content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def has_form_encoded_header(header_lines): """Return if list includes form encoded header""" for line in header_lines: if ":" in line: (header, value) = line.split(":", 1) if header.lower() == "content-type" \ and "x-www-form-urlencoded" in value: return True return False
e4fe797e4884161d0d935853444634443e6e25bb
6,014
def attr(*args, **kwargs): """Decorator that adds attributes to classes or functions for use with unit tests runner. """ def wrapped(element): for name in args: setattr(element, name, True) for name, value in kwargs.items(): setattr(element, name, value) return element return wrapped
77d20af87cef526441aded99bd6e24e21e5f81f9
6,016
def nn(value: int) -> int: """Casts value to closest non negative value""" return 0 if value < 0 else value
08672feaefa99881a110e3fc629d4a9256f630af
6,017
def app_base(request): """ This should render the required HTML to start the Angular application. It is the only entry point for the pyramid UI via Angular :param request: A pyramid request object, default for a view :return: A dictionary of variables to be rendered into the template """ dev_endpoints = ['localhost', '0.0.0.0', '127.0.', '192.168.', '10.19.', 'dev.squizzlezig.com'] is_dev = False for point in dev_endpoints: if request.host.split(':', 1)[0].startswith(point) or request.remote_addr.startswith(point): is_dev = True return { 'is_dev': is_dev, 'some_key': request.registry.settings['some_key']}
3a097e920b33248b436e2eea00e05b5708b35779
6,018
import json def get_droplet_ip(): """get droplet ip from cache.""" cached_droplet_info_file = 'droplet_info.json' with open(cached_droplet_info_file, 'r') as info_f: droplet_info = json.load(info_f) return droplet_info['networks']['v4'][0]['ip_address']
21d0bfbbe6aebd7e88cc6465d49b221da271753a
6,019
def lat_long_to_idx(gt, lon, lat): """ Take a geotransform and calculate the array indexes for the given lat,long. :param gt: GDAL geotransform (e.g. gdal.Open(x).GetGeoTransform()). :type gt: GDAL Geotransform tuple. :param lon: Longitude. :type lon: float :param lat: Latitude. :type lat: float """ return (int((lat - gt[3]) / gt[5]), int((lon - gt[0]) / gt[1]))
3fafcc4750daa02beaedb330ab6273eab6abcd56
6,020
def BSMlambda(delta: float, S: float, V: float) -> float: """Not really a greek, but rather an expression of leverage. Arguments --------- delta : float BSM delta of the option V : float Spot price of the option S : float Spot price of the underlying Returns ------- float lambda Note ---- Percentage change in the option price per percentage change in the underlying asset's price. """ return delta*(S / V)
ea9bf546a7cf46b3c2be01e722409663b05248e1
6,021
import pwd def uid_to_name(uid): """ Find the username associated with a user ID. :param uid: The user ID (an integer). :returns: The username (a string) or :data:`None` if :func:`pwd.getpwuid()` fails to locate a user for the given ID. """ try: return pwd.getpwuid(uid).pw_name except Exception: return None
f9054e4959a385d34c18d88704d376fb4b718e47
6,022
def table_parse(table): """ """ data = [] rows = table.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) return data
528008ada0ad7d594554ed5d577472a126df0cd1
6,023
import pandas import numpy def scan_mv_preprocessing_fill_pivot_nan(df): """ Value imputation. Impute missing data in pivot table. Parameters ---------- df : dataframe Pivot table data with potentially missing values. Returns ------- df : dataframe Pivot table data with no missing values. """ df_new = pandas.DataFrame() for group in set(df.index.get_level_values('Group')): df_group = df.loc[df.index.get_level_values('Group') == group] for analyte in df_group.columns[~df_group.columns.isin(['Component Name'])]: series_fill = df_group[analyte].copy() # Missing at random series_fill[pandas.isna(series_fill)] = round(numpy.nanmean(series_fill)) # Missing not at random if True in set(pandas.isna(series_fill)): series_fill = numpy.nanmin(df_new[analyte])/2 df_group[analyte] = series_fill df_new = df_new.append(df_group) # Get group and analytes with all nan df_filled = df_new.copy() return df_filled
e88d1b2b0a3d4fc27afe29a10512116323046cef
6,024
def expandingPrediction(input_list, multiple=5): """ :param input_list: :param multiple: :return: """ expanded_list = [] for prediction in input_list: for i in range(multiple): expanded_list.append(prediction) return expanded_list
9a502adb15160e656bd727748eb5dae73858d7f8
6,025
import numpy def grab(sequence, random = numpy.random): """ Return a randomly-selected element from the sequence. """ return sequence[random.randint(len(sequence))]
1760dc08b5971647f55248bd1b1f04d700dac38e
6,026
def _bytes_chr_py2(i): """ Returns a byte string of length 1 whose ordinal value is i in Python 2. Do not call directly, use bytes_chr instead. """ return chr(i)
de524d1ec303cc297d7981570ef30aa9ae6840ed
6,027
def quadratic_formula(polynomial): """ input is single-variable polynomial of degree 2 returns zeros """ if len(polynomial.term_matrix) == 3: if polynomial.term_matrix[2][1] == 1: a, b = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return 0, -b/a a, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return (-c/a)**.5, -(-c/a)**.5 if len(polynomial.term_matrix) == 2: a, b, c, = polynomial.term_matrix[1][0], 0, 0 elif len(polynomial.term_matrix) == 3: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], 0 else: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], polynomial.term_matrix[3][0] ans1 = (-b + (b**2 - 4*a*c)**.5)/2*a ans2 = (-b - (b**2 - 4*a*c)**.5)/2*a if ans1 == ans2: return ans1 return ans1, ans2
5501abff2fadcd237e3cb0efc4bca615eef455da
6,028
import argparse def main_args_parser() -> argparse.Namespace: """ Implements an easy user-friendly command-line interface. It creates three main subparser (classify, train, eval) and add the appropriated arguments for each subparser. Returns ------- args: argparse.Namespace input arguments provided by the user """ #region - MAIN parser parser = argparse.ArgumentParser(description='Handwritten long number recognition') subparsers = parser.add_subparsers(dest='mode', help='<required> program execution mode: classify with a pre-trained model or re-train the model', required=True) #endregion #region - CLASSIFY subparser parser_classify = subparsers.add_parser('classify', help='classify an input image using the pre-trained model', description='CLASSIFY mode: classify an input image using a pre-trained model') image_from = parser_classify.add_mutually_exclusive_group() image_from.add_argument('-f', '--folder', type=str, help='input image from folder, if not specified from webcam', metavar='PATH_TO_IMAGE', default=None) which_model = parser_classify.add_mutually_exclusive_group() which_model.add_argument('-a', '--augmentation', action='store_true', help='use model trained WITH data augmentation') which_model.add_argument('-m', '--model', type=str, help='user custom model from path', metavar='PATH_TO_MODEL') parser_classify.add_argument('-d', '--device', type=str, help='(default=cpu) device to be used for computations {cpu, cuda:0, cuda:1, ...}', default='cpu') #endregion #region - TRAIN subparser parser_train = subparsers.add_parser('train', help='re-train the model in your machine and save it to reuse in classify phase', description='TRAIN mode: re-train the model in your machine and save it to reuse in classify phase') parser_train.add_argument('-a', '--augmentation', action='store_true', help='set data-augmentation procedure ON (RandomRotation and RandomResizedCrop)') parser_train.add_argument('-s', '--splits', nargs=2, type=float, help='(default=[0.7,0.3]) proportions for the dataset split into training and validation set', default=[0.7,0.3], metavar=('TRAIN', 'VAL')) parser_train.add_argument('-b', '--batch_size', type=int, help='(default=64) mini-batch size', default=64) parser_train.add_argument('-e', '--epochs', type=int, help='(default=10) number of training epochs', default=10) parser_train.add_argument('-l', '--learning_rate', type=float, help='(default=10) learning rate', default=0.001) parser_train.add_argument('-w', '--num_workers', type=int, help='(default=3) number of workers', default=3) parser_train.add_argument('-d', '--device', type=str, help='(default=cpu) device to be used for computations {cpu, cuda:0, cuda:1, ...}', default='cpu') #endregion #region - EVAL subparser parser_eval = subparsers.add_parser('eval', help='evaluate the model accuracy on the test set of MNIST', description='EVAL mode: evaluate the model accuracy on the test set of MNIST') parser_eval.add_argument('model', type=str, help='<required> path to the model to be evaluated', metavar='PATH_TO_MODEL') parser_eval.add_argument('-d', '--device', type=str, help='(default=cpu) device to be used for computations {cpu, cuda:0, cuda:1, ...}', default='cpu') #endregion args = parser.parse_args() return args
ef2e079e6fd95576d34d3dc6ab3f07aac6dc6aad
6,029
import sys def is_windows() -> bool: """ Returns True if the current system is Windows. Returns False otherwise. """ return sys.platform == "win32"
bb4f78364bd2182b79b7517466eb251731826464
6,031
def adjacent_powerset(iterable): """ Returns every combination of elements in an iterable where elements remain ordered and adjacent. For example, adjacent_powerset('ABCD') returns ['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D'] Args: iterable: an iterable Returns: a list of element groupings """ return [iterable[a:b] for a in range(len(iterable)) for b in range(a + 1, len(iterable) + 1)]
951418b30d541e1dcdd635937ae609d429e3cd70
6,032
import argparse def getArguments(): """ Gets the name of the gameFile. :return: The arguments provided by the user """ parser = argparse.ArgumentParser() parser.add_argument('gameFile', help='The ini formatted file with the game configuration') return parser.parse_args()
b8f3d440e3cd2976e946e7745fb06ff86f179f8a
6,033
def end_position(variant_obj): """Calculate end position for a variant.""" alt_bases = len(variant_obj['alternative']) num_bases = max(len(variant_obj['reference']), alt_bases) return variant_obj['position'] + (num_bases - 1)
e49110a1102ea2ca53053858597247799065f8e1
6,034
def validate_tag_update(update): """ Property: ResourceUpdateConstraint.TagUpdateOnProvisionedProduct """ valid_tag_update_values = [ "ALLOWED", "NOT_ALLOWED", ] if update not in valid_tag_update_values: raise ValueError("{} is not a valid tag update value".format(update)) return update
c2abd7af00be52cf8cfecb5790d88a04d3207253
6,036
import os import argparse def writable_prefix(prefix): """ Checks if this prefix is writable and exists. :param prefix: str - prefix to check :return: str - prefix """ directory = os.path.dirname(prefix) if not os.path.exists(directory): error = "Output directory %s does not exist (%s)" % (directory, prefix) # report.log_str(error, priority=logging.ERROR) raise argparse.ArgumentTypeError(error) if not os.access(directory, os.W_OK): error = "Output directory %s is not writable (%s)" % (directory, prefix) # report.log_str(error, priority=logging.ERROR) raise argparse.ArgumentTypeError(error) return prefix
89fd163c7d3bd9aaca3e26e4b72aef0c98236d8b
6,037
from datetime import datetime def tick_format(ticktime): """ Format the tick date/time """ datetime_object = datetime.strptime(ticktime, '%Y-%m-%dT%H:%M:%S.%fZ') return datetime_object.strftime("%H:%M:%S UTC %A %d %B")
6fa02f7627bc947646046a47ab7298aad68399d8
6,038
import functools def decorator_with_keywords(func=None, **dkws): # NOTE: ONLY ACCEPTS KW ARGS """ A decorator that can handle optional keyword arguments. When the decorator is called with no optional arguments like this: @decorator def function ... The function is passed as the first argument and decorate returns the decorated function, as expected. If the decorator is called with one or more optional arguments like this: @decorator(optional_argument1='some value') def function .... Then decorator is called with the function argument with value None, so a function that decorates is returned, as expected. """ # print('WHOOP', func, dkws) def _decorate(func): @functools.wraps(func) def wrapped_function(*args, **kws): # print('!!') return func(*args, **kws) return wrapped_function if func: return _decorate(func) return _decorate
64c4ddd26cc04a43cbf559600652113db81b79ae
6,041
from datetime import datetime def parse_line(line): """ Extract all the data we want from each line. :param line: A line from our log files. :return: The data we have extracted. """ time = line.split()[0].strip() response = line.split(' :') message = response[len(response) - 1].strip('\n') channel = response[1].split('#') username = channel[0].split('!') username = username[0] channel = channel[1] time = datetime.strptime(time, '%Y-%m-%d_%H:%M:%S') return time, channel, username, message
72b4362b7628d31996075941be00e4ddcbd5edbc
6,042
from typing import Counter def reindex(labels): """ Given a list of labels, reindex them as integers from 1 to n_labels Also orders them in nonincreasing order of prevalence """ old2new = {} j = 1 for i, _ in Counter(labels).most_common(): old2new[i] = j j += 1 old2newf = lambda x: old2new[x] return [old2newf(a) for a in labels]
c12afd3b6431f10ccc43cce858e71bc504088a6e
6,044
def _enable_disable_pim_config(tgen, topo, input_dict, router, build=False): """ Helper API to enable or disable pim on interfaces Parameters ---------- * `tgen` : Topogen object * `topo` : json file data * `input_dict` : Input dict data, required when configuring from testcase * `router` : router id to be configured. * `build` : Only for initial setup phase this is set as True. Returns ------- list of config """ config_data = [] # Enable pim on interfaces for destRouterLink, data in sorted(topo[router]["links"].items()): if "pim" in data and data["pim"] == "enable": # Loopback interfaces if "type" in data and data["type"] == "loopback": interface_name = destRouterLink else: interface_name = data["interface"] cmd = "interface {}".format(interface_name) config_data.append(cmd) config_data.append("ip pim") # pim global config if "pim" in input_dict[router]: pim_data = input_dict[router]["pim"] del_action = pim_data.setdefault("delete", False) for t in [ "join-prune-interval", "keep-alive-timer", "register-suppress-time", ]: if t in pim_data: cmd = "ip pim {} {}".format(t, pim_data[t]) if del_action: cmd = "no {}".format(cmd) config_data.append(cmd) return config_data
4408ac212126895ba161f834e7e076a0c14d864f
6,047
import os def find_testclass(package, program, testclass, file_required=False): """Find the relative path of the test-class file""" name = f'{program.lower()}.clas.testclasses.abap' for root, _, files in os.walk('.'): if name in files: return os.path.join(root, name)[2:] if file_required: return None return package + '/' + program + '=>' + testclass
9da2aeaadb042da868b0c6d6e5069842cc014654
6,048
import csv def get_score_sent_pairs_from_tsv(tsv_filepath, encoding="ISO-8859-1"): """expects tokenized sentences in tsv file!""" with open(tsv_filepath, encoding=encoding) as tsvfile: reader = csv.reader(tsvfile, delimiter='\t') score_sent_pairs = [[float(row[0]), row[1]] for row in reader] return score_sent_pairs
44f5c150d40b407b50a93cd0ad968658fd5ef431
6,050
def service_class(cls): """ A class decorator enabling the instances of the class to be used as a ``services``-provider in `JSONRpc Objects`_ and `BSONRpc Objects`_. Use decorators ``request``, ``notification``, ``rpc_request`` and ``rpc_notification`` to expose methods for the RPC peer node. """ cls._request_handlers = {} cls._notification_handlers = {} for name, method in cls.__dict__.items(): if hasattr(method, '_request_handler'): cls._request_handlers[name] = method if hasattr(method, '_notification_handler'): cls._notification_handlers[name] = method return cls
7c146b1d04415cd494e62fb9ee310364c345c217
6,051
def locate_address(ip_list, ip_attack): """ for each line in the file pointer define the ip ranges and country codes if the attacking ip is in between the range then return country code :param ip_list - list of ip address ranges and country code: :param ip_attack - attacking ip as an integer: :return country_code - country code as a string: """ for line in ip_list: start_ip = line[0] end_ip = line[1] country_code = line[2] if ip_attack >= start_ip and ip_attack <= end_ip: return country_code else: pass
82a8f9ed0cf79a2ba39d21348779687c1f8c19a8
6,052
import string def is_valid_matlab_field_label(label): """ Check that passed string is a valid MATLAB field label """ if not label.startswith(tuple(string.ascii_letters)): return False VALID_CHARS = set(string.ascii_letters + string.digits + "_") return set(label).issubset(VALID_CHARS)
ea1358e94f4fc936cb12b9cad5d7285ee39dba55
6,053
def reading2celsius(self, reading): """ Converts sensor reading to celsius """ celsius = reading / 50 - 273.15 return celsius
72e6933002c9725165145451e10bbf98c162b625
6,054
def variantCombinations(items): """ Calculates variant combinations for given list of options. Each item in the items list represents unique value with it's variants. :param list items: list of values to be combined >>> c = variantCombinations([["1.1", "1.2"], ["2.1", "2.2"], ["3.1", "3.2"]]) >>> len(c) 8 >>> for combination in c:print combination ['1.1', '2.1', '3.1'] ['1.1', '2.1', '3.2'] ['1.1', '2.2', '3.1'] ['1.1', '2.2', '3.2'] ['1.2', '2.1', '3.1'] ['1.2', '2.1', '3.2'] ['1.2', '2.2', '3.1'] ['1.2', '2.2', '3.2'] """ assert isinstance(items, list) and list if len(items) == 1: result = items[0] else: result = [] subItems = variantCombinations(items[1:]) for masterItem in items[0]: for subItem in subItems: if isinstance(subItem, list): item = [masterItem] item.extend(subItem) result.append(item) else: result.append([masterItem, subItem]) return result
72bfdb19db3cf692e4260a5f75d10324e562f20e
6,055
def get_lattice_points(strand): """ 格子点の情報を取得 @param ストランドの格子点の対 @return ストランドの格子点の始点と終点 """ strand_list = eval(strand) strand_from = strand_list[0] strand_to = strand_list[1] return strand_from, strand_to
a69902c15b9d8ce9f518891f4dea55d9aca186cf
6,056
def mask(bigtiff,profile,out_mask): """ mask a 1 or 3 band image, band by band for memory saving """ if profile['count']==4: bigtiff1 = bigtiff[0,:,:] bigtiff1[out_mask==1] = profile['nodata'] bigtiff[0,:,:] = bigtiff1 del bigtiff1 bigtiff2 = bigtiff[1,:,:] bigtiff2[out_mask==1] = profile['nodata'] bigtiff[1,:,:] = bigtiff2 del bigtiff2 bigtiff3 = bigtiff[2,:,:] bigtiff3[out_mask==1] = profile['nodata'] bigtiff[2,:,:] = bigtiff3 del bigtiff3 bigtiff4 = bigtiff[3,:,:] bigtiff4[out_mask==1] = profile['nodata'] bigtiff[3,:,:] = bigtiff4 del bigtiff4 else: bigtiff1 = bigtiff[0,:,:] bigtiff1[out_mask==1] = profile['nodata'] bigtiff[0,:,:] = bigtiff1 del bigtiff1 return bigtiff
0e31612da8d80f5fb4d8f35a0664708294e98312
6,058
def quadratic_sum(n: int) -> int: """calculate the quadratic num from 1 ~ n""" sum = 0 for n in range(1, n + 1): sum += n ** 2 return sum
e47a3ee49888c85cc06c72c428d983885ed7009f
6,059
import numpy as np def nan_helpfcn(myarray): """ Helper function to return the locations of Nan values as a boolean array, plus a function to return the index of the array. Code inspired by: http://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array Input: - myarray, 1d numpy array with possible NaNs, e.g. np.array([1,2,NaN,4,NaN,6]) Output: - nans, logical indices of NaNs, e.g. for the example above [False,False,True,False,True,False] - indf, this gives us the indices of the matrix - shifted. this is a lambda function. e.g. indes(nans) where nans was [False,False,True,False,True,False] gives [2,4] This is functionally equivalent to np.array(range(len(myarray))) Example: >>> myarray = np.array=[1,2,np.NaN,4,np.NaN,6]) >>> nanlocs,indf=nan_helpfcn(myarray) >>>nanlocs [False,False,True,False,True,False] >>> indf[nanlocs] [2,4] >>> indf[~nanlocs] [0,1,3,5] """ return np.isnan(myarray), lambda z: z.nonzero()[0]
b5770e6bdfda85bc71fd954aacc4c31dbbd47f13
6,061
import six def all_strs_text(obj): """ PyYAML refuses to load strings as 'unicode' on Python 2 - recurse all over obj and convert every string. """ if isinstance(obj, six.binary_type): return obj.decode('utf-8') elif isinstance(obj, list): return [all_strs_text(x) for x in obj] elif isinstance(obj, tuple): return tuple(all_strs_text(x) for x in obj) elif isinstance(obj, dict): return {six.text_type(k): all_strs_text(v) for k, v in six.iteritems(obj)} else: return obj
20b27cf809ed7fbf12b30a357d6aecfeeed88461
6,062
def fahrenheit2celsius(f: float) -> float: """Utility function to convert from Fahrenheit to Celsius.""" return (f - 32) * 5/9
5161b29998553ad6ff497e698058f330433d90b3
6,063
def pollard_brent_f(c, n, x): """Return f(x) = (x^2 + c)%n. Assume c < n. """ x1 = (x * x) % n + c if x1 >= n: x1 -= n assert x1 >= 0 and x1 < n return x1
5037b3feac2f131645fbe6ceb00f0d18417a7c04
6,064
def tpu_ordinal_fn(shard_index_in_host, replicas_per_worker): """Return the TPU ordinal associated with a shard.""" return shard_index_in_host % replicas_per_worker
773313750ce78cf5d32776752cb75201450416ba
6,065
def create_category_hiearchy(cats, categoryType): """A function that creates a dict of the root and subroot categories""" dict_out = {} for key in cats.keys(): name = cats[key]['name'] parent_name = cats[key]['parent']['name'] cat_type = cats[key]['categoryType'] if cat_type == categoryType: # Check if parent name is Root and should be the key if parent_name == 'Root': # Check to see if key exists if name not in dict_out.keys(): # If not, add key to dict and empty list dict_out[name] = [] else: if parent_name == 'Root': continue # Check if parent_name already key if parent_name not in dict_out.keys(): # If not, add the key and empty list dict_out[parent_name] = [] # Add the subcategory dict_out[parent_name].append(name) return dict_out
f0b19f2a6f56e49855a019a18d9357a31cfaeb2a
6,066
def ordinal(n): """Converts an integer into its ordinal equivalent. Args: n: number to convert Returns: nth: ordinal respresentation of passed integer """ nth = "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10 :: 4]) return nth
7f438c89a6b0f7adbc42f2eb1e619ca4bf862b4a
6,068
def check_date(date): """check if date string has correct format. Args: date as a string mmddyyyy Returns: a boolean indicating if valid (True) or not (False) """ if len(date) != 8: return False if not date.isdigit(): return False # months are between '01' ~ '12' if (date[0] != '1' and date[0] != '0'): return False if date[0] == '1': if (date[1] != '0') and (date[1] != '1') and (date[1] != '2'): return False # dates are between 0 ~ 31 if (date[2] != '0') and (date[2] != '1') \ and (date[2] != '2') and (date[2] != '3'): return False return True
8972498d94d459ba48851049780e46b057855d9f
6,069
def return_lines_as_list(file): """ :rtype: list of str """ # read lines lines = file.readlines() def strip(string): """ Removes whitespace from beginning and end of string :type string: str """ return string.strip() # Coverts our lines to list return list(map(strip, lines))
69e3d45fa3df107a8852d10e104a543c014a6c79
6,070
def getObjectInfo(fluiddb, objectId): """ Get information about an object. """ return fluiddb.objects[objectId].get(showAbout=True)
baad59e6585e04a8c2a8cca1df305327b80f3768
6,071
import csv def snp2dict(snpfile): """Get settings of dict from .snp file exported from save&restore app. Parameters ---------- snpfile : str Filename of snp file exported from save&restore app. Returns ------- r : dict Dict of pairs of PV name and setpoint value. """ with open(snpfile, 'r') as fp: csv_data = csv.reader(fp, delimiter=',', skipinitialspace=True) next(csv_data) header = next(csv_data) ipv, ival = header.index('PV'), header.index('VALUE') settings = {line[ipv]: line[ival] for line in csv_data if line} return settings
cb902b3f8796685ed065bfeb8ed2d6d83c0fe80b
6,073
import numpy def _handle_zeros_in_scale(scale, copy=True, constant_mask=None): """ Set scales of near constant features to 1. The goal is to avoid division by very small or zero values. Near constant features are detected automatically by identifying scales close to machine precision unless they are precomputed by the caller and passed with the `constant_mask` kwarg. Typically for standard scaling, the scales are the standard deviation while near constant features are better detected on the computed variances which are closer to machine precision by construction. Parameters ---------- scale : array Scale to be corrected. copy : bool Create copy. constant_mask : array Masking array. Returns ------- scale : array Corrected scale. """ # if we are fitting on 1D arrays, scale might be a scalar if numpy.isscalar(scale): if scale == .0: scale = 1. return scale elif isinstance(scale, numpy.ndarray): if constant_mask is None: # Detect near constant values to avoid dividing by a very small # value that could lead to suprising results and numerical # stability issues. constant_mask = scale < 10 * numpy.finfo(scale.dtype).eps if copy: # New array to avoid side-effects scale = scale.copy() scale[constant_mask] = 1.0 return scale
129f28dbf74f04929fcbccf8de42ee1c8dd5a09e
6,074
def xy_potential(_): """ Potential for square XY model with periodic boundary conditions """ def potential(_, passive_rates): pot = -passive_rates.sum(dim=(-1, -2, -3)) # sum over all sites and directions return pot return potential
b809e57464a9cd893cd33cd7ad38dffdb0d12a40
6,075
def _get_filter_syntax(_filter_info, _prefix=True): """This function retrieves the proper filter syntax for an API call.""" if type(_filter_info) != tuple and type(_filter_info) != list: raise TypeError("Filter information must be provided as a tuple (element, criteria) or a list of tuples.") elif type(_filter_info) == tuple: _filter_info = [_filter_info] _syntax = "" if len(_filter_info[0]) > 0: _define_prefix = {True: '&', False: ''} _syntax_prefix = _define_prefix.get(_prefix) for _filter_tuple in _filter_info: _element, _criteria = _filter_tuple _syntax = f"{_syntax_prefix}filter={_element}({_criteria})&" _syntax = _syntax[:-1] return _syntax
b1817a2a3f004ba2bd44a8f8f272ad685e4d5ebe
6,076
import math def pol2cart(r,theta): """ Translate from polar to cartesian coordinates. """ return (r*math.cos(float(theta)/180*math.pi), r*math.sin(float(theta)/180*math.pi))
69753e1cadd36ec70da1bf2cf94641d4c7f78179
6,077
def clean_title(title: str) -> str: """Strip unwanted additional text from title.""" for splitter in [" (", " [", " - ", " (", " [", "-"]: if splitter in title: title_parts = title.split(splitter) for title_part in title_parts: # look for the end splitter for end_splitter in [")", "]"]: if end_splitter in title_part: title_part = title_part.split(end_splitter)[0] for ignore_str in ["feat.", "featuring", "ft.", "with ", "explicit"]: if ignore_str in title_part.lower(): return title.split(splitter + title_part)[0].strip() return title.strip()
5625c6c64b166560b1804b7048fd3d604536251a
6,078
def steps_smoother(steps, resolution): """ :param delta_steps: array of delta positions of 2 joints for each of the 4 feet :return: array of positions of 2 joints for each of the 4 feet """ smoothed_steps = [] for i in range(len(steps)): step = steps[i] next_step = steps[(i + 1) % len(steps)] for j in range(resolution): smoothed_step = [] for k in range(4): positions = step[k] next_positions = next_step[k] pos0 = positions[0] + j * \ ((next_positions[0] - positions[0]) / resolution) pos1 = positions[1] + j * \ ((next_positions[1] - positions[1]) / resolution) smoothed_step.append([pos0, pos1]) smoothed_steps.append(smoothed_step) return smoothed_steps
a27e09af169e79438895d0e15c0b536213962429
6,080
def leaper(x, y, int1, int2): """sepcifically for the rook, permutes the values needed around a position for no_conflict tests""" return [(x+int1, y+int2), (x-int1, y+int2), (x+int1, y-int2), (x-int1, y-int2), (x+int2, y+int1), (x-int2, y+int1), (x+int2, y-int1), (x-int2, y-int1)]
6f7afc071c8adbc72a6391179e2df522574e5197
6,081
def calc_offsets(obj): """ The search "hit" should have a 'fullsnip' annotation which is a the entire text of the indexable resource, with <start_sel> and <end_sel> wrapping each highlighted word. Check if there's a selector on the indexable, and then if there's a box-selector use this to generate a list of xywh coordinates by retrieving the selector by its index from a list of lists """ if hasattr(obj, "fullsnip"): words = obj.fullsnip.split(" ") offsets = [] if words: for i, word in enumerate(words): if "<start_sel>" in word and "<end_sel>" in word: offsets.append(i) if offsets: if obj.selector: if (boxes := obj.selector.get("box-selector")) is not None: box_list = [] for x in offsets: try: box_list.append(boxes[x]) except (IndexError, ValueError): pass if box_list: return box_list # [boxes[x] for x in offsets if boxes[x]] else: return return
6af4827a57cf20f317ce2a40a669c14d3f6380f3
6,082
import argparse import sys def parse_args(): """ Parse command-line arguments Returns ------- Parser argument namespace """ parser = argparse.ArgumentParser(description="Fibermorph") parser.add_argument( "--output_directory", default=None, help="Required. Full path to and name of desired output directory. " "Will be created if it doesn't exist.") parser.add_argument( "--input_directory", default=None, help="Required. Full path to and name of desired directory containing " "input files.") parser.add_argument( "--resolution_mm", type=int, default=132, help="Integer. Number of pixels per mm.") parser.add_argument( "--resolution_mu", type=float, default=4.25, help="Float. Number of pixels per micron.") parser.add_argument( "--file_extension", type=str, default=".RW2", help="Optional. String. Extension of input files to use in input_directory when using raw2gray function. Default is .RW2.") parser.add_argument( "--jobs", type=int, default=1, help="Integer. Number of parallel jobs to run. Default is 1.") parser.add_argument( "--window_size", type=float, default=1.0, help="Float. Desired size for window of measurement in mm. Default is 1.0.") parser.add_argument( "--minsize", type=int, default=20, help="Integer. Minimum diameter in microns for sections. Default is 20.") parser.add_argument( "--maxsize", type=int, default=150, help="Integer. Maximum diameter in microns for sections. Default is 150.") parser.add_argument( "--save_image", type=bool, default=False, help="Boolean. Default is False. Whether the curvature function should save images for intermediate image " "processing steps.") # Create mutually exclusive flags for each of fibermorph's modules module_group = parser.add_mutually_exclusive_group(required=True) module_group.add_argument( "--raw2gray", action="store_true", default=False, help="") module_group.add_argument( "--curvature", action="store_true", default=False, help="") module_group.add_argument( "--section", action="store_true", default=False, help="") module_group.add_argument( "--demo_real_curv", action="store_true", default=False, help="") module_group.add_argument( "--demo_real_section", action="store_true", default=False, help="") module_group.add_argument( "--demo_dummy_curv", action="store_true", default=False, help="") module_group.add_argument( "--demo_dummy_section", action="store_true", default=False, help="") module_group.add_argument( "--demo_teardown_data", action="store_true", default=False, help="") module_group.add_argument( "--demo_delete_results_cache", action="store_true", default=False, help="") args = parser.parse_args() # Validate arguments demo_mods = [ args.demo_real_curv, args.demo_real_section, args.demo_dummy_curv, args.demo_dummy_section, args.demo_teardown_data, args.demo_delete_results_cache] if any(demo_mods) is False: if args.input_directory is None and args.output_directory is None: sys.exit("ExitError: need both --input_directory and --output_directory") if args.input_directory is None: sys.exit("ExitError: need --input_directory") if args.output_directory is None: sys.exit("ExitError: need --output_directory") return args
e788d4519b539ba52e99989653c7aa3091cd9a39
6,083
def spread(self, value="", **kwargs): """Turns on a dashed tolerance curve for the subsequent curve plots. APDL Command: SPREAD Parameters ---------- value Amount of tolerance. For example, 0.1 is ± 10%. """ return self.run("SPREAD,%s" % (str(value)), **kwargs)
a92c8e230eadd4e1fde498fa5650a403f419eaeb
6,084
import re def repair_attribute_name(attr): """ Remove "weird" characters from attribute names """ return re.sub('[^a-zA-Z-_\/0-9\*]','',attr)
f653a5cb5ed5e43609bb334f631f518f73687853
6,085
def HasPositivePatterns(test_filter): """Returns True if test_filter contains a positive pattern, else False Args: test_filter: test-filter style string """ return bool(len(test_filter) > 0 and test_filter[0] != '-')
9038bf799efbe4008a83d2da0aba89c0197c16a1
6,087
def highest_palindrome_product(digits): """Returns the highest palindrome number resulting from the multiplication of two numbers with the given amount of digits. """ def is_palindrome(target): """Returns True if target (str or int) is a palindrome. """ string = str(target) return list(string) == list(string)[::-1] # Creating the two highest possible numbers with the given amount of # digits: highest_number1 = highest_number2 = int("9"*digits) palindromes_list = [] while True: result = highest_number1 * highest_number2 if is_palindrome(result): palindromes_list.append(result) # Finding the products between all two numbers with the given # amount of digits: if highest_number2 == int("1" + "0"*(digits-1)): if highest_number1 == int("1" + "0"*(digits-1)): break else: highest_number2 = highest_number1 highest_number1 -=1 else: highest_number2 -= 1 return max(palindromes_list)
e509de1c977c6e4ecf9ab8304ef1afe65a447188
6,088
import os def get_template_dir(format): """ Given a format string return the corresponding standard template directory. """ return os.path.join(os.path.dirname(__file__), 'templates', format)
c204575b877c08700a7c236577016ed7e267f88b
6,089
import os def get_wildcard_dir(path): """If given path is a dir, make it a wildcard so the JVM will include all JARs in the directory.""" ret = [] if os.path.isdir(path): ret = [(os.path.join(path, "*"))] elif os.path.exists(path): ret = [path] return ret
a2688463c02c9558140d52da567e8744ed775e99
6,091
def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors
33b9a4bfd44a70d93ae7b50df870d46765bf0cb7
6,092
def module_of_callable(c): """Find name of module where callable is defined Arguments: c {Callable} -- Callable to inspect Returns: str -- Module name (as for x.__module__ attribute) """ # Ordinal function defined with def or lambda: if type(c).__name__ == 'function': return c.__module__ # Some callable, probably it's a class with __call_ method, so define module of declaration rather than a module of instantiation: return c.__class__.__module__
116e46a3e75fcd138e271a3413c62425a9fcec3b
6,093
def dot2string(dot): """Return a string repr of dots.""" return "*" * int(dot)
e2822bfe20dab5702ec4052445718398e66d993e
6,095
import json def invocation_parameter(s) : """argparse parameter conversion function for invocation request parameters, basically these parameters are JSON expressions """ try : expr = json.loads(s) return expr except : return str(s)
cca1a9c3514def152295b10b17ef44480ccca5a9
6,097
def filter_functions(input_set, filter_set): """ Keeps only elements in the filter set :param input_set: :param filter_set: :return: """ ns = {} filter_low = {x.lower() for x in filter_set} for x in input_set: xl = x.lower() if xl in filter_low: ns[x] = input_set[x] return ns
cabc321b6730df4a0c7987b83c6a2c3d6fb69c02
6,098
def dumpj(game): """Dump a game to json""" return game.to_json()
bac5480ea2b3136cbd18d0690af27f94e4a2b6a3
6,100
import types def _get_functions_names(module): """Get names of the functions in the current module""" return [name for name in dir(module) if isinstance(getattr(module, name, None), types.FunctionType)]
581384740dc27c15ac9710d66e9b0f897c906b96
6,101
import ast def ex_rvalue(name): """A variable store expression.""" return ast.Name(name, ast.Load())
4afff97283d96fd29740de5b7a97ef64aad66efe
6,102
def stateDiff(start, end): """Calculate time difference between two states.""" consumed = (end.getTimestamp() - start.getTimestamp()).total_seconds() return consumed
1f76903e2486e2c378f338143461d1d15f7993a6
6,103
import copy import random def staticDepthLimit(max_depth): """Implement a static limit on the depth of a GP tree, as defined by Koza in [Koza1989]. It may be used to decorate both crossover and mutation operators. When an invalid (too high) child is generated, it is simply replaced by one of its parents. This operator can be used to avoid memory errors occuring when the tree gets higher than 90-95 levels (as Python puts a limit on the call stack depth), because it ensures that no tree higher than *max_depth* will ever be accepted in the population (except if it was generated at initialization time). :param max_depth: The maximum depth allowed for an individual. :returns: A decorator that can be applied to a GP operator using \ :func:`~deap.base.Toolbox.decorate` .. note:: If you want to reproduce the exact behavior intended by Koza, set the *max_depth* param to 17. .. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992) """ def decorator(func): def wrapper(*args, **kwargs): keep_inds = [copy.deepcopy(ind) for ind in args] new_inds = list(func(*args, **kwargs)) for i, ind in enumerate(new_inds): if ind.height > max_depth: new_inds[i] = random.choice(keep_inds) return new_inds return wrapper return decorator
cdcb1e58a681b622ced58e9aa36562e1fedb6083
6,104
import re def titlecase(string): """Turn string of words into titlecased words. :type string: str :param string: A string of words. """ return re.sub( r"[A-Za-z]+('[A-Za-z]+)?", lambda mo: mo.group(0)[0].upper() + mo.group(0)[1:].lower(), string, )
77976d2ccad5b6b924b76d587a6883cf660497d0
6,105
def html_table_header(): """Return the HTML row with header cells used in all tables.""" markup = ("<tr>" + "<th>Column name</th>" + "<th>DataType</th>" + "<th><abbr title='Primary Key'>PK</abbr></th>" + "<th><abbr title='Foreign Key'>FK</abbr></th>" + "<th><abbr title='Not Null'>NN</abbr></th>" + "<th><abbr title='Unique'>UQ</abbr></th>" + "<th><abbr title='Binary'>BIN</abbr></th>" + "<th><abbr title='Unsigned'>UN</abbr></th>" + "<th><abbr title='Zero Fill'>ZF</abbr></th>" + "<th><abbr title='Auto Increment'>AI</abbr></th>" + "<th>Default</th>" + "<th>Comment</th>" + "</tr>") return markup
0fc65ca33cf23594dad007a3b0b16f1244ace62e
6,106
def checkLoggedIn(session): """ checks if any player has logged in yet """ try: return session["roll"] is not None except KeyError: session["roll"] = None return False
436f51212abc9fe00abf11266cb90159a7f60bd4
6,107
def quantile(values, q): """ Returns q-th quantile. """ values = sorted(values) size = len(values) idx = int(round(size * q)) - 1 if idx == 0: raise ValueError("Sample size too small: %s" % len(values)) return values[idx]
614f6d9dbdf586b802d6380e2880df3659faa0c2
6,108
def replace_last(source_string, replace_what, replace_with): """ Function that replaces the last ocurrence of a string in a word :param source_string: the source string :type source_string: str :param replace_what: the substring to be replaced :type replace_what: str :param replace_with: the string to be inserted :type replace_with: str :returns: string with the replacement :rtype: str :Example: >>> import chana.lemmatizer >>> chana.lemmatizer.replace_last('piati','ti','ra') 'piara' """ head, _sep, tail = source_string.rpartition(replace_what) return head + replace_with + tail
6fbc36824b960fb125b722101f21b5de732194c5
6,109
def unescape(text): """Unescapes text >>> unescape(u'abc') u'abc' >>> unescape(u'\\abc') u'abc' >>> unescape(u'\\\\abc') u'\\abc' """ # Note: We can ditch this and do it in tokenizing if tokenizing # returned typed tokens rather than a list of strings. new_text = [] escape = False for c in text: if not escape and c == u'\\': escape = True continue new_text.append(c) escape = False return u''.join(new_text)
7db9fa5bb786ea5c1f988ee26eed07abe66a2942
6,110
def removeZeros(infile, outfile, prop=0.5, genecols=2): """Remove lines from `infile' in which the proportion of zeros is equal to or higher than `prop'. `genecols' is the number of columns containing gene identifiers at the beginning of each row. Writes filtered lines to `outfile'.""" nin = 0 nout = 0 with open(infile, "r") as f: hdr = f.readline() columns = hdr.split("\t") ncols = len(columns)-genecols maxzeros = ncols*prop with open(outfile, "w") as out: out.write(hdr) while True: line = f.readline() if line == '': break nin += 1 pline = line.rstrip("\r\n").split("\t") nzeros = 0 for v in pline[genecols:]: if float(v) == 0: nzeros += 1 if nzeros < maxzeros: out.write(line) nout += 1 return (nin, nout)
43feba21513be4a8292c08918e16b3e34a73c341
6,112
def _NormalizeDiscoveryUrls(discovery_url): """Expands a few abbreviations into full discovery urls.""" if discovery_url.startswith('http'): return [discovery_url] elif '.' not in discovery_url: raise ValueError('Unrecognized value "%s" for discovery url') api_name, _, api_version = discovery_url.partition('.') return [ 'https://www.googleapis.com/discovery/v1/apis/%s/%s/rest' % ( api_name, api_version), 'https://%s.googleapis.com/$discovery/rest?version=%s' % ( api_name, api_version), ]
f361d01006a6e7f7487e06db375ae703ffde0021
6,114
def getPositionPdf(i): """Return the position of the square on the pdf page""" return [int(i/5), i%5]
859fd00c1475cfcb4cd93800299181b77fdd6e93
6,116
def dur_attributes_to_dur(d_half, d_semiqvr): """ Convert arrays of d_hlf and d_sqv to d. - See eq. (2) of the paper. """ def d_hlf_dur_sqv_to_d(d_hlf, d_sqv): return 8 * d_hlf + d_sqv d = d_hlf_dur_sqv_to_d(d_half, d_semiqvr) return d
aeea74f929ef94d94178444df66a30d0d017fd4e
6,117
import shutil import traceback def copy_dir(source, destination): """ Copy a directory tree and returns destination path. Parameters: source (string): source containing root directory path destination (string): target root directory path Returns: destination (string): copied destination path """ try: shutil.copytree( source, destination, ignore=shutil.ignore_patterns('.svn')) return destination except Exception: print(traceback.format_exc())
5751da6232a64902f0030271671f3e74ecda97e0
6,118
def _scale_fct_fixed(*args, scale=0): """ This is a helper function that is necessary because multiprocessing requires a picklable (i.e. top-level) object for parallel computation. """ return scale
75eb728f37466aee8664d5fe435d379cf5d7c6f2
6,119
def filter_score_grouped_pair(post_pair): """ Filter posts with a positive score. :param post_pair: pair of post_id, dict with score, text blocks, and comments :return: boolean indicating whether post has a positive score """ _, post_dict = post_pair post_score = post_dict['score'] return post_score and int(post_score) > 0
c824eacd43b44c85fc7acf102fdde2413a7c4d0e
6,120
def get_explicit_positions(parsed_str_format): """ >>> parsed = parse_str_format("all/{}/is/{2}/position/{except}{this}{0}") >>> get_explicit_positions(parsed) {0, 2} """ return set( map( int, filter( lambda x: isinstance(x, str) and str.isnumeric(x), (x[1] for x in parsed_str_format), ), ) )
f6f3720443385f5d514de15d3d63d45cd4ef3408
6,122
def add_upper_log_level(logger, method_name, event_dict): """ Add the log level to the event dict. """ event_dict["level"] = method_name.upper() return event_dict
36ccdf335473136fe8188ff99ed539920ee39fa7
6,126
def is_zero_dict( dict ): """ Identifies empty feature vectors """ has_any_features = False for key in dict: has_any_features = has_any_features or dict[key] return not has_any_features
eefb3df1547917fbc11751bbf57212f95388e8b2
6,127
def getuniqueitems(userchoices): """return a list of unique items given a bunch of userchoices""" items = [] for userchoice in userchoices: if userchoice.item not in items: items.append(userchoice.item) return items
a7885556604153cf756fb6a29c2e870c27d47337
6,128
import binascii import os def image_url_salt(): """Helper function that generates salt to append to an image URL to prevent browser caches from loading old images""" return binascii.b2a_hex(os.urandom(4)).decode('us-ascii')
0b8c803682ff21b56c039a12da184d699ffc47e7
6,129
def zigzag2(i, curr=.45, upper=.48, lower=.13): """ Generalized version of the zig-zag function. Returns points oscillating between two bounds linearly. """ if abs(i) <= (upper-curr): return curr + i else: i = i - (upper-curr) i = i%(2*(upper-lower)) if i < (upper-lower): return upper-i else: return 2*lower-upper+i
a51624af520121eb7285b2a8a5b4dc5ffa552147
6,131
def discriminateEvents(events, threshold): """ Discriminate triggers when different kind of events are on the same channel. A time threshold is used to determine if two events are from the same trial. Parameters ---------- events : instance of pandas.core.DataFrame Dataframe containing the list of events obtained with mne.find_events(raw). threshold : float Time threshold in milliseconds. Keeps an event if the time difference with the next one is superior than threshold. Returns: newData : instance of pandas.series.Series List of trial number filling the requirements. """ # calculate the rolling difference (between n and n+1) events['diff'] = events[0].diff() # replace the nan with the first value events['diff'].iloc[0] = events.iloc[0, 0] # select events with time distance superior to threshold events = events[events['diff']>threshold] events = events.reset_index(drop=True) del events['diff'] return events
0078548ea463c01d88b574185b3dcb5632e5cd13
6,133
import random import string def generate_room_number(): """ Generates a room number composed of 10 digits. """ return "".join(random.sample(string.digits, 10))
133e7463106df89fb68de6a7dfa7c718bc1bc5ba
6,134
def parse_movie(line, sep='::'): """ Parses a movie line Returns: tuple of (movie_id, title) """ fields = line.strip().split(sep) movie_id = int(fields[0]) # convert movie_id to int title = fields[1] return movie_id, title
9d7a13ca3ddf823ff22582f648434d4b6df00207
6,136
import logging def formatMessage(data): """ Format incoming message before passing to Discord """ logging.info("Formatting message payload...") time = (data.occurredAt).split("T") message = [":alarm_clock: __**Meraki Alert**__ :alarm_clock: "] message.append(f"**Device:** {data.deviceName}") message.append(f"**Message info:** {data.alertType}") message.append(f"**Occurred at:** {time[0]} - {time[1][:8]}") if len(data.alertData) > 0: message.append(f"**Additional data:** ```fix\r\n{data.alertData}\r\n```") sendmessage = "" for each in message: sendmessage += each + "\r\n" return sendmessage
21d7a50951aeecb6917479622f4131b7ddcfda00
6,137
import time def twait(phrase, tn, tout=-1, logging='off', rcontent=False, screenprint=False): """ telnetlib wait with optional timeout and optional logging""" # Adding code to allow lists for phrase finalcontent = ' ' #This is the time of the epoch startTime = int(time.time()) while True: # This is the current time currentTime = int(time.time()) if tout != -1: # This is the time since the start of this loop # if it exceeds the timeout value passed to it # then exit with a return of 0 if (currentTime - startTime) > tout: if logging == 'on': #Adding the -e-e-> to differentiate from device output if screenprint: print('-e-e->It has been ' + str(tout) + ' seconds. Timeout!') if not rcontent: return 0 return 0, finalcontent # Eager reading back from the device content = (tn.read_very_eager().decode().strip()) if content.strip() != '': finalcontent += content # if the returned content isn't blank. This stops # it from spamming new line characters if content.strip() != '': if screenprint: print(content, end='') # content was found! Return a 1 for success if isinstance(phrase, str): if phrase in content: if not rcontent: return 1 return 1, finalcontent if isinstance(phrase, list): count = 1 for p in phrase: if p in content: if not rcontent: return count return count, finalcontent count += 1
9c4308e873321fd556d8eec2668981fc2843ae87
6,138
def strip_newlines(s, nleading=0, ntrailing=0): """strip at most nleading and ntrailing newlines from s""" for _ in range(nleading): if s.lstrip(' \t')[0] == '\n': s = s.lstrip(' \t')[1:] elif s.lstrip(' \t')[0] == '\r\n': s = s.lstrip(' \t')[2:] for _ in range(ntrailing): if s.rstrip(' \t')[-2:] == '\r\n': s = s.rstrip(' \t')[:-2] elif s.rstrip(' \t')[-1:] == '\n': s = s.rstrip(' \t')[:-1] return s
cd9c55d4ac7828d9506567d879277a463d896c46
6,141
def xyz_to_lab(x_val, y_val, z_val): """ Convert XYZ color to CIE-Lab color. :arg float x_val: XYZ value of X. :arg float y_val: XYZ value of Y. :arg float z_val: XYZ value of Z. :returns: Tuple (L, a, b) representing CIE-Lab color :rtype: tuple D65/2° standard illuminant """ xyz = [] for val, ref in (x_val, 95.047), (y_val, 100.0), (z_val, 108.883): val /= ref val = pow(val, 1 / 3.0) if val > 0.008856 else 7.787 * val + 16 / 116.0 xyz.append(val) x_val, y_val, z_val = xyz # pylint: disable=unbalanced-tuple-unpacking cie_l = 116 * y_val - 16 cie_a = 500 * (x_val - y_val) cie_b = 200 * (y_val - z_val) return cie_l, cie_a, cie_b
c2478772659a5d925c4db0b6ba68ce98b6537a59
6,142
def find_largest_helper(n, maximum): """ :param n: int, the number to find the largest digit :param maximum: int, the largest digit :return: int, the largest digit """ if n % 10 > maximum: maximum = n % 10 if n / 10 == 0: return maximum else: return find_largest_helper(n // 10, maximum)
ddd49839be6a3ab6ece7cabde41f3978df1ba6f3
6,144
import os def get_namefiles(pth, exclude=None): """Search through a path (pth) for all .nam files. Parameters ---------- pth : str path to model files exclude : str or lst File or list of files to exclude from the search (default is None) Returns ------- namefiles : lst List of namefiles with paths """ namefiles = [] for root, _, files in os.walk(pth): namefiles += [ os.path.join(root, file) for file in files if file.endswith(".nam") ] if exclude is not None: if isinstance(exclude, str): exclude = [exclude] exclude = [e.lower() for e in exclude] pop_list = [] for namefile in namefiles: for e in exclude: if e in namefile.lower(): pop_list.append(namefile) for e in pop_list: namefiles.remove(e) return namefiles
c80da9dba1dbea8505d119ba61745c7c43b4f25b
6,146