):
""" Convert a list of tokenized sentences into a Pytorch batch
args:
sentences: list of sentences
params: attribute params of the loaded model
dico: dictionary
returns:
word_ids: indices of the tokens
lengths: lengths of each sentence in the batch
"""
bs = len(sentences)
slen = max([len(sent) for sent in sentences])
word_ids = torch.LongTensor(slen, bs).fill_(params.pad_index)
for i in range(len(sentences)):
sent = torch.LongTensor([dico.index(w) for w in sentences[i]])
word_ids[:len(sent), i] = sent
lengths = torch.LongTensor([len(sent) for sent in sentences])
return word_ids, lengths | c08430651ea20f633169187f62f7b22e09bbd17e | 7,283 |
from typing import List
def make_pos_array_and_diff(trials: List[dict]) -> List[dict]:
"""
Parameters
----------
trials : Non-filtered refinement trials
Returns
-------
A list of dictionaries with updated position and difference of neighbours
"""
_trials = trials[:]
for i, c in enumerate(trials):
x_array = sorted([d['pos'] for d in trials[i]['comb']])
_trials[i]['pos_array'] = x_array
_trials[i]['diff_array'] = [x_array[i] - x_array[i + 1] for i in range(len(x_array) - 1)]
# print(x_array)
# print(len(trials))
# trials[i]['comb']
return _trials | ebdb0a63d9399985d11b06ec28d4032a54b22f89 | 7,284 |
def coords_json_to_api_pan(ang_clockwise):
"""converts from robot coordinates to API coordinates."""
return ang_clockwise | 6511b7cf196a171095b184d48281f25f97fc6792 | 7,285 |
def dict_other_json(imagePath, imageData, shapes, fillColor=None, lineColor=None):
"""
:param lineColor: list
:param fillColor: list
:param imageData: str
:param imagePath: str
:return: dict""
"""
# return {"shapes": shapes, "lineColor": lineColor, "fillColor": fillColor, "imageData": imageData,
# "imagePath": imagePath}
return {"imagePath": imagePath, "imageData": imageData, "shapes": shapes, "fillColor": fillColor, "lineColor": lineColor
} | 3742664276d70ce5f037ba99994c8c2e61114107 | 7,286 |
def get_ast_field_name(ast):
"""Return the normalized field name for the given AST node."""
replacements = {
# We always rewrite the following field names into their proper underlying counterparts.
'__typename': '@class'
}
base_field_name = ast.name.value
normalized_name = replacements.get(base_field_name, base_field_name)
return normalized_name | c5cf0acbca963e7dc0d853064a2599b732d6b0d1 | 7,287 |
def olivine(piezometer=None):
""" Data base for calcite piezometers. It returns the material parameter,
the exponent parameter and a warn with the "average" grain size measure to be use.
Parameter
---------
piezometer : string or None
the piezometric relation
References
----------
| Jung and Karato (2001) https://doi.org/10.1016/S0191-8141(01)00005-0
| Van der Wal et al. (1993) https://doi.org/10.1029/93GL01382
Assumptions
-----------
- The piezometer of Van der Wal (1993) requires entering the linear mean apparent
grain size in microns calculated from equivalent circular diameters (ECD) with no
stereological correction. The function will convert automatically this value to
linear intercept (LI) grain size using the De Hoff and Rhines (1968) correction.
It is assumed that LI was multiplied by 1.5 (correction factor), the final relation
is: LI = (1.5 / sqrt(4/pi)) * ECD
- The piezometer of Jung and Karato (2001) requires entering the linear mean
apparent grain size in microns calculated from equivalent circular diameters
(ECD) with no stereological correction. The function will convert automatically
this value to linear intercept (LI) grain size using the De Hoff and Rhines
(1968) empirical equation. Since LI was originally multiplied by 1.5 (correction
factor), the final relation is: LI = (1.5 / sqrt(4/pi)) * ECD
"""
if piezometer is None:
print('Available piezometers:')
print("'Jung_Karato'")
print("'VanderWal_wet'")
print("'Tasaka_wet'")
return None
elif piezometer == 'Jung_Karato':
B, m = 5461.03, 0.85
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = True
correction_factor = 1.5
elif piezometer == 'VanderWal_wet':
B, m = 1355.4, 0.75
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = True
correction_factor = 1.5
elif piezometer == 'Tasaka_wet':
B, m = 719.7, 0.75
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = False
correction_factor = 1.2
else:
olivine()
raise ValueError('Piezometer name misspelled. Please choose between valid piezometers')
return B, m, warn, linear_interceps, correction_factor | 387ea9413acdf551abe108ba5ba7dda51e162c51 | 7,288 |
from typing import Tuple
import re
import typing
def hex_to_rgb(hex: str, hsl: bool = False) -> Tuple[int, int, int]:
"""Converts a HEX code into RGB or HSL.
Taken from https://stackoverflow.com/a/62083599/7853533
Args:
hex (str): Takes both short as well as long HEX codes.
hsl (bool): Converts the given HEX code into HSL value if True.
Returns:
Tuple[int, int, int]: Tuple of RGB values.
Raises:
ValueError: If given value is not a valid HEX code.
"""
if re.compile(r"#[a-fA-F0-9]{3}(?:[a-fA-F0-9]{3})?$").match(hex):
div = 255 if hsl else 0
if len(hex) <= 4:
rgb = tuple(
int(int(hex[i] * 2, 16) / div) if div else int(hex[i] * 2, 16)
for i in (1, 2, 3)
)
else:
rgb = tuple(
int(int(hex[i : i + 2], 16) / div) if div else int(hex[i : i + 2], 16)
for i in (1, 3, 5)
)
rgb = typing.cast(Tuple[int, int, int], rgb)
return rgb
raise ValueError(f"{hex} is not a valid HEX code.") | 2c912dacfcf6c52c21c94c5d7bb9b9763279245d | 7,290 |
def get_mode_C_array(mode_C):
"""冷房の運転モードを取得する
Args:
mode_C(str): 冷房方式
Returns:
tuple: 冷房の運転モード
"""
# 運転モード(冷房)
if mode_C == '住戸全体を連続的に冷房する方式':
return tuple(["全館連続"] * 12)
else:
return ('居室間歇', '居室間歇', '居室間歇', '居室間歇', '居室間歇', None, None, None, None, None, None, None) | 6b9bce2eccab7698ec78ef3b843b17f3c3c9200d | 7,291 |
from datetime import datetime
def get_date():
""" gets current date """
return datetime.now() | dccf420bc6eb216bf76ee153504696ec1c390b5d | 7,292 |
def singular(plural):
"""
Take a plural English word and turn it into singular
Obviously, this doesn't work in general. It know just enough words to
generate XML tag names for list items. For example, if we have an element
called 'tracks' in the response, it will be serialized as a list without
named items in JSON, but we need names for items in XML, so those will be
called 'track'.
"""
if plural.endswith('ies'):
return plural[:-3] + 'y'
if plural.endswith('s'):
return plural[:-1]
raise ValueError('unknown plural form %r' % (plural,)) | 92ab7e074387d943d5593d759a10b3fafa67deca | 7,293 |
def crop_and_revenue_to_df(financial_annual_overview, waste_adjusted_yields, total_sales, vadded_sales, education_rev, tourism_rev, hospitality_rev, grants_rev):
"""Adding yields and sales information to financial overview
Notes:
Adds waste-adjusted yields for crops 1, 2, 3 and 4 with total sales to dataframe
Args:
financial_annual_overview (dataframe): An annual overview of financial data
w1 (list): Timeseries of expected yield for crop 4
w2 (list): Timeseries of expected yield for crop 4
w3 (list): Timeseries of expected yield for crop 4
w4 (list): Timeseries of expected yield for crop 4
total_sales (list): Timeseries of total sales
Returns:
financial_annual_overview (dataframe): Financial overview of important data
"""
for i, w in enumerate(waste_adjusted_yields):
financial_annual_overview.loc[f"Yield Crop {i+1}"] = w
financial_annual_overview.loc['Revenue - Crop Sales'] = total_sales
financial_annual_overview.loc['Revenue - Value-Added Products'] = vadded_sales
financial_annual_overview.loc['Revenue - Education'] = education_rev
financial_annual_overview.loc['Revenue - Tourism'] = tourism_rev
financial_annual_overview.loc['Revenue - Hospitality'] = hospitality_rev
financial_annual_overview.loc['Revenue - Grants'] = grants_rev
financial_annual_overview.loc['Total Revenue'] = financial_annual_overview.loc['Revenue - Hospitality'] + \
financial_annual_overview.loc['Revenue - Crop Sales'] + financial_annual_overview.loc['Revenue - Value-Added Products'] + financial_annual_overview.loc['Revenue - Tourism'] \
+ financial_annual_overview.loc['Revenue - Education'] # REMOVAL OF + financial_annual_overview.loc['Revenue - Grants']
return financial_annual_overview | 6be32e6f4ff3ae0ed6434313b8bcc2f44192231b | 7,294 |
def filter_rows_via_column_matching(data, column, index=0):
"""
Filter data, by keeping rows whose particular field index matches the
column criteria
It takes parameters:
data (data in the form of a list of lists)
column (used as the match criteria for a particular field of the data)
and optionally:
index (by default 0, it is the data field used to match against column)
Note that column can be many iterables, but probably ought to be a set
It returns a filtered list of lists
"""
return [ row for row in data if row[index] in column ] | fcd5548677290a34d94c2eb8d5fefcb2bb50f0b4 | 7,295 |
import re
def _normalize_name(name: str) -> str:
"""
Normalizes the given name.
"""
return re.sub(r"[^a-zA-Z0-9.\-_]", "_", name) | b38a90c05b0a6ec5a26db6d0da85bed2ae802cea | 7,296 |
def filter_claims_by_date(claims_data, from_date, to_date):
"""Return claims falling in the specified date range."""
return [
claim for claim in claims_data
if (from_date <= claim.clm_from_dt <= to_date)
] | d1568d0fd52382bdb3f1f02414f591d5f4da3596 | 7,297 |
def unicode2str(content):
"""Convert the unicode element of the content to str recursively."""
if isinstance(content, dict):
result = {}
for key in content.keys():
result[unicode2str(key)] = unicode2str(content[key])
return result
elif isinstance(content, list):
return [unicode2str(element) for element in content]
elif isinstance(content, int) or isinstance(content, float):
return content
else:
return content.encode("utf-8") | 30618f0305d28646af36bcff488af971643fd142 | 7,298 |
import sys
def validate_min_python_version(major, minor, error_msg=None, exit_on_fail=True):
"""If python version does not match AT LEAST requested values, will throw non 0 exit code."""
version = sys.version_info
result = False
if version.major > major:
return True
if major == version.major:
result = version.minor >= minor
if not result:
if exit_on_fail:
msg = (
error_msg
if error_msg
else "Python version {}.{} or higher required for this functionality.".format(
major, minor
)
)
sys.exit(msg)
return result | 49f078af83d956b3e099d792b5a364c359991df0 | 7,299 |
import os
import argparse
def get_arg_parser():
"""Allows arguments to be passed into this program through the terminal.
Returns:
argparse.Namespace: Object containing selected options
"""
def dir_path(string):
if os.path.isfile(string):
return string
else:
raise NotADirectoryError(string)
parser = argparse.ArgumentParser(description="Input document file paths")
parser.add_argument(
"csv_path", help="Full path to CSV labeled file", type=dir_path)
parser.add_argument("output_name", help="Name of output file", type=str)
return parser.parse_args() | 035bb8df1743aca4ba78c17d60836b9f485e769d | 7,300 |
import os
def current_umask() -> int:
"""Get the current umask which involves having to set it temporarily."""
mask = os.umask(0)
os.umask(mask)
return mask | 8d24ace1eba3746cb4f38f91c127075c0bce6aaf | 7,301 |
import json
def encode_json(struct):
"""Encode a structure as JSON bytes."""
return bytes(json.dumps(struct), "utf-8") | 6724c0a687a98230a32fef81b3a4447c12d164fc | 7,302 |
def categories_to_errors_dict():
"""Categories to error dictionary function maps common error substrings to categories.
The categories are keys in the dictionary and the values are arrays of strings
or arrays of list.
Some error categories, such as User Errors, has many subcategories. Thus,
each subcategory has its own list, but each list is placed in the larger
User Error array that maps to the key User Error.
This function returns a dictionary used to organize error logs"""
# App Errors
app_errors = ["call_features_rRNA_SEED",
"Model likely contains numerical instability",
"Object doesnt have required fields",
"has invalid provenance reference",
"Mandatory arguments missing",
"Authentication required for AbstractHandle",
"Can't locate object method quality via package",
"Can't use an undefined value as an ARRAY reference",
"KBaseReport parameter validation status"]
# User Errors
general_user_errors = ["Illegal character in object name",
"Not one protein family member",
"is used for forward and reverse",
"duplicate genome display names",
"Proteome comparison does not involve genome",
"incompatible read library types",
"MISSING DOMAIN ANNOTATION FOR",
"ALL genomes have no matching Domain Annotation",
"There is no taxonomy classification assignment against",
"There are no protein translations in genome",
"not found in pangenome",
"You must include the following additional Genomes in the Pangenome Calculation",
"Undefined compound used as reactant",
"Duplicate gene ID",
"The input directory does not have any files with one of the following extensions",
"is not a valid KBase taxon ID.",
"Duplicate objects detected in input",
"unable to fetch assembly:",
"may not read workspace",
"No bins produced - skipping the creation",
"Must configure at least one of 5 or 3 adapter",
"There is no taxonomy classification assignment against",
"cannot be accessed",
"Object #",
"does not exist in the supplied genome"]
assembly_user_errors = ["There are no contigs to save",
"assembly method was not specified",
"takes 2 positional arguments but 3 were given"]
annotation_user_errors = ["Too many contigs",
"You must run the RAST SEED Annotation App",
"You must supply at least one",
"Fasta file is empty.",
"Illegal number of separators",
"Unable to parse version portion of object reference"]
blast_user_errors = ["not a valid EXCEL nor TSV file",
"Duplicate model names are not permitted",
"Must select at least two models to compare",
"input_one_sequence",
"input_one_ref",
"output_one_name",
"Query is Empty",
"No sequence found in fasta_str"]
modeling_user_errors = ['not a valid EXCEL nor TSV file',
'Duplicate model names are not permitted',
'Must select at least two models to compare']
import_user_errors = ["Both SRA and FASTQ/FASTA file given. Please provide one file type",
"FASTQ/FASTA input file type selected. But missing FASTQ/FASTA file",
"reads files do not have an equal number of records",
"File is not a zip file",
"error running command: pigz",
"is not a FASTQ file",
"Cannot connect to URL",
"Invalid FTP Link",
"Plasmid assembly requires that one",
"Premature EOF",
"Reading FASTQ record failed",
"Invalid FASTQ",
"missing FASTQ/FASTA file",
"line count is not divisible by",
"But missing SRA file",
"Features must be completely contained",
"was not found in feature ID list",
"unable to parse",
"Every feature sequence id must match a fasta sequence id",
"Did not recognise the LOCUS line layout",
"Could not determine alphabet for",
"This FASTA file has non nucleic acid characters",
"Not a valid FASTA file",
"This FASTA file has non nucleic acid characters",
"This FASTA file may have amino acids",
"appears more than once in the file",
"Duplicate gene ID"]
other_apps_user_errors = ["missing or empty krona input file",
"FeatureSet has multiple reference Genomes",
"You must enter either an input genome or input reads"]
# No such file/dir & other miscellaneous errors
file_directory_missing = ["No such file or directory"]
server = ["500 Server closed connection"]
no_space = ["exit code is 123", "No space left on device"]
exit = ["exit code is 137"]
badstatus = ["BadStatusLine"]
badserver = ["Bad Gateway", "NJSW failed"]
compression = ["compression tyep 9"]
job_service = ['Kafka', 'Job service side status']
lost_connection = ["ProtocolError(Connection aborated)", "Connection has been shutdown"]
nosuchcontainer = ["No such container"]
readtimeout = ["ReadTimeError", "504 Gateway Time-out"]
nooutput = ["Output file is not found"]
canceled = ["Job was cancelled"]
noassemblyref = ["does not have reference to the assembly object"]
user_errors = [general_user_errors, blast_user_errors,
annotation_user_errors, modeling_user_errors,
assembly_user_errors, other_apps_user_errors, import_user_errors]
# Construct error dictionary
error_dictionary = {'User_Error': user_errors,
'App Error': app_errors,
'NoFileDir': file_directory_missing,
'500': server,
"NoSpace": no_space,
"Exit 137": exit,
"BadStatusLine": badstatus,
'BadServer': badserver,
"Compression": compression,
"JobService": job_service,
"LostConnection": lost_connection,
'NoSuchContainer': nosuchcontainer,
"NoOutput": nooutput,
"Canceled": canceled,
"NoAssemblyRef": noassemblyref,
"ReadTimeout": readtimeout}
return error_dictionary | 4b59fc9775d3d5d808ecedee7756dad5d302848a | 7,303 |
import re
def rhyme_analyser(str, rhyme_db):
"""
Rhyme Analyzer - Print out the rhyme scheme of a poem.
Given: A string - like
If you want to smell a rose
You must put it to your nose.
If you want to eat some bread
You must not eat it in bed
Or I will eat your toes.
Output: Rhyme scheme of the poem. - AABBA
Use a rhyme list such as this one.
"""
lines = str.lower().split('\n')
rhyme_letter = {}
rhyme_scheme = []
letter = 'A'
for line in lines:
last_word = re.sub('[^a-z]', '', line.split(' ')[-1])
for rhyme in rhyme_db:
if last_word in rhyme_db[rhyme]:
if rhyme not in rhyme_letter:
rhyme_letter[rhyme] = letter
letter = chr(ord(letter) + 1)
rhyme_scheme.append(rhyme_letter[rhyme])
return ''.join(rhyme_scheme) | 0fb166c92b2e60d1739638b23a3de5dae18ce26b | 7,305 |
def is_chosen(bbox, area_threshold=None) -> bool:
"""
Calculate area of bounding boxes and return True if area >= threshold
Args:
bbox: (x1, y1, width, heigh)
area_threshold:
Returns:
True/False
"""
are = bbox[2] * bbox[3]
if area_threshold is not None:
if are < area_threshold:
return False
return True | 091fda7a389a74e92703c6eeca05aec413bc65a5 | 7,306 |
def _float(value):
"""Return env var cast as float."""
return float(value) | 254b1e3a542c5a74153cd58d3f43e86dab964028 | 7,308 |
def isjsonclass(class_: type) -> bool:
"""Check if a class is jsonclass.
Args:
class_ (type): The class to check.
Returns:
bool: True if it's a jsonclass, otherwise False.
"""
return hasattr(class_, '__is_jsonclass__') | 3234cf62beb03aa968888dd8ec3b65f4c5f4cab3 | 7,312 |
import math
def mu_from_pdiv(pdiv, nobj=3):
"""
Get population count based on divisions per objective for NSGA-III
"""
h = int(math.factorial(nobj + pdiv - 1) / (math.factorial(pdiv) * math.factorial(nobj - 1)))
mu = int(h + (4 - h % 4))
return mu | b4087bcab34a0fe03c6a1d5c9e2d9fb1f47d79f0 | 7,313 |
def locals_in_putty():
"""Hard-coded information regarding local variables
"""
locals_d = {
# k: index
# v: dict of local properties
0x14007DA84: {
6: {'name': 'v6', 'size': 8, 'type_name': '__int64'},
7: {'name': 'v7', 'size': 8, 'type_name': '__int64'},
8: {'name': 'v8', 'size': 8, 'type_name': '__int64'},
9: {'name': 'v9', 'size': 8, 'type_name': '__int64'},
11: {'name': 'v11', 'size': 8, 'type_name': '__int64'},
12: {'name': 'v12', 'size': 16, 'type_name': '__int128'},
13: {'name': 'v13', 'size': 8, 'type_name': '__int64'},
14: {'name': 'v14', 'size': 8, 'type_name': '__int64'},
15: {'name': 'v15', 'size': 1, 'type_name': 'char'},
16: {'name': 'v16', 'size': 1, 'type_name': 'char'},
17: {'name': 'v17', 'size': 8, 'type_name': '__int64'},
18: {'name': 'v18', 'size': 16, 'type_name': '__int128'},
19: {'name': 'v19', 'size': 8, 'type_name': '__int64'},
20: {'name': 'v20', 'size': 8, 'type_name': '__int64'},
21: {'name': 'v21', 'size': 8, 'type_name': '__int64'},
22: {'name': 'v22', 'size': 4, 'type_name': 'int'},
23: {'name': 'v23', 'size': 4, 'type_name': 'int'},
24: {'name': 'v24', 'size': 2, 'type_name': '__int16'},
25: {'name': 'v25', 'size': 1, 'type_name': 'char'},
26: {'name': 'v26', 'size': 8, 'type_name': '__int64'},
27: {'name': 'v27', 'size': 4, 'type_name': 'int'},
28: {'name': 'v28', 'size': 1, 'type_name': 'char'},
29: {'name': 'v29', 'size': 4, 'type_name': 'int'},
30: {'name': 'v30', 'size': 4, 'type_name': 'int'},
31: {'name': 'v31', 'size': 8, 'type_name': 'char *'},
32: {'name': 'v32', 'size': 8, 'type_name': '__int64'},
33: {'name': 'v33', 'size': 8, 'type_name': '__int64'},
34: {'name': 'v34', 'size': 8, 'type_name': '__int64'},
35: {'name': 'v35', 'size': 8, 'type_name': '__int64'}
},
# NOTE:
# Insert additional functions here
}
return locals_d | 52398e84aa324f8f751e2ca50bee9ad33be6eeb5 | 7,315 |
def dvi( redchan, nirchan ):
"""
DVI: Difference Vegetation Index
dvi( redchan, nirchan )
"""
redchan = 1.0*redchan
nirchan = 1.0*nirchan
result = ( nirchan - redchan )
return result | afa5ffffccc3053598cd3597de1efd3dcfc4cd8f | 7,316 |
def needs_min_max_values(mode, buckets):
"""
Returns True, if an encoding mode needs minimum and maximum column values, otherwise False
"""
return not buckets and mode in ['one-hot',
'one-hot-gaussian',
'one-hot-gaussian-fluent',
'unary',
'unary-gaussian',
'unary-gaussian-fluent'] | 50ae2b899e5957347061dd59905290506c460093 | 7,317 |
def listed_list(list_list):
"""Return presentable string from given list
"""
return '{} and {}'.format(', '.join(list_list[:-1]), list_list[-1]) if (
len(list_list) > 1) else list_list[0] | da35296196fff56816fe7b0427985ee278238dab | 7,318 |
import re
def remove_plus_signs(_s: str) -> str:
"""Removes plus signs from string"""
return re.sub(pattern=r'\+', repl=r'', string=_s) | 53cf3117221ce82578a20d75e7eb807c2d41b8fc | 7,319 |
def Intersection(S1x, S1y, D1x, D1y, S2x, S2y, D2x, D2y):
"""
Find intersection of 2 line segments
:param S1x: x coordinate of segment 1's start point
:param S1y: y coordinate of segment 1's start point
:param D1x: x coordinate of segment 1's end point
:param D1y: y coordinate of segment 1's end point
:param S2x: x coordinate of segment 2's start point
:param S2y: y coordinate of segment 2's start point
:param D2x: x coordinate of segment 2's end point
:param D2y: y coordinate of segment 2's end point
:return: Intersection point [x,y]
"""
if ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x)) == 0:
return [None, None]
else:
x = ((S2x - D2x) * (((D1y - S1y) * (S1x) + (S1x - D1x) * (S1y))) - (S1x - D1x) * ((D2y - S2y) * (S2x) + (S2x - D2x) * (S2y))) / ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x))
y = ((D1y - S1y) * ((D2y - S2y) * (S2x) + (S2x - D2x) * (S2y)) - (D2y - S2y) * (((D1y - S1y) * (S1x) + (S1x - D1x) * (S1y)))) / ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x))
return [x,y] | 2dba8839ebf24b55fe3c1b7797e53c7e0c3ed72a | 7,321 |
import os
def write_jobfile(cmd, jobname, sbatchpath='./sbatch/',
nodes=1, ppn=1, gpus=0, mem=16, nhours=3):
"""
Create a job file.
Args:
cmd : str, Command to execute.
jobname : str, Name of the job.
sbatchpath : str, Directory to store SBATCH file in.
scratchpath : str, Directory to store output files in.
nodes : int, optional, Number of compute nodes.
ppn : int, optional, Number of cores per node.
gpus : int, optional, Number of GPU cores.
mem : int, optional, Amount, in GB, of memory.
ndays : int, optional, Running time, in days.
queue : str, optional, Queue name.
Returns:
jobfile : str, Path to the job file.
"""
os.makedirs(sbatchpath, exist_ok=True)
jobfile = os.path.join(sbatchpath, jobname + '.s')
# logname = os.path.join('log', jobname)
with open(jobfile, 'w') as f:
f.write(
'#! /bin/sh\n'
+ '\n'
# + '#SBATCH --nodes={}\n'.format(nodes)
# + '#SBATCH --ntasks-per-node=1\n'
# + '#SBATCH --cpus-per-task={}\n'.format(ppn)
+ '#SBATCH --mem-per-cpu={}gb\n'.format(mem)
# + '#SBATCH --partition=xwang_gpu\n'
+ '#SBATCH --gres=gpu:1\n'
+ '#SBATCH --time={}:00:00\n'.format(nhours)
# + '#SBATCH --mem=128gb\n'
# + '#SBATCH --job-name={}\n'.format(jobname[0:16])
# + '#SBATCH --output={}log/{}.o\n'.format(scratchpath, jobname[0:16])
+ '\n'
# + 'cd {}\n'.format(scratchpath)
# + 'pwd > {}.log\n'.format(logname)
# + 'date >> {}.log\n'.format(logname)
# + 'which python >> {}.log\n'.format(logname)
# + '{} >> {}.log 2>&1\n'.format(cmd, logname)
+ cmd + '\n'
+ '\n'
+ 'exit 0;\n'
)
print(jobfile)
return jobfile | 0493f480fa42eb5dc8d108c59999d8a9430e4669 | 7,323 |
def collect_nodes(points, highlighted_nodes=[], color='#79FF06', highlighted_color='blue', width=200, highlighted_width=400):
"""
Собирает необходимые нам вершины в нужный формат
Parameters
----------
points : [str, str, ...]
Вершины графа.
highlighted_nodes : [str, str, ...], optional
Выделенные вершины графа.
По умолчанию [].
color : str, optional
Цвет обычных вершин.
По умолчанию '#79FF06'.
highlighted_color : str, optional
Цвет выделенных вершин.
По умолчанию 'blue'.
width : int, optional
Ширина обычных вершин.
По умолчанию 200.
highlighted_width : int, optional
Ширина выделенных вершин.
По умолчанию 400.
Returns
-------
result : [(str, {'color': str, 'width': int}),
(str, {'color': str, 'width': int}),
...]
Список вершин с их параметрами.
"""
result = []
for p in points:
if p in highlighted_nodes:
result.append((p, {"color": highlighted_color, "width": highlighted_width}))
else:
result.append((p, {"color": color, "width": width}))
return result | a3a218b5f8c8c25a0f13a4154f12779a84726f9d | 7,324 |
def feature_names_from_extractor_list(feature_extractors):
"""
get a list of feature names from a list of feature extractors
:param feature_extractors: a list of feature extractors
:return: a list of the feature names for each extractor (think first row of .csv file)
"""
feature_names = [feature_name for feature_extractor in feature_extractors for feature_name in feature_extractor.get_feature_names()]
return feature_names | 2f23aa860137e70270e9c7d564df5dacfa1d22a2 | 7,325 |
import io
def read_txt(filename, encoding='utf-8'):
"""Text file reader."""
with io.open(filename, 'r', encoding=encoding) as f:
return f.read() | 2ca0d80bddc49b793e8cbc63c513410154b4d460 | 7,326 |
def get_job_type(name):
"""Returns job type based on its name."""
if 'phase1' in name:
return 'phase1'
elif 'phase2' in name:
return 'phase2'
elif 'dfg' in name:
return 'dfg'
else:
return 'other' | 50db4a7833028b0a0944a4b915d82a8cabf91595 | 7,327 |
def is_resnet(name):
"""
Simply checks if name represents a resnet, by convention, all resnet names start with 'resnet'
:param name:
:return:
"""
name = name.lower()
return name.startswith('resnet') | 6310d849b76a1006c7c2e97405aa9f0ebc53a78b | 7,328 |
import os
import re
import logging
def convert_output_record(data):
"""Covert data record into a list for output csv
"""
output_record = []
# Participant ID
output_record.append(os.path.basename(data['filename']).replace('.eaf', ''))
# Speaker
output_record.append(data['speaker'])
# Timestamp
output_record.append(data['timestamp'])
# Responsivity
responsivity = data['Responsivity']
if re.search(r'passive', responsivity, re.IGNORECASE):
responsivity = 0
elif re.search(r'aborative', responsivity, re.IGNORECASE):
responsivity = 1
elif re.search(r'disconnected', responsivity, re.IGNORECASE):
responsivity = 2
else:
responsivity = ''
output_record.append(responsivity)
# Emotion Words (count)
match = re.search(r'\d+', data['Emotion Words'])
if match is not None:
output_record.append(match.group(0))
else:
output_record.append(0)
# Type of Speech
type_of_speech = data['Type of Speech']
if re.search(r'recited', type_of_speech, re.IGNORECASE):
type_of_speech = 0
elif re.search(r'spontan', type_of_speech, re.IGNORECASE):
type_of_speech = 1
output_record.append(type_of_speech)
# Directed Speech
directed_speech = data['Directed Speech']
if re.search(r'assistant', directed_speech, re.IGNORECASE):
directed_speech = 0
elif re.search(r'toddler', directed_speech, re.IGNORECASE):
directed_speech = 1
elif data['speaker'] == 0:
logging.warning("Unexpected annotation value found for 'Directed Speech': %s",
data['Directed Speech'])
output_record.append(directed_speech)
# Time Period
time_period = data['Time Period']
if re.search(r'story', time_period, re.IGNORECASE):
time_period = 0
elif re.search(r'conversation', time_period, re.IGNORECASE):
time_period = 1
else:
logging.warning("Unexpected annotation value found for 'Time Period': %s",
data['Time Period'])
output_record.append(time_period)
# Trash (noise)
output_record.append(data['Trash'])
return output_record | 046fe65ae63e5559e4bccde5817a4c4f238b0467 | 7,329 |
def handle_pmid_25502872(filename):
"""Bergseng, ..., Sollid. Immunogenetics 2015 [PMID 25502872]"""
return None | 25a11d19293c59e4ae636b0b26389dbfd6b74955 | 7,330 |
from typing import Dict
def invert_dictionary(mapping: Dict) -> Dict:
"""Invert the keys and values of a dictionary."""
remap = {v: k for k, v in mapping.items()}
if len(remap) != len(mapping):
raise ValueError("Dictionary cannot be inverted; some values were not unique")
return remap | 911aee48eff3bf0d980e5ad054c77c8a3081e232 | 7,331 |
def store_file(file):
"""Stores the file to specified destination"""
destination = "/".join(["api/test_docs", file.name])
file.save(destination)
return destination | 1118415a1c1b7c2a33ecc539df7bf27dfd783d16 | 7,332 |
def mpl_dict(params):
""""Convert _ to . for easier mpl rcparams grid definition"""
return {k.replace('_', '.'): v for k, v in params.items()} | a8c4ae683205a1412a73f00e6965cb345ec63a3e | 7,333 |
def test_df_keys():
"""List of keys to be used for populating a bucket with DataFrames"""
return {
'avro': ['df.avro'],
'csv': ['df.csv'],
'csv.gz': ['df.csv.gz'],
'csv.zip': ['df.csv.zip'],
'csv.bz2': ['df.csv.bz2'],
'csv.xz': ['df.csv.xz'],
'psv': ['df.psv'],
'psv.gz': ['df.psv.gz'],
'psv.zip': ['df.psv.zip'],
'psv.bz2': ['df.psv.bz2'],
'psv.xz': ['df.psv.xz'],
'feather': ['df.feather'],
'json': ['df.json'],
'pkl': ['df.pkl', 'df.pickle'],
'pq': ['df.pq', 'df.parquet']
} | 3b008664744fb6abf8960caebe658ecc2f6525af | 7,335 |
def first_existing(d, keys):
"""Returns the value of the first key in keys which exists in d."""
for key in keys:
if key in d:
return d[key]
return None | eb9f34f1f5adb0a8e44127fe777e35ca8d36dc04 | 7,336 |
import os
def resolve_usr_filename(filename):
"""Resolve the filename to an absolute path.
:param filename: The input file name.
"""
full_filename = filename
if os.path.isabs(full_filename) == False:
full_filename = os.path.join(os.path.expanduser("~"),
full_filename)
return os.path.normpath(full_filename) | e239c80c9e11f79c786557d4de3e1fc51a4f791d | 7,337 |
def get_requirements():
"""Return a list of package requirements from the requirements.txt file."""
with open('requirements.txt') as f:
return f.read().split() | 85efbe71d02ced7c5987f08a56a1a966bff2e1ef | 7,338 |
def integer_to_real_mapper(integers):
"""Define Integer Mapping Function Here(If Needed.)"""
real_numbers = []
range_of_integers = 32767 # each value goes from 0-32767(2 ^ length_of_chromosome)
integer_to_real_number_mapper = 1 / range_of_integers # will produce number between 0-1 when multiplied by a value
# in the range of 0 to 32767 (1/32767 * 32767 = 1) AND (1/32767 * 0 = 0)
for integer in integers:
real_numbers.append(integer * integer_to_real_number_mapper)
return real_numbers | 18cc9dc1efe2dd8122d4953a4256cedd5fe234c9 | 7,339 |
import os
def get_feature_normalizer_filename(fold, path, extension='cpickle'):
"""Get normalizer filename
Parameters
----------
fold : int >= 0
evaluation fold number
path : str
normalizer path
extension : str
file extension
(Default value='cpickle')
Returns
-------
normalizer_filename : str
full normalizer filename
"""
return os.path.join(path, 'scale_fold' + str(fold) + '.' + extension) | c2956766f891b6285dfb8b1d5a0a7f36c160351f | 7,340 |
def filter_files(file_path, selected=('bacteria', 'virus')):
"""filter files based on filepath"""
base = file_path.stem
for s in selected:
if s in base:
return True
return False | e666d091eb41a128d39238181b9fef0396432cf8 | 7,341 |
def VerboseCompleter(unused_self, event_object):
"""Completer function that suggests simple verbose settings."""
if '-v' in event_object.line:
return []
else:
return ['-v'] | e536e221f8f3465f72071d969b11b6623359cf58 | 7,342 |
def load_input_into_list():
"""
Takes our input and returns it into a comprehensive list with split terms
:return: The list of lists for our input
:rtype: list
"""
return [line.replace('-', ' ').replace(':', '').split(' ') for line in open("inputs/day2_01.txt", "r").read().splitlines()] | 9d8f1a313712f11249f4612d38ed9831d666287b | 7,343 |
def computeTF(doc_info,freqDict_list):
"""
tf =(frequency of the term in the doc/total number of terms in the doc
:param doc_info:
:param freqDict_list:
:return:
"""
TF_scores =[]
for tempDict in freqDict_list:
id = tempDict['doc_id']
for k in tempDict['freq_dict']:
temp ={'doc_id' :id,
'TF_score' : tempDict['freq_dict'][k]/doc_info[id-1]['doc_length'],
'key' :k
}
TF_scores.append(temp)
return TF_scores | 8a8567a98227226bc54de6c41010c9103d10be47 | 7,344 |
import pathlib
def get_file(file_path):
"""
获取给定目录下的所有文件的绝对路径
:param file_path: 文件目录
:param pattern: 默认返回所有文件,也可以自定义返回文件类型,例如:pattern="*.py"
:return: 文件路径列表
"""
all_file = []
files = pathlib.Path(file_path)
f = files.rglob('*.md')
for file in f:
pure_path = pathlib.PurePath(str(file))
dirname = pure_path.parent
name = pure_path.name
if '-' in name and not name.startswith('pep'):
new_name = f"{dirname}/pep-{name.split('-')[0].zfill(4)}.md"
print(new_name)
target = pathlib.Path(new_name)
p = pathlib.Path(file)
p.rename(target)
# p = pure_path.with_name(new_name)
# print(p)
# break
# return list(files)
all_file.append(file)
return all_file | b3819e7f8d307d5ad8dcc62442817b99b3d134fc | 7,346 |
def gauss_to_tesla(gauss):
"""Converts gauss to tesla"""
return gauss*1e-4 | 4f0239432a3436fd5c6cad4ae9747c8849289f34 | 7,347 |
def createKey(problemData):
"""
Creates the key for a given 'problemData' list of number
of item types.
"""
key = ''
for itData in problemData:
key += str(itData) + ','
# Remove the last comma
return key[:-1] | 420a4e96dc6442ba2ae18f4bca3d8a10f8a19284 | 7,348 |
def lfsr_next_one_seed(seed_iter, min_value_shift):
"""High-quality seeding for LFSR generators.
The LFSR generator components discard a certain number of their lower bits
when generating each output. The significant bits of their state must not
all be zero. We must ensure that when seeding the generator.
In case generators are seeded from an incrementing input (such as a system
timer), and between increments only the lower bits may change, we would
also like the lower bits of the input to change the initial state, and not
just be discarded. So we do basic manipulation of the seed input value to
ensure that all bits of the seed input affect the initial state.
"""
try:
seed = next(seed_iter)
except StopIteration:
return 0xFFFFFFFF
else:
if seed is None:
return 0xFFFFFFFF
else:
seed = int(seed) & 0xFFFFFFFF
working_seed = (seed ^ (seed << 16)) & 0xFFFFFFFF
min_value = 1 << min_value_shift
if working_seed < min_value:
working_seed = (seed << 24) & 0xFFFFFFFF
if working_seed < min_value:
working_seed ^= 0xFFFFFFFF
return working_seed | 9cc82109ff3f491e6f880bdba2f598344556f92c | 7,351 |
def function_to_dump(hallo,welt,with_default=1):
"""
non class function to be dumped and restored through
create_pickled_dataset and load_pickled_data
"""
return hallo,welt,with_default | 09bd551300d6672c685f3eeedd2e37fe528dfe14 | 7,352 |
def get_hashtag_spans(tokens):
"""
Finds the spans (start, end) of subtokes in a list of tokens
Args:
tokens: list[str]
Returns:
spans: list[tuple[int]]
"""
is_part = ["##" in t for t in tokens]
spans = []
pos_end = -1
for pos_start, t in enumerate(is_part):
if pos_start <= pos_end:
continue
if t:
last_pos = len(is_part[pos_start:]) - 1
for j, t_end in enumerate(is_part[pos_start:]):
if not t_end:
pos_end = pos_start + j
break
if j == last_pos:
pos_end = pos_start + j + 1
spans.append((pos_start, pos_end))
return spans | 2e70466370e1171a2d29636d13c908c2e8b8e30e | 7,353 |
def roundToNearest(number, nearest):
""" Rounds a decimal number to the closest value, nearest, given
Arguments:
number: [float] the number to be rounded
nearest: [float] the number to be rouned to
Returns:
rounded: [float] the rounded number
"""
A = 1/nearest
rounded = round(number*A)/A
return rounded | 5f3974611b529e93ae8157182ff8b7dbc100a234 | 7,354 |
import os
def is_directory(filename):
"""Tells if the file is a directory"""
return os.path.isdir(filename) | 0e6d6c8aa9b666ec7d25d1a353e692bcb5220b06 | 7,355 |
def compare_dict_keys(d1, d2):
"""
Returns [things in d1 not in d2, things in d2 not in d1]
"""
return [k for k in d1 if not k in d2], [k for k in d2 if not k in d1] | 4b68c06d1598e325c5baa5ad8eefaa7af1e82d27 | 7,356 |
import os
def icon_path(name):
""" Load an icon from the res/icons folder using the name
without the .png
"""
path = os.path.dirname(os.path.dirname(__file__))
return os.path.join(path, 'res', 'icons', '%s.png' % name) | dd8254d4aae3b930623ec46dc6e262b37f8170ca | 7,358 |
def project_name(settings_dict):
"""Transform the base module name into a nicer project name
>>> project_name({'DF_MODULE_NAME': 'my_project'})
'My Project'
:param settings_dict:
:return:
"""
return " ".join(
[
x.capitalize()
for x in settings_dict["DF_MODULE_NAME"].replace("_", " ").split()
]
) | 07411942978ad769d25234f8c7286aaddc365470 | 7,359 |
def parse_config_vars(config_vars):
"""Convert string descriptions of config variable assignment into
something that CrossEnvBuilder understands.
:param config_vars: An iterable of strings in the form 'FOO=BAR'
:returns: A dictionary of name:value pairs.
"""
result = {}
for val in config_vars:
try:
name, value = val.split('=', 1)
except ValueError:
raise ValueError("--config-var must be of the form FOO=BAR")
result[name] = value
return result | 1bc1b96b6a2b0bf8e42fca0bb4ee9601c883b124 | 7,360 |
def is_power_of_two(x):
# type: (int) -> bool
"""Check if `x` is a power of two:
>>> is_power_of_two(0)
False
>>> is_power_of_two(1)
True
>>> is_power_of_two(2)
True
>>> is_power_of_two(3)
False
"""
return x > 0 and x & (x-1) == 0 | c657fc5c74dacd2acd7855d99bd277933423b1eb | 7,361 |
def add_malicious_key(entity, verdict):
"""Return the entity with the additional 'Malicious' key if determined as such by ANYRUN
Parameters
----------
entity : dict
File or URL object.
verdict : dict
Task analysis verdict for a detonated file or url.
Returns
-------
dict
The modified entity if it was malicious, otherwise the original entity.
"""
threat_level_text = verdict.get('threatLevelText', '')
if threat_level_text.casefold() == 'malicious activity':
entity['Malicious'] = {
'Vendor': 'ANYRUN',
'Description': threat_level_text
}
return entity | a20ba12ae04d09047f228a26ef6f39e334225cb3 | 7,362 |
def remove(property_name):
"""
Removes the given property.
:param property: The property (or property identifier) to remove
:type property: Host Specific
:return: True if the property was removed
"""
return None | 6f0fd282164d91cf2772ac4155a842a4cb3ccfd2 | 7,363 |
from typing import Counter
def count_terms(terms: list) -> dict:
"""
Count the number of terms
:param terms: term list
:return dict_term: The dictionary containing terms and their numbers
"""
entity_dict = dict(Counter(terms))
print('There are %s entities in total.\n' % entity_dict.__len__())
# print({key: value for key, value in entity_dict.items()})
return entity_dict | 77e362894fbbae3d0cec99daea845734d30e8a2d | 7,364 |
def pretty_duration(seconds):
"""Return a pretty duration string
Parameters
----------
seconds : float
Duration in seconds
Examples
--------
>>> pretty_duration(2.1e-6)
'0.00ms'
>>> pretty_duration(2.1e-5)
'0.02ms'
>>> pretty_duration(2.1e-4)
'0.21ms'
>>> pretty_duration(2.1e-3)
'2.1ms'
>>> pretty_duration(2.1e-2)
'21ms'
>>> pretty_duration(2.1e-1)
'0.21s'
>>> pretty_duration(2.1)
'2.10s'
>>> pretty_duration(12.1)
'12.1s'
>>> pretty_duration(22.1)
'22s'
>>> pretty_duration(62.1)
'1:02'
>>> pretty_duration(621.1)
'10:21'
>>> pretty_duration(6217.1)
'1:43:37'
"""
miliseconds = seconds * 1000
if miliseconds < 1:
return "{:.2f}ms".format(miliseconds)
elif miliseconds < 10:
return "{:.1f}ms".format(miliseconds)
elif miliseconds < 100:
return "{:.0f}ms".format(miliseconds)
elif seconds < 10:
return "{:.2f}s".format(seconds)
elif seconds < 20:
return "{:.1f}s".format(seconds)
elif seconds < 60:
return "{:.0f}s".format(seconds)
else:
minutes = seconds // 60
seconds = int(seconds - minutes * 60)
if minutes < 60:
return "{minutes:.0f}:{seconds:02}".format(**locals())
else:
hours = minutes // 60
minutes = int(minutes - hours * 60)
return "{hours:.0f}:{minutes:02}:{seconds:02}".format(**locals()) | ceec602cb07ab5c27831c4ed9e1cd552c5b9dde8 | 7,365 |
import numpy
def get_buffered_points(points, centroid=None, factor=2.0):
"""
Add buffer to points in a plane. For example, to expand a convex hull
param points: Points we want to buffer
param centroid: Centroid of the points
param factor: Defines scalar product for point vectors
return numpy array of new point coordinates
"""
if centroid is None:
centroid = [0, 0]
buffered_points = []
if len(points) == 0:
return numpy.array(buffered_points)
centroid = numpy.array(centroid)
for p in numpy.array(points):
buffered_points.append(((p - centroid) * factor) + centroid)
buffered_points = [[numpy.rint(p[0]), numpy.rint(p[1])]
for p in buffered_points]
return numpy.array(buffered_points) | 08fdc70a867fddda82bc9b1207587db66852d7fb | 7,366 |
def roman(num):
"""
Examples
--------
>>> roman(4)
'IV'
>>> roman(17)
'XVII'
"""
tokens = 'M CM D CD C XC L XL X IX V IV I'.split()
values = 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1
result = ''
for t, v in zip(tokens, values):
cnt = num//v
result += t*cnt
num -= v*cnt
return result | e0f51cefd16a098336cd28fb3e35249063c9761c | 7,367 |
def create_url(url, data):
"""
Method which creates new url from base url
:param url: base url
:param data: data to append to base url
:return: new url
"""
return url + "/" + str(data) | b08fdc2c9e7ecef589ac5208905de8934f667f2b | 7,368 |
import ast
def is_side_effecting(node):
"""
This determines whether node is a statement with possibly arbitrary side-effects
"""
node = node.value
return isinstance(node, ast.Call) and isinstance(node.func, ast.Name) | 137eabb0cbb1b92b48ef05e2800c10e8e598ed1b | 7,369 |
def read_wordlist_file(file_name):
"""
Reads a one-word-per-line list of words to accumulate (w,c) counts for. Duplicates
are collapsed via a dictionary.
"""
word_list = {}
f = open(file_name,'r')
lines = f.readlines()
for l in lines:
word = l.strip()
if len(word) > 0:
word_list[word] = None
return list(word_list.keys()) | aa304c23431c6c4a462fac21fbf96377dcdcafcf | 7,370 |
import re
def add_locations(string, args):
""" Adds location links to a snippet string """
string = string.replace(' ', ' ')
locs = args[0]
text = args[1]
for loc in locs:
pattern = re.compile(r'(?<!=)\b{0}[a-zA-Z-]*\b'.format(loc['location']), flags=re.I)
for (match) in re.findall(pattern, string):
string = re.sub(r'{0}'.format(match), '<a href="/search/?text={2}">{2}</a>'.format(loc['locid'], text, match), string)
break;
return string | 0dca0118e1bc3fae7c6ad5a7c7317f11b2bedb68 | 7,371 |
def extract_results(results, mode, limit=50):
"""extract result from json style list returned by download_results:
parameters:
results: json style - list with results
mode: str- "ppa" for questions, "organic" for link of answers
limit: int - max number of items per keyword
Returns list of lists
"""
clean_results = {}
for r in results:
if mode == "ppa":
for n, item in enumerate(r['items']):
if item["type"] == "people_also_ask":
ppas = [i['title'] for i in item['items']]
clean_results[r['keyword']] = ppas
if mode == "link":
links = [item['url'] for item in r['items'] if item['type'] == 'organic']
clean_results[r['keyword']] = links[:limit]
return clean_results
# do something with result | 64a9a159f5499295c3cb52239b0cdc49c0cd6ecd | 7,372 |
import os
def get_last_version():
"""Get the last version number in guids file if exists.
Returns:
version number.
"""
version_cmake_path = os.path.join(os.getcwd(), "cmake", "firebase_unity_version.cmake")
with open(version_cmake_path, "r") as f:
datafile = f.readlines()
for line in datafile:
if "FIREBASE_UNITY_SDK_VERSION" in line:
result = line.split()
return result[-1].strip("\"")
return None | 18afd90dcc9e5f473e88ff3e391d0d32e85a1415 | 7,374 |
def getsize(datadescriptor):
"""Get the size of a data descriptor tuple."""
if datadescriptor[0] == 'reg':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'mem':
size = datadescriptor[1][1]
elif datadescriptor[0] == 'heap':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'perp':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'pmem':
size = datadescriptor[1][2]
else:
return (15, "Not a supported destination type.")
return (0, size) | feaaa9d0698b58649a55c53ba399a46ba81520b6 | 7,375 |
import random
def crossover(parent1, parent2, d):
"""One point crossover
Args:
parent1 (int, (int, int)[])[]): chromosome of parent1
parent2 (int, (int, int)[])[]): chromosome of parent2
d (int): Total duration, in durks, of song
Returns:
((int, int)[],(int, int)[]): returns two child genotypes in form (genotype1, genotype2)
"""
genotype1 = parent1[1]
genotype2 = parent2[1]
new_genotype1 = []
new_genotype2_first = []
new_genotype2_last = []
# pick random number between 0 and d
split = random.randint(0, d)
total_dur = 0
add_to_genotype1 = True
for i, (ed, dur) in enumerate(genotype1):
total_dur += dur
if not add_to_genotype1:
new_genotype2_last.append((ed, dur))
elif total_dur == split:
new_genotype1.append((ed, dur))
add_to_genotype1 = False
elif total_dur > split:
new_genotype1.append((ed, (split - (total_dur - dur))))
new_genotype2_last.append((ed, (dur - (split - (total_dur - dur)))))
add_to_genotype1 = False
else:
new_genotype1.append((ed, dur))
total_dur = 0
add_to_genotype2 = True
for i, (ed, dur) in enumerate(genotype2):
total_dur += dur
if not add_to_genotype2:
new_genotype1.append((ed, dur))
elif total_dur == split:
new_genotype2_first.append((ed, dur))
add_to_genotype2 = False
elif total_dur > split:
new_genotype2_first.append((ed, (split - (total_dur - dur))))
new_genotype1.append((ed, (dur - (split - (total_dur - dur)))))
add_to_genotype2 = False
else:
new_genotype2_first.append((ed, dur))
new_genotype2 = new_genotype2_first + new_genotype2_last
return (new_genotype1, new_genotype2) | bea05705b758e8e37dc637bec09566fda8978c6b | 7,376 |
def get_j2k_parameters(codestream):
"""Return some of the JPEG 2000 component sample's parameters in `stream`.
.. deprecated:: 1.2
Use :func:`~pydicom.pixel_data_handlers.utils.get_j2k_parameters`
instead
Parameters
----------
codestream : bytes
The JPEG 2000 (ISO/IEC 15444-1) codestream data to be parsed.
Returns
-------
dict
A dict containing the JPEG 2000 parameters for the first component
sample, will be empty if `codestream` doesn't contain JPEG 2000 data or
if unable to parse the data.
"""
try:
# First 2 bytes must be the SOC marker - if not then wrong format
if codestream[0:2] != b'\xff\x4f':
return {}
# SIZ is required to be the second marker - Figure A-3 in 15444-1
if codestream[2:4] != b'\xff\x51':
return {}
# See 15444-1 A.5.1 for format of the SIZ box and contents
ssiz = ord(codestream[42:43])
parameters = {}
if ssiz & 0x80:
parameters['precision'] = (ssiz & 0x7F) + 1
parameters['is_signed'] = True
else:
parameters['precision'] = ssiz + 1
parameters['is_signed'] = False
return parameters
except (IndexError, TypeError):
return {} | 722a84eadb6f381a531d09d3b6279b7775bca1d3 | 7,378 |
def to_lowercase(word_list):
"""Convert all characters to lowercase from list of tokenized word_list
Keyword arguments:
word_list: list of words
"""
lowercase_word_list = [word.lower() for word in word_list]
return lowercase_word_list | 025e3edaa79723f8656d10a8d52fe16a402644ae | 7,379 |
def convert_to_score(label_name, label_dict):
"""Converts the classification into a [0-1] score.
A value of 0 meaning non-toxic and 1 meaning toxic.
"""
if label_name=='non-toxic':
return 1-label_dict[label_name]
else:
return label_dict[label_name] | 608caf76f62a70d09e1592367daeb2ad3ebae248 | 7,380 |
import pandas as pd
import six
def csv2df(csv_string):
"""http://stackoverflow.com/a/22605281"""
return pd.read_csv(six.StringIO(csv_string),index_col=False) | 2aeda7db7f36dac8fcec20e1f09a9299d362dfa6 | 7,382 |
def _generate_csv_header_line(*, header_names, header_prefix='', header=True, sep=',', newline='\n'):
"""
Helper function to generate a CSV header line depending on
the combination of arguments provided.
"""
if isinstance(header, str): # user-provided header line
header_line = header + newline
else:
if not (header is None or isinstance(header, bool)):
raise ValueError(f"Invalid value for argument `header`: {header}")
else:
if header:
header_line = header_prefix + sep.join(header_names) + newline
else:
header_line = ""
return header_line | b9a7f32404a432d2662c43f4fe6444241698bf37 | 7,383 |
def filter_labeled_genes(genes):
"""Filter genes which already have a label and return number of labels.
Args:
genes(dict): dictionary of genes {g_name: gene object}
Returns:
dict: dictionary of genes without label {g_name: gene object}
int: number of distinct labels in the set of labeled genes
"""
unlabeled_genes = {}
labels = set()
for g_name, gene in genes.items():
if not gene.plot_label:
unlabeled_genes[g_name] = gene
else:
labels.add(gene.plot_labelID)
num_labels = len(labels)
return unlabeled_genes, num_labels | 4d50580a07ad6825b4c28e7c91780f1964568056 | 7,384 |
def get_floss_params(str_floss_options, filename):
"""Helper routine to build the list of commandline parameters to pass to Floss."""
# First parameter is the name of the Floss "main" routine.
list_floss_params = ['main']
# Add the options from app.config
list_options = str_floss_options.split(",")
for option in list_options:
list_floss_params.append(option)
# Add the filename of the binary file.
list_floss_params.append(filename)
return list_floss_params | e637c25d299c8217fef31b85a2610ec46e53d1f3 | 7,385 |
def is_leap_year(year: int) -> bool:
"""Whether or not a given year is a leap year.
If year is divisible by:
+------+-----------------+------+
| 4 | 100 but not 400 | 400 |
+======+=================+======+
| True | False | True |
+------+-----------------+------+
Args:
year (int): The year in question
Returns:
bool: True if year is a leap year, false otherwise
"""
def is_div(x: int) -> bool:
return year % x == 0
return is_div(4) and ((not is_div(100)) or is_div(400)) | e4cca9a2b9f0475aadc763fed679eee8b5dddc4a | 7,387 |
def borders(district, unit):
"""Check if a unit borders a district."""
if district == []:
return True
neighbour_coords = [(unit.x+i, unit.y+j) for i in [1, 0, -1]
for j in [1, 0, -1] if bool(i) ^ bool(j)]
district_coords = [(d_unit.x, d_unit.y) for d_unit in district]
return bool([i for i in neighbour_coords if i in district_coords]) | d95bf55b54f0df63980236def80610dcdc6cbfeb | 7,389 |
def get_step_g(step_f, norm_L2, N=1, M=1):
"""Get step_g compatible with step_f (and L) for ADMM, SDMM, GLMM.
"""
# Nominally: minimum step size is step_f * norm_L2
# see Parikh 2013, sect. 4.4.2
#
# BUT: For multiple constraints, need to multiply by M.
# AND: For multiple variables, need to multiply by N.
# Worst case of constraints being totally correlated, otherwise Z-updates
# overwhelm X-updates entirely -> blow-up
return step_f * norm_L2 * N * M | 4adec493ff82450ff0546088af86bac2372b862f | 7,390 |
def MakeCircleRange(circle_size, slice_side):
"""factory function that pre computes all circular slices
slices are assumed to be 2*slice_side+1 in length
"""
assert (circle_size - 1) % 2 == 0
slice_collection = {}
full_indices = list(range(0, circle_size))
for centre_index in range(circle_size):
left = centre_index - slice_side
right = centre_index + slice_side + 1
if left < 0:
indices = full_indices[left:] + full_indices[:right]
elif right > circle_size:
indices = full_indices[left:] + full_indices[: right - circle_size]
else:
indices = full_indices[left:right]
slice_collection[centre_index] = indices
def call(centre_index):
return slice_collection[centre_index]
return call | f952b7b110233780164916afcef102364c3b7399 | 7,391 |
def ramp_geometric(phi, A):
""" Weighted geometric mean according to phi. """
return A[0]**(0.5*(1.+phi))*A[1]**(0.5*(1.-phi)) | 0f79e345336f4038e03947b10446031bd9f3e404 | 7,392 |
def rot13(encoded: str) -> str:
"""
>>> rot13("har crefbaar abeznyr crafr dh’ha xvyb-bpgrg rfg étny à 1000 bpgrgf, ha vasbezngvpvra rfg pbainvaph dh’haxvybzèger rfg étny à 1024 zègerf.")
'une personne normale pense qu’un kilo-octet est égal à 1000 octets, un informaticien est convaincu qu’unkilomètre est égal à 1024 mètres.'
"""
alphabet = "abcdefghijklmnopqrstuvwxyz"
decoded_alphabet = "nopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
decoded = ""
for character in encoded:
if character not in alphabet:
decoded_character = character
else:
decoded_character = decoded_alphabet[alphabet.find(character)]
decoded += decoded_character
return decoded | 790d260a1cc517c49d3ea6e4c481fba32dca0831 | 7,395 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.