Point-Cache / README.md
auniquesun's picture
Update README.md
9f08f8a verified
---
task_categories:
- image-classification
---
The datasets in this repository are used in the paper [Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis](http://arxiv.org/abs/2503.12150).
### Datasets
1. The folder structure of used datasets should be organized as follows.
```sh
/path/to/Point-Cache
|----data # placed in the same level as `runners`, `scripts`, etc.
|----modelnet_c
|----sonn_c
|----obj_bg
|----obj_only
|----hardest
|----modelnet40
|----scanobjnn
|----omniobject3d
|----1024
|----4096
|----16384
|----objaverse_lvis
|----runners
|----scripts
...
```
2. You can find the download links of the above datasets from our **huggingface dataset repositories** as follows.
- [Link](https://huggingface.co/datasets/auniquesun/Point-PRC/tree/main/new-3ddg-benchmarks/xset/corruption) for `modelnet_c` and `sonn_c`
- [Link](https://huggingface.co/datasets/auniquesun/Point-PRC/tree/main/new-3ddg-benchmarks/xset/dg) for `omniobject3d`
- [Link](https://huggingface.co/datasets/auniquesun/Point-Cache/tree/main) for `modelnet40`, `scanobjnn`, and `objaverse_lvis`
3. If you find our paper and datasets are helpful for your project or research, please cite our work as follows.
```bibtex
@inproceedings{sun25pointcache,
title={Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis},
author={Sun, Hongyu and Ke, Qiuhong and Cheng, Ming and Wang, Yongcai and Li, Deying and Gou, Chenhui and Cai, Jianfei},
booktitle={2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2025},
month={June}
}
```