content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def max_size(resize_info):
"""
リサイズ情報から結合先として必要な画像サイズを計算して返す
:param resize_info: リサイズ情報
:return: width, height
"""
max_w, max_h = 0, 0
for name, info in resize_info.items():
pos = info['pos']
size = info['size']
max_w = max(max_w, pos[0] + size[0])
max_h = max(max_h, pos[1] + size[1])
return max_w, max_h | 1e28f993b3b0fac077f234b6388a2d9042396f6b | 5,879 |
def quicksort(lyst):
"""This is a quicksort
"""
def partition_helper(lyst, first, last):
pivot = lyst[first]
left = (first + 1)
right = last
done = False
while not done:
while left <= right and lyst[left] <= pivot:
left += 1
while right >= left and lyst[right] >= pivot:
right -= 1
if right < left:
done = True
else:
lyst[left], lyst[right] = lyst[right], lyst[left]
lyst[first], lyst[right] = lyst[right], lyst[first]
return right
def quicksort_helper(lyst, first, last):
if first < last:
splitpoint = partition_helper(lyst, first, last)
quicksort_helper(lyst, first, (splitpoint-1))
quicksort_helper(lyst, (splitpoint+1), last)
return lyst
quicksort_helper(lyst, 0, (len(lyst)-1))
return lyst | 33385c01b877a86a2970f33dc4d0bd9d456dc983 | 5,880 |
def _validate_time_mode(mode, **kwargs):
"""Validate time mode."""
return mode | e30fd9071bde102b4986fe9ef846a812f7c08ff7 | 5,881 |
async def root():
""" Dependency is "static". Value of Depends doesn't get passed into function
we still get redirected half the time though """
return {"message": "Hello World"} | 6d3b634444240275f56d30aa0c1fe3b3bb84ce24 | 5,883 |
def getLatest(df):
"""
This get the data of the last day from the dataframe and append it to the details
"""
df_info = df.iloc[:,0:5]
df_last = df.iloc[:,-1]
df_info['latest'] = df_last
return df_info | f42cae0552a4ac791d3499fa2ca1417a80a970ac | 5,884 |
def strip_long_text(text, max_len, append=u'…'):
"""Returns text which len is less or equal max_len.
If text is stripped, then `append` is added,
but resulting text will have `max_len` length anyway.
"""
if len(text) < max_len - 1:
return text
return text[:max_len - len(append)] + append | 02ce128f1de1dbeb2a2dcef5bc2b6eb8745322d3 | 5,886 |
def jsonify_query_result(conn, query):
"""deprecated"""
res = query.all()
#res = conn.execute(query)
#return [dict(r) for r in res]
return [r._asdict() for r in res] | ca11226c6f6fc731089f1d257db02a6cb83bd145 | 5,888 |
def tuplify2d(x):
"""Convert ``x`` to a tuple of length two.
It performs the following conversion:
.. code-block:: python
x => x if isinstance(x, tuple) and len(x) == 2
x => (x, x) if not isinstance(x, tuple)
Args:
x (any): the object to be converted
Returns:
tuple:
"""
if isinstance(x, tuple):
assert len(x) == 2
return x
return (x, x) | 64170b14dbe7eb8885d21f45acff6b43979f1219 | 5,894 |
import os
def get_scene_info(path):
"""Extract information about the landsat scene from the file name"""
fname = os.path.basename(path)
parts = fname.split('_')
output = {}
output['sensor'] = parts[0]
output['lpath' ] = parts[2][0:3]
output['lrow' ] = parts[2][3:6]
output['date' ] = parts[3]
return output | 4a1bbad4d8b9b2b1ad21ca78ca7a046d92232699 | 5,895 |
def earlyon(time,duration,*args):
"""
Some lights have a slight delay before they turn on (capacitors that need
to be charged up?). This takes the current time and subtracts that delay
so the code looks like they turn on at the right time, but we really send
the command a little bit early to give the illusion that they're all in
sync
"""
duration = int(duration,10)
cmd = '"'+('" "'.join(args))+'"'
if args[-1]=="on":
return [(time-duration,cmd)]
else:
return [(time,cmd)] | 5671d46ffe42bd456689cffc3ce3e1f6731101c8 | 5,896 |
def parse_id_as_interval(id_string, regex):
""" The fasta ids contain the locus information. """
match = regex.match(id_string)
genome = match.group("genome")
seqid = match.group("seqid")
start_tmp = int(match.group("start"))
end_tmp = int(match.group("end"))
start = min([start_tmp, end_tmp])
end = max([start_tmp, end_tmp])
del start_tmp
del end_tmp
return (genome, seqid, start, end) | 7d35bdd7b4418d1edcd433cd39b9defc9050c6f6 | 5,898 |
def map_sentences_to_indices_of_vectors(sentences, word_to_index_glove, unknown_token):
""" map senteces to integers that represent the index of each word in the glove vocabulary """
# the list to be returned
mapped_sentences = []
# get the index of the unknown token
unknown_token_index = word_to_index_glove[unknown_token]
# iterate for each sentence
for sentence in sentences:
# get the split sentence
split_sentence = sentence.split()
# map it to the corresponding indices
mapped_sentence = [word_to_index_glove.get(word, unknown_token_index) for word in split_sentence]
# append it to the list
mapped_sentences.append(mapped_sentence)
# return the list
return mapped_sentences | 04a27bd4ccd5ac9d0366218107ee36b61d4a7655 | 5,899 |
def updateShaderState(self):
"""Updates all shader program variables. """
if not self.ready():
return
opts = self.opts
self.shader.load()
voxValXform = self.imageTexture.voxValXform
voxValXform = [voxValXform[0, 0], voxValXform[0, 3], 0, 0]
invNumLabels = 1.0 / (opts.lut.max() + 1)
self.shader.setFragParam('voxValXform', voxValXform)
self.shader.setFragParam('invNumLabels', [invNumLabels, 0, 0, 0])
self.shader.unload()
return True | 611b093ce51e99e5c7c1e3da5dcc7cd1a8c07b01 | 5,900 |
def get_request_fixture_names(request):
"""Get list of fixture names for the given FixtureRequest.
Get the internal and mutable list of fixture names in the enclosing scope of
the given request object.
Compatibility with pytest 3.0.
"""
return request._pyfuncitem._fixtureinfo.names_closure | 665fff4538f3817b6eb882f9a873683d69003bfd | 5,901 |
def check_version(stdout):
"""Check version of Ensembl-VEP.
Example of the first part of an output from the command `vep --help`:
#----------------------------------#
# ENSEMBL VARIANT EFFECT PREDICTOR #
#----------------------------------#
Versions:
ensembl : 104.1af1dce
ensembl-funcgen : 104.59ae779
ensembl-io : 104.1d3bb6e
ensembl-variation : 104.6154f8b
ensembl-vep : 104.3
Help: [email protected] , [email protected]
Twitter: @ensembl
"""
vep_version = int(
float(
next(
(line for line in stdout.split("\n") if "ensembl-vep" in line)
).split()[2]
)
)
return vep_version | 5c3b716db7016f1b612f764fb54e3b25d970b0f2 | 5,902 |
import argparse
def parse_cli_args():
"""
These flags are the ones required by the Stream Deck SDK's registration procedure.
They'll be set by the Stream Deck desktop software when it launches our plugin.
"""
parser = argparse.ArgumentParser(
description='Stream Deck Google Meet Plugin')
parser.add_argument('-port', type=int, required=True)
parser.add_argument('-pluginUUID', dest='plugin_uuid',
type=str, required=True)
parser.add_argument('-registerEvent', dest='register_event',
type=str, required=True)
parser.add_argument('-info', type=str, required=True)
# Ignore unknown args in case a Stream Deck update adds optional flags later.
(known_args, _) = parser.parse_known_args()
return known_args | adcad9860336482b2072ef8aecd398a2f4ce3b45 | 5,903 |
def left_join(ht1, ht2):
"""
:param ht1: left hash table
:param ht2: right hash table
:return: list of joined values from both hash tables
"""
results = []
for item in ht1.table:
while item is not None:
key = item.val[0]
joined = [key, ht1.get(key), ht2.get(key)]
results.append(joined)
item = item.next
return results | 8f34e03d055a32ea337b27cd800eeb393d136dfa | 5,904 |
import os
import glob
import warnings
def get_geos_install_prefix():
"""Return GEOS installation prefix or None if not found."""
env_candidate = os.environ.get("GEOS_DIR", None)
if env_candidate is not None:
candidates = [env_candidate]
else:
candidates = [os.path.expanduser("~/local"), os.path.expanduser("~"),
"/usr/local", "/usr", "/opt/local", "/opt", "/sw"]
for prefix in candidates:
libfiles = []
libdirs = ["bin", "lib", "lib64"]
libext = "dll" if os.name == "nt" else "so"
libcode = "{0}geos_c".format("" if os.name == "nt" else "lib")
libname = "{0}*.{1}*".format(libcode, libext)
for libdir in libdirs:
libfiles.extend(glob.glob(os.path.join(prefix, libdir, libname)))
hfile = os.path.join(prefix, "include", "geos_c.h")
if os.path.isfile(hfile) and libfiles:
return prefix
warnings.warn(" ".join([
"Cannot find GEOS library and/or headers in standard locations",
"('{0}'). Please install the corresponding packages using your",
"software management system or set the environment variable",
"GEOS_DIR to point to the location where GEOS is installed",
"(for example, if 'geos_c.h' is in '/usr/local/include'",
"and 'libgeos_c' is in '/usr/local/lib', then you need to",
"set GEOS_DIR to '/usr/local'",
]).format("', '".join(candidates)), RuntimeWarning)
return None | 79193b7a515f961dacdb666a6c25d038b3a14e0c | 5,906 |
def _get_trip_from_id(trip_obj_list, trip_id):
""" Get a trip from a list, based on a trip id """
found_trip_obj = None
for trip_obj in trip_obj_list:
if trip_obj.id == trip_id:
found_trip_obj = trip_obj
break
return found_trip_obj | f2bbacfccda1e4ff778ba793ad238f744400f020 | 5,907 |
import os
def countOriginals(subfolderPath):
"""return count of original vids"""
items = os.listdir(subfolderPath)
count = 0
for file in items:
if file.startswith("Original_") and file.endswith(".description"):
count = count + 1
return count | 116ffa4fecf911d0dec436c5003acb2c9f42a673 | 5,908 |
def to_camel_case(string: str) -> str:
"""
Converts a ``snake_case`` string to ``camelCase``.
:param string: A ``snake_case`` string.
:return: A ``camelCase`` version of the input.
"""
components = string.split("_")
return components[0] + "".join(x.capitalize() for x in components[1:]) | ae0d82efd9a5a65ef16cc401a0fe302b4f04d524 | 5,909 |
def parse_qsub_defaults(parsed):
"""Unpack QSUB_DEFAULTS."""
d = parsed.split() if type(parsed) == str else parsed
options={}
for arg in d:
if "=" in arg:
k,v = arg.split("=")
options[k.strip("-")] = v.strip()
else:
options[arg.strip("-")] = ""
return options | a5c50aef405d88bcb018af48904a384b090d22a2 | 5,910 |
import collections
def count_tweet_shed_words_freq(tweet_text, ind_shed_word_dict, shed_word_ind_dict, shed_words_set):
"""
Count the frequency of selected Hedonometer words in tweet text.
param tweet_text: String of text field of tweet
return: dict of shed_word_ind to shed_word_freq mapping
"""
'''
Tokenize and count words in tweet text
Ref
- 'We defined a word as any contiguous set of characters bounded by white space and/or a small set of punctuation characters.'
- 'We therefore included all misspellings, words from any language used on Twitter, hyperlinks, etc.'
- 'All pattern matches we made were case-insensitive, and we did not perform stemming.'
'''
tweet_text_words = tweet_text.lower().split()
counter = collections.Counter(tweet_text_words)
tweet_shed_words_freq_dict = {int(shed_word_ind_dict[tweet_text_word]): int(tweet_text_word_freq)
for tweet_text_word, tweet_text_word_freq in list(counter.items()) if tweet_text_word in shed_words_set}
return tweet_shed_words_freq_dict | 129130f5b9def7320c6e3dd2d8ef82493d21eb8a | 5,914 |
def posts(parsed):
"""Calculates number of every type of post"""
num_t_post = 0
num_corner_post = 0
num_line_post = 0
num_end_post = 0
num_gate_posts = 0
for post in parsed.posts():
if not post.isRemoval:
if post.postType == 'tPost':
num_t_post += 1
if post.postType == 'cornerPost':
num_corner_post += 1
if post.postType == 'endPost':
num_end_post += 1
if post.postType == 'gatePost':
num_gate_posts += 1
for fence in parsed.fences:
if not fence.isRemoval:
if (fence.length/12) % 8 == 0:
num_line_post += (fence.length/12) // 8 - 1
else:
num_line_post += (fence.length/12) // 8
num_steel_post = num_t_post + num_corner_post + num_line_post + num_end_post + num_gate_posts
return num_t_post, num_corner_post, num_line_post, num_end_post, num_gate_posts, num_steel_post | e8c5905a38ab560f0dba595eecf67865efc27121 | 5,915 |
def fasta(file_allname: str):
"""
需要传入file_allname的路径
:param file_allname:
:return: 返回fasta格式的序列list
"""
try:
# file_allname = input("输入你要分析出的文件,包括后缀名\n")
f = open(file_allname).read()
fasts = f.split(">")
fast_seq = []
index = 0
for fast in fasts:
if fast:
fast = ">" + fast
fast_seq.append(fast)
index = index + 1
return fast_seq
except:
print("请正确输入文件名称。") | bbd03531a7d311c322fdbd66e401788fb6526120 | 5,917 |
def format_size(size):
"""
:param float size:
:rtype: str
"""
size = float(size)
unit = 'TB'
for current_unit in ['bytes', 'KB', 'MB', 'GB']:
if size < 1024:
unit = current_unit
break
size /= 1024
return '{0:.2f}'.format(size).rstrip('0').rstrip('.') + ' ' + unit | 95470360fcc34df5a51a7cf354138413b41940aa | 5,918 |
def rc_seq(seq=""):
"""Returns the reverse compliment sequence."""
rc_nt_ls = []
rc_dict = {
"a": "t",
"c": "g",
"t": "a",
"g": "c",
"n": "n",
"A": "T",
"C": "G",
"T": "A",
"G": "C",
"N": "N"
}
rc_nt_ls = [rc_dict[seq[i]] for i in range(len(seq)-1, -1, -1)]
rc_seq_ = "".join(rc_nt_ls)
return rc_seq_ | 827877a76d4ffbe61e40e4f00641afa4277f3ff5 | 5,919 |
import six
def get_rotation(rotation):
"""
Return the text angle as float. The returned
angle is between 0 and 360 deg.
*rotation* may be 'horizontal', 'vertical', or a numeric value in degrees.
"""
try:
angle = float(rotation)
except (ValueError, TypeError):
isString = isinstance(rotation, six.string_types)
if ((isString and rotation == 'horizontal') or rotation is None):
angle = 0.
elif (isString and rotation == 'vertical'):
angle = 90.
else:
raise ValueError("rotation is {0} expected either 'horizontal'"
" 'vertical', numeric value or"
"None".format(rotation))
return angle % 360 | 7ed0fd31f9a90ddb5743faa8e45e46f0d5cc08bd | 5,920 |
def insert_with_key_enumeration(agent, agent_data: list, results: dict):
"""
Checks if agent with the same name has stored data already in the given dict and enumerates in that case
:param agent: agent that produced data
:param agent_data: simulated data
:param results: dict to store data into
:return: dict with inserted data/name pair
"""
# add to results dict and don't double agent names
if agent.get_name() not in results:
results[agent.get_name()] = agent_data
else:
# add index to agent name if another agent of same type was simulated before
new_name = agent.get_name() + "_" + str(
sum([agent.get_name() in s for s in list(results.keys())]))
results[new_name] = agent_data
return results | d2d653dcff20836c4eaf8cf55b31b1a1209a4ddd | 5,922 |
import argparse
def get_args():
"""Get command-line arguments"""
parser = argparse.ArgumentParser(
description='First Bank of Change',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('value', metavar='int', type=int, help='Sum')
args = parser.parse_args()
if not 0 < args.value <= 100:
parser.error('value "{}" must be > 0 and <= 100'.format(args.value))
return args | 117ae5596c95154ac0dc10fd9b1793d89d471da8 | 5,923 |
def min__to__s():
"""Convert minute to second"""
return '6.0E+1{kind}*{var}' | 2730af2cc79a6c4af6d1b18f79326623c0fd0289 | 5,924 |
def score_per_term(base_t, mis_t, special_t, metric):
"""Computes three distinct similarity scores for each list of terms.
Parameters
----------
base_t, mismatch_t special_t: list of str
Lists of toponym terms identified as base, mismatch or frequent (special) respectively.
metric: str
Indicates the metric to utilize in order to calculate the similarity score by comparing individually the
three lists.
Returns
-------
tuple of (float, float, float)
A similarity score for every list of terms. Each score is normalized in range [0,1].
"""
scores = [0, 0, 0] # base, mis, special
for idx, (term_a, term_b) in enumerate(zip(
[base_t['a'], mis_t['a'], special_t['a']],
[base_t['b'], mis_t['b'], special_t['b']]
)):
if term_a or term_b: scores[idx] = globals()[metric](u' '.join(term_a), u' '.join(term_b))
return scores[0], scores[1], scores[2] | 55e5b9b0d9feaa359ab0907b399eb37514dcfacd | 5,925 |
def do_simple_math(number1, number2, operator):
"""
Does simple math between two numbers and an operator
:param number1: The first number
:param number2: The second number
:param operator: The operator (string)
:return: Float
"""
ans = 0
if operator is "*":
ans = number1 * number2
elif operator is "/":
ans = number1 / number2
elif operator is "+":
ans = number1 + number2
elif operator is "-":
ans = number1 - number2
elif operator is "^":
ans = number1 ** number2
elif operator is "%":
ans = number1 % number2
return ans | eb745f9c3f3c1e18de30cbe6c564d68c29e39ff4 | 5,926 |
def snake(string):
"""snake_case"""
return "_".join(string.split()) | 6bf99dede918937ad59ec9be14ffade8fadb5794 | 5,928 |
def generateKeys():
"""
generates and returns a dictionary containing the original columns names from the
LIDAR file as values and the currently used column names as corresponding keys
ws_1 : Speed Value.1
dir_1 : Direction Value.1
h_1 : Node RT01 Lidar Height
"""
keys = {"ws_0" : "Speed Value", "dir_0" : "Direction Value", "h_0" : "Node RT00 Lidar Height"}
for i in range(1, 11):
keys.update({"ws_{}".format(i) : "Speed Value.{}".format(i),
"dir_{}".format(i) : "Direction Value.{}".format(i),
"h_{}".format(i) : "Node RT{:02d} Lidar Height".format(i+1),
})
return keys | 9d0d55c3fdc32ddda46da4a9e876d4ce1ecde25d | 5,929 |
def get_uniprot_homologs(rev=False):
"""As above, but exclusively uniprot => mouse uniprot"""
homologs = {}
with open('data/corum_mouse_homologs.txt') as infile:
data = [line.strip().split('\t') for line in infile]
for line in data:
original = line[1].split('|')[1]
uniprot = line[0]
# Picks first, and subsequently best. Seqid must be in desc order!
if original not in homologs:
homologs[original] = uniprot
if rev:
homologs = {value: key for key, value in homologs.items()}
return homologs | 969085375265b90b5501b4b86eaaed3e1c48795f | 5,930 |
def is_intersection(g, n):
"""
Determine if a node is an intersection
graph: 1 -->-- 2 -->-- 3
>>> is_intersection(g, 2)
False
graph:
1 -- 2 -- 3
|
4
>>> is_intersection(g, 2)
True
Parameters
----------
g : networkx DiGraph
n : node id
Returns
-------
bool
"""
return len(set(g.predecessors(n) + g.successors(n))) > 2 | 415e5154095cd78112ef029b6c4d62c36da0b3b8 | 5,932 |
import typing
def tokenize(data: typing.Union[str, typing.Sequence[str]]) -> list[str]:
"""break up string into tokens, tokens can be separated by commas or spaces
creates separate tokens for:
- "(" or "[" at beginning
- ")" or "]" at end
"""
# break into tokens
if isinstance(data, str):
data = [data]
tokens = []
for datum in data:
datum = datum.replace(',', ' ')
subtokens = datum.split(' ')
for token in subtokens:
if len(token) == 0:
continue
elif len(token) == 1:
tokens.append(token)
else:
start_interval = token[0] in ['(', '[']
end_interval = token[-1] in [')', ']']
# convert token based on contained intervals
if start_interval and end_interval:
tokens.append(token[0])
if len(token) > 2:
tokens.append(token[1:-1])
tokens.append(token[-1])
elif start_interval:
tokens.append(token[0])
tokens.append(token[1:])
elif end_interval:
tokens.append(token[:-1])
tokens.append(token[-1])
else:
tokens.append(token)
return tokens | 832343067c8777aa386c0c87c2c4e8202a7cb88f | 5,934 |
def de_comma(string):
"""Remove any trailing commas
>>> de_comma(',fred,,') == ',fred'
True
"""
return string.rstrip(',') | 453d615c1fbbef5139d05d6e4510731c969d6a86 | 5,935 |
import pickle
def get_actual_data(base, n_run, log_path, subfolders):
"""
:param base: the sub folder name right before the _DATE_InstanceNumber
:param n_run: the INSTANCE number in the subfolder name
:param log_path: path to the main log folder containing all the runs of an experiment (e.g. ../data/CH6-14S1G1TNSV/)
:param subfolders: the list of all the sub folders contained in log_folder
:param log_path: complete path
:return:
"""
for subfolder in subfolders:
splitted = subfolder.split('_')
# get basename, compare to base; compare n_run with experiment instance
if splitted[0] == base and str(n_run).zfill(3) == splitted[2]:
filepath = log_path + '/' + subfolder + '/global_save.txt'
try:
data = pickle.load(open(filepath, "rb"))
except:
print('Make sure your parameters are right!')
data = None
exit()
return data | b9f76b14b90e3c187e19bcd0b8bbbfe865518fe7 | 5,936 |
def secs_to_str(secs):
"""Given number of seconds returns, e.g., `02h 29m 39s`"""
units = (('s', 60), ('m', 60), ('h', 24), ('d', 7))
out = []
rem = secs
for (unit, cycle) in units:
out.append((rem % cycle, unit))
rem = int(rem / cycle)
if not rem:
break
if rem: # leftover = weeks
out.append((rem, 'w'))
return ' '.join(["%02d%s" % tup for tup in out[::-1]]) | 0918fd72fbaaa0adf8fe75bcb1ef39b4e9aba75b | 5,937 |
def get_computed_response_text_value(response):
"""
extract the text message from the Dialogflow response, fallback: None
"""
try:
if len(response.query_result.fulfillment_text):
return response.query_result.fulfillment_text
elif len(response.query_result.fulfillment_messages[0].text.text[0]):
return response.query_result.fulfillment_messages[0].text.text[0]
else:
return None
except Exception as e:
return None | fa7410ac4b0ef2c0dea59b0e9d001a7893a56479 | 5,938 |
def stairmaster_mets(setting):
"""
For use in submaximal tests on the StairMaster 4000 PT step ergometer.
Howley, Edward T., Dennis L. Colacino, and Thomas C. Swensen. "Factors Affecting the Oxygen Cost of Stepping on an Electronic Stepping Ergometer." Medicine & Science in Sports & Exercise 24.9 (1992): n. pag. NCBI. Web. 10 Nov. 2016.
args:
setting (int): the setting of the step ergometer
Returns:
float: VO2:subscript:`2max` in kcal/kg*hour
"""
return 0.556 * 7.45 * setting | 1d6cc9fc846773cfe82dfacb8a34fb6f46d69903 | 5,940 |
def clean_cancer_dataset(df_training):
"""
Checks and cleans the dataset of any potential impossible values, e.g. bi-rads columns, the 1st only allows
values in the range of 1-5, ordinal
Age, 2nd column, cannot be negative, integer
Shape, 3rd column, only allows values between 1 and 4, nominal
Margin, only allows a range of 1 to 5, nominal
Density only allows values between 1-4,ordinal.
All deletions will be performed in place.
:return: cleaned up dataframe, count of removed points
"""
rows_pre_cleaning = df_training.shape[0]
df_training.drop(df_training.index[df_training['bi_rads'] > 5], inplace=True)
df_training.drop(df_training.index[df_training['shape'] > 4], inplace=True)
df_training.drop(df_training.index[df_training['margin'] > 5], inplace=True)
df_training.drop(df_training.index[df_training['density'] > 4], inplace=True)
rows_removed = rows_pre_cleaning - df_training.shape[0]
return df_training, rows_removed | a30f377b48bb665f42f3efa58b15d289f7e7f9b3 | 5,941 |
def isvalid(gridstr, x, y, test_value):
""" Check if it would be legal to place a in pos x,y """
sq_indexes = ((0, 1, 2), (3, 4, 5), (6, 7, 8))
group_indexes = [(x_ind, y_ind)
for x_ind in sq_indexes[x // 3]
for y_ind in sq_indexes[y // 3]]
for index in range(9):
# Check squares in the same column
if gridstr[x + 9 * index] == test_value:
return False
# Check the row
if gridstr[index + 9 * y] == test_value:
return False
# Check the group
x_index, y_index = group_indexes[index]
if gridstr[x_index + 9 * y_index] == test_value:
return False
return True | a8481bbb18409814e54ad669bbb14b71e32b1139 | 5,943 |
def findPowerPlant(mirror, name):
"""Return power plant agent, if it exists"""
if name in mirror.ppDict:
return mirror.ppDict[name]
else:
print("*** Power Plant '%s' not found." % name)
return None | 35e432c7ab6dbe57488e2d7f84c3b6d077f2079a | 5,944 |
def check_threshold(service, config_high_threshold, config_low_threshold, curr_util):
""" Checks whether Utilization crossed discrete threshold
Args:
service: Name of the micro/macroservice
config_high_threshold: Upper limit threshold to utilization set in config file
config_low_threshold: Lower limit threshold to utilization set in config file
curr_util: value of the current utilization
Returns:
String "High" if upper limit crossed
String "Low" if lower limit crossed
String "Normal" if none crossed
"""
if float(curr_util) > float(config_high_threshold):
return "High"
elif float(curr_util) < float(config_low_threshold):
return "Low"
else:
return "Normal" | 80bf8ab4f5b2bbac35df7c48764114e213fba580 | 5,947 |
def ols_data():
"""
draper and smith p.8
"""
xs = [35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, 57.5,
46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70, 70, 74.5, 72.1,
58.1, 44.6, 33.4, 28.6]
ys = [10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.50,
7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58,
10.09, 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08]
# self.Xk = 28.6
# self.ypred_k = 0.3091
solution = {'slope': -0.0798,
'y_intercept': 13.623,
'n': len(xs),
'pred_x': 28.6,
'pred_error': 0.309}
return xs, ys, solution | d741195075a51d1485c9f98031ca405cadf1db93 | 5,948 |
def valid_field(obj, field):
"""Returns ``True`` if given object (BaseDocument subclass or an instance thereof) has given field defined."""
return object.__getattribute__(obj, 'nanomongo').has_field(field) | 32e662c5c0e666b7455aacdd6809e31cd20017fe | 5,949 |
def double_bin_pharmacophore_graph(distance, bins, delta):
""" Assign two bin values to the distance between pharmacophoric points.
Parameters
----------
distance : float
The distance that will be binned.
bins : np.ndarray
Array of bins. It has to be one dimensional and monotonic.
delta : float
The tolerance from which a distance value is considered to belong to
the lower and upper bin. It has to be a value between 0 and 0.5
Returns
-------
2-tuple of int
The two bins assigned to the distance.
"""
for ii in range(bins.shape[0] - 1):
if distance == bins[ii]:
return (bins[ii], bins[ii])
elif distance > bins[ii] and distance < bins[ii + 1]:
if distance - bins[ii] > delta:
return (bins[ii], bins[ii + 1])
else:
return (bins[ii], bins[ii]) | b7dedf4f31b5cd08c9875139df837a57a8117001 | 5,950 |
import os
def is_empty_dir(target_dir):
"""return is empty directory or not
:param str target_dir: target dir
"""
for root, _, files in os.walk(target_dir):
for f in files:
if os.path.isfile(os.path.join(root, f)):
return False
return True | 8de606b422703b7602d62df0fae5c0b341761236 | 5,951 |
def is_absolute_url(parsed_url):
""" check if it is an absolute url """
return all([parsed_url.scheme, parsed_url.netloc]) | 578c1443ec18f9b741cd205763604cba2242ac48 | 5,952 |
def get_levelized_cost(solution, cost_class='monetary', carrier='power',
group=None, locations=None,
unit_multiplier=1.0):
"""
Get the levelized cost per unit of energy produced for the given
``cost_class`` and ``carrier``, optionally for a subset of technologies
given by ``group`` and a subset of ``locations``.
Parameters
----------
solution : solution container
cost_class : str, default 'monetary'
carrier : str, default 'power'
group : str, default None
Limit the computation to members of the given group (see the
groups table in the solution for valid groups).
locations : str or iterable, default None
Limit the computation to the given location or locations.
unit_multiplier : float or int, default 1.0
Adjust unit of the returned cost value. For example, if model units
are kW and kWh, ``unit_multiplier=1.0`` will return cost per kWh, and
``unit_multiplier=0.001`` will return cost per MWh.
"""
if group is None:
group = 'supply'
members = solution.groups.to_pandas().at[group, 'members'].split('|')
if locations is None:
locations_slice = slice(None)
elif isinstance(locations, (str, float, int)):
# Make sure that locations is a list if it's a single value
locations_slice = [locations]
else:
locations_slice = locations
cost = solution['costs'].loc[dict(k=cost_class, x=locations_slice, y=members)]
ec_prod = solution['ec_prod'].loc[dict(c=carrier, x=locations_slice, y=members)]
if locations is None:
cost = cost.sum(dim='x').to_pandas()
ec_prod = ec_prod.sum(dim='x').to_pandas()
else:
cost = cost.to_pandas()
ec_prod = ec_prod.to_pandas()
return (cost / ec_prod) * unit_multiplier | 96b8f9a9fceaa932bcee72033e73ad8b9551759d | 5,954 |
def reduce_range_overlaps(ranges):
"""Given a list with each element is a 2-tuple of min & max, returns a similar list simplified if possible. """
ranges = [ea for ea in ranges if ea]
if len(ranges) < 2:
return ranges
first, *ranges_ordered = list(reversed(sorted(ranges, key=lambda ea: ea[1] - ea[0])))
r_min = first[0]
r_max = first[1]
disjointed_ranges = []
for r in ranges_ordered:
if r_min <= r[0] <= r_max:
r_max = max(r[1], r_max)
elif r_min <= r[1] <= r_max:
r_min = min(r[0], r_min)
# Since we already looked at 'first' sorted by max range, not possible: r[0] < r_min and r[1] > r_max
else: # range is possibly disjointed from other ranges. There may be a gap.
disjointed_ranges.append(r)
big_range = (r_min, r_max)
clean_ranges = [big_range, *disjointed_ranges]
return clean_ranges | fe62dd8bbb1fd0a985757cc417c9c230659294c5 | 5,956 |
import sys
def exception_in_stack():
"""Return true if we are currently in the process of handling an exception, ie one has been caught in a try block.
https://docs.python.org/3/library/sys.html#sys.exc_info
"""
return sys.exc_info()[0] is not None | 71f2076c956fa3bb92751778c29537df7bceac35 | 5,959 |
def meta_body():
"""Ugoira page data."""
return '{"error":false,"message":"","body":{"src":"https:\/\/i.pximg.net\/img-zip-ugoira\/img\/2019\/04\/29\/16\/09\/38\/74442143_ugoira600x600.zip","originalSrc":"https:\/\/i.pximg.net\/img-zip-ugoira\/img\/2019\/04\/29\/16\/09\/38\/74442143_ugoira1920x1080.zip","mime_type":"image\/jpeg","frames":[{"file":"000000.jpg","delay":70},{"file":"000001.jpg","delay":70},{"file":"000002.jpg","delay":70},{"file":"000003.jpg","delay":70},{"file":"000004.jpg","delay":70},{"file":"000005.jpg","delay":70},{"file":"000006.jpg","delay":70},{"file":"000007.jpg","delay":70},{"file":"000008.jpg","delay":70},{"file":"000009.jpg","delay":70},{"file":"000010.jpg","delay":70},{"file":"000011.jpg","delay":70},{"file":"000012.jpg","delay":70},{"file":"000013.jpg","delay":70},{"file":"000014.jpg","delay":70},{"file":"000015.jpg","delay":70},{"file":"000016.jpg","delay":70},{"file":"000017.jpg","delay":70},{"file":"000018.jpg","delay":70},{"file":"000019.jpg","delay":70},{"file":"000020.jpg","delay":70},{"file":"000021.jpg","delay":70},{"file":"000022.jpg","delay":70},{"file":"000023.jpg","delay":70},{"file":"000024.jpg","delay":70},{"file":"000025.jpg","delay":70},{"file":"000026.jpg","delay":70},{"file":"000027.jpg","delay":70},{"file":"000028.jpg","delay":70},{"file":"000029.jpg","delay":70},{"file":"000030.jpg","delay":70},{"file":"000031.jpg","delay":70},{"file":"000032.jpg","delay":70},{"file":"000033.jpg","delay":70},{"file":"000034.jpg","delay":70},{"file":"000035.jpg","delay":70},{"file":"000036.jpg","delay":70},{"file":"000037.jpg","delay":70},{"file":"000038.jpg","delay":70},{"file":"000039.jpg","delay":70},{"file":"000040.jpg","delay":70},{"file":"000041.jpg","delay":70},{"file":"000042.jpg","delay":70},{"file":"000043.jpg","delay":70},{"file":"000044.jpg","delay":70},{"file":"000045.jpg","delay":70},{"file":"000046.jpg","delay":70},{"file":"000047.jpg","delay":70},{"file":"000048.jpg","delay":70},{"file":"000049.jpg","delay":70},{"file":"000050.jpg","delay":70},{"file":"000051.jpg","delay":70},{"file":"000052.jpg","delay":70},{"file":"000053.jpg","delay":70},{"file":"000054.jpg","delay":70},{"file":"000055.jpg","delay":70},{"file":"000056.jpg","delay":70},{"file":"000057.jpg","delay":70},{"file":"000058.jpg","delay":70},{"file":"000059.jpg","delay":70},{"file":"000060.jpg","delay":70},{"file":"000061.jpg","delay":70},{"file":"000062.jpg","delay":70},{"file":"000063.jpg","delay":70},{"file":"000064.jpg","delay":70},{"file":"000065.jpg","delay":70},{"file":"000066.jpg","delay":70},{"file":"000067.jpg","delay":70},{"file":"000068.jpg","delay":70},{"file":"000069.jpg","delay":70},{"file":"000070.jpg","delay":70},{"file":"000071.jpg","delay":70},{"file":"000072.jpg","delay":70},{"file":"000073.jpg","delay":70},{"file":"000074.jpg","delay":70},{"file":"000075.jpg","delay":70},{"file":"000076.jpg","delay":70}]}}' | abf9e01371938467b12721373a0e5fc8fb926016 | 5,960 |
import re
def format_comments(text="default", line_size=90):
"""
Takes a string of text and formats it based on rule 1 (see docs).
"""
# rules to detect fancy comments, if not text
regex1 = r"^ *?####*$"
# rules to detect fancy comments, if text
regex2 = r"^ *?####*([^#\n\r]+)#*"
# if detected pattern 1, replace with this
subst1 = "#"*line_size
# if detected pattern 2, replace with this
def subst2(match_obj):
fix_pad = 4 + 2 # 4 hashes on left plus two spaces
cap_group = match_obj.group(1).strip()
return '#### ' + cap_group + ' ' + '#'*(line_size-fix_pad-len(cap_group))
text = re.sub(regex1, subst1, text, 0, re.MULTILINE)
text = re.sub(regex2, subst2, text, 0, re.MULTILINE)
# formatted text to return
return text | 6eba4539aa7128d5654ddab7fe08a2e9df6dc738 | 5,961 |
def config_to_dict(plato_config):
""" Convert the plato config (can be nested one) instance to the dict. """
# convert the whole to dict - OrderedDict
plato_config_dict = plato_config._asdict()
def to_dict(elem):
for key, value in elem.items():
try:
value = value._asdict()
elem[key] = to_dict(value)
except:
pass
if isinstance(value, list):
for idx, value_item in enumerate(value):
try:
value_item = value_item._asdict()
value[idx] = to_dict(value_item)
except:
pass
elem[key] = value
return elem
plato_config_dict = to_dict(plato_config_dict)
return plato_config_dict | 9e68c2859dc33370554f8015f96bd501f827c1b2 | 5,963 |
def get_parameter(model, name):
"""
Finds the named parameter within the given model.
"""
for n, p in model.named_parameters():
if n == name:
return p
raise LookupError(name) | ba35b743d9189c94da0dcce27630bba311ea8a46 | 5,964 |
import os
def _demo_home(options):
"""For convenience demo home is in the same folder as jar file"""
bp, fn = os.path.split(options.jar_file)
demo_home = os.path.join(bp, 'demo')
assert os.path.isdir(demo_home), 'Folder does not exist: "%s"' % demo_home
return demo_home | 97cdb9a36e56539719cf3aab1e7a5d0c95d87a1d | 5,966 |
def valid_tetrodes(tetrode_ids, tetrode_units):
"""
Only keep valid tetrodes with neuron units so that there is corresponding spike train data.
:param tetrode_ids: (list) of tetrode ids in the order of LFP data
:param tetrode_units: (dict) number of neuron units on each tetrode
:return: (list) of tetrode ids with neuron units
"""
return [x for x in tetrode_ids if tetrode_units[x] > 0] | c887f5e5c29d841da63fe0cd56c41eda5ddde891 | 5,967 |
import os
import json
async def get_config(guildid):
"""
:param guildid:
:return: Guild-Config as Json
"""
path = os.path.join("data", "configs", f"{guildid}.json")
with open(path, "r") as f:
data = json.load(f)
return data | 4057569c71ac546a504cabe1ec19d6778f6ab6fa | 5,969 |
def rewrite_metadata(content, dic):
"""From content, which is the old text with the metadata and dic which has the new data, return new_txt which has data replaced by dic content, with relevant headers added """
#Splitting into headers and body. Technically, body is a list of paragraphs where first one is the headers
new_headers = ""
body = content.split("\n\n")
headers = body[0]
#Replacing data in headers
for line in headers.split("\n") :
has_match = False
#Replace data in preexisting line
for key in list(dic.keys()) :
if line.startswith(key) :
new_headers = new_headers + key + ": " + str(dic[key]) + "\n"
del dic[key]
has_match = True
#Copies existing header that is not overwrote by dic
if not has_match :
new_headers = new_headers + line + "\n"
# In case we forgot to add a line manually
for left in list(dic.keys()) :
new_headers = new_headers + left + ": " + str(dic[left]) + "\n"
#Formatting, joining new text
body[0] = new_headers
new_txt = "\n\n".join(body)
return new_txt | 14f7da66f19c24d073f1fdee4b56d49d28320e71 | 5,970 |
def reverse_dict_old(dikt):
"""
takes a dict and return a new dict with old values as key and old keys as values (in a list)
example
_reverse_dict({'AB04a':'b', 'AB04b': 'b', 'AB04c':'b', 'CC04x': 'c'})
will return
{'b': ['AB04a', 'AB04b', 'AB04c'], 'c': 'CC04x'}
"""
new_dikt = {}
for k, v in dikt.items():
if v in new_dikt:
new_dikt[v].append(k)
else:
new_dikt[v] = [k]
return new_dikt | 50155858fbbe52dc8daae66e6a94c8885b80ba05 | 5,971 |
def Q(lambda_0, lambda_, eps_c, Delta, norm_zeta2, nu):
"""
Quadratic upper bound of the duality gap function initialized at lambda_0
"""
lmd = lambda_ / lambda_0
Q_lambda = (lmd * eps_c + Delta * (1. - lmd) +
0.5 * nu * norm_zeta2 * (1. - lmd) ** 2)
return Q_lambda | e7c624d822713efd9a63e92d40ecb9c13d5ee8d6 | 5,972 |
from typing import List
import subprocess
def import_template_ids() -> List[str]:
"""Return a list of all the supported template IDs."""
return subprocess.check_output(["meme", "-list-templates"]).decode("utf-8").splitlines() | 89914e20965e87e9d9589955000854dc8f8d743b | 5,974 |
def _scale_pot(pot, scale_coeff, numtors):
""" Scale the potential
"""
print('scale_coeff test 0:', scale_coeff, numtors)
scale_factor = scale_coeff**(2.0/numtors)
print('scale_coeff test:', scale_coeff, numtors, scale_factor)
new_pot = {}
for idx, val in pot.items():
new_pot[idx] = pot[idx] * scale_factor
return new_pot | 0e634b7766a5822d3b2e80fffa0b56dccee125ab | 5,975 |
import pkg_resources
def get_substation_file():
"""Return the default substation file for the CONUS."""
return pkg_resources.resource_filename('cerf', 'data/hifld_substations_conus_albers.zip') | 7628c7981dd9f82b4210a451ad62fffa72222fe8 | 5,976 |
def get_tracer(request):
"""
Utility function to retrieve the tracer from the given ``request``.
It is meant to be used only for testing purposes.
"""
return request['__datadog_request_span']._tracer | facd1ff0922dcc7743814cfd738d022316ba5d6d | 5,977 |
def build_permissions_response():
""" Build a response containing only speech """
output = "I'm sorry, I was not able to lookup your home town. "\
"With your permission, I can provide you with this information. "\
"Please check your companion app for details"
return {
'outputSpeech': {
'type': 'PlainText',
'text': output
},
'card': {
'type': 'AskForPermissionsConsent',
'permissions': [
'read::alexa:device:all:address'
]
},
'shouldEndSession': True
} | 4b01a0fa32958127f7c373b0cedf5d518074e29e | 5,979 |
def get_card_names(cards):
"""
:param cards: List of card JSONs
:return: List of card names (str)
"""
names = []
for card in cards:
name = card.get("name")
names.append(name)
return names | a30ad1ef7d8beaab0451d6f498254b0b5df3cf6d | 5,980 |
import platform
def pyversion(ref=None):
"""Determine the Python version and optionally compare to a reference."""
ver = platform.python_version()
if ref:
return [
int(x) for x in ver.split(".")[:2]
] >= [
int(x) for x in ref.split(".")[:2]
]
else: return ver | 2e31c7710b171ad67e56f9dbc1181685e0f32de1 | 5,981 |
import os
def _escape_space(program):
"""escape spaces in for windows"""
if os.name == "nt" and ' ' in program:
return '"' + program + '"'
else:
return program | 67a8fa1544f524e9a2591c3221f48c2c130ef86b | 5,982 |
import re
def clean_value(value, suffix):
"""
Strip out copy suffix from a string value.
:param value: Current value e.g "Test Copy" or "test-copy" for slug fields.
:type value: `str`
:param suffix: The suffix value to be replaced with an empty string.
:type suffix: `str`
:return: Stripped string without the suffix.
"""
# type: (str, str) -> str
return re.sub(r"([\s-]?){}[\s-][\d]$".format(suffix), "", value, flags=re.I) | d2ec3b3affbf71411039f234c05935132205ae16 | 5,983 |
def list_devices_to_string(list_item):
"""Convert cfg devices into comma split format.
Args:
list_item (list): list of devices, e.g. [], [1], ["1"], [1,2], ...
Returns:
devices (string): comma split devices
"""
return ",".join(str(i) for i in list_item) | 717f40d3fd0c24b93d5859491d3f9f16a2b0a069 | 5,984 |
def config_split(config):
"""
Splits a config dict into smaller chunks.
This helps to avoid sending big config files.
"""
split = []
if "actuator" in config:
for name in config["actuator"]:
split.append({"actuator": {name: config["actuator"][name]}})
del(config["actuator"])
split.append(config)
return split | 2006534ece382c55f1ba3914300f5b6960323e53 | 5,985 |
def find_next_square2(sq: int) -> int:
"""
This version is just more compact.
"""
sqrt_of_sq = sq ** (1/2)
return -1 if sqrt_of_sq % 1 != 0 else int((sqrt_of_sq + 1) ** 2) | 62246b78cc065b629961a7283671e776481a8659 | 5,986 |
import colorsys
def hex_2_hsv(hex_col):
"""
convert hex code to colorsys style hsv
>>> hex_2_hsv('#f77f00')
(0.08569500674763834, 1.0, 0.9686274509803922)
"""
hex_col = hex_col.lstrip('#')
r, g, b = tuple(int(hex_col[i:i+2], 16) for i in (0, 2 ,4))
return colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0) | a80e9c5470dfc64c61d12bb4b823411c4a781bef | 5,987 |
from pathlib import Path
def _drivers_dir() -> str:
"""
ドライバ格納ディレクトリのパスを返します
:return: ドライバ格納ディレクトリのパス
"""
return str(Path(__file__).absolute().parent.parent.joinpath('drivers')) | 45b173099f6df24398791ec33332072a7651fa4f | 5,988 |
def tousLesIndices(stat):
"""
Returns the indices of all the elements of the graph
"""
return stat.node2com.keys()
#s=stat.node2com.values()
global globAuthorIndex
global globTfIdfTab
#pprint(globAuthorIndex)
#pprint(stat.node2com.values())
#glob node->index
return [globAuthorIndex[x] for x in stat.node2com]
#return stat.node2com.values()
#def varianceGroupe():
#def distanceListePointsCentre(indexsCommunaute, centre): | fa847ee3913d521778ee3462c8e946f0ff001c76 | 5,989 |
import os
def list_files(root_dir, mindepth = 1, maxdepth = float('inf'), filter_ext=[], return_relative_path=False):
"""
Usage:
d = get_all_files(rootdir, mindepth = 1, maxdepth = 2)
This returns a list of all files of a directory, including all files in
subdirectories. Full paths are returned.
WARNING: this may create a very large list if many files exists in the
directory and subdirectories. Make sure you set the maxdepth appropriately.
rootdir = existing directory to start
mindepth = int: the level to start, 1 is start at root dir, 2 is start
at the sub directories of the root dir, and-so-on-so-forth.
maxdepth = int: the level which to report to. Example, if you only want
in the files of the sub directories of the root dir,
set mindepth = 2 and maxdepth = 2. If you only want the files
of the root dir itself, set mindepth = 1 and maxdepth = 1
filter_ext(list, optional) : filter files ex. [.jpg, .png]
return_relative_path(bool): Default false. If true return relative path else return absolute path
"""
root_dir = os.path.normcase(root_dir)
file_paths = []
root_depth = root_dir.rstrip(os.path.sep).count(os.path.sep) - 1
lowered_filter_ext = tuple([ext.lower() for ext in filter_ext])
for abs_dir, dirs, files in sorted(os.walk(root_dir)):
depth = abs_dir.count(os.path.sep) - root_depth
if mindepth <= depth <= maxdepth:
for filename in files:
if filter_ext:
if not filename.lower().endswith(lowered_filter_ext):
continue
if return_relative_path:
rel_dir = os.path.relpath(abs_dir, root_dir)
if rel_dir == ".":
file_paths.append(filename)
else:
file_paths.append(os.path.join(rel_dir, filename))
else:
# append full absolute path
file_paths.append(os.path.join(abs_dir, filename))
elif depth > maxdepth:
# del dirs[:]
pass
return file_paths | 8df0e009f40e77ef7ed86ef870a9f1e508d876d5 | 5,990 |
def location_descriptors():
"""Provide possible templated_sequence input."""
return [
{
"id": "NC_000001.11:15455",
"type": "LocationDescriptor",
"location": {
"sequence_id": "ncbi:NC_000001.11",
"interval": {
"start": {
"type": "Number",
"value": 15455
},
"end": {
"type": "Number",
"value": 15456
}
},
"type": "SequenceLocation"
},
"label": "NC_000001.11:15455",
},
{
"id": "NC_000001.11:15566",
"type": "LocationDescriptor",
"location": {
"sequence_id": "ncbi:NC_000001.11",
"interval": {
"start": {
"type": "Number",
"value": 15565
},
"end": {
"type": "Number",
"value": 15566
}
},
"type": "SequenceLocation"
},
"label": "NC_000001.11:15566",
},
{
"id": "chr12:p12.1",
"type": "LocationDescriptor",
"location": {
"species_id": "taxonomy:9606",
"chr": "12",
"interval": {"start": "p12.1", "end": "p12.1"}
},
"label": "chr12:p12.1",
},
{
"id": "chr12:p12.2",
"type": "LocationDescriptor",
"location": {
"species_id": "taxonomy:9606",
"chr": "12",
"interval": {"start": "p12.2", "end": "p12.2"}
},
"label": "chr12:p12.2",
},
{
"id": "NC_000001.11:15455-15566",
"type": "LocationDescriptor",
"location": {
"sequence_id": "ncbi:NC_000001.11",
"interval": {
"start": {
"type": "Number",
"value": 15455
},
"end": {
"type": "Number",
"value": 15566
}
},
"type": "SequenceLocation"
},
"label": "NC_000001.11:15455-15566",
},
{
"id": "chr12:p12.1-p12.2",
"type": "LocationDescriptor",
"location": {
"species_id": "taxonomy:9606",
"chr": "12",
"interval": {"start": "p12.1", "end": "p12.2"}
},
"label": "chr12:p12.1-p12.2",
},
{
"id": "fusor.location_descriptor:NP_001123617.1",
"type": "LocationDescriptor",
"location": {
"sequence_id": "ga4gh:SQ.sv5egNzqN5koJQH6w0M4tIK9tEDEfJl7",
"type": "SequenceLocation",
"interval": {
"start": {
"type": "Number",
"value": 171
},
"end": {
"type": "Number",
"value": 204
}
}
}
},
{
"id": "fusor.location_descriptor:NP_002520.2",
"type": "LocationDescriptor",
"location": {
"sequence_id": "ga4gh:SQ.vJvm06Wl5J7DXHynR9ksW7IK3_3jlFK6",
"type": "SequenceLocation",
"interval": {
"start": {
"type": "Number",
"value": 510
},
"end": {
"type": "Number",
"value": 781
}
}
}
}
] | da13824ff6f91caa635700759a29fb1f36aae1be | 5,991 |
def calculate_gc(x):
"""Calculates the GC content of DNA sequence x.
x: a string composed only of A's, T's, G's, and C's."""
x = x.upper()
return float(x.count('G') + x.count('C')) / (x.count('G') + x.count('C') + x.count('A') + x.count('T')) | aae64ff550ef26e75518bdad8a12b7cda9e060d2 | 5,992 |
def no_float_zeros(v):
"""
if a float that is equiv to integer - return int instead
"""
if v % 1 == 0:
return int(v)
else:
return v | a33321408c43d164a8ca2c7f1d1bc6270e5708ec | 5,993 |
import torch
def quat_mult(q_1, q_2):
"""Multiplication in the space of quaternions."""
a_1, b_1, c_1, d_1 = q_1[:, 0], q_1[:, 1], q_1[:, 2], q_1[:, 3]
a_2, b_2, c_2, d_2 = q_2[:, 0], q_2[:, 1], q_2[:, 2], q_2[:, 3]
q_1_q_2 = torch.stack(
(
a_1 * a_2 - b_1 * b_2 - c_1 * c_2 - d_1 * d_2,
a_1 * b_2 + b_1 * a_2 + c_1 * d_2 - d_1 * c_2,
a_1 * c_2 - b_1 * d_2 + c_1 * a_2 + d_1 * b_2,
a_1 * d_2 + b_1 * c_2 - c_1 * b_2 + d_1 * a_2,
),
dim=1,
)
return q_1_q_2 | dac82e246221f9af552f44ca26089443b8eaadd7 | 5,994 |
def _flip_dict_keys_and_values(d):
"""Switches the keys and values of a dictionary. The input dicitonary is not modified.
Output:
dict
"""
output = {}
for key, value in d.items():
output[value] = key
return output | b861fc3bd194d26ee05b9a56faad3394939064bf | 5,995 |
def hasattrs(object, *names):
"""
Takes in an object and a variable length amount of named attributes,
and checks to see if the object has each property. If any of the
attributes are missing, this returns false.
:param object: an object that may or may not contain the listed attributes
:param names: a variable amount of attribute names to check for
:return: True if the object contains each named attribute, false otherwise
"""
for name in names:
if not hasattr(object, name):
return False
return True | f3a2fc308d041ed0de79e3389e30e02660a1d535 | 5,997 |
import json
def try_parse_json(json_):
"""Converts the string representation of JSON to JSON.
:param str json_: JSON in str representation.
:rtype: :class:`dict` if converted successfully, otherwise False.
"""
if not json_:
return False
try:
return json.loads(json_)
except ValueError:
return False | 077819cf82e307aacf3e56b11fbba26a79559968 | 5,999 |
def field_paths(h5, key='externalFieldPath'):
"""
Looks for the External Fields
"""
if key not in h5.attrs:
return []
fpath = h5.attrs[key].decode('utf-8')
if '%T' not in fpath:
return [fpath]
path1 = fpath.split('%T')[0]
tlist = list(h5[path1])
paths = [path1+t for t in tlist]
return paths | 578e1a2d0971a94afa665f368e9b72c8f6e449d3 | 6,001 |
def get_quantifier(ch, input_iter):
"""
Parse a quantifier from the input, where "ch" is the first character in the
quantifier.
Return the minimum number of occurrences permitted by the quantifier and
either None or the next character from the input_iter if the next character
is not part of the quantifier.
"""
if ch in '*?+':
try:
ch2, escaped = next(input_iter)
except StopIteration:
ch2 = None
if ch2 == '?':
ch2 = None
if ch == '+':
return 1, ch2
return 0, ch2
quant = []
while ch != '}':
ch, escaped = next(input_iter)
quant.append(ch)
quant = quant[:-1]
values = ''.join(quant).split(',')
# Consume the trailing '?', if necessary.
try:
ch, escaped = next(input_iter)
except StopIteration:
ch = None
if ch == '?':
ch = None
return int(values[0]), ch | 36dea445aa416be79e86bb1e7c6f9dbe454c6c2a | 6,002 |
def setup_config(quiz_name):
"""Updates the config.toml index and dataset field with the formatted
quiz_name. This directs metapy to use the correct files
Keyword arguments:
quiz_name -- the name of the quiz
Returns:
True on success, false if fials to open file
"""
try:
conf_file = open("config.toml", 'r')
lines = conf_file.readlines()
conf_file.close()
for i in range(len(lines)):
if lines[i].startswith("index"):
lines[i] = "index = 'idx-{0}'\n".format(quiz_name.replace(" ", "_"))
if lines[i].startswith("dataset"):
lines[i] = "dataset = '{0}'\n".format(quiz_name.replace(" ", "_"))
conf_file = open("config.toml", 'w')
with conf_file:
conf_file.writelines(lines)
except Exception as e:
print(e)
return False
return True | 28aba9399926f27da89953c8b0c6b41d95a12d96 | 6,003 |
def compute_protien_mass(protien_string):
"""
test case
>>> compute_protien_mass('SKADYEK')
821.392
"""
p={'A':'71.03711','C':'103.00919','D':'115.02694','E':'129.04259','F':'147.06841','G':'57.02146','H':'137.05891','I':'113.08406','K':'128.09496','L':'113.08406','M':'131.04049','N':'114.04293','P':'97.05276','Q':'128.05858','R':'156.10111','S':'87.03203','T':'101.04768','V':'99.06841','W':'186.07931','Y':'163.06333'}
mass=0
for x in protien_string:
mass=mass+float(p[x])
#to change number of values after decimel point to 3
mass=round(mass,3)
return mass | 86a3ffd0ce3e95fcdf6d510d2865b35aeb93d779 | 6,004 |
import logging
def find_duration(data):
"""Finds the duration of the ECG data sequence
Finds the duration by looking at the last time value
as the first value is always at time = 0 seconds
:param data: 2D array of time sequences and voltage sequences
:return: Time duration of data sequence
"""
logging.info("Detecting Duration of Data Stream...\n")
return data[:, 0][-1] | e65135457e23886c402e0671d720fe9c5ed257a1 | 6,005 |
from typing import Dict
def _average_latency(row: Dict):
"""
Calculate average latency for Performance Analyzer single test
"""
avg_sum_fields = [
"Client Send",
"Network+Server Send/Recv",
"Server Queue",
"Server Compute",
"Server Compute Input",
"Server Compute Infer",
"Server Compute Output",
"Client Recv",
]
avg_latency = sum(int(row.get(f, 0)) for f in avg_sum_fields)
return avg_latency | f321cb4d55af605298225f2f0146a9a71ee7895b | 6,006 |
def to_vsizip(zipfn, relpth):
""" Create path from zip file """
return "/vsizip/{}/{}".format(zipfn, relpth) | 6f5baf380bd7ab8a4ea92111efbc0f660b10f6f8 | 6,007 |
def compute_F1(TP, TN, FP, FN):
"""
Return the F1 score
"""
numer = 2 * TP
denom = 2 * TP + FN + FP
F1 = numer/denom
Acc = 100. * (TP + TN) / (TP + TN + FP + FN)
return F1, Acc | 6f012246337534af37ff233ad78d9645907739e3 | 6,009 |
def name_full_data():
"""Full name data."""
return {
"name": "Doe, John",
"given_name": "John",
"family_name": "Doe",
"identifiers": [
{
"identifier": "0000-0001-8135-3489",
"scheme": "orcid"
}, {
"identifier": "gnd:4079154-3",
"scheme": "gnd"
}
],
"affiliations": [
{
"id": "cern"
},
{
"name": "CustomORG"
}
]
} | ac590635dbe33e68dc88acd890d16dd3137befb2 | 6,010 |
def requires_moderation(page):
"""Returns True if page requires moderation
"""
return bool(page.get_moderator_queryset().count()) | 8f1cfa852cbeccfae6157e94b7ddf61d9597936e | 6,011 |
from bs4 import BeautifulSoup
def get_html_text(html):
"""
Return the raw text of an ad
"""
if html:
doc = BeautifulSoup(html, "html.parser")
return doc.get_text(" ")
return "" | 14353f368078ea6b1673d1066b0a529cc3e257d9 | 6,012 |
def valid_parentheses(string):
"""
Takes a string of parentheses, and determines if the order of the parentheses is valid.
:param string: a string of parentheses and characters.
:return: true if the string is valid, and false if it's invalid.
"""
stack = []
for x in string:
if x == "(":
stack.append(x)
elif x == ")":
if len(stack) > 0:
stack.pop()
else:
return False
return not stack | e8438404c461b7a113bbbab6417190dcd1056871 | 6,013 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.