content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def getfrom(v):
"""
pass through function for using the
filter_for decorator directly
"""
return v | 7a01fecbac63bca67fef10bfb39f8641e0cacda7 | 7,131 |
def t_POUND(t):
"""header token"""
# 如果header前面有换行
if t.value[0] == '\n':
t.value = str(len(t.value) - 1)
else:
t.value = str(len(t.value))
return t | 8625bb266d4ad9eec9f08a3edc81483c41e87aff | 7,132 |
import re
def _split_article_sentences(article_text):
"""
Recieves a string containing the plain text of a wikipedia article
Returns a list containing the sentences of the recieved article text
"""
def not_image_thumb(paragraph):
"""
True if the paragraph is wikitext for displaying an image trough the "thumb" keyword
i.e. thumb|25px|left
"""
return not bool(re.match("\|thumb\|?|\|?thumb\|",paragraph))
def split_sentences(text):
"""
Returns a list of the sentences in the text
"""
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s', text)
return sentences
paragraphs = article_text.split("\n")
# Remove empty paragraphs, composed by 0 or more space characters
paragraphs = list(filter(lambda x: not bool(re.match(r'^\s*$', x)) , paragraphs))
# Remove the paragraphs corresponding to an image thumb
paragraphs = list(filter(not_image_thumb, paragraphs))
# Split the paragraphs into sentences
# i.e [pragraph1,paragraph] -> [[p1_sent1,p1_sent2],[p2_sent1]]
sentences = list(map(split_sentences,paragraphs))
# Single list i.e. [[1,2],[3]] -> [1,2,3]
sentences = [j for i in sentences for j in i]
# Remove sentences not ending in '.!?'
sentences = list(filter(lambda x: bool(re.match(r'.+[\?|\!|\.]$', x)), sentences))
return sentences | 5fca6ac2113a7c54456132d3afb2171bd8644603 | 7,133 |
import os
def ext(f):
"""Changes the extension of the a give file to jpeg"""
return os.path.splitext(f)[0] + '.jpg' | 51e6acce6ff2a7116e4194aed425e5b81a5f15f1 | 7,134 |
def _compute_fscores(a_stat, a_fscore_stat):
"""
Compute macro- and micro-averaged F-scores
@param a_stat - statistics disctionary on single classes
@param a_fscore_stat - verbose statistics with F-scores for each
particular class (will be updated in this method)
@return 6-tuple with macro- and micro-averaged precision, recall,
and F-scores
"""
macro_P = micro_P = macro_R = micro_R = macro_F1 = micro_F1 = 0.
n_classes = len(a_stat)
if not n_classes:
return (0., 0.)
macro_F1 = micro_F1 = iF1 = iprec = 0.
total_tp = total_fp = total_fn = 0
# obtain statistics for all classes
for iclass, (tp, fp, fn) in a_stat.iteritems():
total_tp += tp
total_fp += fp
total_fn += fn
if tp or (fp and fn):
iprec = tp / float(tp + fp) if (tp or fp) else 0.
ircall = tp / float(tp + fn) if (tp or fn) else 0.
if iprec or ircall:
iF1 = 2 * (iprec * ircall) / (iprec + ircall)
macro_P += iprec
macro_R += ircall
macro_F1 += iF1
else:
iF1 = 0
else:
iF1 = 0
a_fscore_stat[iclass].append(iF1)
# compute macro- and micro-averaged scores
macro_P /= float(n_classes)
macro_R /= float(n_classes)
macro_F1 /= float(n_classes)
if total_tp or (total_fp and total_fn):
micro_P = total_tp / float(total_tp + total_fp)
micro_R = total_tp / float(total_tp + total_fn)
micro_F1 = 2 * micro_P * micro_R / (micro_P + micro_R)
return (macro_P, micro_P, macro_R, micro_R, macro_F1, micro_F1) | a5e2cf4eff650e56a4c6b8c83955e3740d6bb937 | 7,135 |
def parse_employee_info(record_list):
""" Parses the employee record information
Example input:
[('3c7ca263-9383-4d61-b507-2c8bd367567f', 123456, 'Austin', 'Grover', <memory at 0x11059def0>, True, 1,
'00000000-0000-0000-0000-000000000000', datetime.datetime(2020, 2, 23, 16, 53, 25, 531305))]
Args:
Employee Record list
Returns:
list of dictionary records containing employee information.
"""
data_list = []
for record in record_list:
user_password = memoryview(record[4]).tobytes().decode("utf-8")
data_record = {
"id": record[0],
"employeeid": record[1],
"firstname": record[2],
"lastname": record[3],
"password": user_password,
"active": record[5],
"classification": record[6],
"managerid": record[7],
"createdon": record[8],
}
data_list.append(data_record)
return data_list | a0c4e9fb57bc452119f362525e9c16f516911922 | 7,139 |
import math
def gas_release_rate(P1, P2, rho, k, CD, area):
"""
Gas massflow (kg/s) trough a hole at critical (sonic) or subcritical
flow conditions. The formula is based on Yellow Book equation 2.22.
Methods for the calculation of physical effects, CPR 14E, van den Bosch and Weterings (Eds.), 1996
Parameters
----------
P1 : float
Upstream pressure
P2 : float
Downstream pressure
rho : float
Fluid density
k : float
Ideal gas k (Cp/Cv)
CD : float
Coefficient of discharge
are : float
Orifice area
Returns
----------
: float
Gas release rate / mass flow of discharge
"""
if P1 > P2:
if P1 / P2 > ((k + 1) / 2) ** ((k) / (k - 1)):
flow_coef = 1
else:
flow_coef = (
2
/ (k - 1)
* (((k + 1) / 2) ** ((k + 1) / (k - 1)))
* ((P2 / P1) ** (2 / k))
* (1 - (P2 / P1) ** ((k - 1) / k))
)
return (
math.sqrt(flow_coef)
* CD
* area
* math.sqrt(rho * P1 * k * (2 / (k + 1)) ** ((k + 1) / (k - 1)))
)
else:
return 0 | 8749b85457e3f9e24e08f2a9f5f059066e3518b8 | 7,140 |
def email2words(email):
"""Return a slightly obfuscated version of the email address.
Replaces @ with ' at ', and . with ' dot '.
"""
return email.replace('@', ' at ').replace('.', ' dot ') | cd8dff104ace7eaad00164ba1161d1c49ce4a0e3 | 7,141 |
from typing import Union
from typing import Callable
def _get_callable_str(*, callable_: Union[Callable, str]) -> str:
"""
Get a callable string (label).
Parameters
----------
callable_ : Callable or str
Target function or method or property or dunder method name.
Returns
-------
callable_str : str
A callable string (label).
"""
if isinstance(callable_, str):
callable_str: str = callable_
else:
callable_str = callable_.__name__
return callable_str | 2b968e3f5ff79701e6f63bb75548ecb228ec5ed7 | 7,143 |
def join_race_and_gender(c_id_string, artist_df):
"""
takes in a string of c_id(s), ex: "8210" or "8210, 5670"
returns a total count of male, female, white, black, asian, aian, mix, hispanic
"""
male = 0
female = 0
white = 0
black = 0
asian = 0
aian = 0
mix = 0
hispanic = 0
if type(c_id_string) != str: # this means that it is a 'nan'
return None, None
c_ids = str(c_id_string).split(', ')
for c_id in c_ids:
artist_row = artist_df[artist_df['constituent_id']==c_id]
if len(artist_row) == 0:
pass
try:
gender = artist_row['gender'].iloc[0]
if gender == 'male':
male += 1
elif gender == 'female':
female += 1
else:
pass
except Exception:
pass
try:
race = artist_row['race'].iloc[0]
if race == 'white':
white += 1
elif race == 'black':
black += 1
elif race == 'asian':
asian += 1
elif race == 'aian':
aian += 1
elif race == 'mix':
mix += 1
elif race == 'hispanic':
hispanic += 1
else:
pass
except Exception:
pass
return male, female, white, black, asian, aian, mix, hispanic | 3793049d85a12d77058f9574be34b197b5a84760 | 7,144 |
import re
def to_mb(s):
"""Simple function to convert `disk_quota` or `memory` attribute string
values into MB integer values.
"""
if s is None:
return s
if s.endswith('M'):
return int(re.sub('M$', '', s))
elif s.endswith('G'):
return int(re.sub('G$', '', s)) * 1000
return 512 | 870f276552ef90bbd5034551ea8ade0f5160491b | 7,145 |
def length_left(lumber):
"""
Convenience function for calculating the length left in a piece of lumber
:param lumber: a piece of Lumber
:return: length remaining
"""
return lumber.length_left() | 57dfd5e160abdc086759dd41df013181f1217f9d | 7,146 |
def find_matching_paren_pair(s):
"""
Find the first matching pair of parentheses and return their positions
"""
paren_level = -1
open_pos = 0
for i in range(0, len(s)):
if s[i] == "(":
paren_level += 1
if paren_level == 0:
open_pos = i
elif s[i] == ")":
if paren_level == 0:
return (open_pos, i)
paren_level -= 1
raise SyntaxError("Unterminated list '{val}'".format(val=s)) | c50ce61ca96f1babb951d2c1051461be8633d783 | 7,147 |
def IsMerge(op):
"""Return true if `op` is a Merge."""
return op.type == "Merge" or op.type == "RefMerge" | 8b5c7373cd698d23bd1b0df78a5986dded8960ec | 7,148 |
def divisors(integer):
"""
Create a function named divisors/Divisors that takes an integer n > 1 and returns an array with all of the integer's
divisors(except for 1 and the number itself), from smallest to largest. If the number is prime return the string
'(integer) is prime' (null in C#) (use Either String a in Haskell and Result<Vec<u32>, String> in Rust).
:param integer: a integer value.
:return: a list of values which are divisors of an integer.
"""
values = [x for x in range(2, integer) if integer % x == 0]
return values if values else "{} is prime".format(integer) | 6fccf9c5ec49f8ddd852b5aad071f187739e5f0b | 7,152 |
import re
def fraction_to_word(aText, fractions):
"""Spell out fractions written with a '/'. """
aText = re.sub(r"1/2", fractions[0], aText)
aText = re.sub(r"1/3", fractions[1], aText)
aText = re.sub(r"2/3", fractions[2], aText)
aText = re.sub(r"1/4", fractions[3], aText)
aText = re.sub(r"3/4", fractions[4], aText)
aText = re.sub(r"1/5", fractions[5], aText)
return aText | 15a99870f2161a354aa69fadc484435b9d37d477 | 7,154 |
def create_message_context_properties(message_type, message_id, source, identifier, is_cloud_event_format) -> dict:
"""Create message context properties dict from input param values."""
return {
'type': message_type,
'message_id': message_id,
'source': source,
'identifier': identifier,
'is_cloud_event_format': is_cloud_event_format
} | c5edd78abb5e584089456f4d50a656ce46a7666c | 7,155 |
import os
import json
import sys
def use_resultdb():
"""Checks the luci context to determine if resultdb is configured."""
ctx_filename = os.environ.get("LUCI_CONTEXT")
if ctx_filename:
try:
with open(ctx_filename) as ctx_file:
ctx = json.load(ctx_file)
rdb = ctx.get('resultdb', {})
return rdb.get('hostname') and rdb.get('current_invocation')
except (OSError, ValueError):
print(
"Failed to open LUCI_CONTEXT; skip enabling resultdb integration",
file=sys.stderr)
return False
return False | cc589171a8f07d7560a8987dffe6b56602fbdd3f | 7,156 |
def contours_by_Imax(data, minI_factor=8., cl_factor=1.2, num_contours=10):
"""Calculate the contours for the plot base on the maximum intensity."""
maxI = data.max()
minI = maxI / minI_factor
return [minI * cl_factor ** x for x in range(num_contours)] | c214c37ba0c924051d6b410f7237262a81c3087e | 7,157 |
from functools import reduce
import operator
def get_nested_value(the_map, dot_separated_key):
"""Give a nested dictionary map, get the value specified by a dot-separated key where dots
denote an additional depth. Taken from stack overflow (http://stackoverflow.com/a/12414913).
"""
keys = dot_separated_key.split(".")
return reduce(operator.getitem, keys[:-1], the_map)[keys[-1]] | 082d199adc51376592bd215ab32a309807e6089e | 7,158 |
import pathlib
def exists(path: str) -> bool:
"""Checks if path exists
e.g
j.sals.fs.exists("/home/rafy/testing_make_dir/test1") -> True
j.sals.fs.exists("/home/rafy/testing_make_dir/fasdljd") -> False
Args:
path (str): path to check for existence
Returns:
bool: True if exists
"""
return pathlib.Path(path).exists() | a3b3717c947656042d3ddcf9e1107d3f6ec9c06d | 7,161 |
def _create_cql_update_query(key_space: str, table_name: str,
set_columns_value_dict: dict,
primary_key_values: dict) -> str:
""" This function will create an update CQL query"""
cql_update = "UPDATE " + key_space + "." + table_name + " SET "
for key in set_columns_value_dict:
cql_update += key + " = '" + set_columns_value_dict[key] + "', "
cql_update = cql_update[:-2] + " WHERE "
# Now where conditions of primary key or composite key
for key in primary_key_values:
if primary_key_values[key]["type"] == "str":
cql_update += key + " = '" + primary_key_values[key]["value"] + "', "
else:
cql_update += key + " = " + primary_key_values[key]["value"] + ", "
cql_update = cql_update[:-2]
cql_update += ";"
return cql_update | b133feef14daefe7f5cc82936c2399bad3139672 | 7,162 |
import os
import dill
def write_lib_kde(kde, outname, libID):
"""Write a dict of KDE objects for one library.
Parameters
----------
kde : {taxon:kde}
outname : str
output file name
libID : int|str
library ID
Returns
-------
str : file name of output.
"""
prefix = os.path.splitext(outname)[0]
outFile = ''.join([prefix, '_', 'libID', str(libID), '.pkl'])
with open(outFile, 'wb') as outFH:
dill.dump(kde, outFH)
return outFile | 99ac957d151ac5ad7f100a88c3c0a326e10b7e11 | 7,163 |
def extract_file_number(file_name):
""" Extract the file number from a file name """
file_name = str(file_name)
dot_contents = file_name.split('.')
hyp_contents = dot_contents[0].split('-')
base_name = hyp_contents[len(hyp_contents) - 1]
return int(base_name[:-1]) | 0b29ba7e75ddfcdc31832641d51f5f0a507021b0 | 7,164 |
def add_address(x, y):
"""Returns a string representation of the sum of the two parameters.
x is a hex string address that can be converted to an int.
y is an int.
"""
return "{0:08X}".format(int(x, 16) + y) | 3e6fef3d5de0216c68c980b24d9f1ab05bc0a043 | 7,165 |
import re
def replaceRoadWithRd(a_string):
"""assumes a_string is a string
returns a string, with "Rd." where a_string has "Road" """
pattern = "[Rr]oad"
replacement = "Rd."
result = re.sub(pattern, replacement, a_string)
return result | 08cafdc84c61fc4131f923bf65f271b1d08be0c9 | 7,166 |
def extract_fcp_data(raw_data, status):
"""
extract data from smcli System_WWPN_Query output.
Input:
raw data returned from smcli
Output:
data extracted would be like:
'status:Free \n
fcp_dev_no:1D2F\n
physical_wwpn:C05076E9928051D1\n
channel_path_id:8B\n
npiv_wwpn': 'NONE'\n
status:Free\n
fcp_dev_no:1D29\n
physical_wwpn:C05076E9928051D1\n
channel_path_id:8B\n
npiv_wwpn:NONE
"""
raw_data = raw_data.split('\n')
# clear blank lines
data = []
for i in raw_data:
i = i.strip(' \n')
if i == '':
continue
else:
data.append(i)
# process data into one list of dicts
results = []
for i in range(0, len(data), 5):
temp = data[i + 1].split(':')[-1].strip()
# only return results match the status
if temp.lower() == status.lower():
results.extend(data[i:i + 5])
return '\n'.join(results) | bbe9de1f075fa68a4130c44afea9d388b1a678d5 | 7,167 |
import os
def find_table_config_pairs(tag, paths):
"""
Args:
str tag: part of filename to filter files to be used
dict paths: hard-coded paths to output folders
Out:
dict path_pairs: keys "config" and "meet_table"
"""
aa = os.listdir(paths[ "configs"])
bb = os.listdir(paths["meet_tables"])
path_pairs = []
for a in aa: # only few files, so nested loop is ok
for b in bb:
if tag in a and tag in b:
# leave only "_usercomment_timestamp" part of filenames
a_tag = a.split('.')[0][len('config_') :]
b_tag = b.split('.')[0][len('meet_table_'):]
if a_tag == b_tag:
path_pair = {
"config" : os.path.join(paths[ "configs"], a),
"meet_table": os.path.join(paths["meet_tables"], b),
"tag" : a_tag}
path_pairs.append(path_pair)
# alphabetically sort pairs according to the user provided tag name
# (allows adding stat lines to all_stats.csv in sensible order)
path_pairs = sorted(path_pairs, key=lambda entry: entry['tag'])
return path_pairs | 6399890b43a9eccb6853246773a93ee2c66449a7 | 7,168 |
import json
def decode_resource_id_options(request):
""" Extract resource ID options from a HTTP request, making sure the keys have the same names as the
ResourceIdentifier object's fields. """
return {
# Resource ID
'resource_id': request['id'],
'target_platforms': json.dumps(request['target_platforms']) if 'target_platforms' in request else None,
# Font options
'character_regex': request.get('regex', None),
'tracking': int(request['tracking']) if 'tracking' in request else None,
'compatibility': request.get('compatibility', None),
# Bitmap options
'memory_format': request.get('memory_format', None),
'storage_format': request.get('storage_format', None),
'space_optimisation': request.get('space_optimisation', None),
} | 97f61b5c1ffb82cb9f29caebb9a85d42348fbfa7 | 7,169 |
import json
def load_data(data):
""" Wrapper to load json data, to be compatible with Python3.
Returns: JSON data
Keyword arguments:
data: might be bytes or str
"""
if type(data) == bytes:
return json.loads(data.decode("utf-8"))
else:
return json.loads(data) | c33c661c2a42d162d06c3e17487e072908fd0bf4 | 7,170 |
def indices_for(df, nprocs):
"""
group rows in dataframe and assign each group to each process
Args:
df: Pandas dataframe object
nprocs: number of processes used
Returns:
indeces grouped to each process
"""
N = df.shape[0]
L = int(N / nprocs)
indices = []
for i in range(nprocs):
for j in range(L):
indices.append(i)
for i in range(N - (nprocs * L)):
indices.append(nprocs - 1)
return indices | c68408e6fcf70b885ca86fb80f8c31b0bd07e334 | 7,172 |
def _dynamic_range(fig, range_padding=0.05, range_padding_units='percent'):
"""Automatically rescales figure axes range when source data changes."""
fig.x_range.range_padding = range_padding
fig.x_range.range_padding_units = range_padding_units
fig.y_range.range_padding = range_padding
fig.y_range.range_padding_units = range_padding_units
return fig | e3c82605ab20ad6ab3c6f2a6e6d32479a9012ed2 | 7,173 |
def continuous_ob(orderbooks):
"""
Creates a continuous orderbook timeseries data, for all orderbooks included as input. i.e. all timestamps
that one orderbook has and the other dont, in the latter repeates the information of the former, with
this, the output will deliver two historical orderbooks with the same timestamp.
Parameters
----------
orderbooks: dict
With 2 or more orderbooks data.
Returns
-------
r_ts_orderbooks: dict
With the 2 or more orderbooks now all of them with the same timestamps
"""
# orderbooks = ob_data.copy()
exchanges = list(orderbooks.keys())
timestamps = []
# Create a joined list of all the dates among all the exchanges
# [timestamps.append(orderbooks[exchanges[0]].keys()) for exchange in exchanges]
# If for an exchange the timestamp does not contain info, use the previous timestamp that does
return 1 | 03a5124a58f51625b1a63535f8b7ca3d06058aa7 | 7,174 |
def transform_observation(attribute, data):
""" place to hook any transforms on te data """
output = data
if (attribute == 'observation_time'):
output = data[16:]
return output | 875d35a6c66cf57fe7ac4995f913b8dbe70e63f3 | 7,175 |
import numpy
def nanallclose(x, y, rtol=1.0e-5, atol=1.0e-8):
"""Numpy allclose function which allows NaN
Args:
* x, y: Either scalars or numpy arrays
Returns:
* True or False
Note:
Returns True if all non-nan elements pass.
"""
xn = numpy.isnan(x)
yn = numpy.isnan(y)
if numpy.any(xn != yn):
# Presence of NaNs is not the same in x and y
return False
if numpy.all(xn):
# Everything is NaN.
# This will also take care of x and y being NaN scalars
return True
# Filter NaN's out
if numpy.any(xn):
x = x[numpy.logical_not(xn)]
y = y[numpy.logical_not(yn)]
# Compare non NaN's and return
return numpy.allclose(x, y, rtol=rtol, atol=atol) | 053fdc260d215304f0e913a468775dd4ce86dba9 | 7,176 |
from typing import Tuple
from typing import List
from typing import Dict
from typing import Any
def info() -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
"""
Get input and output schemas
:return: OpenAPI specifications. Each specification is assigned as (input / output)
"""
input_sample = [
{
'name': "a",
'type': "string",
'required': True,
'example': "1"
},
{
'name': "b",
'type': "string",
'example': "2"
}
]
output_sample = [
{
'name': "integer",
'type': "string",
'required': True,
'example': '42'
}
]
return input_sample, output_sample | 282f60cacac69865736c58712c4bfbdb2f5e2c24 | 7,180 |
def nats_to_params(nat1, nat2, nat3, nat4):
"""
natural parameters to distribution parameters
"""
alpha = nat1 + (1./2)
nu = -2 * nat4
mu = nat3 / nu
beta = - nat2 - (nu * (mu**2) / 2)
return alpha, beta, mu, nu | 56fba0a886d35948edf570c6eb379f6e0175b589 | 7,181 |
import sympy
def get_symbol_list(number_of_symbols):
""" Returns a list of sympy expression, each being an identity of a variable. To be used for input layer."""
return sympy.symbols(['x_{}'.format(i + 1) for i in range(number_of_symbols)], real=True) | 2d81bfc1a162e52b42bf69d4cf68786717ba6f3c | 7,183 |
def asst70_gene_descriptors(moa_abl1):
"""Create assertion70 gene_descriptors test fixture."""
return [moa_abl1] | a68a349aaebf107cdd645e213fb56f268046a619 | 7,184 |
def build_table_separator(outer_left='╠', inner='╬', outer_right='╣'):
"""
Builds formatted unicode header for the stopwatch table.
:return: formatted unicode header
"""
return f"{outer_left}{'═' * 14}{inner}{'═' * 18}{inner}{'═' * 20}{outer_right}" | 22d9aef799e2245a072e9032b9d8dcc2f138386e | 7,186 |
def compute_cog(d):
"""
Args:
d: dict
Returns:
percentage
"""
accuracy=(d['22']+d['25']+d['23']+d['24'])/27
return round(accuracy*100, 3) | a83cb11f4d5fdec3bb63533352eb4fd0b62782ea | 7,187 |
import json
def read_file(file):
"""Reads in a data file and generates insert statements for the sql dump."""
rs = "\n"
with open(file, "r", encoding='utf-8') as f:
data = json.load(f)
# Insert conf
rs += '''INSERT INTO Conference (conf_name, time, location) VALUES ("{}", "{}", "{}");\n'''\
.format(data["name"], data["datetime"], data["location"])
# Insert paper
for paper in data["papers"]:
ps = ""
ps += """INSERT INTO Paper (PK_conf, paper_title, paper_keywords, paper_link, paper_type, paper_time)
VALUES ("{}", "{}", "{}", "{}", "{}", "{}");\n""" \
.format(data["name"], paper["paper_title"],
paper["paper_keywords"], paper["paper_link"], paper["paper_type"],
paper["paper_time"])
for author in paper["paper_authors"]:
try:
given_name, family_name = author.rsplit(' ', 1)
except ValueError:
family_name = author
given_name = None
ps += """INSERT IGNORE INTO Author (family_name, given_name) VALUES ("{}", "{}");\n""" \
.format(family_name, given_name)
ps += """INSERT INTO Paper_Author_Rel (PK_author_fn, PK_author_gn, PK_paper)
VALUES ("{}", "{}", "{}");\n""" \
.format(family_name, given_name, paper["paper_title"])
rs += ps.replace("\"None\"", "NULL")
# Insert tutorials
for tutorial in data["tutorials"]:
try:
tutorial_author = ", ".join(tutorial["tutorial_author"])
except TypeError:
tutorial_author = None
ts = ""
ts += """INSERT INTO Tutorial (PK_conf, tutorial_author, tutorial_name, tutorial_abstract, tutorial_location, tutorial_time, tutorial_link)
VALUES ("{}", "{}", "{}", "{}", "{}", "{}", "{}");\n""" \
.format(data["name"], tutorial_author,
tutorial["tutorial_name"], tutorial["tutorial_abstract"],
tutorial["tutorial_location"],
tutorial["tutorial_time"], tutorial["tutorial_link"])
rs += ts.replace("\"None\"", "NULL")
# Insert workshops
for workshop in data["workshops"]:
try:
workshop_organizer = ", ".join(workshop["workshop_organizer"])
except TypeError:
workshop_organizer = None
ws = ""
ws += """INSERT INTO Workshop (PK_conf, workshop_name, workshop_organizer, workshop_description, workshop_day, workshop_location, workshop_link)
VALUES ("{}", "{}", "{}", "{}", "{}", "{}", "{}");\n""" \
.format(data["name"], workshop["workshop_name"],
workshop_organizer, workshop["workshop_description"],
workshop["workshop_day"], workshop["workshop_location"],
workshop["workshop_link"])
rs += ws.replace("\"None\"", "NULL")
# Insert keynotes
for keynote in data["keynotes"]:
ks = ""
ks += """INSERT INTO Keynote (PK_conf, keynote_title, keynote_speaker, keynote_speaker_bio, keynote_abstract, keynote_time, keynote_location, keynote_link)
VALUES ("{}", "{}", "{}", "{}", "{}", "{}", "{}", "{}");\n""" \
.format(data["name"], keynote["keynote_title"],
keynote["keynote_speaker"], keynote["keynote_speaker_bio"],
keynote["keynote_abstract"], keynote["keynote_time"],
keynote["keynote_location"], keynote["keynote_link"])
rs += ks.replace("\"None\"", "NULL")
return rs | bf5db1e737278182bbddae836bbfc2f3fe8dc013 | 7,188 |
def set_callback(ar, cb):
"""
Runs when confimation is requred, checks if answer is present in request data, if so, runs corisponding function
Otherwise returns with data that will pop up a dialog.
"""
cb_id = cb.uid
answer = ar.xcallback_answers.get("xcallback__" + cb_id, None)
if answer is None:
buttons = []
xcallback = dict(
id=cb_id,
title=cb.title,
buttons=buttons)
rq_data = { k:v[0] if len(v) == 1 else v
for k,v in (ar.rqdata.lists() if getattr(ar, "rqdata", None) is not None else {})}
rq_data.pop("_dc", None)
for c in cb.choices:
buttons.append([c.name, c.label])
xcallback[c.name + "_resendEvalJs"] = ar.renderer.ar2js(
ar, ar.selected_rows, rqdata= rq_data, xcallback={
"xcallback_id" : cb_id,
"choice" : c.name })
# print(buttons)
return ar.success(cb.message, xcallback=xcallback)
else:
cb.run(answer) | 90acf651ad324b6e4958ed90f4bf8d76f37a6073 | 7,189 |
def _descend_namespace(caller_globals, name):
"""
Given a globals dictionary, and a name of the form "a.b.c.d", recursively
walk the globals expanding caller_globals['a']['b']['c']['d'] returning
the result. Raises an exception (IndexError) on failure.
"""
names = name.split('.')
cur = caller_globals
for i in names:
if type(cur) is dict:
cur = cur[i]
else:
cur = getattr(cur, i)
return cur | 111a5277907b60d3f27f037868ac8c84e390e159 | 7,191 |
def _get_extension_point_url_from_name(domain, category, pluggable_name):
"""Get the extension point URL based on a pluggable method name"""
return '{}/{}/{}'.format(domain, category, pluggable_name).replace('//', '/') | a4a34409dac26e42d123c4fda66ddc0947134e00 | 7,192 |
def get_feature(feature_name,
example):
"""Gets Tensorflow feature by name.
Args:
feature_name: The name of the feature.
example: A Tensorflow example.
Returns:
The Tensorflow feature with the given feature name in the example.
Raises:
ValueError: If the given feature name is not in the Tensorflow example.
"""
if feature_name in example.features.feature:
return example.features.feature[feature_name]
else:
raise ValueError('Feature name {} is not in the example {}'.format(
feature_name, example)) | 80e35d7e1fe15e7a455123cbd139139dd977f216 | 7,193 |
def esc(code: int) -> str:
"""
Converts the integer code to an ANSI escape sequence
:param code: code
:return: escape sequence
"""
return f"\033[{code}m" | 6bdc0679ba9b480220bc088bd09d6356dd539f1f | 7,196 |
def get_paper_data(paper_name):
"""Gets paper code and paper type based on paper name"""
split = paper_name.split("_")
code = split[-1]
paper_type = split[-2]
if len(split) == 5:
code = split[-2] + split[-3]
paper_type = split[-1]
elif len(split) == 3:
code = "00"
paper_type = split[-1]
return code, paper_type | 7f5804241a3f97b2c0ea534a4f030841e7c86e3b | 7,199 |
import os
def toLongPathSafe(path):
"""Converts the specified path string to a form suitable for passing to API
calls if it exceeds the maximum path length on this OS.
@param path: A path. Can be None/empty. Can contain ".." sequences.
@return: The passed-in path, absolutized, and possibly with a "\\?\" prefix added,
forward slashes converted to backslashes on Windows, and converted to
a unicode string.
"""
if not path: return path
path = os.path.abspath(path) # for consistency, always absolutize it
if (os.name != 'nt'): return path
if path[0] != path[0].upper(): path = path[0].upper()+path[1:]
if path.startswith('\\\\?\\'): return path
inputpath = path
# ".." is not permitted in \\?\ paths; normpath is expensive so don't do this unless we have to
if '.' in path:
path = os.path.normpath(path)
else:
# path is most likely to contain / so more efficient to conditionalize this
path = path.replace('/','\\')
if '\\\\' in path:
# consecutive \ separators are not permitted in \\?\ paths
path = path.replace('\\\\','\\')
if path.startswith(u'\\\\'):
path = u'\\\\?\\UNC\\'+path.lstrip('\\') # \\?\UNC\server\share
else:
path = u'\\\\?\\'+path
return path | dbbb39e9f5c1ad3fc02883af771c26b532901f28 | 7,200 |
from typing import List
def str_class(s: str) -> str:
"""Expand a string of character ranges.
Example: str_class("a-cx0-9") = "abcx0123456789"
"""
i = 0
n = len(s)
ret: List[str] = []
while i < n:
if i + 2 < n and s[i+1] == '-':
start = ord(s[i])
end = ord(s[i+2])
if start <= end:
ret.extend(chr(c) for c in range(start, end + 1))
else:
ret.extend(chr(c) for c in range(start, end - 1, -1))
i += 3
else:
ret.append(s[i])
i += 1
return ''.join(ret) | 21bbd7b46a964f20377b4f98b203b6bf0ad210c2 | 7,202 |
from typing import List
from typing import Tuple
def filter_edges(nodes:List[int], edges: List[Tuple[int,int,int]]) -> List[Tuple[int,int,int]]:
"""Filter the edges of a subgraph.
Parameters
----------
nodes: list containing the nodes
edges: list containing the edges of the original graph
Returns
-------
inverse dictionary of nodes
filtered edges"""
ns = {v: k for k,v in enumerate(nodes)}
new_edges = []
for x, y, v in edges:
if x in ns and y in ns:
new_edges.append((x, y,v))
return new_edges | 50cf2986a5afa4748cf9b8505fc992f7b7f97db1 | 7,205 |
import math
def is_primes(n) :
"""return 'True' if 'n' is a prime number. False otherwise"""
b =[]
if n==1:
return False # 1 is not a prime
if n==2:
return True
if n > 2 and n % 2 ==0:
return False
max_divisor = math.floor(math.sqrt(n))
for i in range (3, 1+max_divisor,2):
if n % i == 0 :
return False
return True | 8054efd19b2e6a3b0e1de896865ae7e36e1d9125 | 7,206 |
def GetStatus(issue):
"""Get the status of an issue, whether it is explicit or derived."""
return issue.status or issue.derived_status or '' | 4f51142dc4e55adaa27eaf3f3e7e748a49d45df2 | 7,207 |
def set_safe_attr(instance, attr, val):
"""Sets the attribute in a thread safe manner.
Returns if new val was set on attribute.
If attr already had the value then False.
"""
if not instance or not attr:
return False
old_val = getattr(instance, attr, None)
if val is None and old_val is None:
return False
elif val == old_val:
return False
else:
setattr(instance, attr, val)
return True | 92f657a8e8919b47db6f38a31d4c1cad5bea4c93 | 7,208 |
def get_xml_subelement(xml_elem, subelement, attribute=None, multi=False, convert=None, default=None, quiet=False):
"""
Return the text or attribute of the specified subelement
=== PARAMETERS ===
xml_elem : search the children nodes of this element
subelement: name of the subelement whose text will be retrieved
attribute :
convert : if not None, a callable used to perform the conversion of the text to a certain object type
default : default value if subelement is not found
quiet : if True, don't raise exceptions from conversions, instead use the default value
=== RETURN ===
The text associated with the sub-element or ``None`` in case of error
=== EXAMPLE ===
<xml_elem>
<subelement value="THIS1">text1</subelement>
<subelement value="THIS2">text2</subelement>
</xml_elem>
>>> get_xml_subelement(xml_elem, 'subelement')
text1
>>> get_xml_subelement(xml_elem, 'subelement', value')
THIS1
>>> get_xml_subelement(xml_elem, 'subelement', value', True)
[THIS1, THIS2]
"""
if xml_elem is None or not subelement:
return None
subel = xml_elem.findall(subelement)
if len(subel) == 0:
return [default] if multi else default
result = []
for el in subel:
text = None
if attribute is not None:
if type(attribute) is list:
text = []
for a in attribute:
text += [el.attrib.get(a)]
else:
text = el.attrib.get(attribute, default)
else:
text = el.text if el.text is not None else default
if convert:
try:
text = convert(text)
except:
if quiet:
text = default
else:
raise
result += [text]
return result if multi else result[0] | 574880a2bfb7a6203b5079ec38ebc0d9af41cb07 | 7,209 |
def parse_mem_str_to_gbsize(strmem):
"""
String like 845 MB 677.8 MB to GB size
:param strtime:
:return:
"""
strmem = strmem.strip()
if strmem.endswith('MB'):
memgb = float(strmem[:-2]) / 1024
elif strmem.endswith('GB'):
memgb = float(strmem[:-2])
elif strmem.endswith('KB'):
memgb = float(strmem[:-2]) / 1024 / 1024
else:
raise Exception(f'Not recognized strmem={strmem}')
return memgb
pass | fd7d96c25b446a1c5ff94694908a9c355e340780 | 7,210 |
def civic_vid258():
"""Create a test fixture for CIViC VID258."""
return {
"id": "civic.vid:258",
"type": "VariationDescriptor",
"label": "A222V",
"value_id": "ga4gh:VA.V5IUMLhaM8Oo-oAClUZqb-gDPaIzIi-A",
"value": {
"location": {
"interval": {
"end": 222,
"start": 221,
"type": "SimpleInterval"
},
"sequence_id": "ga4gh:SQ.4RSETawLfMkNpQBPepa7Uf9ItHAEJUde",
"type": "SequenceLocation"
},
"state": {
"sequence": "V",
"type": "SequenceState"
},
"type": "Allele"
},
"xrefs": [
"clinvar:3520",
"caid:CA170990",
"dbsnp:1801133"
],
"alternate_labels": [
"C677T",
"ALA222VAL"
],
"extensions": [
{
"name": "civic_representative_coordinate",
"value": {
"chromosome": "1",
"start": 11856378,
"stop": 11856378,
"reference_bases": "G",
"variant_bases": "A",
"representative_transcript": "ENST00000376592.1",
"ensembl_version": 75,
"reference_build": "GRCh37"
},
"type": "Extension"
},
{
"name": "civic_actionability_score",
"value": "55",
"type": "Extension"
}
],
"structural_type": "SO:0001583",
"expressions": [
{
"syntax": "hgvs:transcript",
"value": "NM_005957.4:c.665C>T",
"type": "Expression"
},
{
"syntax": "hgvs:protein",
"value": "NP_005948.3:p.Ala222Val",
"type": "Expression"
},
{
"syntax": "hgvs:transcript",
"value": "ENST00000376592.1:c.665G>A",
"type": "Expression"
},
{
"syntax": "hgvs:genomic",
"value": "NC_000001.10:g.11856378G>A",
"type": "Expression"
}
],
"gene_context": "civic.gid:3672"
} | ee725d2c4601ce400abf1cf9da3d5eaaa7ba5bda | 7,212 |
import collections
def ParseIoStatsLine(line):
"""Parses a line of io stats into a IoStats named tuple."""
# Field definitions: http://www.kernel.org/doc/Documentation/iostats.txt
IoStats = collections.namedtuple('IoStats',
['device',
'num_reads_issued',
'num_reads_merged',
'num_sectors_read',
'ms_spent_reading',
'num_writes_completed',
'num_writes_merged',
'num_sectors_written',
'ms_spent_writing',
'num_ios_in_progress',
'ms_spent_doing_io',
'ms_spent_doing_io_weighted',
])
fields = line.split()
return IoStats._make([fields[2]] + [int(f) for f in fields[3:]]) | 2764dc96f0720359f906f1b27763738331f63e19 | 7,213 |
def get_pixel_neighbors(height, width):
"""
Estimate the 4 neighbors of every pixel in an image
:param height: image height
:param width: image width
:return: pixel index - neighbor index lists
"""
pix_id = []
neighbor_id = []
for i in range(height):
for j in range(width):
n = []
if i == 0:
n = n + [(i + 1) * width + j]
elif i == height - 1:
n = n + [(i - 1) * width + j]
else:
n = n + [(i + 1) * width + j, (i - 1) * width + j]
if j == 0:
n = n + [i * width + j + 1]
elif j == width - 1:
n = n + [i * width + j - 1]
else:
n = n + [i * width + j + 1, i * width + j - 1]
for k in n:
pix_id.append(i*width+j)
neighbor_id.append(k)
return pix_id, neighbor_id | 3e49081fdc59ff2b0df54b84e0cf8c5983ec7b2c | 7,214 |
from typing import Counter
def check_valid_solution(solution, graph):
"""Check that the solution is valid: every path is visited exactly once."""
expected = Counter(
i for (i, _) in graph.iter_starts_with_index()
if i < graph.get_disjoint(i)
)
actual = Counter(
min(i, graph.get_disjoint(i))
for i in solution
)
difference = Counter(expected)
difference.subtract(actual)
difference = {k: v for k, v in difference.items() if v != 0}
if difference:
print('Solution is not valid!'
'Difference in node counts (expected - actual): {}'.format(difference))
return False
return True | ec22134973153605b3a9b7a2ac7f180ffe55f97e | 7,216 |
def _memoized_fibonacci_aux(n: int, memo: dict) -> int:
"""Auxiliary function of memoized_fibonacci."""
if n == 0 or n == 1:
return n
if n not in memo:
memo[n] = _memoized_fibonacci_aux(n - 1, memo) + \
_memoized_fibonacci_aux(n - 2, memo)
return memo[n] | 9a6d8646139d6ae9f6f63d2e990545fd088407eb | 7,218 |
from pathlib import Path
import os
def module_dir_path(request):
"""Assure a directory exists in this module.
The directory name is given by the environment variable
combining the module name and "_DIR". For example,
module test_foo.py will use the environment variable
named TEST_FOO_DIR. Return the path to the directory
or None if the environment variable is not set."""
module_file_path = Path(request.module.__file__)
env_var_name = "{}_{}".format(module_file_path.stem, "DIR").upper()
module_dir_name = os.environ.get(env_var_name)
if not module_dir_name:
return None
test_dir = module_file_path.parent
module_dir = test_dir / module_dir_name
module_dir.mkdir(mode = 0o775, exist_ok = True)
return module_dir | f1debd9ee663c1be2165e229e76aa360e9dd03dc | 7,219 |
import os
import json
def get_sagemaker_resource_config():
"""
Returns JSON for config if training job is running on SageMaker else None
"""
cluster_config = None
sm_config_path = '/opt/ml/input/config/resourceconfig.json'
if os.path.exists(sm_config_path):
with open(sm_config_path) as file:
cluster_config = json.load(file)
return cluster_config | 5faf1d0ca27c0fe0fe6bbdfdbf731c68cede7e06 | 7,220 |
def set_lm_labels(dataset, vocab, stm_lex, stm_win=3):
"""
set labels of bi-directional language modeling and sentiment-aware language modeling
:param dataset: dataset
:param vocab: vocabulary
:param stm_lex: sentiment lexicon
:param stm_win: window size (i.e., length) of sentiment context
:return:
"""
n_records = len(dataset)
for i in range(n_records):
words = dataset[i]['words']
# labels of language modeling and sentiment aware language modeling
lm_labels_f, lm_labels_b = [], []
n_w = len(words)
# language modeling in forward direction
for j in range(n_w):
if j == n_w - 1:
next_word = -1
else:
if words[j+1] in stm_lex:
next_word = stm_lex[words[j+1]]
else:
next_word = -1
next_word = -1* next_word + 1
lm_labels_f.append(next_word)
for j in range(n_w-1, -1, -1):
if j == 0:
next_word = -1
else:
if words[j-1] in stm_lex:
next_word = stm_lex[words[j-1]]
else:
next_word = -1
next_word = -1* next_word + 1
lm_labels_b.append(next_word)
dataset[i]['lm_labels_f'] = list(lm_labels_f)
dataset[i]['lm_labels_b'] = list(lm_labels_b)[::-1]
# sentiment aware language modeling
stm_lm_labels = []
opn_labels = []
for j in range(n_w):
if words[j] in stm_lex:
opn_labels.append(1)
else:
opn_labels.append(0)
# left boundary of sentimental context
stm_ctx_lb = j - stm_win
if stm_ctx_lb < 0:
stm_ctx_lb = 0
stm_ctx_rb = j + stm_win + 1
left_ctx = words[stm_ctx_lb:j]
right_ctx = words[j+1:stm_ctx_rb]
stm_ctx = left_ctx + right_ctx
flag = False
for w in stm_ctx:
if w in stm_lex:
flag = True
break
if flag:
stm_lm_labels.append(1)
else:
stm_lm_labels.append(0)
dataset[i]['stm_lm_labels'] = list(stm_lm_labels)
dataset[i]['opn_labels'] = list(opn_labels)
return dataset | ec87003f9f427c5de5ea969f7040f7f10d49c3ea | 7,221 |
def pad_sequences(sequences, pad_func, maxlen = None):
"""
Similar to keras.preprocessing.sequence.pad_sequence but using Sample as higher level
abstraction.
pad_func is a pad class generator.
"""
ret = []
# Determine the maxlen
max_value = max(map(len, sequences))
if maxlen is None:
maxlen = max_value
# Pad / truncate (done this way to deal with np.array)
for sequence in sequences:
cur_seq = list(sequence[:maxlen])
cur_seq.extend([pad_func()] * (maxlen - len(sequence)))
ret.append(cur_seq)
return ret | 5879ab8f8df7477b9d73c87b6c8065fcc43a66df | 7,222 |
import re
def clean_text(text: str, remove_punctuation=False) -> str:
"""Cleans the inputted text based on the rules given in the comments.
Code taken from: https://github.com/kk7nc/Text_Classification/
Args:
text (str): the text to be cleaned
remove_punctuation (bool): whether to remove punctuation or not
Returns:
the cleaned text
"""
rules = [
{r">\s+": u">"}, # remove spaces after a tag opens or closes
{r"\s+": u" "}, # replace consecutive spaces
{r"\s*<br\s*/?>\s*": u"\n"}, # newline after a <br>
{r"</(div)\s*>\s*": u"\n"}, # newline after </p> and </div> and <h1/>...
{r"</(p|h\d)\s*>\s*": u"\n\n"}, # newline after </p> and </div> and <h1/>...
{r"<head>.*<\s*(/head|body)[^>]*>": u""}, # remove <head> to </head>
{r'<a\s+href="([^"]+)"[^>]*>.*</a>': r"\1"}, # show links instead of texts
{r"[ \t]*<[^<]*?/?>": u""}, # remove remaining tags
{r"^\s+": u""}, # remove spaces at the beginning
]
if remove_punctuation:
rules.append({r"[.,\/#!$%\^&\*;:{}=\-_`~()]": u""})
for rule in rules:
for (k, v) in rule.items():
regex = re.compile(k)
text = regex.sub(v, text)
text = text.rstrip()
return text.lower() | 0f666041724315696924808c335c0110b7ffc158 | 7,224 |
import webbrowser
def openURL(url):
"""Opens a URL."""
webbrowser.open_new(url)
return True | b2e843a49ddfb4b90e556f4edbaa4e20823f3097 | 7,225 |
def lisp_parens_with_stack(parens):
"""Output with stack to see whether parens are open(1), broken(-1), or balanced(0)."""
open_stack = []
for par in parens:
if par == '(':
open_stack.append(par)
if par == ')':
try:
open_stack.pop()
except IndexError:
return -1
if open_stack:
return 1
else:
return 0 | f3cd34611fc8ff8cf33a7f62bcddf245c77ff473 | 7,226 |
def largest_nonadjacent_sum(arr):
"""
Find the largest sum of non-adjacent numbers
"""
before_last = 0
last = 0
for elt in arr:
cur = before_last + elt
before_last = max(before_last, last)
last = max(cur, last)
return last | 39d4ab307e978f4ab9d1bd5a2983292dde3f6933 | 7,227 |
from typing import Any
def eval_with_import(path: str) -> Any:
"""Evaluate the string as Python script.
Args:
path (str): The path to evaluate.
Returns:
Any: The result of evaluation.
"""
split_path = path.split('.')
for i in range(len(split_path), 0, -1):
try:
exec('import {}'.format('.'.join(split_path[:i])))
break
except Exception:
continue
return eval(path) | a9d614251f088c9105504aa0f9f99bbc1d8f1712 | 7,228 |
import os
import codecs
def readoptions(fname):
"""
Read `markowik` options from a file, one per line.
"""
if os.path.exists(fname):
with codecs.open(fname, 'r', 'UTF8') as fp:
cfg = fp.read()
options = [x.strip() for x in cfg.split("\n") if x.strip()]
else:
options = []
return options | 2a0149be62a7f57d1c0cb9fa1351d892dc1517c1 | 7,230 |
import six
def get_train_random_forest_pai_cmd(model_name, data_table, model_attrs,
feature_column_names, label_name):
"""Get a command to submit a KMeans training task to PAI
Args:
model_name: model name on PAI
data_table: input data table name
model_attrs: model attributes for KMeans
feature_column_names: names of feature columns
label_name: name of the label column
Returns:
A string which is a PAI cmd
"""
# default use numTrees = 1
tree_num = model_attrs.get("tree_num", 1)
assert isinstance(tree_num, six.integer_types), \
"tree_num must be an integer"
feature_cols = ",".join(feature_column_names)
return '''pai -name randomforests -DinputTableName="%s" -DmodelName="%s"
-DlabelColName="%s" -DfeatureColNames="%s" -DtreeNum="%d"''' % (
data_table, model_name, label_name, feature_cols, tree_num) | f826e0b24613b2ea8794524c3a5f982131f9a048 | 7,231 |
def diff_all_filter(trail, key=lambda x: x['pid']):
""" Filter out trails with last key appeared before
"""
return trail if key(trail[-1]) not in set([key(c) for c in trail]) else None | 6c7b6e7c64c4fcf097b5ac743e3c2720911c0248 | 7,232 |
import math
def xy(n, image_size):
"""Returns position of pixel n in 2D array"""
x = int(n % image_size)
y = int(math.floor(n / image_size))
return (x,y) | def36d60055e5084b42d73833c4baeeab9723085 | 7,233 |
def format_labels(label):
"""
Assumes that the label can be split by the '_' character.
:param label:
:return:
"""
side, anatomy = label.split("_")
if side.lower() in ["l", "left"]:
side = "left"
elif side.lower() in ["r", "right"]:
side = "right"
else:
raise ValueError(
"Label %s is not recognized: cannot determine side %s" % (label, side)
)
label = "_".join([side, anatomy])
return label | 9b0add955822713eb579168c9bae7a9ae6908fe6 | 7,234 |
import os
def is_root(directory):
"""Check if the directory is the root directory.
Args:
directory: The directory to check.
Return:
Whether the directory is a root directory or not.
"""
# If you're curious as why this works:
# dirname('/') = '/'
# dirname('/home') = '/'
# dirname('/home/') = '/home'
# dirname('/home/foo') = '/home'
# basically, for files (no trailing slash) it removes the file part, and
# for directories, it removes the trailing slash, so the only way for this
# to be equal is if the directory is the root directory.
return os.path.dirname(directory) == directory | ccbdcce26cd3b8b0826ce2514bbd3612c5381a21 | 7,235 |
import requests
import os
def run_md5sum(cwl_input):
"""Pass a local md5sum cwl to the wes-service server, and return the path of the output file that was created."""
endpoint = 'http://localhost:8080/ga4gh/wes/v1/workflows'
params = {'output_file': {'path': '/tmp/md5sum.txt', 'class': 'File'}, 'input_file': {'path': '../../testdata/md5sum.input', 'class': 'File'}}
body = {'workflow_url': cwl_input, 'workflow_params': params, 'workflow_type': 'CWL', 'workflow_type_version': 'v1.0'}
response = requests.post(endpoint, json=body).json()
output_dir = os.path.abspath(os.path.join('workflows', response['workflow_id'], 'outdir'))
return os.path.join(output_dir, 'md5sum.txt') | 5f4c79953c691e705f66803269f83dd609be1e56 | 7,236 |
def get_app_name():
""" liefert ressource """
return 'resource' | 580a2cf59b84f28f3efc95b00ffd051b53fa0ffa | 7,237 |
import math
def degree_to_radian(degree: float) -> float:
"""
Fungsi ini digunakan untuk mengonversi derajat ke radian.
Rumus : derajat * (pi / 180 derajat)
>>> degree_to_radian(60)
1.0471975511965976
"""
return degree * (math.pi / 180) | 5935b99621192edae5360b2066397997d2dc34f5 | 7,239 |
from typing import Type
from typing import TypeVar
from typing import get_args
def _contains_unbound_typevar(t: Type) -> bool:
"""Recursively check if `t` or any types contained by `t` is a `TypeVar`.
Examples where we return `True`: `T`, `Optional[T]`, `Tuple[Optional[T], ...]`, ...
Examples where we return `False`: `int`, `Optional[str]`, ...
:param t: Type to evaluate.
:return: `True` if the input type contains an unbound `TypeVar`, `False` otherwise.
"""
# Check self
if isinstance(t, TypeVar):
return True
# Check children
for arg in get_args(t):
if _contains_unbound_typevar(arg):
return True
return False | 97e85b3aafea1d9dc86f69078ff39c93b6bd7c19 | 7,240 |
import os
def _get_output_dir(output_dir, chunk_arr, name_arr):
"""Get the directory for the output cutout data."""
# Check the output directory
if not os.path.isdir(output_dir):
raise ValueError("Output directory '{:s}' does not exist".format(output_dir))
return [os.path.join(output_dir, str(chunk), str(name)) for (chunk, name) in zip(chunk_arr, name_arr)] | 4aff96f5d26c8073f64277a23bbc3eacc9024ea3 | 7,241 |
def create_sample_db(ntables):
"""
Create a python description of a sample database
"""
rv = {}
for i in range(1, ntables + 1):
rv["table%s" % i] = {
"columns": [
{
"name": "id",
"type": "integer",
"use_sequence": "table%s_id_seq" % i,
},
{"name": "data", "type": "text"},
],
}
return rv | c49f583b4e7f58f1bbb7ad05902c1fc9010bd35c | 7,242 |
import os
import glob
def listflat(path, ext=None):
"""
List files without recursion
"""
if os.path.isdir(path):
if ext:
if ext == 'tif' or ext == 'tiff':
files = glob.glob(os.path.join(path, '*.tif'))
files = files + glob.glob(os.path.join(path, '*.tiff'))
else:
files = glob.glob(os.path.join(path, '*.' + ext))
else:
files = [os.path.join(path, fname) for fname in os.listdir(path)]
else:
files = glob.glob(path)
# filter out directories
files = [fpath for fpath in files if not isinstance(fpath, list) and not os.path.isdir(fpath)]
return sorted(files) | 227a12683472dfbaf298cb54b730049a270187f3 | 7,243 |
import argparse
import os
import torch
def get_args():
"""Expose different behaviors of the server to the user.
Raises:
AssertionError: If the combination of arguments are unsupported
Returns:
parsed arguments for the server, cached
"""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--m1", default=None, type=str, help="Request this as one model in the interface")
parser.add_argument("--m2", default=None, type=str, help="Request this as another model in the interface")
parser.add_argument("--address", default="127.0.0.1") # 0.0.0.0 for nonlocal use
parser.add_argument(
"--port", type=int, default=8000, help="Port on which to run the app."
)
parser.add_argument("--dir", type=str, default=os.path.abspath("data"))
parser.add_argument("--suggestions", type=str, default=os.path.abspath("data"))
parser.add_argument(
"--config",
"-c",
type=str,
default=None,
help="Use a custom analysis folder rather than the default paths to compare models",
)
parser.add_argument(
"--tokenization-type",
"-t",
type=str,
default="gpt",
help="One of {'gpt', 'bert'}. Tells the frontend how to visualize the tokens used by the model.",
)
parser.add_argument(
"--gpu-device",
type=int,
default=0,
help="One of {0, 1, ..., n_gpus}. Will use this device as the main device."
)
args, _ = parser.parse_known_args()
# Checking
config_provided = args.config is not None
both_m_provided = args.m1 is not None and args.m2 is not None
zero_m_provided = args.m1 is None and args.m2 is None
only_one_m_provided = not both_m_provided and not zero_m_provided
OneModelError = AssertionError("Please provide two models to compare against")
TooMuchInfoError = AssertionError("Please provide EITHER the config directory OR two comparable models")
if both_m_provided:
if config_provided:
raise TooMuchInfoError
elif config_provided:
if both_m_provided or only_one_m_provided:
raise TooMuchInfoError
elif only_one_m_provided:
raise OneModelError
if not torch.cuda.is_available():
args.gpu_device = "cpu"
return args | 8febdd4cc0962dce57c8d50682dac5a35d8a189f | 7,244 |
import uuid
import os
def _homogenize_linesep(line):
"""Enforce line separators to be the right one depending on platform."""
token = str(uuid.uuid4())
line = line.replace(os.linesep, token).replace("\n", "").replace("\r", "")
return line.replace(token, os.linesep) | f1808c46c44024d5d6adf419ebfefb31a14a64cb | 7,246 |
def check_intra_node_overlap(node_a, node_b):
"""
check if alignments of the same read hit overlapping
parts of the same node (or node_a and _b are different)
"""
same_node = True
if node_a.name != node_b.name:
same_node = False
same_orientation = False
overlap_bp = 0
overlap_pct = 0
else:
overlap_bp = min(node_a.support_end, node_b.support_end) - max(node_a.support_start, node_b.support_start)
# if overlap is negative (= alignments are apart), percent overlap should be 0
overlap_pct = max(0, round(overlap_bp / node_a.length * 100, 2))
same_orientation = node_a.orientation == node_b.orientation
return same_node, same_orientation, overlap_bp, overlap_pct | 13f019b552576cf57cf08363ff42f7e3067f659d | 7,247 |
def square(root):
"""This function calculates the square of the argument value"""
# result = num * num
return root * root | 54049a92a0383c756911a4604161e092d496ce62 | 7,248 |
import string
from typing import Counter
def letter_frequency(seq):
"""Returns a dictionary with the frequencies of letters in the sequence"""
freq = filter(lambda x: x in string.ascii_letters, seq.lower())
freq = dict(Counter(freq).most_common())
freq.update(dict((x, 0) for x in filter(lambda x: x not in freq, string.ascii_lowercase)))
return freq | bcbf61526c395bc8df36bf7b3a7a37b25dbe1aba | 7,249 |
def process_map_input(input_lines):
"""
Find the dimensions of a map using the lines of input
:param input_lines: List of string representing the map
:return: (x: width, y: height) Tuple
"""
height = len(input_lines) - 1
width = len(input_lines[0])
return width, height | 30662e1466d6d553ddee797c6252453c6f6f7f47 | 7,252 |
import random
def weighted_choice(lst):
"""Choose element in integer list according to its value.
E.g., in [1,10], the second element will be chosen 10 times as
often as the first one. Returns the index of the chosen element.
:ivar [int] lst: List of integers.
:rtype: int
"""
total = sum(c for c in lst)
r = random.uniform(0, total)
upto = 0
# Loop over list and pick one element.
for i in range(len(lst)):
c = lst[i]
if upto + c >= r:
return i
upto += c
assert False, "Shouldn't get here" | 513ca734a7b96f08993bd03c47df9c60288ebe50 | 7,253 |
def isfirefox(session):
""" bool: Whether the session is using Firefox. """
return getattr(session.driver, "_firefox", False) | ca7c5c217de308642e4ec0687c42a0dc71cfeecd | 7,255 |
from datetime import datetime
def get_es_index_name(project, meta):
"""
Get the name for the output ES index
:param project: seqr project identifier
:param meta: index metadata
:return: index name
"""
return '{project}__structural_variants__{sample_type}__grch{genome_version}__{datestamp}'.format(
project=project,
sample_type=meta['sampleType'],
genome_version=meta['genomeVersion'],
datestamp=datetime.today().strftime('%Y%m%d'),
).lower() | fc1245287aed07ddd8d90f33cadc095c22f944a3 | 7,256 |
def RegexCheck(re, line_number, line, regex, msg):
"""Searches for |regex| in |line| to check for a particular style
violation, returning a message like the one below if the regex matches.
The |regex| must have exactly one capturing group so that the relevant
part of |line| can be highlighted. If more groups are needed, use
"(?:...)" to make a non-capturing group. Sample message:
line 6: Use var instead of const.
const foo = bar();
^^^^^
"""
def _highlight(match):
"""Takes a start position and a length, and produces a row of '^'s to
highlight the corresponding part of a string.
"""
return match.start(1) * ' ' + (match.end(1) - match.start(1)) * '^'
match = re.search(regex, line)
if match:
assert len(match.groups()) == 1
return ' line %d: %s\n%s\n%s' % (line_number, msg, line, _highlight(match))
return '' | 31e979570eb4e0b251f445555f24fadef8e6879d | 7,258 |
def SymDatToPath(symtext):
"""Convert a Cygwin style symlink data to a relative path."""
return ''.join([ch for ch in symtext[12:] if ch != '\x00']) | 0d5104819678ca12d95b5f987a88726c5aef3f18 | 7,262 |
from typing import Union
from typing import List
def count(obj: Union[int, List]) -> int:
"""Return the number of integers in obj.
>>> count(27)
1
>>> count([4, 1, 8])
3
>>> count([4])
1
>>> count([])
0
>>> count([4, [1, 2, 3], 8])
5
>>> count([1, [2, 3], [4, 5, [6, 7], 8]])
8
"""
if isinstance(obj, int):
return 1
else:
return sum(count(i) for i in obj)
# if isinstance(obj, int):
# return 1
# else:
# s = 0
# for lst_i in obj:
# s += count(lst_i)
# return s | d982b3096dc9c7776b32bab765e2a17769d128e9 | 7,263 |
def _single_quote_string(name: str) -> str: # pragma: no cover
"""Single quote a string to inject it into f-strings, since backslashes cannot be in double f-strings."""
return f"'{name}'" | 39868168862f3bd60d8da6168503cbc51fcbda84 | 7,264 |
def convert_str_version_number(version_str):
"""
Convert the version number as a integer for easy comparisons
:param version_str: str of the version number, e.g. '0.33'
:returns: tuple of ints representing the version str
"""
version_numbers = version_str.split('.')
if len(version_numbers) != 2:
raise ValueError(f"Version number is malformed: '{version_str}'")
return tuple(int(part) for part in version_numbers) | b550b7d07d9b226800de261f792bf0995ac21738 | 7,265 |
import torch
def valid_simulation(_state, _params):
"""
AW - valid_simulation - return a binary variable per simulation indicating whether or not that simulation
satifies the desired policy outcome.
:param _state: tensor (N x D): tensor of the state trajectory.
:return: tensor (N, ), bool: tensor of whether each simulation was valid.
"""
_n_infected = _state[:, :, 2] + _state[:, :, 3] + _state[:, :, 4]
_valid = torch.logical_not(torch.any(_n_infected > _params.policy['infection_threshold'], dim=0))
return _valid | 6eb82ec744cbab353f649e63d54c0d95236f1699 | 7,266 |
import copy
def process_dataset(dataset, func):
"""Calculate things here using the dataset, then return
a dictionary containing names and values for each
calculated quantity."""
new_dataset = copy.copy(dataset)
del new_dataset["val"]
new_dataset.update(func(dataset))
return new_dataset | b38b2edd1abe9a990d8f524b78b38e8abadc7c55 | 7,268 |
def _infinity(name):
"""
Create a single instance of an class with a given name.
"""
return type(name + "Type", (object, ), {
'__repr__': lambda self: "{0}.{1}".format(self.__module__, name),
'__str__': lambda self: name,
'__unicode__': lambda self: name,
})() | bd6cbda227e9d97938ab9ed7c2d2e97b95dc5080 | 7,269 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.